WorldWideScience

Sample records for cretaceous dinosaur pachycephalosaurus

  1. Dinosaurs and the Cretaceous Terrestrial Revolution

    Science.gov (United States)

    Lloyd, Graeme T; Davis, Katie E; Pisani, Davide; Tarver, James E; Ruta, Marcello; Sakamoto, Manabu; Hone, David W.E; Jennings, Rachel; Benton, Michael J

    2008-01-01

    The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125–80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the group's history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR. PMID:18647715

  2. Dinosaur morphological diversity and the end-Cretaceous extinction.

    Science.gov (United States)

    Brusatte, Stephen L; Butler, Richard J; Prieto-Márquez, Albert; Norell, Mark A

    2012-05-01

    The extinction of non-avian dinosaurs 65 million years ago is a perpetual topic of fascination, and lasting debate has focused on whether dinosaur biodiversity was in decline before end-Cretaceous volcanism and bolide impact. Here we calculate the morphological disparity (anatomical variability) exhibited by seven major dinosaur subgroups during the latest Cretaceous, at both global and regional scales. Our results demonstrate both geographic and clade-specific heterogeneity. Large-bodied bulk-feeding herbivores (ceratopsids and hadrosauroids) and some North American taxa declined in disparity during the final two stages of the Cretaceous, whereas carnivorous dinosaurs, mid-sized herbivores, and some Asian taxa did not. Late Cretaceous dinosaur evolution, therefore, was complex: there was no universal biodiversity trend and the intensively studied North American record may reveal primarily local patterns. At least some dinosaur groups, however, did endure long-term declines in morphological variability before their extinction.

  3. Cretaceous Vertebrate Tracksites - Korean Cretaceous Dinosaur Coast World Heritage Nomination Site

    Science.gov (United States)

    Huh, M.; Woo, K. S.; Lim, J. D.; Paik, I. S.

    2009-04-01

    South Korea is one of the best known regions in the world for Cretaceous fossil footprints, which are also world-renowned. Korea has produced more scientifically named bird tracks (ichnotaxa) than any other region in the world. It has also produced the world's largest pterosaur tracks. Dinosaur tracksites also have the highest frequency of vertebrate track-bearing levels currently known in any stratigraphic sequence. Among the areas that have the best track records, and the greatest scientific significance with best documentation, Korea ranks very highly. Objective analysis of important individual tracksites and tracksite regions must be based on multiple criteria including: size of site, number of tracks, trackways and track bearing levels, number of valid named ichnotaxa including types, number of scientific publications, quality of preservation. The unique and distinctive dinosaur tracksites are known as one of the world's most important dinosaur track localities. In particular, the dinosaur track sites in southern coastal area of Korea are very unique. In the sites, we have excavated over 10,000 dinosaur tracks. The Hwasun sites show diverse gaits with unusual walking patterns and postures in some tracks. The pterosaur tracks are the most immense in the world. The longest pterosaur trackway yet known from any track sites suggests that pterosaurs were competent terrestrial locomotors. This ichnofauna contains the first pterosaur tracks reported from Asia. The Haenam Uhangri pterosaur assigns to a new genus Haenamichnus which accomodates the new ichnospecies, Haenamichnus uhangriensis. At least 12 track types have been reported from the Haman and Jindong Formations (probably late Lower Cretaceous). These include the types of bird tracks assigned to Koreanornis, Jindongornipes, Ignotornis and Goseongornipes. In addition the bird tracks Hwangsanipes, Uhangrichnus, the pterosaur track Haenamichnus and the dinosaur tracks, Brontopodus, Caririchnium, Minisauripus and

  4. New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography

    Science.gov (United States)

    Poropat, Stephen F.; Mannion, Philip D.; Upchurch, Paul; Hocknull, Scott A.; Kear, Benjamin P.; Kundrát, Martin; Tischler, Travis R.; Sloan, Trish; Sinapius, George H. K.; Elliott, Judy A.; Elliott, David A.

    2016-01-01

    Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian–Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America. PMID:27763598

  5. Dinosaur trackways from the early Late Cretaceous of western Cameroon

    Science.gov (United States)

    Martin, Jeremy E.; Menkem, Elie Fosso; Djomeni, Adrien; Fowe, Paul Gustave; Ntamak-Nida, Marie-Joseph

    2017-10-01

    Dinosaur trackways have rarely been reported in Cretaceous strata across the African continent. To the exception of ichnological occurrences in Morocco, Tunisia, Niger and Cameroon, our knowledge on the composition of Cretaceous dinosaur faunas mostly relies on skeletal evidence. For the first time, we document several dinosaur trackways from the Cretaceous of the Mamfe Basin in western Cameroon. Small and medium-size tridactyl footprints as well as numerous large circular footprints are present on a single horizon showing mudcracks and ripple marks. The age of the locality is considered Cenomanian-Turonian and if confirmed, this ichnological assemblage could be younger than the dinosaur footprints reported from northern Cameroon, and coeval with or younger than skeletal remains reported from the Saharan region. These trackways were left in an adjacent subsiding basin along the southern shore of the Benue Trough during a time of high-sea stand when the Trans-Saharan Seaway was already disconnecting West Africa from the rest of the continent. We predict that other similar track sites may be occurring along the margin of the Benue Trough and may eventually permit to test hypotheses related to provincialism among African dinosaur faunas.

  6. Early cretaceous dinosaurs from the sahara.

    Science.gov (United States)

    Sereno, P C; Wilson, J A; Larsson, H C; Dutheil, D B; Sues, H D

    1994-10-14

    A major question in Mesozoic biogeography is how the land-based dinosaurian radiation responded to fragmentation of Pangaea. A rich fossil record has been uncovered on northern continents that spans the Cretaceous, when continental isolation reached its peak. In contrast, dinosaur remains on southern continents are scarce. The discovery of dinosaurian skeletons from Lower Cretaceous beds in the southern Sahara shows that several lineages of tetanuran theropods and broad-toothed sauropods had a cosmopolitan distribution across Pangaea before the onset of continental fragmentation. The distinct dinosaurian faunas of Africa, South America, and Asiamerica arose during the Cretaceous by differential survival of once widespread lineages on land masses that were becoming increasingly isolated from one another.

  7. Mountain building triggered late cretaceous North American megaherbivore dinosaur radiation.

    Directory of Open Access Journals (Sweden)

    Terry A Gates

    Full Text Available Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB. Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone.

  8. Mountain building triggered late cretaceous North American megaherbivore dinosaur radiation.

    Science.gov (United States)

    Gates, Terry A; Prieto-Márquez, Albert; Zanno, Lindsay E

    2012-01-01

    Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone.

  9. Diversity patterns amongst herbivorous dinosaurs and plants during the Cretaceous: implications for hypotheses of dinosaur/angiosperm co-evolution.

    Science.gov (United States)

    Butler, R J; Barrett, P M; Kenrick, P; Penn, M G

    2009-03-01

    Palaeobiologists frequently attempt to identify examples of co-evolutionary interactions over extended geological timescales. These hypotheses are often intuitively appealing, as co-evolution is so prevalent in extant ecosystems, and are easy to formulate; however, they are much more difficult to test than their modern analogues. Among the more intriguing deep time co-evolutionary scenarios are those that relate changes in Cretaceous dinosaur faunas to the primary radiation of flowering plants. Demonstration of temporal congruence between the diversifications of co-evolving groups is necessary to establish whether co-evolution could have occurred in such cases, but is insufficient to prove whether it actually did take place. Diversity patterns do, however, provide a means for falsifying such hypotheses. We have compiled a new database of Cretaceous dinosaur and plant distributions from information in the primary literature. This is used as the basis for plotting taxonomic diversity and occurrence curves for herbivorous dinosaurs (Sauropodomorpha, Stegosauria, Ankylosauria, Ornithopoda, Ceratopsia, Pachycephalosauria and herbivorous theropods) and major groups of plants (angiosperms, Bennettitales, cycads, cycadophytes, conifers, Filicales and Ginkgoales) that co-occur in dinosaur-bearing formations. Pairwise statistical comparisons were made between various floral and faunal groups to test for any significant similarities in the shapes of their diversity curves through time. We show that, with one possible exception, diversity patterns for major groups of herbivorous dinosaurs are not positively correlated with angiosperm diversity. In other words, at the level of major clades, there is no support for any diffuse co-evolutionary relationship between herbivorous dinosaurs and flowering plants. The diversification of Late Cretaceous pachycephalosaurs (excluding the problematic taxon Stenopelix) shows a positive correlation, but this might be spuriously related to

  10. Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs

    Science.gov (United States)

    Amiot, Romain; Lécuyer, Christophe; Buffetaut, Eric; Escarguel, Gilles; Fluteau, Frédéric; Martineau, François

    2006-06-01

    The much debated question of dinosaur thermophysiology has not yet been conclusively solved despite numerous attempts. We used the temperature-dependent oxygen isotope fractionation between vertebrate body water (δ 18O body water) and phosphatic tissues (δ 18O p) to compare the thermophysiology of dinosaurs with that of non-dinosaurian ectothermic reptiles. Present-day δ 18O p values of vertebrate apatites show that ectotherms have higher δ 18O p values than endotherms at high latitudes due to their lower body temperature, and conversely lower δ 18O p values than endotherms at low latitudes. Using a data set of 80 new and 49 published δ 18O p values, we observed similar and systematic differences in δ 18O p values (Δ 18O) between four groups of Cretaceous dinosaurs (theropods, sauropods, ornithopods and ceratopsians) and associated fresh water crocodiles and turtles. Expressed in terms of body temperatures ( Tb), these Δ 18O values indicate that dinosaurs maintained rather constant Tb in the range of endotherms whatever ambient temperatures were. This implies that high metabolic rates were widespread among Cretaceous dinosaurs belonging to widely different taxonomic groups and suggest that endothermy may be a synapomorphy of dinosaurs, or may have been acquired convergently in the studied taxa.

  11. The last dinosaurs of Brazil: The Bauru Group and its implications for the end-Cretaceous mass extinction

    Directory of Open Access Journals (Sweden)

    STEPHEN L. BRUSATTE

    Full Text Available ABSTRACT The non-avian dinosaurs died out at the end of the Cretaceous, ~66 million years ago, after an asteroid impact. The prevailing hypothesis is that the effects of the impact suddenly killed the dinosaurs, but the poor fossil record of latest Cretaceous (Campanian-Maastrichtian dinosaurs from outside Laurasia (and even more particularly, North America makes it difficult to test specific extinction scenarios. Over the past few decades, a wealth of new discoveries from the Bauru Group of Brazil has revealed a unique window into the evolution of terminal Cretaceous dinosaurs from the southern continents. We review this record and demonstrate that there was a diversity of dinosaurs, of varying body sizes, diets, and ecological roles, that survived to the very end of the Cretaceous (Maastrichtian: 72-66 million years ago in Brazil, including a core fauna of titanosaurian sauropods and abelisaurid and carcharodontosaurid theropods, along with a variety of small-to-mid-sized theropods. We argue that this pattern best fits the hypothesis that southern dinosaurs, like their northern counterparts, were still diversifying and occupying prominent roles in their ecosystems before the asteroid suddenly caused their extinction. However, this hypothesis remains to be tested with more refined paleontological and geochronological data, and we give suggestions for future work.

  12. The last dinosaurs of Brazil: The Bauru Group and its implications for the end-Cretaceous mass extinction.

    Science.gov (United States)

    Brusatte, Stephen L; Candeiro, Carlos R A; Simbras, Felipe M

    2017-01-01

    The non-avian dinosaurs died out at the end of the Cretaceous, ~66 million years ago, after an asteroid impact. The prevailing hypothesis is that the effects of the impact suddenly killed the dinosaurs, but the poor fossil record of latest Cretaceous (Campanian-Maastrichtian) dinosaurs from outside Laurasia (and even more particularly, North America) makes it difficult to test specific extinction scenarios. Over the past few decades, a wealth of new discoveries from the Bauru Group of Brazil has revealed a unique window into the evolution of terminal Cretaceous dinosaurs from the southern continents. We review this record and demonstrate that there was a diversity of dinosaurs, of varying body sizes, diets, and ecological roles, that survived to the very end of the Cretaceous (Maastrichtian: 72-66 million years ago) in Brazil, including a core fauna of titanosaurian sauropods and abelisaurid and carcharodontosaurid theropods, along with a variety of small-to-mid-sized theropods. We argue that this pattern best fits the hypothesis that southern dinosaurs, like their northern counterparts, were still diversifying and occupying prominent roles in their ecosystems before the asteroid suddenly caused their extinction. However, this hypothesis remains to be tested with more refined paleontological and geochronological data, and we give suggestions for future work.

  13. Small theropod teeth from the Late Cretaceous of the San Juan Basin, northwestern New Mexico and their implications for understanding latest Cretaceous dinosaur evolution.

    Science.gov (United States)

    Williamson, Thomas E; Brusatte, Stephen L

    2014-01-01

    Studying the evolution and biogeographic distribution of dinosaurs during the latest Cretaceous is critical for better understanding the end-Cretaceous extinction event that killed off all non-avian dinosaurs. Western North America contains among the best records of Late Cretaceous terrestrial vertebrates in the world, but is biased against small-bodied dinosaurs. Isolated teeth are the primary evidence for understanding the diversity and evolution of small-bodied theropod dinosaurs during the Late Cretaceous, but few such specimens have been well documented from outside of the northern Rockies, making it difficult to assess Late Cretaceous dinosaur diversity and biogeographic patterns. We describe small theropod teeth from the San Juan Basin of northwestern New Mexico. These specimens were collected from strata spanning Santonian - Maastrichtian. We grouped isolated theropod teeth into several morphotypes, which we assigned to higher-level theropod clades based on possession of phylogenetic synapomorphies. We then used principal components analysis and discriminant function analyses to gauge whether the San Juan Basin teeth overlap with, or are quantitatively distinct from, similar tooth morphotypes from other geographic areas. The San Juan Basin contains a diverse record of small theropods. Late Campanian assemblages differ from approximately coeval assemblages of the northern Rockies in being less diverse with only rare representatives of troodontids and a Dromaeosaurus-like taxon. We also provide evidence that erect and recurved morphs of a Richardoestesia-like taxon represent a single heterodont species. A late Maastrichtian assemblage is dominated by a distinct troodontid. The differences between northern and southern faunas based on isolated theropod teeth provide evidence for provinciality in the late Campanian and the late Maastrichtian of North America. However, there is no indication that major components of small-bodied theropod diversity were lost

  14. Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs.

    Science.gov (United States)

    Hassler, A; Martin, J E; Amiot, R; Tacail, T; Godet, F Arnaud; Allain, R; Balter, V

    2018-04-11

    Large predators are overabundant in mid-Cretaceous continental dinosaur assemblages of North Africa. Such unbalanced ecosystem structure involves, among predatory dinosaurs, typical abelisaurid or carcharodontosaurid theropods co-occurring with long-snouted spinosaurids of debated ecology. Here, we report calcium (Ca) isotope values from tooth enamel (expressed as δ 44/42 Ca) to investigate resource partitioning in mid-Cretaceous assemblages from Niger (Gadoufaoua) and Morocco (Kem Kem Beds). In both assemblages, spinosaurids display a distinct isotopic signature, the most negative in our dataset. This distinct taxonomic clustering in Ca isotope values observed between spinosaurids and other predators provides unambiguous evidence for niche partitioning at the top of the trophic chains: spinosaurids foraged on aquatic environments while abelisaurid and carcharodontosaurid theropods relied almost exclusively on terrestrial resources. © 2018 The Author(s).

  15. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds.

    Science.gov (United States)

    Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Benton, Michael J; Zhou, Zhonghe; Johnson, Diane; Xu, Xing; Wang, Xiaolin

    2010-02-25

    Spectacular fossils from the Early Cretaceous Jehol Group of northeastern China have greatly expanded our knowledge of the diversity and palaeobiology of dinosaurs and early birds, and contributed to our understanding of the origin of birds, of flight, and of feathers. Pennaceous (vaned) feathers and integumentary filaments are preserved in birds and non-avian theropod dinosaurs, but little is known of their microstructure. Here we report that melanosomes (colour-bearing organelles) are not only preserved in the pennaceous feathers of early birds, but also in an identical manner in integumentary filaments of non-avian dinosaurs, thus refuting recent claims that the filaments are partially decayed dermal collagen fibres. Examples of both eumelanosomes and phaeomelanosomes have been identified, and they are often preserved in life position within the structure of partially degraded feathers and filaments. Furthermore, the data here provide empirical evidence for reconstructing the colours and colour patterning of these extinct birds and theropod dinosaurs: for example, the dark-coloured stripes on the tail of the theropod dinosaur Sinosauropteryx can reasonably be inferred to have exhibited chestnut to reddish-brown tones.

  16. Hadrosauroid dinosaurs from the Late Cretaceous of the Sultanate of Oman

    NARCIS (Netherlands)

    Buffetaut, Eric; Hartman, Axel Frans; Al-Kindi, Mohammed; Schulp, Anne S.

    2015-01-01

    Fragmentary post-cranial remains (femora, tibia, vertebrae) of ornithischian dinosaurs from the Late Cretaceous of the Sultanate of Oman are described and referred to hadrosauroids. The specimens come from the Al-Khod Conglomerate, of latest Campanian to Maastrichtian age, in the north-eastern part

  17. Diverse dinosaur-dominated ichnofaunas from the Potomac Group (Lower Cretaceous) Maryland

    Science.gov (United States)

    Stanford, Ray; Lockley, Martin G.; Weems, Robert E.

    2007-01-01

    Until recently fossil footprints were virtually unknown from the Cretaceous of the eastern United States. The discovery of about 300 footprints in iron-rich siliciclastic facies of the Patuxent Formation (Potomac Group) of Aptian age is undoubtedly one of the most significant Early Cretaceous track discoveries since the Paluxy track discoveries in Texas in the 1930s. The Patuxent tracks include theropod, sauropod, ankylosaur and ornithopod dinosaur footprints, pterosaur tracks, and miscellaneous mammal and other vertebrate ichnites that collectively suggest a diversity of about 14 morphotypes. This is about twice the previous maximum estimate for any known Early Cretaceous vertebrate ichnofauna. Among the more distinctive forms are excellent examples of hypsilophodontid tracks and a surprisingly large mammal footprint. A remarkable feature of the Patuxent track assemblage is the high proportion of small tracks indicative of hatchlings, independently verified by the discovery of a hatchling-sized dinosaur. Such evidence suggests the proximity of nest sites. The preservation of such small tracks is very rare in the Cretaceous track record, and indeed throughout most of the Mesozoic.This unusual preservation not only provides us with a window into a diverse Early Cretaceous ecosystem, but it also suggests the potential of such facies to provide ichnological bonanzas. A remarkable feature of the assemblage is that it consists largely of reworked nodules and clasts that may have previously been reworked within the Patuxent Formation. Such unusual contexts of preservation should provide intriguing research opportunities for sedimentologists interested in the diagenesis and taphonomy of a unique track-bearing facies.

  18. Evidence of reworked Cretaceous fossils and their bearing on the existence of Tertiary dinosaurs

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, J.G. (Museum of Northern Arizona, Flagstaff (USA)); Kirkland, J.I. (Univ. of Nebraska, Lincoln (USA)); Doi, K. (Univ. of Colorado, Boulder (USA))

    1989-06-01

    The Paleocene Shotgun fauna of Wyoming includes marine sharks as well as mammals. It has been suggested that the sharks were introduced from the Cannonball Sea. It is more likely that these sharks were reworked from a Cretaceous rock sequence that included both marine and terrestrial deposits as there is a mixture of marine and freshwater taxa. These taxa have not been recorded elsewhere after the Cretaceous and are not known from the Cannonball Formation. Early Eocene localities at Raven Ridge, Utah, similarly contain teeth of Cretaceous marine and freshwater fish, dinosaurs, and Eocene mammals. The Cretaceous teeth are well preserved, variably abraded, and serve to cast doubts on criteria recently used to claim that dinosaur teeth recovered from the Paleocene of Montana are not reworked. Another Eocene locality in the San Juan Basin has produced an Eocene mammalian fauna with diverse Cretaceous marine sharks. Neither the nature of preservation nor the degree of abrasion could be used to distinguish reworked from contemporaneous material. The mixed environments represented by the fish taxa and recognition of the extensive pre-Tertiary extinction of both marine and freshwater fish were employed to recognize reworked specimens.

  19. A Late Cretaceous diversification of Asian oviraptorid dinosaurs: evidence from a new species preserved in an unusual posture

    Science.gov (United States)

    Lü, Junchang; Chen, Rongjun; Brusatte, Stephen L.; Zhu, Yangxiao; Shen, Caizhi

    2016-11-01

    Oviraptorosaurs are a bizarre group of bird-like theropod dinosaurs, the derived forms of which have shortened, toothless skulls, and which diverged from close relatives by developing peculiar feeding adaptations. Although once among the most mysterious of dinosaurs, oviraptorosaurs are becoming better understood with the discovery of many new fossils in Asia and North America. The Ganzhou area of southern China is emerging as a hotspot of oviraptorosaur discoveries, as over the past half decade five new monotypic genera have been found in the latest Cretaceous (Maastrichtian) deposits of this region. We here report a sixth diagnostic oviraptorosaur from Ganzhou, Tongtianlong limosus gen. et sp. nov., represented by a remarkably well-preserved specimen in an unusual splayed-limb and raised-head posture. Tongtianlong is a derived oviraptorid oviraptorosaur, differentiated from other species by its unique dome-like skull roof, highly convex premaxilla, and other features of the skull. The large number of oviraptorosaurs from Ganzhou, which often differ in cranial morphologies related to feeding, document an evolutionary radiation of these dinosaurs during the very latest Cretaceous of Asia, which helped establish one of the last diverse dinosaur faunas before the end-Cretaceous extinction.

  20. Tyrant dinosaur evolution tracks the rise and fall of Late Cretaceous oceans.

    Science.gov (United States)

    Loewen, Mark A; Irmis, Randall B; Sertich, Joseph J W; Currie, Philip J; Sampson, Scott D

    2013-01-01

    The Late Cretaceous (∼95-66 million years ago) western North American landmass of Laramidia displayed heightened non-marine vertebrate diversity and intracontinental regionalism relative to other latest Cretaceous Laurasian ecosystems. Processes generating these patterns during this interval remain poorly understood despite their presumed role in the diversification of many clades. Tyrannosauridae, a clade of large-bodied theropod dinosaurs restricted to the Late Cretaceous of Laramidia and Asia, represents an ideal group for investigating Laramidian patterns of evolution. We use new tyrannosaurid discoveries from Utah--including a new taxon which represents the geologically oldest member of the clade--to investigate the evolution and biogeography of Tyrannosauridae. These data suggest a Laramidian origin for Tyrannosauridae, and implicate sea-level related controls in the isolation, diversification, and dispersal of this and many other Late Cretaceous vertebrate clades.

  1. Hadrosauroid Dinosaurs from the Late Cretaceous of the Sultanate of Oman.

    Directory of Open Access Journals (Sweden)

    Eric Buffetaut

    Full Text Available Fragmentary post-cranial remains (femora, tibia, vertebrae of ornithischian dinosaurs from the Late Cretaceous of the Sultanate of Oman are described and referred to hadrosauroids. The specimens come from the Al-Khod Conglomerate, of latest Campanian to Maastrichtian age, in the north-eastern part of the country. Although the fragmentary condition of the fossils precludes a precise identification, various characters, including the shape of the fourth trochanter of the femur and the morphology of its distal end, support an attribution to hadrosauroids. With the possible exception of a possible phalanx from Angola, this group of ornithopod dinosaurs, which apparently originated in Laurasia, was hitherto unreported from the Afro-Arabian plate. From a paleobiogeographical point of view, the presence of hadrosauroids in Oman in all likelihood is a result of trans-Tethys dispersal from Asia or Europe, probably by way of islands in the Tethys shown on all recent paleogeographical maps of that area. Whether hadrosauroids were widespread on the Afro-Arabian landmass in the latest Cretaceous, or where restricted to the « Oman island » shown on some paleogeographical maps, remains to be determined.

  2. Hadrosauroid Dinosaurs from the Late Cretaceous of the Sultanate of Oman.

    Science.gov (United States)

    Buffetaut, Eric; Hartman, Axel-Frans; Al-Kindi, Mohammed; Schulp, Anne S

    2015-01-01

    Fragmentary post-cranial remains (femora, tibia, vertebrae) of ornithischian dinosaurs from the Late Cretaceous of the Sultanate of Oman are described and referred to hadrosauroids. The specimens come from the Al-Khod Conglomerate, of latest Campanian to Maastrichtian age, in the north-eastern part of the country. Although the fragmentary condition of the fossils precludes a precise identification, various characters, including the shape of the fourth trochanter of the femur and the morphology of its distal end, support an attribution to hadrosauroids. With the possible exception of a possible phalanx from Angola, this group of ornithopod dinosaurs, which apparently originated in Laurasia, was hitherto unreported from the Afro-Arabian plate. From a paleobiogeographical point of view, the presence of hadrosauroids in Oman in all likelihood is a result of trans-Tethys dispersal from Asia or Europe, probably by way of islands in the Tethys shown on all recent paleogeographical maps of that area. Whether hadrosauroids were widespread on the Afro-Arabian landmass in the latest Cretaceous, or where restricted to the « Oman island » shown on some paleogeographical maps, remains to be determined.

  3. Dental Disparity and Ecological Stability in Bird-like Dinosaurs prior to the End-Cretaceous Mass Extinction.

    Science.gov (United States)

    Larson, Derek W; Brown, Caleb M; Evans, David C

    2016-05-23

    The causes, rate, and selectivity of the end-Cretaceous mass extinction continue to be highly debated [1-5]. Extinction patterns in small, feathered maniraptoran dinosaurs (including birds) are important for understanding extant biodiversity and present an enigma considering the survival of crown group birds (Neornithes) and the extinction of their close kin across the end-Cretaceous boundary [6]. Because of the patchy Cretaceous fossil record of small maniraptorans [7-12], this important transition has not been closely examined in this group. Here, we test the hypothesis that morphological disparity in bird-like dinosaurs was decreasing leading up to the end-Cretaceous mass extinction, as has been hypothesized in some dinosaurs [13, 14]. To test this, we examined tooth morphology, an ecological indicator in fossil reptiles [15-19], from over 3,100 maniraptoran teeth from four groups (Troodontidae, Dromaeosauridae, Richardoestesia, and cf. Aves) across the last 18 million years of the Cretaceous. We demonstrate that tooth disparity, a proxy for variation in feeding ecology, shows no significant decline leading up to the extinction event within any of the groups. Tooth morphospace occupation also remains static over this time interval except for increased size during the early Maastrichtian. Our data provide strong support that extinction within this group occurred suddenly after a prolonged period of ecological stability. To explain this sudden extinction of toothed maniraptorans and the survival of Neornithes, we propose that diet may have been an extinction filter and suggest that granivory associated with an edentulous beak was a key ecological trait in the survival of some lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Dinosaur ichnofauna of the Upper Jurassic/Lower Cretaceous of the Paraná Basin (Brazil and Uruguay)

    Science.gov (United States)

    Francischini, H.; Dentzien–Dias, P. C.; Fernandes, M. A.; Schultz, C. L.

    2015-11-01

    Upper Jurassic and Lower Cretaceous sedimentary layers are represented in the Brazilian Paraná Basin by the fluvio-aeolian Guará Formation and the Botucatu Formation palaeoerg, respectively, overlapped by the volcanic Serra Geral Formation. In Uruguay, the corresponding sedimentary units are named Batoví and Rivera Members (both from the Tacuarembó Formation), and the lava flows constitute the Arapey Formation (also in Paraná Basin). Despite the lack of body fossils in the mentioned Brazilian formations, Guará/Batoví dinosaur fauna is composed of theropod, ornithopod and wide-gauge sauropod tracks and isolated footprints, as well as theropod teeth. In turn, the Botucatu/Rivera dinosaur fauna is represented by theropod and ornithopod ichnofossils smaller than those from the underlying units. The analysis of these dinosaur ichnological records and comparisons with other global Mesozoic ichnofauna indicates that there is a size reduction in dinosaur fauna in the more arid Botucatu/Rivera environment, which is dominated by aeolian dunes. The absence of sauropod trackways in the Botucatu Sandstone fits with the increasingly arid conditions because it is difficult for heavy animals to walk on sandy dunes, as well as to obtain the required amount of food resources. This comparison between the Upper Jurassic and Lower Cretaceous dinosaur fauna in south Brazil and Uruguay demonstrates the influence of aridization on the size of animals occupying each habitat.

  5. parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages.

    Science.gov (United States)

    Peñalver, Enrique; Arillo, Antonio; Delclòs, Xavier; Peris, David; Grimaldi, David A; Anderson, Scott R; Nascimbene, Paul C; Pérez-de la Fuente, Ricardo

    2017-12-12

    Ticks are currently among the most prevalent blood-feeding ectoparasites, but their feeding habits and hosts in deep time have long remained speculative. Here, we report direct and indirect evidence in 99 million-year-old Cretaceous amber showing that hard ticks and ticks of the extinct new family Deinocrotonidae fed on blood from feathered dinosaurs, non-avialan or avialan excluding crown-group birds. A †Cornupalpatum burmanicum hard tick is entangled in a pennaceous feather. Two deinocrotonids described as †Deinocroton draculi gen. et sp. nov. have specialised setae from dermestid beetle larvae (hastisetae) attached to their bodies, likely indicating cohabitation in a feathered dinosaur nest. A third conspecific specimen is blood-engorged, its anatomical features suggesting that deinocrotonids fed rapidly to engorgement and had multiple gonotrophic cycles. These findings provide insight into early tick evolution and ecology, and shed light on poorly known arthropod-vertebrate interactions and potential disease transmission during the Mesozoic.

  6. Do brooding and polygamy behaviors exist on Cretaceous oviraptoroid dinosaurs of China: a paleobiological perspective

    Science.gov (United States)

    Yang, T.-R.; Cheng, Y.-N.; Yang, K.-M.

    2012-04-01

    Brooding, parental care, and polygamy represent three different stages in bird's reproduction. The oringin of these behaviors is still in debate. Several samples excavated from China strengthen the phylogenetic relationship between birds and dinosaurs, for example, feathered dinosaurs, paired-eggs in pelvic region of an oviraptorid dinosaur, and small theropod fossils. Previous studies in past two decades, including an oviraptor sitting on a clutch and comparison of the ratio of clutch-volume to adult-body-size between Aves and Mesozoic dinosaurs, proposed that these behaviors had appeared on some Cretaceous theropods (e.g., oviraptor and troodon). These researches also indicate the possibility of endothermy and male care first. In conclusion, this reproduction strategy might support females having more remnant energy to build a larger clutch contributed eggs from multiple females, and brooded by males only. From our cluster analysis through paleoecological perspectives, the eggs in Cretaceous oviraptor's nest should not be corporately laid by multiple females. In morphological observation, the fossilized clutches from Ganzhou, Jiangxi, Mainland China, are 2-layered interbeded with matrix of reddish-brown siltstone or clays. The inner-layer eggs are hampered from directly contacting with adult dinosaurs body. Furthermore, the blunt ends of the eggs point to the center, and incline away forming a mound-shape nest, which is completely different from those of precocial and male-caring megapode. The ornamentation of eggshell surface and microstructures from thin sections of eggs from oviraptors and ostrich (Struthioniformes) are totally different. Comparison of thickness in different part of oviraptor's egg also reveal possible physiological structure in the egg and ecological behaviors. The detailed comparison implies that the Mesozoic oviraptoroid dinosaurs hold absolutely different incubation and caring behaviors from extant birds. We propose an alternative

  7. First complete sauropod dinosaur skull from the Cretaceous of the Americas and the evolution of sauropod dentition.

    Science.gov (United States)

    Chure, Daniel; Britt, Brooks B; Whitlock, John A; Wilson, Jeffrey A

    2010-04-01

    Sauropod dinosaur bones are common in Mesozoic terrestrial sediments, but sauropod skulls are exceedingly rare--cranial materials are known for less than one third of sauropod genera and even fewer are known from complete skulls. Here we describe the first complete sauropod skull from the Cretaceous of the Americas, Abydosaurus mcintoshi, n. gen., n. sp., known from 104.46 +/- 0.95 Ma (megannum) sediments from Dinosaur National Monument, USA. Abydosaurus shares close ancestry with Brachiosaurus, which appeared in the fossil record ca. 45 million years earlier and had substantially broader teeth. A survey of tooth shape in sauropodomorphs demonstrates that sauropods evolved broad crowns during the Early Jurassic but did not evolve narrow crowns until the Late Jurassic, when they occupied their greatest range of crown breadths. During the Cretaceous, brachiosaurids and other lineages independently underwent a marked diminution in tooth breadth, and before the latest Cretaceous broad-crowned sauropods were extinct on all continental landmasses. Differential survival and diversification of narrow-crowned sauropods in the Late Cretaceous appears to be a directed trend that was not correlated with changes in plant diversity or abundance, but may signal a shift towards elevated tooth replacement rates and high-wear dentition. Sauropods lacked many of the complex herbivorous adaptations present within contemporaneous ornithischian herbivores, such as beaks, cheeks, kinesis, and heterodonty. The spartan design of sauropod skulls may be related to their remarkably small size--sauropod skulls account for only 1/200th of total body volume compared to 1/30th body volume in ornithopod dinosaurs.

  8. A New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Late Cretaceous of Southern China and Its Paleobiogeographical Implications.

    Science.gov (United States)

    Lü, Junchang; Pu, Hanyong; Kobayashi, Yoshitsugu; Xu, Li; Chang, Huali; Shang, Yuhua; Liu, Di; Lee, Yuong-Nam; Kundrát, Martin; Shen, Caizhi

    2015-07-02

    The Ganzhou area of Jiangxi Province, southern China is becoming one of the most productive oviraptorosaurian localities in the world. A new oviraptorid dinosaur was unearthed from the uppermost Upper Cretaceous Nanxiong Formation of Ganzhou area. It is characterized by an anterodorsally sloping occiput and quadrate (a feature shared with Citipati), a circular supratemporal fenestra that is much smaller than the lower temporal fenestra, and a dentary in which the dorsal margin above the external mandibular fenestra is strongly concave ventrally. The position of the anteroventral corner of the external naris in relation to the posterodorsal corner of the antorbital fenestra provides new insight into the craniofacial evolution of oviraptorosaurid dinosaurs. A phylogenetic analysis recovers the new taxon as closely related to the Mongolian Citipati. Six oviraptorid dinosaurs from the Nanxiong Formation (Ganzhou and Nanxiong) are distributed within three clades of the family. Each of the three clades from the Nanxiong Formation has close relatives in Inner Mongolia and Mongolia, and in both places each clade may have had a specific diet or occupied a different ecological niche. Oviraptorid dinosaurs were geographically widespread across Asia in the latest Cretaceous and were an important component of terrestrial ecosystems during this time.

  9. The extinction of the dinosaurs.

    Science.gov (United States)

    Brusatte, Stephen L; Butler, Richard J; Barrett, Paul M; Carrano, Matthew T; Evans, David C; Lloyd, Graeme T; Mannion, Philip D; Norell, Mark A; Peppe, Daniel J; Upchurch, Paul; Williamson, Thomas E

    2015-05-01

    Non-avian dinosaurs went extinct 66 million years ago, geologically coincident with the impact of a large bolide (comet or asteroid) during an interval of massive volcanic eruptions and changes in temperature and sea level. There has long been fervent debate about how these events affected dinosaurs. We review a wealth of new data accumulated over the past two decades, provide updated and novel analyses of long-term dinosaur diversity trends during the latest Cretaceous, and discuss an emerging consensus on the extinction's tempo and causes. Little support exists for a global, long-term decline across non-avian dinosaur diversity prior to their extinction at the end of the Cretaceous. However, restructuring of latest Cretaceous dinosaur faunas in North America led to reduced diversity of large-bodied herbivores, perhaps making communities more susceptible to cascading extinctions. The abruptness of the dinosaur extinction suggests a key role for the bolide impact, although the coarseness of the fossil record makes testing the effects of Deccan volcanism difficult. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  10. Dinosaur Footprints and Other Ichnofauna from the Cretaceous Kem Kem Beds of Morocco

    Science.gov (United States)

    Ibrahim, Nizar; Varricchio, David J.; Sereno, Paul C.; Wilson, Jeff A.; Dutheil, Didier B.; Martill, David M.; Baidder, Lahssen; Zouhri, Samir

    2014-01-01

    We describe an extensive ichnofossil assemblage from the likely Cenomanian-age ‘lower’ and ‘upper’ units of the ‘Kem Kem beds’ in southeastern Morocco. In the lower unit, trace fossils include narrow vertical burrows in cross-bedded sandstones and borings in dinosaur bone, with the latter identified as the insect ichnotaxon Cubiculum ornatus. In the upper unit, several horizons preserve abundant footprints from theropod dinosaurs. Sauropod and ornithischian footprints are much rarer, similar to the record for fossil bone and teeth in the Kem Kem assemblage. The upper unit also preserves a variety of invertebrate traces including Conichnus (the resting trace of a sea-anemone), Scolicia (a gastropod trace), Beaconites (a probable annelid burrow), and subvertical burrows likely created by crabs for residence and detrital feeding on a tidal flat. The ichnofossil assemblage from the Upper Cretaceous Kem Kem beds contributes evidence for a transition from predominantly terrestrial to marine deposition. Body fossil and ichnofossil records together provide a detailed view of faunal diversity and local conditions within a fluvial and deltaic depositional setting on the northwestern coast of Africa toward the end of the Cretaceous. PMID:24603467

  11. A new dinosaur ichnotaxon from the Lower Cretaceous Patuxent Formation of Maryland and Virginia

    Science.gov (United States)

    Stanford, Ray; Weems, Robert E.; Lockley, Martin G.

    2004-01-01

    In recent years, numerous dinosaur footprints have been discovered on bedding surfaces within the Lower Cretaceous Patuxent Formation of Maryland and Virginia. Among these, distinctive small tracks that display a combination of small manus with five digit impressions and a relatively much larger pes with four toe impressions evidently were made by animals belonging to the ornithischian family Hypsilophodontidae. These tracks differ from any ornithischian ichnotaxon previously described. We here name them Hypsiloichnus marylandicus and provide a description of their diagnostic characteristics. Although hypsilophodontid skeletal remains have not been found in the Patuxent, their skeletal remains are known from Lower Cretaceous strata of similar age in both western North America and Europe. Therefore, it is not surprising to find that an Early Cretaceous representative of this family also existed in eastern North America.

  12. New Mid-Cretaceous (Latest Albian) Dinosaurs from Winton, Queensland, Australia

    Science.gov (United States)

    Hocknull, Scott A.; White, Matt A.; Tischler, Travis R.; Cook, Alex G.; Calleja, Naomi D.; Sloan, Trish; Elliott, David A.

    2009-01-01

    Background Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. Methodology/Principal Findings We describe three new dinosaurs from the late Early Cretaceous (latest Albian) Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. Conclusion/Significance The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator) and more derived forms (e.g. Diamantinasaurus). PMID:19584929

  13. New Mid-Cretaceous (latest Albian dinosaurs fromWinton, Queensland, Australia.

    Directory of Open Access Journals (Sweden)

    Scott A Hocknull

    Full Text Available BACKGROUND: Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. METHODOLOGY/PRINCIPAL FINDINGS: We describe three new dinosaurs from the late Early Cretaceous (latest Albian Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. CONCLUSION/SIGNIFICANCE: The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator and more derived forms (e.g. Diamantinasaurus.

  14. Dinosaur tracks from the Cedar Mountain Formation (Lower Cretaceous), Arches National Park, Utah

    Science.gov (United States)

    Lockley, Martin G.; White, Diane K.; Kirkland, James I.; Santucci, Vincent L.

    2004-01-01

    The seventh and largest known dinosaur tracksite from the Cedar Mountain Formation is reported from two important stratigraphic levels in the Ruby Ranch Member within the boundaries of Arches National Park. Previous reports of sites with a few isolated tracks are of limited utility in indicating the fauna represented by track makers. The Arches site reveals evidence of several theropod morphotypes, including a possible match for the coelurosaur Nedcolbertia and an apparently didactyl Utahraptor-like dromeosaurid. Sauropod tracks indicate a wide-gauge morphotype (cf. Brontopodus). Ornithischian tracks suggest the presence of an iguandontid-like ornithopod and a large ankylosaur. Dinosaur track diversity is high in comparison with other early Cretaceous vertebrate ichnofaunas, and it correlates well with faunal lists derived from skeletal remains, thus providing a convincing census of the known fauna.

  15. Fungal Ferromanganese Mineralisation in Cretaceous Dinosaur Bones from the Gobi Desert, Mongolia.

    Science.gov (United States)

    Owocki, Krzysztof; Kremer, Barbara; Wrzosek, Beata; Królikowska, Agata; Kaźmierczak, Józef

    2016-01-01

    Well-preserved mycelia of fungal- or saprolegnia-like biota mineralised by ferromanganese oxides were found for the first time in long bones of Late Cretaceous dinosaurs from the Gobi Desert (Nemegt Valley, Mongolia). The mycelia formed a biofilm on the wall of the bone marrow cavity and penetrated the osteon channels of the nearby bone tissue. Optical microscopy, Raman, SEM/EDS, SEM/BSE, electron microprobe and cathodoluminescence analyses revealed that the mineralisation of the mycelia proceeded in two stages. The first stage was early post-mortem mineralisation of the hyphae by Fe/Mn-oxide coatings and microconcretions. Probably this proceeded in a mildly acidic to circumneutral environment, predominantly due to heterotrophic bacteria degrading the mycelial necromass and liberating Fe and Mn sorbed by the mycelia during its lifetime. The second stage of mineralisation, which proceeded much later following the final burial of the bones in an alkaline environment, resulted from the massive precipitation of calcite and occasionally barite on the iron/manganese-oxide-coated mycelia. The mineral phases produced by fungal biofilms colonising the interiors of decaying dinosaur bones not only enhance the preservation (fossilisation) of fungal remains but can also be used as indicators of the geochemistry of the dinosaur burial sites.

  16. A dinosaur community composition dataset for the Late Cretaceous Nemegt Basin of Mongolia

    Directory of Open Access Journals (Sweden)

    G.F. Funston

    2018-02-01

    Full Text Available Dinosaur community composition data for eleven fossil localities in the Late Cretaceous Nemegt Basin of Mongolia are compiled from field observations and records in the literature. Counts were generated from skeletons and represent numbers of individuals preserved in each locality. These data were used in the analyses of Funston et al. [1] “Oviraptorosaur anatomy, diversity, and ecology in the Nemegt Basin” in the Nemegt Ecosystems Special Issue of Palaeogeography, Palaeoclimatology, Palaeoecology, where the results are discussed.

  17. Mesozoic dinosaurs from Brazil and their biogeographic implications.

    Science.gov (United States)

    Bittencourt, Jonathas S; Langer, Max C

    2011-03-01

    The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.

  18. Dinosaur extinction: closing the '3 m gap'.

    Science.gov (United States)

    Lyson, Tyler R; Bercovici, Antoine; Chester, Stephen G B; Sargis, Eric J; Pearson, Dean; Joyce, Walter G

    2011-12-23

    Modern debate regarding the extinction of non-avian dinosaurs was ignited by the publication of the Cretaceous-Tertiary (K-T) asteroid impact theory and has seen 30 years of dispute over the position of the stratigraphically youngest in situ dinosaur. A zone devoid of dinosaur fossils reported from the last 3 m of the Upper Cretaceous, coined the '3 m gap', has helped drive controversy. Here, we report the discovery of the stratigraphically youngest in situ dinosaur specimen: a ceratopsian brow horn found in a poorly rooted, silty, mudstone floodplain deposit located no more than 13 cm below the palynologically defined boundary. The K-T boundary is identified using three criteria: (i) decrease in Cretaceous palynomorphs without subsequent recovery, (ii) the existence of a 'fern spike', and (iii) correlation to a nearby stratigraphic section where primary extraterrestrial impact markers are present (e.g. iridium anomaly, spherules, shocked quartz). The in situ specimen demonstrates that a gap devoid of non-avian dinosaur fossils does not exist and is inconsistent with the hypothesis that non-avian dinosaurs were extinct prior to the K-T boundary impact event.

  19. Stable Isotopes Reveal Rapid Enamel Elongation (Amelogenesis) Rates for the Early Cretaceous Iguanodontian Dinosaur Lanzhousaurus magnidens.

    Science.gov (United States)

    Suarez, Celina A; You, Hai-Lu; Suarez, Marina B; Li, Da-Qing; Trieschmann, J B

    2017-11-10

    Lanzhousaurus magnidens, a large non-hadrosauriform iguanodontian dinosaur from the Lower Cretaceous Hekou Group of Gansu Province, China has the largest known herbivorous dinosaur teeth. Unlike its hadrosauriform relatives possessing tooth batteries of many small teeth, Lanzhousaurus utilized a small number (14) of very large teeth (~10 cm long) to create a large, continuous surface for mastication. Here we investigate the significance of Lanzhousaurus in the evolutionary history of iguanodontian-hadrosauriform transition by using a combination of stable isotope analysis and CT imagery. We infer that Lanzhousaurus had a rapid rate of tooth enamel elongation or amelogenesis at 0.24 mm/day with dental tissues common to other Iguanodontian dinosaurs. Among ornithopods, high rates of amelogenesis have been previously observed in hadrosaurids, where they have been associated with a sophisticated masticatory apparatus. These data suggest rapid amelogenesis evolved among non-hadrosauriform iguanodontians such as Lanzhousaurus, representing a crucial step that was exapted for the evolution of the hadrosaurian feeding mechanism.

  20. The earliest evidence for a supraorbital salt gland in dinosaurs in new Early Cretaceous ornithurines.

    Science.gov (United States)

    Wang, Xia; Huang, Jiandong; Hu, Yuanchao; Liu, Xiaoyu; Peteya, Jennifer; Clarke, Julia A

    2018-03-05

    Supraorbital fossae occur when salt glands are well developed, a condition most pronounced in marine and desert-dwelling taxa in which salt regulation is key. Here, we report the first specimens from lacustrine environments of the Jehol Biota that preserve a distinct fossa above the orbit, where the salt gland fossa is positioned in living birds. The Early Cretaceous ornithurine bird specimens reported here are about 40 million years older than previously reported Late Cretaceous marine birds and represent the earliest described occurrence of the fossa. We find no evidence of avian salt gland fossae in phylogenetically earlier stem birds or non-avialan dinosaurs, even in those argued to be predominantly marine or desert dwelling. The apparent absence of this feature in more basal dinosaurs may indicate that it is only after miniaturization close to the origin of flight that excretory mechanisms were favored over exclusively renal mechanisms of salt regulation resulting in an increase in gland size leaving a bony trace. The ecology of ornithurine birds is more diverse than in other stem birds and may have included seasonal shifts in foraging range, or, the environments of some of the Jehol lakes may have included more pronounced periods of high salinity.

  1. Consumption of crustaceans by megaherbivorous dinosaurs: dietary flexibility and dinosaur life history strategies

    OpenAIRE

    Chin, Karen; Feldmann, Rodney M.; Tashman, Jessica N.

    2017-01-01

    Large plant-eating dinosaurs are usually presumed to have been strictly herbivorous, because their derived teeth and jaws were capable of processing fibrous plant foods. This inferred feeding behavior offers a generalized view of dinosaur food habits, but rare direct fossil evidence of diet provides more nuanced insights into feeding behavior. Here we describe fossilized feces (coprolites) that demonstrate recurring consumption of crustaceans and rotted wood by large Late Cretaceous dinosaurs...

  2. Euoplocephalus tutus and the diversity of ankylosaurid dinosaurs in the Late Cretaceous of Alberta, Canada, and Montana, USA.

    Directory of Open Access Journals (Sweden)

    Victoria M Arbour

    Full Text Available Few ankylosaurs are known from more than a single specimen, but the ankylosaurid Euoplocephalus tutus (from the Late Cretaceous of Alberta, Canada and Montana, USA is represented by dozens of skulls and partial skeletons, and is therefore an important taxon for understanding intraspecific variation in ankylosaurs. Euoplocephalus is unusual compared to other dinosaurs from the Late Cretaceous of Alberta because it is recognized from the Dinosaur Park, Horseshoe Canyon, and Two Medicine formations. A comprehensive review of material attributed to Euoplocephalus finds support for the resurrection of its purported synonyms Anodontosaurus lambei and Scolosaurus cutleri, and the previously resurrected Dyoplosaurus acutosquameus. Anodontosaurus is found primarily in the Horseshoe Canyon Formation of Alberta and is characterized by ornamentation posterior to the orbits and on the first cervical half ring, and wide, triangular knob osteoderms. Euoplocephalus is primarily found in Megaherbivore Assemblage Zone 1 in the Dinosaur Park Formation of Alberta and is characterized by the absence of ornamentation posterior to the orbits and on the first cervical half ring, and keeled medial osteoderms on the first cervical half ring. Scolosaurus is found primarily in the Two Medicine Formation of Montana (although the holotype is from Dinosaur Provincial Park, and is characterized by long, back-swept squamosal horns, ornamentation posterior to the orbit, and low medial osteoderms on the first cervical half ring; Oohkotokia horneri is morphologically indistinguishable from Scolosaurus cutleri. Dyoplosaurus was previously differentiated from Euoplocephalus sensu lato by the morphology of the pelvis and pes, and these features also differentiate Dyoplosaurus from Anodontosaurus and Scolosaurus; a narrow tail club knob is probably also characteristic for Dyoplosaurus.

  3. Diachronism between extinction time of terrestrial and marine dinosaurs

    Science.gov (United States)

    Hansen, H. J.

    1988-01-01

    The dinosaur eggs of southern France occur in continental, fine-grained red-beds, rich in carbonate. The last eggs in the region occur in the magnetic polarity interval 30 normal. Estimates of the accumulation rate of these sediments on the basis of the magneto-stratigraphy leads to placement of the time of disappearance of the dinosaurs in this region of 200,000 to 400,000 years earlier than the Cretaceous-Tertiary boundary. In the Red Deer Valley, Canada, estimates of average accumulation rate lead to a time of disappearance of the dinosaurs of 135,000 to 157,000 years earlier than the Cretaceous-Tertiary boundary. In the central part of Poland, in the Nasilow Quarry, the paleomagnetic pattern shows 7 m of chalk of reversed polarity containing in its upper part the marine Cretaceous-Tertiary biostratigraphic boundary. A greensand deposit contains numerous re-deposited Maastrichtian fossils. The fossils show no signs of wear and are of very different sizes including 1 mm thick juvenile belemnites. The deposit was described as a lag-sediment. Among the various fossils are teeth of mosasaurs. Thus there is coincidence in time between the extinction of mosasaurs and other Cretaceous organisms. This leads to the conclusion, that extinction of terrestrial dinosaurs took place earlier than extinction of marine dinosaurs at the Cretaceous-Tertiary boundary.

  4. New horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism.

    Science.gov (United States)

    Sampson, Scott D; Loewen, Mark A; Farke, Andrew A; Roberts, Eric M; Forster, Catherine A; Smith, Joshua A; Titus, Alan L

    2010-09-22

    During much of the Late Cretaceous, a shallow, epeiric sea divided North America into eastern and western landmasses. The western landmass, known as Laramidia, although diminutive in size, witnessed a major evolutionary radiation of dinosaurs. Other than hadrosaurs (duck-billed dinosaurs), the most common dinosaurs were ceratopsids (large-bodied horned dinosaurs), currently known only from Laramidia and Asia. Remarkably, previous studies have postulated the occurrence of latitudinally arrayed dinosaur "provinces," or "biomes," on Laramidia. Yet this hypothesis has been challenged on multiple fronts and has remained poorly tested. Here we describe two new, co-occurring ceratopsids from the Upper Cretaceous Kaiparowits Formation of Utah that provide the strongest support to date for the dinosaur provincialism hypothesis. Both pertain to the clade of ceratopsids known as Chasmosaurinae, dramatically increasing representation of this group from the southern portion of the Western Interior Basin of North America. Utahceratops gettyi gen. et sp. nov.-characterized by short, rounded, laterally projecting supraorbital horncores and an elongate frill with a deep median embayment-is recovered as the sister taxon to Pentaceratops sternbergii from the late Campanian of New Mexico. Kosmoceratops richardsoni gen. et sp. nov.-characterized by elongate, laterally projecting supraorbital horncores and a short, broad frill adorned with ten well developed hooks-has the most ornate skull of any known dinosaur and is closely allied to Chasmosaurus irvinensis from the late Campanian of Alberta. Considered in unison, the phylogenetic, stratigraphic, and biogeographic evidence documents distinct, co-occurring chasmosaurine taxa north and south on the diminutive landmass of Laramidia. The famous Triceratops and all other, more nested chasmosaurines are postulated as descendants of forms previously restricted to the southern portion of Laramidia. Results further suggest the presence of

  5. The first reported ceratopsid dinosaur from eastern North America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA).

    Science.gov (United States)

    Farke, Andrew A; Phillips, George E

    2017-01-01

    Ceratopsids ("horned dinosaurs") are known from western North America and Asia, a distribution reflecting an inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian) of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, presumably after the two halves of North America were reunited following the retreat of the Western Interior Seaway.

  6. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    Science.gov (United States)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  7. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs.

    Science.gov (United States)

    Eagle, Robert A; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J; Ramirez, Pedro; Tripati, Aradhna K; Kohn, Matthew J; Cerling, Thure E; Chiappe, Luis M; Eiler, John M

    2015-10-13

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ∼ 6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  8. New dinosaur fossils from ANA locality, Arcillas de Morella Formation (Aptian, Lower Cretaceous, Cinctorres, Spain)

    Science.gov (United States)

    Santos-Cubedo, A.; de Santisteban, C.; Suñer, M.; Galobart, A.

    2009-04-01

    Ana is one of the several dinosaur bone sites located in the Arcillas de Morella Formation (Aptian, Lower Cretaceous; eastern Iberian Chain, Spain). This site was discovered in 1998, but it remained unexcavated until 2002, when a palaeontologist team formed by members of the Institut Paleontología Miquel Crusafont from Sabadell and the Grup Guix from Vila-real unearthed the first fossil from the locality. Nowadays there are five hundred fossils collected, including vertebrate and invertebrate species. Dinosaur bones (Theropoda and Ornithopoda) are abundant in this assemblage and in the last field season bones determined as Sauropoda were found. Taxonomically, Ana is dominated by disarticulated remains of Ornithopoda, which are usually fragmentary and abraded. Many of the elements may have been reworked (spatial averaging and/or time averaging), and the fossil concentration constitutes an autochthonous to parautochthonous association, in a spatial sense. The remains found in the Ana fossils site are placed in sandstones and limes containing marine autochthonous fauna. These deposits were formed during the transgressive infilling of an incised valley. Sedimentological features indicate that fossils were finally deposited in starved shallow estuarine environment. Mineralogically, the sediment including the fossils contains grains of quartz, illite/mica, kaolinite/clorite, K-feldspar and plagioclase, distributed in two mainly grain populations, a silty-clay and a coarse sand size grain, indicating that the sediments were bedded in a low-medium energy depositional environment. Nowadays we identified in Ana, teeth of Theropoda indet. and Baryonychinae indet., and bones of Iguanodon sp. Herein, we report new fossil findings from Ana site. These materials have been determined as Iguanodontia, Titanosauriformes and Theropoda. These new findings will help to understand the dinosaur fauna present in the Lower Cretaceous of Els Ports (Castellón, Spain). Acknowledgments This

  9. A New Basal Hadrosauroid Dinosaur from the Lower Cretaceous Khok Kruat Formation in Nakhon Ratchasima Province, Northeastern Thailand

    OpenAIRE

    Shibata, Masateru; Jintasakul, Pratueng; Azuma, Yoichi; You, Hai-Lu

    2015-01-01

    A new basal hadrosauroid dinosaur from the Lower Cretaceous Khok Kruat Formation of Thailand, Sirindhorna khoratensis gen. et sp. nov is described. The new taxon is based on composite skull and mandible including premaxilla, maxilla, jugal, quadrate, braincases, predentary, dentaries, surangular, and maxillary and dentary teeth. It is diagnostic by such characters as, sagittal crest extending along entire dorsal surface of the parietal and reaching the frontoparietal suture (autapomorphy), tr...

  10. Detrital zircon dating and tracing the provenance of dinosaur bone beds from the Late Cretaceous Wangshi Group in Zhucheng, Shandong, East China

    Directory of Open Access Journals (Sweden)

    Wei An

    2016-01-01

    Full Text Available The mass burial of dinosaur bone fossils in the Late Cretaceous Wangshi Group in Zhucheng, Shandong Province has been a research focus in recent years. However, the provenance of the dinosaur bone fossils and the accurate depositional age of the bone beds remain ambiguous. Through U–Pb dating of detrital zircons collected from six conglomerate samples from the dinosaur bone beds, we found that the youngest single grain age (YSG of sample 090414-24-D was 77.3 Ma, representing the maximum depositional age of the dinosaur fossil beds and sediments. This also indicates that the Hongtuya Formation was deposited during the Campanian. Dating results revealed an age peak of 120–110 Ma, which corresponds with the peak age of volcanic rocks of the Lower Cretaceous Qingshan Group. The volcanic rocks of the Qingshan Group are mainly exposed in Laiyang, to the north of Zhucheng, although a few also appear to the south and northwest. Through analysis of conglomerate composition and palaeocurrents in the sediments containing the bone beds, we found that the three different data sets of gravel compositions of the conglomerates were mainly composed of volcanic or pyroclastic rocks. Three different data sets of palaeocurrents suggested that the main sediment source of the Wangshi Group dinosaur bone beds was from the north−northwest of the Basin. Only one data set had a provenance south of the basin. This study revealed that the areas of Laiyang and the Yishu Fault Zone were the main provenance areas of both the dinosaur bone fossils and the sediments of the Wangshi Group in Zhucheng. The southern margin of the Zhucheng Basin may be a secondary source area. This research provides an important basis for judging the deposition time and the sediment source of fossil layers in the Wangshi Group, as well as reconstructing the palaeogeography of the Wangshi Group in the Jiaolai Basin.

  11. Dinosaur evolution. A Jurassic ornithischian dinosaur from Siberia with both feathers and scales.

    Science.gov (United States)

    Godefroit, Pascal; Sinitsa, Sofia M; Dhouailly, Danielle; Bolotsky, Yuri L; Sizov, Alexander V; McNamara, Maria E; Benton, Michael J; Spagna, Paul

    2014-07-25

    Middle Jurassic to Early Cretaceous deposits from northeastern China have yielded varied theropod dinosaurs bearing feathers. Filamentous integumentary structures have also been described in ornithischian dinosaurs, but whether these filaments can be regarded as part of the evolutionary lineage toward feathers remains controversial. Here we describe a new basal neornithischian dinosaur from the Jurassic of Siberia with small scales around the distal hindlimb, larger imbricated scales around the tail, monofilaments around the head and the thorax, and more complex featherlike structures around the humerus, the femur, and the tibia. The discovery of these branched integumentary structures outside theropods suggests that featherlike structures coexisted with scales and were potentially widespread among the entire dinosaur clade; feathers may thus have been present in the earliest dinosaurs. Copyright © 2014, American Association for the Advancement of Science.

  12. New Horned Dinosaurs from Utah Provide Evidence for Intracontinental Dinosaur Endemism

    Science.gov (United States)

    Sampson, Scott D.; Loewen, Mark A.; Farke, Andrew A.; Roberts, Eric M.; Forster, Catherine A.; Smith, Joshua A.; Titus, Alan L.

    2010-01-01

    Background During much of the Late Cretaceous, a shallow, epeiric sea divided North America into eastern and western landmasses. The western landmass, known as Laramidia, although diminutive in size, witnessed a major evolutionary radiation of dinosaurs. Other than hadrosaurs (duck-billed dinosaurs), the most common dinosaurs were ceratopsids (large-bodied horned dinosaurs), currently known only from Laramidia and Asia. Remarkably, previous studies have postulated the occurrence of latitudinally arrayed dinosaur “provinces,” or “biomes,” on Laramidia. Yet this hypothesis has been challenged on multiple fronts and has remained poorly tested. Methodology/Principal Findings Here we describe two new, co-occurring ceratopsids from the Upper Cretaceous Kaiparowits Formation of Utah that provide the strongest support to date for the dinosaur provincialism hypothesis. Both pertain to the clade of ceratopsids known as Chasmosaurinae, dramatically increasing representation of this group from the southern portion of the Western Interior Basin of North America. Utahceratops gettyi gen. et sp. nov.—characterized by short, rounded, laterally projecting supraorbital horncores and an elongate frill with a deep median embayment—is recovered as the sister taxon to Pentaceratops sternbergii from the late Campanian of New Mexico. Kosmoceratops richardsoni gen. et sp. nov.—characterized by elongate, laterally projecting supraorbital horncores and a short, broad frill adorned with ten well developed hooks—has the most ornate skull of any known dinosaur and is closely allied to Chasmosaurus irvinensis from the late Campanian of Alberta. Conclusions/Significance Considered in unison, the phylogenetic, stratigraphic, and biogeographic evidence documents distinct, co-occurring chasmosaurine taxa north and south on the diminutive landmass of Laramidia. The famous Triceratops and all other, more nested chasmosaurines are postulated as descendants of forms previously restricted

  13. New horned dinosaurs from Utah provide evidence for intracontinental dinosaur endemism.

    Directory of Open Access Journals (Sweden)

    Scott D Sampson

    Full Text Available BACKGROUND: During much of the Late Cretaceous, a shallow, epeiric sea divided North America into eastern and western landmasses. The western landmass, known as Laramidia, although diminutive in size, witnessed a major evolutionary radiation of dinosaurs. Other than hadrosaurs (duck-billed dinosaurs, the most common dinosaurs were ceratopsids (large-bodied horned dinosaurs, currently known only from Laramidia and Asia. Remarkably, previous studies have postulated the occurrence of latitudinally arrayed dinosaur "provinces," or "biomes," on Laramidia. Yet this hypothesis has been challenged on multiple fronts and has remained poorly tested. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe two new, co-occurring ceratopsids from the Upper Cretaceous Kaiparowits Formation of Utah that provide the strongest support to date for the dinosaur provincialism hypothesis. Both pertain to the clade of ceratopsids known as Chasmosaurinae, dramatically increasing representation of this group from the southern portion of the Western Interior Basin of North America. Utahceratops gettyi gen. et sp. nov.-characterized by short, rounded, laterally projecting supraorbital horncores and an elongate frill with a deep median embayment-is recovered as the sister taxon to Pentaceratops sternbergii from the late Campanian of New Mexico. Kosmoceratops richardsoni gen. et sp. nov.-characterized by elongate, laterally projecting supraorbital horncores and a short, broad frill adorned with ten well developed hooks-has the most ornate skull of any known dinosaur and is closely allied to Chasmosaurus irvinensis from the late Campanian of Alberta. CONCLUSIONS/SIGNIFICANCE: Considered in unison, the phylogenetic, stratigraphic, and biogeographic evidence documents distinct, co-occurring chasmosaurine taxa north and south on the diminutive landmass of Laramidia. The famous Triceratops and all other, more nested chasmosaurines are postulated as descendants of forms previously

  14. Dinosaur Tracks, Erosion Marks and Midnight Chisel Work (But No Human Footprints) in the Cretaceous Limestone of the Paluxy River Bed, Texas.

    Science.gov (United States)

    Milne, David H.; Schafersman, Steven D.

    1983-01-01

    Creationists claim that human footprints coexist with those of dinosaurs in Cretaceous limestone exposed in the Paluxy riverbed near Glen Rose, Texas. Analysis of photos shows that the features in question are not human footprints and that creationist documentation/analysis of the prints is riddled with omissions, misrepresentations,…

  15. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs

    Science.gov (United States)

    Lockley, Martin G.; McCrea, Richard T.; Buckley, Lisa G.; Deock Lim, Jong; Matthews, Neffra A.; Breithaupt, Brent H.; Houck, Karen J.; Gierliński, Gerard D.; Surmik, Dawid; Soo Kim, Kyung; Xing, Lida; Yong Kong, Dal; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-01

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of “display arenas” or leks, and consistent with “nest scrape display” behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  16. Theropod courtship: large scale physical evidence of display arenas and avian-like scrape ceremony behaviour by Cretaceous dinosaurs.

    Science.gov (United States)

    Lockley, Martin G; McCrea, Richard T; Buckley, Lisa G; Lim, Jong Deock; Matthews, Neffra A; Breithaupt, Brent H; Houck, Karen J; Gierliński, Gerard D; Surmik, Dawid; Kim, Kyung Soo; Xing, Lida; Kong, Dal Yong; Cart, Ken; Martin, Jason; Hadden, Glade

    2016-01-07

    Relationships between non-avian theropod dinosaurs and extant and fossil birds are a major focus of current paleobiological research. Despite extensive phylogenetic and morphological support, behavioural evidence is mostly ambiguous and does not usually fossilize. Thus, inferences that dinosaurs, especially theropods displayed behaviour analogous to modern birds are intriguing but speculative. Here we present extensive and geographically widespread physical evidence of substrate scraping behavior by large theropods considered as compelling evidence of "display arenas" or leks, and consistent with "nest scrape display" behaviour among many extant ground-nesting birds. Large scrapes, up to 2 m in diameter, occur abundantly at several Cretaceous sites in Colorado. They constitute a previously unknown category of large dinosaurian trace fossil, inferred to fill gaps in our understanding of early phases in the breeding cycle of theropods. The trace makers were probably lekking species that were seasonally active at large display arena sites. Such scrapes indicate stereotypical avian behaviour hitherto unknown among Cretaceous theropods, and most likely associated with terrirorial activity in the breeding season. The scrapes most probably occur near nesting colonies, as yet unknown or no longer preserved in the immediate study areas. Thus, they provide clues to paleoenvironments where such nesting sites occurred.

  17. Ontogenetic changes in the craniomandibular skeleton of the abelisaurid dinosaur Majungasaurus crenatissimus from the Late Cretaceous of Madagascar

    Directory of Open Access Journals (Sweden)

    Nirina O. Ratsimbaholison

    2016-06-01

    Full Text Available Abelisaurid theropods were one of the most diverse groups of predatory dinosaurs in Gondwana during the Cretaceous. The group is characterized by a tall, wide skull and robust cervical region. This morphology is thought to have facilitated specialized feeding behaviors such as prolonged contact with prey. The Late Cretaceous abelisaurid Majungasaurus crenatissimus typifies this abelisaurid cranial morphotype. Recent fossil discoveries of this species include a partial growth series that allows for the first time an investigation of ontogenetic variation in cranial morphology in a representative abelisaurid. Herein we examine growth trajectories in the shape of individual cranial bones and articulated skulls of Majungasaurus using geometric morphometrics. Several major changes in skull shape were observed through ontogeny, including an increase in the height of the jugal, postorbital, and quadratojugal, an increase in the extent of the contacts between bones, and a decrease in the circumference of the orbit. The skull transitions from relatively short in the smallest individual to tall and robust in large adults, as is seen in other theropods. Such morphological change during ontogeny would likely have resulted in different biomechanical properties and feeding behaviors between small and large individuals. These findings provide a post-hatching developmental framework for understanding the evolution of the distinctive tall skull morphology seen in abelisaurids and other large-sized theropod dinosaurs.

  18. Structural extremes in a cretaceous dinosaur.

    Directory of Open Access Journals (Sweden)

    Paul C Sereno

    Full Text Available Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic.

  19. Dinosaur demise in light of their alleged perennial polar residency

    Science.gov (United States)

    Lewy, Zeev

    2017-10-01

    The end-Cretaceous biological crisis is represented by the demise of the non-avian dinosaurs. However, most crucial biologically was the elimination of the photosynthesizing marine phyto- and zooplankton forming the base of the marine food chain. Their abrupt demise attests to sunlight screening darkening the atmosphere for a few years. Alvarez et al. (Science 208:1095-1108, 1980. doi: 10.1126/science.208.44) noticed in deep marine end-Cretaceous sediments an anomalous rise in the chemical element iridium (Ir), which is rare on planet Earth and thus suggests an extraterrestrial origin through an impact of a large asteroid. This impact would have ejected enormous quantities of particles and aerosols, shading the solar illumination as attested to by the elimination of the marine photosynthesizing plankton. Such a dark period must have affected life on land. The apparent cold-blooded non-avian dinosaurs, which were used to living in open terrains to absorb the solar illumination, became inactive during the dark period and were incapable of withstanding predators. This was in contrast to cold-blooded crocodilians, turtles and lizards that could hide in refuge sites on land and in the water. Dinosaur relics discovered in Cretaceous Polar Regions were attributed to perennial residents, surviving the nearly half-year-long dark winter despite their ability to leave. The polar concentrations of disarticulated dinosaur bones were suggested as having resulted from a catastrophic burial of a population by floods. However, this should have fossilized complete skeletons. Alternatively, herds of dinosaurs living in high latitudes might have been sexually driven to spend the half year of continuously illuminated polar summer for mating rather than for nourishment, in which the lower latitudes provided as well. The aggressive mating competitions would have left victims among the rivals and of young ones incidentally trampled over, all being consumed and their skeletons

  20. Dinosaur footprint assemblage from the Lower Cretaceous Khok Kruat Formation, Khorat Group, northeastern Thailand

    Directory of Open Access Journals (Sweden)

    Shohei Kozu

    2017-11-01

    Full Text Available The Khok Kruat Formation is the upper part of the Khorat Group, which consists of upper Lower Cretaceous non-marine sedimentary rocks in northeastern Thailand. Many dinosaur footprints have been known from the upper Lower Cretaceous (Aptian–Albian Khok Kruat Formation at the Huai Dam Chum (Tha Uthen site, northeastern Thailand. Approximately 600 tracks occur in thin mudstone layer of the northern part of the outcrop at the Huai Dam Chum track site. Two types of footprints, small-sized theropod and crocodylomorph are imprinted with mud cracks and ripple marks on the thin mud layer. Most of footprints are referred to cf. Asianopodus, and are imprinted by small-sized theropoda, probably ornithomimosauria. Theropod tracks are mainly separated into two groups, Group A and Group B. From ichnological viewpoints, the small-sized theropod track assemblage indicates the herd behaviour and its idiosyncratic group composition. In particular, the histogram of size-frequency measurements of Group A shows the anomalous bimodal distribution. We consider that there are two hypotheses; the first one is due to the male-female difference, and the second is a result of the different growing stage.

  1. The evolution of dinosaurs.

    Science.gov (United States)

    Sereno, P C

    1999-06-25

    The ascendancy of dinosaurs on land near the close of the Triassic now appears to have been as accidental and opportunistic as their demise and replacement by therian mammals at the end of the Cretaceous. The dinosaurian radiation, launched by 1-meter-long bipeds, was slower in tempo and more restricted in adaptive scope than that of therian mammals. A notable exception was the evolution of birds from small-bodied predatory dinosaurs, which involved a dramatic decrease in body size. Recurring phylogenetic trends among dinosaurs include, to the contrary, increase in body size. There is no evidence for co-evolution between predators and prey or between herbivores and flowering plants. As the major land masses drifted apart, dinosaurian biogeography was molded more by regional extinction and intercontinental dispersal than by the breakup sequence of Pangaea.

  2. Dinosaur Census Reveals Abundant Tyrannosaurus and Rare Ontogenetic Stages in the Upper Cretaceous Hell Creek Formation (Maastrichtian), Montana, USA

    Science.gov (United States)

    Horner, John R.; Goodwin, Mark B.; Myhrvold, Nathan

    2011-01-01

    Background A dinosaur census recorded during the Hell Creek Project (1999–2009) incorporates multiple lines of evidence from geography, taphohistory, stratigraphy, phylogeny and ontogeny to investigate the relative abundance of large dinosaurs preserved in the Upper Cretaceous Hell Creek Formation of northeastern Montana, USA. Overall, the dinosaur skeletal assemblages in the Hell Creek Formation (excluding lag-influenced records) consist primarily of subadult or small adult size individuals. Small juveniles and large adults are both extremely rare, whereas subadult individuals are relatively common. We propose that mature individuals of at least some dinosaur taxa either lived in a separate geographic locale analogous to younger individuals inhabiting an upland environment where sedimentation rates were relatively less, or these taxa experienced high mortality before reaching terminal size where late stage and often extreme cranial morphology is expressed. Methodology/Principal Findings Tyrannosaurus skeletons are as abundant as Edmontosaurus, an herbivore, in the upper Hell Creek Formation and nearly twice as common in the lower third of the formation. Smaller, predatory dinosaurs (e.g., Troodon and dromaeosaurids) are primarily represented by teeth found in microvertebrate localities and their skeletons or identifiable lag specimens were conspicuously absent. This relative abundance suggests Tyrannosaurus was not a typical predator and likely benefited from much wider food choice opportunities than exclusively live prey and/or specific taxa. Tyrannosaurus adults may not have competed with Tyrannosaurus juveniles if the potential for selecting carrion increased with size during ontogeny. Conclusions/Significance Triceratops is the most common dinosaur and isolated skulls contribute to a significant portion of this census. Associated specimens of Triceratops consisting of both cranial and postcranial elements remain relatively rare. This rarity may be explained

  3. A Re-Evaluation of the Chasmosaurine Ceratopsid Genus Chasmosaurus (Dinosauria: Ornithischia) from the Upper Cretaceous (Campanian) Dinosaur Park Formation of Western Canada.

    Science.gov (United States)

    Campbell, James A; Ryan, Michael J; Holmes, Robert B; Schröder-Adams, Claudia J

    2016-01-01

    The chasmosaurine ceratopsid Chasmosaurus is known from the Upper Cretaceous (Campanian) Dinosaur Park Formation of southern Alberta and Saskatchewan. Two valid species, Chasmosaurus belli and C. russelli, have been diagnosed by differences in cranial ornamentation. Their validity has been supported, in part, by the reported stratigraphic segregation of chasmosaurines in the Dinosaur Park Formation, with C. belli and C. russelli occurring in discrete, successive zones within the formation. An analysis of every potentially taxonomically informative chasmosaurine specimen from the Dinosaur Park Formation indicates that C. belli and C. russelli have indistinguishable ontogenetic histories and overlapping stratigraphic intervals. Neither taxon exhibits autapomorphies, nor a unique set of apomorphies, but they can be separated and diagnosed by a single phylogenetically informative character-the embayment angle formed by the posterior parietal bars relative to the parietal midline. Although relatively deeply embayed specimens (C. russelli) generally have relatively longer postorbital horncores than specimens with more shallow embayments (C. belli), neither this horncore character nor epiparietal morphology can be used to consistently distinguish every specimen of C. belli from C. russelli. Kosmoceratops is purportedly represented in the Dinosaur Park Formation by a specimen previously referred to Chasmosaurus. The reassignment of this specimen to Kosmoceratops is unsupported here, as it is based on features that are either influenced by taphonomy or within the realm of individual variation for Chasmosaurus. Therefore, we conclude that Kosmoceratops is not present in the Dinosaur Park Formation, but is instead restricted to southern Laramidia, as originally posited.

  4. Island life in the Cretaceous - faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago

    OpenAIRE

    Csiki Sava,Zoltan; Buffetaut,Eric; Ősi,Attila; Pereda-Suberbiola,Xabier; Brusatte,Stephen

    2015-01-01

    Abstract The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We revi...

  5. The first dinosaur from Washington State and a review of Pacific coast dinosaurs from North America.

    Directory of Open Access Journals (Sweden)

    Brandon R Peecook

    Full Text Available We describe the first diagnostic dinosaur fossil from Washington State. The specimen, which consists of a proximal left femur, was recovered from the shallow marine rocks of the Upper Cretaceous (Campanian Cedar District Formation (Nanaimo Group and is interpreted as pertaining to a large theropod on the basis of its hollow medullary cavity and proximally placed fourth trochanter. The Washington theropod represents one of the northernmost occurrences of a Mesozoic dinosaur on the west coast of the United States and one of only a handful from the Pacific coast of Laramidia during the Cretaceous. Its isolated nature and preservation in marine rocks suggest that the element was washed in from a nearby fluvial system. If the femur pertains to a tyrannosauroid, which seems likely given its size and the widespread occurrence of the group across Laramidia during Late Cretaceous times, then it would represent an earlier occurrence of large body size than previously recognized (complete femur length estimated at 1.2 meters. Uncertainty surrounding the latitude of deposition of the Nanaimo Group (i.e., the Baja-British Columbia hypothesis precludes assigning the Washington theropod to either of the putative northern or southern biogeographic provinces of Laramidia.

  6. The first dinosaur from Washington State and a review of Pacific coast dinosaurs from North America.

    Science.gov (United States)

    Peecook, Brandon R; Sidor, Christian A

    2015-01-01

    We describe the first diagnostic dinosaur fossil from Washington State. The specimen, which consists of a proximal left femur, was recovered from the shallow marine rocks of the Upper Cretaceous (Campanian) Cedar District Formation (Nanaimo Group) and is interpreted as pertaining to a large theropod on the basis of its hollow medullary cavity and proximally placed fourth trochanter. The Washington theropod represents one of the northernmost occurrences of a Mesozoic dinosaur on the west coast of the United States and one of only a handful from the Pacific coast of Laramidia during the Cretaceous. Its isolated nature and preservation in marine rocks suggest that the element was washed in from a nearby fluvial system. If the femur pertains to a tyrannosauroid, which seems likely given its size and the widespread occurrence of the group across Laramidia during Late Cretaceous times, then it would represent an earlier occurrence of large body size than previously recognized (complete femur length estimated at 1.2 meters). Uncertainty surrounding the latitude of deposition of the Nanaimo Group (i.e., the Baja-British Columbia hypothesis) precludes assigning the Washington theropod to either of the putative northern or southern biogeographic provinces of Laramidia.

  7. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs.

    Science.gov (United States)

    Wilson, Gregory P; Evans, Alistair R; Corfe, Ian J; Smits, Peter D; Fortelius, Mikael; Jernvall, Jukka

    2012-03-14

    The Cretaceous-Paleogene mass extinction approximately 66 million years ago is conventionally thought to have been a turning point in mammalian evolution. Prior to that event and for the first two-thirds of their evolutionary history, mammals were mostly confined to roles as generalized, small-bodied, nocturnal insectivores, presumably under selection pressures from dinosaurs. Release from these pressures, by extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, triggered ecological diversification of mammals. Although recent individual fossil discoveries have shown that some mammalian lineages diversified ecologically during the Mesozoic era, comprehensive ecological analyses of mammalian groups crossing the Cretaceous-Paleogene boundary are lacking. Such analyses are needed because diversification analyses of living taxa allow only indirect inferences of past ecosystems. Here we show that in arguably the most evolutionarily successful clade of Mesozoic mammals, the Multituberculata, an adaptive radiation began at least 20 million years before the extinction of non-avian dinosaurs and continued across the Cretaceous-Paleogene boundary. Disparity in dental complexity, which relates to the range of diets, rose sharply in step with generic richness and disparity in body size. Moreover, maximum dental complexity and body size demonstrate an adaptive shift towards increased herbivory. This dietary expansion tracked the ecological rise of angiosperms and suggests that the resources that were available to multituberculates were relatively unaffected by the Cretaceous-Paleogene mass extinction. Taken together, our results indicate that mammals were able to take advantage of new ecological opportunities in the Mesozoic and that at least some of these opportunities persisted through the Cretaceous-Paleogene mass extinction. Similar broad-scale ecomorphological inventories of other radiations may help to constrain the possible causes of mass extinctions.

  8. A theropod dinosaur embryo and the affinities of the flaming cliffs dinosaur eggs.

    Science.gov (United States)

    Norell, M A; Clark, J M; Demberelyin, D; Rhinchen, B; Chiappe, L M; Davidson, A R; McKenna, M C; Altangerel, P; Novacek, M J

    1994-11-04

    An embryonic skeleton of a nonavian theropod dinosaur was found preserved in an egg from Upper Cretaceous rocks in the Gobi Desert of Mongolia. Cranial features identify the embryo as a member of Oviraptoridae. Two embryo-sized skulls of dromaeosaurids, similar to that of Velociraptor, were also recovered in the nest. The eggshell microstructure is similar to that of ratite birds and is of a type common in the Djadokhta Formation at the Flaming Cliffs (Bayn Dzak). Discovery of a nest of such eggs at the Flaming Cliffs in 1923, beneath the Oviraptor philoceratops holotype, suggests that this dinosaur may have been a brooding adult.

  9. Counting dinosaurs: how many kinds were there?

    Science.gov (United States)

    Dodson, P

    1990-01-01

    Dinosaurs figure prominently in discussions of mass extinctions and evolutionary metrics, but their usefulness is hampered by archaic taxonomy, imprecise biostratigraphy, and imperfect preservation that bias our understanding of dinosaur diversity. A critical evaluation shows that of 540 genera and 800 species of dinosaurs proposed since 1824, 285 genera and 336 species are probably valid. Nearly half of all genera are based on a single specimen, and complete skulls and skeletons are known for only 20% of all dinosaurs. Dinosaurs are known from every continent. Countries with the greatest known diversity of dinosaurs are (in descending order) the United States, Mongolia, China, Canada, England, and Argentina; the greatest future increases may be expected from Argentina and China. Nearly half of all dinosaur genera are of latest Cretaceous age (Campanian or Maastrichtian). Estimates of the average duration of a dinosaur genus range from 5 million to 10.5 million years, with the most likely value about 7.7 million years. Dinosaurs evolved as rapidly as Cenozoic mammals. Global dinosaur diversity during the Campanian and Maastrichtian is estimated at 100 genera per stage, using a logistic model to estimate future discoveries. A model of increasing diversity and a bottleneck model compensate for the biasis in the preserved fossil record. The number of dinosaurs that have ever lived is estimated at 900-1200 genera. The fossil record of dinosaurs is presently about 25% complete. Dinosaurs disappeared in the Maastrichtian near the peak of their historic diversity. PMID:2217192

  10. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs.

    Science.gov (United States)

    Brusatte, Stephen L; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B

    2016-03-29

    Tyrannosaurids--the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus--were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80-66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90-92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size.

  11. New tyrannosaur from the mid-Cretaceous of Uzbekistan clarifies evolution of giant body sizes and advanced senses in tyrant dinosaurs

    Science.gov (United States)

    Brusatte, Stephen L.; Averianov, Alexander; Sues, Hans-Dieter; Muir, Amy; Butler, Ian B.

    2016-03-01

    Tyrannosaurids-the familiar group of carnivorous dinosaurs including Tyrannosaurus and Albertosaurus-were the apex predators in continental ecosystems in Asia and North America during the latest Cretaceous (ca. 80-66 million years ago). Their colossal sizes and keen senses are considered key to their evolutionary and ecological success, but little is known about how these features developed as tyrannosaurids evolved from smaller basal tyrannosauroids that first appeared in the fossil record in the Middle Jurassic (ca. 170 million years ago). This is largely because of a frustrating 20+ million-year gap in the mid-Cretaceous fossil record, when tyrannosauroids transitioned from small-bodied hunters to gigantic apex predators but from which no diagnostic specimens are known. We describe the first distinct tyrannosauroid species from this gap, based on a highly derived braincase and a variety of other skeletal elements from the Turonian (ca. 90-92 million years ago) of Uzbekistan. This taxon is phylogenetically intermediate between the oldest basal tyrannosauroids and the latest Cretaceous forms. It had yet to develop the giant size and extensive cranial pneumaticity of T. rex and kin but does possess the highly derived brain and inner ear characteristic of the latest Cretaceous species. Tyrannosauroids apparently developed huge size rapidly during the latest Cretaceous, and their success in the top predator role may have been enabled by their brain and keen senses that first evolved at smaller body size.

  12. Growth dynamics of Australia's polar dinosaurs.

    Science.gov (United States)

    Woodward, Holly N; Rich, Thomas H; Chinsamy, Anusuya; Vickers-Rich, Patricia

    2011-01-01

    Analysis of bone microstructure in ornithopod and theropod dinosaurs from Victoria, Australia, documents ontogenetic changes, providing insight into the dinosaurs' successful habitation of Cretaceous Antarctic environments. Woven-fibered bone tissue in the smallest specimens indicates rapid growth rates during early ontogeny. Later ontogeny is marked by parallel-fibered tissue, suggesting reduced growth rates approaching skeletal maturity. Bone microstructure similarities between the ornithopods and theropods, including the presence of LAGs in each group, suggest there is no osteohistologic evidence supporting the hypothesis that polar theropods hibernated seasonally. Results instead suggest high-latitude dinosaurs had growth trajectories similar to their lower-latitude relatives and thus, rapid early ontogenetic growth and the cyclical suspensions of growth inherent in the theropod and ornithopod lineages enabled them to successfully exploit polar regions.

  13. Consumption of crustaceans by megaherbivorous dinosaurs: dietary flexibility and dinosaur life history strategies.

    Science.gov (United States)

    Chin, Karen; Feldmann, Rodney M; Tashman, Jessica N

    2017-09-21

    Large plant-eating dinosaurs are usually presumed to have been strictly herbivorous, because their derived teeth and jaws were capable of processing fibrous plant foods. This inferred feeding behavior offers a generalized view of dinosaur food habits, but rare direct fossil evidence of diet provides more nuanced insights into feeding behavior. Here we describe fossilized feces (coprolites) that demonstrate recurring consumption of crustaceans and rotted wood by large Late Cretaceous dinosaurs. These multi-liter coprolites from the Kaiparowits Formation are primarily composed of comminuted conifer wood tissues that were fungally degraded before ingestion. Thick fragments of laminar crustacean cuticle are scattered within the coprolite contents and suggest that the dinosaurian defecators consumed sizeable crustaceans that sheltered in rotting logs. The diet of decayed wood and crustaceans offered a substantial supply of plant polysaccharides, with added dividends of animal protein and calcium. Nevertheless, it is unlikely that the fossilized fecal residues depict year-round feeding habits. It is more reasonable to infer that these coprolites reflected seasonal dietary shifts-possibly related to the dinosaurs' oviparous breeding activities. This surprising fossil evidence challenges conventional notions of herbivorous dinosaur diets and reveals a degree of dietary flexibility that is consistent with that of extant herbivorous birds.

  14. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    Science.gov (United States)

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. © 2016 The Author(s).

  15. A Late Cretaceous theropod caudal vertebra from the Sultanate of Oman

    NARCIS (Netherlands)

    Schulp, Anne S.; Hanna, Samir S.; Hartman, Axel Frans; Jagt, John W M

    2000-01-01

    A caudal vertebra collected from conglomerates of the Al-Khod Formation (Late Cretaceous) in the Al-Khod area, Sultanate of Oman, is assigned to a medium-sized theropod dinosaur. The Al-Khod discovery represents one of the very few dinosaur records from the Middle East.

  16. Growth dynamics of Australia's polar dinosaurs.

    Directory of Open Access Journals (Sweden)

    Holly N Woodward

    Full Text Available Analysis of bone microstructure in ornithopod and theropod dinosaurs from Victoria, Australia, documents ontogenetic changes, providing insight into the dinosaurs' successful habitation of Cretaceous Antarctic environments. Woven-fibered bone tissue in the smallest specimens indicates rapid growth rates during early ontogeny. Later ontogeny is marked by parallel-fibered tissue, suggesting reduced growth rates approaching skeletal maturity. Bone microstructure similarities between the ornithopods and theropods, including the presence of LAGs in each group, suggest there is no osteohistologic evidence supporting the hypothesis that polar theropods hibernated seasonally. Results instead suggest high-latitude dinosaurs had growth trajectories similar to their lower-latitude relatives and thus, rapid early ontogenetic growth and the cyclical suspensions of growth inherent in the theropod and ornithopod lineages enabled them to successfully exploit polar regions.

  17. Hints of the Early Jehol Biota: Important Dinosaur Footprint Assemblages from the Jurassic-Cretaceous Boundary Tuchengzi Formation in Beijing, China

    Science.gov (United States)

    Xing, Lida; Zhang, Jianping; Lockley, Martin G.; McCrea, Richard T.; Klein, Hendrik; Alcalá, Luis; Buckley, Lisa G.; Burns, Michael E.; Kümmell, Susanna B.; He, Qing

    2015-01-01

    New reports of dinosaur tracksites in the Tuchengzi Formation in the newly established Yanqing Global Geopark, Beijing, China, support previous inferences that the track assemblages from this formation are saurischian-dominated. More specifically, the assemblages appear theropod-dominated, with the majority of well-preserved tracks conforming to the Grallator type (sensus lato), thus representing relatively small trackmakers. Such ichnofaunas supplement the skeletal record from this unit that lacks theropods thus far, proving a larger diversity of dinosaur faunas in that region. Sauropods are represented by medium to large sized and narrow and wide-gauge groups, respectively. The latter correspond with earlier discoveries of titanosauriform skeletons in the same unit. Previous records of ornithischian tracks cannot be positively confirmed. Purported occurrences are re-evaluated here, the trackways and imprints, except of a single possible specimen, re-assigned to theropods. Palecologically the Tuchengzi ichnofauna is characteristic of semi-arid fluvio-lacustrine inland basins with Upper Jurassic-Lower Cretaceous deposits in northern China that all show assemblages with abundant theropod and sauropod tracks and minor components of ornithopod, pterosaur and bird tracks. PMID:25901363

  18. Skull ecomorphology of megaherbivorous dinosaurs from the dinosaur park formation (upper campanian of Alberta, Canada.

    Directory of Open Access Journals (Sweden)

    Jordan C Mallon

    Full Text Available Megaherbivorous dinosaur coexistence on the Late Cretaceous island continent of Laramidia has long puzzled researchers, owing to the mystery of how so many large herbivores (6-8 sympatric species, in many instances could coexist on such a small (4-7 million km(2 landmass. Various explanations have been put forth, one of which-dietary niche partitioning-forms the focus of this study. Here, we apply traditional morphometric methods to the skulls of megaherbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian of Alberta to infer the ecomorphology of these animals and to test the niche partitioning hypothesis. We find evidence for niche partitioning not only among contemporaneous ankylosaurs, ceratopsids, and hadrosaurids, but also within these clades at the family and subfamily levels. Consubfamilial ceratopsids and hadrosaurids differ insignificantly in their inferred ecomorphologies, which may explain why they rarely overlap stratigraphically: interspecific competition prevented their coexistence.

  19. Skull ecomorphology of megaherbivorous dinosaurs from the dinosaur park formation (upper campanian) of Alberta, Canada.

    Science.gov (United States)

    Mallon, Jordan C; Anderson, Jason S

    2013-01-01

    Megaherbivorous dinosaur coexistence on the Late Cretaceous island continent of Laramidia has long puzzled researchers, owing to the mystery of how so many large herbivores (6-8 sympatric species, in many instances) could coexist on such a small (4-7 million km(2)) landmass. Various explanations have been put forth, one of which-dietary niche partitioning-forms the focus of this study. Here, we apply traditional morphometric methods to the skulls of megaherbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta to infer the ecomorphology of these animals and to test the niche partitioning hypothesis. We find evidence for niche partitioning not only among contemporaneous ankylosaurs, ceratopsids, and hadrosaurids, but also within these clades at the family and subfamily levels. Consubfamilial ceratopsids and hadrosaurids differ insignificantly in their inferred ecomorphologies, which may explain why they rarely overlap stratigraphically: interspecific competition prevented their coexistence.

  20. Evolution: How Some Birds Survived When All Other Dinosaurs Died.

    Science.gov (United States)

    Brusatte, Stephen L

    2016-05-23

    The end-Cretaceous mass extinction wiped out the dinosaurs, including many birds. But some bird lineages survived. May seed-eating have been the key? Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. NEW ABELISAURID MATERIAL FROM THE UPPER CRETACEOUS (CENOMANIAN OF MOROCCO

    Directory of Open Access Journals (Sweden)

    SIMONE D'ORAZI PORCHETTI

    2011-11-01

    Full Text Available Fragmentary cranial bones of dinosaur origin have been recently recovered from the Kem Kem beds (Upper Cretaceous, Cenomanian of Morocco. They include two incompletely preserved maxillary bones evidencing diagnostic features of abelisaurid theropods. These new finds provide further evidence of Abelisauridae in the Late Cretaceous of Morocco. 

  2. Anza palaeoichnological site. Late Cretaceous. Morocco. Part II. Problems of large dinosaur trackways and the first African Macropodosaurus trackway

    Science.gov (United States)

    Masrour, Moussa; Lkebir, Noura; Pérez-Lorente, Félix

    2017-10-01

    The Anza site shows large ichnological surfaces indicating the coexistence in the same area of different vertebrate footprints (dinosaur and pterosaur) and of different types (tridactyl and tetradactyl, semiplantigrade and rounded without digit marks) and the footprint variability of long trackways. This area may become a world reference in ichnology because it contains the second undebatable African site with Cretaceous pterosaur footprints - described in part I - and the first African site with Macropodosaurus footprints. In this work, problems related to long trackways are also analyzed, such as their sinuosity, the order-disorder of the variability (long-short) of the pace length and the difficulty of morphological classification of the theropod footprints due to their morphological variability.

  3. First dinosaurs from Saudi Arabia.

    Directory of Open Access Journals (Sweden)

    Benjamin P Kear

    Full Text Available Dinosaur remains from the Arabian subcontinent are exceedingly rare, and those that have been documented manifest indeterminate affinities. Consequently the discovery of a small, but diagnostic, accumulation of elements from Campanian-Maastrichtian (~ 75 Ma deposits in northwestern Saudi Arabia is significant because it constitutes the first taxonomically identifiable dinosaur material described from the Arabian Peninsula. The fossils include a series of possible lithostrotian titanosaur caudal vertebrae, and some isolated theropod marginal teeth that share unique character states and metric parameters (analyzed using multivariate statistical methods with derived abelisaurids - this is the first justifiable example of a non-avian carnivorous dinosaur clade from Arabia. The recognition of titanosaurians and abelisaurids from Saudi Arabia extends the palaeogeographical range of these groups along the entire northern Gondwanan margin during the latest Cretaceous. Moreover, given the extreme paucity of coeval occurrences elsewhere, the Saudi Arabian fossils provide a tantalizing glimpse into dinosaurian assemblage diversity within the region.

  4. Dinosaurs reveal the geographical signature of an evolutionary radiation.

    Science.gov (United States)

    O'Donovan, Ciara; Meade, Andrew; Venditti, Chris

    2018-03-01

    Dinosaurs dominated terrestrial ecosystems across the globe for over 100 million years and provide a classic example of an evolutionary radiation. However, little is known about how these animals radiated geographically to become globally distributed. Here, we use a biogeographical model to reconstruct the dinosaurs' ancestral locations, revealing the spatial mechanisms that underpinned this 170-million-year-long radiation. We find that dinosaurs spread rapidly initially, followed by a significant continuous and gradual reduction in their speed of movement towards the Cretaceous/Tertiary boundary (66 million years ago). This suggests that the predominant mode of dinosaur speciation changed through time with speciation originally largely driven by geographical isolation-when dinosaurs speciated more, they moved further. This was gradually replaced by increasing levels of sympatric speciation (species taking advantage of ecological opportunities within their existing environment) as terrestrial space became a limiting factor. Our results uncover the geographical signature of an evolutionary radiation.

  5. Fossilized skin reveals coevolution with feathers and metabolism in feathered dinosaurs and early birds.

    Science.gov (United States)

    McNamara, Maria E; Zhang, Fucheng; Kearns, Stuart L; Orr, Patrick J; Toulouse, André; Foley, Tara; Hone, David W E; Rogers, Chris S; Benton, Michael J; Johnson, Diane; Xu, Xing; Zhou, Zhonghe

    2018-05-25

    Feathers are remarkable evolutionary innovations that are associated with complex adaptations of the skin in modern birds. Fossilised feathers in non-avian dinosaurs and basal birds provide insights into feather evolution, but how associated integumentary adaptations evolved is unclear. Here we report the discovery of fossil skin, preserved with remarkable nanoscale fidelity, in three non-avian maniraptoran dinosaurs and a basal bird from the Cretaceous Jehol biota (China). The skin comprises patches of desquamating epidermal corneocytes that preserve a cytoskeletal array of helically coiled α-keratin tonofibrils. This structure confirms that basal birds and non-avian dinosaurs shed small epidermal flakes as in modern mammals and birds, but structural differences imply that these Cretaceous taxa had lower body heat production than modern birds. Feathered epidermis acquired many, but not all, anatomically modern attributes close to the base of the Maniraptora by the Middle Jurassic.

  6. A new Cretaceous terrestrial ecosystem from Gondwana with the description of a new sauropod dinosaur

    Directory of Open Access Journals (Sweden)

    Jorge O. Calvo

    2007-09-01

    Full Text Available A unique site at the northern area of Patagonia (Neuquén, Argentina reveals a terrestrial ecosystem preserved in a detail never reported before in a Late Cretaceous deposit. An extraordinary diversity and abundance of fossils was found concentrated in a 0.5 m horizon in the same quarry, including a new titanosaur sauropod, Futalognkosaurus dukei n.gen., n.sp, which is the most complete giant dinosaur known so far. Several plant leaves, showing a predominance of angiosperms over gymnosperms that likely constituted the diet of F. dukei were found too. Other dinosaurs (sauropods, theropods, ornithopods, crocodylomorphs, pterosaurs, and fishes were also discovered, allowing a partial reconstruction of this Gondwanan continental ecosystem.Um depósito fóssil na região norte da Patagônia (Neuquén, Argentina revela um ecossistema nunca antes registrado a este nível de detalhes em depósitos do Cretáceo Superior. Uma diversidade e abundância extraordinária de fósseis encontra-se concentrada em uma camada de 0,5 m no mesmo sítio, incluindo um novo saurópodo titanossaurídeo, Futalognkosaurus dukei n. gen, n. sp., que é o mais completo dinossauro gigante encontrado até a presente data. Foram descobertas váriasfolhas de plantas indicando a predominância de angiospermas sobre gimnospermas que possivelmente formavam a base da dieta de F. dukei. Outros dinossauros (saurópodes, terópodes, ornitópodes, crocodilomorfos, pterossauros e peixes foram também encontrados possibilitando a reconstrução parcialdeste ecossistema continental do Gondwana.

  7. Piscivory in the feathered dinosaur Microraptor.

    Science.gov (United States)

    Xing, Lida; Persons, W Scott; Bell, Phil R; Xu, Xing; Zhang, Jianping; Miyashita, Tetsuto; Wang, Fengping; Currie, Philip J

    2013-08-01

    The largest specimen of the four-winged dromaeosaurid dinosaur Microraptor gui includes preserved gut contents. Previous reports of gut contents and considerations of functional morphology have indicated that Microraptor hunted in an arboreal environment. The new specimen demonstrates that this was not strictly the case, and offers unique insights into the ecology of nonavian dinosaurs early in the evolution of flight. The preserved gut contents are composed of teleost fish remains. Several morphological adaptations of Microraptor are identified as consistent with a partially piscivorous diet, including dentition with reduced serrations and forward projecting teeth on the anterior of the dentary. The feeding habits of Microraptor can now be understood better than that of any other carnivorous nonavian dinosaur, and Microraptor appears to have been an opportunistic and generalist feeder, able to exploit the most common prey in both the arboreal and aquatic microhabitats of the Early Cretaceous Jehol ecosystem. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  8. Dinosaurs in decline tens of millions of years before their final extinction.

    Science.gov (United States)

    Sakamoto, Manabu; Benton, Michael J; Venditti, Chris

    2016-05-03

    Whether dinosaurs were in a long-term decline or whether they were reigning strong right up to their final disappearance at the Cretaceous-Paleogene (K-Pg) mass extinction event 66 Mya has been debated for decades with no clear resolution. The dispute has continued unresolved because of a lack of statistical rigor and appropriate evolutionary framework. Here, for the first time to our knowledge, we apply a Bayesian phylogenetic approach to model the evolutionary dynamics of speciation and extinction through time in Mesozoic dinosaurs, properly taking account of previously ignored statistical violations. We find overwhelming support for a long-term decline across all dinosaurs and within all three dinosaurian subclades (Ornithischia, Sauropodomorpha, and Theropoda), where speciation rate slowed down through time and was ultimately exceeded by extinction rate tens of millions of years before the K-Pg boundary. The only exceptions to this general pattern are the morphologically specialized herbivores, the Hadrosauriformes and Ceratopsidae, which show rapid species proliferations throughout the Late Cretaceous instead. Our results highlight that, despite some heterogeneity in speciation dynamics, dinosaurs showed a marked reduction in their ability to replace extinct species with new ones, making them vulnerable to extinction and unable to respond quickly to and recover from the final catastrophic event.

  9. Dinosaurs in decline tens of millions of years before their final extinction

    Science.gov (United States)

    Sakamoto, Manabu; Benton, Michael J.

    2016-05-01

    Whether dinosaurs were in a long-term decline or whether they were reigning strong right up to their final disappearance at the Cretaceous-Paleogene (K-Pg) mass extinction event 66 Mya has been debated for decades with no clear resolution. The dispute has continued unresolved because of a lack of statistical rigor and appropriate evolutionary framework. Here, for the first time to our knowledge, we apply a Bayesian phylogenetic approach to model the evolutionary dynamics of speciation and extinction through time in Mesozoic dinosaurs, properly taking account of previously ignored statistical violations. We find overwhelming support for a long-term decline across all dinosaurs and within all three dinosaurian subclades (Ornithischia, Sauropodomorpha, and Theropoda), where speciation rate slowed down through time and was ultimately exceeded by extinction rate tens of millions of years before the K-Pg boundary. The only exceptions to this general pattern are the morphologically specialized herbivores, the Hadrosauriformes and Ceratopsidae, which show rapid species proliferations throughout the Late Cretaceous instead. Our results highlight that, despite some heterogeneity in speciation dynamics, dinosaurs showed a marked reduction in their ability to replace extinct species with new ones, making them vulnerable to extinction and unable to respond quickly to and recover from the final catastrophic event.

  10. Intra-trackway morphological variations due to substrate consistency: the El Frontal dinosaur tracksite (Lower Cretaceous, Spain.

    Directory of Open Access Journals (Sweden)

    Novella L Razzolini

    Full Text Available An ichnological and sedimentological study of the El Frontal dinosaur tracksite (Early Cretaceous, Cameros basin, Soria, Spain highlights the pronounced intra-trackway variation found in track morphologies of four theropod trackways. Photogrammetric 3D digital models revealed various and distinct intra-trackway morphotypes, which reflect changes in footprint parameters such as the pace length, the track length, depth, and height of displacement rims. Sedimentological analyses suggest that the original substrate was non-homogenous due to lateral changes in adjoining microfacies. Multidata analyses indicate that morphological differences in these deep and shallow tracks represent a part of a continuum of track morphologies and geometries produced by a gradient of substrate consistencies across the site. This implies that the large range of track morphologies at this site resulted from similar trackmakers crossing variable facies. The trackways at the El Frontal site present an exemplary case of how track morphology, and consequently potential ichnotaxa, can vary, even when produced by a single trackmaker.

  11. The comparison of species longevity and size evolution in fossilized dinosaurs vs. fossilized mammals

    Science.gov (United States)

    Baeza, E.; Srinath, A.; Hernandez, A.; Heim, N.; Payne, J.

    2016-12-01

    For over 200 million years, two animal groups have been competing for dominance over Earth: the reptiles, (in this case, dinosaurs), and the mammals. At the beginning of the Triassic, mammals were small, rat-like creatures that were dwarfed by the dinosaurs. Dinosaurs progressively continued to grow larger throughout the Jurassic and Cretaceous periods, thus outweighing and outliving the current mammals. But at the end of the Cretaceous, the K-T mass extinction occurred, and that wiped out the dinosaurs from the face of the Earth. After the disappearance of dinosaurs, mammals started to grow larger to fill the niches that the dinosaurs left open. With this evolution in mammals, would they be able to match or even beat the dinosaur's previous records? To judge that, we need to utilize two significant factors to help judge our answer. The two factors that set them apart were body mass and longevity. Documenting the body mass shows us how much the animal weighed compared to other species. The heaviest animal in our data set weighed 77 tons. The other factor is longevity, which indicates how long a certain species has existed on a geologic time scale. The longest living animal species in our data set lived for over 20 million years. With all the data we have analyzed, we have conducted research on this subject to find out how terrestrial mammals contrasted dinosaurs in the terms of body mass and species longevity. Our research brought us to the conclusion that mammals could not overtake the body mass and longevity of dinosaurs. Although mammals came pretty close to overlapping the dinosaurs' body masses, they were just below them marginally. We had a similar pattern in longevity, where we found out that heavier animals tended to have longer longevity, therefore the dinosaurs came out on top. Additionally, we did another contrast between Mesozoic and Cenozoic mammals, where Cenozoic mammals were larger, but both had similar longevities.

  12. A mummified duck-billed dinosaur with a soft-tissue cock's comb.

    Science.gov (United States)

    Bell, Phil R; Fanti, Federico; Currie, Philip J; Arbour, Victoria M

    2014-01-06

    Among living vertebrates, soft tissues are responsible for labile appendages (combs, wattles, proboscides) that are critical for activities ranging from locomotion to sexual display [1]. However, soft tissues rarely fossilize, and such soft-tissue appendages are unknown for many extinct taxa, including dinosaurs. Here we report a remarkable "mummified" specimen of the hadrosaurid dinosaur Edmontosaurus regalis from the latest Cretaceous Wapiti Formation, Alberta, Canada, that preserves a three-dimensional cranial crest (or "comb") composed entirely of soft tissue. Previously, crest function has centered on the hypertrophied nasal passages of lambeosaurine hadrosaurids, which acted as resonance chambers during vocalization [2-4]. The fleshy comb in Edmontosaurus necessitates an alternative explanation most likely related to either social signaling or sexual selection [5-7]. This discovery provides the first view of bizarre, soft-tissue signaling structures in a dinosaur and provides additional evidence for social behavior. Crest evolution within Hadrosaurinae apparently culminated in the secondary loss of the bony crest at the terminal Cretaceous; however, the new specimen indicates that cranial ornamentation was in fact not lost but substituted in Edmontosaurus by a fleshy display structure. It also implies that visual display played a key role in the evolution of hadrosaurine crests and raises the possibility of similar soft-tissue structures among other dinosaurs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Revised geochronology, correlation, and dinosaur stratigraphic ranges of the Santonian-Maastrichtian (Late Cretaceous) formations of the Western Interior of North America.

    Science.gov (United States)

    Fowler, Denver Warwick

    2017-01-01

    Interbasinal stratigraphic correlation provides the foundation for all consequent continental-scale geological and paleontological analyses. Correlation requires synthesis of lithostratigraphic, biostratigraphic and geochronologic data, and must be periodically updated to accord with advances in dating techniques, changing standards for radiometric dates, new stratigraphic concepts, hypotheses, fossil specimens, and field data. Outdated or incorrect correlation exposes geological and paleontological analyses to potential error. The current work presents a high-resolution stratigraphic chart for terrestrial Late Cretaceous units of North America, combining published chronostratigraphic, lithostratigraphic, and biostratigraphic data. 40Ar / 39Ar radiometric dates are newly recalibrated to both current standard and decay constant pairings. Revisions to the stratigraphic placement of most units are slight, but important changes are made to the proposed correlations of the Aguja and Javelina formations, Texas, and recalibration corrections in particular affect the relative age positions of the Belly River Group, Alberta; Judith River Formation, Montana; Kaiparowits Formation, Utah; and Fruitland and Kirtland formations, New Mexico. The stratigraphic ranges of selected clades of dinosaur species are plotted on the chronostratigraphic framework, with some clades comprising short-duration species that do not overlap stratigraphically with preceding or succeeding forms. This is the expected pattern that is produced by an anagenetic mode of evolution, suggesting that true branching (speciation) events were rare and may have geographic significance. The recent hypothesis of intracontinental latitudinal provinciality of dinosaurs is shown to be affected by previous stratigraphic miscorrelation. Rapid stepwise acquisition of display characters in many dinosaur clades, in particular chasmosaurine ceratopsids, suggests that they may be useful for high resolution biostratigraphy.

  14. A New Megaraptoran Dinosaur (Dinosauria, Theropoda, Megaraptoridae) from the Late Cretaceous of Patagonia

    Science.gov (United States)

    2016-01-01

    A skeleton discovered in the Upper Cretaceous Sierra Barrosa Formation (Turonian-Coniacian) of Neuquén Province, Argentina represents a new species of theropod dinosaur related to the long snouted, highly pneumatized Megaraptoridae. The holotype specimen of Murusraptor barrosaensis n.gen et n.sp. (MCF-PVPH-411) includes much of the skull, axial skeleton, pelvis and tibia. Murusraptor is unique in having several diagnostic features that include anterodorsal process of lacrimal longer than height of preorbital process, and a thick, shelf-like thickening on the lateral surface of surangular ventral to the groove between the anterior surangular foramen and the insert for the uppermost intramandibular process of the dentary. Other characteristic features of Murusraptor barrosaensis n.gen. et n. sp.include a large mandibular fenestra, distal ends of caudal neural spines laterally thickened into lateral knob-like processes, short ischia distally flattened and slightly expanded dorsoventrally. Murusraptor belongs to a Patagonian radiation of megaraptorids together with Aerosteon, Megaraptor and Orkoraptor. In spite being immature, it is a larger but more gracile animal than existing specimens of Megaraptor, and is comparable in size with Aerosteon and Orkoraptor. The controversial phylogeny of the Megaraptoridae as members of the Allosauroidea or a clade of Coelurosauria is considered analyzing two alternative data sets. PMID:27439002

  15. A New Megaraptoran Dinosaur (Dinosauria, Theropoda, Megaraptoridae from the Late Cretaceous of Patagonia.

    Directory of Open Access Journals (Sweden)

    Rodolfo A Coria

    Full Text Available A skeleton discovered in the Upper Cretaceous Sierra Barrosa Formation (Turonian-Coniacian of Neuquén Province, Argentina represents a new species of theropod dinosaur related to the long snouted, highly pneumatized Megaraptoridae. The holotype specimen of Murusraptor barrosaensis n.gen et n.sp. (MCF-PVPH-411 includes much of the skull, axial skeleton, pelvis and tibia. Murusraptor is unique in having several diagnostic features that include anterodorsal process of lacrimal longer than height of preorbital process, and a thick, shelf-like thickening on the lateral surface of surangular ventral to the groove between the anterior surangular foramen and the insert for the uppermost intramandibular process of the dentary. Other characteristic features of Murusraptor barrosaensis n.gen. et n. sp.include a large mandibular fenestra, distal ends of caudal neural spines laterally thickened into lateral knob-like processes, short ischia distally flattened and slightly expanded dorsoventrally. Murusraptor belongs to a Patagonian radiation of megaraptorids together with Aerosteon, Megaraptor and Orkoraptor. In spite being immature, it is a larger but more gracile animal than existing specimens of Megaraptor, and is comparable in size with Aerosteon and Orkoraptor. The controversial phylogeny of the Megaraptoridae as members of the Allosauroidea or a clade of Coelurosauria is considered analyzing two alternative data sets.

  16. How has our knowledge of dinosaur diversity through geologic time changed through research history?

    Science.gov (United States)

    Tennant, Jonathan P; Chiarenza, Alfio Alessandro; Baron, Matthew

    2018-01-01

    Assessments of dinosaur macroevolution at any given time can be biased by the historical publication record. Recent studies have analysed patterns in dinosaur diversity that are based on secular variations in the numbers of published taxa. Many of these have employed a range of approaches that account for changes in the shape of the taxonomic abundance curve, which are largely dependent on databases compiled from the primary published literature. However, how these 'corrected' diversity patterns are influenced by the history of publication remains largely unknown. Here, we investigate the influence of publication history between 1991 and 2015 on our understanding of dinosaur evolution using raw diversity estimates and shareholder quorum subsampling for the three major subgroups: Ornithischia, Sauropodomorpha, and Theropoda. We find that, while sampling generally improves through time, there remain periods and regions in dinosaur evolutionary history where diversity estimates are highly volatile (e.g. the latest Jurassic of Europe, the mid-Cretaceous of North America, and the Late Cretaceous of South America). Our results show that historical changes in database compilation can often substantially influence our interpretations of dinosaur diversity. 'Global' estimates of diversity based on the fossil record are often also based on incomplete, and distinct regional signals, each subject to their own sampling history. Changes in the record of taxon abundance distribution, either through discovery of new taxa or addition of existing taxa to improve sampling evenness, are important in improving the reliability of our interpretations of dinosaur diversity. Furthermore, the number of occurrences and newly identified dinosaurs is still rapidly increasing through time, suggesting that it is entirely possible for much of what we know about dinosaurs at the present to change within the next 20 years.

  17. Mesozoic dinosaurs from Brazil and their biogeographic implications

    Directory of Open Access Journals (Sweden)

    Jonathas S. Bittencourt

    2011-03-01

    Full Text Available The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.O registro osteológico de dinossauros no Mesozóico brasileiro está restrito a rochas triássicas do Rio Grande do Sul e estratos cretáceos de várias partes do país. Isto inclui 21 espécies nominais, sendo duas referidas como nomina dubia, e 19 consensualmente classificadas como dinossauros. Oito táxons supraespecíficos adicionais baseados em material fragmentado e diversas pegadas são conhecidos no Brasil. De fato, a maior parte dos espécimes é composta de dentes isolados e vértebras. Apesar do aumento em trabalhos de campo na última

  18. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    Directory of Open Access Journals (Sweden)

    Tai Kubo

    Full Text Available Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade, yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals are above 500 g, except for macroscelid mammals (i.e., elephant shrew, a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs. When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  19. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size.

    Science.gov (United States)

    Kubo, Tai; Kubo, Mugino O

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. According to a large dataset presented in this study, the body sizes of all nonplantigrades (including nonvolant dinosaurs, nonvolant terrestrial birds, extant mammals, and extinct Nearctic mammals) are above 500 g, except for macroscelid mammals (i.e., elephant shrew), a few alvarezsauroid dinosaurs, and nondinosaur ornithodirans (i.e., the immediate ancestors of dinosaurs). When nonplantigrade tetrapods evolved from plantigrade ancestors, lineages with nonplantigrade foot posture exhibited a steady increase in body size following Cope's rule. In contrast, contemporaneous plantigrade lineages exhibited no trend in body size evolution and were largely constrained to small body sizes. This evolutionary pattern of body size specific to foot posture occurred repeatedly during both the Mesozoic and the Cenozoic eras. Although disturbed by the end-Cretaceous extinction, species of mid to large body size have predominantly been nonplantigrade animals from the Jurassic until the present; conversely, species with small body size have been exclusively composed of plantigrades in the nonvolant terrestrial tetrapod fauna.

  20. The furculae of the dromaeosaurid dinosaur Dakotaraptor steini are trionychid turtle entoplastra

    Directory of Open Access Journals (Sweden)

    Victoria M. Arbour

    2016-02-01

    Full Text Available Dakotaraptor steini is a recently described dromaeosaurid dinosaur from the Upper Cretaceous (Maastrichtian Hell Creek Formation of South Dakota. Included within the D. steini hypodigm are three elements originally identified as furculae, one of which was made part of the holotype specimen. We show that the elements described as D. steini ‘furculae’ are not theropod dinosaur furculae, but are rather trionychid turtle entoplastra referable to cf. Axestemys splendida. The hypodigm of D. steini should be adjusted accordingly.

  1. Predation upon hatchling dinosaurs by a new snake from the late Cretaceous of India.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Wilson

    2010-03-01

    Full Text Available Derived large-mouthed snakes (macrostomatans possess numerous specializations in their skull and lower jaws that allow them to consume large vertebrate prey. In contrast, basal snakes lack these adaptations and feed primarily on small prey items. The sequence of osteological and behavioral modifications involved in the evolution of the macrostomatan condition has remained an open question because of disagreement about the origin and interrelationships of snakes, the paucity of well-preserved early snake fossils on many continental landmasses, and the lack of information about the feeding ecology of early snakes. We report on a partial skeleton of a new 3.5-m-long snake, Sanajeh indicus gen. et sp. nov., recovered from Upper Cretaceous rocks of western India. S. indicus was fossilized in association with a sauropod dinosaur egg clutch, coiled around an egg and adjacent to the remains of a ca. 0.5-m-long hatchling. Multiple snake-egg associations at the site strongly suggest that S. indicus frequented nesting grounds and preyed on hatchling sauropods. We interpret this pattern as "ethofossil" preservation of feeding behavior. S. indicus lacks specializations of modern egg-eaters and of macrostomatans, and skull and vertebral synapomorphies place it in an intermediate position in snake phylogeny. Sanajeh and its large-bodied madtsoiid sister taxa Yurlunggur camfieldensis and Wonambi naracoortensis from the Neogene of Australia show specializations for intraoral prey transport but lack the adaptations for wide gape that characterize living macrostomatan snakes. The Dholi Dungri fossils are the second definitive association between sauropod eggs and embryonic or hatchling remains. New fossils from western India provide direct evidence of feeding ecology in a Mesozoic snake and demonstrate predation risks for hatchling sauropod dinosaurs. Our results suggest that large body size and jaw mobility afforded some non-macrostomatan snakes a greater

  2. Impact of sauropod dinosaurs on lagoonal substrates in the Broome Sandstone (Lower Cretaceous, Western Australia.

    Directory of Open Access Journals (Sweden)

    Tony Thulborn

    Full Text Available Existing knowledge of the tracks left by sauropod dinosaurs (loosely 'brontosaurs' is essentially two-dimensional, derived mainly from footprints exposed on bedding planes, but examples in the Broome Sandstone (Early Cretaceous of Western Australia provide a complementary three-dimensional picture showing the extent to which walking sauropods could deform the ground beneath their feet. The patterns of deformation created by sauropods traversing thinly-stratified lagoonal deposits of the Broome Sandstone are unprecedented in their extent and structural complexity. The stacks of transmitted reliefs (underprints or ghost prints beneath individual footfalls are nested into a hierarchy of deeper and more inclusive basins and troughs which eventually attain the size of minor tectonic features. Ultimately the sauropod track-makers deformed the substrate to such an extent that they remodelled the topography of the landscape they inhabited. Such patterns of substrate deformation are revealed by investigating fragmentary and eroded footprints, not by the conventional search for pristine footprints on intact bedding planes. For that reason it is not known whether similar patterns of substrate deformation might occur at sauropod track-sites elsewhere in the world.

  3. Impact of Sauropod Dinosaurs on Lagoonal Substrates in the Broome Sandstone (Lower Cretaceous), Western Australia

    Science.gov (United States)

    Thulborn, Tony

    2012-01-01

    Existing knowledge of the tracks left by sauropod dinosaurs (loosely ‘brontosaurs’) is essentially two-dimensional, derived mainly from footprints exposed on bedding planes, but examples in the Broome Sandstone (Early Cretaceous) of Western Australia provide a complementary three-dimensional picture showing the extent to which walking sauropods could deform the ground beneath their feet. The patterns of deformation created by sauropods traversing thinly-stratified lagoonal deposits of the Broome Sandstone are unprecedented in their extent and structural complexity. The stacks of transmitted reliefs (underprints or ghost prints) beneath individual footfalls are nested into a hierarchy of deeper and more inclusive basins and troughs which eventually attain the size of minor tectonic features. Ultimately the sauropod track-makers deformed the substrate to such an extent that they remodelled the topography of the landscape they inhabited. Such patterns of substrate deformation are revealed by investigating fragmentary and eroded footprints, not by the conventional search for pristine footprints on intact bedding planes. For that reason it is not known whether similar patterns of substrate deformation might occur at sauropod track-sites elsewhere in the world. PMID:22662116

  4. A New Basal Hadrosauroid Dinosaur from the Lower Cretaceous Khok Kruat Formation in Nakhon Ratchasima Province, Northeastern Thailand.

    Science.gov (United States)

    Shibata, Masateru; Jintasakul, Pratueng; Azuma, Yoichi; You, Hai-Lu

    2015-01-01

    A new basal hadrosauroid dinosaur from the Lower Cretaceous Khok Kruat Formation of Thailand, Sirindhorna khoratensis gen. et sp. nov is described. The new taxon is based on composite skull and mandible including premaxilla, maxilla, jugal, quadrate, braincases, predentary, dentaries, surangular, and maxillary and dentary teeth. It is diagnostic by such characters as, sagittal crest extending along entire dorsal surface of the parietal and reaching the frontoparietal suture (autapomorphy), transversely straight frontoparietal suture, caudodorsally faced supraoccipital, no participation of the supraoccipital in the foramen magnum, mesiodistally wide leaf-shaped dentary tooth with primary and secondary ridges on the lingual surface of the crown, perpendicularly-erected and large coronoid process of dentary, and nonvisible antorbital fossa of the maxilla in lateral view. Phylogenetic analysis revealed S. khoratensis as among the most basal hadrosauroids. Sirindhorna khoratensis is the best-preserved iguanodontian ornithopod in Southeast Asia and sheds new light to resolve the evolution of basal hadrosauriforms.

  5. A New Basal Hadrosauroid Dinosaur from the Lower Cretaceous Khok Kruat Formation in Nakhon Ratchasima Province, Northeastern Thailand.

    Directory of Open Access Journals (Sweden)

    Masateru Shibata

    Full Text Available A new basal hadrosauroid dinosaur from the Lower Cretaceous Khok Kruat Formation of Thailand, Sirindhorna khoratensis gen. et sp. nov is described. The new taxon is based on composite skull and mandible including premaxilla, maxilla, jugal, quadrate, braincases, predentary, dentaries, surangular, and maxillary and dentary teeth. It is diagnostic by such characters as, sagittal crest extending along entire dorsal surface of the parietal and reaching the frontoparietal suture (autapomorphy, transversely straight frontoparietal suture, caudodorsally faced supraoccipital, no participation of the supraoccipital in the foramen magnum, mesiodistally wide leaf-shaped dentary tooth with primary and secondary ridges on the lingual surface of the crown, perpendicularly-erected and large coronoid process of dentary, and nonvisible antorbital fossa of the maxilla in lateral view. Phylogenetic analysis revealed S. khoratensis as among the most basal hadrosauroids. Sirindhorna khoratensis is the best-preserved iguanodontian ornithopod in Southeast Asia and sheds new light to resolve the evolution of basal hadrosauriforms.

  6. Low beta diversity of Maastrichtian dinosaurs of North America

    Science.gov (United States)

    Vavrek, Matthew J.; Larsson, Hans C. E.

    2010-01-01

    Beta diversity is an important component of large-scale patterns of biodiversity, but its explicit examination is more difficult than that of alpha diversity. Only recently have data sets large enough been presented to begin assessing global patterns of species turnover, especially in the fossil record. We present here an analysis of beta diversity of a Maastrichtian (71–65 million years old) assemblage of dinosaurs from the Western Interior of North America, a region that covers ≈1.5 × 106 km2, borders an epicontinental sea, and spans ≈20° of latitude. Previous qualitative analyses have suggested regional groupings of these dinosaurs and generally concluded that there were multiple distinct faunal regions. However, these studies did not directly account for sampling bias, which may artificially decrease similarity and increase turnover between regions. Our analysis used abundance-based data to account for sampling intensity and was unable to support any hypothesis of multiple distinct faunas; earlier hypothesized faunal delineations were likely a sampling artifact. Our results indicate a low beta diversity and support a single dinosaur community within the entire Western Interior region of latest Cretaceous North America. Homogeneous environments are a known driver of low modern beta diversities, and the warm equable climate of the late Cretaceous modulated by the epicontenental seaway is inferred to be an underlying influence on the low beta diversity of this ancient ecosystem. PMID:20404176

  7. New findings of dinosaur remains and considerations on the age of the guichon formation

    International Nuclear Information System (INIS)

    Soto, M; Perea, D; Veroslasky, G; Rinderknecht, A; Ubilla, M.; Leucuona, G.

    2008-01-01

    The first known dinosaur remains from the Guichon Formation are reviewed herein, demonstrating that they have a limited bio stratigraphic value. New materials (comprising abundant bones and several eggshell fragments) are described, representing the first record of sauropod dinosaurs from the Guichon Formation. The bone belong to a derived titanosaurian (Eutitanosauria) while the eggshells are refered to the oogenus Sphaerovum Mones 1980. Bio stratigraphic implications of these materials are discussed, allowing to propose a Late Cretaceous age for this unit

  8. The chronostratigraphic framework of the South-Pyrenean Maastrichtian succession reappraised: Implications for basin development and end-Cretaceous dinosaur faunal turnover

    Science.gov (United States)

    Fondevilla, Víctor; Dinarès-Turell, Jaume; Oms, Oriol

    2016-05-01

    The evolution of the end-Cretaceous terrestrial ecosystems and faunas outside of North America is largely restricted to the European Archipelago. The information scattered in this last area can only be integrated in a chronostratigraphic framework on the basis of robust age constraints and stratigraphy. Therefore, we have revisited the puzzling age calibration of the sedimentary infilling from the Isona sector in the Tremp syncline (South-Central Pyrenees), an area renowned for its rich Maastrichtian dinosaur fossil record. Aiming to shed light to existing controversial age determinations, we carried out a new magnetostratigraphic study along the ~ 420 m long Orcau and Nerets sections of that area. Our results reveal that most of the succession correlates to the early Maastrichtian (mostly chron C31r) in accordance to ages proposed by recent planktonic foraminifera biostratigraphy. The resulting chronostratigraphic framework of the entire Maastrichtian basin recorded in the Tremp syncline shows that a significant sedimentary hiatus of about 3 My characterizes most of the late Maastrichtian in the study area. This hiatus, related to an abrupt migration of the basin depocenter, is temporally close to similar hiatuses, decreases in sedimentary rates and facies shifts recorded in other southwestern European areas. The present chronologic framework sets the basis for a thorough assessment of end-Cretaceous terrestrial faunal turnover and extinction patterns, and the establishment of a more rigorous Pyrenean basin evolution analysis.

  9. The functional and palaeoecological implications of tooth morphology and wear for the megaherbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian of Alberta, Canada.

    Directory of Open Access Journals (Sweden)

    Jordan C Mallon

    Full Text Available Megaherbivorous dinosaurs were exceptionally diverse on the Late Cretaceous island continent of Laramidia, and a growing body of evidence suggests that this diversity was facilitated by dietary niche partitioning. We test this hypothesis using the fossil megaherbivore assemblage from the Dinosaur Park Formation (upper Campanian of Alberta as a model. Comparative tooth morphology and wear, including the first use of quantitative dental microwear analysis in the context of Cretaceous palaeosynecology, are used to infer the mechanical properties of the foods these dinosaurs consumed. The phylliform teeth of ankylosaurs were poorly adapted for habitually processing high-fibre plant matter. Nevertheless, ankylosaur diets were likely more varied than traditionally assumed: the relatively large, bladed teeth of nodosaurids would have been better adapted to processing a tougher, more fibrous diet than the smaller, cusp-like teeth of ankylosaurids. Ankylosaur microwear is characterized by a preponderance of pits and scratches, akin to modern mixed feeders, but offers no support for interspecific dietary differences. The shearing tooth batteries of ceratopsids are much better adapted to high-fibre herbivory, attested by their scratch-dominated microwear signature. There is tentative microwear evidence to suggest differences in the feeding habits of centrosaurines and chasmosaurines, but statistical support is not significant. The tooth batteries of hadrosaurids were capable of both shearing and crushing functions, suggestive of a broad dietary range. Their microwear signal overlaps broadly with that of ankylosaurs, and suggests possible dietary differences between hadrosaurines and lambeosaurines. Tooth wear evidence further indicates that all forms considered here exhibited some degree of masticatory propaliny. Our findings reveal that tooth morphology and wear exhibit different, but complimentary, dietary signals that combine to support the hypothesis

  10. The functional and palaeoecological implications of tooth morphology and wear for the megaherbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada.

    Science.gov (United States)

    Mallon, Jordan C; Anderson, Jason S

    2014-01-01

    Megaherbivorous dinosaurs were exceptionally diverse on the Late Cretaceous island continent of Laramidia, and a growing body of evidence suggests that this diversity was facilitated by dietary niche partitioning. We test this hypothesis using the fossil megaherbivore assemblage from the Dinosaur Park Formation (upper Campanian) of Alberta as a model. Comparative tooth morphology and wear, including the first use of quantitative dental microwear analysis in the context of Cretaceous palaeosynecology, are used to infer the mechanical properties of the foods these dinosaurs consumed. The phylliform teeth of ankylosaurs were poorly adapted for habitually processing high-fibre plant matter. Nevertheless, ankylosaur diets were likely more varied than traditionally assumed: the relatively large, bladed teeth of nodosaurids would have been better adapted to processing a tougher, more fibrous diet than the smaller, cusp-like teeth of ankylosaurids. Ankylosaur microwear is characterized by a preponderance of pits and scratches, akin to modern mixed feeders, but offers no support for interspecific dietary differences. The shearing tooth batteries of ceratopsids are much better adapted to high-fibre herbivory, attested by their scratch-dominated microwear signature. There is tentative microwear evidence to suggest differences in the feeding habits of centrosaurines and chasmosaurines, but statistical support is not significant. The tooth batteries of hadrosaurids were capable of both shearing and crushing functions, suggestive of a broad dietary range. Their microwear signal overlaps broadly with that of ankylosaurs, and suggests possible dietary differences between hadrosaurines and lambeosaurines. Tooth wear evidence further indicates that all forms considered here exhibited some degree of masticatory propaliny. Our findings reveal that tooth morphology and wear exhibit different, but complimentary, dietary signals that combine to support the hypothesis of dietary niche

  11. Crocodyliform feeding traces on juvenile ornithischian dinosaurs from the Upper Cretaceous (Campanian Kaiparowits Formation, Utah.

    Directory of Open Access Journals (Sweden)

    Clint A Boyd

    Full Text Available Crocodyliforms serve as important taphonomic agents, accumulating and modifying vertebrate remains. Previous discussions of Mesozoic crocodyliform feeding in terrestrial and riverine ecosystems have often focused on larger taxa and their interactions with equally large dinosaurian prey. However, recent evidence suggests that the impact of smaller crocodyliforms on their environments should not be discounted. Here we present direct evidence of feeding by a small crocodyliform on juvenile specimens of a 'hypsilophodontid' dinosaur from the Upper Cretaceous (Campanian Kaiparowits Formation of southern Utah. Diagnostic crocodyliform bite marks present on a left scapula and a right femur, as well as a partial probable crocodyliform tooth crown (ovoid in cross-section preserved within a puncture on the right femur, comprise the bulk of the feeding evidence. Computed tomography scans of the femoral puncture reveal impact damage to the surrounding bone and that the distal tip of the embedded tooth was missing prior to the biting event. This is only the second reported incidence of a fossil crocodyliform tooth being found embedded directly into prey bone. These bite marks provide insight into the trophic interactions of the ecosystem preserved in the Kaiparowits Formation. The high diversity of crocodyliforms within this formation may have led to accentuated niche partitioning, which seems to have included juvenile dinosaurian prey.

  12. Preliminary data on dinosaurs habitat during the Upper Maastrichtian, Hateg Basin, Romania

    International Nuclear Information System (INIS)

    Grigorescu, D.; Klarik, L.; Bojar, A.-V.

    2002-01-01

    The Hateg basin is located in the south-western part of the Transylvanian Depression and it is filled with sediments that overly the crystalline rocks of the Getic nappe. The basin show multiple stage of Mesozoic evolution. The Latest Cretaceous (Middle and Upper Maastrichtian) with continuous transition to Paleocene is represented by two continental lithostratigraphic units: the Densus-Ciula and the Sinpetru Formations. The Upper Maastrichtian of Densus-Ciula Formation at Tustea Quarry is represented by a pebbly alluvium with massive, matrix supported conglomerates, cross bedded sandstones and mudstones, the last one containing calcretes and dinosaur remains, including eggs and hatchlings of the hadrosaurid Telmatosaurus transsylvanicus. In order to constrain the paleoenvironment in which dinosaurs lived, calcretes and dinosaur eggshells were analyzed for carbon and oxygen isotopic composition

  13. Preliminary data on dinosaurs habitat during the Upper Maastrichtian, Hateg Basin, Romania

    Energy Technology Data Exchange (ETDEWEB)

    Grigorescu, D; Klarik, L [University of Bucharest, Faculty of Geology and Geophysics (Romania); Bojar, A -V [Department of Geology and Paleontology, Graz (Austria)

    2002-10-01

    The Hateg basin is located in the south-western part of the Transylvanian Depression and it is filled with sediments that overly the crystalline rocks of the Getic nappe. The basin show multiple stage of Mesozoic evolution. The Latest Cretaceous (Middle and Upper Maastrichtian) with continuous transition to Paleocene is represented by two continental lithostratigraphic units: the Densus-Ciula and the Sinpetru Formations. The Upper Maastrichtian of Densus-Ciula Formation at Tustea Quarry is represented by a pebbly alluvium with massive, matrix supported conglomerates, cross bedded sandstones and mudstones, the last one containing calcretes and dinosaur remains, including eggs and hatchlings of the hadrosaurid Telmatosaurus transsylvanicus. In order to constrain the paleoenvironment in which dinosaurs lived, calcretes and dinosaur eggshells were analyzed for carbon and oxygen isotopic composition.

  14. Investigation of the age and geological thermal history of the strata containing dinosaurs fossil in Tianzhen county of Shanxi Province

    International Nuclear Information System (INIS)

    Kang Tiesheng; Wang Lanfen; Wang Shicheng; Cheng Zhengwu

    1996-01-01

    The age and thermal history of the strata containing dinosaurs fossil in Tianzhen County of Shanxi Province have been studied using apatite and zircon fission track analysis. It is shown that the burial age of dinosaurs skeletons is not earlier than Late Cretaceous. The provenance area of the strata had experienced heating events with temperature higher than 200-250 degree C 73 Ma ago. But the strata has been at environmental temperature and never been affected by heating events since the dinosaurs skeletons were buried

  15. Investigation of the age and geological thermal history of the strata containing dinosaurs fossil in Tianzhen county of Shanxi Province

    Energy Technology Data Exchange (ETDEWEB)

    Tiesheng, Kang; Lanfen, Wang; Shicheng, Wang [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Qiqing, Pang [Hebei College of Geology, Shijiazhuang (China); Zhengwu, Cheng [Institute of Geology, MGMR, Beijing (China)

    1996-10-01

    The age and thermal history of the strata containing dinosaurs fossil in Tianzhen County of Shanxi Province have been studied using apatite and zircon fission track analysis. It is shown that the burial age of dinosaurs skeletons is not earlier than Late Cretaceous. The provenance area of the strata had experienced heating events with temperature higher than 200-250 degree C 73 Ma ago. But the strata has been at environmental temperature and never been affected by heating events since the dinosaurs skeletons were buried.

  16. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates.

    Science.gov (United States)

    Codron, Daryl; Carbone, Chris; Müller, Dennis W H; Clauss, Marcus

    2012-08-23

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals--the other dominant vertebrate group since the Mesozoic--have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism--based on an understanding of different ecological and evolutionary constraints across vertebrate groups--that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous-Tertiary (K-T) boundary, and how post-K-T mammals were able to diversify into larger size categories.

  17. Melanosome evolution indicates a key physiological shift within feathered dinosaurs.

    Science.gov (United States)

    Li, Quanguo; Clarke, Julia A; Gao, Ke-Qin; Zhou, Chang-Fu; Meng, Qingjin; Li, Daliang; D'Alba, Liliana; Shawkey, Matthew D

    2014-03-20

    Inference of colour patterning in extinct dinosaurs has been based on the relationship between the morphology of melanin-containing organelles (melanosomes) and colour in extant bird feathers. When this relationship evolved relative to the origin of feathers and other novel integumentary structures, such as hair and filamentous body covering in extinct archosaurs, has not been evaluated. Here we sample melanosomes from the integument of 181 extant amniote taxa and 13 lizard, turtle, dinosaur and pterosaur fossils from the Upper-Jurassic and Lower-Cretaceous of China. We find that in the lineage leading to birds, the observed increase in the diversity of melanosome morphologies appears abruptly, near the origin of pinnate feathers in maniraptoran dinosaurs. Similarly, mammals show an increased diversity of melanosome form compared to all ectothermic amniotes. In these two clades, mammals and maniraptoran dinosaurs including birds, melanosome form and colour are linked and colour reconstruction may be possible. By contrast, melanosomes in lizard, turtle and crocodilian skin, as well as the archosaurian filamentous body coverings (dinosaur 'protofeathers' and pterosaur 'pycnofibres'), show a limited diversity of form that is uncorrelated with colour in extant taxa. These patterns may be explained by convergent changes in the key melanocortin system of mammals and birds, which is known to affect pleiotropically both melanin-based colouration and energetic processes such as metabolic rate in vertebrates, and may therefore support a significant physiological shift in maniraptoran dinosaurs.

  18. The bone microstructure of polar "hypsilophodontid" dinosaurs from Victoria, Australia.

    Science.gov (United States)

    Woodward, Holly N; Rich, Thomas H; Vickers-Rich, Patricia

    2018-01-18

    High-latitude (i.e., "polar") Mesozoic fauna endured months of twilight and relatively low mean annual temperatures. Yet non-avian dinosaurs flourished in this taxing environment. Fossils of basal ornithopod dinosaurs ("hypsilophodontids") are common in the Early Cretaceous high-latitude sediments of Victoria, Australia, and four taxa have been described; although their ontogenetic histories are largely unexplored. In the present study, eighteen tibiae and femora were utilized in the first multi-specimen ontogenetic histological analysis of Australian polar hypsilophodontids. The sample consists of eleven individuals from the Flat Rocks locality (Late Valanginian or Barremian), and five from the Dinosaur Cove locality (Albian). In both groups, growth was most rapid during the first three years, and skeletal maturity occurred between five and seven years. There is a weak asymptotic trend in a plot of growth mark count versus femur length, with considerable individual variation. Histology suggests two genera are present within the Dinosaur Cove sample, but bone microstructure alone could not distinguish genera within the Flat Rocks sample, or across the two geologically separate (~ 26 Ma) localities. Additional histologic sampling, combined with morphological analyses, may facilitate further differentiation between ontogenetic, individual, and species variation.

  19. Avian paternal care had dinosaur origin.

    Science.gov (United States)

    Varricchio, David J; Moore, Jason R; Erickson, Gregory M; Norell, Mark A; Jackson, Frankie D; Borkowski, John J

    2008-12-19

    The repeated discovery of adult dinosaurs in close association with egg clutches leads to speculation over the type and extent of care exhibited by these extinct animals for their eggs and young. To assess parental care in Cretaceous troodontid and oviraptorid dinosaurs, we examined clutch volume and the bone histology of brooding adults. In comparison to four archosaur care regressions, the relatively large clutch volumes of Troodon, Oviraptor, and Citipati scale most closely with a bird-paternal care model. Clutch-associated adults lack the maternal and reproductively associated histologic features common to extant archosaurs. Large clutch volumes and a suite of reproductive features shared only with birds favor paternal care, possibly within a polygamous mating system. Paternal care in both troodontids and oviraptorids indicates that this care system evolved before the emergence of birds and represents birds' ancestral condition. In extant birds and over most adult sizes, paternal and biparental care correspond to the largest and smallest relative clutch volumes, respectively.

  20. Dinosaur origin of egg color: oviraptors laid blue-green eggs.

    Science.gov (United States)

    Wiemann, Jasmina; Yang, Tzu-Ruei; Sander, Philipp N; Schneider, Marion; Engeser, Marianne; Kath-Schorr, Stephanie; Müller, Christa E; Sander, P Martin

    2017-01-01

    Protoporphyrin (PP) and biliverdin (BV) give rise to the enormous diversity in avian egg coloration. Egg color serves several ecological purposes, including post-mating signaling and camouflage. Egg camouflage represents a major character of open-nesting birds which accomplish protection of their unhatched offspring against visually oriented predators by cryptic egg coloration. Cryptic coloration evolved to match the predominant shades of color found in the nesting environment. Such a selection pressure for the evolution of colored or cryptic eggs should be present in all open nesting birds and relatives. Many birds are open-nesting, but protect their eggs by continuous brooding, and thus exhibit no or minimal eggshell pigmentation. Their closest extant relatives, crocodiles, protect their eggs by burial and have unpigmented eggs. This phylogenetic pattern led to the assumption that colored eggs evolved within crown birds. The mosaic evolution of supposedly avian traits in non-avian theropod dinosaurs, however, such as the supposed evolution of partially open nesting behavior in oviraptorids, argues against this long-established theory. Using a double-checking liquid chromatography ESI-Q-TOF mass spectrometry routine, we traced the origin of colored eggs to their non-avian dinosaur ancestors by providing the first record of the avian eggshell pigments protoporphyrin and biliverdin in the eggshells of Late Cretaceous oviraptorid dinosaurs. The eggshell parataxon Macroolithus yaotunensis can be assigned to the oviraptor Heyuannia huangi based on exceptionally preserved, late developmental stage embryo remains. The analyzed eggshells are from three Late Cretaceous fluvial deposits ranging from eastern to southernmost China. Reevaluation of these taphonomic settings, and a consideration of patterns in the porosity of completely preserved eggs support an at least partially open nesting behavior for oviraptorosaurs. Such a nest arrangement corresponds with our

  1. Dinosaur origin of egg color: oviraptors laid blue-green eggs

    Directory of Open Access Journals (Sweden)

    Jasmina Wiemann

    2017-08-01

    Full Text Available Protoporphyrin (PP and biliverdin (BV give rise to the enormous diversity in avian egg coloration. Egg color serves several ecological purposes, including post-mating signaling and camouflage. Egg camouflage represents a major character of open-nesting birds which accomplish protection of their unhatched offspring against visually oriented predators by cryptic egg coloration. Cryptic coloration evolved to match the predominant shades of color found in the nesting environment. Such a selection pressure for the evolution of colored or cryptic eggs should be present in all open nesting birds and relatives. Many birds are open-nesting, but protect their eggs by continuous brooding, and thus exhibit no or minimal eggshell pigmentation. Their closest extant relatives, crocodiles, protect their eggs by burial and have unpigmented eggs. This phylogenetic pattern led to the assumption that colored eggs evolved within crown birds. The mosaic evolution of supposedly avian traits in non-avian theropod dinosaurs, however, such as the supposed evolution of partially open nesting behavior in oviraptorids, argues against this long-established theory. Using a double-checking liquid chromatography ESI-Q-TOF mass spectrometry routine, we traced the origin of colored eggs to their non-avian dinosaur ancestors by providing the first record of the avian eggshell pigments protoporphyrin and biliverdin in the eggshells of Late Cretaceous oviraptorid dinosaurs. The eggshell parataxon Macroolithus yaotunensis can be assigned to the oviraptor Heyuannia huangi based on exceptionally preserved, late developmental stage embryo remains. The analyzed eggshells are from three Late Cretaceous fluvial deposits ranging from eastern to southernmost China. Reevaluation of these taphonomic settings, and a consideration of patterns in the porosity of completely preserved eggs support an at least partially open nesting behavior for oviraptorosaurs. Such a nest arrangement corresponds

  2. Terrestrial ecosystem collapse associated to the K-Pg boundary and dinosaur extinction: palynological evidences

    Science.gov (United States)

    Bercovici, A.; Vajda, V.; Lyson, T. R.; Chester, S. G. B.; Sargis, E. J.; Pearson, D. A.; Joyce, W. G.

    2012-04-01

    We report here the discovery of the stratigraphically youngest in situ dinosaur specimen. This ceratopsian brow horn was found in southeastern Montana, in the Western Interior of the United States in a poorly rooted, silty mudstone floodplain deposit and only 13 centimeters below the palynologically defined K-Pg boundary. The boundary is identified using three criteria: 1) substantial decrease in diversity and abundance of Cretaceous pollen and spore taxa that completely disappear from the palynological record a few meters above the boundary, 2) the presence of a "fern spike", and 3) palynostratigraphical correlation to a nearby section where primary extraterrestrial impact markers are present (e.g., iridium anomaly, spherules and shocked quartz). The palynological record in the rock sequence immediately following the K-Pg boundary consistently indicates a sudden and major loss of the Cretaceous components across the North American record. During this rapid decline, the palynological assemblages are dominated by freshwater ferns (Azolla) and algae (usually Pediastrum sp. and Penetetrapites sp.) indicating generalized flooding in the area. The onset of the Paleocene sedimentation is subsequently announced by the presence of variegated beds, multiple lignite seams and small scale meandering river systems, starting with palynological associations that attest for reworking and erosion. The destabilization of terrestrial ecosystems is coincident with the markers of the K-Pg boundary, supporting a catastrophic event taking place over a very short duration. The in situ ceratopsian brow horn demonstrates that a gap devoid of non-avian dinosaur fossils in the last meters of the Cretaceous is artificial and thus inconsistent with the hypothesis that non-avian dinosaurs were extinct prior to the K-Pg boundary asteroid impact event.

  3. Embryology of Early Jurassic dinosaur from China with evidence of preserved organic remains.

    Science.gov (United States)

    Reisz, Robert R; Huang, Timothy D; Roberts, Eric M; Peng, ShinRung; Sullivan, Corwin; Stein, Koen; LeBlanc, Aaron R H; Shieh, DarBin; Chang, RongSeng; Chiang, ChengCheng; Yang, Chuanwei; Zhong, Shiming

    2013-04-11

    Fossil dinosaur embryos are surprisingly rare, being almost entirely restricted to Upper Cretaceous strata that record the late stages of non-avian dinosaur evolution. Notable exceptions are the oldest known embryos from the Early Jurassic South African sauropodomorph Massospondylus and Late Jurassic embryos of a theropod from Portugal. The fact that dinosaur embryos are rare and typically enclosed in eggshells limits their availability for tissue and cellular level investigations of development. Consequently, little is known about growth patterns in dinosaur embryos, even though post-hatching ontogeny has been studied in several taxa. Here we report the discovery of an embryonic dinosaur bone bed from the Lower Jurassic of China, the oldest such occurrence in the fossil record. The embryos are similar in geological age to those of Massospondylus and are also assignable to a sauropodomorph dinosaur, probably Lufengosaurus. The preservation of numerous disarticulated skeletal elements and eggshells in this monotaxic bone bed, representing different stages of incubation and therefore derived from different nests, provides opportunities for new investigations of dinosaur embryology in a clade noted for gigantism. For example, comparisons among embryonic femora of different sizes and developmental stages reveal a consistently rapid rate of growth throughout development, possibly indicating that short incubation times were characteristic of sauropodomorphs. In addition, asymmetric radial growth of the femoral shaft and rapid expansion of the fourth trochanter suggest that embryonic muscle activation played an important role in the pre-hatching ontogeny of these dinosaurs. This discovery also provides the oldest evidence of in situ preservation of complex organic remains in a terrestrial vertebrate.

  4. Direct U-Pb dating of Cretaceous and Paleocene dinosaur bones, San Juan Basin, New Mexico: COMMENT

    Science.gov (United States)

    Koenig, Alan E.; Lucas, Spencer G.; Neymark, Leonid A.; Heckert, Andrew B.; Sullivan, Robert M.; Jasinski, Steven E.; Fowler, Denver W.

    2012-01-01

    Based on U-Pb dating of two dinosaur bones from the San Juan Basin of New Mexico (United States), Fassett et al. (2011) claim to provide the first successful direct dating of fossil bones and to establish the presence of Paleocene dinosaurs. Fassett et al. ignore previously published work that directly questions their stratigraphic interpretations (Lucas et al., 2009), and fail to provide sufficient descriptions of instrumental, geochronological, and statistical treatments of the data to allow evaluation of the potentially complex diagenetic and recrystallization history of bone. These shortcomings lead us to question the validity of the U-Pb dates published by Fassett et al. and their conclusions regarding the existence of Paleocene dinosaurs.

  5. If Dung Beetles (Scarabaeidae: Scarabaeinae Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?

    Directory of Open Access Journals (Sweden)

    Nicole L Gunter

    Full Text Available The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day

  6. If Dung Beetles (Scarabaeidae: Scarabaeinae) Arose in Association with Dinosaurs, Did They Also Suffer a Mass Co-Extinction at the K-Pg Boundary?

    Science.gov (United States)

    Gunter, Nicole L; Weir, Tom A; Slipinksi, Adam; Bocak, Ladislav; Cameron, Stephen L

    2016-01-01

    The evolutionary success of beetles and numerous other terrestrial insects is generally attributed to co-radiation with flowering plants but most studies have focused on herbivorous or pollinating insects. Non-herbivores represent a significant proportion of beetle diversity yet potential factors that influence their diversification have been largely unexamined. In the present study, we examine the factors driving diversification within the Scarabaeidae, a speciose beetle family with a range of both herbivorous and non-herbivorous ecologies. In particular, it has been long debated whether the key event in the evolution of dung beetles (Scarabaeidae: Scarabaeinae) was an adaptation to feeding on dinosaur or mammalian dung. Here we present molecular evidence to show that the origin of dung beetles occurred in the middle of the Cretaceous, likely in association with dinosaur dung, but more surprisingly the timing is consistent with the rise of the angiosperms. We hypothesize that the switch in dinosaur diet to incorporate more nutritious and less fibrous angiosperm foliage provided a palatable dung source that ultimately created a new niche for diversification. Given the well-accepted mass extinction of non-avian dinosaurs at the Cretaceous-Paleogene boundary, we examine a potential co-extinction of dung beetles due to the loss of an important evolutionary resource, i.e., dinosaur dung. The biogeography of dung beetles is also examined to explore the previously proposed "out of Africa" hypothesis. Given the inferred age of Scarabaeinae as originating in the Lower Cretaceous, the major radiation of dung feeders prior to the Cenomanian, and the early divergence of both African and Gondwanan lineages, we hypothesise that that faunal exchange between Africa and Gondwanaland occurred during the earliest evolution of the Scarabaeinae. Therefore we propose that both Gondwanan vicariance and dispersal of African lineages is responsible for present day distribution of

  7. Origin attachments of the caudofemoralis longus muscle in the Jurassic dinosaur Allosaurus

    Directory of Open Access Journals (Sweden)

    Andrea Cau

    2017-06-01

    Full Text Available The caudofemoralis longus muscle (CFL is the primary limb retractor among non-avian sauropsids, and underwent a dramatic reduction along the dinosaur lineage leading to birds. The osteological correlates of the CFL among fossil reptiles have been controversial, because, contrary to traditional interpretations, the extent of the muscle is not necessarily related to the distribution of the caudal ribs. In some Cretaceous dinosaurs, the extent of the CFL has been inferred based on the preserved bony septa between the CFL and other tail muscles. Here, we describe a series of tail vertebrae of the Jurassic dinosaur Allosaurus, each showing a previously-unreported feature: a sulcus, formed by a regular pattern of tightly packed horizontal slits, that runs vertically along the lateral surfaces of the centra and neural arches. These sulci are interpreted as the origin attachment sites of the CFL, allowing for direct determination of the muscle extent along the tail of this dinosaur. Anteriorly to the 18th caudal vertebra, the sulcus runs along most of the centrum and neural arch, then it progressively reduces its vertical extent, and disappears between caudals 24 and 32, a pattern consistent with previous CFL reconstructions in other theropods.

  8. Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada

    Science.gov (United States)

    2013-01-01

    Background Herbivore coexistence on the Late Cretaceous island continent of Laramidia has been a topic of great interest, stemming from the paradoxically high diversity and biomass of these animals in relation to the relatively small landmass available to them. Various hypotheses have been advanced to account for these facts, of which niche partitioning is among the most frequently invoked. However, despite its wide acceptance, this hypothesis has not been rigorously tested. This study uses the fossil assemblage from the Dinosaur Park Formation of Alberta as a model to investigate whether niche partitioning facilitated herbivorous dinosaur coexistence on Laramidia. Specifically, the question of feeding height stratification is examined in light of the role it plays in facilitating modern ungulate coexistence. Results Most herbivorous dinosaur species from the Dinosaur Park Formation were restricted to feeding no higher than approximately 1 m above the ground. There is minimal evidence for feeding height partitioning at this level, with ceratopsids capable of feeding slightly higher than ankylosaurs, but the ecological significance of this is ambiguous. Hadrosaurids were uniquely capable of feeding up to 2 m quadrupedally, or up to 5 m bipedally. There is no evidence for either feeding height stratification within any of these clades, or for change in these ecological relationships through the approximately 1.5 Ma record of the Dinosaur Park Formation. Conclusions Although we cannot reject the possibility, we find no good evidence that feeding height stratification, as revealed by reconstructed maximum feeding heights, played an important role in facilitating niche partitioning among the herbivorous dinosaurs of Laramidia. Most browsing pressure was concentrated in the herb layer, although hadrosaurids were capable of reaching shrubs and low-growing trees that were out of reach from ceratopsids, ankylosaurs, and other small herbivores, effectively dividing the

  9. Feeding height stratification among the herbivorous dinosaurs from the Dinosaur Park Formation (upper Campanian) of Alberta, Canada.

    Science.gov (United States)

    Mallon, Jordan C; Evans, David C; Ryan, Michael J; Anderson, Jason S

    2013-04-04

    Herbivore coexistence on the Late Cretaceous island continent of Laramidia has been a topic of great interest, stemming from the paradoxically high diversity and biomass of these animals in relation to the relatively small landmass available to them. Various hypotheses have been advanced to account for these facts, of which niche partitioning is among the most frequently invoked. However, despite its wide acceptance, this hypothesis has not been rigorously tested. This study uses the fossil assemblage from the Dinosaur Park Formation of Alberta as a model to investigate whether niche partitioning facilitated herbivorous dinosaur coexistence on Laramidia. Specifically, the question of feeding height stratification is examined in light of the role it plays in facilitating modern ungulate coexistence. Most herbivorous dinosaur species from the Dinosaur Park Formation were restricted to feeding no higher than approximately 1 m above the ground. There is minimal evidence for feeding height partitioning at this level, with ceratopsids capable of feeding slightly higher than ankylosaurs, but the ecological significance of this is ambiguous. Hadrosaurids were uniquely capable of feeding up to 2 m quadrupedally, or up to 5 m bipedally. There is no evidence for either feeding height stratification within any of these clades, or for change in these ecological relationships through the approximately 1.5 Ma record of the Dinosaur Park Formation. Although we cannot reject the possibility, we find no good evidence that feeding height stratification, as revealed by reconstructed maximum feeding heights, played an important role in facilitating niche partitioning among the herbivorous dinosaurs of Laramidia. Most browsing pressure was concentrated in the herb layer, although hadrosaurids were capable of reaching shrubs and low-growing trees that were out of reach from ceratopsids, ankylosaurs, and other small herbivores, effectively dividing the herbivores in terms of relative

  10. New geochronologic and stratigraphic evidence confirms the paleocene age of the dinosaur-bearing ojo alamo sandstone and animas formation in the San Juan Basin, New Mexico and Colorado

    Science.gov (United States)

    Fassett, J.E.

    2009-01-01

    Dinosaur fossils are present in the Paleocene Ojo Alamo Sandstone and Animas Formation in the San Juan Basin, New Mexico, and Colorado. Evidence for the Paleo-cene age of the Ojo Alamo Sandstone includes palynologic and paleomagnetic data. Palynologic data indicate that the entire Ojo Alamo Sandstone, including the lower dinosaur-bearing part, is Paleocene in age. All of the palynomorph-productive rock samples collected from the Ojo Alamo Sandstone at multiple localities lacked Creta-ceous index palynomorphs (except for rare, reworked specimens) and produced Paleocene index palynomorphs. Paleocene palynomorphs have been identified strati-graphically below dinosaur fossils at two separate localities in the Ojo Alamo Sand-stone in the central and southern parts of the basin. The Animas Formation in the Colorado part of the basin also contains dinosaur fossils, and its Paleocene age has been established based on fossil leaves and palynology. Magnetostratigraphy provides independent evidence for the Paleocene age of the Ojo Alamo Sandstone and its dinosaur-bearing beds. Normal-polarity magnetochron C29n (early Paleocene) has been identified in the Ojo Alamo Sandstone at six localities in the southern part of the San Juan Basin. An assemblage of 34 skeletal elements from a single hadrosaur, found in the Ojo Alamo Sandstone in the southern San Juan Basin, provided conclusive evidence that this assemblage could not have been reworked from underlying Cretaceous strata. In addition, geochemical studies of 15 vertebrate bones from the Paleocene Ojo Alamo Sandstone and 15 bone samples from the underlying Kirtland Formation of Late Creta-ceous (Campanian) age show that each sample suite contained distinctly different abundances of uranium and rare-earth elements, indicating that the bones were miner-alized in place soon after burial, and that none of the Paleocene dinosaur bones ana-lyzed had been reworked. ?? U.S. Geological Survey, Public Domain April 2009.

  11. The latest succession of dinosaur tracksites in Europe: Hadrosaur ichnology, track production and palaeoenvironments.

    Directory of Open Access Journals (Sweden)

    Bernat Vila

    Full Text Available A comprehensive review and study of the rich dinosaur track record of the Tremp Formation in the southern Pyrenees of Spain (Southwestern Europe shows a unique succession of footprint localities prior to the end-Cretaceous mass extinction event. A description of some 30 new tracksites and data on sedimentary environments, track occurrence and preservation, ichnology and chronostratigraphy are provided. These new track localities represent various facies types within a diverse set of fluvial environments. The footprint discoveries mostly represent hadrosaurian and, less abundantly, to sauropod dinosaurs. The hadrosaur tracks are significantly smaller in size than, but morphologically similar to, those of North America and Asia and are attributable to the ichnogenus Hadrosauropodus. The track succession, with more than 40 distinct track levels, indicates that hadrosaur footprints in the Ibero-Armorican region occur predominantly in the late Maaastrichtian (at least above the early Maastrichtian-late Maastrichtian boundary. The highest abundance is found noticeably found in the late Maastrichtian, with tracks occurring in the C29r magnetochron, within about the latest 300,000 years of the Cretaceous.

  12. Vascularised endosteal bone tissue in armoured sauropod dinosaurs.

    Science.gov (United States)

    Chinsamy, Anusuya; Cerda, Ignacio; Powell, Jaime

    2016-04-26

    The presence of well-vascularised, endosteal bone in the medullary region of long bones of nonavian dinosaurs has been invoked as being homologous to medullary bone, a specialised bone tissue formed during ovulation in birds. However, similar bone tissues can result as a pathological response in modern birds and in nonavian dinosaurs, and has also been reported in an immature nonavian dinosaur. Here we report on the occurrence of well-vascularised endosteally formed bone tissue in three skeletal elements of armoured titanosaur sauropods from the Upper Cretaceous of Argentina: i) within the medullary cavity of a metatarsal, ii) inside a pneumatic cavity of a posterior caudal vertebra, iii) in intra-trabecular spaces in an osteoderm. We show that considering the criteria of location, origin (or development), and histology, these endosteally derived tissues in the saltasaurine titanosaurs could be described as either medullary bone or pathological bone. Furthermore, we show that similar endosteally formed well-vascularised bone tissue is fairly widely distributed among nondinosaurian Archosauriformes, and are not restricted to long bones, but can occur in the axial, and dermal skeleton. We propose that independent evidence is required to verify whether vascularised endosteal bone tissues in extinct archosaurs are pathological or reproductive in nature.

  13. Phylogeny, Histology and Inferred Body Size Evolution in a New Rhabdodontid Dinosaur from the Late Cretaceous of Hungary

    Science.gov (United States)

    Ősi, Attila; Prondvai, Edina; Butler, Richard; Weishampel, David B.

    2012-01-01

    Background Rhabdodontid ornithopod dinosaurs are characteristic elements of Late Cretaceous European vertebrate faunas and were previously collected from lower Campanian to Maastrichtian continental deposits. Phylogenetic analyses have placed rhabdodontids among basal ornithopods as the sister taxon to the clade consisting of Tenontosaurus, Dryosaurus, Camptosaurus, and Iguanodon. Recent studies considered Zalmoxes, the best known representative of the clade, to be significantly smaller than closely related ornithopods such as Tenontosaurus, Camptosaurus, or Rhabdodon, and concluded that it was probably an island dwarf that inhabited the Maastrichtian Haţeg Island. Methodology/Principal Findings Rhabdodontid remains from the Santonian of western Hungary provide evidence for a new, small-bodied form, which we assign to Mochlodon vorosi n. sp. The new species is most similar to the early Campanian M. suessi from Austria, and the close affinities of the two species is further supported by the results of a global phylogenetic analysis of ornithischian dinosaurs. Bone histological studies of representatives of all rhabdodontids indicate a similar adult body length of 1.6–1.8 m in the Hungarian and Austrian species, 2.4–2.5 m in the subadults of both Zalmoxes robustus and Z. shqiperorum and a much larger, 5–6 m adult body length in Rhabdodon. Phylogenetic mapping of femoral lengths onto the results of the phylogenetic analysis suggests a femoral length of around 340 mm as the ancestral state for Rhabdodontidae, close to the adult femoral lengths known for Zalmoxes (320–333 mm). Conclusions/Significance Our analysis of body size evolution does not support the hypothesis of autapomorhic nanism for Zalmoxes. However, Rhabdodon is reconstructed as having undergone autapomorphic giantism and the reconstructed small femoral length (245 mm) of Mochlodon is consistent with a reduction in size relative to the ancestral rhabdodontid condition. Our results imply a pre

  14. Evidence for Cretaceous-Paleogene boundary bolide "impact winter" conditions from New Jersey, USA

    NARCIS (Netherlands)

    Vellekoop, J.; Esmeray-Senlet, S.; Miller, K.G.; Browning, J.V.; Sluijs, A.|info:eu-repo/dai/nl/311474748; van de Schootbrugge, B.|info:eu-repo/dai/nl/376758562; Sinninghe Damsté, J.S.|info:eu-repo/dai/nl/07401370X; Brinkhuis, H.|info:eu-repo/dai/nl/095046097

    2016-01-01

    Abrupt and short-lived “impact winter” conditions have commonly been implicated as the main mechanism leading to the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (ca. 66 Ma), marking the end of the reign of the non-avian dinosaurs. However, so far only limited evidence has been

  15. A new troodontid dinosaur from China with avian-like sleeping posture.

    Science.gov (United States)

    Xu, Xing; Norell, Mark A

    2004-10-14

    Discovering evidence of behaviour in fossilized vertebrates is rare. Even rarer is evidence of behaviour in non-avialan dinosaurs that directly relates to stereotypical behaviour seen in extant birds (avians) and not previously predicted in non-avialan dinosaurs. Here we report the discovery of a new troodontid taxon from the Early Cretaceous Yixian Formation of western Liaoning, China. Numerous other three-dimensionally preserved vertebrate fossils have been recovered recently at this locality, including some specimens preserving behavioural information. The new troodontid preserves several features that have been implicated in avialan origins. Notably, the specimen is preserved in the stereotypical sleeping or resting posture found in extant Aves. Evidence of this behaviour outside of the crown group Aves further demonstrates that many bird features occurred early in dinosaurian evolution.

  16. Paleomagnetism of the Cretaceous Galula Formation and implications for vertebrate evolution

    Science.gov (United States)

    Widlansky, Sarah J.; Clyde, William C.; O'Connor, Patrick M.; Roberts, Eric M.; Stevens, Nancy J.

    2018-03-01

    This study uses magnetostratigraphy to help constrain the age of the paleontologically important Galula Formation (Rukwa Rift Basin, southwestern Tanzania). The formation preserves a Cretaceous vertebrate fauna, including saurischian dinosaurs, a putative gondwanatherian mammal, and notosuchian crocodyliforms. With better dating, the Galula Formation and its fossils help fill a temporal gap in our understanding of vertebrate evolution in continental Africa, enabling better evaluation of competing paleobiogeographic hypotheses concerning faunal exchange throughout Gondwana during the Cretaceous. Paleomagnetic samples for this study were collected from the Namba (higher in section) and Mtuka (lower in section) members of the Galula Formation and underwent stepwise thermal demagnetization. All samples displayed a strong normal magnetic polarity overprint, and maximum unblocking temperatures at approximately 690 °C. Three short reversed intervals were identified in the Namba Member, whereas the Mtuka Member lacked any clear reversals. Given the relatively limited existing age constraints, one interpretation correlates the Namba Member to Chron C32. An alternative correlation assigns reversals in the Namba Member to recently proposed short reversals near the end of the Cretaceous Normal Superchron (Chron C34), a time that is traditionally interpreted as having stable normal polarity. The lack of reversals in the Mtuka Member supports deposition within Chron C34. These data suggest that the Namba Member is no older than Late Cretaceous (Cenomanian-Campanian), with the Mtuka Member less well constrained to the middle Cretaceous (Aptian-Cenomanian). The paleomagnetic results are supported by the application of fold and reversal tests for paleomagnetic stability, and paleomagnetic poles for the Namba (246.4°/77.9°, α95 5.9°) and Mtuka (217.1°/72.2°, α95 11.1°) members closely matching the apparent polar wander path for Africa during the Late Cretaceous. These

  17. Bolide impact and long- and short term environmental change across the cretaceous-paleogene boundary

    NARCIS (Netherlands)

    Vellekoop, J.

    2015-01-01

    The Cretaceous-Paleogene (K-Pg) boundary mass extinction, ~66 million years ago, was one of the most devastating events in the history of life, marking the end of the dinosaur era. This mass extinction event is now widely acknowledged to be related to the global environmental consequences of the

  18. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America.

    Science.gov (United States)

    Mitchell, Jonathan S; Roopnarine, Peter D; Angielczyk, Kenneth D

    2012-11-13

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  19. Evidence for Cretaceous-Paleogene boundary bolide “impact winter” conditions from New Jersey, USA

    NARCIS (Netherlands)

    Vellekoop, J.; Esmeray-Senlet, S.; Miller, K.G.; Browning, J.V.; Sluijs, A.; van de Schootbrugge, B.; Sinninghe Damsté, J.S.; Brinkhuis, H.

    2016-01-01

    Abrupt and short-lived “impact winter” conditions have commonly been implicated as the main mechanism leading to the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (ca. 66 Ma), marking the end of the reign of the non-avian dinosaurs. However, so far only limited evidence has been

  20. Dinosaur Day!

    Science.gov (United States)

    Nakamura, Sandra; Baptiste, H. Prentice

    2006-01-01

    In this article, the authors describe how they capitalized on their first-grade students' love of dinosaurs by hosting a fun-filled Dinosaur Day in their classroom. On Dinosaur Day, students rotated through four dinosaur-related learning stations that integrated science content with art, language arts, math, and history in a fun and time-efficient…

  1. Lower limits of ornithischian dinosaur body size inferred from a new Upper Jurassic heterodontosaurid from North America

    Science.gov (United States)

    Butler, Richard J.; Galton, Peter M.; Porro, Laura B.; Chiappe, Luis M.; Henderson, Donald M.; Erickson, Gregory M.

    2010-01-01

    The extremes of dinosaur body size have long fascinated scientists. The smallest (dinosaurs are carnivorous saurischian theropods, and similarly diminutive herbivorous or omnivorous ornithischians (the other major group of dinosaurs) are unknown. We report a new ornithischian dinosaur, Fruitadens haagarorum, from the Late Jurassic of western North America that rivals the smallest theropods in size. The largest specimens of Fruitadens represent young adults in their fifth year of development and are estimated at just 65–75 cm in total body length and 0.5–0.75 kg body mass. They are thus the smallest known ornithischians. Fruitadens is a late-surviving member of the basal dinosaur clade Heterodontosauridae, and is the first member of this clade to be described from North America. The craniodental anatomy and diminutive body size of Fruitadens suggest that this taxon was an ecological generalist with an omnivorous diet, thus providing new insights into morphological and palaeoecological diversity within Dinosauria. Late-surviving (Late Jurassic and Early Cretaceous) heterodontosaurids are smaller and less ecologically specialized than Early (Late Triassic and Early Jurassic) heterodontosaurids, and this ecological generalization may account in part for the remarkable 100-million-year-long longevity of the clade. PMID:19846460

  2. What do giant titanosaur dinosaurs and modern Australasian megapodes have in common?

    Science.gov (United States)

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Fiorelli, Lucas E

    2015-01-01

    Titanosauria is a globally distributed clade of sometimes extremely large Mesozoic herbivorous sauropod dinosaurs. On the basis of current evidence these giant dinosaurs seem to have reproduced in specific and localized nesting sites. However, no investigations have been performed to understand the possible ecological and geological biases that acted for the selection of these nesting sites worldwide. In this study, observations were performed on the best-known Cretaceous nesting sites around the world. Our observations strongly suggest their eggs were incubated with environmental sources of heat, in burial conditions. Taking into account the clutch composition and geometry, the nature and properties of the sediments, the eggshells' structures and conductance, it would appear that titanosaurs adopted nesting behaviors comparable to the modern Australasian megapodes, using burrow-nesting in diverse media and mound-building strategies.

  3. Assessment of diagenetic alteration of dinosaur eggshells through petrography and geochemical analysis

    Science.gov (United States)

    Enriquez, M. V.; Eagle, R.; Eiler, J. M.; Tripati, A. K.; Ramirez, P. C.; Loyd, S. J.; Chiappe, L.; Montanari, S.; Norell, M.; Tuetken, T.

    2012-12-01

    Carbonate clumped isotope analysis of fossil eggshells has the potential to constrain both the physiology of extinct animals and, potentially, paleoenvironmental conditions, especially when coupled with isotopic measurements of co-occurring soil carbonates. Eggshell samples from both modern vertebrates and Cretaceous Hadrosaurid, Oviraptorid, Titanosaur, Hypselosaurus, Faveoolithus, dinosaur fossils have been collected from Auca Mahuevo, Argentina and Rousett, France, amongst other locations, for geochemical analysis to determine if isotopic signatures could be used to indicate warm- or cold-bloodedness. In some locations soil carbonates were also analyzed to constrain environmental temperatures. In order to test the validity of the geochemical results, an extensive study was undertaken to establish degree of diagenetic alteration. Petrographic and cathodoluminescence characterization of the eggshells were used to assess diagenetic alteration. An empirical 1-5 point scale was used to assign each sample an alteration level, and the observations were then compared with the geochemical results. Specimens displayed a wide range of alteration states. Some of which were well preserved and others highly altered. Another group seemed to be structural intact and only under cathodoluminescence was alteration clearly observed. In the majority of samples, alteration level was found to be predictably related to geochemical results. From specimens with little evidence for diagenesis, carbonate clumped isotope signatures support high (37-40°C) body temperature for Titanosaurid dinosaurs, but potentially lower body temperatures for other taxa. If these data do, in fact, represent original eggshell growth temperatures, these results support variability in body temperature amongst Cretaceous dinosaurs and potentially are consistent with variations between adult body temperature and size — a characteristic of 'gigantothermy'.

  4. A complete skull of an early cretaceous sauropod and the evolution of advanced titanosaurians.

    Directory of Open Access Journals (Sweden)

    Hussam Zaher

    Full Text Available Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought.

  5. A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs.

    Science.gov (United States)

    Pol, Diego; Rauhut, Oliver W M

    2012-08-22

    Abelisaurids are a clade of large, bizarre predatory dinosaurs, most notable for their high, short skulls and extremely reduced forelimbs. They were common in Gondwana during the Cretaceous, but exceedingly rare in the Northern Hemisphere. The oldest definitive abelisaurids so far come from the late Early Cretaceous of South America and Africa, and the early evolutionary history of the clade is still poorly known. Here, we report a new abelisaurid from the Middle Jurassic of Patagonia, Eoabelisaurus mefi gen. et sp. nov., which predates the so far oldest known secure member of this lineage by more than 40 Myr. The almost complete skeleton reveals the earliest evolutionary stages of the distinctive features of abelisaurids, such as the modification of the forelimb, which started with a reduction of the distal elements. The find underlines the explosive radiation of theropod dinosaurs in the Middle Jurassic and indicates an unexpected diversity of ceratosaurs at that time. The apparent endemism of abelisauroids to southern Gondwana during Pangean times might be due to the presence of a large, central Gondwanan desert. This indicates that, apart from continent-scale geography, aspects such as regional geography and climate are important to reconstruct the biogeographical history of Mesozoic vertebrates.

  6. What do giant titanosaur dinosaurs and modern Australasian megapodes have in common?

    Directory of Open Access Journals (Sweden)

    E. Martín Hechenleitner

    2015-10-01

    Full Text Available Titanosauria is a globally distributed clade of sometimes extremely large Mesozoic herbivorous sauropod dinosaurs. On the basis of current evidence these giant dinosaurs seem to have reproduced in specific and localized nesting sites. However, no investigations have been performed to understand the possible ecological and geological biases that acted for the selection of these nesting sites worldwide. In this study, observations were performed on the best-known Cretaceous nesting sites around the world. Our observations strongly suggest their eggs were incubated with environmental sources of heat, in burial conditions. Taking into account the clutch composition and geometry, the nature and properties of the sediments, the eggshells’ structures and conductance, it would appear that titanosaurs adopted nesting behaviors comparable to the modern Australasian megapodes, using burrow-nesting in diverse media and mound-building strategies.

  7. Trace element composition and distribution in micron area of dinosaur eggshell fossils determined by proton microprobe

    International Nuclear Information System (INIS)

    Chen Youhong; Zhu Jieqing; Wang Xiaohong; Wang Yimin

    1997-01-01

    The scanning proton microprobe and micro-PIXE quantitative analysis technique have been used to determine composition and distribution of the trace elements in micron areas of dinosaur eggshell fossils from the stratum of Upper Cretaceous system at Nanxiong Basin in Guangdong Province, China. The study shows that the trace elements mainly include Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Sb, Ba and Pb in the micron area, but they present different distributions. While the element Sr is mainly enriched in the near surface layer, others mainly reside in the near inner layer. A preliminary discussion on the reason of the dinosaur extinction is given based on the above study

  8. Trace element composition and distribution in micron area of dinosaur eggshell fossils determined by proton microprobe

    International Nuclear Information System (INIS)

    Chen Youhong; Zhu Jieqing; Wang Xiaohong; Wang Yimin

    1997-01-01

    The scanning proton microprobe and micro-PIXE quantitative analysis technique have been used to determine composition and distribution of the trace elements in micron areas of dinosaur eggshell fossils from the stratum of Upper Cretaceous system at Nanxiong Basin in Guangdong Province, China. The study shows that the trace elements mainly include Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Rb, Sr, Y, Zr, Sb, Ba and Pb in the micron area, but they present different distributions. While the elements Sr is mainly enriched in the near surface layer, others mainly reside in the near inner layer. A preliminary discussion on the reason of the dinosaur extinction is given based on the above study

  9. Ornithopod and Sauropod Dinosaur Remains from the Maastrichtian Al-Khod Conglomerate, Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Ann S. Schulp

    2008-06-01

    Full Text Available Fieldwork in the Upper Cretaceous (Maastrichtian Al-Khod Conglomerates in the Sultanate of Oman led to the discovery of a large bone fragment tentatively identified as a partial distal left humerus of a sauropod and an ornithopod dorsal vertebra. The very fragmentary state of preservation of the dorsal vertebra makes specific attribution difficult, but it shows remarkable similarities to the rhabdodontid dinosaurs Rhabdodon and Zalmoxes.

  10. Dinosaur lactation?

    Science.gov (United States)

    Else, Paul L

    2013-02-01

    Lactation is a process associated with mammals, yet a number of birds feed their newly hatched young on secretions analogous to the milk of mammals. These secretions are produced from various sections (crop organ, oesophageal lining and proventriculus) of the upper digestive tract and possess similar levels of fat and protein, as well as added carotenoids, antibodies and, in the case of pigeons and doves, epidermal growth factor. Parental care in avian species has been proposed to originate from dinosaurs. This study examines the possibility that some dinosaurs used secretory feeding to increase the rate of growth of their young, estimated to be similar to that of present day birds and mammals. Dinosaur 'lactation' could also have facilitated immune responses as well as extending parental protection as a result of feeding newly hatched young in nest environments. While the arguments for dinosaur lactation are somewhat generic, a case study for lactation in herbivorous site-nesting dinosaurs is presented. It is proposes that secretory feeding could have been used to bridge the gap between hatching and establishment of the normal diet in some dinosaurs.

  11. Unexpected Convergent Evolution of Nasal Domes between Pleistocene Bovids and Cretaceous Hadrosaur Dinosaurs.

    Science.gov (United States)

    O'Brien, Haley D; Faith, J Tyler; Jenkins, Kirsten E; Peppe, Daniel J; Plummer, Thomas W; Jacobs, Zenobia L; Li, Bo; Joannes-Boyau, Renaud; Price, Gilbert; Feng, Yue-Xing; Tryon, Christian A

    2016-02-22

    The fossil record provides tangible, historical evidence for the mode and operation of evolution across deep time. Striking patterns of convergence are some of the strongest examples of these operations, whereby, over time, similar environmental and/or behavioral pressures precipitate similarity in form and function between disparately related taxa. Here we present fossil evidence for an unexpected convergence between gregarious plant-eating mammals and dinosaurs. Recent excavations of Late Pleistocene deposits on Rusinga Island, Kenya, have uncovered a catastrophic assemblage of the wildebeest-like bovid Rusingoryx atopocranion. Previously known from fragmentary material, these new specimens reveal large, hollow, osseous nasal crests: a craniofacial novelty for mammals that is remarkably comparable to the nasal crests of lambeosaurine hadrosaur dinosaurs. Using adult and juvenile material from this assemblage, as well as computed tomographic imaging, we investigate this convergence from morphological, developmental, functional, and paleoenvironmental perspectives. Our detailed analyses reveal broad parallels between R. atopocranion and basal Lambeosaurinae, suggesting that osseous nasal crests may require a highly specific combination of ontogeny, evolution, and environmental pressures in order to develop. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ichnological evidence of Megalosaurid Dinosaurs Crossing Middle Jurassic Tidal Flats

    Science.gov (United States)

    Razzolini, Novella L.; Oms, Oriol; Castanera, Diego; Vila, Bernat; Santos, Vanda Faria Dos; Galobart, Àngel

    2016-08-01

    A new dinosaur tracksite in the Vale de Meios quarry (Serra de Aire Formation, Bathonian, Portugal)preserves more than 700 theropod tracks. They are organized in at least 80 unidirectional trackways arranged in a bimodal orientation pattern (W/NW and E/SE). Quantitative and qualitative comparisons reveal that the large tridactyl, elongated and asymmetric tracks resemble the typical Late Jurassic-Early Cretaceous Megalosauripus ichnogenus in all morphometric parameters. Few of the numerous tracks are preserved as elite tracks while the rest are preserved as different gradients of modified true tracks according to water content, erosive factors, radial fractures and internal overtrack formations. Taphonomical determinations are consistent with paleoenvironmental observations that indicate an inter-tidal flat located at the margin of a coastal barrier. The Megalosauripus tracks represent the oldest occurrence of this ichnotaxon and are attributed to large megalosaurid dinosaurs. Their occurrence in Vale de Meios tidal flat represents the unique paleoethological evidence of megalosaurids moving towards the lagoon, most likley during the low tide periods with feeding purposes.

  13. High-resolution leaf-fossil record spanning the Cretaceous/Tertiary boundary

    Science.gov (United States)

    Johnson, K.R.; Nichols, D.J.; Attrep, M.; Orth, C.J.

    1989-01-01

    THEORIES that explain the extinctions characterizing the Cretaceous/Tertiary (K/T) boundary1-3 need to be tested by analyses of thoroughly sampled biotas. Palynological studies are the primary means for stratigraphic placement of the terrestrial boundary and for estimates of plant extinction4-12, but have not been combined with quantitative analyses of fossil leaves (megaflora). Megafloral studies complement palynology by representing local floras with assemblages capable of high taxonomic resolution13, but have previously lacked the sample size and stratigraphic spacing needed to resolve latest Cretaceous floral history5,14-18. We have now combined megafloral data from a 100-m-thick composite K/T boundary section in North Dakota with detailed palynological analysis. Here the boundary is marked by a 30% palynofloral extinction coincident with iridium and shocked-mineral anomalies and lies ???2 m above the highest dinosaur remains. The megaflora undergoes a 79% turnover across the boundary, and smaller changes 17- and 25-m below it. This pattern is consistent with latest Cretaceous climatic warming preceding a bolide impact. ?? 1989 Nature Publishing Group.

  14. Femoral bone strength in large theropod dinosaurs: A study by genus

    Science.gov (United States)

    Lee, Scott

    2015-03-01

    The locomotion of bipedal theropod dinosaurs is controlled by the strength of the femur to resist bending torques (caused by the foot striking the ground and the action of muscles on the femur). The section modulus at the narrowest part measures the ability of the femur to resist such torques. We present the results of our study of the femoral section moduli for six genus of large theropods: Tyrannosaurus, Nanotyrannus, Gorgosaurus, and Albertosaurus of the Late Cretaceous, Acrocanthosaurus of the Early Cretaceous, and Allosaurus of the Late Jurassic. These animals had femora of lengths between 65 and 134 cm. The corresponding section moduli varied between 23 and 570 cm3. Some species of Tyrannosaurus, Gorgosaurus, Allosaurus, and Albertosaurus had femora with lengths in the same 75 to 90 cm range. The section moduli of these animals are all in the same range, showing that the animals had the same abilities of locomotion. That is, Allosaurus of the Late Jurassic could locomote just as well as the Late Cretaceous Tyrannosaurus, Gorgosaurus, and Albertosaurus. There is no evidence that these later theropods had evolved to be any faster than similarly-sized theropods living about 80 million years earlier.

  15. Anomalously high variation in postnatal development is ancestral for dinosaurs but lost in birds

    Science.gov (United States)

    Griffin, Christopher T.; Nesbitt, Sterling J.

    2016-12-01

    Compared with all other living reptiles, birds grow extremely fast and possess unusually low levels of intraspecific variation during postnatal development. It is now clear that birds inherited their high rates of growth from their dinosaurian ancestors, but the origin of the avian condition of low variation during development is poorly constrained. The most well-understood growth trajectories of later Mesozoic theropods (e.g., Tyrannosaurus, Allosaurus) show similarly low variation to birds, contrasting with higher variation in extant crocodylians. Here, we show that deep within Dinosauria, among the earliest-diverging dinosaurs, anomalously high intraspecific variation is widespread but then is lost in more derived theropods. This style of development is ancestral for dinosaurs and their closest relatives, and, surprisingly, this level of variation is far higher than in living crocodylians. Among early dinosaurs, this variation is widespread across Pangaea in the Triassic and Early Jurassic, and among early-diverging theropods (ceratosaurs), this variation is maintained for 165 million years to the end of the Cretaceous. Because the Late Triassic environment across Pangaea was volatile and heterogeneous, this variation may have contributed to the rise of dinosaurian dominance through the end of the Triassic Period.

  16. Mesozoic plants and dinosaur herbivory

    OpenAIRE

    Sander, P M; Gee, C T; Hummel, J; Clauss, Marcus

    2010-01-01

    For most of their existence, herbivorous dinosaurs fed on a gymnospermdominated flora. Starting from a simple reptilian herbivory, ornithischian dinosaurs evolved complex chewing dentitions and mechanisms, while sauropodomorph dinosaurs retained the primitive condition of not chewing. Some advanced theropod dinosaurs evolved a bird-type herbivory with a toothless beak and a gastric mill. Dinosaur digestive tract remains, coprolites, and other trace fossils offer little evidence for dinosaur f...

  17. Histological evidence for a supraspinous ligament in sauropod dinosaurs.

    Science.gov (United States)

    Cerda, Ignacio A; Casal, Gabriel A; Martinez, Rubén D; Ibiricu, Lucio M

    2015-10-01

    Supraspinous ossified rods have been reported in the sacra of some derived sauropod dinosaurs. Although different hypotheses have been proposed to explain the origin of this structure, histological evidence has never been provided to support or reject any of them. In order to establish its origin, we analyse and characterize the microstructure of the supraspinous rod of two sauropod dinosaurs from the Upper Cretaceous of Argentina. The supraspinous ossified rod is almost entirely formed by dense Haversian bone. Remains of primary bone consist entirely of an avascular tissue composed of two types of fibre-like structures, which are coarse and longitudinally (parallel to the main axis of the element) oriented. These structures are differentiated on the basis of their optical properties under polarized light. Very thin fibrous strands are also observed in some regions. These small fibres are all oriented parallel to one another but perpendicular to the element main axis. Histological features of the primary bone tissue indicate that the sacral supraspinous rod corresponds to an ossified supraspinous ligament. The formation of this structure appears to have been a non-pathological metaplastic ossification, possibly induced by the continuous tensile forces applied to the element.

  18. Multiple taxon multiple locality approach to providing oxygen isotope evidence for warm-blooded theropod dinosaurs

    Science.gov (United States)

    Fricke, Henry C.; Rogers, Raymond R.

    2000-09-01

    Oxygen isotope ratios of fossil remains of coexisting taxa from several different localities can be used to help investigate dinosaur thermoregulation. Focusing on the Late Cretaceous, oxygen isotope ratios of crocodile tooth enamel from four separate localities exhibit less of a decrease with latitude than do ratios of tooth enamel from coexisting theropod dinosaurs. A shallower latitudinal gradient for crocodiles is consistent with how oxygen isotope ratios should vary for heterothermic animals having body temperatures coupled with their environments (“cold blooded”), while a steeper gradient for theropods is consistent with how these ratios should vary for homeothermic animals having constant body temperatures independent of their environments (“warm blooded”). This inferred homoethermy in theropods is likely due to higher rates of metabolic heat production relative to crocodiles and is not an artifact of body size.

  19. Dinosaurs on the North Slope, Alaska: High latitude, latest cretaceous environments

    Science.gov (United States)

    Brouwers, E.M.; Clemens, W.A.; Spicer, R.A.; Ager, T.A.; Carter, L.D.; Sliter, W.V.

    1987-01-01

    Abundant skeletal remains demonstrate that lambeosaurine hadrosaurid, tyrannosaurid, and troodontid dinosaurs lived on the Alaskan North Slope during late Campanian-early Maestrichtian time (about 66 to 76 million years ago) in a deltaic environment dominated by herbaceous vegetation. The high ground terrestrial plant community was a mild- to cold-temperate forest composed of coniferous and broad leaf trees. The high paleolatitude (about 70?? to 85?? North) implies extreme seasonal variation in solar insolation, temperature, and herbivore food supply. Great distances of migration to contemporaneous evergreen floras and the presence of both juvenile and adult hadrosaurs suggest that they remained at high latitudes year-round. This challenges the hypothesis that short-term periods of darkness and temperature decrease resulting from a bolide impact caused dinosaurian extinction.

  20. Dinosaur Impressions

    Science.gov (United States)

    Taquet, Philippe

    1998-09-01

    Perhaps you are a paleontologist or have always wondered what it is like to be one. Or you are fascinated by fossils and like to read about the origins and natural history of dinosaurs. Or maybe you are an avid traveler and reader of travelogues. If you are any of these things, then this book is for you. Originally published in 1994 in French, Dinosaur Impressions is the engaging account of thirty years of travel and paleontological exploration by Philippe Taquet, one of the world's most noted paleontologists. Dr. Taquet takes the reader on a surprisingly far-flung tour ranging from the Provence countryside to the Niger desert, from the Brazilian bush to the Mongolian Steppes, and from the Laos jungle to the Moroccan mountains in search of dinosaur bones and what they have to tell us about a vanished world. With wry humor and lively anecdotes, Dr. Taquet retraces the history of paleontological research, along the way discussing the latest theories of dinosaur existence and extinction. Elegantly translated by Kevin Padian, Dinosaur Impressions provides a unique, thoughtful perspective not often encountered in American- and English-language works. This insightful, first-hand account of an exceptional career is also a travelogue par excellence that will enthrall enthusiasts and general readers alike. Philippe Taquet is the Director of the National Museum of Natural History in Paris and is a member of the French Academy of Sciences. Kevin Padian is a professor in the Department of Integrative Biology and Curator of the Museum of Paleontology at the University of California, Berkeley. He is also the editor of The Beginning of the Age of Dinosaurs (Cambridge, 1986) and The Encyclopedia of Dinosaurs (1997).

  1. A new troodontid theropod, Talos sampsoni gen. et sp. nov., from the Upper Cretaceous Western Interior Basin of North America.

    Directory of Open Access Journals (Sweden)

    Lindsay E Zanno

    Full Text Available Troodontids are a predominantly small-bodied group of feathered theropod dinosaurs notable for their close evolutionary relationship with Avialae. Despite a diverse Asian representation with remarkable growth in recent years, the North American record of the clade remains poor, with only one controversial species--Troodon formosus--presently known from substantial skeletal remains.Here we report a gracile new troodontid theropod--Talos sampsoni gen. et sp. nov.--from the Upper Cretaceous Kaiparowits Formation, Utah, USA, representing one of the most complete troodontid skeletons described from North America to date. Histological assessment of the holotype specimen indicates that the adult body size of Talos was notably smaller than that of the contemporary genus Troodon. Phylogenetic analysis recovers Talos as a member of a derived, latest Cretaceous subclade, minimally containing Troodon, Saurornithoides, and Zanabazar. MicroCT scans reveal extreme pathological remodeling on pedal phalanx II-1 of the holotype specimen likely resulting from physical trauma and subsequent infectious processes.Talos sampsoni adds to the singularity of the Kaiparowits Formation dinosaur fauna, which is represented by at least 10 previously unrecognized species including the recently named ceratopsids Utahceratops and Kosmoceratops, the hadrosaurine Gryposaurus monumentensis, the tyrannosaurid Teratophoneus, and the oviraptorosaurian Hagryphus. The presence of a distinct troodontid taxon in the Kaiparowits Formation supports the hypothesis that late Campanian dinosaurs of the Western Interior Basin exhibited restricted geographic ranges and suggests that the taxonomic diversity of Late Cretaceous troodontids from North America is currently underestimated. An apparent traumatic injury to the foot of Talos with evidence of subsequent healing sheds new light on the paleobiology of deinonychosaurians by bolstering functional interpretations of prey grappling and

  2. Dinosaur tectonics

    DEFF Research Database (Denmark)

    Graversen, Ole; Milàn, Jesper; B. Loope, David

    2007-01-01

    A dinosaur trackway in the Middle Jurassic eolian Entrada Sandstone of southern Utah, USA, exposes three undertracks that we have modeled as isolated tectonic regimes showing the development of fold-thrust ramp systems induced by the dinosaur's feet. The faulted and folded sequence is comparable...... to crustal scale tectonics associated with plate tectonics and foreland fold-thrust belts. A structural analysis of the dinosaur tracks shows the timing and direction of the forces exercised on the substrate by the animal's foot during the stride. Based on the structural analysis, we establish a scenario...... the back. As the body accelerated, the foot was forced backward. The rotated disc was forced backward along a detachment fault that was bounded by lateral ramps. The interramp segment matches the width of the dinosaur's foot which created an imbricate fan thrust system that extended to the far end...

  3. New basal iguanodonts from the Cedar Mountain formation of Utah and the evolution of thumb-spiked dinosaurs.

    Directory of Open Access Journals (Sweden)

    Andrew T McDonald

    Full Text Available BACKGROUND: Basal iguanodontian dinosaurs were extremely successful animals, found in great abundance and diversity almost worldwide during the Early Cretaceous. In contrast to Europe and Asia, the North American record of Early Cretaceous basal iguanodonts has until recently been limited largely to skulls and skeletons of Tenontosaurus tilletti. METHODOLOGY/PRINCIPAL FINDINGS: Herein we describe two new basal iguanodonts from the Yellow Cat Member of the Cedar Mountain Formation of eastern Utah, each known from a partial skull and skeleton. Iguanacolossus fortis gen. et sp. nov. and Hippodraco scutodens gen. et sp. nov. are each diagnosed by a single autapomorphy and a unique combination of characters. CONCLUSIONS/SIGNIFICANCE: Iguanacolossus and Hippodraco add greatly to our knowledge of North American basal iguanodonts and prompt a new comprehensive phylogenetic analysis of basal iguanodont relationships. This analysis indicates that North American Early Cretaceous basal iguanodonts are more basal than their contemporaries in Europe and Asia.

  4. New Basal Iguanodonts from the Cedar Mountain Formation of Utah and the Evolution of Thumb-Spiked Dinosaurs

    Science.gov (United States)

    McDonald, Andrew T.; Kirkland, James I.; DeBlieux, Donald D.; Madsen, Scott K.; Cavin, Jennifer; Milner, Andrew R. C.; Panzarin, Lukas

    2010-01-01

    Background Basal iguanodontian dinosaurs were extremely successful animals, found in great abundance and diversity almost worldwide during the Early Cretaceous. In contrast to Europe and Asia, the North American record of Early Cretaceous basal iguanodonts has until recently been limited largely to skulls and skeletons of Tenontosaurus tilletti. Methodology/Principal Findings Herein we describe two new basal iguanodonts from the Yellow Cat Member of the Cedar Mountain Formation of eastern Utah, each known from a partial skull and skeleton. Iguanacolossus fortis gen. et sp. nov. and Hippodraco scutodens gen. et sp. nov. are each diagnosed by a single autapomorphy and a unique combination of characters. Conclusions/Significance Iguanacolossus and Hippodraco add greatly to our knowledge of North American basal iguanodonts and prompt a new comprehensive phylogenetic analysis of basal iguanodont relationships. This analysis indicates that North American Early Cretaceous basal iguanodonts are more basal than their contemporaries in Europe and Asia. PMID:21124919

  5. Palaeoenvironmental drivers of vertebrate community composition in the Belly River Group (Campanian) of Alberta, Canada, with implications for dinosaur biogeography.

    Science.gov (United States)

    Cullen, Thomas M; Evans, David C

    2016-11-15

    The Belly River Group of southern Alberta is one of the best-sampled Late Cretaceous terrestrial faunal assemblages in the world. This system provides a high-resolution biostratigraphic record of terrestrial vertebrate diversity and faunal turnover, and it has considerable potential to be a model system for testing hypotheses of dinosaur palaeoecological dynamics, including important aspects of palaeoecommunity structure, trophic interactions, and responses to environmental change. Vertebrate fossil microsites (assemblages of small bones and teeth concentrated together over a relatively short time and thought to be representative of community composition) offer an unparalleled dataset to better test these hypotheses by ameliorating problems of sample size, geography, and chronostratigraphic control that hamper other palaeoecological analyses. Here, we assembled a comprehensive relative abundance dataset of microsites sampled from the entire Belly River Group and performed a series of analyses to test the influence of environmental factors on site and taxon clustering, and assess the stability of faunal assemblages both temporally and spatially. We also test the long-held idea that populations of large dinosaur taxa were particularly sensitive to small-scale environmental gradients, such as the paralic (coastal) to alluvial (inland) regimes present within the time-equivalent depositional basin of the upper Oldman and lower Dinosaur Park Formations. Palaeoenvironment (i.e. reconstructed environmental conditions, related to relative amount of alluvial, fluvial, and coastal influence in associated sedimentary strata) was found to be strongly associated with clustering of sites by relative-abundance faunal assemblages, particularly in relation to changes in faunal assemblage composition and marine-terrestrial environmental transitions. Palaeogeography/palaeolandscape were moderately associated to site relative abundance assemblage clustering, with depositional setting

  6. A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot.

    Science.gov (United States)

    González Riga, Bernardo J; Lamanna, Matthew C; Ortiz David, Leonardo D; Calvo, Jorge O; Coria, Juan P

    2016-01-18

    Titanosauria is an exceptionally diverse, globally-distributed clade of sauropod dinosaurs that includes the largest known land animals. Knowledge of titanosaurian pedal structure is critical to understanding the stance and locomotion of these enormous herbivores and, by extension, gigantic terrestrial vertebrates as a whole. However, completely preserved pedes are extremely rare among Titanosauria, especially as regards the truly giant members of the group. Here we describe Notocolossus gonzalezparejasi gen. et sp. nov. from the Upper Cretaceous of Mendoza Province, Argentina. With a powerfully-constructed humerus 1.76 m in length, Notocolossus is one of the largest known dinosaurs. Furthermore, the complete pes of the new taxon exhibits a strikingly compact, homogeneous metatarsus--seemingly adapted for bearing extraordinary weight--and truncated unguals, morphologies that are otherwise unknown in Sauropoda. The pes underwent a near-progressive reduction in the number of phalanges along the line to derived titanosaurs, eventually resulting in the reduced hind foot of these sauropods.

  7. Dinosaur Extinction, Early Childhood Style

    Science.gov (United States)

    Murray, Mary; Valentine-Anand, Lesley

    2008-01-01

    Do dinosaurs have bellybuttons? This intriguing question launched a journey into inquiry science that captivated a class of four-year-olds for eight months. As students enjoyed dinosaur books, examined dinosaur artifacts, drew pictures, watched videos, and generally immersed themselves in all things dinosaur, the authors built a culture of…

  8. A novel form of postcranial skeletal pneumaticity in a sauropod dinosaur: Implications for the paleobiology of Rebbachisauridae

    Directory of Open Access Journals (Sweden)

    Lucio M. Ibiricu

    2017-06-01

    Full Text Available In dinosaurs and other archosaurs, the presence of foramina connected with internal chambers in axial and appendicular bones is regarded as a robust indicator of postcranial skeletal pneumaticity (PSP. Here we analyze PSP and its paleobiological implications in rebbachisaurid diplodocoid sauropod dinosaurs based primarily on the dorsal vertebrae of Katepensaurus goicoecheai, a rebbachisaurid from the Cenomanian–Turonian (Upper Cretaceous Bajo Barreal Formation of Patagonia, Argentina. We document a complex of interconnected pneumatic foramina and internal chambers within the dorsal vertebral transverse processes of Katepensaurus. Collectively, these structures constitute a form of PSP that has not previously been observed in sauropods, though it is closely comparable to morphologies seen in selected birds and non-avian theropods. Parts of the skeletons of Katepensaurus and other rebbachisaurid taxa such as Amazonsaurus maranhensis and Tataouinea hannibalis exhibit an elevated degree of pneumaticity relative to the conditions in many other sauropods. We interpret this extensive PSP as an adaptation for lowering the density of the skeleton, and tentatively propose that this reduced skeletal density may also have decreased the muscle energy required to move the body and the heat generated in so doing. Given that several rebbachisaurids inhabited tropical to subtropical paleolatitudes during the extreme warmth of the mid-Cretaceous, increased PSP may have better enabled these sauropods to cope with extraordinarily high temperatures. Extensive skeletal pneumaticity may have been an important innovation in Rebbachisauridae, and perhaps also in saltasaurine titanosaurs, which evolved an even greater degree of PSP. This may in turn have contributed to the evolutionary success of rebbachisaurids, which were the only diplodocoids to survive into the Late Cretaceous.

  9. Dinosaur physiology. Evidence for mesothermy in dinosaurs.

    Science.gov (United States)

    Grady, John M; Enquist, Brian J; Dettweiler-Robinson, Eva; Wright, Natalie A; Smith, Felisa A

    2014-06-13

    Were dinosaurs ectotherms or fast-metabolizing endotherms whose activities were unconstrained by temperature? To date, some of the strongest evidence for endothermy comes from the rapid growth rates derived from the analysis of fossil bones. However, these studies are constrained by a lack of comparative data and an appropriate energetic framework. Here we compile data on ontogenetic growth for extant and fossil vertebrates, including all major dinosaur clades. Using a metabolic scaling approach, we find that growth and metabolic rates follow theoretical predictions across clades, although some groups deviate. Moreover, when the effects of size and temperature are considered, dinosaur metabolic rates were intermediate to those of endotherms and ectotherms and closest to those of extant mesotherms. Our results suggest that the modern dichotomy of endothermic versus ectothermic is overly simplistic. Copyright © 2014, American Association for the Advancement of Science.

  10. What's New, Dinosaur?

    Science.gov (United States)

    Prime, Carol Spirkoff; Cox, Judy

    1987-01-01

    Activities and information relating to dinosaurs are presented, including: study of warm- and cold-blooded animals; research about recent dinosaur discoveries; track-making; studying and making fossils; and extinction theories. (CB)

  11. Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds.

    Science.gov (United States)

    Lloyd, G T; Bapst, D W; Friedman, M; Davis, K E

    2016-11-01

    Branch lengths-measured in character changes-are an essential requirement of clock-based divergence estimation, regardless of whether the fossil calibrations used represent nodes or tips. However, a separate set of divergence time approaches are typically used to date palaeontological trees, which may lack such branch lengths. Among these methods, sophisticated probabilistic approaches have recently emerged, in contrast with simpler algorithms relying on minimum node ages. Here, using a novel phylogenetic hypothesis for Mesozoic dinosaurs, we apply two such approaches to estimate divergence times for: (i) Dinosauria, (ii) Avialae (the earliest birds) and (iii) Neornithes (crown birds). We find: (i) the plausibility of a Permian origin for dinosaurs to be dependent on whether Nyasasaurus is the oldest dinosaur, (ii) a Middle to Late Jurassic origin of avian flight regardless of whether Archaeopteryx or Aurornis is considered the first bird and (iii) a Late Cretaceous origin for Neornithes that is broadly congruent with other node- and tip-dating estimates. Demonstrating the feasibility of probabilistic time-scaling further opens up divergence estimation to the rich histories of extinct biodiversity in the fossil record, even in the absence of detailed character data. © 2016 The Authors.

  12. A diplodocid sauropod survivor from the early cretaceous of South America.

    Directory of Open Access Journals (Sweden)

    Pablo A Gallina

    Full Text Available Diplodocids are by far the most emblematic sauropod dinosaurs. They are part of Diplodocoidea, a vast clade whose other members are well-known from Jurassic and Cretaceous strata in Africa, Europe, North and South America. However, Diplodocids were never certainly recognized from the Cretaceous or in any other southern land mass besides Africa. Here we report a new sauropod, Leikupal laticauda gen. et sp. nov., from the early Lower Cretaceous (Bajada Colorada Formation of Neuquén Province, Patagonia, Argentina. This taxon differs from any other sauropod by the presence of anterior caudal transverse process extremely developed with lateroventral expansions reinforced by robust dorsal and ventral bars, very robust centroprezygapophyseal lamina in anterior caudal vertebra and paired pneumatic fossae on the postzygapophyses in anterior-most caudal vertebra. The phylogenetic analyses support its position not only within Diplodocidae but also as a member of Diplodocinae, clustering together with the African form Tornieria, pushing the origin of Diplodocoidea to the Middle Jurassic or even earlier. The new discovery represents the first record of a diplodocid for South America and the stratigraphically youngest record of this clade anywhere.

  13. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs

    Science.gov (United States)

    Cau, Andrea; Beyrand, Vincent; Voeten, Dennis F. A. E.; Fernandez, Vincent; Tafforeau, Paul; Stein, Koen; Barsbold, Rinchen; Tsogtbaatar, Khishigjav; Currie, Philip J.; Godefroit, Pascal

    2017-12-01

    Maniraptora includes birds and their closest relatives among theropod dinosaurs. During the Cretaceous period, several maniraptoran lineages diverged from the ancestral coelurosaurian bauplan and evolved novel ecomorphologies, including active flight, gigantism, cursoriality and herbivory. Propagation X-ray phase-contrast synchrotron microtomography of a well-preserved maniraptoran from Mongolia, still partially embedded in the rock matrix, revealed a mosaic of features, most of them absent among non-avian maniraptorans but shared by reptilian and avian groups with aquatic or semiaquatic ecologies. This new theropod, Halszkaraptor escuilliei gen. et sp. nov., is related to other enigmatic Late Cretaceous maniraptorans from Mongolia in a novel clade at the root of Dromaeosauridae. This lineage adds an amphibious ecomorphology to those evolved by maniraptorans: it acquired a predatory mode that relied mainly on neck hyperelongation for food procurement, it coupled the obligatory bipedalism of theropods with forelimb proportions that may support a swimming function, and it developed postural adaptations convergent with short-tailed birds.

  14. Depositional setting and early diagenesis of the dinosaur eggshell-bearing Aren Fm at Bastus, Late Campanian, south-central Pyrenees

    OpenAIRE

    Díaz Molina, Margarita; Kälin, Otto; Benito Moreno, María Isabel; López Martínez, Nieves; Vicens, Enric

    2007-01-01

    The Late Cretaceous Aren Fm exposed north of Bastus in the Tremp Basin (south-central Pyrenees) preserves an excellent record of dinosaur eggs laid in a marine littoral setting. Different from other cases reported in literature, at the Bastus site the preferential nesting ground was original beach sand. The coastal deposits of Aren Fm can be grouped into four facies assemblages, representing respectively shoreface, beachface, beach ridge plain and backbarrier lagoon environments. Shoreface de...

  15. Earth history. U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction.

    Science.gov (United States)

    Schoene, Blair; Samperton, Kyle M; Eddy, Michael P; Keller, Gerta; Adatte, Thierry; Bowring, Samuel A; Khadri, Syed F R; Gertsch, Brian

    2015-01-09

    The Chicxulub asteroid impact (Mexico) and the eruption of the massive Deccan volcanic province (India) are two proposed causes of the end-Cretaceous mass extinction, which includes the demise of nonavian dinosaurs. Despite widespread acceptance of the impact hypothesis, the lack of a high-resolution eruption timeline for the Deccan basalts has prevented full assessment of their relationship to the mass extinction. Here we apply uranium-lead (U-Pb) zircon geochronology to Deccan rocks and show that the main phase of eruptions initiated ~250,000 years before the Cretaceous-Paleogene boundary and that >1.1 million cubic kilometers of basalt erupted in ~750,000 years. Our results are consistent with the hypothesis that the Deccan Traps contributed to the latest Cretaceous environmental change and biologic turnover that culminated in the marine and terrestrial mass extinctions. Copyright © 2015, American Association for the Advancement of Science.

  16. Evolution of dinosaur epidermal structures.

    Science.gov (United States)

    Barrett, Paul M; Evans, David C; Campione, Nicolás E

    2015-06-01

    Spectacularly preserved non-avian dinosaurs with integumentary filaments/feathers have revolutionized dinosaur studies and fostered the suggestion that the dinosaur common ancestor possessed complex integumentary structures homologous to feathers. This hypothesis has major implications for interpreting dinosaur biology, but has not been tested rigorously. Using a comprehensive database of dinosaur skin traces, we apply maximum-likelihood methods to reconstruct the phylogenetic distribution of epidermal structures and interpret their evolutionary history. Most of these analyses find no compelling evidence for the appearance of protofeathers in the dinosaur common ancestor and scales are usually recovered as the plesiomorphic state, but results are sensitive to the outgroup condition in pterosaurs. Rare occurrences of ornithischian filamentous integument might represent independent acquisitions of novel epidermal structures that are not homologous with theropod feathers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Crocodilian Nest in a Late Cretaceous Sauropod Hatchery from the Type Lameta Ghat Locality, Jabalpur, India.

    Directory of Open Access Journals (Sweden)

    Rahul Srivastava

    Full Text Available The well-known Late Cretaceous Lameta Ghat locality (Jabalpur, India provides a window of opportunity to study a large stable, near shore sandy beach, which was widely used by sauropod dinosaurs as a hatchery. In this paper, we revisit the eggs and eggshell fragments previously assigned to lizards from this locality and reassign them to crocodylomorphs. Several features point to a crocodilian affinity, including a subspherical to ellipsoidal shape, smooth, uneven external surface, discrete trapezoid shaped shell units with wide top and narrow base, basal knobs and wedge shaped crystallites showing typical inverted triangular extinction under crossed nicols. The crocodylomorph eggshell material presented in this paper adds to the skeletal data of these most probably Cretaceous-Eocene dryosaurid crocodiles.

  18. Teeth of embryonic or hatchling sauropods from the Berriasian (Early Cretaceous of Cherves-de-Cognac, France

    Directory of Open Access Journals (Sweden)

    Paul M. Barrett

    2016-08-01

    Full Text Available The Cherves-de-Cognac site (Charente, France has yielded a diverse continental microvertebrate fauna of Berriasian (earliest Cretaceous age. Dinosaur remains are rare, but include three teeth that are referrable to an indeterminate sauropod, which might represent either a titanosauriform, a non-titanosauriform macronarian or a non-neosauropod. The small size of these teeth (with a maximum length of 3 mm, as preserved and the almost complete absence of emanel wrinkling suggests that they pertained to embryonic or hatchling individuals. The Cherves-de-Cognac sauropod represents a rare occurrence of sauropod embryos/hatchlings, a new sauropod record from the poorly-known terrestrial Berriasian and another possible instance of the persistence of non-diplodocoid, non-titanosauriform sauropods into the Cretaceous.

  19. Polar and K/Pg nonavian dinosaurs were low-metabolic rate reptiles vulnerable to cold-induced extinction, rather than more survivable tachyenergetic bird relatives: comment on an obsolete hypothesis

    Science.gov (United States)

    Paul, Gregory

    2017-06-01

    The great majority of researchers concur that the presence of dinosaurs near the poles of their time are part of a large body of evidence that all Cretaceous dinosaurs had elevated metabolic rates more like their avian subbranch and mammals than low-energy reptiles. Yet a few still propose that nonavian dinosaurs were bradyenergetic ectothermic reptiles, and migrated away from the polar winters. The latter is not biologically possible because land animals cannot and never undertake very long seasonal migrations because the cost of ground locomotion is too high even for long limbed, tachyenergetic mammals to do so, much less low-energy reptiles. Nor was it geographically possible because marine barriers barred some polar dinosaurs from moving towards the winter sun. The presence of external insulation on some dinosaurs both strongly supports their being tachyenergetic endotherms and helps explain their ability to survive polar winters that included extended dark, chilling rains, sharp frosts, and blizzards so antagonistic to reptiles that the latter are absent from some locations that preserve dinosaurs including birds and mammals. The hypothesis that nonavian dinosaurs failed to survive the K/Pg crisis because they had reptilian energetics is illogical not only because they did not have such metabolisms, but because many low-energy reptiles did survive the crisis. The global super chill that apparently plagued K/Pg dinosaurs should have seriously impacted dinosaurs at all latitudes, but does not entirely readily explain their loss because some avian dinosaurs and other land tetrapods did survive. High- as well as low-latitude dinosaurs add to the growing evidence that high-energy endothermy has been a common adaptation in a wide variety of vertebrates and flying insects since the late Paleozoic.

  20. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model.

    Science.gov (United States)

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-04-05

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543-2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic-Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. © 2016 The Authors.

  1. On a dinosaur axis from one of the oldest dinosaur-bearing sites worldwide

    Directory of Open Access Journals (Sweden)

    Rodrigo T. Müller

    2017-09-01

    Full Text Available The axial skeleton is proportionally underrepresented in the fossil record of early dinosaurs, when compared to other skeletal parts (e.g., pelvic girdle and hindlimb. For instance, the axis is poorly known in early dinosaurs, which precludes a better understanding of this important anatomical structure. Therefore, the present contribution fills an important gap with a description of the axis of a new early dinosaur (CAPPA/UFSM 0179. The specimen was collected at the Buriol outcrop, a Triassic fossiliferous locality from southern Brazil (Candelária Sequence, Santa Maria Supersequence biostratigraphically correlated to Carnian units, placing this specimen among the oldest dinosaurs worldwide. Notable features include the combination of a neural spine that bears an almost straight dorsal margin along its length and presence of an epipophysis. This axis arrangement is unique among Carnian dinosaurs, representing a new morphotype, though a similar morphology is observed in some early theropods. Indeed, a phylogenetic analysis nested the specimen within Theropoda. However, this outcome is probably biased by the large amount of missing data in CAPPA/UFSM 0179 and also due to the limited sampling of the axis in early dinosaurs, particularly among sauropodomorphs. As the specimen comes from the site that includes Buriolestes schultzi (an early sauropodomorph, it is quite plausible that CAPPA/UFSM 0179 might be referable to that taxon. If so, the specimen improves the anatomical knowledge of Buriolestes schultzi, given its axis is yet unknown. An alternative possibility to be considered is that the specimen would belong to a dinosaur not yet known in the Candelária Sequence, which would increase its dinosaur diversity for the outcrop, improving the Triassic dinosaurian record from Southern Brazil.

  2. Dinosaur incubation periods directly determined from growth-line counts in embryonic teeth show reptilian-grade development.

    Science.gov (United States)

    Erickson, Gregory M; Zelenitsky, Darla K; Kay, David Ian; Norell, Mark A

    2017-01-17

    Birds stand out from other egg-laying amniotes by producing relatively small numbers of large eggs with very short incubation periods (average 11-85 d). This aspect promotes high survivorship by limiting exposure to predation and environmental perturbation, allows for larger more fit young, and facilitates rapid attainment of adult size. Birds are living dinosaurs; their rapid development has been considered to reflect the primitive dinosaurian condition. Here, nonavian dinosaurian incubation periods in both small and large ornithischian taxa are empirically determined through growth-line counts in embryonic teeth. Our results show unexpectedly slow incubation (2.8 and 5.8 mo) like those of outgroup reptiles. Developmental and physiological constraints would have rendered tooth formation and incubation inherently slow in other dinosaur lineages and basal birds. The capacity to determine incubation periods in extinct egg-laying amniotes has implications for dinosaurian embryology, life history strategies, and survivorship across the Cretaceous-Paleogene mass extinction event.

  3. Theropod Fauna from Southern Australia Indicates High Polar Diversity and Climate-Driven Dinosaur Provinciality

    Science.gov (United States)

    Benson, Roger B. J.; Rich, Thomas H.; Vickers-Rich, Patricia; Hall, Mike

    2012-01-01

    The Early Cretaceous fauna of Victoria, Australia, provides unique data on the composition of high latitude southern hemisphere dinosaurs. We describe and review theropod dinosaur postcranial remains from the Aptian–Albian Otway and Strzelecki groups, based on at least 37 isolated bones, and more than 90 teeth from the Flat Rocks locality. Several specimens of medium- and large-bodied individuals (estimated up to ∼8.5 metres long) represent allosauroids. Tyrannosauroids are represented by elements indicating medium body sizes (∼3 metres long), likely including the holotype femur of Timimus hermani, and a single cervical vertebra represents a juvenile spinosaurid. Single specimens representing medium- and small-bodied theropods may be referrable to Ceratosauria, Ornithomimosauria, a basal coelurosaur, and at least three taxa within Maniraptora. Thus, nine theropod taxa may have been present. Alternatively, four distinct dorsal vertebrae indicate a minimum of four taxa. However, because most taxa are known from single bones, it is likely that small-bodied theropod diversity remains underestimated. The high abundance of allosauroids and basal coelurosaurs (including tyrannosauroids and possibly ornithomimosaurs), and the relative rarity of ceratosaurs, is strikingly dissimilar to penecontemporaneous dinosaur faunas of Africa and South America, which represent an arid, lower-latitude biome. Similarities between dinosaur faunas of Victoria and the northern continents concern the proportional representatation of higher clades, and may result from the prevailing temperate–polar climate of Australia, especially at high latitudes in Victoria, which is similar to the predominant warm–temperate climate of Laurasia, but distinct from the arid climate zone that covered extensive areas of Gondwana. Most dinosaur groups probably attained a near-cosmopolitan distribution in the Jurassic, prior to fragmentation of the Pangaean supercontinent, and some aspects of the

  4. The first reported ceratopsid dinosaur from eastern North America (Owl Creek Formation, Upper Cretaceous, Mississippi, USA

    Directory of Open Access Journals (Sweden)

    Andrew A. Farke

    2017-05-01

    Full Text Available Ceratopsids (“horned dinosaurs” are known from western North America and Asia, a distribution reflecting an inferred subaerial link between the two landmasses during the Late Cretaceous. However, this clade was previously unknown from eastern North America, presumably due to limited outcrop of the appropriate age and depositional environment as well as the separation of eastern and western North America by the Western Interior Seaway during much of the Late Cretaceous. A dentary tooth from the Owl Creek Formation (late Maastrichtian of Union County, Mississippi, represents the first reported occurrence of Ceratopsidae from eastern North America. This tooth shows a combination of features typical of Ceratopsidae, including a double root and a prominent, blade-like carina. Based on the age of the fossil, we hypothesize that it is consistent with a dispersal of ceratopsids into eastern North America during the very latest Cretaceous, presumably after the two halves of North America were reunited following the retreat of the Western Interior Seaway.

  5. A large Cretaceous theropod from Patagonia, Argentina, and the evolution of carcharodontosaurids

    Science.gov (United States)

    Novas, Fernando E.; Valais, Silvina; Vickers-Rich, Pat; Rich, Tom

    2005-05-01

    The Cretaceous Carcharodontosauridae is the latest clade of carnosaurs, including the largest predatory dinosaurs yet recorded. Albeit spectacular for their size, the skeletal anatomy of these theropods remains poorly-known, and their diversity was until recently restricted to two Cenomanian species: the highly derived Giganotosaurus carolinii, from southern South America, and the incompletely known Carcharodontosaurus saharicus, from northern Africa. Here we describe an older and basal member of the group, Tyrannotitan chubutensis gen. et sp. nov., from Aptian strata of Patagonia, Argentina. The new taxon gives new insights into the systematics and evolution of carcharodontosaurids and offers a better understanding of the evolution of Southern theropod faunas. We suggest that carcharodontosaurids radiated in Gondwana sharing with spinosaurids the role of top-predators until their extinction in Cenomanian Turonian times. During this interval, the diplodocoid sauropods and giant titanosaurians went extinct (probably as part of a global-scale crisis), and the smaller abelisaurid theropods took dominance, reigning until the end of the Cretaceous. Electronic Supplementary Material is available.

  6. A Child Centered Approach to Dinosaurs.

    Science.gov (United States)

    Strader, William H.; Rinker, Catherine A.

    1989-01-01

    Describes a curriculum for teaching young children about dinosaurs. Activity topics included Diplodocus eggs, sorting dinosaurs, creating terrariums, and extinction. Describes the incorporation of dinosaur activities into other subject areas and resource materials. (RJC)

  7. Brushing up on Dinosaurs.

    Science.gov (United States)

    Weisburd, Stefi

    1986-01-01

    Describes new methods of reconstruction of dinosaurs using skeletons, mummified skin, and muscle scars, along with clay and paint. Examines some inaccuracies in dinosaur's physical characteristics and behaviors suggested by recent findings. (TW)

  8. Dynamics of dental evolution in ornithopod dinosaurs

    Science.gov (United States)

    Strickson, Edward; Prieto-Márquez, Albert; Benton, Michael J.; Stubbs, Thomas L.

    2016-07-01

    Ornithopods were key herbivorous dinosaurs in Mesozoic terrestrial ecosystems, with a variety of tooth morphologies. Several clades, especially the ‘duck-billed’ hadrosaurids, became hugely diverse and abundant almost worldwide. Yet their evolutionary dynamics have been disputed, particularly whether they diversified in response to events in plant evolution. Here we focus on their remarkable dietary adaptations, using tooth and jaw characters to examine changes in dental disparity and evolutionary rate. Ornithopods explored different areas of dental morphospace throughout their evolution, showing a long-term expansion. There were four major evolutionary rate increases, the first among basal iguanodontians in the Middle-Late Jurassic, and the three others among the Hadrosauridae, above and below the split of their two major clades, in the middle of the Late Cretaceous. These evolutionary bursts do not correspond to times of plant diversification, including the radiation of the flowering plants, and suggest that dental innovation rather than coevolution with major plant clades was a major driver in ornithopod evolution.

  9. Dinosaur fossils predict body temperatures.

    Directory of Open Access Journals (Sweden)

    James F Gillooly

    2006-07-01

    Full Text Available Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 degrees C at 12 kg to approximately 41 degrees C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy.

  10. Osteology of the dorsal vertebrae of the giant titanosaurian sauropod dinosaur Dreadnoughtus schrani from the Late Cretaceous of Argentina

    Directory of Open Access Journals (Sweden)

    Kristyn K. Voegele

    2017-11-01

    Full Text Available Many titanosaurian dinosaurs are known only from fragmentary remains, making comparisons between taxa difficult because they often lack overlapping skeletal elements. This problem is particularly pronounced for the exceptionally large-bodied members of this sauropod clade. Dreadnoughtus schrani is a well-preserved giant titanosaurian from the Upper Cretaceous (Campanian–Maastrichtian Cerro Fortaleza Formation of southern Patagonia, Argentina. Numerous skeletal elements are known for Dreadnoughtus, including seven nearly complete dorsal vertebrae and a partial dorsal neural arch that collectively represent most of the dorsal sequence. Here we build on our previous preliminary description of these skeletal elements by providing a detailed assessment of their serial positional assignments, as well as comparisons of the dorsal vertebrae of Dreadnoughtus with those of other exceptionally large-bodied titanosaurians. Although the dorsal elements of Dreadnoughtus probably belong to two individuals, they exhibit substantial morphological variation that suggests that there is minimal, if any, positional overlap among them. Dreadnoughtus therefore preserves the second-most complete dorsal vertebral series known for a giant titanosaurian that has been described in detail, behind only that of Futalognkosaurus. The dorsal sequence of Dreadnoughtus provides valuable insight into serial variation along the vertebral column of these enormous sauropods. Such variation includes the variable presence of divided spinodiapophyseal laminae and associated spinodiapophyseal fossae. Given that dorsal vertebrae are the only elements that overlap between known remains of most giant titanosaurian taxa, the dorsal series of Dreadnoughtus provides a means to directly compare the morphologies of these sauropods. The dorsal vertebrae of Dreadnoughtus and Futalognkosaurus have dorsoventrally narrow transverse processes, unlike the condition in Puertasaurus. Further

  11. InGen Inconsistencies: The "Dinosaurs" Of Jurassic Park May Not Be What The Corporation Claims

    Science.gov (United States)

    Haupt, R. J.; Traer, M. M.

    2017-12-01

    InGen has made and continues to make dubious claims about proprietary technology developed to clone non-avian dinosaurs for exhibition within their "Jurassic Park." Notably, there are several inconsistencies between their claims for how their technology works and what has been observed within the park. Here we investigate several of these inconsistencies in the hopes that it will push for increased transparency between corporations and academia. First, we highlight a disconnect between supposedly Jurassic amber used for dinosaur DNA extraction and the overwhelming presence of Late Cretaceous dinosaurs within the park. Further, InGen's mining operations only publicly operate in Jurassic-aged formations of the Dominican Republic, which clashes with the presence of Velociraptor and Gallimimus, known only from Mongolia. Second, the park contains seemingly full-grown adult specimens despite InGen's claims that they first successfully cloned a prehistoric animal in 1984, though there is no publicly available information as to what animal this was. That the park was nearly ready to open by 1993 precludes the presence of fully mature dinosaurs and suggests that InGen might be misrepresenting their technologies. Third, we must point out that fossil DNA denatures to the point of uselessness within thousands, not millions, of years. Additionally, the use of anuran DNA to fill in gaps from fossil dinosaurian DNA is a dubious choice given that more closely related organisms are available. Either there is an unexplained reason for this choice, or little attention has been paid to dinosaurian phylogeny by InGen geneticists. Finally, rumors of a secret InGen project to produce a dinosaur not currently known to paleontologists suggests one of two things: they were able to find DNA from a dinosaur previously unknown in the fossil record, which is highly plausible if their techniques are valid, or that InGen is able to artificially manipulate DNA to a degree far beyond what other

  12. A new hypothesis of dinosaur relationships and early dinosaur evolution.

    Science.gov (United States)

    Baron, Matthew G; Norman, David B; Barrett, Paul M

    2017-03-22

    For 130 years, dinosaurs have been divided into two distinct clades-Ornithischia and Saurischia. Here we present a hypothesis for the phylogenetic relationships of the major dinosaurian groups that challenges the current consensus concerning early dinosaur evolution and highlights problematic aspects of current cladistic definitions. Our study has found a sister-group relationship between Ornithischia and Theropoda (united in the new clade Ornithoscelida), with Sauropodomorpha and Herrerasauridae (as the redefined Saurischia) forming its monophyletic outgroup. This new tree topology requires redefinition and rediagnosis of Dinosauria and the subsidiary dinosaurian clades. In addition, it forces re-evaluations of early dinosaur cladogenesis and character evolution, suggests that hypercarnivory was acquired independently in herrerasaurids and theropods, and offers an explanation for many of the anatomical features previously regarded as notable convergences between theropods and early ornithischians.

  13. The Evolution and Extinction of the Dinosaurs

    Science.gov (United States)

    Fastovsky, David E.; Weishampel, David B.

    2005-02-01

    Written for non-specialists, this detailed survey of dinosaur origins, diversity, and extinction is designed as a series of successive essays covering important and timely topics in dinosaur paleobiology, such as "warm-bloodedness," birds as living dinosaurs, the new, non-flying feathered dinosaurs, dinosaur functional morphology, and cladistic methods in systematics. Its explicitly phylogenetic approach to the group is that taken by dinosaur specialists. The book is not an edited compilation of the works of many individuals, but a unique, cohesive perspective on Dinosauria. Lavishly illustrated with hundreds of new, specially commissioned illustrations by John Sibbick, world-famous illustrator of dinosaurs, the volume includes multi-page drawings as well as sketches and diagrams. First edition Hb (1996): 0-521-44496-9 David E. Fastovsky is Professor of Geosciences at the University of Rhode Island. Fastovsky, the author of numerous scientific publications dealing with Mesozoic vertebrate faunas and their ancient environments, is also scientific co-Editor of Geology. He has undertaken extensive fieldwork studying dinosaurs and their environments in Montana, North Dakota, Arizona, Mexico, and Mongolia. David B. Weishampel is a professor at the Center for Functional Anatomy and Evolution at Johns Hopkins University, School of Medicine. Weishampel is best known for discovering, researching, and naming several rare European dinosaur species. During the 1980s Weishampel gained fame for his work with American paleontologist Jack Horner and later named the famous plant-eating, egg-laying Orodromeus, Horner. Now, a decade after his pioneering studies with Horner, Weishampel is most widely known for his current work on the Romanian dinosaur fauna. He is the author and co-author of many titles, including The Dinosaur Papers, 1676-1906 (Norton, 2003); The Dinosauria, (University of California, 1990); and Dinosaurs of the East Coast, (Johns Hopkins University Press, 1996).

  14. Dinosaur Reproduction and Parenting

    Science.gov (United States)

    Horner, John R.

    Non-avian dinosaur reproductive and parenting behaviors were mostly similar to those of extant archosaurs. Non-avian dinosaurs were probably sexually dimorphic and some may have engaged in hierarchical rituals. Non-avian coelurosaurs (e.g. Troodontidae, Oviraptorosauria) had two active oviducts, each of which produced single eggs on a daily or greater time scale. The eggs of non-coelurosaurian dinosaurs (e.g. Ornithischia, Sauropoda) were incubated in soils, whereas the eggs of non-avian coelurosaurs (e.g. Troodon, Oviraptor) were incubated with a combination of soil and direct parental contact. Parental attention to the young was variable, ranging from protection from predators to possible parental feeding of nest-bound hatchlings. Semi-altricial hadrosaur hatchlings exited their respective nests near the time of their first linear doubling. Some reproductive behaviors, once thought exclusive to Aves, arose first in non-avian dinosaurs. The success of the Dinosauria may be related to reproductive strategies.

  15. Simulating Dinosaur Digestion in the Classroom.

    Science.gov (United States)

    Peczkis, Jan

    1992-01-01

    Describes an activity for use with a chapter on dinosaurs, prehistoric life, or digestion in which children make simulated dinosaur stomachs to gain hands-on experience about the theory of gastroliths, or stomach stones. Presents teacher information about the digestive processes in birds and dinosaurs. Discusses materials needed, objectives,…

  16. A new horned dinosaur reveals convergent evolution in cranial ornamentation in Ceratopsidae.

    Science.gov (United States)

    Brown, Caleb M; Henderson, Donald M

    2015-06-15

    Ceratopsid (horned) dinosaurs are an iconic group of large-bodied, quadrupedal, herbivorous dinosaurs that evolved in the Late Cretaceous and were largely restricted to western North America [1-5]. Ceratopsids are easily recognized by their cranial ornamentation in the form of nasal and postorbital horns and frill (capped by epiossifications); these structures show high morphological disparity and also represent the largest cranial display structures known to have evolved [2, 4]. Despite their restricted occurrence in time and space, this group has one of the best fossil records within Dinosauria, showing a rapid diversification in horn and frill morphology [1]. Here a new genus and species of chasmosaurine ceratopsid is described based on a nearly complete and three-dimensionally preserved cranium recovered from the uppermost St. Mary River Formation (Maastrichtian) of southwestern Alberta. Regaliceratops peterhewsi gen. et sp. nov. exhibits many unique characters of the frill and is characterized by a large nasal horncore, small postorbital horncores, and massive parietal epiossifications. Cranial morphology, particularly the epiossifications, suggests close affinity with the late Campanian/early Maastrichian taxon Anchiceratops, as well as with the late Maastrichtian taxon Triceratops. A median epiparietal necessitates a reassessment of epiossification homology and results in a more resolved phylogeny. Most surprisingly, Regaliceratops exhibits a suite of cranial ornamentations that are superficially similar to Campanian centrosaurines, indicating both exploration of novel display morphospace in Chasmosaurinae, especially Maastrichtian forms, and convergent evolution in horn morphology with the recently extinct Centrosaurinae. This marks the first time that evolutionary convergence in horn-like display structures has been demonstrated between dinosaur clades, similar to those seen in fossil and extant mammals [6]. Copyright © 2015 Elsevier Ltd. All rights

  17. Geochemical and mineralogical studies of dinosaur bone from the Morrison Formation at Dinosaur Ridge

    Science.gov (United States)

    Modreski, P.J.

    2001-01-01

    The dinosaur bones first discovered in 1877 in the Upper Jurassic Morrison Formation at Morrison, Colorado were the first major find of dinosaur skeletons in the western U.S. and led to the recognition of four new dinosaur genera (Apatosaurus, Allosaurus, Diplodocus, and Stegosaurus). Eight articles dealing with these bones which appeared as research reports in the annual reports of the Friends of Dinosaur Ridge from 1990-1999 are condensed and summarized with some additional comments. Two of the articles are about the mineralogy and preservation of the bones; two are about the physical description of the bone occurrence; two are about the history of the site, and two are about use of novel instrumental methods (ground-penetrating radar and a directional scintillometer) to search for new bones.

  18. Metabolism of dinosaurs as determined from their growth

    Science.gov (United States)

    Lee, Scott A.

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  19. Metabolism of dinosaurs as determined from their growth.

    Science.gov (United States)

    Lee, Scott A

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  20. Dinosaurs of India: Dead but Alive

    Indian Academy of Sciences (India)

    Table of contents. Dinosaurs of India: Dead but Alive · Fossils · Evolution and O2 PAL · The Science in Dinosaurs · Origin/ Extinction of Dinosaurs · PowerPoint Presentation · India –94my + 50my · Icehouse /Greenhouse through time · Global Mean Annual Temperature Distributions at 100 my · Global Mean Annual ...

  1. Dinosaurs in the year of Darwin.

    Science.gov (United States)

    Dodson, Peter

    2009-09-01

    This special issue of The Anatomical Record explores the recent advances in the functional morphology and paleobiology of dinosaurs. Although Darwin did not study dinosaurs because paleontology was in its infancy a century and half ago, he considered both paleontology and anatomy as essential subjects for establishing the validity of evolution. The study of dinosaurs constitutes a vigorous subdiscipline within vertebrate paleontology, and anatomists and evolutionary functional morphologists constitute an especially creative subgroup within dinosaur paleontology. The collection of 17 papers presented in this issue encompass cranial anatomy, postcranial anatomy, and paleobiology of dinosaurs and other archosaurs. Soft tissue subjects include studies of brain structure, jaw adductor muscles, and keratinous appendages of the skull. Taxonomically, it includes four papers with a focus on theropods, including Tyrannosaurus, five papers dealing with ceratopsians, three papers on hadrosaurs, and one on ankylosaurs. Modern anatomical techniques such as CT scanning, finite element analysis, and high resolution histology are emphasized. The visual presentation of results of these studies is spectacular. Results include the first-ever life history table of a plant-eating dinosaur; a determination of the head orientation of Tyrannosaurus and its relatives based on interpretation of the semicircular canals. The claws of Velociraptor appear to best adapted for tree climbing, but not for horrific predatory activities. Pachyrhinosaurus evidently used its massive head for head butting. The tail club of the armored dinosaur Euoplocephalus had the structural integrity to be used as a weapon. The pages abound with insights such as these. Dinosaurs once dead for millions of years live again! (c) 2009 Wiley-Liss, Inc.

  2. Body size distribution of the dinosaurs.

    Directory of Open Access Journals (Sweden)

    Eoin J O'Gorman

    Full Text Available The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  3. Body size distribution of the dinosaurs.

    Science.gov (United States)

    O'Gorman, Eoin J; Hone, David W E

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  4. Body Size Distribution of the Dinosaurs

    Science.gov (United States)

    O’Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818

  5. Multivariate analyses of small theropod dinosaur teeth and implications for paleoecological turnover through time.

    Directory of Open Access Journals (Sweden)

    Derek W Larson

    Full Text Available Isolated small theropod teeth are abundant in vertebrate microfossil assemblages, and are frequently used in studies of species diversity in ancient ecosystems. However, determining the taxonomic affinities of these teeth is problematic due to an absence of associated diagnostic skeletal material. Species such as Dromaeosaurus albertensis, Richardoestesia gilmorei, and Saurornitholestes langstoni are known from skeletal remains that have been recovered exclusively from the Dinosaur Park Formation (Campanian. It is therefore likely that teeth from different formations widely disparate in age or geographic position are not referable to these species. Tooth taxa without any associated skeletal material, such as Paronychodon lacustris and Richardoestesia isosceles, have also been identified from multiple localities of disparate ages throughout the Late Cretaceous. To address this problem, a dataset of measurements of 1183 small theropod teeth (the most specimen-rich theropod tooth dataset ever constructed from North America ranging in age from Santonian through Maastrichtian were analyzed using multivariate statistical methods: canonical variate analysis, pairwise discriminant function analysis, and multivariate analysis of variance. The results indicate that teeth referred to the same taxon from different formations are often quantitatively distinct. In contrast, isolated teeth found in time equivalent formations are not quantitatively distinguishable from each other. These results support the hypothesis that small theropod taxa, like other dinosaurs in the Late Cretaceous, tend to be exclusive to discrete host formations. The methods outlined have great potential for future studies of isolated teeth worldwide, and may be the most useful non-destructive technique known of extracting the most data possible from isolated and fragmentary specimens. The ability to accurately assess species diversity and turnover through time based on isolated teeth

  6. Multivariate Analyses of Small Theropod Dinosaur Teeth and Implications for Paleoecological Turnover through Time

    Science.gov (United States)

    Larson, Derek W.; Currie, Philip J.

    2013-01-01

    Isolated small theropod teeth are abundant in vertebrate microfossil assemblages, and are frequently used in studies of species diversity in ancient ecosystems. However, determining the taxonomic affinities of these teeth is problematic due to an absence of associated diagnostic skeletal material. Species such as Dromaeosaurus albertensis, Richardoestesia gilmorei, and Saurornitholestes langstoni are known from skeletal remains that have been recovered exclusively from the Dinosaur Park Formation (Campanian). It is therefore likely that teeth from different formations widely disparate in age or geographic position are not referable to these species. Tooth taxa without any associated skeletal material, such as Paronychodon lacustris and Richardoestesia isosceles, have also been identified from multiple localities of disparate ages throughout the Late Cretaceous. To address this problem, a dataset of measurements of 1183 small theropod teeth (the most specimen-rich theropod tooth dataset ever constructed) from North America ranging in age from Santonian through Maastrichtian were analyzed using multivariate statistical methods: canonical variate analysis, pairwise discriminant function analysis, and multivariate analysis of variance. The results indicate that teeth referred to the same taxon from different formations are often quantitatively distinct. In contrast, isolated teeth found in time equivalent formations are not quantitatively distinguishable from each other. These results support the hypothesis that small theropod taxa, like other dinosaurs in the Late Cretaceous, tend to be exclusive to discrete host formations. The methods outlined have great potential for future studies of isolated teeth worldwide, and may be the most useful non-destructive technique known of extracting the most data possible from isolated and fragmentary specimens. The ability to accurately assess species diversity and turnover through time based on isolated teeth will help illuminate

  7. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis.

    Science.gov (United States)

    Pan, Yanhong; Zheng, Wenxia; Moyer, Alison E; O'Connor, Jingmai K; Wang, Min; Zheng, Xiaoting; Wang, Xiaoli; Schroeter, Elena R; Zhou, Zhonghe; Schweitzer, Mary H

    2016-12-06

    Microbodies associated with feathers of both nonavian dinosaurs and early birds were first identified as bacteria but have been reinterpreted as melanosomes. Whereas melanosomes in modern feathers are always surrounded by and embedded in keratin, melanosomes embedded in keratin in fossils has not been demonstrated. Here we provide multiple independent molecular analyses of both microbodies and the associated matrix recovered from feathers of a new specimen of the basal bird Eoconfuciusornis from the Early Cretaceous Jehol Biota of China. Our work represents the oldest ultrastructural and immunological recognition of avian beta-keratin from an Early Cretaceous (∼130-Ma) bird. We apply immunogold to identify protein epitopes at high resolution, by localizing antibody-antigen complexes to specific fossil ultrastructures. Retention of original keratinous proteins in the matrix surrounding electron-opaque microbodies supports their assignment as melanosomes and adds to the criteria employable to distinguish melanosomes from microbial bodies. Our work sheds new light on molecular preservation within normally labile tissues preserved in fossils.

  8. The precise temporal calibration of dinosaur origins.

    Science.gov (United States)

    Marsicano, Claudia A; Irmis, Randall B; Mancuso, Adriana C; Mundil, Roland; Chemale, Farid

    2016-01-19

    Dinosaurs have been major components of ecosystems for over 200 million years. Although different macroevolutionary scenarios exist to explain the Triassic origin and subsequent rise to dominance of dinosaurs and their closest relatives (dinosauromorphs), all lack critical support from a precise biostratigraphically independent temporal framework. The absence of robust geochronologic age control for comparing alternative scenarios makes it impossible to determine if observed faunal differences vary across time, space, or a combination of both. To better constrain the origin of dinosaurs, we produced radioisotopic ages for the Argentinian Chañares Formation, which preserves a quintessential assemblage of dinosaurian precursors (early dinosauromorphs) just before the first dinosaurs. Our new high-precision chemical abrasion thermal ionization mass spectrometry (CA-TIMS) U-Pb zircon ages reveal that the assemblage is early Carnian (early Late Triassic), 5- to 10-Ma younger than previously thought. Combined with other geochronologic data from the same basin, we constrain the rate of dinosaur origins, demonstrating their relatively rapid origin in a less than 5-Ma interval, thus halving the temporal gap between assemblages containing only dinosaur precursors and those with early dinosaurs. After their origin, dinosaurs only gradually dominated mid- to high-latitude terrestrial ecosystems millions of years later, closer to the Triassic-Jurassic boundary.

  9. Biomechanical evidence suggests extensive eggshell thinning during incubation in the Sanagasta titanosaur dinosaurs

    Directory of Open Access Journals (Sweden)

    E. Martín Hechenleitner

    2018-06-01

    Full Text Available The reproduction of titanosaur dinosaurs is still a complex and debated topic. Their Late Cretaceous nesting sites are distributed worldwide and their eggs display substantial morphological variations according to the parent species. In contrast to the typical 1.3–2.0 mm thick shells common to eggs of most titanosaur species (e.g., those that nested in Auca Mahuevo, Tama, Toteşti or Boseong, the Cretaceous Sanagasta eggs of Argentina display an unusual shell thickness of up to 7.9 mm. Their oviposition was synchronous with a palaeogeothermal process, leading to the hypothesis that their extra thick eggshell was an adaptation to this particular nesting environment. Although this hypothesis has already been supported indirectly through several investigations, the mechanical implications of developing such thick shells and how this might have affected the success of hatching remains untested. Finite element analyses estimate that the breaking point of the thick-shelled Sanagasta eggs is 14–45 times higher than for other smaller and equally sized titanosaur eggs. The considerable energetic disadvantage for piping through these thick eggshells suggests that their dissolution during incubation would have been paramount for a successful hatching.

  10. Avian-like breathing mechanics in maniraptoran dinosaurs

    Science.gov (United States)

    Codd, Jonathan R; Manning, Phillip L; Norell, Mark A; Perry, Steven F

    2007-01-01

    In 1868 Thomas Huxley first proposed that dinosaurs were the direct ancestors of birds and subsequent analyses have identified a suite of ‘avian’ characteristics in theropod dinosaurs. Ossified uncinate processes are found in most species of extant birds and also occur in extinct non-avian maniraptoran dinosaurs. Their presence in these dinosaurs represents another morphological character linking them to Aves, and further supports the presence of an avian-like air-sac respiratory system in theropod dinosaurs, prior to the evolution of flight. Here we report a phylogenetic analysis of the presence of uncinate processes in Aves and non-avian maniraptoran dinosaurs indicating that these were homologous structures. Furthermore, recent work on Canada geese has demonstrated that uncinate processes are integral to the mechanics of avian ventilation, facilitating both inspiration and expiration. In extant birds, uncinate processes function to increase the mechanical advantage for movements of the ribs and sternum during respiration. Our study presents a mechanism whereby uncinate processes, in conjunction with lateral and ventral movements of the sternum and gastral basket, affected avian-like breathing mechanics in extinct non-avian maniraptoran dinosaurs. PMID:17986432

  11. Dinosaur biomechanics

    Science.gov (United States)

    Alexander, R. McNeill

    2006-01-01

    Biomechanics has made large contributions to dinosaur biology. It has enabled us to estimate both the speeds at which dinosaurs generally moved and the maximum speeds of which they may have been capable. It has told us about the range of postures they could have adopted, for locomotion and for feeding, and about the problems of blood circulation in sauropods with very long necks. It has made it possible to calculate the bite forces of predators such as Tyrannosaurus, and the stresses they imposed on its skull; and to work out the remarkable chewing mechanism of hadrosaurs. It has shown us how some dinosaurs may have produced sounds. It has enabled us to estimate the effectiveness of weapons such as the tail spines of Stegosaurus. In recent years, techniques such as computational tomography and finite element analysis, and advances in computer modelling, have brought new opportunities. Biomechanists should, however, be especially cautious in their work on animals known only as fossils. The lack of living specimens and even soft tissues oblige us to make many assumptions. It is important to be aware of the often wide ranges of uncertainty that result. PMID:16822743

  12. A dark day for dinosaurs

    Science.gov (United States)

    Edwards, Pete

    2015-11-01

    On average, 91 people are killed by asteroids each year. In her book Dark Matter and the Dinosaurs, theoretical physicist Lisa Randall focuses on a novel question: how did a dinosaur-killing asteroid end up on its collision course with Earth in the first place?

  13. The Development of a Virtual Dinosaur Museum

    Science.gov (United States)

    Tarng, Wernhuar; Liou, Hsin-Hun

    2007-01-01

    The objective of this article is to study the network and virtual reality technologies for developing a virtual dinosaur museum, which provides a Web-learning environment for students of all ages and the general public to know more about dinosaurs. We first investigate the method for building the 3D dynamic models of dinosaurs, and then describe…

  14. Biology of the sauropod dinosaurs: the evolution of gigantism

    Science.gov (United States)

    Sander, P Martin; Christian, Andreas; Clauss, Marcus; Fechner, Regina; Gee, Carole T; Griebeler, Eva-Maria; Gunga, Hanns-Christian; Hummel, Jürgen; Mallison, Heinrich; Perry, Steven F; Preuschoft, Holger; Rauhut, Oliver W M; Remes, Kristian; Tütken, Thomas; Wings, Oliver; Witzel, Ulrich

    2011-01-01

    The herbivorous sauropod dinosaurs of the Jurassic and Cretaceous periods were the largest terrestrial animals ever, surpassing the largest herbivorous mammals by an order of magnitude in body mass. Several evolutionary lineages among Sauropoda produced giants with body masses in excess of 50 metric tonnes by conservative estimates. With body mass increase driven by the selective advantages of large body size, animal lineages will increase in body size until they reach the limit determined by the interplay of bauplan, biology, and resource availability. There is no evidence, however, that resource availability and global physicochemical parameters were different enough in the Mesozoic to have led to sauropod gigantism. We review the biology of sauropod dinosaurs in detail and posit that sauropod gigantism was made possible by a specific combination of plesiomorphic characters (phylogenetic heritage) and evolutionary innovations at different levels which triggered a remarkable evolutionary cascade. Of these key innovations, the most important probably was the very long neck, the most conspicuous feature of the sauropod bauplan. Compared to other herbivores, the long neck allowed more efficient food uptake than in other large herbivores by covering a much larger feeding envelope and making food accessible that was out of the reach of other herbivores. Sauropods thus must have been able to take up more energy from their environment than other herbivores. The long neck, in turn, could only evolve because of the small head and the extensive pneumatization of the sauropod axial skeleton, lightening the neck. The small head was possible because food was ingested without mastication. Both mastication and a gastric mill would have limited food uptake rate. Scaling relationships between gastrointestinal tract size and basal metabolic rate (BMR) suggest that sauropods compensated for the lack of particle reduction with long retention times, even at high uptake rates. The

  15. Edentulism, beaks, and biomechanical innovations in the evolution of theropod dinosaurs.

    Science.gov (United States)

    Lautenschlager, Stephan; Witmer, Lawrence M; Altangerel, Perle; Rayfield, Emily J

    2013-12-17

    Maniraptoriformes, the speciose group of derived theropod dinosaurs that ultimately gave rise to modern birds, display a diverse and remarkable suite of skeletal adaptations. Apart from the evolution of flight, a large-scale change in dietary behavior appears to have been one of the main triggers for specializations in the bauplan of these derived theropods. Among the different skeletal specializations, partial or even complete edentulism and the development of keratinous beaks form a recurring and persistent trend in from the evolution of derived nonavian dinosaurs. Therizinosauria is an enigmatic maniraptoriform clade, whose members display these and other osteological characters thought to be correlated with the shift from carnivory to herbivory. This makes therizinosaurians prime candidates to assess the functional significance of these morphological characters. Based on a highly detailed biomechanical model of Erlikosaurus andrewsi, a therizinosaurid from the Upper Cretaceous of Mongolia, different morphological configurations incorporating soft-tissue structures, such as a keratinous rhamphotheca, are evaluated for their biomechanical performance. Our results indicate that the development of beaks and the presence of a keratinous rhamphotheca would have helped to dissipate stress and strain, making the rostral part of the skull less susceptible to bending and displacement, and this benefit may extend to other vertebrate clades that possess rhamphothecae. Keratinous beaks, paralleled by edentulism, thus represent an evolutionary innovation developed early in derived theropods to enhance cranial stability, distinct to postulated mass-saving benefits associated with the origin of flight.

  16. Comment on "Evidence for mesothermy in dinosaurs".

    Science.gov (United States)

    Myhrvold, Nathan P

    2015-05-29

    Grady et al. (Reports, 13 June 2014, p. 1268) studied dinosaur metabolism by comparison of maximum somatic growth rate allometry with groups of known metabolism. They concluded that dinosaurs exhibited mesothermy, a metabolic rate intermediate between endothermy and ectothermy. Multiple statistical and methodological issues call into question the evidence for dinosaur mesothermy. Copyright © 2015, American Association for the Advancement of Science.

  17. Predatory behaviour of carnivorous dinosaurs: Ecological interpretations based on tooth marked dinosaur bones and wear patterns of theropod teeth

    DEFF Research Database (Denmark)

    Jacobsen, Aase Roland

    Predation marks on bones are a source on information on the feeding behaviour of the carnivores involved. Although predator damaged bone is common in the fossil record, published reports of such marks on dinosaur bones are rare. Patterns of bone modification by mammalian carnivores overlap patterns...... left by theropod dinosaurs.Differences in tooth morphology can also be correlated with characteristics of the marks left by the teeth. In a study of tooth marks on dinosaur bones from the Dinosaur Park Formation of Alberta, Canada, it was possible to identify the feeding theropods to family, generic...... different taxa and different skeletal elements produced some interesting results. The frequency of tooth marked dinosaur bones is higher than expected. Up to 14 % of the observed hadrosaur bones were predator damaged. The lower incidence of damage in ceratopsian bones can be explained by the fact...

  18. If You Were a Dinosaur...

    Science.gov (United States)

    Ashbrook, Peggy

    2010-01-01

    Dinosaurs are one of those science topics that draw children in and teach them about concepts like measuring and using descriptive language. Learning about dinosaurs, although not hands-on like observing and recording caterpillar growth, develops critical thinking and introduces animal diversity and the relations between body form and function.…

  19. Quantitative analysis of dental microwear in hadrosaurid dinosaurs, and the implications for hypotheses of jaw mechanics and feeding

    Science.gov (United States)

    Williams, Vincent S.; Barrett, Paul M.; Purnell, Mark A.

    2009-01-01

    Understanding the feeding mechanisms and diet of nonavian dinosaurs is fundamental to understanding the paleobiology of these taxa and their role in Mesozoic terrestrial ecosystems. Various methods, including biomechanical analysis and 3D computer modeling, have been used to generate detailed functional hypotheses, but in the absence of either direct observations of dinosaur feeding behavior, or close living functional analogues, testing these hypotheses is problematic. Microscopic scratches that form on teeth in vivo during feeding are known to record the relative motion of the tooth rows to each other during feeding and to capture evidence of tooth–food interactions. Analysis of this dental microwear provides a powerful tool for testing hypotheses of jaw mechanics, diet, and trophic niche; yet, quantitative analysis of microwear in dinosaurs has not been attempted. Here, we show that analysis of tooth microwear orientation provides direct evidence for the relative motions of jaws during feeding in hadrosaurid ornithopods, the dominant terrestrial herbivores of the Late Cretaceous. Statistical testing demonstrates that Edmontosaurus teeth preserve 4 distinct sets of scratches in different orientations. In terms of jaw mechanics, these data indicate an isognathic, near-vertical posterodorsal power stroke during feeding; near-vertical jaw opening; and propalinal movements in near anterior and near posterior directions. Our analysis supports the presence of a pleurokinetic hinge, and the straightness and parallelism of scratches indicate a tightly controlled occlusion. The dominance of scratched microwear fabrics suggests that Edmontosaurus was a grazer rather than a browser. PMID:19564603

  20. Making Sense of Dinosaur Tracks

    Science.gov (United States)

    MacKenzie, Ann Haley; McDowell, Brian

    2012-01-01

    What do paleontologists, dinosaur tracks, and the nature of science have in common? They're combined here in an inquiry activity where students use methods of observation and inference to devise evidence-based explanations for the data they collect about dinosaur tracks, much like the methods used by paleontologists. Students then debate the…

  1. An Ornithopod-Dominated Tracksite from the Lower Cretaceous Jiaguan Formation (Barremian?Albian) of Qijiang, South-Central China: New Discoveries, Ichnotaxonomy, Preservation and Palaeoecology

    OpenAIRE

    Xing, Lida; Lockley, Martin G.; Marty, Daniel; Zhang, Jianping; Wang, Yan; Klein, Hendrik; McCrea, Richard T.; Buckley, Lisa G.; Belvedere, Matteo; Mateus, Oct?vio; Gierli?ski, Gerard D.; Pi?uela, Laura; Persons, W. Scott; Wang, Fengping; Ran, Hao

    2015-01-01

    This research was supported by a special project grant of the Qijiang District Bureau of Land Resources, Chongqing (No. QDBLR-2007-2015) (LX); the Research of Paleoenvironment in Early Cretaceous Qijiang Dinosaur Assemblage (No. CQGT-KJ-2014057) (HD, LX) and the National Natural Science Foundation of China (No. 41402017) (YW). The historically-famous Lotus Fortress site, a deep 1.5-3.0-meter-high, 200-meter-long horizonal notch high up in near-vertical sandstone cliffs comprising the Creta...

  2. A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs

    Science.gov (United States)

    Sues, Hans-Dieter; Averianov, Alexander

    2009-01-01

    Levnesovia transoxiana gen. et sp. nov., from the Late Cretaceous (Middle–Late Turonian) of Uzbekistan, is the oldest well-documented taxon referable to Hadrosauroidea sensu Godefroit et al. It differs from a somewhat younger and closely related Bactrosaurus from Inner Mongolia (China) by a tall sagittal crest on the parietals and the absence of club-shaped dorsal neural spines in adult specimens. Levnesovia, Bactrosaurus and possibly Gilmoreosaurus represent the earliest radiation of Hadrosauroidea, which took place during the Cenomanian–Turonian and possibly in North America. The second, Santonian-age radiation of Hadrosauroidea included Aralosaurus, Hadrosauridae and lineages leading to Tanius (Campanian) and Telmatosaurus (Maastrichtian). Hadrosauridae appears to be monophyletic, but Hadrosaurinae and Lambeosaurinae originated in North America and Asia, respectively. PMID:19386651

  3. A new basal hadrosauroid dinosaur from the Late Cretaceous of Uzbekistan and the early radiation of duck-billed dinosaurs.

    Science.gov (United States)

    Sues, Hans-Dieter; Averianov, Alexander

    2009-07-22

    Levnesovia transoxiana gen. et sp. nov., from the Late Cretaceous (Middle-Late Turonian) of Uzbekistan, is the oldest well-documented taxon referable to Hadrosauroidea sensu Godefroit et al. It differs from a somewhat younger and closely related Bactrosaurus from Inner Mongolia (China) by a tall sagittal crest on the parietals and the absence of club-shaped dorsal neural spines in adult specimens. Levnesovia, Bactrosaurus and possibly Gilmoreosaurus represent the earliest radiation of Hadrosauroidea, which took place during the Cenomanian-Turonian and possibly in North America. The second, Santonian-age radiation of Hadrosauroidea included Aralosaurus, Hadrosauridae and lineages leading to Tanius (Campanian) and Telmatosaurus (Maastrichtian). Hadrosauridae appears to be monophyletic, but Hadrosaurinae and Lambeosaurinae originated in North America and Asia, respectively.

  4. Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time.

    Science.gov (United States)

    Mannion, Philip D; Upchurch, Paul; Carrano, Matthew T; Barrett, Paul M

    2011-02-01

    The accurate reconstruction of palaeobiodiversity patterns is central to a detailed understanding of the macroevolutionary history of a group of organisms. However, there is increasing evidence that diversity patterns observed directly from the fossil record are strongly influenced by fluctuations in the quality of our sampling of the rock record; thus, any patterns we see may reflect sampling biases, rather than genuine biological signals. Previous dinosaur diversity studies have suggested that fluctuations in sauropodomorph palaeobiodiversity reflect genuine biological signals, in comparison to theropods and ornithischians whose diversity seems to be largely controlled by the rock record. Most previous diversity analyses that have attempted to take into account the effects of sampling biases have used only a single method or proxy: here we use a number of techniques in order to elucidate diversity. A global database of all known sauropodomorph body fossil occurrences (2024) was constructed. A taxic diversity curve for all valid sauropodomorph genera was extracted from this database and compared statistically with several sampling proxies (rock outcrop area and dinosaur-bearing formations and collections), each of which captures a different aspect of fossil record sampling. Phylogenetic diversity estimates, residuals and sample-based rarefaction (including the first attempt to capture 'cryptic' diversity in dinosaurs) were implemented to investigate further the effects of sampling. After 'removal' of biases, sauropodomorph diversity appears to be genuinely high in the Norian, Pliensbachian-Toarcian, Bathonian-Callovian and Kimmeridgian-Tithonian (with a small peak in the Aptian), whereas low diversity levels are recorded for the Oxfordian and Berriasian-Barremian, with the Jurassic/Cretaceous boundary seemingly representing a real diversity trough. Observed diversity in the remaining Triassic-Jurassic stages appears to be largely driven by sampling effort. Late

  5. A Gigantic, Exceptionally Complete Titanosaurian Sauropod Dinosaur from Southern Patagonia, Argentina

    Science.gov (United States)

    Lacovara, Kenneth J.; Lamanna, Matthew C.; Ibiricu, Lucio M.; Poole, Jason C.; Schroeter, Elena R.; Ullmann, Paul V.; Voegele, Kristyn K.; Boles, Zachary M.; Carter, Aja M.; Fowler, Emma K.; Egerton, Victoria M.; Moyer, Alison E.; Coughenour, Christopher L.; Schein, Jason P.; Harris, Jerald D.; Martínez, Rubén D.; Novas, Fernando E.

    2014-01-01

    Titanosaurian sauropod dinosaurs were the most diverse and abundant large-bodied herbivores in the southern continents during the final 30 million years of the Mesozoic Era. Several titanosaur species are regarded as the most massive land-living animals yet discovered; nevertheless, nearly all of these giant titanosaurs are known only from very incomplete fossils, hindering a detailed understanding of their anatomy. Here we describe a new and gigantic titanosaur, Dreadnoughtus schrani, from Upper Cretaceous sediments in southern Patagonia, Argentina. Represented by approximately 70% of the postcranial skeleton, plus craniodental remains, Dreadnoughtus is the most complete giant titanosaur yet discovered, and provides new insight into the morphology and evolutionary history of these colossal animals. Furthermore, despite its estimated mass of about 59.3 metric tons, the bone histology of the Dreadnoughtus type specimen reveals that this individual was still growing at the time of death. PMID:25186586

  6. Nonplantigrade Foot Posture: A Constraint on Dinosaur Body Size

    OpenAIRE

    Kubo, Tai; Kubo, Mugino O.

    2016-01-01

    Dinosaurs had functionally digitigrade or sub-unguligrade foot postures. With their immediate ancestors, dinosaurs were the only terrestrial nonplantigrades during the Mesozoic. Extant terrestrial mammals have different optimal body sizes according to their foot posture (plantigrade, digitigrade, and unguligrade), yet the relationship of nonplantigrade foot posture with dinosaur body size has never been investigated, even though the body size of dinosaurs has been studied intensively. Accordi...

  7. New insights into dinosaur jaw muscle anatomy.

    Science.gov (United States)

    Holliday, Casey M

    2009-09-01

    Jaw muscles are key components of the head and critical to testing hypotheses of soft-tissue homology, skull function, and evolution. Dinosaurs evolved an extraordinary diversity of cranial forms adapted to a variety of feeding behaviors. However, disparate evolutionary transformations in head shape and function among dinosaurs and their living relatives, birds and crocodylians, impair straightforward reconstructions of muscles, and other important cephalic soft tissues. This study presents the osteological correlates and inferred soft tissue anatomy of the jaw muscles and relevant neurovasculature in the temporal region of the dinosaur head. Hypotheses of jaw muscle homology were tested across a broad range archosaur and sauropsid taxa to more accurately infer muscle attachments in the adductor chambers of non-avian dinosaurs. Many dinosaurs likely possessed m. levator pterygoideus, a trait shared with lepidosaurs but not extant archosaurs. Several major clades of dinosaurs (e.g., Ornithopoda, Ceratopsidae, Sauropoda) eliminated the epipterygoid, thus impacting interpretations of m. pseudotemporalis profundus. M. pseudotemporalis superficialis most likely attached to the caudoventral surface of the laterosphenoid, a trait shared with extant archosaurs. Although mm. adductor mandibulae externus profundus and medialis likely attached to the caudal half of the dorsotemporal fossa and coronoid process, clear osteological correlates separating the individual bellies are rare. Most dinosaur clades possess osteological correlates indicative of a pterygoideus ventralis muscle that attaches to the lateral surface of the mandible, although the muscle may have extended as far as the jugal in some taxa (e.g., hadrosaurs, tyrannosaurs). The cranial and mandibular attachments of mm adductor mandibulae externus superficialis and adductor mandibulae posterior were consistent across all taxa studied. These new data greatly increase the interpretive resolution of head anatomy in

  8. All about Dinosaurs. Animal Life for Children. [Videotape].

    Science.gov (United States)

    2000

    Dinosaurs were the rulers of the land 65 million years ago. In this videotape, children learn more about the different kinds of dinosaurs by viewing vivid illustrations and fossil discoveries. Students compare the dinosaurs to their modern kin--snakes, lizards, and crocodiles. Students also listen to different theories to try to answer the big…

  9. The Great Dinosaur Feud: Science against All Odds

    Science.gov (United States)

    Clary, Renee; Wandersee, James; Carpinelli, Amy

    2008-01-01

    In the 19th century, the race to uncover dinosaur fossils and name new dinosaur species inspired two rival scientists, Edward Drinker Cope and Othniel Charles Marsh, to behave in ways that were the antithesis of scientific methods. Subterfuge, theft, and espionage were the ingredients of the Great Dinosaur Feud. Because students often enjoy…

  10. Luis Alvarez, the Hydrogen Bubble Chamber, Tritium, and Dinosaurs

    Science.gov (United States)

    Dinosaurs Resources with Additional Information * Patents Luis Alvarez Courtesy Lawrence Berkeley National JFK Assassination, and the End of the Dinosaurs Memorial Tribute for Luis W. Alvarez The Fruitful and Luis Alvarez (1911 - 1988) Why Dinosaurs Are Extinct Berkeley Scientists Report First Evidence that

  11. "Teachosaurus" and "Learnoceratops": Dinosaurs as a Motivating Cross-Curricular Theme

    Science.gov (United States)

    Duggan, Denis

    2011-01-01

    The author takes a look into the benefits that dinosaurs may bring to the classroom. He discusses how he used dinosaurs as a cross-curricular theme to improve children's understanding and knowledge of science concepts. To investigate what a child might learn from dinosaurs, he started by comparing the many non-fiction dinosaur books using the…

  12. Biology of the sauropod dinosaurs: the evolution of gigantism.

    Science.gov (United States)

    Sander, P Martin; Christian, Andreas; Clauss, Marcus; Fechner, Regina; Gee, Carole T; Griebeler, Eva-Maria; Gunga, Hanns-Christian; Hummel, Jürgen; Mallison, Heinrich; Perry, Steven F; Preuschoft, Holger; Rauhut, Oliver W M; Remes, Kristian; Tütken, Thomas; Wings, Oliver; Witzel, Ulrich

    2011-02-01

    The herbivorous sauropod dinosaurs of the Jurassic and Cretaceous periods were the largest terrestrial animals ever, surpassing the largest herbivorous mammals by an order of magnitude in body mass. Several evolutionary lineages among Sauropoda produced giants with body masses in excess of 50 metric tonnes by conservative estimates. With body mass increase driven by the selective advantages of large body size, animal lineages will increase in body size until they reach the limit determined by the interplay of bauplan, biology, and resource availability. There is no evidence, however, that resource availability and global physicochemical parameters were different enough in the Mesozoic to have led to sauropod gigantism. We review the biology of sauropod dinosaurs in detail and posit that sauropod gigantism was made possible by a specific combination of plesiomorphic characters (phylogenetic heritage) and evolutionary innovations at different levels which triggered a remarkable evolutionary cascade. Of these key innovations, the most important probably was the very long neck, the most conspicuous feature of the sauropod bauplan. Compared to other herbivores, the long neck allowed more efficient food uptake than in other large herbivores by covering a much larger feeding envelope and making food accessible that was out of the reach of other herbivores. Sauropods thus must have been able to take up more energy from their environment than other herbivores. The long neck, in turn, could only evolve because of the small head and the extensive pneumatization of the sauropod axial skeleton, lightening the neck. The small head was possible because food was ingested without mastication. Both mastication and a gastric mill would have limited food uptake rate. Scaling relationships between gastrointestinal tract size and basal metabolic rate (BMR) suggest that sauropods compensated for the lack of particle reduction with long retention times, even at high uptake rates. The

  13. Dinosaur energetics: setting the bounds on feasible physiologies and ecologies.

    Science.gov (United States)

    Clarke, Andrew

    2013-09-01

    The metabolic status of dinosaurs has long been debated but remains unresolved as no consistent picture has emerged from a range of anatomical and isotopic evidence. Quantitative analysis of dinosaur energetics, based on general principles applicable to all vertebrates, shows that many features of dinosaur lifestyle are compatible with a physiology similar to that of extant lizards, scaled up to dinosaur body masses and temperatures. The analysis suggests that sufficient metabolic scope would have been available to support observed dinosaur growth rates and allow considerable locomotor activity, perhaps even migration. Since at least one dinosaur lineage evolved true endothermy, this study emphasizes there was no single dinosaur physiology. Many small theropods were insulated with feathers and appear to have been partial or full endotherms. Uninsulated small taxa, and all juveniles, presumably would have been ectothermic, with consequent diurnal and seasonal variations in body temperature. In larger taxa, inertial homeothermy would have resulted in warm and stable body temperatures but with a basal metabolism significantly below that of extant mammals or birds of the same size. It would appear that dinosaurs exhibited a range of metabolic levels to match the broad spectrum of ecological niches they occupied.

  14. The oldest dinosaur? A Middle Triassic dinosauriform from Tanzania.

    Science.gov (United States)

    Nesbitt, Sterling J; Barrett, Paul M; Werning, Sarah; Sidor, Christian A; Charig, Alan J

    2013-02-23

    The rise of dinosaurs was a major event in vertebrate history, but the timing of the origin and early diversification of the group remain poorly constrained. Here, we describe Nyasasaurus parringtoni gen. et sp. nov., which is identified as either the earliest known member of, or the sister-taxon to, Dinosauria. Nyasasaurus possesses a unique combination of dinosaur character states and an elevated growth rate similar to that of definitive early dinosaurs. It demonstrates that the initial dinosaur radiation occurred over a longer timescale than previously thought (possibly 15 Myr earlier), and that dinosaurs and their immediate relatives are better understood as part of a larger Middle Triassic archosauriform radiation. The African provenance of Nyasasaurus supports a southern Pangaean origin for Dinosauria.

  15. A Unique Late Triassic Dinosauromorph Assemblage Reveals Dinosaur Ancestral Anatomy and Diet.

    Science.gov (United States)

    Cabreira, Sergio Furtado; Kellner, Alexander Wilhelm Armin; Dias-da-Silva, Sérgio; Roberto da Silva, Lúcio; Bronzati, Mario; Marsola, Júlio Cesar de Almeida; Müller, Rodrigo Temp; Bittencourt, Jonathas de Souza; Batista, Brunna Jul'Armando; Raugust, Tiago; Carrilho, Rodrigo; Brodt, André; Langer, Max Cardoso

    2016-11-21

    Dinosauromorpha includes dinosaurs and other much less diverse dinosaur precursors of Triassic age, such as lagerpetids [1]. Joint occurrences of these taxa with dinosaurs are rare but more common during the latest part of that period (Norian-Rhaetian, 228-201 million years ago [mya]) [2, 3]. In contrast, the new lagerpetid and saurischian dinosaur described here were unearthed from one of the oldest rock units with dinosaur fossils worldwide, the Carnian (237-228 mya) Santa Maria Formation of south Brazil [4], a record only matched in age by much more fragmentary remains from Argentina [5]. This is the first time nearly complete dinosaur and non-dinosaur dinosauromorph remains are found together in the same excavation, clearly showing that these animals were contemporaries since the first stages of dinosaur evolution. The new lagerpetid preserves the first skull, scapular and forelimb elements, plus associated vertebrae, known for the group, revealing how dinosaurs acquired several of their typical anatomical traits. Furthermore, a novel phylogenetic analysis shows the new dinosaur as the most basal Sauropodomorpha. Its plesiomorphic teeth, strictly adapted to faunivory, provide crucial data to infer the feeding behavior of the first dinosaurs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Evolution: When Dinosaurs Bested Their Early Rivals.

    Science.gov (United States)

    Brusatte, Stephen L

    2016-11-21

    A sublime fossil discovery in Brazil shows that dinosaurs and their immediate evolutionary precursors lived together for tens of millions of years before dinosaurs ultimately rose to the top. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Cardiovascular Physiology of Dinosaurs.

    Science.gov (United States)

    Seymour, Roger S

    2016-11-01

    Cardiovascular function in dinosaurs can be inferred from fossil evidence with knowledge of how metabolic rate, blood flow rate, blood pressure, and heart size are related to body size in living animals. Skeletal stature and nutrient foramen size in fossil femora provide direct evidence of a high arterial blood pressure, a large four-chambered heart, a high aerobic metabolic rate, and intense locomotion. But was the heart of a huge, long-necked sauropod dinosaur able to pump blood up 9 m to its head? ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  18. Allometry in dinosaurs and mammals

    Science.gov (United States)

    Lee, Scott

    2015-03-01

    The proportions of the leg bones change as the size of an animal becomes larger since the mass of the animal increases at a faster rate than the cross-sectional area of its leg bones. For the case of elastic similarity (in which the longitudinal stress in the legs remains constant in animals of all sizes), the diameter d and length L of the femur should be related as d = A L3/2. For geometric similarity (in which all dimensions are scaled by the same factor), d = A L. For animals with femora longer than 20 cm, we find the power law relationship to be d = A Lb with b = 1.13 +/- 0.06 for extant mammals (the largest mammal being Loxodonta africana with a 1.00-m-long femur) and b = 1.18 +/- 0.02 for dinosaurs (the largest dinosaur being Brachiosaurus brancai with a 2.03-m-long femur). These data show that extinct dinosaurs and extant animals scale in the same basic manner. The large sauropods (with femora twice as long as found in elephants) scale in a manner consistent with extrapolation of the scaling shown by extant mammals. These results argue that extinct dinosaurs moved in a manner very similar to extant mammals.

  19. Incubation times of dinosaur eggs via embryonic metabolism

    Science.gov (United States)

    Lee, Scott A.

    2016-08-01

    The incubation times for the eggs of 21 dinosaurs are determined from an estimate of their embyronic metabolic rate and the mass of the hatchlings via a mass growth model based on conservation of energy. Embryos in extant birds and crocodiles are studied in order to determine the best model for embryonic metabolism and growth. These results are used to develop a theoretical model that predicts the incubation times of an egg. This model is applied to dinosaur eggs and provides a unique window into dinosaur reproduction. The dinosaurs studied come from both Saurischia and Ornithischia. The incubation times vary from about 28 days for Archaeopteryx lithographica to about 76 days for Alamosaurus sanjuanensis.

  20. Misty – museets nye dinosaur

    DEFF Research Database (Denmark)

    Lindow, Bent Erik Kramer

    2014-01-01

    I november 2013 fi k Statens Naturhistoriske Museum en 16 meter lang julegave – det meget velbevarede skelet af en langhalset dinosaur med kælenavnet ’Misty’. Købet af det enorme skelet var muligt takket være en meget generøs gave fra Det Obelske Familiefond. Denne artikel ser nærmere på Misty......, hvad man ved om langhalsede dinosaurer, og hendes fremtidige betydning for museets forskning og formidling....

  1. A palaeoequatorial ornithischian and new constraints on early dinosaur diversification.

    Science.gov (United States)

    Barrett, Paul M; Butler, Richard J; Mundil, Roland; Scheyer, Torsten M; Irmis, Randall B; Sánchez-Villagra, Marcelo R

    2014-09-22

    Current characterizations of early dinosaur evolution are incomplete: existing palaeobiological and phylogenetic scenarios are based on a fossil record dominated by saurischians and the implications of the early ornithischian record are often overlooked. Moreover, the timings of deep phylogenetic divergences within Dinosauria are poorly constrained owing to the absence of a rigorous chronostratigraphical framework for key Late Triassic-Early Jurassic localities. A new dinosaur from the earliest Jurassic of the Venezuelan Andes is the first basal ornithischian recovered from terrestrial deposits directly associated with a precise radioisotopic date and the first-named dinosaur from northern South America. It expands the early palaeogeographical range of Ornithischia to palaeoequatorial regions, an area sometimes thought to be devoid of early dinosaur taxa, and offers insights into early dinosaur growth rates, the evolution of sociality and the rapid tempo of the global dinosaur radiation following the end-Triassic mass extinction, helping to underscore the importance of the ornithischian record in broad-scale discussions of early dinosaur history. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. The first freshwater mosasauroid (Upper Cretaceous, Hungary and a new clade of basal mosasauroids.

    Directory of Open Access Journals (Sweden)

    László Makádi

    Full Text Available Mosasauroids are conventionally conceived of as gigantic, obligatorily aquatic marine lizards (1000s of specimens from marine deposited rocks with a cosmopolitan distribution in the Late Cretaceous (90-65 million years ago [mya] oceans and seas of the world. Here we report on the fossilized remains of numerous individuals (small juveniles to large adults of a new taxon, Pannoniasaurus inexpectatus gen. et sp. nov. from the Csehbánya Formation, Hungary (Santonian, Upper Cretaceous, 85.3-83.5 mya that represent the first known mosasauroid that lived in freshwater environments. Previous to this find, only one specimen of a marine mosasauroid, cf. Plioplatecarpus sp., is known from non-marine rocks in Western Canada. Pannoniasaurus inexpectatus gen. et sp. nov. uniquely possesses a plesiomorphic pelvic anatomy, a non-mosasauroid but pontosaur-like tail osteology, possibly limbs like a terrestrial lizard, and a flattened, crocodile-like skull. Cladistic analysis reconstructs P. inexpectatus in a new clade of mosasauroids: (Pannoniasaurus (Tethysaurus (Yaguarasaurus, Russellosaurus. P. inexpectatus is part of a mixed terrestrial and freshwater faunal assemblage that includes fishes, amphibians turtles, terrestrial lizards, crocodiles, pterosaurs, dinosaurs and birds.

  3. Dinosaur energetics: setting the bounds on feasible physiologies and ecologies

    OpenAIRE

    Clarke, Andrew

    2013-01-01

    The metabolic status of dinosaurs has long been debated but remains unresolved as no consistent picture has emerged from a range of anatomical and isotopic evidence. Quantitative analysis of dinosaur energetics, based on general principles applicable to all vertebrates, shows that many features of dinosaur lifestyle are compatible with a physiology similar to that of extant lizards, scaled up to dinosaur body masses and temperatures. The analysis suggests that sufficient metabolic scope would...

  4. Depositional setting and early diagenesis of the dinosaur eggshell-bearing Aren Fm at Bastus, Late Campanian, south-central Pyrenees

    Science.gov (United States)

    Díaz-Molina, Margarita; Kälin, Otto; Benito, M. Isabel; Lopez-Martinez, Nieves; Vicens, Enric

    2007-07-01

    The Late Cretaceous Aren Fm exposed north of Bastus in the Tremp Basin (south-central Pyrenees) preserves an excellent record of dinosaur eggs laid in a marine littoral setting. Different from other cases reported in literature, at the Bastus site the preferential nesting ground was original beach sand. The coastal deposits of Aren Fm can be grouped into four facies assemblages, representing respectively shoreface, beachface, beach ridge plain and backbarrier lagoon environments. Shoreface deposits include fine- to coarse-grained hybrid arenites and subordinate quartz-dominated conglomerates with ripple structures of wave and wave-current origin. Beachface deposits are mainly storm beach conglomerates, but parallel-laminated foreshore arenites locally occur. Backbarrier lagoon deposits comprise of washover sandy conglomerates that grade laterally into sandy lime mudstones, biomicrites and marls. Beach ridge sediment, wherein the bulk of dinosaur eggs and eggshell debris occurs, predominantly is a reddish hybrid arenite that has undergone a complex early diagenetic evolution, including marine and meteoric cementation followed by soil development. The reddish arenites overlie wave-dominated shoreface deposits and in places pass laterally into lagoonal deposits. They originally formed shore ridges, that became stabilized during progradational episodes by pedogenesis (beach ridge, sensu [Otvos, E.G., 2000. Beach ridges—definitions and significance. Geomorphology 32, 83-108.]), which also affected the dinosaur eggs. The eggshell-bearing beach ridge arenites are typically preserved at the top of parasequences forming the systems tracts of a third-order sequence. Thick packages of this facies resulted from aggradation of barrier/beach ridge deposits, whose preservation below surfaces of transgressive erosion was favoured by incipient lithification.

  5. Wildfires and animal extinctions at the Cretaceous/Tertiary boundary

    Science.gov (United States)

    Adair, Robert K.

    2010-06-01

    Persuasive models of the ejection of material at high velocities from the Chicxulub asteroid impact marking the Cretaceous/Tertiary boundary have led to the conclusion that upon return, that material, heated in passage through the upper atmosphere, generated a high level of infrared energy density over the Earth's surface. That radiant energy has been considered to be a direct source of universal wildfires, which were presumed to be a major cause of plant and animal species extinctions. The extinction of many animal species, especially the dinosaurs, has also been attributed to the immediate lethal effects of the radiation. I find that the absorption of the radiation by the atmosphere, by cloud formations, and by ejecta drifting in the lower atmosphere reduced the radiation at the surface to a level that cannot be expected to have generated universal fires. Although the reduced radiation will have likely caused severe injuries to many animals, such insults alone seem unlikely to have generated the overall species extinctions that have been deduced.

  6. The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity.

    Science.gov (United States)

    Brusatte, Stephen L; Benton, Michael J; Ruta, Marcello; Lloyd, Graeme T

    2008-12-23

    The evolutionary radiation of dinosaurs in the Late Triassic and Early Jurassic was a pivotal event in the Earth's history but is poorly understood, as previous studies have focused on vague driving mechanisms and have not untangled different macroevolutionary components (origination, diversity, abundance and disparity). We calculate the morphological disparity (morphospace occupation) of dinosaurs throughout the Late Triassic and Early Jurassic and present new measures of taxonomic diversity. Crurotarsan archosaurs, the primary dinosaur 'competitors', were significantly more disparate than dinosaurs throughout the Triassic, but underwent a devastating extinction at the Triassic-Jurassic boundary. However, dinosaur disparity showed only a slight non-significant increase after this event, arguing against the hypothesis of ecological release-driven morphospace expansion in the Early Jurassic. Instead, the main jump in dinosaur disparity occurred between the Carnian and Norian stages of the Triassic. Conversely, dinosaur diversity shows a steady increase over this time, and measures of diversification and faunal abundance indicate that the Early Jurassic was a key episode in dinosaur evolution. Thus, different aspects of the dinosaur radiation (diversity, disparity and abundance) were decoupled, and the overall macroevolutionary pattern of the first 50Myr of dinosaur evolution is more complex than often considered.

  7. Broad-scale patterns of late jurassic dinosaur paleoecology.

    Science.gov (United States)

    Noto, Christopher R; Grossman, Ari

    2010-09-03

    There have been numerous studies on dinosaur biogeographic distribution patterns. However, these distribution data have not yet been applied to ecological questions. Ecological studies of dinosaurs have tended to focus on reconstructing individual taxa, usually through comparisons to modern analogs. Fewer studies have sought to determine if the ecological structure of fossil assemblages is preserved and, if so, how dinosaur communities varied. Climate is a major component driving differences between communities. If the ecological structure of a fossil locality is preserved, we expect that dinosaur assemblages from similar environments will share a similar ecological structure. This study applies Ecological Structure Analysis (ESA) to a dataset of 100+ dinosaur taxa arranged into twelve composite fossil assemblages from around the world. Each assemblage was assigned a climate zone (biome) based on its location. Dinosaur taxa were placed into ecomorphological categories. The proportion of each category creates an ecological profile for the assemblage, which were compared using cluster and principal components analyses. Assemblages grouped according to biome, with most coming from arid or semi-arid/seasonal climates. Differences between assemblages are tied to the proportion of large high-browsing vs. small ground-foraging herbivores, which separates arid from semi-arid and moister environments, respectively. However, the effects of historical, taphonomic, and other environmental factors are still evident. This study is the first to show that the general ecological structure of Late Jurassic dinosaur assemblages is preserved at large scales and can be assessed quantitatively. Despite a broad similarity of climatic conditions, a degree of ecological variation is observed between assemblages, from arid to moist. Taxonomic differences between Asia and the other regions demonstrate at least one case of ecosystem convergence. The proportion of different ecomorphs, which

  8. The formation conditions of the burial site of Late Cretaceous dinosaurs and plants in the Kakanaut River basin (Koryak Highlands, Northeastern Asia)

    Science.gov (United States)

    Shczepetov, S. V.; Herman, A. B.

    2017-07-01

    The stratigraphic position of layers containing plant and animal remains in the Koryak Highlands (Northeast Asia) is under discussion. Their age is defined as late Campanian-early Maastrichtian. Plant-bearing and bone-bearing rocks represent cemented basaltic tephra. The former contain a small amount of xenogenic material and slightly rounded volcaniclastic material, which indicates its insignificant transportation. Ash particles in bone-bearing rocks are even less rounded. Among them, there are no rock fragments of other composition. Large bones and their fragments, as xenoliths, are chaotically distributed in the rock matrix as if floating in mass of ash material. This burial site was probably formed in a continental environment as a result of the gravitational and eolian transportation of the terrigenous material. The burial of small dinosaur bones and teeth occurred during the deposition of a small stream of a semiliquid water-ash mixture. This work presents a possible mechanism of the formation of burial sites, taking into consideration proposed conditions of the life and reproduction of dinosaurs in the Late Mesozoic Arctic.

  9. Biomechanical comments about Triassic dinosaurs from Brazil

    Directory of Open Access Journals (Sweden)

    Rafael Delcourt

    2012-01-01

    Full Text Available Triassic dinosaurs of Brazil are found in Santa Maria and Caturrita formations, Rio Grande do Sul state, Brazil. There are three species known from the Santa Maria Formation (Staurikosaurus pricei, Saturnalia tupiniquim and Pampadromaeus barberenai, and two from Caturrita Formation (Guaibasaurus candelariensis and Unaysaurus tolentinoi. These dinosaur materials are, for the most part, well preserved and allow for descriptions of musculature and biomechanical studies. The lateral rotation of the Saturnalia femur is corroborated through calculations of muscle moment arms. The enhanced supracetabular crest of Saturnalia, Guaibasaurus, Staurikosaurus, Herrerasaurus ischigualastensis, Efraasia minor and Chormogisaurus novasi suggests that basal dinosaurs may have maintained an inclination of the trunk at least 20º on the horizontal axis. The pectoral girdle articulation of basal sauropodomorphs (Saturnalia and Unaysaurus was established using a new method, the Clavicular Ring, and the scapular blade remains near 60º on the horizontal axis. This is a plesiomorphic condition among sauropodomorphs and is also seen in the articulated plateosauridae Seitaad ruessi. The Brazilian basal dinosaurs were lightweight with a body mass estimated around 18.5 kg for Staurikosaurus, 6.5 kg for Saturnalia, and 17 kg for Guaibasaurus. Pampadromaeus probably weighed 2.5 kg, but measures of its femur are necessary to confirm this hypothesis. The Triassic dinosaurs from Brazil were diversified but shared some functional aspects that were important in an evolutionary context.

  10. Vision in dinosaurs: Scaling effects in sclerotic rings

    Science.gov (United States)

    Lee, Scott

    Sclerotic rings are composed of bones found in the eyes of most vertebrates except mammals and crocodilians. They are believed to have a role in maintaining the shape of the eye. Their inner diameter is an upper limit for the effective diameter of the pupil and, therefore, provides a measure of the light-gathering ability of the eyes of extinct animals. Thirty-six different species of dinosaurs (from both the Saurischian and Ornithischian branches) have been studied. The smallest dinosaurs, with masses less than 1 kg, include Juravenator starki, Archaeopteryx lithographica, and Mei long while the largest dinosaurs, with masses on the order of 10,000 kg, include Diplodocus longus and Nemegtosaurus mongoliensis. The light-gathering properties of the eyes of the dinosaurs are studied as a function of the mass. The sclerotic ring diameter is found to increase with mass.

  11. Brief review of dinosaur studies and perspectives in Brazil

    Directory of Open Access Journals (Sweden)

    ALEXANDER W. A. KELLNER

    2000-12-01

    Full Text Available Dinosaur research is developing at very high rates around the world resulting in several new discoveries that are improving our understanding of this terrestrial reptilian clade. Except for the last couple years, the studies of Brazilian dinosaurs have not followed this expansive trend, despite the high potential of several dinosaur localities. So far there are only eight described taxa, four in the last year, representing theropod, sauropod, and one possible prosauropod taxa. Except for footprints, there are no records of ornithischian dinosaurs in the country what is at least partially explainable by the lack of continuous vertebrate fossil collecting program in the country. More funding is necessary to improve the research activities in this field.

  12. Pathologic bone tissues in a Turkey vulture and a nonavian dinosaur: implications for interpreting endosteal bone and radial fibrolamellar bone in fossil dinosaurs.

    Science.gov (United States)

    Chinsamy, Anusuya; Tumarkin-Deratzian, Allison

    2009-09-01

    We report on similar pathological bone microstructure in an extant turkey vulture (Cathartes aura) and a nonavian dinosaur from Transylvania. Both these individuals exhibit distinctive periosteal reactive bone deposition accompanied by endosteal bone deposits in the medullary cavity. Our findings have direct implications on the two novel bone tissues recently described among nonavian dinosaurs, radial fibrolamellar bone tissue and medullary bone tissue. On the basis of the observed morphology of the periosteal reactive bone in the turkey vulture and the Transylvanian dinosaur, we propose that the radial fibrolamellar bone tissues observed in mature dinosaurs may have had a pathological origin. Our analysis also shows that on the basis of origin, location, and morphology, pathologically derived endosteal bone tissue can be similar to medullary bone tissues described in nonavian dinosaurs. As such, we caution the interpretation of all endosteally derived bone tissue as homologous to avian medullary bone. (c) 2009 Wiley-Liss, Inc.

  13. A basal dinosaur from the dawn of the dinosaur era in southwestern Pangaea.

    Science.gov (United States)

    Martinez, Ricardo N; Sereno, Paul C; Alcober, Oscar A; Colombi, Carina E; Renne, Paul R; Montañez, Isabel P; Currie, Brian S

    2011-01-14

    Upper Triassic rocks in northwestern Argentina preserve the most complete record of dinosaurs before their rise to dominance in the Early Jurassic. Here, we describe a previously unidentified basal theropod, reassess its contemporary Eoraptor as a basal sauropodomorph, divide the faunal record of the Ischigualasto Formation with biozones, and bracket the formation with (40)Ar/(39)Ar ages. Some 230 million years ago in the Late Triassic (mid Carnian), the earliest dinosaurs were the dominant terrestrial carnivores and small herbivores in southwestern Pangaea. The extinction of nondinosaurian herbivores is sequential and is not linked to an increase in dinosaurian diversity, which weakens the predominant scenario for dinosaurian ascendancy as opportunistic replacement.

  14. Math and Fossils Resolve a Debate on Dinosaur Metabolism

    OpenAIRE

    Gillooly, James F; Allen, Andrew P; Charnov, Eric L

    2006-01-01

    Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 degrees C at 12 kg to approximately 41 degrees C at 13,000 kg. The model also successfully predicts observed increases ...

  15. Respiratory and reproductive paleophysiology of dinosaurs and early birds.

    Science.gov (United States)

    Ruben, John A; Jones, Terry D; Geist, Nicholas R

    2003-01-01

    In terms of their diversity and longevity, dinosaurs and birds were/are surely among the most successful of terrestrial vertebrates. Unfortunately, interpreting many aspects of the biology of dinosaurs and the earliest of the birds presents formidable challenges because they are known only from fossils. Nevertheless, a variety of attributes of these taxa can be inferred by identification of shared anatomical structures whose presence is causally linked to specialized functions in living reptiles, birds, and mammals. Studies such as these demonstrate that although dinosaurs and early birds were likely to have been homeothermic, the absence of nasal respiratory turbinates in these animals indicates that they were likely to have maintained reptile-like (ectothermic) metabolic rates during periods of rest or routine activity. Nevertheless, given the metabolic capacities of some extant reptiles during periods of elevated activity, early birds were probably capable of powered flight. Similarly, had, for example, theropod dinosaurs possessed aerobic metabolic capacities and habits equivalent to those of some large, modern tropical latitude lizards (e.g., Varanus), they may well have maintained significant home ranges and actively pursued and killed large prey. Additionally, this scenario of active, although ectothermic, theropod dinosaurs seems reinforced by the likely utilization of crocodilian-like, diaphragm breathing in this group. Finally, persistent in vivo burial of their nests and apparent lack of egg turning suggests that clutch incubation by dinosaurs was more reptile- than birdlike. Contrary to previous suggestions, there is little if any reliable evidence that some dinosaur young may have been helpless and nestbound (altricial) at hatching.

  16. A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs.

    Science.gov (United States)

    Carballido, José L; Pol, Diego; Otero, Alejandro; Cerda, Ignacio A; Salgado, Leonardo; Garrido, Alberto C; Ramezani, Jahandar; Cúneo, Néstor R; Krause, Javier M

    2017-08-16

    Titanosauria was the most diverse and successful lineage of sauropod dinosaurs. This clade had its major radiation during the middle Early Cretaceous and survived up to the end of that period. Among sauropods, this lineage has the most disparate values of body mass, including the smallest and largest sauropods known. Although recent findings have improved our knowledge on giant titanosaur anatomy, there are still many unknown aspects about their evolution, especially for the most gigantic forms and the evolution of body mass in this clade. Here we describe a new giant titanosaur, which represents the largest species described so far and one of the most complete titanosaurs. Its inclusion in an extended phylogenetic analysis and the optimization of body mass reveals the presence of an endemic clade of giant titanosaurs inhabited Patagonia between the Albian and the Santonian. This clade includes most of the giant species of titanosaurs and represents the major increase in body mass in the history of Titanosauria. © 2017 The Author(s).

  17. Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous-Tertiary boundary.

    Science.gov (United States)

    Roos, Jonas; Aggarwal, Ramesh K; Janke, Axel

    2007-11-01

    The mitochondrial genomes of the dwarf crocodile, Osteolaemus tetraspis, and two species of dwarf caimans, the smooth-fronted caiman, Paleosuchus trigonatus, and Cuvier's dwarf caiman, Paleosuchus palpebrosus, were sequenced and included in a mitogenomic phylogenetic study. The phylogenetic analyses, which included a total of ten crocodylian species, yielded strong support to a basal split between Crocodylidae and Alligatoridae. Osteolaemus fell within the Crocodylidae as the sister group to Crocodylus. Gavialis and Tomistoma, which joined on a common branch, constituted a sister group to Crocodylus/Osteolaemus. This suggests that extant crocodylians are organized in two families: Alligatoridae and Crocodylidae. Within the Alligatoridae there was a basal split between Alligator and a branch that contained Paleosuchus and Caiman. The analyses also provided molecular estimates of various divergences applying recently established crocodylian and outgroup fossil calibration points. Molecular estimates based on amino acid data placed the divergence between Crocodylidae and Alligatoridae at 97-103 million years ago and that between Alligator and Caiman/Paleosuchus at 65-72 million years ago. Other crocodilian divergences were placed after the Cretaceous-Tertiary boundary. Thus, according to the molecular estimates, three extant crocodylian lineages have their roots in the Cretaceous. Considering the crocodylian diversification in the Cretaceous the molecular datings suggest that the extinction of the dinosaurs was also to some extent paralleled in the crocodylian evolution. However, for whatever reason, some crocodylian lineages survived into the Tertiary.

  18. Biomechanics of running indicates endothermy in bipedal dinosaurs.

    Directory of Open Access Journals (Sweden)

    Herman Pontzer

    Full Text Available BACKGROUND: One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira, other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary. CONCLUSIONS/SIGNIFICANCE: Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira, but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced "avian" lung structure and high locomotor costs.

  19. Biomechanics of running indicates endothermy in bipedal dinosaurs.

    Science.gov (United States)

    Pontzer, Herman; Allen, Vivian; Hutchinson, John R

    2009-11-11

    One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals. Here we describe two new biomechanical approaches for reconstructing the metabolic rate of 14 extinct bipedal dinosauriforms during walking and running. These methods, well validated for extant animals, indicate that during walking and slow running the metabolic rate of at least the larger extinct dinosaurs exceeded the maximum aerobic capabilities of modern ectotherms, falling instead within the range of modern birds and mammals. Estimated metabolic rates for smaller dinosaurs are more ambiguous, but generally approach or exceed the ectotherm boundary. Our results support the hypothesis that endothermy was widespread in at least larger non-avian dinosaurs. It was plausibly ancestral for all dinosauriforms (perhaps Ornithodira), but this is perhaps more strongly indicated by high growth rates than by locomotor costs. The polarity of the evolution of endothermy indicates that rapid growth, insulation, erect postures, and perhaps aerobic power predated advanced "avian" lung structure and high locomotor costs.

  20. Forearm posture and mobility in quadrupedal dinosaurs.

    Science.gov (United States)

    VanBuren, Collin S; Bonnan, Matthew

    2013-01-01

    Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination). Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.

  1. Forearm posture and mobility in quadrupedal dinosaurs.

    Directory of Open Access Journals (Sweden)

    Collin S VanBuren

    Full Text Available Quadrupedality evolved four independent times in dinosaurs; however, the constraints associated with these transitions in limb anatomy and function remain poorly understood, in particular the evolution of forearm posture and rotational ability (i.e., active pronation and supination. Results of previous qualitative studies are inconsistent, likely due to an inability to quantitatively assess the likelihood of their conclusions. We attempt to quantify antebrachial posture and mobility using the radius bone because its morphology is distinct between extant sprawled taxa with a limited active pronation ability and parasagittal taxa that have an enhanced ability to actively pronate the manus. We used a sliding semi-landmark, outline-based geometric morphometric approach of the proximal radial head and a measurement of the angle of curvature of the radius in a sample of 189 mammals, 49 dinosaurs, 35 squamates, 16 birds, and 5 crocodilians. Our results of radial head morphology showed that quadrupedal ceratopsians, bipedal non-hadrosaurid ornithopods, and theropods had limited pronation/supination ability, and sauropodomorphs have unique radial head morphology that likely allowed limited rotational ability. However, the curvature of the radius showed that no dinosaurian clade had the ability to cross the radius about the ulna, suggesting parallel antebrachial elements for all quadrupedal dinosaurs. We conclude that the bipedal origins of all quadrupedal dinosaur clades could have allowed for greater disparity in forelimb posture than previously appreciated, and future studies on dinosaur posture should not limit their classifications to the overly simplistic extant dichotomy.

  2. "Dinosaurs." Kindergarten. Anchorage School District Elementary Science Program.

    Science.gov (United States)

    Herminghaus, Trisha, Ed.

    This unit contains 15 lessons on dinosaurs for kindergarten children. It provides a materials list, supplementary materials list, use of process skill terminology, unit objectives, vocabulary, six major dinosaurs, and background information. Lessons are: (1) "Webbing"; (2) "Introduction to the Big Six"; (3) "Paleontology…

  3. The origin and early evolution of dinosaurs.

    Science.gov (United States)

    Langer, Max C; Ezcurra, Martin D; Bittencourt, Jonathas S; Novas, Fernando E

    2010-02-01

    The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis, and Panphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as "all descendants of the most recent common ancestor of birds and Triceratops". Recent cladistic analyses of early dinosaurs agree that Pisanosaurus mertii is a basal ornithischian; that Herrerasaurus ischigualastensis and Staurikosaurus pricei belong in a monophyletic Herrerasauridae; that herrerasaurids, Eoraptor lunensis, and Guaibasaurus candelariensis are saurischians; that Saurischia includes two main groups, Sauropodomorpha and Theropoda; and that Saturnalia tupiniquim is a basal member of the sauropodomorph lineage. On the contrary, several aspects of basal dinosaur phylogeny remain controversial, including the position of herrerasaurids, E. lunensis, and G. candelariensis as basal theropods or basal saurischians, and the affinity and/or validity of more fragmentary taxa such as Agnosphitys cromhallensis, Alwalkeria maleriensis, Chindesaurus bryansmalli, Saltopus elginensis, and

  4. Body Size Distribution of the Dinosaurs

    OpenAIRE

    O?Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutiona...

  5. Analysis of radiation level on dinosaur fossil in Zigong

    International Nuclear Information System (INIS)

    Yang Changshu; Liang Shuzhi; Fan Zhengnian.

    1995-01-01

    Study on radiation level of dinosaur fossil and environment in conservation zone in Zigong, Sichuan has been done. The results showed that the γ radiation dose and radioactivity strength of 232 Th and 40 K in dinosaur fossil, soil and rock in the conservation zone were within the limits of radioactive background value in Zigong. Radioactivity strength of 238 U, 226 Ra in dinosaur fossil were 26.6 and 29.2 times higher than the rock of same layer respectively

  6. Bone histology sheds light on the nature of the "dermal armor" of the enigmatic sauropod dinosaur Agustinia ligabuei Bonaparte, 1999

    Science.gov (United States)

    Bellardini, Flavio; Cerda, Ignacio A.

    2017-02-01

    Agustinia ligabuei is an Early Cretaceous sauropod dinosaur from the northwest of Patagonia that is currently the topic of debate with respect to its phylogenetic position and atypical dermal armor. The presence of four morphotypes of laminar and transversely elongated putative osteoderms was used to consider Agustinia as an armored sauropod. Regarding the different hypotheses about the identity of the bony structures of Agustinia (e.g., osteoderms, cervical or dorsal ribs, hypertrophied elements), a comparative histological analysis has been carried out. Histological evidence is presented herein and reveals that none of the morphotypes of Agustinia shows a primary bone tissue formed by structural fiber bundles as in other sauropod dinosaur osteoderms. Furthermore, on the basis of their gross morphology and microstructure, the bony structures originally classified as types 1 + 4 and 3 are more comparable respectively with dorsal and cervical ribs than any other kind of dermal or bony element. Due to poor preservation, the nature of the type 2 cannot be assessed but is here tentatively assigned to a pelvic girdle element. Although a phylogenetic reassessment of Agustinia is not the purpose of this paper, our paleohistological analyses have broader implications: by not supporting the dermal armor hypothesis for Agustinia, its inclusion in Lithostrotia is not justified in the absence of other diagnostic features.

  7. Embryonic metabolism of the ornithischian dinosaurs Protoceratops andrewsi and Hypacrosaurus stebingeri and implications for calculations of dinosaur egg incubation times

    Science.gov (United States)

    Lee, Scott A.

    2017-04-01

    The embryonic metabolisms of the ornithischian dinosaurs Protoceratops andrewsi and Hypacrosaurus stebingeri have been determined and are in the range observed in extant reptiles. The average value of the measured embryonic metabolic rates for P. andrewsi and H. stebingeri are then used to calculate the incubation times for 21 dinosaurs from both Sauischia and Ornithischia using a mass growth model based on conservation of energy. The calculated incubation times vary from about 70 days for Archaeopteryx lithographica to about 180 days for Alamosaurus sanjuanensis. Such long incubation times seem unlikely, particularly for the sauropods and large theropods. Incubation times are also predicted with the assumption that the saurischian dinosaurs had embryonic metabolisms in the range observed in extant birds.

  8. Cockroaches probably cleaned up after dinosaurs.

    Science.gov (United States)

    Vršanský, Peter; van de Kamp, Thomas; Azar, Dany; Prokin, Alexander; Vidlička, L'ubomír; Vagovič, Patrik

    2013-01-01

    Dinosaurs undoubtedly produced huge quantities of excrements. But who cleaned up after them? Dung beetles and flies with rapid development were rare during most of the Mesozoic. Candidates for these duties are extinct cockroaches (Blattulidae), whose temporal range is associated with herbivorous dinosaurs. An opportunity to test this hypothesis arises from coprolites to some extent extruded from an immature cockroach preserved in the amber of Lebanon, studied using synchrotron X-ray microtomography. 1.06% of their volume is filled by particles of wood with smooth edges, in which size distribution directly supports their external pre-digestion. Because fungal pre-processing can be excluded based on the presence of large particles (combined with small total amount of wood) and absence of damages on wood, the likely source of wood are herbivore feces. Smaller particles were broken down biochemically in the cockroach hind gut, which indicates that the recent lignin-decomposing termite and cockroach endosymbionts might have been transferred to the cockroach gut upon feeding on dinosaur feces.

  9. Gideon Mantell and the Discovery of Dinosaurs

    Science.gov (United States)

    Dean, Dennis R.

    1999-01-01

    Gideon Mantell and the Discovery of Dinosaurs is a scholarly yet accessible biography--the first in a generation--of a pioneering dinosaur hunter and scholar. Gideon Mantell discovered the Iguanodon (a famous tale set right in this book) and several other dinosaur species, spent over twenty-five years restoring Iguanodon fossils, and helped establish the idea of an Age of Reptiles that ended with their extinction at the conclusion of the Mesozoic Era. He had significant interaction with such well-known figures as James Parkinson, Georges Cuvier, Charles Lyell, Roderick Murchison, Charles Darwin, and Richard Owen. Dennis Dean, a well-known scholar of geology and the Victorian era, here places Mantell's career in its cultural context, employing original research in archives throughout the world, including the previously unexamined Mantell family papers in New Zealand.

  10. Comment on "Evidence for mesothermy in dinosaurs".

    Science.gov (United States)

    D'Emic, M D

    2015-05-29

    Grady et al. (Reports, 13 June 2014, p. 1268) suggested that nonavian dinosaur metabolism was neither endothermic nor ectothermic but an intermediate physiology termed "mesothermic." However, rates were improperly scaled and phylogenetic, physiological, and temporal categories of animals were conflated during analyses. Accounting for these issues suggests that nonavian dinosaurs were on average as endothermic as extant placental mammals. Copyright © 2015, American Association for the Advancement of Science.

  11. Multimedia: The Death of the Dinosaurs: 27 Years Later (LBNL Summer Lecture

    Science.gov (United States)

    Find ScienceCinema Search Results Multimedia: The Death of the Dinosaurs: 27 Years Later (LBNL Summer Lecture Series) Citation Details Title: The Death of the Dinosaurs: 27 Years Later (LBNL Summer Lecture Alvarez and colleagues' 1979 discovery that an asteroid impact killed the dinosaurs. He also discussesmore

  12. Angolatitan adamastor, a new sauropod dinosaur and the first record from Angola

    NARCIS (Netherlands)

    Mateus, Octávio; Jacobs, Louis L.; Schulp, Anne S.; Polcyn, Michael J.; Tavares, Tatiana S.; Neto, André Buta; Morais, Maria Luísa; Antunes, Miguel T.

    A forelimb of a new sauropod dinosaur (Angolatitan adamastor n. gen. et sp.) from the Late Turonian of Iembe (Bengo Province) represents the first dinosaur discovery in Angola, and is one of the few occurrences of sauropod dinosaurs in sub-Saharan Africa collected with good chronological controls.

  13. Dinosaur or Phoenix: Nuclear Bombers in the 21st Century

    Science.gov (United States)

    2010-04-12

    REPORT DATE 02-04-10 2. REPORT TYPE Master’s Thesis 3. DATES COVERED 31-07-09 to 16-06-10 4. TITLE AND SUBTITLE Dinosaur or Phoenix: Nuclear...WARFIGHTING SCHOOL DINOSAUR OR PHOENIX: NUCLEAR BOMBERS IN THE 21ST CENTURY by John W. Morehead Colonel, United States Air Force A paper...can argue Secretary Gates’ decision to halt development of a follow-on bomber indicates the DOD views nuclear bombers as dinosaurs no longer needed as

  14. Cretaceous choristoderan reptiles gave birth to live young

    Science.gov (United States)

    Ji, Qiang; Wu, Xiao-Chun; Cheng, Yen-Nien

    2010-04-01

    Viviparity (giving birth to live young) in fossil reptiles has been known only in a few marine groups: ichthyosaurs, pachypleurosaurs, and mosasaurs. Here, we report a pregnant specimen of the Early Cretaceous Hyphalosaurus baitaigouensis, a species of Choristodera, a diapsid group known from unequivocal fossil remains from the Middle Jurassic to the early Miocene (about 165 to 20 million years ago). This specimen provides the first evidence of viviparity in choristoderan reptiles and is also the sole record of viviparity in fossil reptiles which lived in freshwater ecosystems. This exquisitely preserved specimen contains up to 18 embryos arranged in pairs. Size comparison with small free-living individuals and the straight posture of the posterior-most pair suggest that those embryos were at term and had probably reached parturition. The posterior-most embryo on the left side has the head positioned toward the rear, contrary to normal position, suggesting a complication that may have contributed to the mother’s death. Viviparity would certainly have freed species of Hyphalosaurus from the need to return to land to deposit eggs; taking this advantage, they would have avoided intense competition with contemporaneous terrestrial carnivores such as dinosaurs.

  15. Dinosaur bone beds and mass mortality: Implications for the K-T extinction

    Science.gov (United States)

    Carpenter, Kenneth

    1988-01-01

    Mass accumulations of fossilized large terrestrial vertebrate skeletons (bone beds: BB) provide a test for K-T catastrophic extinction hypotheses. The two major factors contributing to BB formation are mode of death and sedimentation rate. Catastrophic mass mortality (CMM) is the sudden death of numerous individuals where species, age, health, gender, or social ranking offer no survivorship advantage. Noncatastrophic mass mortality (NCMM) occurs over time and is strongly influenced by species, age, or gender. In addition to cause of death, sedimentation rate is also important in BB formation. Models of BBs can be made. The CMM drops all individuals in their tracks, therefore, the BB should reflect the living population with respect to species, age, or gender. The NCMM results in monospecific BBs skewed in the direction of the less fit, usually the very young or very old, or towards a specific gender. The NCMM and AM BBs may become more similar the more spread out over time NCMM deaths occur because carcasses are widely scattered requiring hydraulic accumulation, and the greater time allows for more disarticulation and weathering. The CMM and NCMM BB appear to be dominated by social animals. Applying this and the characteristics of mortality patterns to the uppermost Cretaceous Hell Creek Formation indicates that only NCMM and AM BB occur. Furthermore, NCMM BB are rare in the upper third of the Hell Creek. Near the K-T boundary, only AM BB are known. The absence of CMM and NCMM BB appears to be real reflecting a decrease in population levels of some dinosaurs prior to the K-T event. The absence of CMM suggests that the K-T event did not lead to an instantaneous extinction of dinosaurs. Nor was there a protracted die-off due to an asteroid impact winter, because no NCMM BB are known at or near the K-T boundary.

  16. Preservation of the bone protein osteocalcin in dinosaurs

    Science.gov (United States)

    Muyzer, Gerard; Sandberg, Philip; Knapen, Marjo H. J.; Vermeer, Cees; Collins, Matthew; Westbroek, Peter

    1992-10-01

    Two different immunological assays were used to identify the remains of a bone matrix protein, osteocalcin (OC), in the bones of dinosaurs and other fossil vertebrates. Antibodies raised against OC from modern vertebrates showed strong immunological cross-reactivity with modern and relatively young fossil samples and significant reactions with some of the dinosaur bone extracts. The presence of OC was confirmed by the detection of a peptide-bound, uniquely vertebrate amino acid, γcarboxyglutamic acid (Gla). Preservation of OC in fossil bones appears to be strongly dependent on the burial history and not simply on age. These results extend the range of protein preservation in the geologic record and provide a first step toward a molecular phylogeny of the dinosaurs.

  17. Cockroaches probably cleaned up after dinosaurs.

    Directory of Open Access Journals (Sweden)

    Peter Vršanský

    Full Text Available Dinosaurs undoubtedly produced huge quantities of excrements. But who cleaned up after them? Dung beetles and flies with rapid development were rare during most of the Mesozoic. Candidates for these duties are extinct cockroaches (Blattulidae, whose temporal range is associated with herbivorous dinosaurs. An opportunity to test this hypothesis arises from coprolites to some extent extruded from an immature cockroach preserved in the amber of Lebanon, studied using synchrotron X-ray microtomography. 1.06% of their volume is filled by particles of wood with smooth edges, in which size distribution directly supports their external pre-digestion. Because fungal pre-processing can be excluded based on the presence of large particles (combined with small total amount of wood and absence of damages on wood, the likely source of wood are herbivore feces. Smaller particles were broken down biochemically in the cockroach hind gut, which indicates that the recent lignin-decomposing termite and cockroach endosymbionts might have been transferred to the cockroach gut upon feeding on dinosaur feces.

  18. Calibration of the Late Cretaceous to Paleocene geomagnetic polarity and astrochronological time scales: new results from high-precision U-Pb geochronology

    Science.gov (United States)

    Ramezani, Jahandar; Clyde, William; Wang, Tiantian; Johnson, Kirk; Bowring, Samuel

    2016-04-01

    Reversals in the Earth's magnetic polarity are geologically abrupt events of global magnitude that makes them ideal timelines for stratigraphic correlation across a variety of depositional environments, especially where diagnostic marine fossils are absent. Accurate and precise calibration of the Geomagnetic Polarity Timescale (GPTS) is thus essential to the reconstruction of Earth history and to resolving the mode and tempo of biotic and environmental change in deep time. The Late Cretaceous - Paleocene GPTS is of particular interest as it encompasses a critical period of Earth history marked by the Cretaceous greenhouse climate, the peak of dinosaur diversity, the end-Cretaceous mass extinction and its paleoecological aftermaths. Absolute calibration of the GPTS has been traditionally based on sea-floor spreading magnetic anomaly profiles combined with local magnetostratigraphic sequences for which a numerical age model could be established by interpolation between an often limited number of 40Ar/39Ar dates from intercalated volcanic ash deposits. Although the Neogene part of the GPTS has been adequately calibrated using cyclostratigraphy-based, astrochronological schemes, the application of these approaches to pre-Neogene parts of the timescale has been complicated given the uncertainties of the orbital models and the chaotic behavior of the solar system this far back in time. Here we present refined chronostratigraphic frameworks based on high-precision U-Pb geochronology of ash beds from the Western Interior Basin of North America and the Songliao Basin of Northeast China that places tight temporal constraints on the Late Cretaceous to Paleocene GPTS, either directly or by testing their astrochronological underpinnings. Further application of high-precision radioisotope geochronology and calibrated astrochronology promises a complete and robust Cretaceous-Paleogene GPTS, entirely independent of sea-floor magnetic anomaly profiles.

  19. Description of Arundel Clay ornithomimosaur material and a reinterpretation of Nedcolbertia justinhofmanni as an “Ostrich Dinosaur”: biogeographic implications

    Directory of Open Access Journals (Sweden)

    Chase Doran Brownstein

    2017-03-01

    Full Text Available The fossil record of dinosaurs from the Early Cretaceous of Eastern North America is scant, especially since a few stratigraphic units from the east are fossiliferous. Among these stratigraphic units, the Arundel Clay of the eastern seaboard has produced the best-characterized dinosaur faunas known from the Early Cretaceous of Eastern North America. The diverse dinosaur fauna of the Arundel Clay has been thoroughly discussed previously, but a few of the dinosaur species originally described from the Arundel Clay are still regarded as valid genera. Much of the Arundel material is in need of review and redescription. Among the fossils of dinosaurs from this stratigraphic unit are those referred to ornithomimosaurs. Here, the researcher describes ornithomimosaur remains from the Arundel Clay of Prince George’s County, Maryland which may be from two distinct ornithomimosaur taxa. These remains provide key information on the theropods of the Early Cretaceous of Eastern North America. Recent discoveries of small theropod material from the Arundel Clay possibly belonging to ornithomimosaurs are also reviewed and described for the first time. The description of the Arundel material herein along with recent discoveries of basal ornithomimosaurs in the past 15 years has allowed for comparisons with the coelurosaur Nedcolbertia justinhofmanni, suggesting the latter animal was a basal ornithomimosaur rather than a “generalized” coelurosaur as it was originally described. Comparisons between the Arundel ornithomimosaur material and similar Asian and European specimens suggest that both extremely basal ornithomimosaurs and more intermediate or derived forms may have coexisted throughout the northern hemisphere during the Early Cretaceous.

  20. Were sauropod dinosaurs responsible for the warm Mesozoic climate?

    Directory of Open Access Journals (Sweden)

    A.J. (Tom van Loon

    2012-10-01

    Full Text Available It was recently postulated that methane production by the giant Mesozoic sauropod dinosaurs was larger than the present-day release of this greenhouse gas by nature and man-induced activities jointly, thus contributing to the warm Mesozoic climate. This conclusion was reached by correct calculations, but these calculations were based on unrealistic assumptions: the researchers who postulated this dinosaur-induced warm climate did take into account neither the biomass production required for the sauropods' food, nor the constraints for the habitats in which the dinosaurs lived, thus neglecting the palaeogeographic conditions. This underlines the importance of palaeogeography for a good understanding of the Earth's geological history.

  1. 76 FR 7232 - Notice of Inventory Completion: U.S. Department of the Interior, National Park Service, Dinosaur...

    Science.gov (United States)

    2011-02-09

    .... Department of the Interior, National Park Service, Dinosaur National Monument, Dinosaur, CO AGENCY: National... Service, Dinosaur National Monument, Dinosaur, CO, has completed an inventory of human remains and... Indian tribe that believes itself to be culturally affiliated with the human remains may contact Dinosaur...

  2. Microscopic and immunohistochemical analyses of the claw of the nesting dinosaur, Citipati osmolskae.

    Science.gov (United States)

    Moyer, Alison E; Zheng, Wenxia; Schweitzer, Mary H

    2016-11-16

    One of the most well-recognized Cretaceous fossils is Citipati osmolskae (MPC-D 100/979), an oviraptorid dinosaur discovered in brooding position on a nest of unhatched eggs. The original description refers to a thin lens of white material extending from a manus ungual, which was proposed to represent original keratinous claw sheath that, in life, would have covered it. Here, we test the hypothesis that this exceptional morphological preservation extends to the molecular level. The fossil sheath was compared with that of extant birds, revealing similar morphology and microstructural organization. In living birds, the claw sheath consists primarily of two structural proteins; alpha-keratin, expressed in all vertebrates, and beta-keratin, found only in reptiles and birds (sauropsids). We employed antibodies raised against avian feathers, which comprise almost entirely of beta-keratin, to demonstrate that fossil tissues respond with the same specificity, though less intensity, as those from living birds. Furthermore, we show that calcium chelation greatly increased antibody reactivity, suggesting a role for calcium in the preservation of this fossil material. © 2016 The Author(s).

  3. Tracking dinosaurs in Spain

    Directory of Open Access Journals (Sweden)

    Neil D.L. Clark

    2015-12-01

    Full Text Available Book review: Félix Pérez-Lorente 2015. Dinosaur Footprints and Trackways of La Rioja. 376 pp. Indiana University Press. Hardcover. ISBN: 978-0-253-01515-0. Price $85.00/£61.00; e-book $84.99.

  4. Warm and Cool Dinosaurs.

    Science.gov (United States)

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  5. Kindergartners Love Dinosaurs

    Science.gov (United States)

    Stollon, Marcy

    2005-01-01

    In this article, the author relates how she uses an art lesson that integrates art, language arts, and science in an enjoyable, creative project about dinosaurs in her kindergarten class. She relates how the children enjoy being illustrators and becoming familiar with well-known children's illustrators. She also relates that she starts her classes…

  6. A dinosaur missing-link? Chilesaurus and the early evolution of ornithischian dinosaurs.

    Science.gov (United States)

    Baron, Matthew G; Barrett, Paul M

    2017-08-01

    The enigmatic dinosaur taxon Chilesaurus diegosuarezi was originally described as a tetanuran theropod, but this species possesses a highly unusual combination of features that could provide evidence of alternative phylogenetic positions within the clade. In order to test the relationships of Chilesaurus , we added it to a new dataset of early dinosaurs and other dinosauromorphs. Our analyses recover Chilesaurus in a novel position, as the earliest diverging member of Ornithischia, rather than a tetanuran theropod. The basal position of Chilesaurus within the clade and its suite of anatomical characters suggest that it might represent a 'transitional' taxon, bridging the morphological gap between Theropoda and Ornithischia, thereby offering potential insights into the earliest stages of ornithischian evolution, which were previously obscure. For example, our results suggest that pubic retroversion occurred prior to some of the craniodental and postcranial modifications that previously diagnosed the clade (e.g. the presence of a predentary bone and ossified tendons). © 2017 The Author(s).

  7. Dinosaur peptides suggest mechanisms of protein survival.

    Science.gov (United States)

    San Antonio, James D; Schweitzer, Mary H; Jensen, Shane T; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P R O

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  8. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    Energy Technology Data Exchange (ETDEWEB)

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P.R.O. (Harvard-Med); (IIT); (NCSU); (UPENN); (Manchester); (Orthovita)

    2011-09-16

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  9. The history of dinosaur footprint discoveries in Wyoming with emphasis on the Bighorn Basin

    Science.gov (United States)

    Kvale, Erik P.; Mickelson, Debra L.; Hasiotis, Stephen T; Johnson, Gary D.

    2003-01-01

    Dinosaur traces are well known from the western United States in the Colorado Plateau region (Utah, Colorado, New Mexico, and Arizona). Utah contains the greatest abundance of known and documented dinosaur footprints and trackways. Far less well known, however, is the occurrence and distribution of dinosaur footprint-bearing horizons in Wyoming. Scientific studies over the past 10 years have shown that three of the four Middle and Upper Jurassic formations in northern Wyoming contain dinosaur footprints. Two of the footprint-bearing horizons are located in geologic intervals that were once thought to have been deposited in offshore to nearshore marine settings and represent rare North American examples of Middle Jurassic (Bajocian and Bathonian) dinosaur remains. Some of these new Wyoming sites can be correlated to known dinosaur footprint-bearing horizons or intervals in Utah. Wyoming has a great potential for additional discoveries of new dinosaur footprint-bearing horizons, and further prospecting and study is warranted and will ultimately lead to a much better understanding of the geographic distribution and behavior of the potential footprint-makers.

  10. Plesiosaur-bearing rocks from the Late Cretaceous Tahora Fm, Mangahouanga, New Zealand - a palaeoenvironmental study

    Science.gov (United States)

    Vajda, Vivi; Raine, J. Ian

    2010-05-01

    Mangahouanga Stream, Hawkes Bay, New Zealand is world-famous for its high southern latitude vertebrate fossils including plesiosaurs, mosasaurs and more rarely, dinosaurs. The fossils are preserved in the conglomeratic facies of the Maungataniwha Sandstone Member of the Tahora Formation. A palynological investigation of sediments from the boulders hosting vertebrate fossils reveals well-preserved palynological assemblages dominated by pollen and spores from land plants but also including marine dinoflagellate cysts in one sample. The palynofacies is strongly dominated by wood fragments including charcoal, and the sample taken from a boulder hosting plesiosaur vertebrae is entirely terrestrially derived, suggesting a fresh-water habitat for at least some of these plesiosaurs. The key-pollen taxa Nothofagidites senectus and Tricolpites lilliei, together with the dinocyst Isabelidinium pellucidum and the megaspore Grapnelispora evansii, strongly indicate an early Maastrichtian age for the host rock. The terrestrial palynoflora reflects a mixed vegetation dominated by podocarp conifers and angiosperms with a significant tree-fern subcanopy component. The presence of taxa with modern temperate distributions such as Nothofagus (southern beech), Proteaceae and Cyatheaceae (tree-ferns), indicates a mild-temperate climate and lack of severe winter freezing during the latest Cretaceous, providing an ecosystem which most probably made it possible for polar dinosaurs to overwinter. The paper is dedicated to Mrs Joan Wiffen who with her great persistence, enthusiasm and courage put Mangahouanga on the world map, becoming a role model for many young scientists.

  11. Sauropod dinosaurs evolved moderately sized genomes unrelated to body size.

    Science.gov (United States)

    Organ, Chris L; Brusatte, Stephen L; Stein, Koen

    2009-12-22

    Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77-2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97-2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05-5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.

  12. Megalosauripus transjuranicus ichnosp. nov. A new Late Jurassic theropod ichnotaxon from NW Switzerland and implications for tridactyl dinosaur ichnology and ichnotaxomy.

    Science.gov (United States)

    Razzolini, Novella L; Belvedere, Matteo; Marty, Daniel; Paratte, Géraldine; Lovis, Christel; Cattin, Marielle; Meyer, Christian A

    2017-01-01

    A new ichnospecies of a large theropod dinosaur, Megalosauripus transjuranicus, is described from the Reuchenette Formation (Early-Late Kimmeridgian, Late Jurassic) of NW Switzerland. It is based on very well-preserved and morphologically-distinct tracks (impressions) and several trackways, including different preservational types from different tracksites and horizons. All trackways were excavated along federal Highway A16 near Courtedoux (Canton Jura) and systematically documented in the field including orthophotos and laserscans. The best-preserved tracks were recovered and additional tracks were casted. Megalosauripus transjuranicus is characterized by tridactyl tracks with clear claw and digital pad impressions, and notably an exceptionally large and round first phalangeal pad on the fourth digit (PIV1) that is connected to digit IV and forms the round heel area. Due to this combination of features, M. transjuranicus clearly is of theropod (and not ornithopod) origin. M. transjuranicus is compared to other Megalosauripus tracks and similar ichnotaxa and other unassigned tracks from the Early Jurassic to Early Cretaceous. It is clearly different from other ichnogenera assigned to large theropods such as Eubrontes-Grallator from the Late Triassic and Early Jurassic or Megalosauripus-Megalosauropus-Bueckeburgichnus and Therangospodus tracks from the Late Jurassic and Early Cretaceous. A second tridactyl morphotype (called Morphotype II) is different from Megalosauripus transjuranicus in being subsymmetric, longer than wide (sometimes almost as wide as long), with blunt toe impressions and no evidence for discrete phalangeal pad and claw marks. Some Morphotype II tracks are found in trackways that are assigned to M. transjuranicus, to M.? transjuranicus or M. cf. transjuranicus indicating that some Morphotype II tracks are intra-trackway preservational variants of a morphological continuum of Megalosauripus transjuranicus. On the other hand, several up to 40 steps

  13. A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation

    Science.gov (United States)

    Arbour, Victoria M.; Evans, David C.

    2017-05-01

    The terrestrial Judith River Formation of northern Montana was deposited over an approximately 4 Myr interval during the Campanian (Late Cretaceous). Despite having been prospected and collected continuously by palaeontologists for over a century, few relatively complete dinosaur skeletons have been recovered from this unit to date. Here we describe a new genus and species of ankylosaurine dinosaur, Zuul crurivastator, from the Coal Ridge Member of the Judith River Formation, based on an exceptionally complete and well-preserved skeleton (ROM 75860). This is the first ankylosaurin skeleton known with a complete skull and tail club, and it is the most complete ankylosaurid ever found in North America. The presence of abundant soft tissue preservation across the skeleton, including in situ osteoderms, skin impressions and dark films that probably represent preserved keratin, make this exceptional skeleton an important reference for understanding the evolution of dermal and epidermal structures in this clade. Phylogenetic analysis recovers Zuul as an ankylosaurin ankylosaurid within a clade of Dyoplosaurus and Scolosaurus, with Euoplocephalus being more distantly related within Ankylosaurini. The occurrence of Z. crurivastator from the upper Judith River Formation fills a gap in the ankylosaurine stratigraphic and geographical record in North America, and further highlights that Campanian ankylosaurines were undergoing rapid evolution and stratigraphic succession of taxa as observed for Laramidian ceratopsids, hadrosaurids, pachycephalosaurids and tyrannosaurids.

  14. An Evolutionary Cascade Model for Sauropod Dinosaur Gigantism - Overview, Update and Tests

    OpenAIRE

    Sander, P. Martin

    2013-01-01

    Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutiona...

  15. Timing of the deposition of uppermost Cretaceous and Paleocene coal-bearing deposits in the Greater Glendive area, Montana and North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    With the aid of a grant from the National Geographic Society, a cooperative agreement with the State University of New York at Stony Brook, and contract with the U.S. Department of Energy, Late Cretaceous and Paleocene geologic and paleontologic field studies were undertaken in Makoshika, State Park and vicinity, Dawson County, Montana. This region was chosen as a study area because of its potential for yielding new fossil localities and extensive exposures both above and below the K/T boundary, as suggested by previous research by David W. Krause and Joseph H. Hartman. Related field studies were also undertaken in areas adjacent to the Cedar Creek Anticline in North Dakota. This work was part of ongoing research to document change in the composition of mammalian and molluscan faunas during the Late Cretaceous and Paleocene and to relate observed patterns to floral and invertebrate changes in composition. This study focuses on the record of mammals and mollusks in the Makoshika stratigraphic section and places old and new observations into a paleomagnetic and palynomorph framework. Of particular interest is the appearance and diversification of archaic ungulate mammals. Simultaneous dinosaur extinction with ungulate radiation has been invoked in gradual, as opposed to catastrophic, models of faunal change at the K/T boundary. However, supposed Cretaceous localities bearing archaic ungulates and other mammals of {open_quotes}Paleocene aspect{close_quotes} may be the product of faunal reworking. Elsewhere in the Williston Basin (e.g., Garfield and McCone Counties, Montana), the molluscan record of uppermost Cretaceous and Paleocene strata indicates the extinction of all of the highly sculptured unionid bivalves just prior to the onset of coal swamps and subsequent coal formation.

  16. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion

    Science.gov (United States)

    Lee, Scott

    2015-01-01

    In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…

  17. Epidermal and dermal integumentary structures of ankylosaurian dinosaurs.

    Science.gov (United States)

    Arbour, Victoria M; Burns, Michael E; Bell, Phil R; Currie, Philip J

    2014-01-01

    Ankylosaurian dinosaurs are most notable for their abundant and morphologically diverse osteoderms, which would have given them a spiky appearance in life. Isolated osteoderms are relatively common and provide important information about the structure of the ankylosaur dermis, but fossilized impressions of the soft-tissue epidermis of ankylosaurs are rare. Nevertheless, well-preserved integument exists on several ankylosaur fossils that shows osteoderms were covered by a single epidermal scale, but one or many millimeter-sized ossicles may be present under polygonal, basement epidermal scales. Evidence for the taxonomic utility of ankylosaurid epidermal scale architecture is presented for the first time. This study builds on previous osteological work that argues for a greater diversity of ankylosaurids in the Dinosaur Park Formation of Alberta than has been traditionally recognized and adds to the hypothesis that epidermal skin impressions are taxonomically relevant across diverse dinosaur clades. Copyright © 2013 Wiley Periodicals, Inc.

  18. Mapping Metal Elements of Shuangbai Dinosaur Fossil by Synchrotron X-ray Fluorescence Microprobe

    International Nuclear Information System (INIS)

    Wang, Y.; Qun, Y.; Ablett, J.

    2008-01-01

    The metal elements mapping of Shuangbai dinosaur fossil, was obtained by synchrotron x-ray fluorescence (SXRF). Eight elements, Ca, Mn, Fe, Cu, Zn, As, Y and Sr were determined. Elements As and Y were detected for the first time in the dinosaur fossil. The data indicated that metal elements are asymmetrical on fossil section. This is different from common minerals. Mapping metals showed that metal element As is few. The dinosaur most likely belongs to natural death. This is different from Zigong dinosaurs which were found dead from poisoning. This method has been used to find that metals Fe and Mn are accrete, and the same is true for Sr and Y. This study indicated that colloid granule Fe and Mn, as well as Sr and Y had opposite electric charges in lithification process of fossils. By this analysis, compound forms can be ascertained. Synchrotron light source x-ray fluorescence is a complementary method that shows mapping of metal elements at the dinosaur fossil, and is rapid, exact and intuitionist. This study shows that dinosaur fossil mineral imaging has a potential in reconstructing the paleoenvironment and ancient geology.

  19. Footprints pull origin and diversification of dinosaur stem lineage deep into Early Triassic.

    Science.gov (United States)

    Brusatte, Stephen L; Niedźwiedzki, Grzegorz; Butler, Richard J

    2011-04-07

    The ascent of dinosaurs in the Triassic is an exemplary evolutionary radiation, but the earliest phase of dinosaur history remains poorly understood. Body fossils of close dinosaur relatives are rare, but indicate that the dinosaur stem lineage (Dinosauromorpha) originated by the latest Anisian (ca 242-244 Ma). Here, we report footprints from the Early-Middle Triassic of Poland, stratigraphically well constrained and identified using a conservative synapomorphy-based approach, which shifts the origin of the dinosaur stem lineage back to the Early Olenekian (ca 249-251 Ma), approximately 5-9 Myr earlier than indicated by body fossils, earlier than demonstrated by previous footprint records, and just a few million years after the Permian/Triassic mass extinction (252.3 Ma). Dinosauromorph tracks are rare in all Polish assemblages, suggesting that these animals were minor faunal components. The oldest tracks are quadrupedal, a morphology uncommon among the earliest dinosauromorph body fossils, but bipedality and moderately large body size had arisen by the Early Anisian (ca 246 Ma). Integrating trace fossils and body fossils demonstrates that the rise of dinosaurs was a drawn-out affair, perhaps initiated during recovery from the Permo-Triassic extinction.

  20. A new oviraptorid (Dinosauria: Theropoda) from the Upper Cretaceous of southern China.

    Science.gov (United States)

    Wang, Shuo; Sun, Chengkai; Sullivan, Corwin; Xu, Xing

    2013-01-01

    This paper describes a new oviraptorid dinosaur taxon, Ganzhousaurus nankangensis gen. et sp. nov., based on a specimen collected from the Upper Cretaceous Nanxiong Formation of Nankang County, Ganzhou City, Jiangxi Province, southern China. This new taxon is distinguishable from other oviraptorids based on the following unique combination of primitive and derived features: relatively shallow dentary; absence of fossa or pneumatopore on lateral surface of dentary; weakly downturned anterior mandibular end; shallow depression immediately surrounding anterior margin of external mandibular fenestra; external mandibular fenestra subdivided by anterior process of surangular; dentary posteroventral process slightly twisted and positioned on mandibular ventrolateral surface; shallow longitudinal groove along medial surface of dentary posteroventral process; angular anterior process wider transversely than deep dorsoventrally; sharp groove along ventrolateral surface of angular anterior process; ventral border of external mandibular fenestra formed mainly by angular; ventral flange along distal half of metatarsal II; and arctometatarsal condition absent. Phylogenetic analysis places Ganzhousaurus nankangensis gen. et sp. nov. in the clade Oviraptoridae, together with Oviraptor, Citipati, Rinchenia and the unnamed Zamyn Khondt oviraptorid.

  1. Ontogeny and the fossil record: what, if anything, is an adult dinosaur?

    Science.gov (United States)

    Hone, David W E; Farke, Andrew A; Wedel, Mathew J

    2016-02-01

    Identification of the ontogenetic status of an extinct organism is complex, and yet this underpins major areas of research, from taxonomy and systematics to ecology and evolution. In the case of the non-avialan dinosaurs, at least some were reproductively mature before they were skeletally mature, and a lack of consensus on how to define an 'adult' animal causes problems for even basic scientific investigations. Here we review the current methods available to determine the age of non-avialan dinosaurs, discuss the definitions of different ontogenetic stages, and summarize the implications of these disparate definitions for dinosaur palaeontology. Most critically, a growing body of evidence suggests that many dinosaurs that would be considered 'adults' in a modern-day field study are considered 'juveniles' or 'subadults' in palaeontological contexts. © 2016 The Author(s).

  2. Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion II

    Science.gov (United States)

    Lee, Scott

    2015-01-01

    In the second paper of this series, the effect of transverse femoral stresses due to locomotion in theropod dinosaurs of different sizes was examined for the case of an unchanging leg geometry. Students are invariably thrilled to learn about theropod dinosaurs, and this activity applies the concepts of torque and stress to the issue of theropod…

  3. Ar-40 to Ar-39 ages of the large impact structures Kara and Manicouagan and their relevance to the Cretaceous-Tertiary and the Triassic-Jurassic boundary

    Science.gov (United States)

    Trieloff, M.; Jessberger, E. K.

    Since the discovery of the Ir enrichment in Cretaceous-Tertiary boundary clays in 1980, the effects of a 10-km asteroid impacting on the Earth 65 Ma ago have been discussed as the possible reason for the mass extinction--including the extinction of the dinosaurs--at the end of the Cretaceous. But up to now no crater of this age that is large enough (ca. 200 km in diameter) has been found. One candidate is the Kara Crater in northern Siberia. Kolesnikov et al. determined a K-Ar isochron of 65.6 +/- 0.5 Ma, indistinguishable from the age of the K-T boundary and interpreted this as confirmation of earlier proposals that the Kara bolide would have been at least one of the K-T impactors. Koeberl et al. determined Ar-40 to Ar-39 ages ranging from 70 to 82 Ma and suggested an association to the Campanian-Maastrichtian boundary, another important extinction horizon 73 Ma ago. We dated four impact melts, KA2-306, KA2-305, SA1-302, and AN9-182. Results from the investigation are discussed.

  4. A phylogenetic study of the section moduli of the humerus in bipedal theropod dinosaurs

    Science.gov (United States)

    Lee, Scott; Richards, Zachary

    The section modulus of a bone is a measure of its ability to resist bending torques. Carnivorous dinosaurs including Tyrannosauroidea and Allosauroidea had strong humeri, presumably to hold struggling prey during hunting. The herbivorous dinosaurs of Ornithomimosauria had weak arm bones. This is believed to reflect the fact that their arms were never subjected to large bending torques. The unusual dinosaurs of Therizinosauria had arms as strong as found in the carnivorous dinosaurs. This is consistent with the hypothesis that their manus suggests a digging lifestyle. Other groups including Oviraptorosauria, Troodontidae, Dromaeosauridae and Compsognathidae are also examined.

  5. Molecular analyses of dinosaur osteocytes support the presence of endogenous molecules.

    Science.gov (United States)

    Schweitzer, Mary Higby; Zheng, Wenxia; Cleland, Timothy P; Bern, Marshall

    2013-01-01

    The discovery of soft, transparent microstructures in dinosaur bone consistent in morphology with osteocytes was controversial. We hypothesize that, if original, these microstructures will have molecular features in common with extant osteocytes. We present immunological and mass spectrometry evidence for preservation of proteins comprising extant osteocytes (Actin, Tubulin, PHEX, Histone H4) in osteocytes recovered from two non-avian dinosaurs. Furthermore, antibodies to DNA show localized binding to these microstructures, which also react positively with DNA intercalating stains propidium iodide (PI) and 4',6'-diamidino-2-phenylindole dihydrochloride (DAPI). Each antibody binds dinosaur cells in patterns similar to extant cells. These data are the first to support preservation of multiple proteins and to present multiple lines of evidence for material consistent with DNA in dinosaurs, supporting the hypothesis that these structures were part of the once living animals. We propose mechanisms for preservation of cells and component molecules, and discuss implications for dinosaurian cellular biology. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Cretaceous biota of the Triângulo Mineiro region (Brazil: A review of recent finds

    Directory of Open Access Journals (Sweden)

    Candeiro, C. R. A.

    2007-06-01

    Full Text Available The Bauru Group (Adamantina, Uberaba, and Marília Formations crop out in the Triângulo Mineiro region, Minas Gerais State, Brazil, and yield a rich continental biota. Invertebrate and vertebrate taxa from underlying and overlying strata, as well as biostratigraphical correlations with other fossil sites in Argentina, suggest an Upper Cretaceous age for this biota. The diversity of the fossil assemblage recorded in these formations is summarized here and includes: frogs, lizards, crocodiles, titanosaurs, abelisaurid and carcharodontosaurid dinosaurs. This fossil assemblage provides important clues to understand faunas from other southern landmasses, particularly those from the Cretaceous of the African continent.Los afloramientos del Grupo Bauru (formaciones Adamantina, Uberaba y Marília en la región del Triângulo Mineiro, Provincia de Minas Gerais, Brasil, posee un rico contenido de biota continental. Los taxa de invertebrados y vertebrados de estos estratos, así como las correlaciones biostratigráficas con otros yacimientos fósiles de Argentina, sugieren una edad del Cretácico Tardío. La diversidad de la asociación fósil registrada en las formaciones del Triângulo Mineiro se resume en el presente trabajo e incluye: sapos, lagartos, tortugas, cocodrilianos, titanosaurideos, dinosaurios abelisaurideos y carcharodontosaurideos. Esta asociación es importante para la comprensión de las faunas del sur de América y también de las del Cretácico de África.

  7. Continental fossil vertebrates from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation, Brazil, and their relationship with contemporaneous faunas from North Africa

    Science.gov (United States)

    Candeiro, Carlos Roberto A.; Fanti, Federico; Therrien, François; Lamanna, Matthew C.

    2011-05-01

    The Albian-Cenomanian Alcântara Formation of northeastern Brazil preserves the most diverse continental vertebrate fauna of this age yet known from northern South America. The Alcântara vertebrate assemblage, consisting of elasmobranchs, actinopterygians, sarcopterygians, turtles, crocodyliforms, pterosaurs, and non-avian dinosaurs, displays close similarities to contemporaneous faunas from North Africa. The co-occurrence of as many as eight freshwater or estuarine fish taxa ( Onchopristis, Bartschichthys, Lepidotes, Stephanodus, Mawsonia, Arganodus, Ceratodus africanus, and possibly Ceratodus humei) and up to seven terrestrial archosaur taxa ( Sigilmassasaurus, Rebbachisauridae, Baryonychinae, Spinosaurinae, Carcharodontosauridae, possibly Pholidosauridae, and doubtfully Bahariasaurus) suggests that a land route connecting northeastern Brazil and North Africa existed at least until the Albian. Interestingly, most components of this mid-Cretaceous northern South American/North African assemblage are not shared with coeval southern South American faunas, which are themselves characterized by a number of distinct freshwater and terrestrial vertebrate taxa (e.g., chelid turtles, megaraptoran and unenlagiine theropods). These results suggest that, although mid-Cretaceous faunal interchange was probably possible between northern South America and North Africa, paleogeographic, paleoclimatic, and/or paleoenvironmental barriers may have hindered continental vertebrate dispersal between northern and southern South America during this time.

  8. Insight on the anatomy, systematic relationships, and age of the Early Cretaceous ankylopollexian dinosaur Dakotadon lakotaensis

    Directory of Open Access Journals (Sweden)

    Clint A. Boyd

    2015-09-01

    Full Text Available Knowledge regarding the early evolution within the dinosaurian clade Ankylopollexia drastically increased over the past two decades, in part because of an increase in described taxa from the Early Cretaceous of North America. These advances motivated the recent completion of extensive preparation and conservation work on the holotype and only known specimen of Dakotadon lakotaensis, a basal ankylopollexian from the Lakota Formation of South Dakota. That specimen (SDSM 8656 preserves a partial skull, lower jaws, a single dorsal vertebra, and two caudal vertebrae. That new preparation work exposed several bones not included in the original description and revealed that other bones were previously misidentified. The presence of extensive deformation in areas of the skull is also noted that influenced inaccuracies in prior descriptions and reconstructions of this taxon. In addition to providing an extensive re-description of D. lakotaensis, this study reviews previously proposed diagnoses for this taxon, identifies two autapomorphies, and provides an extensive differential diagnosis. Dakotadon lakotaensis is distinct from the only other ankylopollexian taxon known from the Lakota Formation, Osmakasaurus depressus, in the presence of two prominent, anteroposteriorly oriented ridges on the ventral surfaces of the caudal vertebrae, the only overlapping material preserved between these taxa. The systematic relationships of D. lakotaensis are evaluated using both the parsimony and posterior probability optimality criteria, with both sets of analyses recovering D. lakotaensis as a non-hadrosauriform ankylopollexian that is more closely related to taxa from the Early Cretaceous (e.g., Iguanacolossus, Hippodraco, and Theiophytalia than to more basally situated taxa from the Jurassic (e.g., Camptosaurus, Uteodon. This taxonomic work is supplemented by field work that relocated the type locality, confirming its provenance from unit L2 (lower Fuson Member

  9. Ecological interactions in dinosaur communities: influences of small offspring and complex ontogenetic life histories.

    Directory of Open Access Journals (Sweden)

    Daryl Codron

    Full Text Available Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs' successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S distribution of carnivorous dinosaurs (as found in the theropod fossil record, in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora. Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods, in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey

  10. Ecological interactions in dinosaur communities: influences of small offspring and complex ontogenetic life histories.

    Science.gov (United States)

    Codron, Daryl; Carbone, Chris; Clauss, Marcus

    2013-01-01

    Because egg-laying meant that even the largest dinosaurs gave birth to very small offspring, they had to pass through multiple ontogenetic life stages to adulthood. Dinosaurs' successors as the dominant terrestrial vertebrate life form, the mammals, give birth to live young, and have much larger offspring and less complex ontogenetic histories. The larger number of juveniles in dinosaur as compared to mammal ecosystems represents both a greater diversity of food available to predators, and competitors for similar-sized individuals of sympatric species. Models of population abundances across different-sized species of dinosaurs and mammals, based on simulated ecological life tables, are employed to investigate how differences in predation and competition pressure influenced dinosaur communities. Higher small- to medium-sized prey availability leads to a normal body mass-species richness (M-S) distribution of carnivorous dinosaurs (as found in the theropod fossil record), in contrast to the right-skewed M-S distribution of carnivorous mammals (as found living members of the order Carnivora). Higher levels of interspecific competition leads to a left-skewed M-S distribution in herbivorous dinosaurs (as found in sauropods and ornithopods), in contrast to the normal M-S distribution of large herbivorous mammals. Thus, our models suggest that differences in reproductive strategy, and consequently ontogeny, explain observed differences in community structure between dinosaur and mammal faunas. Models also show that the largest dinosaurian predators could have subsisted on similar-sized prey by including younger life stages of the largest herbivore species, but that large predators likely avoided prey much smaller than themselves because, despite predicted higher abundances of smaller than larger-bodied prey, contributions of small prey to biomass intake would be insufficient to satisfy meat requirements. A lack of large carnivores feeding on small prey exists in mammals

  11. DinoViz: Exploring the History and Nature of Science through the Progression of Dinosaur Visualization

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2011-01-01

    Dinosaurs in the middle school classroom can be exciting. These extinct reptiles are both an exotic subject and familiar to our students. Because students are inherently interested, dinosaurs can serve as an effective portal for the integration of biology, geology, ecology, and the history and nature of science. The field of dinosaur study is…

  12. Direct evidence for impact winter following the Cretaceous-Paleogene bolide impact

    Science.gov (United States)

    Vellekoop, J.; Sluijs, A.; Smit, J.; Schouten, S.; Sinninghe Damsté, J. S.; Brinkhuis, H.

    2012-12-01

    The Cretaceous/Paleogene (K/Pg) boundary, ~65.5 Ma, marks a mass-extinction event related the impact of a large asteroid on the Yucatan peninsula, Mexico. Model scenarios predict that the explosive injection of dust and sulfate aerosols into the stratosphere blocked incoming solar radiation, resulting in a cooling pulse of months to several decades, a so-called 'impact winter', but thus far, proxy records lack sufficient resolution to evaluate this hypothesis. We report on a major, short-lived drop in sea surface temperatures (SSTs) recorded in an unusually well preserved and stratigraphically expanded K/Pg boundary site in Texas, USA, based on TEX86 paleothermometry. Critically, the cooling directly post-dates impact-related tsunami deposits, and coincides with the deposition of extraterrestrial iridium representing aerosol fall out, restricting the age of the cooling to the first months to decades after impact. We interpret this cooling to reflect the first direct evidence for the "impact winter" at the K/Pg boundary. The combination of darkness and cooling must have been a key contributory element in the extinctions of many biological clades, including the dinosaurs, flying reptiles and marine reptiles.

  13. No evidence for directional evolution of body mass in herbivorous theropod dinosaurs

    Science.gov (United States)

    Zanno, Lindsay E.; Makovicky, Peter J.

    2013-01-01

    The correlation between large body size and digestive efficiency has been hypothesized to have driven trends of increasing mass in herbivorous clades by means of directional selection. Yet, to date, few studies have investigated this relationship from a phylogenetic perspective, and none, to our knowledge, with regard to trophic shifts. Here, we reconstruct body mass in the three major subclades of non-avian theropod dinosaurs whose ecomorphology is correlated with extrinsic evidence of at least facultative herbivory in the fossil record—all of which also achieve relative gigantism (more than 3000 kg). Ordinary least-squares regressions on natural log-transformed mean mass recover significant correlations between increasing mass and geological time. However, tests for directional evolution in body mass find no support for a phylogenetic trend, instead favouring passive models of trait evolution. Cross-correlation of sympatric taxa from five localities in Asia reveals that environmental influences such as differential habitat sampling and/or taphonomic filtering affect the preserved record of dinosaurian body mass in the Cretaceous. Our results are congruent with studies documenting that behavioural and/or ecological factors may mitigate the benefit of increasing mass in extant taxa, and suggest that the hypothesis can be extrapolated to herbivorous lineages across geological time scales. PMID:23193135

  14. Analytical chemists and dinosaurs

    International Nuclear Information System (INIS)

    Brooks, R.R.

    1987-01-01

    The role of the analytical chemist in the development of the extraterrestrial impact theory for mass extinctions at the terminal Cretaceous Period is reviewed. High iridium concentrations in Cretaceous/Tertiary boundary clays have been linked to a terrestrial impact from an iridium-rich asteroid or large meteorite som 65 million years ago. Other evidence in favour of the occurrence of such an impact has been provided by the detection of shocked quartz grains originating from impact and of amorphous carbon particles similar to soot, derived presumably from wordwide wildfires at the terminal Cretaceous. Further evidence provided by the analytical chemist involves the determination of isotopic ratios such as 144 Nd/ 143 Nd, 187 Os/ 186 Os, and 87 Sr/ 86 Sr. Countervailing arguments put forward by the gradualist school (mainly palaeontological) as opposed to the catastrophists (mainly chemists and geochemists) are also presented and discussed

  15. Analytical chemists and dinosaurs

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, R R

    1987-05-01

    The role of the analytical chemist in the development of the extraterrestrial impact theory for mass extinctions at the terminal Cretaceous Period is reviewed. High iridium concentrations in Cretaceous/Tertiary boundary clays have been linked to a terrestrial impact from an iridium-rich asteroid or large meteorite som 65 million years ago. Other evidence in favour of the occurrence of such an impact has been provided by the detection of shocked quartz grains originating from impact and of amorphous carbon particles similar to soot, derived presumably from wordwide wildfires at the terminal Cretaceous. Further evidence provided by the analytical chemist involves the determination of isotopic ratios such as /sup 144/Nd//sup 143/Nd, /sup 187/Os//sup 186/Os, and /sup 87/Sr//sup 86/Sr. Countervailing arguments put forward by the gradualist school (mainly palaeontological) as opposed to the catastrophists (mainly chemists and geochemists) are also presented and discussed.

  16. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs.

    Science.gov (United States)

    Fong, Raymond K M; LeBlanc, Aaron R H; Berman, David S; Reisz, Robert R

    2016-07-01

    Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian- 209-201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916-924, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania

    Directory of Open Access Journals (Sweden)

    M. Aberhan

    2002-01-01

    Full Text Available The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German-Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinvertebrates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs. In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1 Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2 Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere. Presumably, tidal flats and coastal plains were visited by dinosaurs primarily during periods of drought. (3 Vegetated hinterland. Vegetation of this environment can only be inferred indirectly from plant material transported into the other depositional environments. Vegetation was dominated by a diverse conifer flora, which apparently formed part of the food source of large herbivorous sauropods. Evidence from various sources suggests a subtropical to tropical palaeoclimate, characterised by seasonal rainfall alternating with

  18. Review of the Dinosaur Remains from the Middle Jurassic of Scotland, UK

    Directory of Open Access Journals (Sweden)

    Neil D. L. Clark

    2018-02-01

    Full Text Available Dinosaurs are rare from the Middle Jurassic worldwide. The Isle of Skye, is the only place in Scotland thus far to have produced dinosaur remains. These remains consist mainly of footprints, but also several bones and teeth. These Bajocian and Bathonian remains represent an important collection of a basal eusauropod, early examples of non-neosauropod and possible basal titanosauriform eusauropods, and theropod remains that may belong to an early coelurosaur and a possible megalosaurid, basal tyrannosauroid, or dromaeosaurid. The footprints from here also suggest a rich and diverse dinosaur fauna for which further better diagnosable remains are likely to be found.

  19. Bringing dinosaurs back to life: exhibiting prehistory at the American Museum of Natural History.

    Science.gov (United States)

    Rieppel, Lukas

    2012-09-01

    This essay examines the exhibition of dinosaurs at the American Museum of Natural History during the first two decades of the twentieth century. Dinosaurs provide an especially illuminating lens through which to view the history of museum display practices for two reasons: they made for remarkably spectacular exhibits; and they rested on contested theories about the anatomy, life history, and behavior of long-extinct animals to which curators had no direct observational access. The American Museum sought to capitalize on the popularity of dinosaurs while mitigating the risks of mounting an overtly speculative display by fashioning them into a kind of mixed-media installation made of several elements, including fossilized bone, shellac, iron, and plaster. The resulting sculptures provided visitors with a vivid and lifelike imaginative experience. At the same time, curators, who were anxious to downplay the speculative nature of mounted dinosaurs, drew systematic attention to the material connection that tied individual pieces of fossilized bone to the actual past. Freestanding dinosaurs can therefore be read to have functioned as iconic sculptures that self-consciously advertised their indexical content.

  20. Retrodeformation and muscular reconstruction of ornithomimosaurian dinosaur crania

    Directory of Open Access Journals (Sweden)

    Andrew R. Cuff

    2015-07-01

    Full Text Available Ornithomimosaur dinosaurs evolved lightweight, edentulous skulls that possessed keratinous rhamphothecae. Understanding the anatomy of these taxa allows for a greater understanding of “ostrich-mimic” dinosaurs and character change during theropod dinosaur evolution. However, taphonomic processes during fossilisation often distort fossil remains. Retrodeformation offers a means by which to recover a hypothesis of the original anatomy of the specimen, and 3D scanning technologies present a way to constrain and document the retrodeformation process. Using computed tomography (CT scan data, specimen specific retrodeformations were performed on three-dimensionally preserved but taphonomically distorted skulls of the deinocheirid Garudimimus brevipes Barsbold, 1981 and the ornithomimids Struthiomimus altus Lambe, 1902 and Ornithomimus edmontonicus Sternberg, 1933. This allowed for a reconstruction of the adductor musculature, which was then mapped onto the crania, from which muscle mechanical advantage and bite forces were calculated pre- and post-retrodeformation. The extent of the rhamphotheca was varied in each taxon to represent morphologies found within modern Aves. Well constrained retrodeformation allows for increased confidence in anatomical and functional analysis of fossil specimens and offers an opportunity to more fully understand the soft tissue anatomy of extinct taxa.

  1. Dietary adaptions in the ultrastructure of dinosaur dentine.

    Science.gov (United States)

    Brink, Kirstin S; Chen, Yu-Cheng; Wu, Ya-Na; Liu, Wei-Min; Shieh, Dar-Bin; Huang, Timothy D; Sun, Chi-Kuang; Reisz, Robert R

    2016-12-01

    Teeth are key to understanding the feeding ecology of both extant and extinct vertebrates. Recent studies have highlighted the previously unrecognized complexity of dinosaur dentitions and how specific tooth tissues and tooth shapes differ between taxa with different diets. However, it is unknown how the ultrastructure of these tooth tissues contributes to the differences in feeding style between taxa. In this study, we use third harmonic generation microscopy and scanning electron microscopy to examine the ultrastructure of the dentine in herbivorous and carnivorous dinosaurs to understand how the structure of this tissue contributes to the overall utility of the tooth. Morphometric analyses of dentinal tubule diameter, density and branching rates reveal a strong signal for dietary preferences, with herbivorous saurischian and ornithischian dinosaurs consistently having higher dentinal tubule density than their carnivorous relatives. We hypothesize that this relates to the hardness of the dentine, where herbivorous taxa have dentine that is more resistant to breakage and wear at the dentine-enamel junction than carnivorous taxa. This study advocates the detailed study of dentine and the use of advanced microscopy techniques to understand the evolution of dentition and feeding ecology in extinct vertebrates. © 2016 The Author(s).

  2. Dental microwear reveals mammal-like chewing in the neoceratopsian dinosaur Leptoceratops gracilis

    Directory of Open Access Journals (Sweden)

    Frank J. Varriale

    2016-07-01

    Full Text Available Extensive oral processing of food through dental occlusion and orbital mandibular movement is often cited as a uniquely mammalian trait that contributed to their evolutionary success. Save for mandibular translation, these adaptations are not seen in extant archosaurs or lepidosaurs. In contrast, some ornithischian dinosaurs show evidence of precise dental occlusion, habitual intraoral trituration and complex jaw motion. To date, however, a robust understanding of the diversity of jaw mechanics within non-avian dinosaurs, and its comparison with other vertebrates, remains unrealized. Large dental batteries, well-developed dental wear facets, and robust jaws suggests that neoceratopsian (horned dinosaurs were capable chewers. But, biomechanical analyses have assumed a relatively simple, scissor-like (orthal jaw mechanism for these animals. New analyses of dental microwear, presented here, show curvilinear striations on the teeth of Leptoceratops. These features indicate a rostral to caudal orbital motion of the mandible during chewing. A rostrocaudal mandibular orbit is seen in multituberculates, haramiyid allotherians, and some rodents, and its identification in Leptoceratops gracilis is the first evidence of complex, mammal-like chewing in a ceratopsian dinosaur. The term circumpalinal is here proposed to distinguish this new style of chewing from other models of ceratopsian mastication that also involve a palinal component. This previously unrecognized complexity in dinosaurian jaw mechanics indicates that some neoceratopsian dinosaurs achieved a mammalian level of masticatory efficiency through novel adaptive solutions.

  3. An Unusual New Theropod with a Didactyl Manus from the Upper Cretaceous of Patagonia, Argentina

    Science.gov (United States)

    Apesteguía, Sebastián; Smith, Nathan D.; Juárez Valieri, Rubén; Makovicky, Peter J.

    2016-01-01

    Background Late Cretaceous terrestrial strata of the Neuquén Basin, northern Patagonia, Argentina have yielded a rich fauna of dinosaurs and other vertebrates. The diversity of saurischian dinosaurs is particularly high, especially in the late Cenomanian-early Turonian Huincul Formation, which has yielded specimens of rebacchisaurid and titanosaurian sauropods, and abelisaurid and carcharodontosaurid theropods. Continued sampling is adding to the known vertebrate diversity of this unit. Methodology/ Principal Findings A new, partially articulated mid-sized theropod was found in rocks from the Huincul Formation. It exhibits a unique combination of traits that distinguish it from other known theropods justifying erection of a new taxon, Gualicho shinyae gen. et sp. nov. Gualicho possesses a didactyl manus with the third digit reduced to a metacarpal splint reminiscent of tyrannosaurids, but both phylogenetic and multivariate analyses indicate that didactyly is convergent in these groups. Derived characters of the scapula, femur, and fibula supports the new theropod as the sister taxon of the nearly coeval African theropod Deltadromeus and as a neovenatorid carcharodontosaurian. A number of these features are independently present in ceratosaurs, and Gualicho exhibits an unusual mosaic of ceratosaurian and tetanuran synapomorphies distributed throughout the skeleton. Conclusions/ Significance Gualicho shinyae gen. et sp. nov. increases the known theropod diversity of the Huincul Formation and also represents the first likely neovenatorid from this unit. It is the most basal tetatanuran to exhibit common patterns of digit III reduction that evolved independently in a number of other tetanuran lineages. A close relationship with Deltadromaeus from the Kem Kem beds of Niger adds to the already considerable biogeographic similarity between the Huincul Formation and coeval rock units in North Africa. PMID:27410683

  4. Did You Know? New Data on Dinosaurs.

    Science.gov (United States)

    Silverberg, Robert

    1981-01-01

    New information reveals that dinosaurs have a pelvic structure similar to that of animals that walk upright. Science teachers should remember that theories and assumptions are always provisional and tentative. (JN)

  5. Distribuição geográfica dos dinossauros da bacia baurú (Cretácio superior

    Directory of Open Access Journals (Sweden)

    Carlos Roberto A. Candeiro

    2004-12-01

    Full Text Available The Bauru Basin (Bauru and Caiuá basins dinosaur fauna is diverse and typical from the Gondwana, specially composed by Titanosauria and Abslisauridae. The dinosaurs are mainly found in rocks of the Adamantina and Marília formations (Bauru Group. Those specimes are represented by fragmentary remains deposited in a fluvialacustrine environment. The Bauru Group dinosaurs are similar to those found in Argentina. This composition suggests the there was assemblage no during the Late Cretaceous in these regions. That fauna of dinosaurs share similiarities to India and Madagascar specimens, reflecting a common Gondwanan origin.

  6. Vertebrate paleontological exploration of the Upper Cretaceous succession in the Dakhla and Kharga Oases, Western Desert, Egypt

    Science.gov (United States)

    Sallam, Hesham M.; O'Connor, Patrick M.; Kora, Mahmoud; Sertich, Joseph J. W.; Seiffert, Erik R.; Faris, Mahmoud; Ouda, Khaled; El-Dawoudi, Iman; Saber, Sara; El-Sayed, Sanaa

    2016-05-01

    The Campanian and Maastrichtian stages are very poorly documented time intervals in Africa's record of terrestrial vertebrate evolution. Upper Cretaceous deposits exposed in southern Egypt, near the Dakhla and Kharga Oases in the Western Desert, preserve abundant vertebrate fossils in nearshore marine environments, but have not yet been the focus of intensive collection and description. Our recent paleontological work in these areas has resulted in the discovery of numerous new vertebrate fossil-bearing localities within the middle Campanian Qusier Formation and the upper Campanian-lower Maastrichtian Duwi Formation. Fossil remains recovered from the Campanian-aged Quseir Formation include sharks, rays, actinopterygian and sarcopterygian fishes, turtles, and rare terrestrial archosaurians, including some of the only dinosaurs known from this interval on continental Africa. The upper Campanian/lower Maastrichtian Duwi Formation preserves sharks, sawfish, actinopterygians, and marine reptiles (mosasaurs and plesiosaurs). Notably absent from these collections are representatives of Mammalia and Avialae, both of which remain effectively undocumented in the Upper Cretaceous rocks of Africa and Arabia. New age constraints on the examined rock units is provided by 23 nannofossil taxa, some of which are reported from the Duwi Formation for the first time. Fossil discoveries from rock units of this age are essential for characterizing the degree of endemism that may have developed as the continent became increasingly tectonically isolated from the rest of Gondwana, not to mention for fully evaluating origin and diversification hypotheses of major modern groups of vertebrates (e.g., crown birds, placental mammals).

  7. A second look at the colors of the dinosaurs.

    Science.gov (United States)

    Turner, Derek D

    2016-02-01

    In earlier work, I predicted that we would probably not be able to determine the colors of the dinosaurs. I lost this epistemic bet against science in dramatic fashion when scientists discovered that it is possible to draw inferences about dinosaur coloration based on the microstructure of fossil feathers (Vinther et al., 2008). This paper is an exercise in philosophical error analysis. I examine this episode with two questions in mind. First, does this case lend any support to epistemic optimism about historical science? Second, under what conditions is it rational to make predictions about what questions scientists will or will not be able answer? In reply to the first question, I argue that the recent work on the colors of the dinosaurs matters less to the debate about the epistemology of historical science than it might seem. In reply to the second question, I argue that it is difficult to specify a policy that would rule out the failed bet without also being too conservative. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cretaceous Crocodyliforms from the Sahara

    Directory of Open Access Journals (Sweden)

    Paul Sereno

    2009-11-01

    Full Text Available Diverse crocodyliforms have been discovered in recent years in Cretaceous rocks on southern landmasses formerly composing Gondwana.  We report here on six species from the Sahara with an array of trophic adaptations that significantly deepen our current understanding of African crocodyliform diversity during the Cretaceous period.  We describe two of these species (Anatosuchus minor, Araripesuchus wegeneri from nearly complete skulls and partial articulated skeletons from the Lower Cretaceous Elrhaz Formation (Aptian-Albian of Niger. The remaining four species (Araripesuchus rattoides sp. n., Kaprosuchus saharicus gen. n. sp. n., Laganosuchus thaumastos gen. n. sp. n., Laganosuchus maghrebensis gen. n. sp. n. come from contemporaneous Upper Cretaceous formations (Cenomanian in Niger and Morocco.

  9. Bird embryos uncover homology and evolution of the dinosaur ankle.

    Science.gov (United States)

    Ossa-Fuentes, Luis; Mpodozis, Jorge; Vargas, Alexander O

    2015-11-13

    The anklebone (astragalus) of dinosaurs presents a characteristic upward projection, the 'ascending process' (ASC). The ASC is present in modern birds, but develops a separate ossification centre, and projects from the calcaneum in most species. These differences have been argued to make it non-comparable to dinosaurs. We studied ASC development in six different orders of birds using traditional techniques and spin-disc microscopy for whole-mount immunofluorescence. Unexpectedly, we found the ASC derives from the embryonic intermedium, an ancient element of the tetrapod ankle. In some birds it comes in contact with the astragalus, and, in others, with the calcaneum. The fact that the intermedium fails to fuse early with the tibiale and develops an ossification centre is unlike any other amniotes, yet resembles basal, amphibian-grade tetrapods. The ASC originated in early dinosaurs along changes to upright posture and locomotion, revealing an intriguing combination of functional innovation and reversion in its evolution.

  10. Mammal survival at the Cretaceous-Palaeogene boundary: metabolic homeostasis in prolonged tropical hibernation in tenrecs.

    Science.gov (United States)

    Lovegrove, Barry G; Lobban, Kerileigh D; Levesque, Danielle L

    2014-12-07

    Free-ranging common tenrecs, Tenrec ecaudatus, from sub-tropical Madagascar, displayed long-term (nine months) hibernation which lacked any evidence of periodic interbout arousals (IBAs). IBAs are the dominant feature of the mammalian hibernation phenotype and are thought to periodically restore long-term ischaemia damage and/or metabolic imbalances (depletions and accumulations). However, the lack of IBAs in tenrecs suggests no such pathology at hibernation Tbs > 22°C. The long period of tropical hibernation that we report might explain how the ancestral placental mammal survived the global devastation that drove the dinosaurs and many other vertebrates to extinction at the Cretaceous-Palaeogene boundary following a meteorite impact. The genetics and biochemistry of IBAs are of immense interest to biomedical researchers and space exploration scientists, in the latter case, those envisioning a hibernating state in astronauts for deep space travel. Unravelling the physiological thresholds and temperature dependence of IBAs will provide new impetus to these research quests. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. The interaction of the cretaceous-tertiary extinction bolide with the atmosphere, ocean, and solid earth

    Science.gov (United States)

    Okeefe, J. D.; Ahrens, T. J.

    1981-01-01

    A number of investigations, including those reported by Orth et al. (1981), have provided physical evidence for the impact of an extraterrestrial object on earth 65 million years ago. This time corresponds to the end of the cretaceous period. This impact could, therefore, be responsible for the observed extinction of biological species at the end of the Mesozoic era. Among the species becoming extinct are found also flying and walking dinosaurs, which include all land animals that had masses greater than 25 kg. The present investigation is concerned with a study of the possibilities for the collision of earth with 10 km-size object, and the consequences produced by such a collision. It is found that the penetration of the atmosphere by the bolide creates a temporary hole in the atmosphere. The resulting flow fields can inject melt droplets and finely commuted solid particles into the atmosphere. Short-term effects of heating, followed by dust induced worldwide cooling, may provide several mechanisms for the observed extinction of the species.

  12. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.

    Science.gov (United States)

    Myhrvold, Nathan P

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

  13. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    Science.gov (United States)

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  14. Chicken-sized oviraptorid dinosaurs from central China and their ontogenetic implications.

    Science.gov (United States)

    Lü, Junchang; Currie, Philip J; Xu, Li; Zhang, Xingliao; Pu, Hanyong; Jia, Songhai

    2013-02-01

    Oviraptorids are a group of specialized non-avian theropod dinosaurs that were generally one to 8 m in body length. New specimens of baby oviraptorids from the Late Cretaceous of Henan Province are some of the smallest individuals known. They include diagnostic characters such as the relative position of the antorbital fenestra and the external naris, distinct opening in the premaxilla anteroventral to the external naris, antorbital fossa partly bordered by premaxilla posterodorsally, lacrimal process of premaxilla does not contact the anterodorsal process of the lacrimal, parietal almost as long as frontal; in dorsal view, posterior margin forms a straight line between the postzygapophyses in each of the fourth and fifth cervicals; femur longer than ilium. They also elucidate the ontogenetic processes of oviraptorids, including fusion of cranial elements and changes in relative body proportions. Hind limb proportions are constant in oviraptorids, regardless of absolute body size or ontogenetic stage. This suggests a sedentary lifestyle that did not involve the pursuit of similar-sized prey. The functional implications for bite force and therefore dietary preferences are better understood through the study of such small animals. The comparison of the measurements of 115 skeletons indicates that oviraptorids maintain their hind limb proportions regardless of ontogenetic stage or absolute size, which is a pattern seen more commonly in herbivores than in carnivores. This may weakly support the hypothesis that oviraptorids are herbivores rather than active carnivores.

  15. Models for the rise of the dinosaurs.

    Science.gov (United States)

    Benton, Michael J; Forth, Jonathan; Langer, Max C

    2014-01-20

    Dinosaurs arose in the early Triassic in the aftermath of the greatest mass extinction ever and became hugely successful in the Mesozoic. Their initial diversification is a classic example of a large-scale macroevolutionary change. Diversifications at such deep-time scales can now be dissected, modelled and tested. New fossils suggest that dinosaurs originated early in the Middle Triassic, during the recovery of life from the devastating Permo-Triassic mass extinction. Improvements in stratigraphic dating and a new suite of morphometric and comparative evolutionary numerical methods now allow a forensic dissection of one of the greatest turnovers in the history of life. Such studies mark a move from the narrative to the analytical in macroevolutionary research, and they allow us to begin to answer the proposal of George Gaylord Simpson, to explore adaptive radiations using numerical methods. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Extreme ecosystem instability suppressed tropical dinosaur dominance for 30 million years.

    Science.gov (United States)

    Whiteside, Jessica H; Lindström, Sofie; Irmis, Randall B; Glasspool, Ian J; Schaller, Morgan F; Dunlavey, Maria; Nesbitt, Sterling J; Smith, Nathan D; Turner, Alan H

    2015-06-30

    A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10-15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ(13)Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.

  17. An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.

    Directory of Open Access Journals (Sweden)

    P Martin Sander

    Full Text Available Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM. This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism". Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.

  18. An evolutionary cascade model for sauropod dinosaur gigantism--overview, update and tests.

    Science.gov (United States)

    Sander, P Martin

    2013-01-01

    Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades ("Reproduction", "Feeding", "Head and neck", "Avian-style lung", and "Metabolism"). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait "Very high body mass". Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size.

  19. First dinosaur tracks from the Arabian Peninsula

    NARCIS (Netherlands)

    Schulp, Anne S.; Al-Wosabi, Mohammed; Stevens, Nancy J.

    2008-01-01

    Background: The evolutionary history of Mesozoic terrestrial vertebrates from the Arabian Peninsula is virtually unknown. Despite vast exposures of rocky outcrops, only a handful of fossils have yet been described from the region. Here we report a multi-taxon dinosaur track assemblage near Madar

  20. New developmental evidence clarifies the evolution of wrist bones in the dinosaur-bird transition.

    Science.gov (United States)

    Botelho, João Francisco; Ossa-Fuentes, Luis; Soto-Acuña, Sergio; Smith-Paredes, Daniel; Nuñez-León, Daniel; Salinas-Saavedra, Miguel; Ruiz-Flores, Macarena; Vargas, Alexander O

    2014-09-01

    From early dinosaurs with as many as nine wrist bones, modern birds evolved to develop only four ossifications. Their identity is uncertain, with different labels used in palaeontology and developmental biology. We examined embryos of several species and studied chicken embryos in detail through a new technique allowing whole-mount immunofluorescence of the embryonic cartilaginous skeleton. Beyond previous controversy, we establish that the proximal-anterior ossification develops from a composite radiale+intermedium cartilage, consistent with fusion of radiale and intermedium observed in some theropod dinosaurs. Despite previous claims that the development of the distal-anterior ossification does not support the dinosaur-bird link, we found its embryonic precursor shows two distinct regions of both collagen type II and collagen type IX expression, resembling the composite semilunate bone of bird-like dinosaurs (distal carpal 1+distal carpal 2). The distal-posterior ossification develops from a cartilage referred to as "element x," but its position corresponds to distal carpal 3. The proximal-posterior ossification is perhaps most controversial: It is labelled as the ulnare in palaeontology, but we confirm the embryonic ulnare is lost during development. Re-examination of the fossil evidence reveals the ulnare was actually absent in bird-like dinosaurs. We confirm the proximal-posterior bone is a pisiform in terms of embryonic position and its development as a sesamoid associated to a tendon. However, the pisiform is absent in bird-like dinosaurs, which are known from several articulated specimens. The combined data provide compelling evidence of a remarkable evolutionary reversal: A large, ossified pisiform re-evolved in the lineage leading to birds, after a period in which it was either absent, nonossified, or very small, consistently escaping fossil preservation. The bird wrist provides a modern example of how developmental and paleontological data illuminate

  1. Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Wilson

    Full Text Available BACKGROUND: A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. METHODOLOGY/PRINCIPAL FINDINGS: The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees , and plantigrade and digitigrade foot posture. CONCLUSIONS/SIGNIFICANCE: The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors.

  2. Prospecting for dinosaurs on the mining frontier: The value of information in America's Gilded Age.

    Science.gov (United States)

    Rieppel, Lukas

    2015-04-01

    How much is a dinosaur worth? This essay offers an account of the way vertebrate fossils were priced in late 19th-century America to explore the process by which monetary values are established in science. Examining a long and drawn-out negotiation over the sale of an unusually rich dinosaur quarry in Wyoming, I argue that, on their own, abstract market principles did not suffice to mediate between supply and demand. Rather, people haggling over the price of dinosaur bones looked to social norms from the mineral industry for cues on how to value these rare and unusual objects, adopting a set of negotiation tactics that exploited asymmetries in the distribution of scarce information to secure the better end of the deal. On the mining frontier in America's Gilded Age, dinosaurs were thus valued in much the same way as any other scarce natural resource one could dig out of the ground, including gold, silver, and coal.

  3. An Evolutionary Cascade Model for Sauropod Dinosaur Gigantism - Overview, Update and Tests

    Science.gov (United States)

    Sander, P. Martin

    2013-01-01

    Sauropod dinosaurs are a group of herbivorous dinosaurs which exceeded all other terrestrial vertebrates in mean and maximal body size. Sauropod dinosaurs were also the most successful and long-lived herbivorous tetrapod clade, but no abiological factors such as global environmental parameters conducive to their gigantism can be identified. These facts justify major efforts by evolutionary biologists and paleontologists to understand sauropods as living animals and to explain their evolutionary success and uniquely gigantic body size. Contributions to this research program have come from many fields and can be synthesized into a biological evolutionary cascade model of sauropod dinosaur gigantism (sauropod gigantism ECM). This review focuses on the sauropod gigantism ECM, providing an updated version based on the contributions to the PLoS ONE sauropod gigantism collection and on other very recent published evidence. The model consist of five separate evolutionary cascades (“Reproduction”, “Feeding”, “Head and neck”, “Avian-style lung”, and “Metabolism”). Each cascade starts with observed or inferred basal traits that either may be plesiomorphic or derived at the level of Sauropoda. Each trait confers hypothetical selective advantages which permit the evolution of the next trait. Feedback loops in the ECM consist of selective advantages originating from traits higher in the cascades but affecting lower traits. All cascades end in the trait “Very high body mass”. Each cascade is linked to at least one other cascade. Important plesiomorphic traits of sauropod dinosaurs that entered the model were ovipary as well as no mastication of food. Important evolutionary innovations (derived traits) were an avian-style respiratory system and an elevated basal metabolic rate. Comparison with other tetrapod lineages identifies factors limiting body size. PMID:24205267

  4. Maximal aerobic and anaerobic power generation in large crocodiles versus mammals: implications for dinosaur gigantothermy.

    Science.gov (United States)

    Seymour, Roger S

    2013-01-01

    Inertial homeothermy, the maintenance of a relatively constant body temperature that occurs simply because of large size, is often applied to large dinosaurs. Moreover, biophysical modelling and actual measurements show that large crocodiles can behaviourally achieve body temperatures above 30°C. Therefore it is possible that some dinosaurs could achieve high and stable body temperatures without the high energy cost of typical endotherms. However it is not known whether an ectothermic dinosaur could produce the equivalent amount of muscular power as an endothermic one. To address this question, this study analyses maximal power output from measured aerobic and anaerobic metabolism in burst exercising estuarine crocodiles, Crocodylusporosus, weighing up to 200 kg. These results are compared with similar data from endothermic mammals. A 1 kg crocodile at 30°C produces about 16 watts from aerobic and anaerobic energy sources during the first 10% of exhaustive activity, which is 57% of that expected for a similarly sized mammal. A 200 kg crocodile produces about 400 watts, or only 14% of that for a mammal. Phosphocreatine is a minor energy source, used only in the first seconds of exercise and of similar concentrations in reptiles and mammals. Ectothermic crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in endothermic mammals. Despite the ability to achieve high and fairly constant body temperatures, therefore, large, ectothermic, crocodile-like dinosaurs would have been competitively inferior to endothermic, mammal-like dinosaurs with high aerobic power. Endothermy in dinosaurs is likely to explain their dominance over mammals in terrestrial ecosystems throughout the Mesozoic.

  5. Maximal aerobic and anaerobic power generation in large crocodiles versus mammals: implications for dinosaur gigantothermy.

    Directory of Open Access Journals (Sweden)

    Roger S Seymour

    Full Text Available Inertial homeothermy, the maintenance of a relatively constant body temperature that occurs simply because of large size, is often applied to large dinosaurs. Moreover, biophysical modelling and actual measurements show that large crocodiles can behaviourally achieve body temperatures above 30°C. Therefore it is possible that some dinosaurs could achieve high and stable body temperatures without the high energy cost of typical endotherms. However it is not known whether an ectothermic dinosaur could produce the equivalent amount of muscular power as an endothermic one. To address this question, this study analyses maximal power output from measured aerobic and anaerobic metabolism in burst exercising estuarine crocodiles, Crocodylusporosus, weighing up to 200 kg. These results are compared with similar data from endothermic mammals. A 1 kg crocodile at 30°C produces about 16 watts from aerobic and anaerobic energy sources during the first 10% of exhaustive activity, which is 57% of that expected for a similarly sized mammal. A 200 kg crocodile produces about 400 watts, or only 14% of that for a mammal. Phosphocreatine is a minor energy source, used only in the first seconds of exercise and of similar concentrations in reptiles and mammals. Ectothermic crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in endothermic mammals. Despite the ability to achieve high and fairly constant body temperatures, therefore, large, ectothermic, crocodile-like dinosaurs would have been competitively inferior to endothermic, mammal-like dinosaurs with high aerobic power. Endothermy in dinosaurs is likely to explain their dominance over mammals in terrestrial ecosystems throughout the Mesozoic.

  6. Hanford: The evolution of a dinosaur

    International Nuclear Information System (INIS)

    Fulton, J.

    1995-01-01

    This article describes how the Westinghouse Hanford Company is reinventing the US DOE's Hanford Site, turning a 1940s-era dinosaur into a 1990s-style business. The major topics covered include the following: breaking the logjam by ending the inefficient cost-plus days; Concentrating resources on resolving urgent safety issues; contract reform with more incentive, greater risk; finally reengineering: the next step

  7. Osteology, Phylogeny, Taphonomy, and Ontogenetic Histology of Oryctodromeus cubicularis, from the Middle Cretaceous (Albian-Cenomanian) of Montana and Idaho

    Science.gov (United States)

    Krumenacker, L. J.

    Oryctodromeus is a small bipedal dinosaur known from middle Cretaceous (95-100 My) Wayan Formation of Idaho and the Vaughn Member of the Blackleaf Formation of Montana. This taxon is hypothesized to be a burrowing dinosaur, which cared for its young within these burrows. This dissertation is a broad three-part treatment of this taxon, and excepting the introductory and concluding chapters this dissertation consists of three main chapters. Chapter two describes the osteology and phylogenetic relationships of this animal. Notable features of the Oryctodromeus skeleton described include a network of ossified tendons along the vertebral column that completely ensheath the tail, a long tail that forms more than half the length of the animal, and unusual femoral heads whose morphology may be related to burrowing behavior. The first full skeletal and skull reconstructions of this animal are presented. Chapter three investigates patterns of preservation of Oryctodromeus. Data suggests that preservation of single to multiple individuals of this taxon typically occurred in burrows that may be difficult to impossible to recognize in the fossil record. New examples of burrows from Oryctodromeus from the Vaughn and Wayan, as well as additional evidence for social behavior, are also described. A third chapter details the ontogenetic histology, growth rates and patterns of skeletal fusion based on seven limb elements (femora and tibiae) from different individuals. Based on the data in this dissertation, three growth stages can be recognized in Oryctodromeus based on bone histology. Juveniles are defined by more rapidly growing fibrolamellar tissue, sub-adults are defined by a cortex of inner fibrolamellar tissue and outer zonal parallel fibered tissue, and near-adult individuals have tissue similar to sub adults with dense avascular bone in the outermost cortex that signals a decrease in growth rate. LAG's suggest a minimum age of six to seven years for more mature individuals

  8. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    Science.gov (United States)

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  9. Mesozoic basins and associated palaeogeographic evolution in North China

    Directory of Open Access Journals (Sweden)

    Yong-Qing Liu

    2015-04-01

    Besides, during the Late Mesozoic, a huge terrestrial biota, mainly dinosaur fauna, dominated in North China. The Yanliao biota of the Middle–Late Jurassic and the Jehol biota of the Early Cretaceous are characterized by feathered dinosaurs, primitive birds, mammals, pterosaur, insects and plants (angiosperms. In northeastern Asia, this Late Mesozoic tectonic background , palaeogeoraphy and palaeoecology were shared by East China, Korean Peninsula, Japan and the Far East of Russia.

  10. Angolan ichnosite in a diamond mine shows the presence of a large terrestrial mammaliamorph, a crocodylomorph, and sauropod dinosaurs in the Early Cretaceous of Africa

    NARCIS (Netherlands)

    Mateus, Octávio; Marzola, Marco; Schulp, Anne S.; Jacobs, Louis L.; Polcyn, Michael J.; Pervov, Vladimir; Gonçalves, António Olímpio; Morais, Maria Luisa

    2017-01-01

    We report here new and the first mammaliamorph tracks from the Early Cretaceous of Africa. The tracksite, that also bears crocodylomorph and sauropod dinosaurian tracks, is in the Catoca diamond mine, Lunda Sul Province, Angola. The mammaliamorph tracks have a unique morphology, attributed to

  11. Dark matter and the dinosaurs the astounding interconnectedness of the universe

    CERN Document Server

    Randall, Lisa

    2015-01-01

    In this brilliant exploration of our cosmic environment, the renowned particle physicist and New York Times bestselling author of Warped Passages and Knocking on Heaven’s Door uses her research into dark matter to illuminate the startling connections between the furthest reaches of space and life here on Earth. Sixty-six million years ago, an object the size of a city descended from space to crash into Earth, creating a devastating cataclysm that killed off the dinosaurs, along with three-quarters of the other species on the planet. What was its origin? In Dark Matter and the Dinosaurs, Lisa Randall proposes it was a comet that was dislodged from its orbit as the Solar System passed through a disk of dark matter embedded in the Milky Way. In a sense, it might have been dark matter that killed the dinosaurs. Working through the background and consequences of this proposal, Randall shares with us the latest findings—established and speculative—regarding the nature and role of dark matter and the origin ...

  12. A new sauropod dinosaur from the Middle Jurassic of the United Kingdom.

    Science.gov (United States)

    Manning, Phillip L; Egerton, Victoria M; Romano, Mike

    2015-01-01

    A new record of a sauropodomorph dinosaur is here described from the Middle Jurassic (Aalenian) Saltwick Formation of Whitby (Yorkshire), UK. A single caudal vertebra represents an early sauropodomorph and signifies the earliest recognised eusauropod dinosaur from the United Kingdom. The absence of pleurocoels and a narrow, dorsoventrally deep, but craniocaudally short centrum, suggests a primitive sauropodomorph. Distinct spinopostzygopophyseal laminae rise from the lateral margins of the postzygapophyses and pass caudally along what remains of the neural spine, a character unique to a subgroup of sauropods that includes Barapasaurus, Omeisaurus and other neosauropods and eusauropods. The lack of phylogenetically robust characters in sauropod caudal vertebrae usually makes it difficult to establish affinities, but the absence of mild procoely excludes this specimen from both Diplodocoidea and Lithostrotia. The vertebra cannot be further distinguished from those of a wide range of basal sauropods, cetiosaurids and basal macronarians. However, this plesiomorphic vertebra still signifies the earliest stratigraphic occurrence for a British sauropod dinosaur.

  13. A new sauropod dinosaur from the Middle Jurassic of the United Kingdom.

    Directory of Open Access Journals (Sweden)

    Phillip L Manning

    Full Text Available A new record of a sauropodomorph dinosaur is here described from the Middle Jurassic (Aalenian Saltwick Formation of Whitby (Yorkshire, UK. A single caudal vertebra represents an early sauropodomorph and signifies the earliest recognised eusauropod dinosaur from the United Kingdom. The absence of pleurocoels and a narrow, dorsoventrally deep, but craniocaudally short centrum, suggests a primitive sauropodomorph. Distinct spinopostzygopophyseal laminae rise from the lateral margins of the postzygapophyses and pass caudally along what remains of the neural spine, a character unique to a subgroup of sauropods that includes Barapasaurus, Omeisaurus and other neosauropods and eusauropods. The lack of phylogenetically robust characters in sauropod caudal vertebrae usually makes it difficult to establish affinities, but the absence of mild procoely excludes this specimen from both Diplodocoidea and Lithostrotia. The vertebra cannot be further distinguished from those of a wide range of basal sauropods, cetiosaurids and basal macronarians. However, this plesiomorphic vertebra still signifies the earliest stratigraphic occurrence for a British sauropod dinosaur.

  14. Late Albian dinosaur tracks from the cratonic (eastern) margin of the Western Interior Seaway, Nebraska, USA

    Science.gov (United States)

    Joeckel, R.M.; Cunningham, J.M.; Corner, R.G.; Brown, G.W.; Phillips, P.L.; Ludvigson, Greg A.

    2004-01-01

    At least 22 tridactyl dinosaur tracks, poorly preserved in various degrees of expression, have recently been found at an exposure in the Dakota Formation (Lower Cretaceous, Albian) in Jefferson County, Nebraska. These tracks generally have broad, blunt digits and a broad posterior margin. The largest of the tracks measures 57 cm in length and 58 cm in width. All of the tracks lie within a stratigraphic horizon of 40 cm or less, but they do not form a single trackway. We interpret the trackmakers to have been ornithopods.The Jefferson County tracks are in a well-cemented sandstone with oscillation ripples, at a stratigraphic level between two well-established sequence boundaries. Channel forms and lateral accretion units are common in the stratigraphic interval enclosing the tracks, and the site is interpreted as a bar or sand flat in a tidally influenced river.The Jefferson County tracks are only the second known occurrence of large Mesozoic tetrapod tracks east of the Rocky Mountain Front-High Plains Margin, including the Black Hills of South Dakota, west of the Atlantic Coastal Plain, and north of the Gulf Coastal Plain. Further, this paper is the first documentation of in situdinosaur fossils from the Nebraska-Iowa area.

  15. The extent of the preserved feathers on the four-winged dinosaur Microraptor gui under ultraviolet light.

    Directory of Open Access Journals (Sweden)

    David W E Hone

    Full Text Available BACKGROUND: The holotype of the theropod non-avian dinosaur Microraptor gui from the Early Cretaceous of China shows extensive preservation of feathers in a halo around the body and with flight feathers associated with both the fore and hindlimbs. It has been questioned as to whether or not the feathers did extend into the halo to reach the body, or had disassociated and moved before preservation. This taxon has important implications for the origin of flight in birds and the possibility of a four-winged gliding phase. METHODOLOGY/PRINCIPAL FINDINGS: Examination of the specimen under ultraviolet light reveals that these feathers actually reach the body of the animal and were not disassociated from the bones. Instead they may have been chemically altered by the body tissues of the animal meaning that they did not carbonise close into the animal or more likely were covered by other decaying tissue, though evidence of their presence remains. CONCLUSIONS/SIGNIFICANCE: These UV images show that the feathers preserved on the slab are genuinely associated with the skeleton and that their arrangement and orientation is likely correct. The methods used here to reveal hidden features of the specimen may be applicable to other specimens from the fossil beds of Liaoning that produced Microraptor.

  16. Scaling in Theropod Dinosaurs: Femoral Bone Dimensions

    Science.gov (United States)

    Lee, Scott A.

    2014-01-01

    Finding topics that inspire students is an important aspect of any physics course. Virtually everyone is fascinated by "Tyrannosaurus rex," and the excitement of the class is palpable when we explore scaling effects in "T. rex" and other bipedal theropod dinosaurs as part of our discussion of mechanics and elasticity. In this…

  17. Body temperatures in dinosaurs: what can growth curves tell us?

    Science.gov (United States)

    Griebeler, Eva Maria

    2013-01-01

    To estimate the body temperature (BT) of seven dinosaurs Gillooly, Alleen, and Charnov (2006) used an equation that predicts BT from the body mass and maximum growth rate (MGR) with the latter preserved in ontogenetic growth trajectories (BT-equation). The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006). I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006) did. In particular, I estimated BT of Archaeopteryx (from two MGRs), ornithischians (two), theropods (three), prosauropods (three), and sauropods (nine). For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed) and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006) I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda) studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately limited

  18. A new mass mortality of juvenile Protoceratops and size-segregated aggregation behaviour in juvenile non-avian dinosaurs.

    Directory of Open Access Journals (Sweden)

    David W E Hone

    Full Text Available BACKGROUND: Monodominant bonebeds are a relatively common occurrence for non-avian dinosaurs, and have been used to infer associative, and potentially genuinely social, behavior. Previously known assemblages are characterized as either mixed size-classes (juvenile and adult-sized specimens together or single size-classes of individuals (only juveniles or only adult-sized individuals within the assemblage. In the latter case, it is generally unknown if these kinds of size-segregated aggregations characterize only a particular size stage or represent aggregations that happened at all size stages. Ceratopsians ("horned dinosaurs" are known from both types of assemblages. METHODS/PRINCIPAL FINDINGS: Here we describe a new specimen of the ceratopsian dinosaur Protoceratops andrewsi, Granger and Gregory 1923 from Mongolia representing an aggregation of four mid-sized juvenile animals. In conjunction with existing specimens of groups of P. andrewsi that includes size-clustered aggregations of young juveniles and adult-sized specimens, this new material provides evidence for some degree of size-clustered aggregation behaviour in Protoceratops throughout ontogeny. This continuity of size-segregated (and presumably age-clustered aggregation is previously undocumented in non-avian dinosaurs. CONCLUSIONS: The juvenile group fills a key gap in the available information on aggregations in younger ceratopsians. Although we support the general hypothesis that many non-avian dinosaurs were gregarious and even social animals, we caution that evidence for sociality has been overstated and advocate a more conservative interpretation of some data of 'sociality' in dinosaurs.

  19. A new mass mortality of juvenile Protoceratops and size-segregated aggregation behaviour in juvenile non-avian dinosaurs.

    Science.gov (United States)

    Hone, David W E; Farke, Andrew A; Watabe, Mahito; Shigeru, Suzuki; Tsogtbaatar, Khishigjav

    2014-01-01

    Monodominant bonebeds are a relatively common occurrence for non-avian dinosaurs, and have been used to infer associative, and potentially genuinely social, behavior. Previously known assemblages are characterized as either mixed size-classes (juvenile and adult-sized specimens together) or single size-classes of individuals (only juveniles or only adult-sized individuals within the assemblage). In the latter case, it is generally unknown if these kinds of size-segregated aggregations characterize only a particular size stage or represent aggregations that happened at all size stages. Ceratopsians ("horned dinosaurs") are known from both types of assemblages. Here we describe a new specimen of the ceratopsian dinosaur Protoceratops andrewsi, Granger and Gregory 1923 from Mongolia representing an aggregation of four mid-sized juvenile animals. In conjunction with existing specimens of groups of P. andrewsi that includes size-clustered aggregations of young juveniles and adult-sized specimens, this new material provides evidence for some degree of size-clustered aggregation behaviour in Protoceratops throughout ontogeny. This continuity of size-segregated (and presumably age-clustered) aggregation is previously undocumented in non-avian dinosaurs. The juvenile group fills a key gap in the available information on aggregations in younger ceratopsians. Although we support the general hypothesis that many non-avian dinosaurs were gregarious and even social animals, we caution that evidence for sociality has been overstated and advocate a more conservative interpretation of some data of 'sociality' in dinosaurs.

  20. New developmental evidence clarifies the evolution of wrist bones in the dinosaur-bird transition.

    Directory of Open Access Journals (Sweden)

    João Francisco Botelho

    2014-09-01

    Full Text Available From early dinosaurs with as many as nine wrist bones, modern birds evolved to develop only four ossifications. Their identity is uncertain, with different labels used in palaeontology and developmental biology. We examined embryos of several species and studied chicken embryos in detail through a new technique allowing whole-mount immunofluorescence of the embryonic cartilaginous skeleton. Beyond previous controversy, we establish that the proximal-anterior ossification develops from a composite radiale+intermedium cartilage, consistent with fusion of radiale and intermedium observed in some theropod dinosaurs. Despite previous claims that the development of the distal-anterior ossification does not support the dinosaur-bird link, we found its embryonic precursor shows two distinct regions of both collagen type II and collagen type IX expression, resembling the composite semilunate bone of bird-like dinosaurs (distal carpal 1+distal carpal 2. The distal-posterior ossification develops from a cartilage referred to as "element x," but its position corresponds to distal carpal 3. The proximal-posterior ossification is perhaps most controversial: It is labelled as the ulnare in palaeontology, but we confirm the embryonic ulnare is lost during development. Re-examination of the fossil evidence reveals the ulnare was actually absent in bird-like dinosaurs. We confirm the proximal-posterior bone is a pisiform in terms of embryonic position and its development as a sesamoid associated to a tendon. However, the pisiform is absent in bird-like dinosaurs, which are known from several articulated specimens. The combined data provide compelling evidence of a remarkable evolutionary reversal: A large, ossified pisiform re-evolved in the lineage leading to birds, after a period in which it was either absent, nonossified, or very small, consistently escaping fossil preservation. The bird wrist provides a modern example of how developmental and paleontological

  1. New Insights into Non-Avian Dinosaur Reproduction and Their Evolutionary and Ecological Implications: Linking Fossil Evidence to Allometries of Extant Close Relatives

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2013-01-01

    It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass) for extant phylogenetic brackets (birds, crocodiles and tortoises) of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs) for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondylus carinatus , all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods) or to the masses of reptiles (all other taxa). Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN). Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod) for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs). Our results provide new (testable) hypotheses, especially for reproductive traits that are insufficiently

  2. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass for extant phylogenetic brackets (birds, crocodiles and tortoises of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondyluscarinatus, all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods or to the masses of reptiles (all other taxa. Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN. Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs. Our results provide new (testable hypotheses, especially for reproductive traits that are insufficiently

  3. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2013-01-01

    It has been hypothesized that a high reproductive output contributes to the unique gigantism in large dinosaur taxa. In order to infer more information on dinosaur reproduction, we established allometries between body mass and different reproductive traits (egg mass, clutch mass, annual clutch mass) for extant phylogenetic brackets (birds, crocodiles and tortoises) of extinct non-avian dinosaurs. Allometries were applied to nine non-avian dinosaur taxa (theropods, hadrosaurs, and sauropodomorphs) for which fossil estimates on relevant traits are currently available. We found that the reproductive traits of most dinosaurs conformed to similar-sized or scaled-up extant reptiles or birds. The reproductive traits of theropods, which are considered more bird-like, were indeed consistent with birds, while the traits of sauropodomorphs conformed better to reptiles. Reproductive traits of hadrosaurs corresponded to both reptiles and birds. Excluding Massospondyluscarinatus, all dinosaurs studied had an intermediary egg to body mass relationship to reptiles and birds. In contrast, dinosaur clutch masses fitted with either the masses predicted from allometries of birds (theropods) or to the masses of reptiles (all other taxa). Theropods studied had probably one clutch per year. For sauropodomorphs and hadrosaurs, more than one clutch per year was predicted. Contrary to current hypotheses, large dinosaurs did not have exceptionally high annual egg numbers (AEN). Independent of the extant model, the estimated dinosaur AEN did not exceed 850 eggs (75,000 kg sauropod) for any of the taxa studied. This estimated maximum is probably an overestimation due to unrealistic assumptions. According to most AEN estimations, the dinosaurs studied laid less than 200 eggs per year. Only some AEN estimates obtained for medium to large sized sauropods were higher (200-400 eggs). Our results provide new (testable) hypotheses, especially for reproductive traits that are insufficiently documented

  4. Comparative analysis of the calcretization process in the Marilia formations (Bauru group - Brasil) and Mercedes ( Paysandu group - Uruguay), Upper Cretaceous of the Parana basin

    International Nuclear Information System (INIS)

    Veroslavsky, G.; Etchebehere, M.; Sad, A.; Fulfaro, J.

    1998-01-01

    Pedogenic and non-pedogenic calcrete facies are very common feature of Marilia (Brazil) and Mercedes (Uruguay) formations in the Parana Basin. The non-pedogenic ones constitute massive limestone facies that have been recently interpreted as groundwater calcretes. These limestones are exploited in both countries to supply raw materials to Portland cement and soil conditioner in origin and age of calcretization phenomena. In Uruguay, the calcretization process seens to be band formation. Field relationships and fossil assemblage point to a Paleocene (or later) age for the calcretization. In Brazilian territory, the groundwater calcretes aresupposed to be of Upper Cretaceous age due to the presence of dinosaurs scattered through the Bauru Group, including siliciclastic beds below and above the calcretes. The authors assume that calcretization processes are similar in both countries (host rocks, intensity, size, textures, geometries and economic potential). The main difference is in age of the calcretization. (author)

  5. Metric-Asaurus: Conceptualizing Scale Using Dinosaur Models

    Science.gov (United States)

    Gloyna, Lisa; West, Sandra; Martin, Patti; Browning, Sandra

    2010-01-01

    For middle school students who have seen only pictures of dinosaurs in books, in the movies, or on the internet, trying to comprehend the size of these gargantuan animals can be difficult. This lesson provides a way for students to visualize changing scale through studying extinct organisms and to gain a deeper understanding of the history of the…

  6. Dinosaur remains from the type Maastrichtian: An update

    NARCIS (Netherlands)

    Weishampel, David B.; Mulder, Eric W A; Dortangs, Rudi W.; Jagt, John W M; Jianu, Coralia Maria; Kuypers, Marcel M M; Peeters, Hans H G; Schulp, Anne S.

    1999-01-01

    Isolated cranial and post-cranial remains of hadrosaurid dinosaurs have been collected from various outcrops in the type area of the Maastrichtian stage during the last few years. In the present contribution, dentary and maxillary teeth are recorded from the area for the first time. Post-cranial

  7. Anatomy and osteohistology of the basal hadrosaurid dinosaur Eotrachodon from the uppermost Santonian (Cretaceous of southern Appalachia

    Directory of Open Access Journals (Sweden)

    Albert Prieto-Márquez

    2016-04-01

    Full Text Available The cranial and postcranial anatomy of the basal hadrosaurid dinosaur Eotrachodon orientalis, from the uppermost Santonian of southern Appalachia (southeastern U.S.A., is described in detail. This animal is the only known pre-Campanian non-lambeosaurine hadrosaurid, and the most complete hadrosauroid known from Appalachia. E. orientalis possesses a mosaic of plesiomorphic and derived characters in the context of Hadrosauroidea. Characters shared with basal hadrosauroids include a short and sloping maxillary ectopterygoid shelf, caudally prominent maxillary jugal process, one functional tooth per alveolus on the maxillary occlusal plane, a jugal rostral process with a shallow caudodorsal margin and medioventrally facing articular facet, a vertical dentary coronoid process with a poorly expanded apex, and tooth crowns with accessory ridges. Derived characters shared with other hadrosaurids include a circumnarial depression compartmented into three fossae (as in brachylophosaurins and Edmontosaurus, a thin everted premaxillary oral margin (as in Gryposaurus, Prosaurolophus, and Saurolophus, and a maxilla with a deep and rostrocaudally extensive rostrodorsal region with a steeply sloping premaxillary margin (as in Gryposaurus. Eotrachodon orientalis differs primarily from the other hadrosauroid from the Mooreville Chalk of Alabama, Lophorhothon atopus, in having a slender and crestless nasal whose caudodorsal margin is not invaded by the circumnarial depression. Hadrosaurus foulkii, the only other known hadrosaurid from Appalachia, is distinct from E. orientalis in having dentary teeth lacking accessory ridges and a dorsally curved shaft of the ischium. A histological section of the tibia of the E. orientalis holotype (MSC 7949 suggests that this individual was actively growing at the time of death and, thus, had the potential to become a larger animal later in development.

  8. Anatomy and osteohistology of the basal hadrosaurid dinosaur Eotrachodon from the uppermost Santonian (Cretaceous) of southern Appalachia.

    Science.gov (United States)

    Prieto-Márquez, Albert; Erickson, Gregory M; Ebersole, Jun A

    2016-01-01

    The cranial and postcranial anatomy of the basal hadrosaurid dinosaur Eotrachodon orientalis, from the uppermost Santonian of southern Appalachia (southeastern U.S.A.), is described in detail. This animal is the only known pre-Campanian non-lambeosaurine hadrosaurid, and the most complete hadrosauroid known from Appalachia. E. orientalis possesses a mosaic of plesiomorphic and derived characters in the context of Hadrosauroidea. Characters shared with basal hadrosauroids include a short and sloping maxillary ectopterygoid shelf, caudally prominent maxillary jugal process, one functional tooth per alveolus on the maxillary occlusal plane, a jugal rostral process with a shallow caudodorsal margin and medioventrally facing articular facet, a vertical dentary coronoid process with a poorly expanded apex, and tooth crowns with accessory ridges. Derived characters shared with other hadrosaurids include a circumnarial depression compartmented into three fossae (as in brachylophosaurins and Edmontosaurus), a thin everted premaxillary oral margin (as in Gryposaurus, Prosaurolophus, and Saurolophus), and a maxilla with a deep and rostrocaudally extensive rostrodorsal region with a steeply sloping premaxillary margin (as in Gryposaurus). Eotrachodon orientalis differs primarily from the other hadrosauroid from the Mooreville Chalk of Alabama, Lophorhothon atopus, in having a slender and crestless nasal whose caudodorsal margin is not invaded by the circumnarial depression. Hadrosaurus foulkii, the only other known hadrosaurid from Appalachia, is distinct from E. orientalis in having dentary teeth lacking accessory ridges and a dorsally curved shaft of the ischium. A histological section of the tibia of the E. orientalis holotype (MSC 7949) suggests that this individual was actively growing at the time of death and, thus, had the potential to become a larger animal later in development.

  9. Response to critique by lucas et al. (2009) of paper by Fassett (2009) documenting Paleocene dinosaurs in the San Juan Basin

    Science.gov (United States)

    Fassett, J.E.

    2009-01-01

    In this issue of Palaeontologia Electronica Lucas, et al. (2009) question the validity f the Fassett (2009) paper that presented evidence for Paleocene dinosaurs in the San Juan Basin of New Mexico and Colorado. Their challenges focus primarily on the lithostratigraphy, palynology, and paleomagnetism of the dinosaur-bearing Ojo Alamo Sandstone, shown by Fassett to be of Paleocene age. The lithostratigraphy of the Ojo Alamo is addressed by Lucas et al. (2009) based on detailed studies of outcrops of this formation in two relatively small areas in the southern San Juan Basin where Ojo Alamo dinosaur fossils have been found. When viewed over its 13,000 km2 extent, the Ojo Alamo is seen to be a much more complex formation than these authors recognize, thus their perception and description of the lithostratigraphy of this rock unit is limited and provincial. Fassett (2009) presented a detailed discussion of the palynology of the rocks adjacent to the Cretaceous-Tertiary (K-T) interface in the San Juan Basin, including a 67-page appendix and 25 tables listing the 244 palynomorph species identified from these strata. The Ojo Alamo Sandstone produced 103 palynomorphs from five principal localities including one especially prolific sample set from drill core through K-T strata. Without exception, all samples collected from the Ojo Alamo Sandstone for palynologic analysis were found to contain Paleocene palynomorph assemblages. Lucas et al. challenge only one Ojo Alamo palynomorph assemblage from one of the five areas studied, stating that they were unable to find palynomorph-productive samples at that locality. They submit no new palynologic data that refutes the Paleocene palynologic age of the Ojo Alamo Sandstone. In addressing the paleomagnetism of the Ojo Alamo, these authors dismiss the presence of a critical normal-polarity magnetochron discovered in the lower part of the Ojo Alamo - magnetochron C29n.2n of Fassett (2009) with no evidence to justify this dismissal

  10. A new primitive Neornithischian dinosaur from the Jurassic of Patagonia with gut contents

    Science.gov (United States)

    Salgado, Leonardo; Canudo, José I.; Garrido, Alberto C.; Moreno-Azanza, Miguel; Martínez, Leandro C. A.; Coria, Rodolfo A.; Gasca, José M.

    2017-02-01

    We describe a new species of an ornithischian dinosaur, Isaberrysaura mollensis gen. et sp. nov. The specimen, consisting in an almost complete skull and incomplete postcranium was collected from the marine-deltaic deposits of the Los Molles Formation (Toarcian-Bajocian), being the first reported dinosaur for this unit, one of the oldest from Neuquén Basin, and the first neornithischian dinosaur known from the Jurassic of South America. Despite showing a general stegosaurian appearance, the extensive phylogenetic analysis carried out depicts Isaberrysaura mollensis gen. et sp. nov. as a basal ornithopod, suggesting that both Thyreophora and neornithischians could have achieved significant convergent features. The specimen was preserved articulated and with some of its gut content place in the middle-posterior part of the thoracic cavity. Such stomach content was identified as seeds, most of them belonging to the Cycadales group. This finding reveals a possible and unexpected role of this ornithischian species as seed-dispersal agent.

  11. Heterochronic truncation of odontogenesis in theropod dinosaurs provides insight into the macroevolution of avian beaks.

    Science.gov (United States)

    Wang, Shuo; Stiegler, Josef; Wu, Ping; Chuong, Cheng-Ming; Hu, Dongyu; Balanoff, Amy; Zhou, Yachun; Xu, Xing

    2017-10-10

    Beaks are innovative structures characterizing numerous tetrapod lineages, including birds, but little is known about how developmental processes influenced the macroevolution of these important structures. Here we provide evidence of ontogenetic vestigialization of alveoli in two lineages of theropod dinosaurs and show that these are transitional phenotypes in the evolution of beaks. One of the smallest known caenagnathid oviraptorosaurs and a small specimen of the Early Cretaceous bird Sapeornis both possess shallow, empty vestiges of dentary alveoli. In both individuals, the system of vestiges connects via foramina with a dorsally closed canal homologous to alveoli. Similar morphologies are present in Limusaurus , a beaked theropod that becomes edentulous during ontogeny; and an analysis of neontological and paleontological evidence shows that ontogenetic reduction of the dentition is a relatively common phenomenon in vertebrate evolution. Based on these lines of evidence, we propose that progressively earlier postnatal and embryonic truncation of odontogenesis corresponds with expansion of rostral keratin associated with the caruncle, and these progenesis and peramorphosis heterochronies combine to drive the evolution of edentulous beaks in nonavian theropods and birds. Following initial apomorphic expansion of rostral keratinized epithelia in perinatal toothed theropods, beaks appear to inhibit odontogenesis as they grow postnatally, resulting in a sequence of common morphologies. This sequence is shifted earlier in development through phylogeny until dentition is absent at hatching, and odontogenesis is inhibited by beak formation in ovo .

  12. Feeding strategies as revealed by the section moduli of the humerus bones in bipedal theropod dinosaurs

    Science.gov (United States)

    Lee, Scott; Richards, Zachary

    2015-03-01

    The section modulus of a bone is a measure of its ability to resist bending torques. Carnivorous dinosaurs presumably had strong arm bones to hold struggling prey during hunting. Some theropods are believed to have become herbivorous and such animals would not have needed such strong arms. In this work, the section moduli of the humerus bones of bipedal theropod dinosaurs (from Microvenator celer to Tyrannosaurus rex) are studied to determine the maximum bending loads their arms could withstand. The results show that bending strength is not of uniform importance to these magnificent animals. The predatory theropods had strong arms for use in hunting. In contrast, the herbivorous dinosaurs had weaker arms.

  13. Biomolecular characterization and protein sequences of the Campanian hadrosaur B. canadensis.

    Science.gov (United States)

    Schweitzer, Mary H; Zheng, Wenxia; Organ, Chris L; Avci, Recep; Suo, Zhiyong; Freimark, Lisa M; Lebleu, Valerie S; Duncan, Michael B; Vander Heiden, Matthew G; Neveu, John M; Lane, William S; Cottrell, John S; Horner, John R; Cantley, Lewis C; Kalluri, Raghu; Asara, John M

    2009-05-01

    Molecular preservation in non-avian dinosaurs is controversial. We present multiple lines of evidence that endogenous proteinaceous material is preserved in bone fragments and soft tissues from an 80-million-year-old Campanian hadrosaur, Brachylophosaurus canadensis [Museum of the Rockies (MOR) 2598]. Microstructural and immunological data are consistent with preservation of multiple bone matrix and vessel proteins, and phylogenetic analyses of Brachylophosaurus collagen sequenced by mass spectrometry robustly support the bird-dinosaur clade, consistent with an endogenous source for these collagen peptides. These data complement earlier results from Tyrannosaurus rex (MOR 1125) and confirm that molecular preservation in Cretaceous dinosaurs is not a unique event.

  14. TeV Scale Gravity, Mirror Universe and. . . Dinosaurs

    Energy Technology Data Exchange (ETDEWEB)

    Silagadze, Z K [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    2001-01-01

    This is somewhat extended version of the talk given at the Gran Sasso Summer Institute: Massive Neutrinos in Physics and Astrophysics. It described general ideas about mirror world, extra spatial dimension and dinosaur extinction. Some suggestions are made how these seemingly different things can be related to each other. (author)

  15. Body temperatures in dinosaurs: what can growth curves tell us?

    Directory of Open Access Journals (Sweden)

    Eva Maria Griebeler

    Full Text Available To estimate the body temperature (BT of seven dinosaurs Gillooly, Alleen, and Charnov (2006 used an equation that predicts BT from the body mass and maximum growth rate (MGR with the latter preserved in ontogenetic growth trajectories (BT-equation. The results of these authors evidence inertial homeothermy in Dinosauria and suggest that, due to overheating, the maximum body size in Dinosauria was ultimately limited by BT. In this paper, I revisit this hypothesis of Gillooly, Alleen, and Charnov (2006. I first studied whether BTs derived from the BT-equation of today's crocodiles, birds and mammals are consistent with core temperatures of animals. Second, I applied the BT-equation to a larger number of dinosaurs than Gillooly, Alleen, and Charnov (2006 did. In particular, I estimated BT of Archaeopteryx (from two MGRs, ornithischians (two, theropods (three, prosauropods (three, and sauropods (nine. For extant species, the BT value estimated from the BT-equation was a poor estimate of an animal's core temperature. For birds, BT was always strongly overestimated and for crocodiles underestimated; for mammals the accuracy of BT was moderate. I argue that taxon-specific differences in the scaling of MGR (intercept and exponent of the regression line, log-log-transformed and in the parameterization of the Arrhenius model both used in the BT-equation as well as ecological and evolutionary adaptations of species cause these inaccuracies. Irrespective of the found inaccuracy of BTs estimated from the BT-equation and contrary to the results of Gillooly, Alleen, and Charnov (2006 I found no increase in BT with increasing body mass across all dinosaurs (Sauropodomorpha, Sauropoda studied. This observation questions that, due to overheating, the maximum size in Dinosauria was ultimately limited by BT. However, the general high inaccuracy of dinosaurian BTs derived from the BT-equation makes a reliable test of whether body size in dinosaurs was ultimately

  16. Response to Comments on "Evidence for mesothermy in dinosaurs".

    Science.gov (United States)

    Grady, John M; Enquist, Brian J; Dettweiler-Robinson, Eva; Wright, Natalie A; Smith, Felisa A

    2015-05-29

    D'Emic and Myhrvold raise a number of statistical and methodological issues with our recent analysis of dinosaur growth and energetics. However, their critiques and suggested improvements lack biological and statistical justification. Copyright © 2015, American Association for the Advancement of Science.

  17. Dinosaur footprints in the Upper Turonian-Coniacian limestone in the Krnica Bay (NE Istria, Croatia

    Directory of Open Access Journals (Sweden)

    Alenka Mauko

    2003-06-01

    Full Text Available Three isolated footprints and one trackway that can be attributed to bipedal dinosaur, from a limestone bed in vicinity of Požara promontory, Krnica Bay, are described. According to the stratigraphic position the footprints are late Turonian to Coniacian in age.This is the first record of dinosaur remains in the Turonian-Coniacian and the youngest footprint site on the Adriatic-Dinaric Carbonate Platform described thus far.

  18. Pathological phalanges in a camarasaurid sauropod dinosaur and implications on behaviour

    Directory of Open Access Journals (Sweden)

    Emanuel Tschopp

    2016-02-01

    Full Text Available Several types of pathological bony overgrowth are known from various dinosaur taxa but, except for stress fractures, are rarely reported from appendicular elements. Herein we describe pathological manual and pedal phalanges of a camarasaurid sauropod (SMA 0002, which show features rarely recognised in non-avian dinosaurs. They include lateral osteophytes and smoothing of phalangeal articular surfaces, a deep pit, proximal enthesophytes in pedal unguals, distal overgrowth associated with a fracture, and a knob-like overgrowth lateral to the distal condyles of a pedal phalanx. Their causes were assessed by means of visual examination, CT scans, and bone histology, where possible. The lateral osteophytes are interpreted as symptoms of osteoarthritis. The ossified tendon insertions in the unguals are most probably the result of prolonged, heavy use of the pedal claws, possibly for scratchdigging. The distal overgrowth is interpreted to have developed due to changed stress regimes, and to be the cause for the fracture. The deep pit represents most likely a case of osteochondrosis, whereas the knob-like overgrowth likely represents a post-traumatic phenomenon not previously reported in dinosaurs. The study confirms that a rigorous assessment of pathologies can yield information about behaviour in long-extinct animals.

  19. Morphological Diversity and Evolution of the Jugal in Dinosaurs.

    Science.gov (United States)

    Sullivan, Corwin; Xu, Xing

    2017-01-01

    In dinosaurs, as in other reptiles, the homologue of the mammalian zygomatic bone is the jugal. The dinosaurian jugal was primitively triradiate, with posterior, dorsal and anterior processes that respectively contacted the quadratojugal, the postorbital, and the maxilla and lacrimal. However, the jugal evolved along different lines in the three major dinosaurian clades. In theropods this cranial element remained relatively conservative in morphology, apart from being reduced to a rod-like structure in most birds and a few non-avians. In sauropodomorphs the jugal eventually became small, plate-like and nearly restricted to the area below the orbit, even being excluded from the ventral margin of the skull in many derived taxa. Among ornithischians the jugal was highly variable, but in many cases became large and/or adorned with ornamental features such as horns, flanges, and rugosities. The jugal does not appear to have been a site of muscle attachment in most non-avian dinosaurs, but represented an important structural element in the akinetic dinosaurian skull. The conspicuous jugal ornaments seen in many ornithischian dinosaurs, like the less striking ones documented in some saurischians, may have played an important role in the social behavior of the species that possessed them. In many cases they have a weapon-like aspect suggesting use in aggressive displays, if not actual combat, adding to the evidence that agonistic behavior was likely widespread among ornithischians in particular. Anat Rec, 300:30-48, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Neutron activation and track analysis of the newly found bones of the southern mammoths and dinosaurs

    International Nuclear Information System (INIS)

    Vasidov, A.; Osinskaya, N.S.; Saidullaev, B.J.; Akhmadshaev, A.

    2016-01-01

    The bones of southern mammoths and dinosaur had been discovered in the territory of Uzbekistan in 2005-2014. The main aim of the work was a study of profiles of radiogenic and some of elements in bones of mammoths and dinosaur, and the element comparisons with standard bones and its soils by instrumental neutron activation and track analysis. In bones of the mammoths and dinosaur were registered a high contents of uranium and rare earth elements by instrumental neutron activation analysis. The radon concentrations in samples were measured in isolated plastic chambers by solid state nuclear track detectors type of CR-39 within 35 days. The values of radon exhalation rates were determined very more in ancient bones than in standard bones and soils. (author)

  1. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage.

    Science.gov (United States)

    Benson, Roger B J; Campione, Nicolás E; Carrano, Matthew T; Mannion, Philip D; Sullivan, Corwin; Upchurch, Paul; Evans, David C

    2014-05-01

    Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds) are the most speciose living tetrapod clade. We assembled composite trees of 614-622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic) dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds) sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large-scale extrapolation of

  2. The functional origin of dinosaur bipedalism: Cumulative evidence from bipedally inclined reptiles and disinclined mammals.

    Science.gov (United States)

    Persons, W Scott; Currie, Philip J

    2017-05-07

    Bipedalism is a trait basal to, and widespread among, dinosaurs. It has been previously argued that bipedalism arose in the ancestors of dinosaurs for the function of freeing the forelimbs to serve as predatory weapons. However, this argument does not explain why bipedalism was retained among numerous herbivorous groups of dinosaurs. We argue that bipedalism arose in the dinosaur line for the purpose of enhanced cursoriality. Modern facultatively bipedal lizards offer an analog for the first stages in the evolution of dinosaurian bipedalism. Many extant lizards assume a bipedal stance while attempting to flee predators at maximum speed. Bipedalism, when combined with a caudofemoralis musculature, has cursorial advantages because the caudofemoralis provides a greater source of propulsion to the hindlimbs than is generally available to the forelimbs. That cursorial advantage explains the relative abundance of cursorial facultative bipeds and obligate bipeds among fossil diapsids and the relative scarcity of either among mammals. Having lost their caudofemoralis in the Permian, perhaps in the context of adapting to a fossorial lifestyle, the mammalian line has been disinclined towards bipedalism, but, having never lost the caudofemoralis of their ancestors, cursorial avemetatarsalians (bird-line archosaurs) were naturally inclined towards bipedalism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Iridium concentration and noble gas composition of Cretaceous-Tertiary boundary clay from Stevens Klint, Denmark

    International Nuclear Information System (INIS)

    Osawa, Takahito; Hatsukawa, Yuichi; Nagao, Keisuke; Koizumi, Mitsuo; Oshima, Masumi; Toh, Yosuke; Kimura, Atsushi; Furutaka, Kazuyoshi

    2009-01-01

    The Cretaceous-Tertiary (K-T) boundary about 65 million years ago records a mass extinction event caused by a bolide impact. K-T boundary clay collected from Stevns Klint, Denmark was investigated in this work. Iridium concentrations of eight clays across the K-T boundary were determined using a multiple gamma-ray analysis system after neutron activation. Anomalously high Ir concentrations were detected in five marl samples, with the highest concentration being 29.9 ppb. Four samples were analyzed for all noble gases. NO extraterrestrial Ar, Kr, and Xe were discovered in any of the samples, although most of the 3 He which was detected was extraterrestrial. Solar-like Ne was observed only in the sample SK4, which had an Ir concentration of 14.3 ppb, indicating the presence of micrometeorites. The solar-like Ne clearly did not originate from an asteroid/comet associated with the bolide impact, as that asteroid is thought to have been extremely large. Also, because there was no sign of a high accretion rate of micrometeorites at the boundary it could not be ascertained whether the solar-like Ne was related to a catastrophic event that led to the extinction of the dinosaurs. (author)

  4. Growing with dinosaurs: natural products from the Cretaceous relict Metasequoia glyptostroboides Hu & Cheng-a molecular reservoir from the ancient world with potential in modern medicine.

    Science.gov (United States)

    Juvik, Ole Johan; Nguyen, Xuan Hong Thy; Andersen, Heidi Lie; Fossen, Torgils

    2016-01-01

    After the sensational rediscovery of living exemplars of the Cretaceous relict Metasequoia glyptostroboides -a tree previously known exclusively from fossils from various locations in the northern hemisphere, there has been an increasing interest in discovery of novel natural products from this unique plant source. This article includes the first complete compilation of natural products reported from M. glyptostroboides during the entire period in which the tree has been investigated (1954-2014) with main focus on the compounds specific to this plant source. Studies on the biological activity of pure compounds and extracts derived from M. glyptostroboides are reviewed for the first time. The unique potential of M. glyptostroboides as a source of bioactive constituents is founded on the fact that the tree seems to have survived unchanged since the Cretaceous era. Since then, its molecular defense system has resisted the attacks of millions of generations of pathogens. In line with this, some recent landmarks in Metasequoia paleobotany are covered. Initial spectral analysis of recently discovered intact 53 million year old wood and amber of Metasequoia strongly indicate that the tree has remained unchanged for millions of years at the molecular level.

  5. Variation in the shape and mechanical performance of the lower jaws in ceratopsid dinosaurs (Ornithischia, Ceratopsia).

    Science.gov (United States)

    Maiorino, Leonardo; Farke, Andrew A; Kotsakis, Tassos; Teresi, Luciano; Piras, Paolo

    2015-11-01

    Ceratopsidae represents a group of quadrupedal herbivorous dinosaurs that inhabited western North America and eastern Asia during the Late Cretaceous. Although horns and frills of the cranium are highly variable across species, the lower jaw historically has been considered to be relatively conservative in morphology. Here, the lower jaws from 58 specimens representing 21 ceratopsoid taxa were sampled, using geometric morphometrics and 2D finite element analysis (FEA) to explore differences in morphology and mechanical performance across Ceratopsoidea (the clade including Ceratopsidae, Turanoceratops and Zuniceratops). Principal component analyses and non-parametric permuted manovas highlight Triceratopsini as a morphologically distinct clade within the sample. A relatively robust and elongate dentary, a larger and more elongated coronoid process, and a small and dorso-ventrally compressed angular characterize this clade, as well as the absolutely larger size. By contrast, non-triceratopsin chasmosaurines, Centrosaurini and Pachyrhinosaurini have similar morphologies to each other. Zuniceratops and Avaceratops are distinct from other taxa. No differences in size between Pachyrhinosaurini and Centrosaurini are recovered using non-parametric permuted anovas. Structural performance, as evaluated using a 2D FEA, is similar across all groups as measured by overall stress, with the exception of Triceratopsini. Shape, size and stress are phylogenetically constrained. A longer dentary as well as a long coronoid process result in a lower jaw that is reconstructed as relatively much more stressed in triceratopsins. © 2015 Anatomical Society.

  6. The Oldest Jurassic Dinosaur: A Basal Neotheropod from the Hettangian of Great Britain.

    Science.gov (United States)

    Martill, David M; Vidovic, Steven U; Howells, Cindy; Nudds, John R

    2016-01-01

    Approximately 40% of a skeleton including cranial and postcranial remains representing a new genus and species of basal neotheropod dinosaur is described. It was collected from fallen blocks from a sea cliff that exposes Late Triassic and Early Jurassic marine and quasi marine strata on the south Wales coast near the city of Cardiff. Matrix comparisons indicate that the specimen is from the lithological Jurassic part of the sequence, below the first occurrence of the index ammonite Psiloceras planorbis and above the last occurrence of the Rhaetian conodont Chirodella verecunda. Associated fauna of echinoderms and bivalves indicate that the specimen had drifted out to sea, presumably from the nearby Welsh Massif and associated islands (St David's Archipelago). Its occurrence close to the base of the Blue Lias Formation (Lower Jurassic, Hettangian) makes it the oldest known Jurassic dinosaur and it represents the first dinosaur skeleton from the Jurassic of Wales. A cladistic analysis indicates basal neotheropodan affinities, but the specimen retains plesiomorphic characters which it shares with Tawa and Daemonosaurus.

  7. Maximal Aerobic and Anaerobic Power Generation in Large Crocodiles versus Mammals: Implications for Dinosaur Gigantothermy

    OpenAIRE

    Seymour, Roger S.

    2013-01-01

    Inertial homeothermy, the maintenance of a relatively constant body temperature that occurs simply because of large size, is often applied to large dinosaurs. Moreover, biophysical modelling and actual measurements show that large crocodiles can behaviourally achieve body temperatures above 30?C. Therefore it is possible that some dinosaurs could achieve high and stable body temperatures without the high energy cost of typical endotherms. However it is not known whether an ectothermic dinosau...

  8. Studies of C60 in fossil of dinosaur egg shell

    International Nuclear Information System (INIS)

    Wang Zhenxia; Li Xuepeng; Wang Wenmin; Xu Xunjiang; Tang Zichao; Huang Rongbin; Zheng Lansun

    1998-01-01

    The occurrence of C 60 in unearthed fossil of dinosaur egg shell about 70 million years ago was reported. The results are discussed considering possible effects of the conceivable atmosphere pollution on the growth of fullerene molecules

  9. Study of dinosaur's egg shell by EPR method

    International Nuclear Information System (INIS)

    Tleuberdina, R.A.; Nasirov, R.N.

    1998-01-01

    Two varieties of calcium carbonate are defined on base of ESR spectra radiation-inducted signals containing in mollusc shell and dinosaur and ostrich egg shell; their spectral characters are studied by infrared-spectroscopy methods and X-ray analysis. Possibility of correlation between ESR signals intensity of CO 2 -radical of investigated object and geological age is determined. (author)

  10. Lower Cretaceous Puez key-section in the Dolomites - towards the mid-Cretaceous super-greenhouse

    Science.gov (United States)

    Lukeneder, A.; Halásová, E.; Rehákova, D.; Józsa, Š.; Soták, J.; Kroh, A.; Jovane, L.; Florindo, F.; Sprovieri, M.; Giorgioni, M.; Lukeneder, S.

    2012-04-01

    Investigations on different fossil groups in addition to isotopic, paleomagnetic and geochemical analysis are combined to extract the Early Cretaceous history of environmental changes, as displayed by the sea level and climate changes. Results on biostratigraphy are integrated with other dating methods as magnetostraigraphy, correlation and cyclostratigraphy. The main investigation topics of the submitted project within the above-described framework are the biostratigraphic (Lukeneder and Aspmair, 2006, 2012), palaeoecological (Lukeneder, 2008, 2012), palaeobiogeographic, lithostratigraphic (Lukeneder, 2010, 2011), cyclostratigraphic and magnetostratigraphic development of the Early Cretaceous in the Puez area. The main sections occur in expanded outcrops located on the southern margin of the Puez Plateau, within the area of the Puez-Geisler Natural Park, in the northern part of the Dolomites (South Tyrol, North Italy). The cephalopod, microfossil and nannofossil faunas and floras from the marly limestones to marls here indicates Hauterivian to Albian/Cenomanian age. Oxygen isotope values from the Lower Cretaceous Puez Formation show a decreasing trend throughout the log, from -1.5‰ in the Hauterivian to -4.5‰ in the Albian/Cenomanian. The decreasing values mirror an increasing trend in palaeotemperatures from ~ 15-18°C in the Hauterivian up to ~25-30 °C in the Albian/Cenomanian. The trend probably indicates the positive shift in temperature induced by the well known Mid Cretaceous Ocean warming (e.g., Super-Greenhouse). The cooperative project (FWF project P20018-N10; 22 international scientists): An integrative high resolution project. Macro- and microfossils, isotopes, litho-, cyclo-, magneto-and biostratigraphy as tools for investigating the Lower Cretaceous within the Dolomites (Southern Alps, Northern Italy) -The Puez area as a new key region of the Tethyan Realm), is on the way since 2008 by the Natural History Museum in Vienna and the 'Naturmuseum S

  11. Cretaceous paleogeography and depositional cycles of western South America

    Science.gov (United States)

    Macellari, C. E.

    The western margin of South America was encroached upon by a series of marine advances that increased in extent from the Early Cretaceous to a maximum in the early Late Cretaceous for northern South America (Venezuela to Peru). In southern South America, however, the area covered by the marine advances decreased from a maximum in the Early Cretaceous to a minimum during mid-Cretaceous time, followed by a widespread advance at the end of the period. A series of unconformity-bounded depositional cycles was recognized in these sequences: five cycles in northern South America, and six (but not exactly equivalent) cycles in the Cretaceous back-arc basins of southern South America (Neuquén and Austral, or Magallanes, Basins). Both widespread anoxic facies and maximum flooding of the continent in northern South America coincide in general terms with recognized global trends, but this is not the case in southern South America. Here, anoxic facies are restricted to the Lower Cretaceous and seem to be controlled by local aspects of the basin evolution and configuration. The contrasts observed between northern and southern South America can be explained by differences in tectonic setting and evolution. To the north, sediments were deposited around the tectonically stable Guayana-Brazilian Massifs, and thus registered global "signals" such as anoxic events and major eustatic changes. The southern portion of the continent, on the contrary, developed in an active tectonic setting. Here, the mid-Cretaceous Peruvian Orogeny overprinted, to a large extent, world-wide trends and only the earliest and latest Cretaceous conform to global depositional patterns.

  12. What lies beneath: sub-articular long bone shape scaling in eutherian mammals and saurischian dinosaurs suggests different locomotor adaptations for gigantism.

    Science.gov (United States)

    Bonnan, Matthew F; Wilhite, D Ray; Masters, Simon L; Yates, Adam M; Gardner, Christine K; Aguiar, Adam

    2013-01-01

    Eutherian mammals and saurischian dinosaurs both evolved lineages of huge terrestrial herbivores. Although significantly more saurischian dinosaurs were giants than eutherians, the long bones of both taxa scale similarly and suggest that locomotion was dynamically similar. However, articular cartilage is thin in eutherian mammals but thick in saurischian dinosaurs, differences that could have contributed to, or limited, how frequently gigantism evolved. Therefore, we tested the hypothesis that sub-articular bone, which supports the articular cartilage, changes shape in different ways between terrestrial mammals and dinosaurs with increasing size. Our sample consisted of giant mammal and reptile taxa (i.e., elephants, rhinos, sauropods) plus erect and non-erect outgroups with thin and thick articular cartilage. Our results show that eutherian mammal sub-articular shape becomes narrow with well-defined surface features as size increases. In contrast, this region in saurischian dinosaurs expands and remains gently convex with increasing size. Similar trends were observed in non-erect outgroup taxa (monotremes, alligators), showing that the trends we report are posture-independent. These differences support our hypothesis that sub-articular shape scales differently between eutherian mammals and saurischian dinosaurs. Our results show that articular cartilage thickness and sub-articular shape are correlated. In mammals, joints become ever more congruent and thinner with increasing size, whereas archosaur joints remained both congruent and thick, especially in sauropods. We suggest that gigantism occurs less frequently in mammals, in part, because joints composed of thin articular cartilage can only become so congruent before stress cannot be effectively alleviated. In contrast, frequent gigantism in saurischian dinosaurs may be explained, in part, by joints with thick articular cartilage that can deform across large areas with increasing load.

  13. Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica.

    Science.gov (United States)

    Barreda, Viviana D; Palazzesi, Luis; Tellería, Maria C; Olivero, Eduardo B; Raine, J Ian; Forest, Félix

    2015-09-01

    The Asteraceae (sunflowers and daisies) are the most diverse family of flowering plants. Despite their prominent role in extant terrestrial ecosystems, the early evolutionary history of this family remains poorly understood. Here we report the discovery of a number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back the timing of assumed origin of the family. Reliably dated to ∼76-66 Mya, these specimens are about 20 million years older than previously known records for the Asteraceae. Using a phylogenetic approach, we interpreted these fossil specimens as members of an extinct early diverging clade of the family, associated with subfamily Barnadesioideae. Based on a molecular phylogenetic tree calibrated using fossils, including the ones reported here, we estimated that the most recent common ancestor of the family lived at least 80 Mya in Gondwana, well before the thermal and biogeographical isolation of Antarctica. Most of the early diverging lineages of the family originated in a narrow time interval after the K/P boundary, 60-50 Mya, coinciding with a pronounced climatic warming during the Late Paleocene and Early Eocene, and the scene of a dramatic rise in flowering plant diversity. Our age estimates reduce earlier discrepancies between the age of the fossil record and previous molecular estimates for the origin of the family, bearing important implications in the evolution of flowering plants in general.

  14. Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark

    Science.gov (United States)

    Zhao, Meixun; Bada, Jeffrey L.

    1989-06-01

    SINCE the discovery1 nearly a decade ago that Cretaceous/Tertiary (K/T) boundary layers are greatly enriched in iridium, a rare element in the Earth's crust, there has been intense controversy on the relationship between this Ir anomaly and the massive extinction of organisms ranging from dinosaurs to marine plankton that characterizes the K/T boundary. Convincing evidence suggests that both the Ir spike and the extinction event were caused by the collision of a large bolide (>10 km in diameter) with the Earth1-11. Alternative explanations claim that extensive, violent volcanism12-14 can account for the Ir, and that other independent causes were responsible for the mass extinctions15,16. We surmise that the collision of a massive extraterrestrial object with the Earth may have produced a unique organic chemical signature because certain meteorites, and probably comets, contain organic compounds which are either rare or non-existent on the Earth17. In contrast, no organic compounds would be expected to be associated with volcanic processes. Here we find that K/T boundary sediments at Stevns Klint, Denmark, contain both α-amino-isobutyric acid [AIB, (CH3)2CNH2COOH] and racemic isovaline [ISOVAL, CH3CH2(CH3)CNH2COOH], two amino acids that are exceedingly rare on the Earth but which are major amino acids in carbonaceous chondrites17,18. An extraterrestrial source is the most reasonable explanation for the presence of these amino acids.

  15. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Directory of Open Access Journals (Sweden)

    Kohei Tanaka

    Full Text Available Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1 covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes, and 2 open nests, in which eggs are exposed in the nest and brooded (as in most birds. Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1 covered nests are likely the primitive condition for dinosaurs (and probably archosaurs, and 2 open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment

  16. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Science.gov (United States)

    Tanaka, Kohei; Zelenitsky, Darla K; Therrien, François

    2015-01-01

    Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1) covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes), and 2) open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity) of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids) were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment. Open nests

  17. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage.

    Directory of Open Access Journals (Sweden)

    Roger B J Benson

    2014-05-01

    Full Text Available Large-scale adaptive radiations might explain the runaway success of a minority of extant vertebrate clades. This hypothesis predicts, among other things, rapid rates of morphological evolution during the early history of major groups, as lineages invade disparate ecological niches. However, few studies of adaptive radiation have included deep time data, so the links between extant diversity and major extinct radiations are unclear. The intensively studied Mesozoic dinosaur record provides a model system for such investigation, representing an ecologically diverse group that dominated terrestrial ecosystems for 170 million years. Furthermore, with 10,000 species, extant dinosaurs (birds are the most speciose living tetrapod clade. We assembled composite trees of 614-622 Mesozoic dinosaurs/birds, and a comprehensive body mass dataset using the scaling relationship of limb bone robustness. Maximum-likelihood modelling and the node height test reveal rapid evolutionary rates and a predominance of rapid shifts among size classes in early (Triassic dinosaurs. This indicates an early burst niche-filling pattern and contrasts with previous studies that favoured gradualistic rates. Subsequently, rates declined in most lineages, which rarely exploited new ecological niches. However, feathered maniraptoran dinosaurs (including Mesozoic birds sustained rapid evolution from at least the Middle Jurassic, suggesting that these taxa evaded the effects of niche saturation. This indicates that a long evolutionary history of continuing ecological innovation paved the way for a second great radiation of dinosaurs, in birds. We therefore demonstrate links between the predominantly extinct deep time adaptive radiation of non-avian dinosaurs and the phenomenal diversification of birds, via continuing rapid rates of evolution along the phylogenetic stem lineage. This raises the possibility that the uneven distribution of biodiversity results not just from large

  18. Heterochronic truncation of odontogenesis in theropod dinosaurs provides insight into the macroevolution of avian beaks

    Science.gov (United States)

    Stiegler, Josef; Wu, Ping; Chuong, Cheng-Ming; Hu, Dongyu; Balanoff, Amy; Zhou, Yachun; Xu, Xing

    2017-01-01

    Beaks are innovative structures characterizing numerous tetrapod lineages, including birds, but little is known about how developmental processes influenced the macroevolution of these important structures. Here we provide evidence of ontogenetic vestigialization of alveoli in two lineages of theropod dinosaurs and show that these are transitional phenotypes in the evolution of beaks. One of the smallest known caenagnathid oviraptorosaurs and a small specimen of the Early Cretaceous bird Sapeornis both possess shallow, empty vestiges of dentary alveoli. In both individuals, the system of vestiges connects via foramina with a dorsally closed canal homologous to alveoli. Similar morphologies are present in Limusaurus, a beaked theropod that becomes edentulous during ontogeny; and an analysis of neontological and paleontological evidence shows that ontogenetic reduction of the dentition is a relatively common phenomenon in vertebrate evolution. Based on these lines of evidence, we propose that progressively earlier postnatal and embryonic truncation of odontogenesis corresponds with expansion of rostral keratin associated with the caruncle, and these progenesis and peramorphosis heterochronies combine to drive the evolution of edentulous beaks in nonavian theropods and birds. Following initial apomorphic expansion of rostral keratinized epithelia in perinatal toothed theropods, beaks appear to inhibit odontogenesis as they grow postnatally, resulting in a sequence of common morphologies. This sequence is shifted earlier in development through phylogeny until dentition is absent at hatching, and odontogenesis is inhibited by beak formation in ovo. PMID:28973883

  19. A new chasmosaurine from northern Laramidia expands frill disparity in ceratopsid dinosaurs.

    Science.gov (United States)

    Ryan, Michael J; Evans, David C; Currie, Philip J; Loewen, Mark A

    2014-06-01

    A new taxon of chasmosaurine ceratopsid demonstrates unexpected disparity in parietosquamosal frill shape among ceratopsid dinosaurs early in their evolutionary radiation. The new taxon is described based on two apomorphic squamosals collected from approximately time equivalent (approximately 77 million years old) sections of the upper Judith River Formation, Montana, and the lower Dinosaur Park Formation of Dinosaur Provincial Park, Alberta. It is referred to Chasmosaurinae based on the inferred elongate morphology. The typical chasmosaurine squamosal forms an obtuse triangle in dorsal view that tapers towards the posterolateral corner of the frill. In the dorsal view of the new taxon, the lateral margin of the squamosal is hatchet-shaped with the posterior portion modified into a constricted narrow bar that would have supported the lateral margin of a robust parietal. The new taxon represents the oldest chasmosaurine from Canada, and the first pre-Maastrichtian ceratopsid to have been collected on both sides of the Canada-US border, with a minimum north-south range of 380 km. This squamosal morphology would have given the frill of the new taxon a unique dorsal profile that represents evolutionary experimentation in frill signalling near the origin of chasmosaurine ceratopsids and reinforces biogeographic differences between northern and southern faunal provinces in the Campanian of North America.

  20. Growing with dinosaurs: natural products from the Cretaceous relict Metasequoia glyptostroboides Hu & Cheng?a molecular reservoir from the ancient world with potential in modern medicine

    OpenAIRE

    Juvik, Ole Johan; Nguyen, Xuan Hong Thy; Andersen, Heidi Lie; Fossen, Torgils

    2015-01-01

    After the sensational rediscovery of living exemplars of the Cretaceous relict Metasequoia glyptostroboides—a tree previously known exclusively from fossils from various locations in the northern hemisphere, there has been an increasing interest in discovery of novel natural products from this unique plant source. This article includes the first complete compilation of natural products reported from M. glyptostroboides during the entire period in which the tree has been investigated (1954–201...

  1. The origin and early evolution of metatherian mammals: the Cretaceous record

    Directory of Open Access Journals (Sweden)

    Thomas E. Williamson

    2014-12-01

    Full Text Available Metatherians, which comprise marsupials and their closest fossil relatives, were one of the most dominant clades of mammals during the Cretaceous and are the most diverse clade of living mammals after Placentalia. Our understanding of this group has increased greatly over the past 20 years, with the discovery of new specimens and the application of new analytical tools. Here we provide a review of the phylogenetic relationships of metatherians with respect to other mammals, discuss the taxonomic definition and diagnosis of Metatheria, outline the Cretaceous history of major metatherian clades, describe the paleobiology, biogeography, and macroevolution of Cretaceous metatherians, and provide a physical and climatic background of Cretaceous metatherian faunas. Metatherians are a clade of boreosphendian mammals that must have originated by the Late Jurassic, but the first unequivocal metatherian fossil is from the Early Cretaceous of Asia. Metatherians have the distinctive tightly interlocking occlusal molar pattern of tribosphenic mammals, but differ from Eutheria in their dental formula and tooth replacement pattern, which may be related to the metatherian reproductive process which includes an extended period of lactation followed by birth of extremely altricial young. Metatherians were widespread over Laurasia during the Cretaceous, with members present in Asia, Europe, and North America by the early Late Cretaceous. In particular, they were taxonomically and morphologically diverse and relatively abundant in the Late Cretaceous of western North America, where they have been used to examine patterns of biogeography, macroevolution, diversification, and extinction through the Late Cretaceous and across the Cretaceous-Paleogene (K-Pg boundary. Metatherian diversification patterns suggest that they were not strongly affected by a Cretaceous Terrestrial Revolution, but they clearly underwent a severe extinction across the K-Pg boundary.

  2. Children's Interpretations of Computer-Animated Dinosaurs in Live Theatre: "Dinosaurus".

    Science.gov (United States)

    Klein, Jeanne M.

    To explore media theories of perceived reality regarding factuality, social, and physical realism, and "videocy" (or theatrical spectacle), 32 children in first, third, and fifth grades were individually interviewed after attending a production of "Dinosaurus" which included computer-animated dinosaurs. Contrary to beliefs that…

  3. What lies beneath: sub-articular long bone shape scaling in eutherian mammals and saurischian dinosaurs suggests different locomotor adaptations for gigantism.

    Directory of Open Access Journals (Sweden)

    Matthew F Bonnan

    Full Text Available Eutherian mammals and saurischian dinosaurs both evolved lineages of huge terrestrial herbivores. Although significantly more saurischian dinosaurs were giants than eutherians, the long bones of both taxa scale similarly and suggest that locomotion was dynamically similar. However, articular cartilage is thin in eutherian mammals but thick in saurischian dinosaurs, differences that could have contributed to, or limited, how frequently gigantism evolved. Therefore, we tested the hypothesis that sub-articular bone, which supports the articular cartilage, changes shape in different ways between terrestrial mammals and dinosaurs with increasing size. Our sample consisted of giant mammal and reptile taxa (i.e., elephants, rhinos, sauropods plus erect and non-erect outgroups with thin and thick articular cartilage. Our results show that eutherian mammal sub-articular shape becomes narrow with well-defined surface features as size increases. In contrast, this region in saurischian dinosaurs expands and remains gently convex with increasing size. Similar trends were observed in non-erect outgroup taxa (monotremes, alligators, showing that the trends we report are posture-independent. These differences support our hypothesis that sub-articular shape scales differently between eutherian mammals and saurischian dinosaurs. Our results show that articular cartilage thickness and sub-articular shape are correlated. In mammals, joints become ever more congruent and thinner with increasing size, whereas archosaur joints remained both congruent and thick, especially in sauropods. We suggest that gigantism occurs less frequently in mammals, in part, because joints composed of thin articular cartilage can only become so congruent before stress cannot be effectively alleviated. In contrast, frequent gigantism in saurischian dinosaurs may be explained, in part, by joints with thick articular cartilage that can deform across large areas with increasing load.

  4. Age constraints on the dispersal of dinosaurs in the Late Triassic from magnetochronology of the Los Colorados Formation (Argentina).

    Science.gov (United States)

    Kent, Dennis V; Santi Malnis, Paula; Colombi, Carina E; Alcober, Oscar A; Martínez, Ricardo N

    2014-06-03

    A measured magnetozone sequence defined by 24 sampling sites with normal polarity and 28 sites with reverse polarity characteristic magnetizations was established for the heretofore poorly age-constrained Los Colorados Formation and its dinosaur-bearing vertebrate fauna in the Ischigualasto-Villa Union continental rift basin of Argentina. The polarity pattern in this ∼600-m-thick red-bed section can be correlated to Chrons E7r to E15n of the Newark astrochronological polarity time scale. This represents a time interval from 227 to 213 Ma, indicating that the Los Colorados Formation is predominantly Norian in age, ending more than 11 My before the onset of the Jurassic. The magnetochronology confirms that the underlying Ischigualasto Formation and its vertebrate assemblages including some of the earliest known dinosaurs are of Carnian age. The oldest dated occurrences of vertebrate assemblages with dinosaurs in North America (Chinle Formation) are younger (Norian), and thus the rise of dinosaurs was diachronous across the Americas. Paleogeography of the Ischigualasto and Los Colorados Formations indicates prolonged residence in the austral temperate humid belt where a provincial vertebrate fauna with early dinosaurs may have incubated. Faunal dispersal across the Pangean supercontinent in the development of more cosmopolitan vertebrate assemblages later in the Norian may have been in response to reduced contrasts between climate zones and lowered barriers resulting from decreasing atmospheric pCO2 levels.

  5. Environmental and Cultural Resources within the Trinity River Basin

    Science.gov (United States)

    1971-01-01

    during each conversion from one organism to another. Only the green plants are capable of manufacturing food (carbohydrates, fats, and proteins ). All...Abstract: Report of the first mammal discovered in the Early Cretaceous of the New World. Associated with turtles, crocodiles, dinosaurs , pterosaurs

  6. Dispersal and diversity in the earliest North American sauropodomorph dinosaurs, with a description of a new taxon

    OpenAIRE

    Rowe, Timothy B.; Sues, Hans-Dieter; Reisz, Robert R.

    2010-01-01

    Sauropodomorph dinosaurs originated in the Southern Hemisphere in the Middle or Late Triassic and are commonly portrayed as spreading rapidly to all corners of Pangaea as part of a uniform Late Triassic to Early Jurassic cosmopolitan dinosaur fauna. Under this model, dispersal allegedly inhibited dinosaurian diversification, while vicariance and local extinction enhanced it. However, apomorphy-based analyses of the known fossil record indicate that sauropodomorphs were absent in North America...

  7. Dinosaurs from the Maastrichtian-type area (southeastern Netherlands, northeastern Belgium)

    NARCIS (Netherlands)

    Jagt, J. W M; Mulder, E. W. A.; Schulp, Anne S.; Dortangs, Rudi W.; Fraaije, R. H B

    In comparison to pre-1980 records of nonavian dinosaur remains from the Maastrichtian type strata, material collected during the past 20 years is both fairly common and diverse, consisting mostly of isolated cranial and post-cranial remains of hadrosaurids. With the exception of the type specimen of

  8. Palaeoclimate evolution across the Cretaceous-Palaeogene boundary in the Nanxiong Basin (SE China) recorded by red strata and its correlation with marine records

    Science.gov (United States)

    Ma, Mingming; Liu, Xiuming; Wang, Wenyan

    2018-03-01

    The climate during the Cretaceous Period represented one of the greenhouse states of Earth's history. Significant transformation of climate patterns and a mass extinction event characterised by the disappearance of dinosaurs occurred across the Cretaceous-Palaeogene boundary. However, most records of this interval are derived from marine sediments. The continuous and well-exposed red strata of the Nanxiong Basin (SE China) provide ideal material to develop continental records. Considerable research into stratigraphic, palaeontological, chronologic, palaeoclimatic, and tectonic aspects has been carried out for the Datang profile, which is a type section of a non-marine Cretaceous-Palaeogene stratigraphic division in China. For this study, we reviewed previous work and found that (1) the existing chronological framework of the Datang profile is flawed; (2) precise palaeoclimatic reconstruction is lacking because of the limitations of sampling resolution (e.g. carbonate samples) and/or the lack of efficient proxies; and (3) comparisons of climate changes between marine and continental records are lacking. To resolve these problems, detailed field observations and sampling, as well as environmental magnetic and rare earth element (REE) measurements, were carried out. The results show that (1) more accurate ages of the Datang profile range from 72 to 62.8 Ma based on a combination of the most recently published radiometric, palaeontological, and palaeomagnetic ages; (2) there is considerable evidence of palaeosol generation, which indicates that the red strata formed in a long-term hot, oxidising environment that lacked underwater conditions; (3) haematite was the dominant magnetic mineral in the red strata, and the variation trend of magnetic susceptibility was consistent with the oxygen isotope records from deep-sea sediments, which indicates that the content of haematite was controlled by the global climate; and (4) the palaeoclimate changes from 72 to 62.8 Ma in the

  9. Tribosphenic mammal from the North American Early Cretaceous.

    Science.gov (United States)

    Cifelli, R L

    1999-09-23

    The main groups of living mammals, marsupials and eutherians, are presumed to have diverged in the Early Cretaceous, but their early history and biogeography are poorly understood. Dental remains have suggested that the eutherians may have originated in Asia, spreading to North America in the Late Cretaceous, where an endemic radiation of marsupials was already well underway. Here I describe a new tribosphenic mammal (a mammal with lower molar heels that are three-cusped and basined) from the Early Cretaceous of North America, based on an unusually complete specimen. The new taxon bears characteristics (molarized last premolar, reduction to three molars) otherwise known only for Eutheria among the tribosphenic mammals. Morphometric analysis and character comparisons show, however, that its molar structure is primitive (and thus phylogenetically uninformative), emphasizing the need for caution in interpretation of isolated teeth. The new mammal is approximately contemporaneous with the oldest known Eutheria from Asia. If it is a eutherian, as is indicated by the available evidence, then this group was far more widely distributed in the Early Cretaceous than previously appreciated. An early presence of Eutheria in North America offers a potential source for the continent's Late Cretaceous radiations, which have, in part, proven difficult to relate to contemporary taxa in Asia.

  10. Intraskeletal histovariability, allometric growth patterns, and their functional implications in bird-like dinosaurs.

    Science.gov (United States)

    Prondvai, Edina; Godefroit, Pascal; Adriaens, Dominique; Hu, Dong-Yu

    2018-01-10

    With their elongated forelimbs and variable aerial skills, paravian dinosaurs, a clade also comprising modern birds, are in the hotspot of vertebrate evolutionary research. Inferences on the early evolution of flight largely rely on bone and feather morphology, while osteohistological traits are usually studied to explore life-history characteristics. By sampling and comparing multiple homologous fore- and hind limb elements, we integrate for the first time qualitative and quantitative osteohistological approaches to get insight into the intraskeletal growth dynamics and their functional implications in five paravian dinosaur taxa, Anchiornis, Aurornis, Eosinopteryx, Serikornis, and Jeholornis. Our qualitative assessment implies a considerable diversity in allometric/isometric growth patterns among these paravians. Quantitative analyses show that neither taxa nor homologous elements have characteristic histology, and that ontogenetic stage, element size and the newly introduced relative element precocity only partially explain the diaphyseal histovariability. Still, Jeholornis, the only avialan studied here, is histologically distinct from all other specimens in the multivariate visualizations raising the hypothesis that its bone tissue characteristics may be related to its superior aerial capabilities compared to the non-avialan paravians. Our results warrant further research on the osteohistological correlates of flight and developmental strategies in birds and bird-like dinosaurs.

  11. A Dome-Headed Stem Archosaur Exemplifies Convergence among Dinosaurs and Their Distant Relatives.

    Science.gov (United States)

    Stocker, Michelle R; Nesbitt, Sterling J; Criswell, Katharine E; Parker, William G; Witmer, Lawrence M; Rowe, Timothy B; Ridgely, Ryan; Brown, Matthew A

    2016-10-10

    Similarities in body plan evolution, such as wings in pterosaurs, birds, and bats or limblessness in snakes and amphisbaenians, can be recognized as classical examples of convergence among animals [1-3]. We introduce a new Triassic stem archosaur that is unexpectedly and remarkably convergent with the "dome-headed" pachycephalosaur dinosaurs that lived over 100 million years later. Surprisingly, numerous additional taxa in the same assemblage (the Otis Chalk assemblage from the Dockum Group of Texas) demonstrate the early acquisition of morphological novelties that were later convergently evolved by post-Triassic dinosaurs. As one of the most successful clades of terrestrial vertebrates, dinosaurs came to occupy an extensive morphospace throughout their diversification in the Mesozoic Era [4, 5], but their distant relatives were first to evolve many of those "dinosaurian" body plans in the Triassic Period [6-8]. Our analysis of convergence between archosauromorphs from the Triassic Period and post-Triassic archosaurs demonstrates the early and extensive exploration of morphospace captured in a single Late Triassic assemblage, and we hypothesize that many of the "novel" morphotypes interpreted to occur among archosaurs later in the Mesozoic already were in place during the initial Triassic archosauromorph, largely non-dinosaurian, radiation and only later convergently evolved in diverse dinosaurian lineages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The earliest bird-line archosaurs and the assembly of the dinosaur body plan.

    Science.gov (United States)

    Nesbitt, Sterling J; Butler, Richard J; Ezcurra, Martín D; Barrett, Paul M; Stocker, Michelle R; Angielczyk, Kenneth D; Smith, Roger M H; Sidor, Christian A; Niedźwiedzki, Grzegorz; Sennikov, Andrey G; Charig, Alan J

    2017-04-27

    The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.

  13. A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination

    Science.gov (United States)

    Warwood, Stacey; van Dongen, Bart; Kitchener, Andrew C.; Manning, Phillip L.

    2017-01-01

    A decade ago, reports that organic-rich soft tissue survived from dinosaur fossils were apparently supported by proteomics-derived sequence information of exceptionally well-preserved bone. This initial claim to the sequencing of endogenous collagen peptides from an approximately 68 Myr Tyrannosaurus rex fossil was highly controversial, largely on the grounds of potential contamination from either bacterial biofilms or from laboratory practice. In a subsequent study, collagen peptide sequences from an approximately 78 Myr Brachylophosaurus canadensis fossil were reported that have remained largely unchallenged. However, the endogeneity of these sequences relies heavily on a single peptide sequence, apparently unique to both dinosaurs. Given the potential for cross-contamination from modern bone analysed by the same team, here we extract collagen from bone samples of three individuals of ostrich, Struthio camelus. The resulting LC–MS/MS data were found to match all of the proposed sequences for both the original Tyrannosaurus and Brachylophosaurus studies. Regardless of the true nature of the dinosaur peptides, our finding highlights the difficulty of differentiating such sequences with confidence. Our results not only imply that cross-contamination cannot be ruled out, but that appropriate measures to test for endogeneity should be further evaluated. PMID:28566488

  14. An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events.

    Science.gov (United States)

    Upchurch, Paul; Hunn, Craig A; Norman, David B

    2002-03-22

    As the supercontinent Pangaea fragmented during the Mesozoic era, dinosaur faunas were divided into isolated populations living on separate continents. It has been predicted, therefore, that dinosaur distributions should display a branching ('vicariance') pattern that corresponds with the sequence and timing of continental break-up. Several recent studies, however, minimize the importance of plate tectonics and instead suggest that dispersal and regional extinction were the main controls on dinosaur biogeography. Here, in order to test the vicariance hypothesis, we apply a cladistic biogeographical method to a large dataset on dinosaur relationships and distributions. We also introduce a methodological refinement termed 'time-slicing', which is shown to be a key step in the detection of ancient biogeographical patterns. These analyses reveal biogeographical patterns that closely correlate with palaeogeography. The results provide the first statistically robust evidence that, from Middle Jurassic to mid-Cretaceous times, tectonic events had a major role in determining where and when particular dinosaur groups flourished. The fact that evolutionary trees for extinct organisms preserve such distribution patterns opens up a new and fruitful direction for palaeobiogeographical research.

  15. Definition of Greater Gulf Basin Lower Cretaceous and Upper Cretaceous Lower Cenomanian Shale Gas Assessment Unit, United States Gulf of Mexico Basin Onshore and State Waters

    Science.gov (United States)

    Dennen, Kristin O.; Hackley, Paul C.

    2012-01-01

    An assessment unit (AU) for undiscovered continuous “shale” gas in Lower Cretaceous (Aptian and Albian) and basal Upper Cretaceous (lower Cenomanian) rocks in the USA onshore Gulf of Mexico coastal plain recently was defined by the U.S. Geological Survey (USGS). The AU is part of the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico Basin. Definition of the AU was conducted as part of the 2010 USGS assessment of undiscovered hydrocarbon resources in Gulf Coast Mesozoic stratigraphic intervals. The purpose of defining the Greater Gulf Basin Lower Cretaceous Shale Gas AU was to propose a hypothetical AU in the Cretaceous part of the Gulf Coast TPS in which there might be continuous “shale” gas, but the AU was not quantitatively assessed by the USGS in 2010.

  16. Dinosaur tracks in Lower Jurassic coastal plain sediments (Sose Bugt Member, Rønne Formation) on Bornholm, Denmark

    DEFF Research Database (Denmark)

    Clemmensen, Lars B; Milàn, Jesper; Pedersen, Gunver K

    2014-01-01

    Fluvial palaeochannels of coastal plain sediments of the Lower Jurassic Sose Bugt Member of the Rønne Formation exposed in the coastal cliffs at Sose Bugt, Bornholm, contain abundant dinosaur or other large vertebrate tracks in the form of deformation structures exposed in vertical section...... track. Contemporary Upper Triassic – Lower Jurassic strata from southern Sweden and Poland contain a diverse track fauna, supporting our interpretation. This is the earliest evidence of dinosaur activity in Denmark....

  17. The physiology of dinosaurs: circulatory and respiratory function in the largest animals ever to walk the earth.

    Science.gov (United States)

    Pierson, David J

    2009-07-01

    The cardiopulmonary physiology of dinosaurs-and especially of the long-necked sauropods, which grew much larger than any land animals before or since-should be inherently fascinating to anyone involved in respiratory care. What would the blood pressure be in an animal 12 m (40 ft) tall? How could airway resistance and dead space be overcome while breathing through a trachea 9 m (30 ft) long? The last decade has seen a dramatic increase in evidence bearing on these questions. Insight has come not only from new fossil discoveries but also from comparative studies of living species, clarification of evolutionary relationships, new evaluation techniques, computer modeling, and discoveries about the earth's ancient atmosphere. Pumping a vertical column of blood 8 m (26 ft) above the heart would probably require an arterial blood pressure > 600 mm Hg, and the implications of this for cardiac size and function have led to the proposal of several alternative cardiopulmonary designs. Diverse lines of evidence suggest that the giant sauropods were probably warm-blooded and metabolically active when young, but slowed their metabolism as they approached adult size, which diminished the load on the circulatory system. Circulatory considerations leave little doubt that the dinosaurs had 4-chambered hearts. Birds evolved from dinosaurs, and the avian-type air-sac respiratory system, which is more efficient than its mammalian counterpart, may hold the answer to the breathing problems posed by the sauropods' very long necks. Geochemical and other data indicate that, at the time the dinosaurs first appeared, the atmospheric oxygen concentration was only about half of what it is today, and development of the avian-type respiratory system may have been key in the dinosaurs' evolutionary success, enabling them to out-compete the mammals and dominate the land for 150 million years.

  18. The variability of inner ear orientation in saurischian dinosaurs: testing the use of semicircular canals as a reference system for comparative anatomy

    Directory of Open Access Journals (Sweden)

    Jesús Marugán-Lobón

    2013-08-01

    Full Text Available The vestibular system of the inner ear houses three semicircular canals—oriented on three nearly-orthogonal planes—that respond to angular acceleration stimuli. In recent years, the orientation of the lateral semicircular canal (LSC has been regularly used to determine skull orientations for comparative purposes in studies of non-avian dinosaurs. Such orientations have been inferred based on fixing the LSC to a common set of coordinates (parallel to the Earth’s horizon, given that the orientation to gravity of this sensory system is assumed constant among taxa. Under this assumption, the LSC is used as a baseline (a reference system both to estimate how the animals held their heads and to describe craniofacial variation among dinosaurs. However, the available data in living birds (extant saurischian dinosaurs suggests that the orientation of the LSC in non-avian saurischian dinosaurs could have been very variable and taxon-specific. If such were the case, using the LSC as a comparative reference system would cause inappropriate visual perceptions of craniofacial organization, leading to significant descriptive inconsistencies among taxa. Here, we used Procrustes methods (Geometric Morphometrics, a suite of analytical tools that compares morphology on the basis of shared landmark homology, to show that the variability of LSC relative to skull landmarks is large (ca. 50° and likely unpredictable, thus making it an inconsistent reference system for comparing and describing the skulls of saurischian (sauropodomorph and theropod dinosaurs. In light of our results, the lateral semicircular canal is an inconsistent baseline for comparative studies of craniofacial morphology in dinosaurs.

  19. Telling Apart Ornithopod and Theropod Trackways : A Closer Look at a Large, Late Jurassic Tridactyl Dinosaur Trackway at Serwah, Republic of Yemen

    NARCIS (Netherlands)

    Schulp, Anne S.; Al-Wosabi, Mohammed

    2012-01-01

    A large bipedal tridactyl dinosaur trackway from the Late Jurassic of Serwah, near Madar, Arhab district, Republic of Yemen, has been attributed to an ornithopod trackmaker. As the distinction between theropod and ornithopod dinosaurs can pose a challenge, we present additional data to support and

  20. Cartilaginous epiphyses in extant archosaurs and their implications for reconstructing limb function in dinosaurs.

    Directory of Open Access Journals (Sweden)

    Casey M Holliday

    2010-09-01

    Full Text Available Extinct archosaurs, including many non-avian dinosaurs, exhibit relatively simply shaped condylar regions in their appendicular bones, suggesting potentially large amounts of unpreserved epiphyseal (articular cartilage. This "lost anatomy" is often underappreciated such that the ends of bones are typically considered to be the joint surfaces, potentially having a major impact on functional interpretation. Extant alligators and birds were used to establish an objective basis for inferences about cartilaginous articular structures in such extinct archosaur clades as non-avian dinosaurs. Limb elements of alligators, ostriches, and other birds were dissected, disarticulated, and defleshed. Lengths and condylar shapes of elements with intact epiphyses were measured. Limbs were subsequently completely skeletonized and the measurements repeated. Removal of cartilaginous condylar regions resulted in statistically significant changes in element length and condylar breadth. Moreover, there was marked loss of those cartilaginous structures responsible for joint architecture and congruence. Compared to alligators, birds showed less dramatic, but still significant changes. Condylar morphologies of dinosaur limb bones suggest that most non-coelurosaurian clades possessed large cartilaginous epiphyses that relied on the maintenance of vascular channels that are otherwise eliminated early in ontogeny in smaller-bodied tetrapods. A sensitivity analysis using cartilage correction factors (CCFs obtained from extant taxa indicates that whereas the presence of cartilaginous epiphyses only moderately increases estimates of dinosaur height and speed, it has important implications for our ability to infer joint morphology, posture, and the complicated functional movements in the limbs of many extinct archosaurs. Evidence suggests that the sizes of sauropod epiphyseal cartilages surpassed those of alligators, which account for at least 10% of hindlimb length. These data

  1. Cartilaginous epiphyses in extant archosaurs and their implications for reconstructing limb function in dinosaurs.

    Science.gov (United States)

    Holliday, Casey M; Ridgely, Ryan C; Sedlmayr, Jayc C; Witmer, Lawrence M

    2010-09-30

    Extinct archosaurs, including many non-avian dinosaurs, exhibit relatively simply shaped condylar regions in their appendicular bones, suggesting potentially large amounts of unpreserved epiphyseal (articular) cartilage. This "lost anatomy" is often underappreciated such that the ends of bones are typically considered to be the joint surfaces, potentially having a major impact on functional interpretation. Extant alligators and birds were used to establish an objective basis for inferences about cartilaginous articular structures in such extinct archosaur clades as non-avian dinosaurs. Limb elements of alligators, ostriches, and other birds were dissected, disarticulated, and defleshed. Lengths and condylar shapes of elements with intact epiphyses were measured. Limbs were subsequently completely skeletonized and the measurements repeated. Removal of cartilaginous condylar regions resulted in statistically significant changes in element length and condylar breadth. Moreover, there was marked loss of those cartilaginous structures responsible for joint architecture and congruence. Compared to alligators, birds showed less dramatic, but still significant changes. Condylar morphologies of dinosaur limb bones suggest that most non-coelurosaurian clades possessed large cartilaginous epiphyses that relied on the maintenance of vascular channels that are otherwise eliminated early in ontogeny in smaller-bodied tetrapods. A sensitivity analysis using cartilage correction factors (CCFs) obtained from extant taxa indicates that whereas the presence of cartilaginous epiphyses only moderately increases estimates of dinosaur height and speed, it has important implications for our ability to infer joint morphology, posture, and the complicated functional movements in the limbs of many extinct archosaurs. Evidence suggests that the sizes of sauropod epiphyseal cartilages surpassed those of alligators, which account for at least 10% of hindlimb length. These data suggest that

  2. Novel insight into the origin of the growth dynamics of sauropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    Ignacio Alejandro Cerda

    Full Text Available Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies.

  3. Novel insight into the origin of the growth dynamics of sauropod dinosaurs.

    Science.gov (United States)

    Cerda, Ignacio Alejandro; Chinsamy, Anusuya; Pol, Diego; Apaldetti, Cecilia; Otero, Alejandro; Powell, Jaime Eduardo; Martínez, Ricardo Nestor

    2017-01-01

    Sauropod dinosaurs include the largest terrestrial animals and are considered to have uninterrupted rapid rates of growth, which differs from their more basal relatives, which have a slower cyclical growth. Here we examine the bone microstructure of several sauropodomorph dinosaurs, including basal taxa, as well as the more derived sauropods. Although our results agree that the plesiomorphic condition for Sauropodomorpha is cyclical growth dynamics, we found that the hypothesized dichotomy between the growth patterns of basal and more derived sauropodomorphs is not supported. Here, we show that sauropod-like growth dynamics of uninterrupted rapid growth also occurred in some basal sauropodomorphs, and that some basal sauropods retained the plesiomorphic cyclical growth patterns. Among the sauropodomorpha it appears that the basal taxa exploited different growth strategies, but the more derived Eusauropoda successfully utilized rapid, uninterrupted growth strategies.

  4. Calibrating the Cretaceous normal superchron with high-precision U-Pb zircon geochronology from Songliao Basin, NE China

    Science.gov (United States)

    Wang, T.; Ramezani, J.; Wang, C.

    2017-12-01

    The Cretaceous Normal Superchron (CNS) or C34n is defined as the prolonged period of normal geomagnetic polarity, which lasted for approximately 38 Myr from the Aptian to the beginning of the Campanian. Along with the Kiaman Reverse Superchron (Carboniferous-Permian), they constitute the two longest periods of stability in the Earth's magnetic field. Polarity reversals are geologically abrupt events of global extent that form the basis of the Geomagnetic Polarity Timescale. In addition, a causal relationship between the end of a superchron and global environmental change has been hypothesized by some workers. Thus, the precise timing of the onset and termination of CNS has important implications for the correlation of global tectonic, paleoclimatic and paleobiotic events, and may help us better understand the causes and consequences of superchrons. At present, the exact age and duration of CNS are poorly understood, in part due to the relative scarcity of relevant paleomagnetic and radioisotopic data. The end of CNS or the C34n/C33r chron boundary is also considered a suitable proxy for the Santonian-Campanian stage boundary in the absence of diagnostic fossils of global distribution for the latter. The early Campanian ( 84 Ma to 76 Ma) is characterized by a steady cooling of the (greenhouse) climate, preceded by an abrupt (possibly 5-6°C) drop in the global temperatures at the Santonain-Campanian boundary, based on the oxygen isotope record of benthic foraminifera. The peak of dinosaur diversity throughout vast swaths of the continents was reached during the Campanian, as well. Here we present a new age constraint for the termination of CNS based on ash bed geochronology from a near-continuous, subsurface, Cretaceous lacustrine record recovered from the Songliao Basin in Northeast China. This extraordinary record allows integration of high-precision U-Pb geochronology, magnetostratigraphy and cyclostratigraphy that enables a multi-chronometer approach to the

  5. Bony cranial ornamentation linked to rapid evolution of gigantic theropod dinosaurs

    Science.gov (United States)

    Gates, Terry A.; Organ, Chris; Zanno, Lindsay E.

    2016-09-01

    Exaggerated cranial structures such as crests and horns, hereafter referred to collectively as ornaments, are pervasive across animal species. These structures perform vital roles in visual communication and physical interactions within and between species. Yet the origin and influence of ornamentation on speciation and ecology across macroevolutionary time scales remains poorly understood for virtually all animals. Here, we explore correlative evolution of osseous cranial ornaments with large body size in theropod dinosaurs using a phylogenetic comparative framework. We find that body size evolved directionally toward phyletic giantism an order of magnitude faster in theropod species possessing ornaments compared with unadorned lineages. In addition, we find a body mass threshold below which bony cranial ornaments do not originate. Maniraptoriform dinosaurs generally lack osseous cranial ornaments despite repeatedly crossing this body size threshold. Our study provides novel, quantitative support for a shift in selective pressures on socio-sexual display mechanisms in theropods coincident with the evolution of pennaceous feathers.

  6. Record-Breaking Pain: The Largest Number and Variety of Forelimb Bone Maladies in a Theropod Dinosaur.

    Directory of Open Access Journals (Sweden)

    Phil Senter

    Full Text Available Bone abnormalities are common in theropod dinosaur skeletons, but before now no specimen was known with more than four afflicted bones of the pectoral girdle and/or forelimb. Here we describe the pathology of a specimen of the theropod dinosaur Dilophosaurus wetherilli with eight afflicted bones of the pectoral girdle and forelimb. On its left side the animal has a fractured scapula and radius and large fibriscesses in the ulna and the proximal thumb phalanx. On its right side the animal has abnormal torsion of the humeral shaft, bony tumors on the radius, a truncated distal articular surface of metacarpal III, and angular deformities of the first phalanx of the third finger. Healing and remodeling indicates that the animal survived for months and possibly years after its ailments began, but its right third finger was permanently deformed and lacked the capability of flexion. The deformities of the humerus and the right third finger may be due to developmental osteodysplasia, a condition known in extant birds but unreported in non-avian dinosaurs before now.

  7. Record-Breaking Pain: The Largest Number and Variety of Forelimb Bone Maladies in a Theropod Dinosaur.

    Science.gov (United States)

    Senter, Phil; Juengst, Sara L

    2016-01-01

    Bone abnormalities are common in theropod dinosaur skeletons, but before now no specimen was known with more than four afflicted bones of the pectoral girdle and/or forelimb. Here we describe the pathology of a specimen of the theropod dinosaur Dilophosaurus wetherilli with eight afflicted bones of the pectoral girdle and forelimb. On its left side the animal has a fractured scapula and radius and large fibriscesses in the ulna and the proximal thumb phalanx. On its right side the animal has abnormal torsion of the humeral shaft, bony tumors on the radius, a truncated distal articular surface of metacarpal III, and angular deformities of the first phalanx of the third finger. Healing and remodeling indicates that the animal survived for months and possibly years after its ailments began, but its right third finger was permanently deformed and lacked the capability of flexion. The deformities of the humerus and the right third finger may be due to developmental osteodysplasia, a condition known in extant birds but unreported in non-avian dinosaurs before now.

  8. A fossil protein chimera; difficulties in discriminating dinosaur peptide sequences from modern cross-contamination.

    Science.gov (United States)

    Buckley, Michael; Warwood, Stacey; van Dongen, Bart; Kitchener, Andrew C; Manning, Phillip L

    2017-05-31

    A decade ago, reports that organic-rich soft tissue survived from dinosaur fossils were apparently supported by proteomics-derived sequence information of exceptionally well-preserved bone. This initial claim to the sequencing of endogenous collagen peptides from an approximately 68 Myr Tyrannosaurus rex fossil was highly controversial, largely on the grounds of potential contamination from either bacterial biofilms or from laboratory practice. In a subsequent study, collagen peptide sequences from an approximately 78 Myr Brachylophosaurus canadensis fossil were reported that have remained largely unchallenged. However, the endogeneity of these sequences relies heavily on a single peptide sequence, apparently unique to both dinosaurs. Given the potential for cross-contamination from modern bone analysed by the same team, here we extract collagen from bone samples of three individuals of ostrich, Struthio camelus The resulting LC-MS/MS data were found to match all of the proposed sequences for both the original Tyrannosaurus and Brachylophosaurus studies. Regardless of the true nature of the dinosaur peptides, our finding highlights the difficulty of differentiating such sequences with confidence. Our results not only imply that cross-contamination cannot be ruled out, but that appropriate measures to test for endogeneity should be further evaluated. © 2017 The Authors.

  9. Geology and taphonomy of the L'Espinau dinosaur bonebed, a singular lagoonal site from the Maastrichtian of South-Central Pyrenees

    Science.gov (United States)

    Fondevilla, V.; Vicente, A.; Battista, F.; Sellés, A. G.; Dinarès-Turell, J.; Martín-Closas, C.; Anadón, P.; Vila, B.; Razzolini, N. L.; Galobart, À.; Oms, O.

    2017-06-01

    The L'Espinau site is a dinosaur bonebed from the Upper Cretaceous of the South-Central Pyrenees (north-eastern Spain) that have provided hundreds of bone remains attributed to hadrosauroids, together with a rich assemblage of herpetofauna, fish and microflora. Magnetostratigraphy calibrated the site with the early late Maastrichtian, and the combined sedimentology, stable isotope geochemistry and palaeoecology revealed that this fossil site formed in a lagoon, in which a mixed freshwater-brackish palaeoenvironment was developed. This setting displays a south-north charophyte zonation from freshwater (Clavator brachycerus-dominated assemblage) to brackish or eurihaline conditions (Feistiella malladae-dominated assemblage), revealing a palaeoenvironment change towards the coast. Sedimentology and taphonomy (bidirectional arrangement of long bones, abrasion and disarticulation) indicate that the L'Espinau site is the result of a cohesive mass flow event originated very close to the sea. This process entrained and mixed fauna from both the terrestrial and the brackish/marine environment of a lagoon. An increasing of the water runoff (e.g. by intense rainfall) reworking poorly consolidated sediments is considered here as the most probable triggering mechanism. Mass flow-hosted bonebeds are commonly linked to fluvial palaeoenvironments, so our study case is a rare example of bones accumulating near the sea. This study adds evidence that hadrosauroids inhabited littoral environments during the Maastrichtian in the southern Pyrenean area.

  10. Morphometry, Microstructure, and Wear Pattern of Neornithischian Dinosaur Teeth From the Upper Cretaceous Iharkút Locality (Hungary).

    Science.gov (United States)

    Virág, Attila; Ősi, Attila

    2017-08-01

    Teeth of iguanodontian ornithopods and ceratopsians could be remarkably similar, thus the referral of isolated dental material to particular neornithischian clades can be highly problematic. These groups are represented by the rhabdodontid Mochlodon vorosi and the basal coronosaurian Ajkaceratops kozmai in the Upper Cretaceous Csehbánya Formation at Iharkút (western Hungary). Whereas teeth of Mochlodon are common elements at the locality, no dental material belonging to Ajkaceratops was identified until now. Here we used mathematical statistical approaches, as well as tooth wear and dental microstructure analysis in order to decide whether the teeth previously referred to Mochlodon can be treated as a homogenous sample, or some remains belong rather to Ajkaceratops. According to our results, there was a striking morphological and structural convergence between the teeth of both taxa. However, the wear study revealed the existence of two different patterns within the sample. One is characterized by straight and parallel microstriations that suggest orthal movements during the jaw closure. This pattern was associated with Mochlodon. The other pattern appeared only on a few teeth, and it can be differentiated by its distinctive curved microstriations that indicate circumpalinal chewing. Because curved striations have never been described in ornithopods, but are found in several neoceratopsians, this pattern was associated here with Ajkaceratops. Here we present the first teeth that can provisionally be referred to the latter genus. We believe that the methodology discussed in this article will facilitate distinguishing ceratopsian and ornithopod teeth in other localities as well. Anat Rec, 300:1439-1463, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Directory of Open Access Journals (Sweden)

    Michael P Donovan

    Full Text Available Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  12. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Science.gov (United States)

    Donovan, Michael P; Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Peppe, Daniel J

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  13. Geotourism Aspects of the Lufeng Dinosaur National Geopark in Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Daněk Tomáš

    2016-03-01

    Full Text Available The Lufeng Dinosaur National Geopark in Yunnan province, China, is important part of geoheritage with a great scientific and aesthetic value. The area has been under scientific research since 1938 when the first dinosaur fossils were discovered here by geologist Bian Meinian and technician Wang Cunyi. Professor Yang announced the discovery of new early Jurassic herbivore prosauropod by Lufeng in 1941, which he gave the name Lufengosaurus huenei. In 2004, the area was listed as the China`s National Geopark. It was opened for visitors in 2008. Besides the high scientific value, the geopark is also an important resource for science based and educational tourism. This paper briefly introduces the history of scientific research, the basic geology of the site and the most important fossils discovered here. The main characteristics, geodiversity, and geotourism of fossil geoheritage in the area are discussed here.

  14. Cretacic tectonics in Uruguay

    International Nuclear Information System (INIS)

    Gomez Rifas, C.

    2012-01-01

    This work is about Cretacic tectonics in Uruguay, this formation is characterized by high level cortex because the basament is cratonized since Middle Devonian. There were formed two main grabens such as Santa Lucia and Mirim-Pelotas which are filled with basalt and sediments.

  15. Geomagnetic Reversals of the Late Jurassic and Early Cretaceous Captured in a North China Core

    Science.gov (United States)

    Kuhn, T.; Fu, R. R.; Kent, D. V.; Olsen, P. E.

    2016-12-01

    The Tuchengzi formation in North China nominally spans nearly 20 million years of the Late Jurassic and Early Cretaceous, an interval during which age calibration of the Geomagnetic Polarity Time Scale (GPTS) based on seafloor magnetic anomalies is poorly known. The overlying Yixian formation is of special paleontological interest due to an abundance of spectacularly preserved macrofossils of feathered non-avian dinosaurs, birds, mammals, and insects. Scarce fossils in the Tuchengzi, sparse accurate radiometric dates on both the Tuchengzi and overlying Yixian formation, and scant previous paleomagnetic studies on these formations motivated our application of magnetostratigraphy as a geochronological tool. We constructed a geomagnetic reversal sequence from the upper 142m of a 200m core extracted in Liaoning Province at Huangbanjigou spanning the lower Yixian Formation and the unconformably underlying Tuchengzi Formation. Thermal demagnetization up to 680°C in steps of 25-50°C revealed predominantly normal overprints consistent with the modern day field with unblocking temperatures between 125°C and as high as 550°C, as well as normal and reverse characteristic components with unblocking temperatures between 500°C and 680°C. Going up from the base of the core, there is a reverse polarity magnetozone >6m thick, followed by a 5m normal magnetozone, a 10m reverse magnetozone, a 25m normal magnetozone, and a 6m reverse magnetozone truncated by the Yixian-Tuchengzi unconformity. Above the unconformity, all 81m of core were normal. These results indicate that a meaningful polarity stratigraphy can be recovered from the Tuchengzi and Yixian formations that will be invaluable for correlations across the Tuchengzi and potentially the Yixian formations, which span thousands of square kilometers and vary in thickness by many hundreds of meters. The results also demonstrate that, in combination with accurate and precise radiometric dates, the Tuchengzi Formation has the

  16. Secondary cartilage revealed in a non-avian dinosaur embryo.

    Directory of Open Access Journals (Sweden)

    Alida M Bailleul

    Full Text Available The skull and jaws of extant birds possess secondary cartilage, a tissue that arises after bone formation during embryonic development at articulations, ligamentous and muscular insertions. Using histological analysis, we discovered secondary cartilage in a non-avian dinosaur embryo, Hypacrosaurus stebingeri (Ornithischia, Lambeosaurinae. This finding extends our previous report of secondary cartilage in post-hatching specimens of the same dinosaur species. It provides the first information on the ontogeny of avian and dinosaurian secondary cartilages, and further stresses their developmental similarities. Secondary cartilage was found in an embryonic dentary within a tooth socket where it is hypothesized to have arisen due to mechanical stresses generated during tooth formation. Two patterns were discerned: secondary cartilage is more restricted in location in this Hypacrosaurus embryo, than it is in Hypacrosaurus post-hatchlings; secondary cartilage occurs at far more sites in bird embryos and nestlings than in Hypacrosaurus. This suggests an increase in the number of sites of secondary cartilage during the evolution of birds. We hypothesize that secondary cartilage provided advantages in the fine manipulation of food and was selected over other types of tissues/articulations during the evolution of the highly specialized avian beak from the jaws of their dinosaurian ancestors.

  17. Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition.

    Science.gov (United States)

    Benson, Roger B J; Druckenmiller, Patrick S

    2014-02-01

    Marine and terrestrial animals show a mosaic of lineage extinctions and diversifications during the Jurassic-Cretaceous transition. However, despite its potential importance in shaping animal evolution, few palaeontological studies have focussed on this interval and the possible climate and biotic drivers of its faunal turnover. In consequence evolutionary patterns in most groups are poorly understood. We use a new, large morphological dataset to examine patterns of lineage diversity and disparity (variety of form) in the marine tetrapod clade Plesiosauria, and compare these patterns with those of other organisms. Although seven plesiosaurian lineages have been hypothesised as crossing the Jurassic-Cretaceous boundary, our most parsimonious topology suggests the number was only three. The robust recovery of a novel group including most Cretaceous plesiosauroids (Xenopsaria, new clade) is instrumental in this result. Substantial plesiosaurian turnover occurred during the Jurassic-Cretaceous boundary interval, including the loss of substantial pliosaurid, and cryptoclidid diversity and disparity, followed by the radiation of Xenopsaria during the Early Cretaceous. Possible physical drivers of this turnover include climatic fluctuations that influenced oceanic productivity and diversity: Late Jurassic climates were characterised by widespread global monsoonal conditions and increased nutrient flux into the opening Atlantic-Tethys, resulting in eutrophication and a highly productive, but taxonomically depauperate, plankton. Latest Jurassic and Early Cretaceous climates were more arid, resulting in oligotrophic ocean conditions and high taxonomic diversity of radiolarians, calcareous nannoplankton and possibly ammonoids. However, the observation of discordant extinction patterns in other marine tetrapod groups such as ichthyosaurs and marine crocodylomorphs suggests that clade-specific factors may have been more important than overarching extrinsic drivers of faunal

  18. Late Cretaceous vicariance in Gondwanan amphibians.

    Directory of Open Access Journals (Sweden)

    Ines Van Bocxlaer

    Full Text Available Overseas dispersals are often invoked when Southern Hemisphere terrestrial and freshwater organism phylogenies do not fit the sequence or timing of Gondwana fragmentation. We used dispersal-vicariance analyses and molecular timetrees to show that two species-rich frog groups, Microhylidae and Natatanura, display congruent patterns of spatial and temporal diversification among Gondwanan plates in the Late Cretaceous, long after the presumed major tectonic break-up events. Because amphibians are notoriously salt-intolerant, these analogies are best explained by simultaneous vicariance, rather than by oceanic dispersal. Hence our results imply Late Cretaceous connections between most adjacent Gondwanan landmasses, an essential concept for biogeographic and palaeomap reconstructions.

  19. Expansion for the Brachylophosaurus canadensis Collagen I Sequence and Additional Evidence of the Preservation of Cretaceous Protein

    OpenAIRE

    Schroeter, Elena R.; DeHart, Caroline J.; Cleland, Timothy P.; Zheng, Wenxia; Thomas, Paul M.; Kelleher, Neil L.; Bern, Marshall; Schweitzer, Mary H.

    2017-01-01

    Sequence data from biomolecules such as DNA and proteins, which provide critical information for evolutionary studies, have been assumed to be forever outside the reach of dinosaur paleontology. Proteins, which are predicted to have greater longevity than DNA, have been recovered from two nonavian dinosaurs, but these results remain controversial. For proteomic data derived from extinct Mesozoic organisms to reach their greatest potential for investigating questions of phylogeny and paleobiol...

  20. Rates of morphological evolution are heterogeneous in Early Cretaceous birds

    Science.gov (United States)

    Lloyd, Graeme T.

    2016-01-01

    The Early Cretaceous is a critical interval in the early history of birds. Exceptional fossils indicate that important evolutionary novelties such as a pygostyle and a keeled sternum had already arisen in Early Cretaceous taxa, bridging much of the morphological gap between Archaeopteryx and crown birds. However, detailed features of basal bird evolution remain obscure because of both the small sample of fossil taxa previously considered and a lack of quantitative studies assessing rates of morphological evolution. Here we apply a recently available phylogenetic method and associated sensitivity tests to a large data matrix of morphological characters to quantify rates of morphological evolution in Early Cretaceous birds. Our results reveal that although rates were highly heterogeneous between different Early Cretaceous avian lineages, consistent patterns of significantly high or low rates were harder to pinpoint. Nevertheless, evidence for accelerated evolutionary rates is strongest at the point when Ornithuromorpha (the clade comprises all extant birds and descendants from their most recent common ancestors) split from Enantiornithes (a diverse clade that went extinct at the end-Cretaceous), consistent with the hypothesis that this key split opened up new niches and ultimately led to greater diversity for these two dominant clades of Mesozoic birds. PMID:27053742

  1. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    OpenAIRE

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth...

  2. Texture analyses of Sauropod dinosaur bones from Tendaguru

    International Nuclear Information System (INIS)

    Pyzalla, A.R.; Sander, P.M.; Hansen, A.; Ferreyro, R.; Yi, S.-B.; Stempniewicz, M.; Brokmeier, H.-G.

    2006-01-01

    The apatite texture of fossil Brachiosaurus brancai and Barosaurus africanus sauropod bones from the excavation site at Tendaguru, Tanzania, was characterized by neutron diffraction pole figures. The results obtained reveal predominantly -fibre textures of the apatite; the fibre direction coincides with the longitudinal direction of the long bones of the skeletons. Neutron pole figures further indicate that other texture types may also be present. Texture strength is similar to dinosaur tendons and contemporary turkey tendon studied by others. Variations of texture strength across the bone wall cross-sections are not significantly large

  3. Common Avian Infection Plagued the Tyrant Dinosaurs

    Science.gov (United States)

    Wolff, Ewan D. S.; Salisbury, Steven W.; Horner, John R.; Varricchio, David J.

    2009-01-01

    Background Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name ‘Sue’) has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. Methodology/Principal Findings We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. Conclusions/Significance This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation. PMID:19789646

  4. Common avian infection plagued the tyrant dinosaurs.

    Directory of Open Access Journals (Sweden)

    Ewan D S Wolff

    Full Text Available BACKGROUND: Tyrannosaurus rex and other tyrannosaurid fossils often display multiple, smooth-edged full-thickness erosive lesions on the mandible, either unilaterally or bilaterally. The cause of these lesions in the Tyrannosaurus rex specimen FMNH PR2081 (known informally by the name 'Sue' has previously been attributed to actinomycosis, a bacterial bone infection, or bite wounds from other tyrannosaurids. METHODOLOGY/PRINCIPAL FINDINGS: We conducted an extensive survey of tyrannosaurid specimens and identified ten individuals with full-thickness erosive lesions. These lesions were described, measured and photographed for comparison with one another. We also conducted an extensive survey of related archosaurs for similar lesions. We show here that these lesions are consistent with those caused by an avian parasitic infection called trichomonosis, which causes similar abnormalities on the mandible of modern birds, in particular raptors. CONCLUSIONS/SIGNIFICANCE: This finding represents the first evidence for the ancient evolutionary origin of an avian transmissible disease in non-avian theropod dinosaurs. It also provides a valuable insight into the palaeobiology of these now extinct animals. Based on the frequency with which these lesions occur, we hypothesize that tyrannosaurids were commonly infected by a Trichomonas gallinae-like protozoan. For tyrannosaurid populations, the only non-avian dinosaur group that show trichomonosis-type lesions, it is likely that the disease became endemic and spread as a result of antagonistic intraspecific behavior, consumption of prey infected by a Trichomonas gallinae-like protozoan and possibly even cannibalism. The severity of trichomonosis-related lesions in specimens such as Tyrannosaurus rex FMNH PR2081 and Tyrannosaurus rex MOR 980, strongly suggests that these animals died as a direct result of this disease, mostly likely through starvation.

  5. The first well-preserved coelophysoid theropod dinosaur from Asia.

    Science.gov (United States)

    You, Hai-Lu; Azuma, Yoichi; Wang, Tao; Wang, Ya-Ming; Dong, Zhi-Ming

    2014-10-16

    Coelophysoid dinosaurs represent the earliest major radiation of neotheropods. These small-to-medium-sized agile bipeds lived throughout much of Pangaea during the Late Triassic-arly Jurassic. Previously reported coelophysoid material from Asia (excluding the Gondwanan territory of India) is limited to two specimens that comprise only limb fragments. This paper describes a new genus and species of coelophysoid, Panguraptor lufengensis, from the Lower Jurassic Lufeng Formation of Yunnan Province, China. The new taxon is represented by a well-preserved skeleton, including the skull and lower jaw, the presacral vertebral column and partial ribs, the right scapula, a partial forelimb, part of the pelvic girdle, and an almost complete hind limb. It is distinguished from other coelophysoid theropods by the unique combination of the following three character states: 1) diagonal (rostrodorsal-caudoventral) ridge on lateral surface of maxilla, within antorbital fossa, 2) elliptical, laterally facing fenestra caudodorsal to aforementioned diagonal ridge, and 3) hooked craniomedial corner of distal tarsal IV. Cladistic analysis recovers Panguraptor lufengensis deeply nested within Coelophysoidea as a member of Coelophysidae, and it is more closely related to Coelophysis than to "Syntarsus". Panguraptor represents the first well-preserved coelophysoid theropod dinosaur from Asia, and provides fresh evidence supporting the hypothesis that terrestrial tetrapods tended to be distributed pan-continentally during the Early Jurassic.

  6. A basal thunnosaurian from Iraq reveals disparate phylogenetic origins for Cretaceous ichthyosaurs

    Science.gov (United States)

    Fischer, Valentin; Appleby, Robert M.; Naish, Darren; Liston, Jeff; Riding, James B.; Brindley, Stephen; Godefroit, Pascal

    2013-01-01

    Cretaceous ichthyosaurs have typically been considered a small, homogeneous assemblage sharing a common Late Jurassic ancestor. Their low diversity and disparity have been interpreted as indicative of a decline leading to their Cenomanian extinction. We describe the first post-Triassic ichthyosaur from the Middle East, Malawania anachronus gen. et sp. nov. from the Early Cretaceous of Iraq, and re-evaluate the evolutionary history of parvipelvian ichthyosaurs via phylogenetic and cladogenesis rate analyses. Malawania represents a basal grade in thunnosaurian evolution that arose during a major Late Triassic radiation event and was previously thought to have gone extinct during the Early Jurassic. Its pectoral morphology appears surprisingly archaic, retaining a forefin architecture similar to that of its Early Jurassic relatives. After the initial latest Triassic radiation of early thunnosaurians, two subsequent large radiations produced lineages with Cretaceous representatives, but the radiation events themselves are pre-Cretaceous. Cretaceous ichthyosaurs therefore include distantly related lineages, with contrasting evolutionary histories, and appear more diverse and disparate than previously supposed. PMID:23676653

  7. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria).

    Science.gov (United States)

    Stein, Koen; Csiki, Zoltan; Rogers, Kristina Curry; Weishampel, David B; Redelstorff, Ragna; Carballido, Jose L; Sander, P Martin

    2010-05-18

    Sauropods were the largest terrestrial tetrapods (>10(5) kg) in Earth's history and grew at rates that rival those of extant mammals. Magyarosaurus dacus, a titanosaurian sauropod from the Upper Cretaceous (Maastrichtian) of Romania, is known exclusively from small individuals (dwarfism (phyletic nanism) in dinosaurs, but a recent study suggested that the small Romanian titanosaurs actually represent juveniles of a larger-bodied taxon. Here we present strong histological evidence that M. dacus was indeed a dwarf (phyletic nanoid). Bone histological analysis of an ontogenetic series of Magyarosaurus limb bones indicates that even the smallest Magyarosaurus specimens exhibit a bone microstructure identical to fully mature or old individuals of other sauropod taxa. Comparison of histologies with large-bodied sauropods suggests that Magyarosaurus had an extremely reduced growth rate, but had retained high basal metabolic rates typical for sauropods. The uniquely decreased growth rate and diminutive body size in Magyarosaurus were adaptations to life on a Cretaceous island and show that sauropod dinosaurs were not exempt from general ecological principles limiting body size.

  8. Radioactive dinosaur fossil bones of Balasinor area, Kheda district, Gujarat, India

    International Nuclear Information System (INIS)

    Maithani, P.B.; Rathaiah, Y.V.; Dwivedy, K.K.

    1993-01-01

    High-thorium (upto 0.4% ThO 2 ) bearing Dinosaur fossil remains are reported from the Infratrappeans of Balasinor area, Kheda district, Gujarat. The thorium enrichment in these fossils is confined to the osseous matter which could be attributed to either isomorphic substitution for Ca 2+ or adsorption and colloidal precipitation on the bone surfaces. (author). 5 refs., 1 fig

  9. Did Humans Live with Dinosaurs? Excavating "Man Tracks" along the Paluxy River

    Science.gov (United States)

    Moore, Randy

    2014-01-01

    The alleged "man tracks" beside dinosaur tracks near Glen Rose, Texas, are among the most enduring pieces of evidence used by young-Earth creationists to reject evolution. Despite the tracks' fame, their most persistent advocate--that is, Carl Baugh of the Creation Evidence Museum--has published neither (1) peer-reviewed papers in…

  10. Dispersal and diversity in the earliest North American sauropodomorph dinosaurs, with a description of a new taxon

    Science.gov (United States)

    Rowe, Timothy B.; Sues, Hans-Dieter; Reisz, Robert R.

    2011-01-01

    Sauropodomorph dinosaurs originated in the Southern Hemisphere in the Middle or Late Triassic and are commonly portrayed as spreading rapidly to all corners of Pangaea as part of a uniform Late Triassic to Early Jurassic cosmopolitan dinosaur fauna. Under this model, dispersal allegedly inhibited dinosaurian diversification, while vicariance and local extinction enhanced it. However, apomorphy-based analyses of the known fossil record indicate that sauropodomorphs were absent in North America until the Early Jurassic, reframing the temporal context of their arrival. We describe a new taxon from the Kayenta Formation of Arizona that comprises the third diagnosable sauropodomorph from the Early Jurassic of North America. We analysed its relationships to test whether sauropodomorphs reached North America in a single sweepstakes event or in separate dispersals. Our finding of separate arrivals by all three taxa suggests dispersal as a chief factor in dinosaurian diversification during at least the early Mesozoic. It questions whether a ‘cosmopolitan’ dinosaur fauna ever existed, and corroborates that vicariance, extinction and dispersal did not operate uniformly in time or under uniform conditions during the Mesozoic. Their relative importance is best measured in narrow time slices and circumscribed geographical regions. PMID:20926438

  11. Dispersal and diversity in the earliest North American sauropodomorph dinosaurs, with a description of a new taxon.

    Science.gov (United States)

    Rowe, Timothy B; Sues, Hans-Dieter; Reisz, Robert R

    2011-04-07

    Sauropodomorph dinosaurs originated in the Southern Hemisphere in the Middle or Late Triassic and are commonly portrayed as spreading rapidly to all corners of Pangaea as part of a uniform Late Triassic to Early Jurassic cosmopolitan dinosaur fauna. Under this model, dispersal allegedly inhibited dinosaurian diversification, while vicariance and local extinction enhanced it. However, apomorphy-based analyses of the known fossil record indicate that sauropodomorphs were absent in North America until the Early Jurassic, reframing the temporal context of their arrival. We describe a new taxon from the Kayenta Formation of Arizona that comprises the third diagnosable sauropodomorph from the Early Jurassic of North America. We analysed its relationships to test whether sauropodomorphs reached North America in a single sweepstakes event or in separate dispersals. Our finding of separate arrivals by all three taxa suggests dispersal as a chief factor in dinosaurian diversification during at least the early Mesozoic. It questions whether a 'cosmopolitan' dinosaur fauna ever existed, and corroborates that vicariance, extinction and dispersal did not operate uniformly in time or under uniform conditions during the Mesozoic. Their relative importance is best measured in narrow time slices and circumscribed geographical regions.

  12. The mid-Cretaceous super plume, carbon dioxide, and global warming

    Science.gov (United States)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  13. Molecular fossils in Cretaceous condensate from western India

    Science.gov (United States)

    Bhattacharya, Sharmila; Dutta, Suryendu; Dutta, Ratul

    2014-06-01

    The present study reports the biomarker distribution of condensate belonging to the early Cretaceous time frame using gas chromatography-mass spectrometry (GC-MS). The early Cretaceous palaeoenvironment was inscribed into these molecular fossils which reflected the source and conditions of deposition of the condensate. The saturate fraction of the condensate is characterized by normal alkanes ranging from n-C9 to n-C29 (CPI-1.13), cycloalkanes and C14 and C15 sesquiterpanes. The aromatic fraction comprises of naphthalene, phenanthrene, their methylated derivatives and cyclohexylbenzenes. Isohexylalkylnaphthalenes, a product of rearrangement process of terpenoids, is detected in the condensate. Several aromatic sesquiterpenoids and diterpenoids have been recorded. Dihydro- ar-curcumene, cadalene and ionene form the assemblage of sesquiterpenoids which are indicative of higher plant input. Aromatic diterpenoid fraction comprises of simonellite and retene. These compounds are also indicative of higher plants, particularly conifer source which had been a predominant flora during the Cretaceous time.

  14. Learning with Dinosaurs: A Study on Motivation, Cognitive Reasoning, and Making Observations

    Science.gov (United States)

    Salmi, Hannu; Thuneberg, Helena; Vainikainen, Mari-Pauliina

    2017-01-01

    Dinosaurs have been a very popular science topic since signs of their presence on earth were first discovered. They have represented so-called "edutainment" for some people. Learning from informal sources and in- an out-of-school environment can be effective and motivating. In this study, 12-year-old pupils (N = 366) visited a dinosaur…

  15. 2004 assessment of habitat improvements in Dinosaur Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Blackman, B.G.; Cowie, D.M.

    2005-01-15

    Formed in 1979 after the completion of the Peace Canyon Dam, Dinosaur Reservoir is 21 km long and backs water up to the tailrace of W.A.C. Bennett Dam. BC Hydro has funded studies to evaluate fish stocking programs and assess habitat limitations and potential enhancements as part of a water licence agreement. The Peace/Williston Fish and Wildlife Compensation Programs (PWFWCP) have undertaken a number of projects to address fish habitat limitations, entrainment and stocking assessments as a result of recommendations stemming from these studies. It was determined that existing baseline fish data was needed in order to evaluate the effectiveness of these activities. A preliminary boat electro-fishing program which was started in October 2001, noted that a propensity for rainbow trout to concentrate near woody debris. In response, a program was started in 2002 to add woody debris to embayment areas throughout the reservoir. These enhanced woody debris structures are located in small sheltered bays and consist of a series of large trees cabled together and anchored to the shore. The area between the cabled trees and the shoreline is filled with woody debris and root wads collected from along the shoreline. The 2004 assessment of habitat improvements in Dinosaur Reservoir presents the findings from a study that compares the number of fish captured using trap nets, angling, and minnow traps, at the woody debris structures to sites with similar physical characteristics where woody debris had not been added. 17 refs., 5 tabs., 4 figs.

  16. Convergent evolution of jaws between spinosaurid dinosaurs and pike conger eels

    Directory of Open Access Journals (Sweden)

    Romain Vullo

    2016-12-01

    Full Text Available Spinosaurs represent a group of peculiar theropod dinosaurs that have often been described as “crocodile-mimic”, predominantly fish-eating predators, and recently claimed to have been semi-aquatic animals. Here we report a suite of craniodental characters unexpectedly shared by spinosaurs and pike conger eels. Pike conger eels are predatory, mainly piscivorous bottom-dwelling anguilliform fishes that inhabit marine and brackish environments. These two groups of dinosaurs and fishes show a mediolaterally compressed, elongated rostrum, a terminal “rosette” bearing enlarged teeth in both upper and lower jaws, and a notch posterior to the premaxillary “rosette” characterized by the presence of reduced teeth. The morphological convergence observed in the jaws of these two distantly related groups of vertebrates may result from similar feeding behaviours. This typical jaw morphology likely represents an effective biomechanical adaptation for biting and grabbing elusive prey items in low-light aquatic environments. Associated with this specialized snout morphology, numerous integumentary mechanoreceptors involved in prey detection are present in both spinosaurs and pike congers. Our new observations provide an additional convincing argument regarding the decades-long and widely debated lifestyle of spinosaurs.

  17. Texture analyses of Sauropod dinosaur bones from Tendaguru

    Energy Technology Data Exchange (ETDEWEB)

    Pyzalla, A.R. [TU Wien, Institute of Material Science and Technology, Karlsplatz 13-308, A-1040 Vienna (Austria) and MPI fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany)]. E-mail: pyzalla@mpie.de; Sander, P.M. [University of Bonn, Institute of Palaeontology, Nusseallee, D-53115 Bonn (Germany); Hansen, A. [TU Clausthal, Institute of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd GKSS Research Centre Geesthacht GmbH, Geesthacht, Max-Planck-Str.1, D-21502 Geesthacht (Germany); Ferreyro, R. [TU Wien, Institute of Material Science and Technology, Karlsplatz 13-308, A-1040 Vienna (Austria); Yi, S.-B. [TU Clausthal, Institute of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd GKSS Research Centre Geesthacht GmbH, Geesthacht, Max-Planck-Str.1, D-21502 Geesthacht (Germany); MPI fuer Eisenforschung GmbH, Max-Planck-Str. 1, D-40237 Duesseldorf (Germany); Stempniewicz, M. [TU Wien, Institute of Material Science and Technology, Karlsplatz 13-308, A-1040 Vienna (Austria); Brokmeier, H.-G. [TU Clausthal, Institute of Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processingnd GKSS Research Centre Geesthacht GmbH, Geesthacht, Max-Planck-Str.1, D-21502 Geesthacht (Germany)

    2006-11-10

    The apatite texture of fossil Brachiosaurus brancai and Barosaurus africanus sauropod bones from the excavation site at Tendaguru, Tanzania, was characterized by neutron diffraction pole figures. The results obtained reveal predominantly <0 0 0 1>-fibre textures of the apatite; the fibre direction coincides with the longitudinal direction of the long bones of the skeletons. Neutron pole figures further indicate that other texture types may also be present. Texture strength is similar to dinosaur tendons and contemporary turkey tendon studied by others. Variations of texture strength across the bone wall cross-sections are not significantly large.

  18. Highly specialized mammalian skulls from the Late Cretaceous of South America.

    Science.gov (United States)

    Rougier, Guillermo W; Apesteguía, Sebastián; Gaetano, Leandro C

    2011-11-02

    Dryolestoids are an extinct mammalian group belonging to the lineage leading to modern marsupials and placentals. Dryolestoids are known by teeth and jaws from the Jurassic period of North America and Europe, but they thrived in South America up to the end of the Mesozoic era and survived to the beginnings of the Cenozoic. Isolated teeth and jaws from the latest Cretaceous of South America provide mounting evidence that, at least in western Gondwana, dryolestoids developed into strongly endemic groups by the Late Cretaceous. However, the lack of pre-Late Cretaceous dryolestoid remains made study of their origin and early diversification intractable. Here we describe the first mammalian remains from the early Late Cretaceous of South America, including two partial skulls and jaws of a derived dryolestoid showing dental and cranial features unknown among any other group of Mesozoic mammals, such as single-rooted molars preceded by double-rooted premolars, combined with a very long muzzle, exceedingly long canines and evidence of highly specialized masticatory musculature. On one hand, the new mammal shares derived features of dryolestoids with forms from the Jurassic of Laurasia, whereas on the other hand, it is very specialized and highlights the endemic, diverse dryolestoid fauna from the Cretaceous of South America. Our specimens include only the second mammalian skull known for the Cretaceous of Gondwana, bridging a previous 60-million-year gap in the fossil record, and document the whole cranial morphology of a dryolestoid, revealing an unsuspected morphological and ecological diversity for non-tribosphenic mammals.

  19. Biostratigraphy and palaeontology of the Scollard Formation, late Cretaceous and Paleocene of Alberta

    National Research Council Canada - National Science Library

    Russell, Loris S

    1987-01-01

    .... The lower portion of the formation contains fossil vertebrates, including dinosaurs and mammals that correlate with those of the Lance Formation of Wyoming and the Hell Creek Formation of Montana...

  20. Late Cretaceous seasonal ocean variability from the Arctic.

    Science.gov (United States)

    Davies, Andrew; Kemp, Alan E S; Pike, Jennifer

    2009-07-09

    The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized. Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre, or those indicated for the Mediterranean sapropels. With increased CO(2) levels and warming currently driving increased stratification in the global ocean, this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean, rather than recent suggestions of a 15 degrees C mean annual temperature at this time.

  1. The mid-Cretaceous North Atlantic nutrient trap: black shales and OAEs

    NARCIS (Netherlands)

    Trabucho Alexandre, J.; Tuenter, E.; Henstra, G.A.; Zwan, C.J. van der; Wal, R.S.W. van de; Dijkstra, H.A.; Boer, P.L. de

    2010-01-01

    Organic-rich sediments are the salient marine sedimentation product in the mid-Cretaceous of the ocean basins formed in the Mesozoic. Oceanic anoxic events (OAEs) are discrete and particularly organic-rich intervals within these mid-Cretaceous organic-rich sequences and are defined by pronounced

  2. Palynological and iridium anomalies at Cretaceous-Tertiary boundary, south-central Saskatchewan

    Science.gov (United States)

    Nichols, D.J.; Jarzen, D.M.; Orth, C.J.; Oliver, P.Q.

    1986-01-01

    The Cretaceous-Tertiary boundary in south-central Saskatchewan is marked by coincident anomalies in abundance of iridium and fern spores at the extinction level of a suite of Cretaceous pollen taxa. Evidence of disruption of the terrestrial flora includes the fern-spore abundance anomaly and local extinction of as much as 30 percent of angiosperm species. The reorganized earliest Tertiary flora is made up largely of surviving species that assumed new roles of dominance. Persistence of climatically sensitive taxa across the boundary indicates that if paleoclimate was altered by the terminal Cretaceous event, it returned quickly to the pre-event condition.

  3. Existence, Multiplicity, and Stability of Positive Solutions of a Predator-Prey Model with Dinosaur Functional Response

    Directory of Open Access Journals (Sweden)

    Xiaozhou Feng

    2017-01-01

    Full Text Available We investigate the property of positive solutions of a predator-prey model with Dinosaur functional response under Dirichlet boundary conditions. Firstly, using the comparison principle and fixed point index theory, the sufficient conditions and necessary conditions on coexistence of positive solutions of a predator-prey model with Dinosaur functional response are established. Secondly, by virtue of bifurcation theory, perturbation theory of eigenvalues, and the fixed point index theory, we establish the bifurcation of positive solutions of the model and obtain the stability and multiplicity of the positive solution under certain conditions. Furthermore, the local uniqueness result is studied when b and d are small enough. Finally, we investigate the multiplicity, uniqueness, and stability of positive solutions when k>0 is sufficiently large.

  4. Preliminary analysis of osteocyte lacunar density in long bones of tetrapods: all measures are bigger in sauropod dinosaurs.

    Science.gov (United States)

    Stein, Koen W H; Werner, Jan

    2013-01-01

    Osteocytes harbour much potential for paleobiological studies. Synchrotron radiation and spectroscopic analyses are providing fascinating data on osteocyte density, size and orientation in fossil taxa. However, such studies may be costly and time consuming. Here we describe an uncomplicated and inexpensive method to measure osteocyte lacunar densities in bone thin sections. We report on cell lacunar densities in the long bones of various extant and extinct tetrapods, with a focus on sauropodomorph dinosaurs, and how lacunar densities can help us understand bone formation rates in the iconic sauropod dinosaurs. Ordinary least square and phylogenetic generalized least square regressions suggest that sauropodomorphs have lacunar densities higher than scaled up or comparably sized mammals. We also found normal mammalian-like osteocyte densities for the extinct bovid Myotragus, questioning its crocodilian-like physiology. When accounting for body mass effects and phylogeny, growth rates are a main factor determining the density of the lacunocanalicular network. However, functional aspects most likely play an important role as well. Observed differences in cell strategies between mammals and dinosaurs likely illustrate the convergent nature of fast growing bone tissues in these groups.

  5. Preliminary analysis of osteocyte lacunar density in long bones of tetrapods: all measures are bigger in sauropod dinosaurs.

    Directory of Open Access Journals (Sweden)

    Koen W H Stein

    Full Text Available Osteocytes harbour much potential for paleobiological studies. Synchrotron radiation and spectroscopic analyses are providing fascinating data on osteocyte density, size and orientation in fossil taxa. However, such studies may be costly and time consuming. Here we describe an uncomplicated and inexpensive method to measure osteocyte lacunar densities in bone thin sections. We report on cell lacunar densities in the long bones of various extant and extinct tetrapods, with a focus on sauropodomorph dinosaurs, and how lacunar densities can help us understand bone formation rates in the iconic sauropod dinosaurs. Ordinary least square and phylogenetic generalized least square regressions suggest that sauropodomorphs have lacunar densities higher than scaled up or comparably sized mammals. We also found normal mammalian-like osteocyte densities for the extinct bovid Myotragus, questioning its crocodilian-like physiology. When accounting for body mass effects and phylogeny, growth rates are a main factor determining the density of the lacunocanalicular network. However, functional aspects most likely play an important role as well. Observed differences in cell strategies between mammals and dinosaurs likely illustrate the convergent nature of fast growing bone tissues in these groups.

  6. The evolution of the manus of early theropod dinosaurs is characterized by high inter- and intraspecific variation.

    Science.gov (United States)

    Barta, Daniel E; Nesbitt, Sterling J; Norell, Mark A

    2018-01-01

    The origin of the avian hand, with its reduced and fused carpals and digits, from the five-fingered hands and complex wrists of early dinosaurs represents one of the major transformations of manus morphology among tetrapods. Much attention has been directed to the later part of this transition, from four- to three-fingered taxa. However, earlier anatomical changes may have influenced these later modifications, possibly paving the way for a later frameshift in digit identities. We investigate the five- to four-fingered transition among early dinosaurs, along with changes in carpus morphology. New three-dimensional reconstructions from computed tomography data of the manus of the Triassic and Early Jurassic theropod dinosaurs Coelophysis bauri and Megapnosaurus rhodesiensis are described and compared intra- and interspecifically. Several novel findings emerge from these reconstructions and comparisons, including the first evidence of an ossified centrale and a free intermedium in some C. bauri specimens, as well as confirmation of the presence of a vestigial fifth metacarpal in this taxon. Additionally, a specimen of C. bauri and an unnamed coelophysoid from the Upper Triassic Hayden Quarry, New Mexico, are to our knowledge the only theropods (other than alvarezsaurs and birds) in which all of the distal carpals are completely fused together into a single unit. Several differences between the manus of C. bauri and M. rhodesiensis are also identified. We review the evolution of the archosauromorph manus more broadly in light of these new data, and caution against incorporating carpal characters in phylogenetic analyses of fine-scale relationships of Archosauromorpha, in light of the high degree of observed polymorphism in taxa for which large sample sizes are available, such as the theropod Coelophysis and the sauropodomorph Plateosaurus. We also find that the reduction of the carpus and ultimate loss of the fourth and fifth digits among early dinosaurs did not

  7. Limb bone allometry during postnatal ontogeny in non-avian dinosaurs

    Science.gov (United States)

    Kilbourne, Brandon M; Makovicky, Peter J

    2010-01-01

    Although the interspecific scaling of tetrapods is well understood, remarkably little work has been done on the ontogenetic scaling within tetrapod species, whether fossil or recent. Here the ontogenetic allometry of the femur, humerus, and tibia was determined for 23 species of non-avian dinosaur by regressing log-transformed length against log-transformed circumference for each bone using reduced major axis bivariate regression. The femora of large theropod species became more robust during ontogeny, whereas growth in the femora of sauropodomorphs and most ornithischians was not significantly different from isometry. Hadrosaur hindlimb elements became significantly more gracile during ontogeny. Scaling constants were higher in all theropods than in any non-theropod taxa. Such clear taxonomically correlated divisions were not evident in the ontogenetic allometry of the tibia and hindlimb bones did not scale uniformly within larger taxonomic groups. For taxa in which the ontogenetic allometry of the humerus was studied, only Riojasaurus incertus exhibited a significant departure from isometry. Using independent contrasts, the regression of femoral allometry against the log of adult body mass was found to have a significant negative correlation but such a relationship could not be established for other limb elements or growth parameters, mainly due to the small sample size. The intraspecific scaling patterns observed in dinosaurs and other amniotes do not support earlier hypotheses that intraspecific scaling differs between endothermic and ectothermic taxa. PMID:20557400

  8. Early Cretaceous greenhouse pumped higher taxa diversification in spiders.

    Science.gov (United States)

    Shao, Lili; Li, Shuqiang

    2018-05-24

    The Cretaceous experienced one of the most remarkable greenhouse periods in geological history. During this time, ecosystem reorganizations significantly impacted the diversification of many groups of organisms. The rise of angiosperms marked a major biome turnover. Notwithstanding, relatively little remains known about how the Cretaceous global ecosystem impacted the evolution of spiders, which constitute one of the most abundant groups of predators. Herein, we evaluate the transcriptomes of 91 taxa representing more than half of the spider families. We add 23 newly sequenced taxa to the existing database to obtain a robust phylogenomic assessment. Phylogenetic reconstructions using different datasets and methods obtain novel placements of some groups, especially in the Synspermiata and the group having a retrolateral tibial apophysis (RTA). Molecular analyses indicate an expansion of the RTA clade at the Early Cretaceous with a hunting predatory strategy shift. Fossil analyses show a 7-fold increase of diversification rate at the same period, but this likely owes to the first occurrences spider in amber deposits. Additional analyses of fossil abundance show an accumulation of spider lineages in the Early Cretaceous. We speculate that the establishment of a warm greenhouse climate pumped the diversification of spiders, in particular among webless forms tracking the abundance of insect prey. Our study offers a new pathway for future investigations of spider phylogeny and diversification. Copyright © 2018. Published by Elsevier Inc.

  9. A vertebrate assemblage of Las Curtiembres Formation (Upper Cretaceous of northwestern Argentina Una asociación de vertebrados de la Formación Las Curtiembres (Cretácico Superior del Noroeste de la Argentina

    Directory of Open Access Journals (Sweden)

    Agustín Scanferla

    2011-12-01

    Full Text Available We describe an association of fossil vertebrates from the Morales Member of the Las Curtiembres Formation (Campanian near Puente Morales, Salta Province, NW Argentina. The fossils include teleostean fishes, pipid frogs, pleurodiran turtles, mesoeucrocodylians, non-avian theropod dinosaurs, and enantiornithine birds. The vertebrate record is dominated by freshwater taxa. With the exception of pipid frogs, all taxa here described constitute new records for this sedimentary unit. Among them, the turtles are reported for the first time in the Cretaceous of northwestern Argentina (Salta Group. Additionally, the recently published small enantiornithine Intiornis inexpectatus enlarges the diversity of cretaceous birds from South America. Despite the fragmentary nature of the specimens, the information provided by this Late Cretaceous assemblage sheds new light on the composition of the continental vertebrate fauna in a paleontologically poorly known region of South America.Aquí describimos una asociación de fósiles de vertebrados proveniente del Miembro Morales de la Formación Las Curtiembres (Campaniano exhumada en la localidad de Puente Morales, provincia de Salta, Argentina. Esta asociación se encuentra conformada por peces teleósteos, anuros pipidos, tortugas pleurodiras, mesoeucrocodilidos, dinosaurios terópodos no avianos y aves Enantiornithes. Este registro de vertebrados se encuentra dominado por taxa de agua dulce. Con la excepción de los anuros pipidos, todos los demás taxa aquí descriptos constituyen nuevos registros para esta unidad sedimentaria. Entre ellos, el registro de tortugas resulta ser el primero para el Grupo Salta. Adicionalmente, el Enantiornithes Intiornis inexpectatus amplía la diversidad de aves cretácicas de América del Sur. Más allá de la naturaleza fragmentaria de algunos de los especímenes, la información proporcionada por esta asociación del Cretácico Superior aporta novedosa información acerca de la

  10. A basal dromaeosaurid and size evolution preceding avian flight.

    Science.gov (United States)

    Turner, Alan H; Pol, Diego; Clarke, Julia A; Erickson, Gregory M; Norell, Mark A

    2007-09-07

    Fossil evidence for changes in dinosaurs near the lineage leading to birds and the origin of flight has been sparse. A dinosaur from Mongolia represents the basal divergence within Dromaeosauridae. The taxon's small body size and phylogenetic position imply that extreme miniaturization was ancestral for Paraves (the clade including Avialae, Troodontidae, and Dromaeosauridae), phylogenetically earlier than where flight evolution is strongly inferred. In contrast to the sustained small body sizes among avialans throughout the Cretaceous Period, the two dinosaurian lineages most closely related to birds, dromaeosaurids and troodontids, underwent four independent events of gigantism, and in some lineages size increased by nearly three orders of magnitude. Thus, change in theropod body size leading to flight's origin was not unidirectional.

  11. A THEROPOD DOMINATED ICHNOCOENOSIS FROM LATE HAUTERIVIAN-EARLYBARREMIAN OF BORGO CELANO (GARGANO PROMONTORY, APULIA, SOUTHERN ITALY

    Directory of Open Access Journals (Sweden)

    FABIO MASSIMO PETTI

    2008-03-01

    Full Text Available Several dinosaur footprints were discovered on three different levels cropping out in the CO.L.MAR quarry, south of the village of Borgo Celano in the Gargano Promontory (Apulia, southern Italy. The track-bearing levels belong to a carbonate inner platform succession referred to the Lower Cretaceous (upper Hauterivian-lower Barremian. This paper describes only the lowest dinoturbated bed, where footprints are preserved as natural cast. Forty footprints, mostly tridactyl, have been attributed to medium-sized theropods. Tridactyl tracks are similar to Kayentapus Welles, 1971 regarding ichnotaxonomy. Round shaped footprints, previously not described from this site, are found in association with tridactyl footprints and are related to ornitischian dinosaurs

  12. Early crocodylomorph increases top tier predator diversity during rise of dinosaurs.

    Science.gov (United States)

    Zanno, Lindsay E; Drymala, Susan; Nesbitt, Sterling J; Schneider, Vincent P

    2015-03-19

    Triassic predatory guild evolution reflects a period of ecological flux spurred by the catastrophic end-Permian mass extinction and terminating with the global ecological dominance of dinosaurs in the early Jurassic. In responding to this dynamic ecospace, terrestrial predator diversity attained new levels, prompting unique trophic webs with a seeming overabundance of carnivorous taxa and the evolution of entirely new predatory clades. Key among these was Crocodylomorpha, the largest living reptiles and only one of two archosaurian lineages that survive to the present day. In contrast to their existing role as top, semi-aquatic predators, the earliest crocodylomorphs were generally small-bodied, terrestrial faunivores, occupying subsidiary (meso) predator roles. Here we describe Carnufex carolinensis a new, unexpectedly large-bodied taxon with a slender and ornamented skull from the Carnian Pekin Formation (~231 Ma), representing one of the oldest and earliest diverging crocodylomorphs described to date. Carnufex bridges a problematic gap in the early evolution of pseudosuchians by spanning key transitions in bauplan evolution and body mass near the origin of Crocodylomorpha. With a skull length of >50 cm, the new taxon documents a rare instance of crocodylomorphs ascending to top-tier predator guilds in the equatorial regions of Pangea prior to the dominance of dinosaurs.

  13. Lowland-upland migration of sauropod dinosaurs during the Late Jurassic epoch.

    Science.gov (United States)

    Fricke, Henry C; Hencecroth, Justin; Hoerner, Marie E

    2011-10-26

    Sauropod dinosaurs were the largest vertebrates ever to walk the Earth, and as mega-herbivores they were important parts of terrestrial ecosystems. In the Late Jurassic-aged Morrison depositional basin of western North America, these animals occupied lowland river-floodplain settings characterized by a seasonally dry climate. Massive herbivores with high nutritional and water needs could periodically experience nutritional and water stress under these conditions, and thus the common occurrence of sauropods in this basin has remained a paradox. Energetic arguments and mammalian analogues have been used to suggest that migration allowed sauropods access to food and water resources over a wide region or during times of drought or both, but there has been no direct support for these hypotheses. Here we compare oxygen isotope ratios (δ(18)O) of tooth-enamel carbonate from the sauropod Camarasaurus with those of ancient soil, lake and wetland (that is, 'authigenic') carbonates that formed in lowland settings. We demonstrate that certain populations of these animals did in fact undertake seasonal migrations of several hundred kilometres from lowland to upland environments. This ability to describe patterns of sauropod movement will help to elucidate the role that migration played in the ecology and evolution of gigantism of these and associated dinosaurs.

  14. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis.

    Science.gov (United States)

    Georgi, Justin A; Sipla, Justin S; Forster, Catherine A

    2013-01-01

    Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.

  15. Turning semicircular canal function on its head: dinosaurs and a novel vestibular analysis.

    Directory of Open Access Journals (Sweden)

    Justin A Georgi

    Full Text Available Previous investigations have correlated vestibular function to locomotion in vertebrates by scaling semicircular duct radius of curvature to body mass. However, this method fails to discriminate bipedal from quadrupedal non-avian dinosaurs. Because they exhibit a broad range of relative head sizes, we use dinosaurs to test the hypothesis that semicircular ducts scale more closely with head size. Comparing the area enclosed by each semicircular canal to estimated body mass and to two different measures of head size, skull length and estimated head mass, reveals significant patterns that corroborate a connection between physical parameters of the head and semicircular canal morphology. Head mass more strongly correlates with anterior semicircular canal size than does body mass and statistically separates bipedal from quadrupedal taxa, with bipeds exhibiting relatively larger canals. This morphologic dichotomy likely reflects adaptations of the vestibular system to stability demands associated with terrestrial locomotion on two, versus four, feet. This new method has implications for reinterpreting previous studies and informing future studies on the connection between locomotion type and vestibular function.

  16. Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution.

    Science.gov (United States)

    Lautenschlager, Stephan

    2014-06-22

    Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution.

  17. A crocodylian trace from the Lance Formation (Upper Cretaceous) of Wyoming

    DEFF Research Database (Denmark)

    Falkingham, Peter L; Milàn, Jesper; Manning, Philip L

    2010-01-01

    A 1.5-m-long double sinusoidal trace from the Lance Formation of Wyoming, U.S.A, is attributed a crocodylian origin. The trace forms part of a diverse tracksite containing dinosaur and bird tracks. The double sinusoidal nature of the trace is suggested to have originated from the dual undulatory...

  18. From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania)

    Science.gov (United States)

    Reiser, Martin Kaspar; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2017-03-01

    New Ar-Ar muscovite and Rb-Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on the timing and kinematics of deformation during the Cretaceous. Time-temperature paths from the structurally highest basement nappe of the Apuseni Mountains in combination with sedimentary data indicate exhumation and a position close to the surface after the Late Jurassic emplacement of the South Apuseni Ophiolites. Early Cretaceous Ar-Ar muscovite ages from structurally lower parts in the Biharia Nappe System (Dacia Mega-Unit) show cooling from medium-grade conditions. NE-SW-trending stretching lineation and associated kinematic indicators of this deformation phase (D1) are overprinted by top-NW-directed thrusting during D2. An Albian to Turonian age (110-90 Ma) is proposed for the main deformation (D2) that formed the present-day geometry of the nappe stack and led to a pervasive retrograde greenschist-facies overprint. Thermochronological and structural data from the Bihor Unit (Tisza Mega-Unit) allowed to establish E-directed differential exhumation during Early-Late Cretaceous times (D3.1). Brittle detachment faulting (D3.2) and the deposition of syn-extensional sediments indicate general uplift and partial surface exposure during the Late Cretaceous. Brittle conditions persist during the latest Cretaceous compressional overprint (D4).

  19. Did A Galactic Gamma-Ray Burst Kill the Dinosaurs?

    Science.gov (United States)

    Brecher, K.

    1997-12-01

    Gamma-ray bursts now appear to be primarily of extragalactic origin. Statistically, assuming isotropic emission, the observed event rates and fluxes imply that one event occurs per 10(4) \\ - 10(6) \\ years per galaxy, with about 10(51) \\ - 10(53) \\ ergs in gamma-rays emitted per event. Unless the Milky Way is unusual, a gamma-ray burst should occur within 10(2) \\ - 10(3) \\ pc of the Sun in a time span of order 10(8) \\ years. Independent of the underlying cause of the event, it would irradiate the solar system with a brief flash of MeV gamma-rays with a fluence as large as 10(9) - 10(11) \\ erg cm(-2) . What is the effect of such an event on the Earth and objects nearby? Ruderman (\\underbar{Science}, 184, 1079, 1974) and subsequent authors have considered a number of effects of a flash of gamma-rays from a nearby supernova explosion on the Earth's atmosphere, and on its biota. However, with regard to the demise of the dinosaurs, it appears that there was a marked increase in the deposition rate of the rare earth iridium coincident with their extinction. For this reason, an asteroid-Earth impact has been considered the leading contender for the death of the dinosaurs. Here we consider a new mechanism for mass biological extinctions, caused by small comets nudged into the inner solar system by nearby gamma-ray bursts. If comets populate the Oort cloud with a wide distribution of masses, radii and orbital eccentricities, we find that small (extinctions.

  20. Cretaceous rocks of the Western Interior basin

    International Nuclear Information System (INIS)

    Molenaar, C.M.; Rice, D.D.

    1988-01-01

    The Cretaceous rocks of the conterminous United States are discussed in this chapter. Depositional facies and lithology are reviewed along with economic resources. The economic resources include coal, hydrocarbons, and uranium

  1. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians.

    Science.gov (United States)

    Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M

    2012-03-01

    Ornithischia (the 'bird-hipped' dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in

  2. U-Pb zircon constraints on the age of the Cretaceous Mata Amarilla Formation, Southern Patagonia, Argentina: Its relationship with the evolution of the Austral Basin

    International Nuclear Information System (INIS)

    Varela, Augusto N; Poire, Daniel G; Martin, Thomas; Gerdes, Axel; Goin, Francisco J; Gelfo, Javier N; Hoffmann, Simone

    2012-01-01

    Despite the abundant fossil content of the Mata Amarilla Formation (Southern Patagonia, Santa Cruz Province, Argentina), its age has always generated a considerable number of questions and debates. The chronological data provided by invertebrates, dinosaurs, fish, turtles, plesiosaurs and fossil flora are contradictory. In this work, twenty U-Pb spot analyses by laser ablation were carried out on the outer parts of the zoned zircon crystals from a tuff layer of the middle section of the Mata Amarilla Formation, yielding a U-Pb concordia age of 96.23±0.71 Ma, which corresponds to the middle Cenomanian. The deposition of the lower section of the Mata Amarilla Formation marks the onset of the foreland stage of the Austral Basin (also known as Magallanes Basin); this transition is characterized by the west-east shift of the depositional systems, which is consistent with the progradation of the Cretaceous fold-and-thrust belt. Thus, the onset of the foreland stage could have occurred between the upper Albian and lower Cenomanian, as the underlying Piedra Clavada Formation is lower Albian in age. On comparing the data obtained with information from the Ultima Esperanza Province in Chile, it can be suggested that the initiation of the closure of the Rocas Verdes Marginal Basin occurred simultaneously

  3. Shallow magnetic inclinations in the Cretaceous Valle Group, Baja California: remagnetization, compaction, or terrane translation?

    Science.gov (United States)

    Smith, Douglas P.; Busby, Cathy J.

    1993-10-01

    Paleomagnetic data from Albian to Turonian sedimentary rocks on Cedros Island, Mexico (28.2° N, 115.2° W) support the interpretation that Cretaceous rocks of western Baja California have moved farther northward than the 3° of latitude assignable to Neogene oblique rifting in the Gulf of California. Averaged Cretaceous paleomagnetic results from Cedros Island support 20 ± 10° of northward displacement and 14 ± 7° of clockwise rotation with respect to cratonic North America. Positive field stability tests from the Vizcaino terrane substantiate a mid-Cretaceous age for the high-temperature characteristic remanent magnetization in mid-Cretaceous strata. Therefore coincidence of characteristic magnetization directions and the expected Quaternary axial dipole direction is not due to post mid-Cretaceous remagnetization. A slump test performed on internally coherent, intrabasinal slump blocks within a paleontologically dated olistostrome demonstrates a mid-Cretaceous age of magnetization in the Valle Group. The in situ high-temperature natural remanent magnetization directions markedly diverge from the expected Quaternary axial dipole, indicating that the characteristic, high-temperature magnetization was acquired prior to intrabasinal slumping. Early acquisition of the characteristic magnetization is also supported by a regional attitude test involving three localities in coherent mid-Cretaceous Valle Group strata. Paleomagnetic inclinations in mudstone are not different from those in sandstone, indicating that burial compaction did not bias the results toward shallow inclinations in the Vizcaino terrane.

  4. A Cretaceous eutriconodont and integument evolution in early mammals.

    Science.gov (United States)

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  5. The Death of the Dinosaurs: 27 Years Later (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Muller, Rich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Dept. of Physics

    2006-06-30

    Summer Lecture Series 2006: Rich Muller, a Berkeley Lab physicist, discusses Nobel laureate Luis Alvarez and colleagues' 1979 discovery that an asteroid impact killed the dinosaurs. He also discusses what scientists have learned in the subsequent 27 years. Alvarez's team detected unusual amounts of iridium in sedimentary layers. They attributed the excess iridium to an impact from a large asteroid. His talk was presented June 30, 2006.

  6. Explosive Radiation of Malpighiales Supports a Mid-Cretaceous Origin of Modern Tropical Rain Forests

    OpenAIRE

    Wurdack, Kenneth J.; Jaramillo, Carlos A.; Davis, Charles; Webb, Campbell O.; Donoghue, Michael J.

    2005-01-01

    Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed-canopy rain forest did not originate until after the Cretaceous-Tertiary (K/T) boundary. However, some mid-Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence-time estimates within the clade Malpighiales, which constitute a large percentage of species in the shaded, shrub, and small tree layer in tropical rain forests worldwide, p...

  7. Applications of Latent Variable Models in Modeling Influence and Decision Making

    Science.gov (United States)

    2013-04-01

    will focus on three specific patterns: Text data. Text data is the low-hanging fruit of most social science research questions. It is ubiquitous because...growth dinosaur viral plant rate birds host ectomycorrhizal age pterosaurs phage fungi rates cretaceous rna fungal population growth bird genome...statistics. In some MCMC algorithms, one must select a proposal distribution for sampling; a poorly-chosen proposal distribution can affect runtime, as

  8. Testing the Hypothesis of Biofilm as a Source for Soft Tissue and Cell-Like Structures Preserved in Dinosaur Bone

    Science.gov (United States)

    2016-01-01

    Recovery of still-soft tissue structures, including blood vessels and osteocytes, from dinosaur bone after demineralization was reported in 2005 and in subsequent publications. Despite multiple lines of evidence supporting an endogenous source, it was proposed that these structures arose from contamination from biofilm-forming organisms. To test the hypothesis that soft tissue structures result from microbial invasion of the fossil bone, we used two different biofilm-forming microorganisms to inoculate modern bone fragments from which organic components had been removed. We show fundamental morphological, chemical and textural differences between the resultant biofilm structures and those derived from dinosaur bone. The data do not support the hypothesis that biofilm-forming microorganisms are the source of these structures. PMID:26926069

  9. Language and Social Development in a Multilingual Classroom: A Dinosaur Project Enriched with Block Play

    Science.gov (United States)

    Pate, Monique

    2009-01-01

    With the implementation of the natural approach, the dinosaur study and facilitated block play gave dual language learners many opportunities to acquire a new language, develop social skills, and improve communication abilities. Once teachers identified the barriers to children playing and talking together, they created a classroom environment…

  10. A Middle Jurassic heterodontosaurid dinosaur from Patagonia and the evolution of heterodontosaurids

    Science.gov (United States)

    Pol, Diego; Rauhut, Oliver W. M.; Becerra, Marcos

    2011-05-01

    Heterodontosauridae is a morphologically divergent group of dinosaurs that has recently been interpreted as one of the most basal clades of Ornithischia. Heterodontosaurid remains were previously known from the Early Jurassic of southern Africa, but recent discoveries and studies have significantly increased the geographical and temporal range for this clade. Here, we report a new ornithischian dinosaur from the Middle Jurassic Cañadón Asfalto Formation in central Patagonia, Argentina. This new taxon, Manidens condorensis gen. et sp. nov., includes well-preserved craniomandibular and postcranial remains and represents the only diagnostic ornithischian specimen yet discovered in the Jurassic of South America so far. Derived features of its anatomy indicate that Manidens belongs to Heterodontosauridae, as the sister taxon of Heterodontosaurus and other South African heterodontosaurids. The presence of posterior dentary teeth with high crowns but lacking extensive wear facets in Manidens suggests that this form represents an intermediate stage in the development of the remarkable adaptations to herbivory described for Heterodontosaurus. The dentition of Manidens condorensis also has autapomorphies, such as asymmetrically arranged denticles in posterior teeth and a mesially projected denticle in the posteriormost teeth. At an estimated total length of 60-75 cm, Manidens furthermore confirms the small size of basal heterodontosaurids.

  11. Marine reptiles from the Late Cretaceous of northern Patagonia

    Science.gov (United States)

    Gasparini, Z.; Casadio, S.; Fernández, M.; Salgado, L.

    2001-04-01

    During the Campanian-Maastrichtian, Patagonia was flooded by the Atlantic and reduced to an archipelago. Several localities of northern Patagonia have yielded marine reptiles. Analysis of several assemblages suggests that the diversity and abundance of pelagic marine reptiles in northern Patagonia was higher by the end of the Cretaceous than previously thought. Several plesiosaurids, including Aristonectes parvidens and the polycotylid Sulcusuchus, and the first remains of mosasaurinae have been found. The Cretaceous marine reptile record from South America is scanty. Nevertheless, materials described here suggest that Tethyan and Weddelian forms converged in northern Patagonia, as seen with invertebrates.

  12. Comparative analysis of the calcretization process in the Marilia formations (Bauru group - Brasil) and Mercedes ( Paysandu group - Uruguay), Upper Cretaceous of the Parana basin; Analisis comparativo de los procesos de calcretizacion en las Formaciones Marilia (Grupo Bauru-Brasil) y Mercedes (Grupo Paysandu-Uruguay), Cretacico Superior de la cuenca de Parana

    Energy Technology Data Exchange (ETDEWEB)

    Veroslavsky, G; Etchebehere, M; Sad, A; Fulfaro, J

    1998-07-01

    Pedogenic and non-pedogenic calcrete facies are very common feature of Marilia (Brazil) and Mercedes (Uruguay) formations in the Parana Basin. The non-pedogenic ones constitute massive limestone facies that have been recently interpreted as groundwater calcretes. These limestones are exploited in both countries to supply raw materials to Portland cement and soil conditioner in origin and age of calcretization phenomena. In Uruguay, the calcretization process seens to be band formation. Field relationships and fossil assemblage point to a Paleocene (or later) age for the calcretization. In Brazilian territory, the groundwater calcretes aresupposed to be of Upper Cretaceous age due to the presence of dinosaurs scattered through the Bauru Group, including siliciclastic beds below and above the calcretes. The authors assume that calcretization processes are similar in both countries (host rocks, intensity, size, textures, geometries and economic potential). The main difference is in age of the calcretization. (author)

  13. Theropoda dinosaurs tracks from Triassic basin nd Ischigualasto - Villa Union, western Argentina

    International Nuclear Information System (INIS)

    Contreras, V.; Bracco, A.

    2004-01-01

    The Anchisauripus isp. and Theropoda indet. dinosaurs tracks from the Triassic Los Rastros and Ischigualasto formations, at the Ischigualasto-Villa Union Basin, Western Argentina, are described in this paper. This record completes the paleontological data provided by rest of bones and increases the stratigraphic range of some taxa in which bones are either missing or scarse. On the other hand, this report also allows us to enlarge the faunistic assemblage of some vertebrate assemblages [es

  14. Oology and the evolution of thermophysiology in saurischian dinosaurs: homeotherm and endotherm deinonychosaurians?

    Directory of Open Access Journals (Sweden)

    Gerald Grellet-Tinner

    2006-01-01

    Full Text Available The origin of avian endothermy is a long-held question the answer of which cannot be provided by first level observations. Oological and reproductive characters have collectively provided a new source of data useful for phylogenetic analyses and paleobiological inferences. In addition, the observations of reproductive and oological evolutionary trends in saurischian dinosaurs lead to the interpretation that not only, the thermophysiology of these dinosaurs progressively became more avian-like but after re-examination allows to infer that deinonychosaurians represented here by three troodontids and one dromaeosaurid might already have developed an avian-like endothermy, thus predating the rise of avians. These results based on reproductive traits are independently corroborated by the discoveries of troodontid dinosaurs 1 in high latitudes, 2 covered with feathers in Chinese Lagerstätten, and recently 3 fossilized in a death pose identical to an avian sleeping posture.A origem da endotermia nas aves é uma questão há muito discutida e sua resposta não pode ser encontrada através de observações superficiais. Caracteres oológicos e reprodutivos surgiram como uma nova fonte de dados relevantes tanto para análises filogenéticas quanto para inferências paleobiológicas dos dinossauros Saurischia. Além disso, as observações das tendências evolutivas reprodutivas e oológicas nos dinossauros Saurischia nos levam a inferir que não apenas, como anteriormente a termofisiologia deste grupo de dinossauros tornou-se progressivamente ornítica, mas um posterior reexame nos permitiu concluir que os deinonicossauros, representados aqui por dois troodontídeos e um dromeossaurídeo, provavelmente já haviam desenvolvido uma endotermia semelhante a das aves, anterior, portanto, ao seu surgimento. Estes resultados baseados em características reprodutivas são independentemente corroborados pela descoberta dos dinossauros troodontídeos 1 em altas

  15. A new genus and species of enantiornithine bird from the Early Cretaceous of Brazil

    Directory of Open Access Journals (Sweden)

    Ismar de Souza Carvalho

    Full Text Available The fossil record of birds in Gondwana is almost restricted to the Late Cretaceous. Herein we describe a new fossil from the Araripe Basin, Cratoavis cearensis nov. gen et sp., composed of an articulated skeleton with feathers attached to the wings and surrounding the body. The present discovery considerably extends the temporal record of the Enantiornithes birds at South America to the Early Cretaceous. For the first time, an almost complete and articulated skeleton of an Early Cretaceous bird from South America is documented.

  16. Larger miliolids of the Late Cretaceous and Paleogene seen through space and time

    Directory of Open Access Journals (Sweden)

    Vlasta Ćosović

    2002-12-01

    Full Text Available Spatial and temporal occurrences of the larger (complex miliolids are discussed to give more light on biostratigraphy and paleobiogeographic provinces distribution. Seven generaand 47 species from the Late Cretaceous to Oligocene inhabited shallow marine settings in the Indo-Pacific, Tethyan and Caribbean regions. Of all genera only four (Idalina, Periloculina, Pseudolacazina, Lacazina widespread throughout Tethys in theLate Cretaceous and Paleogene. Single occurrence of Lacazina was recorded further to east (Moluccas. By now the Late Cretaceous genus Adrahentina is known only from the Spain. The newcomer’s Eocene genera were Fabularia and Lacazinella. Fabularia reachedhigh diversity in species term in the Central and Western Tethys and occured as unique genus in Caribbean realm, too. Conversely, during the same period, Lacazinella spread over the southern border of Neo-Tethys reaching New Guinea.On the Adriatic – Dinaric Carbonate Platform, larger miliolids occurred from the Late Cretaceous to Cuisian, having the same biostratigraphically trends and distribution as contemporaneous larger miliolids from the Tethys.

  17. Lamellaptychi from the Lower Cretaceous of south-east Spain (Murcia and Jaen provinces)

    Czech Academy of Sciences Publication Activity Database

    Vašíček, Zdeněk; Company, M.; Měchová, L.

    2015-01-01

    Roč. 276, č. 3 (2015), s. 335-351 ISSN 0077-7749 Institutional support: RVO:68145535 Keywords : Lower Cretaceous * aptychi * ammonite zonation * Betic Cordillera Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.719, year: 2015 http://cretaceous.ru/files/pub/temp3/vasicek_et_al_2015_lamellaptychi.pdf

  18. Testing the Hypothesis of Biofilm as a Source for Soft Tissue and Cell-Like Structures Preserved in Dinosaur Bone.

    Directory of Open Access Journals (Sweden)

    Mary Higby Schweitzer

    Full Text Available Recovery of still-soft tissue structures, including blood vessels and osteocytes, from dinosaur bone after demineralization was reported in 2005 and in subsequent publications. Despite multiple lines of evidence supporting an endogenous source, it was proposed that these structures arose from contamination from biofilm-forming organisms. To test the hypothesis that soft tissue structures result from microbial invasion of the fossil bone, we used two different biofilm-forming microorganisms to inoculate modern bone fragments from which organic components had been removed. We show fundamental morphological, chemical and textural differences between the resultant biofilm structures and those derived from dinosaur bone. The data do not support the hypothesis that biofilm-forming microorganisms are the source of these structures.

  19. Biotic and environmental dynamics through the Late Jurassic-Early Cretaceous transition: evidence for protracted faunal and ecological turnover.

    Science.gov (United States)

    Tennant, Jonathan P; Mannion, Philip D; Upchurch, Paul; Sutton, Mark D; Price, Gregory D

    2017-05-01

    The Late Jurassic to Early Cretaceous interval represents a time of environmental upheaval and cataclysmic events, combined with disruptions to terrestrial and marine ecosystems. Historically, the Jurassic/Cretaceous (J/K) boundary was classified as one of eight mass extinctions. However, more recent research has largely overturned this view, revealing a much more complex pattern of biotic and abiotic dynamics than has previously been appreciated. Here, we present a synthesis of our current knowledge of Late Jurassic-Early Cretaceous events, focusing particularly on events closest to the J/K boundary. We find evidence for a combination of short-term catastrophic events, large-scale tectonic processes and environmental perturbations, and major clade interactions that led to a seemingly dramatic faunal and ecological turnover in both the marine and terrestrial realms. This is coupled with a great reduction in global biodiversity which might in part be explained by poor sampling. Very few groups appear to have been entirely resilient to this J/K boundary 'event', which hints at a 'cascade model' of ecosystem changes driving faunal dynamics. Within terrestrial ecosystems, larger, more-specialised organisms, such as saurischian dinosaurs, appear to have suffered the most. Medium-sized tetanuran theropods declined, and were replaced by larger-bodied groups, and basal eusauropods were replaced by neosauropod faunas. The ascent of paravian theropods is emphasised by escalated competition with contemporary pterosaur groups, culminating in the explosive radiation of birds, although the timing of this is obfuscated by biases in sampling. Smaller, more ecologically diverse terrestrial non-archosaurs, such as lissamphibians and mammaliaforms, were comparatively resilient to extinctions, instead documenting the origination of many extant groups around the J/K boundary. In the marine realm, extinctions were focused on low-latitude, shallow marine shelf-dwelling faunas

  20. Torosaurus is not Triceratops: ontogeny in chasmosaurine ceratopsids as a case study in dinosaur taxonomy.

    Directory of Open Access Journals (Sweden)

    Nicholas R Longrich

    Full Text Available BACKGROUND: In horned dinosaurs, taxonomy is complicated by the fact that the cranial ornament that distinguishes species changes with age. Based on this observation, it has been proposed that the genera Triceratops and Torosaurus are in fact synonymous, with specimens identified as Torosaurus representing the adult form of Triceratops. The hypothesis of synonymy makes three testable predictions: 1 the species in question should have similar geographic and stratigraphic distributions, 2 specimens assigned to Torosaurus should be more mature than those assigned to Triceratops, and 3 intermediates should exist that combine features of Triceratops and Torosaurus. The first condition appears to be met, but it remains unclear whether the other predictions are borne out by the fossil evidence. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the relative maturity of Torosaurus and Triceratops specimens by coding skulls for characters that vary with maturity, and then using a clustering analysis to arrange them into a growth series. We found that a well-defined sequence of changes exists in horned dinosaurs: development of cranial ornament occurs in juveniles, followed by fusion of the skull roof in subadults, and finally, the epoccipitals, epijugals, and rostral fuse to the skull in adults. Using this scheme, we identified mature and immature individuals of both Torosaurus and Triceratops. Furthermore, we describe the ventral depressions on the frill of Triceratops, and show that they differ in shape and position from the parietal fenestrae of Torosaurus. Thus, we conclude that these structures are not intermediates between the solid frill of Triceratops and the fenestrated frill of Torosaurus. CONCLUSIONS/SIGNIFICANCE: Torosaurus is a distinct genus of horned dinosaur, not the adult of Triceratops. Our method provides a framework for assessing the hypothesis of synonymy through ontogeny in the fossil record.