WorldWideScience

Sample records for creep-fatigue interaction testing

  1. Experimental study on creep-fatigue interaction behavior of GH4133B superalloy

    International Nuclear Information System (INIS)

    Hu Dianyin; Wang Rongqiao

    2009-01-01

    The creep-fatigue tests have been conducted with nickel-based superalloy GH4133B at 600 deg. C in three cases of type loading to study the creep-fatigue behavior of the alloy and the loading history effect on the creep-fatigue damage. Since the conventional linear cumulative damage rule failed in evaluating the creep-fatigue life based on experimental data, a continuous non-linear model proposed by Mao et al. was employed to describe the creep-fatigue interaction. The creep-fatigue damage in the cases of continuous cyclic creep loading (CF) and prior fatigue followed by creep loading (F + C) was larger than unity and smaller than unity when the type loading was prior creep followed by fatigue loading (C + F). Scanning electron microscope (SEM) analyses of the fracture surface showed that the cracks initiated from the specimen surface and the fracture modes in different loading history were different. The crack mode at CF loading depended on the cyclic period. In the case of F + C loading, the primary fracture mode was transgranular, and in the condition where the type of waveform was C + F, the fracture mode was of mixed transgranular and intergranular type. In addition, the origin of the history effect on creep-fatigue interaction was explained by the SEM observations.

  2. A life evaluation under creep-fatigue-environment interaction of Ni-base wrought alloys

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira; Itoh, Mitsuyoshi

    1986-01-01

    In order to determine a failure criteria under cyclic loading and affective environment for HTGR systems, a series of strain controlled low-cycle fatigue tests were carried out at HTGR maximum gas temperatures in air, in vacuum and in HTGR helium environments on two nickel-base wrought alloys, namely Inconel 617 and Hastelloy XR. This paper first describes the creep-fatigue-environment properties of these alloys followed by a proposal of an evaluation method of creep-fatigue-environment interaction based on the experimental data to define the more reasonable design criteria, which is a modification of the linear damage summation rule. Second, the creep-fatigue properties of Hastelloy XR at 900 deg C and the result evaluated by this proposed method are shown. This criterion is successfully applied to the life prediction at 900 deg C. In addition, the creep-fatigue properties of Hastelloy XR-II are discussed. (author)

  3. Standard test method for creep-fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of mechanical properties pertaining to creep-fatigue deformation or crack formation in nominally homogeneous materials, or both by the use of test specimens subjected to uniaxial forces under isothermal conditions. It concerns fatigue testing at strain rates or with cycles involving sufficiently long hold times to be responsible for the cyclic deformation response and cycles to crack formation to be affected by creep (and oxidation). It is intended as a test method for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. The cyclic conditions responsible for creep-fatigue deformation and cracking vary with material and with temperature for a given material. 1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products. 1.3 This test method is primarily ...

  4. Standard test method for creep-fatigue crack growth testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of creep-fatigue crack growth properties of nominally homogeneous materials by use of pre-cracked compact type, C(T), test specimens subjected to uniaxial cyclic forces. It concerns fatigue cycling with sufficiently long loading/unloading rates or hold-times, or both, to cause creep deformation at the crack tip and the creep deformation be responsible for enhanced crack growth per loading cycle. It is intended as a guide for creep-fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. Therefore, this method requires testing of at least two specimens that yield overlapping crack growth rate data. The cyclic conditions responsible for creep-fatigue deformation and enhanced crack growth vary with material and with temperature for a given material. The effects of environment such as time-dependent oxidation in enhancing the crack growth ra...

  5. Continuous observation of cavity growth and coalescence by creep-fatigue tests in SEM

    International Nuclear Information System (INIS)

    Arai, Masayuki; Ogata, Takashi; Nitta, Akito

    1995-01-01

    Structural components operating at high temperatures in power plants are subjected to interaction of thermal fatigue and creep which results in creep-fatigue damage. In evaluating the life of those components, it is important to understand microscopic damage evolution under creep-fatigue conditions. In this study, static creep and creep-fatigue tests with tensile holdtime were conducted on SUS304 stainless steel by using a high-temperature fatigue machine combined with a scanning electron microscope (SEM), and cavity growth and coalescence behaviors on surface grain boundaries were observed continuously by the SEM. Quantitative analysis of creep cavity growth based on the observation was made for comparison with theoretical growth models. As a result, it was found that grain boundary cavities nucleate at random and grow preferentially on grain boundaries in a direction almost normal to the stress axis. Under the creep condition, the cavities grow monotonously on grain boundaries while they remain the elliptical shape. On the other hand, under the creep-fatigue condition the cavities grow with an effect of local strain distribution around the grain boundary due to cyclic loading and the micro cracks of one grain-boundary length were formed by coalescence of the cavities. Also, cavity nucleation and growth rates for creep-fatigue were more rapid than those for static creep and the constrained cavity growth model coincided well with the experimental data for creep. (author)

  6. IFMIF - Design Study for in Situ Creep Fatigue Tests

    International Nuclear Information System (INIS)

    Gordeev, S.; Heinzel, V.; Simakov, St.; Stratmanns, E.; Vladimirov, P.; Moeslang, A.

    2006-01-01

    While the high flux volume (20-50 dpa/fpy) of the International Fusion Materials Irradiation Facility (IFMIF) is dedicated to the irradiation of ∼ 1100 qualified specimens that will be post irradiation examined after disassembling in dedicated Hot Cells, various in situ experiments are foreseen in the medium flux volume (1-20 dpa/fpy). Of specific importance for structural lifetime assessments of fusion power reactors are instrumented in situ creep-fatigue experiments, as they can simulate realistically a superposition of thermal fatigue or creep fatigue and irradiation with fusion relevant neutrons. Based on former experience with in situ fatigue tests under high energy light ion irradiation, a design study has been performed to evaluate the feasibility of in situ creep fatigue tests in the IFMIF medium flux position. The vertically arranged test module for such experiments consists basically of a frame similar to a universal testing machine, but equipped with three pulling rods, driven by independent step motors, instrumentation systems and specimen cooling systems. Therefore, three creep fatigue specimens may be tested at one time in this apparatus. Each specimen is a hollow tube with coolant flow in the specimen interior to maintain individual specimen temperatures. The recently established IFMIF global 3D geometry model was used together the latest McDeLicious code for the neutral and charged particle transport calculations. These comprehensive neutronics calculations have been performed with a fine special resolution of 0.25 cm 3 , showing among others that the specimens will be irradiated with a homogeneous damage rate of up to 13(∼ 9%) dpa/fpy and a fusion relevant damage to helium ratio of 10-12 appm He/dpa. In addition, damage and gas production rates as well as the heat deposition in structural parts of the test module have been calculated. Despite of the vertical gradients in the nuclear heating, CFD code calculations with STAR-CD revealed very

  7. Crack Growth Behaviour of P92 Steel Under Creep-fatigue Interaction Conditions

    Directory of Open Access Journals (Sweden)

    JING Hong-yang

    2017-05-01

    Full Text Available Creep-fatigue interaction tests of P92 steel at 630℃ under stress-controlled were carried out, and the crack propagation behaviour of P92 steel was studied. The fracture mechanism of crack growth under creep-fatigue interaction and the transition points in a-N curves were analyzed based on the fracture morphology. The results show that the fracture of P92 steel under creep-fatigue interaction is creep ductile fracture and the (Ctavg parameter is employed to demonstrate the crack growth behaviour; in addition, the fracture morphology shows that the crack growth for P92 steel under creep-fatigue interaction is mainly caused by the nucleation and growth of the creep voids and micro-cracks. Furthermore, the transition point of a-lg(Ni/Nf curve corresponds to the turning point of initial crack growth changed into steady crack growth while the transition point of (da/dN-N curve exhibits the turning point of steady creep crack growth changed into the accelerated crack growth.

  8. Experimental investigation on low cycle fatigue and creep-fatigue interaction of DZ125 in different dwell time at elevated temperatures

    International Nuclear Information System (INIS)

    Shi Duoqi; Liu Jinlong; Yang Xiaoguang; Qi Hongyu; Wang Jingke

    2010-01-01

    Research highlights: → This paper has researched creep-fatigue interaction of directionally solidified superalloy DZ125 with different dwell time at high temperature combined with micro-mechanism by experiment. → The results indicated that the life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. - Abstract: The low cycle fatigue (LCF) and creep-fatigue tests have been conducted with directionally solidified nickel-based superalloy DZ125 at 850 and 980 deg. C to study the creep-fatigue interaction behavior of alloy with different dwell time. On the average, the life of creep-fatigue tests are about 70% less than the life of LCF tests under the same strain range at 850 deg. C. The life of creep-fatigue decreases as dwell time increases, but the life of this alloy was almost unchanged when dwell time exceeds a critical value at 850 deg. C. Scanning electron microscope (SEM) analyses of the fracture revealed that the fracture modes were influenced by different way of loading. In case of LCF, the primary fracture mode was transgranular, while in case of creep-fatigue, the primary fracture mode was mixed with transgranular and intergranular. There were also obvious different morphologies of surface crack between LCF and creep-fatigue.

  9. The effect of creep cavitation on the fatigue life under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Nam, S.W.

    1995-01-01

    Low cycle fatigue tests have been carried out with three different materials (1Cr-Mo-V steel, 12Cr-Mo-V steel and 304 stainless steel) for the investigation of the effect of surface roughness on the fatigue life. To see the effect systematically, we have chosen those materials which may or may not form grain boundary cavities.Test results show that the continuous fatigue life of 1Cr-Mo-V steel and aged 304 stainless steel with a rough surface is decreased compared with that of the specimens with a smooth surface. These two alloys are found to have no grain boundary cavities formed under creep-fatigue test conditions. On the contrary, the fatigue life of 12Cr-Mo-V steel and solutionized 304 stainless steel in which grain boundary cavities are formed under creep-fatigue test conditions is not influenced by the states of surface roughness.The characteristic test results strongly confirm that the fatigue life of the specimen under creep-fatigue interaction, during which creep cavities are forming, may be controlled by the cavity nucleation and growth processes rather than the process of surface crack initiation. ((orig.))

  10. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  11. LCF life prediction for waspaloy in the creep-fatigue interaction regime

    International Nuclear Information System (INIS)

    Yeom, Jong Taek; Park, Nho Kwang

    2001-01-01

    This paper describes the empirical rule of strain rate modified linear accumulation of creep damage(SRM rule) for Low-Cycle Fatigue(LCF) life prediction of Waspaloy in the creep-fatigue interaction regime and Chaboche type unified viscoplastic model predicting the stress-strain response in various cyclic loading conditions. The comparison of the experimental data and the predictions for strain controlled LCF tests carried out for various strain ranges at 600 .deg. C and 650 .deg. C was made. Chaboche type unified viscoplastic model described efficiently the inelastic deformation behavior during LCF tests. Crack-initiation lifting method to predict the material life was investigated with Strain Rate Modification(SRM) rule. The application of SRM rule to LCF tests on Waspaloy indicated a good agreement between measured and predicted cycles to failure

  12. High Temperature Creep-Fatigue-Oxidation Interactions in 9% Cr Martensitic Steels

    International Nuclear Information System (INIS)

    Fournier, B.; Sauzay, M.; Pineau, A.

    2007-01-01

    Full text of publication follows: Martensitic steels of the 9-12%Cr family are widely used in the energy industry and were selected as candidate materials for structural components of future fusion reactors [1,2]. Typical in-service conditions require operating temperatures between 673 and 873 K, which means that the creep behaviour of these steels is of primary interest. In addition, some components are anticipated to operate in a pulsed mode, leading to complex time-dependencies of temperature, stress and strain in materials. Therefore, in design procedures, fatigue and creep-fatigue data are required. Furthermore, to meet the need for very long inservice lifetime of components (with very long hold times ∼ one month) reliable cyclic lifetime models are necessary, since complete tests with such long holding periods cannot, of course, be carried out in laboratory. To make these extrapolations safer and more reliable a precise understanding of the damage and interaction mechanisms is required. Fatigue, creep-fatigue and relaxation-fatigue tests were carried out at high temperature (823 K), under three different atmospheres (air, vacuum and He+impurities) and for a large panel of applied fatigue and creep strain. Holding periods are found to decrease the fatigue lifetime. Surprisingly enough compressive holding periods are more deleterious than tensile ones in air. Observations were carried out on fracture surfaces, specimen surfaces and cross sections. No creep cavity is visible, whatever the holding period duration, but a major influence of oxidation is highlighted. Oxidation is all the more predominant for low applied strains. Tests carried out under vacuum and helium show that the formation of a thick oxide layer can lead to a fatigue lifetime 4 times shorter. Crack propagation is mainly transgranular for all applied strains. Both damage observations and a theoretical study of oxide layers fracture mechanisms allow qualitative explanations for recorded fatigue

  13. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  14. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  15. High-Temperature Creep-Fatigue Behavior of Alloy 617

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2018-02-01

    Full Text Available This paper presents the high-temperature creep-fatigue testing of a Ni-based superalloy of Alloy 617 base metal and weldments at 900 °C. Creep-fatigue tests were conducted with fully reversed axial strain control at a total strain range of 0.6%, 1.2%, and 1.5%, and peak tensile hold time of 60, 180, and 300 s. The effects of different constituents on the combined creep-fatigue endurance such as hold time, strain range, and stress relaxation behavior are discussed. Under all creep-fatigue tests, weldments’ creep-fatigue life was less than base metal. In comparison with the low-cycle fatigue condition, the introduction of hold time decreased the cycle number of both base metal and weldments. Creep-fatigue lifetime in the base metal was continually decreased by increasing the tension hold time, except for weldments under longer hold time (>180 s. In all creep-fatigue tests, intergranular brittle cracks near the crack tip and thick oxide scales at the surface were formed, which were linked to the mixed-mode creep and fatigue cracks. Creep-fatigue interaction in the damage-diagram (D-Diagram (i.e., linear damage summation was evaluated from the experimental results. The linear damage summation was found to be suitable for the current limited test conditions, and one can enclose all the data points within the proposed scatter band.

  16. A ductility exhaustion evaluation of some long term creep/fatigue tests on austenitic steel

    International Nuclear Information System (INIS)

    Wood, D.S.; Wynn, J.; Austin, C.; Green, J.G.

    1988-01-01

    A limited number of long term creep/fatigue tests performed on two batches of Type 316 steel and one batch of associated 17Cr8Ni2Mo weld metal are reported. Test durations range from 5000 to 32,000 h and temperatures from 550 to 625 0 C. Subsequent metallographic examination shows the failures to be wholly or predominantly intergranular. The results are analysed using a ductility exhaustion approach and it is shown that the endurances obtained are within a factor of two of predicted values. The results confirm that the design approach to creep/fatigue currently being developed in the U.K. and based on ductility exhaustion is likely to be satisfactory. (author)

  17. Impact of creep-fatigue interaction on the lifetime of a dispersion strengthened copper alloy in unirradiated and irradiated conditions

    International Nuclear Information System (INIS)

    Singh, B.N.; Toft, P.; Stubbins, J.F.

    2001-06-01

    Creep-fatigue interaction behaviour of a dispersion strengthened copper alloy was investigated at 22 and 250 deg. C. To determine the effect of irradiation a number of fatigue specimens were irradiated at 250 deg. C to a dose level of 0.3 dpa and were tested at 250 deg. C. The creep-fatigue interaction was simulated by applying a certain hold-time on both tension and compression sides of the cyclic loading with a frequency of 0.5 Hz. Hold-times of 0,2, 5, 10, 100 and 1000 seconds were used. For a given hold-time, the real lifetime and the number of cycles to failure were determined at different strain amplitudes. Post-deformation micro-structures and fracture surfaces were investigated using transmission and scanning electron microscopes, respectively. The main results of these investigations are presented and their implications are briefly discussed in the present report. The central conclusion emerging from the present work is that a hold-time of 10 seconds or less causes a drastic decrease in the real lifetime as well as in the number of cycles to failure, particularly at low levels of strain amplitudes. A combination of higher temperature, higher strain amplitude and longer hold-time, on the other hand, may lead to an improvement in the lifetime. The irradiation at 250 deg. C to a dose level of 0.3 dpa does not play any significant role in determining the lifetime under creep-fatigue testing conditions. (au)

  18. Creep-fatigue interactions in an austenitic stainless steel

    International Nuclear Information System (INIS)

    Majumdar, S.; Maiya, P.S.

    1978-01-01

    A phenomenological model of the interaction between creep and fatigue in Type 304 stainless steel at elevated temperatures is presented. The model is based on a crack-growth equation and an equation governing cavity growth, expressed in terms of current plastic strain and plastic strain rate. Failure is assumed to occur when a proposed interaction equation is satisfied. Various parameters of the equations can be obtained by correlation with continuously cycling fatigue and monotonic creep-rupture test data, without the use of any hold-time fatigue tests. Effects of various wave shapes such as tensile, compressive, and symmetrical hold on the low-cycle fatigue life can be computed by integrating the damage-rate equations along the appropriate loading path. Microstructural evidence in support of the proposed model is also discussed

  19. Report on FY15 Alloy 617 SMT Creep-Fatigue Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baird, Seth T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pu, Chao [Univ. of Tennessee, Knoxville, TN (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-22

    For the temperature range of 990-950C, Alloy 617 is a candidate IHX structural material for high temperature gas reactors (HTGRs) because of its high temperature creep properties. Also, its superior strength over a broad temperature range also offers advantages for certain component applications. In order for the designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code. A plan has been developed to propose a Code Case for use of Alloy 617 at elevated temperature in Section III of the ASME Code by September 2015. There has not been a new high temperature material approved for use in Section III for almost 20 years. The Alloy 617 Code Case effort would lead the way to establish a path for Code qualification of new high temperature materials of interest to other advanced SMRs. Creep-fatigue at elevated temperatures is the most damaging structural failure mode. In the past 40 years significant efforts have been devoted to the elevated temperature Code rule development in Section III, Subsection NH* of the ASME Boiler and Pressure Vessel Code, to ascertain conservative structural designs to prevent creep-fatigue failure. The current Subsection NH creep-fatigue procedure was established by the steps of (1) analytically obtaining a detailed stress-strain history, (2) comparing the stress and strain components to cyclic test results deconstructed into stress and strain quantities, and (3) recombining the results to obtain a damage function in the form of the so-called creep-fatigue damage-diagram. The deconstruction and recombination present difficulties in evaluation of test data and determination of cyclic damage in design. The uncertainties in these steps lead to the use of overly conservative design factors in the current creep-fatigue procedure. In addition, and of major significance to the

  20. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongming [Arizona State Univ., Tempe, AZ (United States). School for Engineering of Matter, Transport and Energy; Oskay, Caglar [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2017-04-30

    This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage is directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of

  1. Creep, Fatigue and Environmental Interactions and Their Effect on Crack Growth in Superalloys

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.; Smith, T.

    2017-01-01

    Complex interactions of creep/fatigue/environment control dwell fatigue crack growth (DFCG) in superalloys. Crack tip stress relaxation during dwells significantly changes the crack driving force and influence DFCG. Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for correlating DFCG behavior due to extensive visco-plastic deformation. Magnitude of remaining crack tip axial stresses controls DFCG resistance due to the brittle-intergranular nature of the crack growth process. Proposed a new empirical parameter, Ksrf, which incorporates visco-plastic evolution of the magnitude of remaining crack tip stresses. Previous work performed at 704C, extend the work to 760C.

  2. Creep-fatigue-environment interaction of 9Cr-1Mo-V-Nb steel

    International Nuclear Information System (INIS)

    Shibata, Hiroyuki; Ishikawa, Akiyoshi; Asada, Yasuhide

    1996-01-01

    An extension of the creep-fatigue damage model has been conducted in the present study. The original damage model has been developed to the predict the creep-fatigue life of 9Cr-1Mo-V-Nb steel (Modified 9Cr-1Mo steel) in a very high vacuum environment. The present study is to extend an applicability of the model to the creep-fatigue damage accumulation in the air environment. (orig.)

  3. Study on creep-fatigue life improvement and life evaluation of 316FR stainless steels

    International Nuclear Information System (INIS)

    Kobayashi, Kazuo; Yamaguchi, Koji; Yamazaki, Masayoshi; Hongo, Hiromichi; Nakazawa, Takanori; Date, Shingo; Tendo, Masayuki

    2000-01-01

    Creep rupture and creep-fatigue interaction tests were conducted at 550deg C for modified 316FR austenitic stainless steels in order to improve the creep-fatigue lives. Reducing the carbon contents from 0.01% to 0.002 or 0.003% and finning the grain size were effective for increasing the creep-fatigue lives and the creep rupture ductilities. From these results, an estimation method of the creep-fatigue lives by using the creep rupture ductilities in the modified 316FR steels was proposed. (author)

  4. The prediction of creep damage in Type 347 weld metal: part II creep fatigue tests

    International Nuclear Information System (INIS)

    Spindler, M.W.

    2005-01-01

    Calculations of creep damage under conditions of strain control are often carried out using either a time fraction approach or a ductility exhaustion approach. In part I of this paper the rupture strength and creep ductility data for a Type 347 weld metal were fitted to provide the material properties that are used to calculate creep damage. Part II of this paper examines whether the time fraction approach or the ductility exhaustion approach gives the better predictions of creep damage in creep-fatigue tests on the same Type 347 weld metal. In addition, a new creep damage model, which was developed by removing some of the simplifying assumptions that are made in the ductility exhaustion approach, was used. This new creep damage model is a function of the strain rate, stress and temperature and was derived from creep and constant strain rate test data using a reverse modelling technique (see part I of this paper). It is shown that the new creep damage model gives better predictions of creep damage in the creep-fatigue tests than the time fraction and the ductility exhaustion approaches

  5. An assessment of the linear damage summation method for creep-fatigue failure with reference to a cast of type 316 stainless steel tested at 570 deg. C

    International Nuclear Information System (INIS)

    Wareing, J.; Bretherton, I.

    This paper presents preliminary results from the programme for hold period tests on a cast BQ of type 316 stainless steel at 570 deg. C. The results of tensile hold period tests on a relatively low ductility cast of type 316 stainless steel have indicated that the failure mechanism changes from a creep-fatigue interaction failure to a creep dominated failure at low strain levels. An assessment of the linear damage summation approach for failure prediction indicates that it is inappropriate for creep-fatigue interaction failures. For creep dominated fracture, failure occurs when the accumulation relaxation strain exhausts the material ductility i.e. Nsub(f epsilon R)=D. The failure criterion based on a creep summation in terms of time to fracture underestimates life

  6. Sequential creep-fatigue interaction in austenitic stainless steel type 316L-SPH

    International Nuclear Information System (INIS)

    Tavassoli, A.A.; Mottot, M.; Petrequin, P.

    1986-01-01

    Influence of a prior creep or fatigue exposure on subsequent fatigue or creep properties of stainless steel type 316 L SPH has been investigated. The results obtained are used to verify the validity of time and cycle fraction rule and to obtain information on the effect of very long intermittent hold times on low cycle fatigue properties, as well as on transitory loads occurring during normal service of some structural components of LMFBR reactors. Creep and fatigue tests have been carried out at 600 0 C and under conditions yielding equal or different fatigue saturation and creep stresses. Prior creep damage levels introduced range from primary to tertiary creep, whilst those of fatigue span from 20 to 70 percent of fatigue life. In both creep-fatigue and fatigue-creep sequences in the absence of a permanent prior damage (cavitation or cracking) the subsequent resistance of 316 L-SPH to fatigue or creep is unchanged, if not improved. Thin foils prepared from the specimens confirmed these observations and showed that the dislocation substructure developed during the first mode of testing is quickly replaced by that of the second mode. Grain boundary cavitation does not occur in 316 L-SPH during creep exposures to well beyond the apparent end of secondary stage and as a result prior creep exposures up to approximately 80% of rupture life do not affect fatigue properties. Conversely, significant surface cracks were found in the prior fatigue tested specimens after above about 50% life. In the presence of such cracks the subsequent creep damage was localized at the tip of the main crack and the remaining creep life was found to be usually proportional to the effective specimen cross section. Creep and fatigue sequential damage are not necessarily additive and this type of loadings are in general less severe than the repeated creep-fatigue cycling. 17 refs.

  7. A proposal of predictive methods of crack propagation life and remaining life of structural metal under creep-fatigue interacted conditions by use of X-ray profile analysis

    International Nuclear Information System (INIS)

    Ohnami, M.; Sakane, M.; Nishino, S.

    1987-01-01

    The following two series of studies are described: One is crack propagation life prediction in high-temperature low-cycle fatigue tests under triangular and trapezoidal strain or stress waves for austenitic stainless steel by X-ray fractography. Another is remaining life prediction of the steel under creep-fatigue interacted conditions by applying the concept of the remaining life diagram and X-ray profile analysis. Particle size and microstrain obtained by X-ray profile analysis were effective nondestructive parameters for estimating crack propagation life and remaining life in creep-fatigue interaction

  8. Evaluation of creep-fatigue/ environment interaction in Ni-base wrought alloys for HTGR application

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1986-01-01

    High Temperature Gas-cooled Reactor (HTGR) systems should be designed based on the high temperature structural strength design procedures. On the development of design code, the determination of failure criteria under cyclic loading and severe environments is one of the most important items. By using the previous experimental data for Ni-base wrought alloys, Inconel 617 and Hastelloy XR, several evaluation methods for creep-fatigue interaction were examined for their capability to predict their cyclic loading behavior for HTGR application. At first, the strainrange partitioning method, the frequency modified damage function and the linear damage summation rule were discussed. However, these methods were not satisfactory with the above experimental results. Thus, in this paper, a new fracture criterion, which is a modification of the linear damage summation rule, is proposed based on the experimental data. In this criterion, fracture is considered to occur when the sum of the fatigue damage, which is the function of the applied cyclic strain magnitude, and the modified creep damage, which is the function of the applied cyclic stress magnitude (determined as time devided by cyclic creep rupture time reflecting difference of creep damages by tensile creep and compressive creep), reaches a constant value. This criterion was successfully applied to the life prediction of materials at HTGR temperatures. (author)

  9. Creep fatigue damage under multiaxial conditions

    International Nuclear Information System (INIS)

    Lobitz, D.W.; Nickell, R.E.

    1977-01-01

    When structural components are subjected to severe cyclic loading conditions with intermittent periods of sustained loading at elevated temperature, the designer must guard against a failure mode caused by the interaction of time-dependent and time-independent deformation. This phenomena is referred to as creep-fatigue interaction. The most elementary form of interaction theory (called linear damage summation) is now embodied in the ASME Boiler and Pressure Vessel Code. In recent years, a competitor for the linear damage summation theory has emerged, called strainrange partitioning. This procedure is based upon the visualization of the cyclic strain in a uniaxial creep-fatigue test as a hysteresis loop, with the inelastic strains in the loop counter-balanced in one of two ways. The two theories are compared and contrasted in terms of ease of use, possible inconsistencies, and component life prediction. Future work to further test the damage theories is recommended

  10. Creep-fatigue assessment of a thermina test specimen using the R5 procedure

    International Nuclear Information System (INIS)

    Booth, P.; Budden, P.J.; Bate, S.K.

    1997-01-01

    A creep-fatigue life assessment of an axisymmetric 316 stainless steel test specimen under constant mechanical and cyclic thermal shock loading using the R5 Procedure is described in this paper. This test was carried out at CEA, France, and formed part of the 'Thermina' series. Stress analysis has been carried out using both full inelastic finite element analysis and also the simplified shakedown methods, based on elastic calculation, within R5. The estimates of strain range and the stress at the start of the creep dwell have then been used with R5 to estimate creep and fatigue damage per cycle and hence to make predictions of component life. The predicted lives are compared with the lives observed in the tests. The simplified R5 estimate of life, based on development of a crack of depth 200 microns, is 260 cycles using best-estimate material properties. Experimentally, cracks of depth at least 150 microns were observed in between 526 and 650 cycles, for two similar tests. The simplified R5 route therefore leads to an estimate of life which is conservative but not unduly so on this component. Detailed cyclic inelastic analysis using the ORNL constitutive model and the ABAQUS finite element code to estimate the strain range and dwell stress led to a best estimate of 618 cycles to crack initiation using R5. (author). 16 refs, 11 figs, 4 tabs

  11. Evaluation of Creep-Fatigue Damage in 304 Stainless Steel using Ultrasonic Non-Destructive Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Sik [Safetech Co. Ltd., Kimhae (Korea, Republic of); Oh, Yong Jun [Hanbat National Univ., Daejon (Korea, Republic of); Nam, Soo Woo [KISTI ReSEAT Program, Seoul (Korea, Republic of)

    2011-12-15

    It is well known that grain boundary cavitation is the main failure mechanism in austenitic stainless steel under tensile hold creep-fatigue interaction conditions. The cavities are nucleated at the grain boundary during cyclic loading and grow to become grain boundary cracks. The attenuation of ultrasound depends on scattering and absorption in polycrystalline materials. Scattering occurs when a propagation wave encounters microstructural discontinuities, such as internal voids or cavities. Since the density of the creepfatigue cavities increases with the fatigue cycles, the attenuation of ultrasound will also be increased with the fatigue cycles and this attenuation can be detected nondestructively. In this study, it is found that individual grain boundary cavities are formed and grow up to about 100 cycles and then, these cavities coalesce to become cracks. The measured ultrasonic attenuation increased with the cycles up to cycle 100, where it reached a maximum value and then decreased with further cycles. These experimental measurements strongly indicate that the open pores of cavities contribute to the attenuation of ultrasonic waves. However, when the cavities develop, at the grain boundary cracks whose crack surfaces are in contact with each other, there is no longer any open space and the ultrasonic wave may propagate across the cracks. Therefore, the attenuation of ultrasonic waves will be decreased. This phenomenon of maximum attenuation is very important to judge the stage of grain boundary crack development, which is the indication of the dangerous stage of the structures.

  12. Creep-fatigue interaction at high temperature; Proceedings of the Symposium, 112th ASME Winter Annual Meeting, Atlanta, GA, Dec. 1-6, 1991

    Science.gov (United States)

    Haritos, George K.; Ochoa, O. O.

    Various papers on creep-fatigue interaction at high temperature are presented. Individual topics addressed include: analysis of elevated temperature fatigue crack growth mechanisms in Alloy 718, physically based microcrack propagation laws for creep-fatigue-environment interaction, in situ SEM observation of short fatigue crack growth in Waspaloy at 700 C under cyclic and dwell conditions, evolution of creep-fatigue life prediction models, TMF design considerations in turbine airfoils of advanced turbine engines. Also discussed are: high temperature fatigue life prediction computer code based on the total strain version of strainrange partitioning, atomic theory of thermodynamics of internal variables, geometrically nonlinear analysis of interlaminar stresses in unsymmetrically laminated plates subjected to uniform thermal loading, experimental investigation of creep crack tip deformation using moire interferometry. (For individual items see A93-31336 to A93-31344)

  13. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G., E-mail: agang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Y. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Lin, Y.C. [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-02-08

    Total strain-controlled low cycle fatigue (LCF) tests of a nickel based superalloy were performed at 650 °C. Various hold times were introduced at the peak tensile strain to investigate the high-temperature creep-fatigue interaction (CFI) effects under the same temperature. A substantial decrease in fatigue life occurred as the total strain amplitude increased. Moreover, tensile strain holding further reduced fatigue life. The saturation phenomenon of holding effect was found when the holding period reached 120 s. Cyclic softening occurred during the LCF and CFI process and it was related to the total strain amplitude and the holding period. The relationship between life-time and total strain amplitude was obtained by combining Basquin equation and Coffin-Manson equation. The surface and fracture section of the fatigued specimens were observed via scanning electronic microscope (SEM) to determine the failure mechanism.

  14. Microstructure-sensitive Crystal Viscoplasticity for Ni-base Superalloys Targeting Long-term Creep-Fatigue Interaction Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Neu, Richard W.

    2017-09-30

    The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationship between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.

  15. Microstructure-sensitive Crystal Viscoelasticity for Ni-base Superalloys Targeting Long-term Creep-Fatigue Interaction Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Neu, Richard W

    2016-09-30

    The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationship between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.

  16. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  17. Low cycle fatigue and creep fatigue behavior of alloy 617 at high temperature

    International Nuclear Information System (INIS)

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the very high temperature nuclear reactor (VHTR), expected to have an outlet temperature as high as 950 C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanisms and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle fatigue specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens and the addition of a hold time at peak tensile strain degraded the cycle life. This suggests that creep-fatigue interaction occurs and that the environment may be partially responsible for accelerating failure. (authors)

  18. Creep-Fatigue Failure Diagnosis

    Science.gov (United States)

    Holdsworth, Stuart

    2015-01-01

    Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s) can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis. PMID:28793676

  19. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Masanori, E-mail: ando.masanori@jaea.go.jp; Takaya, Shigeru, E-mail: takaya.shigeru@jaea.go.jp

    2016-12-15

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  20. Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel Part II: Plate bending test and proposal of a simplified evaluation method

    International Nuclear Information System (INIS)

    Ando, Masanori; Takaya, Shigeru

    2016-01-01

    Highlights: • Creep-fatigue evaluation method for weld joint of Mod.9Cr-1Mo steel is proposed. • A simplified evaluation method is also proposed for the codification. • Both proposed evaluation method was validated by the plate bending test. • For codification, the local stress and strain behavior was analyzed. - Abstract: In the present study, to develop an evaluation procedure and design rules for Mod.9Cr-1Mo steel weld joints, a method for evaluating the creep-fatigue life of Mod.9Cr-1Mo steel weld joints was proposed based on finite element analysis (FEA) and a series of cyclic plate bending tests of longitudinal and horizontal seamed plates. The strain concentration and redistribution behaviors were evaluated and the failure cycles were estimated using FEA by considering the test conditions and metallurgical discontinuities in the weld joints. Inelastic FEA models consisting of the base metal, heat-affected zone and weld metal were employed to estimate the elastic follow-up behavior caused by the metallurgical discontinuities. The elastic follow-up factors determined by comparing the elastic and inelastic FEA results were determined to be less than 1.5. Based on the estimated elastic follow-up factors obtained via inelastic FEA, a simplified technique using elastic FEA was proposed for evaluating the creep-fatigue life in Mod.9Cr-1Mo steel weld joints. The creep-fatigue life obtained using the plate bending test was compared to those estimated from the results of inelastic FEA and by a simplified evaluation method.

  1. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    International Nuclear Information System (INIS)

    Asayama, Tai; Tachibana, Yukio

    2007-01-01

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  2. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    International Nuclear Information System (INIS)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young

    2016-01-01

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation

  3. Creep-Fatigue Damage Evaluation of a Model Reactor Vessel and Reactor Internals of Sodium Test Facility according to ASME-NH and RCC-MRx Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dong-Won; Lee, Hyeong-Yeon; Eoh, Jae-Hyuk; Son, Seok-Kwon; Kim, Jong-Bum; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The objective of the STELLA-2 is to support the specific design approval for PGSFR by synthetic reviews of key safety issues and code validations through the integral effect tests. Due to its high temperature operation in SFRs (and in a testing facility) up to 550 °C, thermally induced creep-fatigue damage is very likely in components including a reactor vessel, reactor internals (interior structures), heat exchangers, pipelines, etc. In this study, structural integrity of the components such as reactor vessel and internals in STELLA-2 has been evaluated against creep-fatigue failures at a concept-design step. As 2D analysis yields far conservative results, a realistic 3D simulation is performed by a commercial software. A design integrity guarding against a creep-fatigue damage failure operating at high temperature was evaluated for the reactor vessel with its internal structure of the STELLA-2. Both the high temperature design codes were used for the evaluation, and results were compared. All the results showed the vessel as a whole is safely designed at the given operating conditions, while the ASME-NH gives a conservative evaluation.

  4. Evaluation of long term creep-fatigue life for type 304 stainless steel

    International Nuclear Information System (INIS)

    Kawasaki, Hirotsugu; Ueno, Fumiyoshi; Aoto, Kazumi; Ichimiya, Masakazu; Wada, Yusaku

    1992-01-01

    The long term creep-fatigue life of type 304 stainless steel was evaluated by the creep-fatigue life prediction method based on a linear damage fraction rule. The displacement controlled creep-fatigue tests were carried out, and the time to failure of longer than 10000 hours was obtained. The creep damage of long term creep-fatigue was evaluated by taking into account the stress relaxation behavior with elastic follow-up during the hold period. The relationship between life reduction of creep-fatigue and fracture mode was provided by the creep cavity growth. The results of this study are summarized as follows; (1) The long term creep-fatigue data can be reasonably evaluated by the present method. The predicted lives were within a factor of 3 of the observed ones. (2) The present method provides the capability to predict the long term creep-fatigue life at lower temperatures as well as that at the creep dominant temperature. (3) The value of creep damage for the long term creep-fatigue data increased by elastic follow-up. The creep-fatigue damage diagram intercepted between 0.3 and 1 can represent the observed creep-fatigue damages. (4) The cavity growth depends on the hold time. The fracture of long term creep-fatigue is caused by the intergranular cavity growth. The intergranular fracture of creep-fatigue is initiated by the cavity growth and followed by the microcrack propagation along grain boundaries starting from creep cavities. (author)

  5. Modeling of creep-fatigue interaction of zirconium α under cyclic loading at 200 C

    International Nuclear Information System (INIS)

    Vogel, C.

    1996-04-01

    The present work deals with mechanical behaviour of zirconium alpha at 200 deg. C and crack initiation prediction methods, particularly when loading conditions lead to interaction of fatigue and creep phenomena. A classical approach used to study interaction between cyclic effects and constant loading effects does not give easy understanding of experimental results. Therefore, a new approach has been developed, which allow to determine a number of cycles for crack initiation for complex structures under large loading conditions. To study influence of fatigue and creep interaction on crack initiation, a model was chosen, using a scalar variable, giving representation of the material deterioration state. The model uses a non linear cumulating effect between the damage corresponding to cyclic loads and the damage correlated to time influence. The model belongs to uncoupled approaches between damage and behaviour, which is described here by a two inelastic deformations model. This mechanical behaviour model is chosen because it allows distinction between a plastic and a viscous part in inelastic flow. Cyclic damage is function of stress amplitude and mean stress. For the peculiar sensitivity of the material to creep, a special parameter bas been defined to be critical toward creep damage. It is the kinematic term associated to state variables describing this type of hardening in the viscous mechanism. (author)

  6. A study on metallic creep-fatigue interaction at elevated temperatures

    International Nuclear Information System (INIS)

    Ohnami, Masateru; Sakane, Masao

    1978-01-01

    In order to investigate the difference between the hold-time effect in push-pull low-cycle fatigue and that in torsional one, both types of strain controlled fatigue tests of SUS 316 stainless steel were performed at 600 0 C with or without hold-time. Significant difference between the push-pull and torsional fatigue test data on the basis of equivalent total strain range of Mises' type was not observed in terms of number of cycles to failure, number of cycles to crack initiation and crack propagation rate. More precisely speaking, however, the push-pull test had a larger hold-time effect on the failure life and on the crack behaviors than the torsional test in lower strain range. That is, slower crack propagation rate was observed in the push-pull test without hold-time than in torsional one, but crack propagation was observed in the push-pull test with hold-time. This crack behavior was discussed from the influence of stress triaxiality near the crack tip on the crack propagation rate and also from the effect of hydrostatic stress. (author)

  7. Fatigue and creep-fatigue in sodium of 316 L stainless-steel

    International Nuclear Information System (INIS)

    Ardellier, A.

    1981-03-01

    The present paper describes test-facility developed to perform low-cycle fatigue and creep-fatigue interaction in sodium on stainless steel - 316 L . Fatigue life in sodium and in air are compared. A beneficial effect in sodium is noted

  8. Nondestructive evaluation of creep-fatigue damage: an interim report

    International Nuclear Information System (INIS)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described

  9. On the microstructural basis of creep strength and creep-fatigue interaction in 9-12 % Cr steels for application in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chilukuru, H

    2007-03-06

    As part of the efforts of preserving the environment it is necessary to reduce of the CO2 emissions from power plants. This can be done by increasing the plant efficiency. Research groups around the world are engaged in developing new steels capable of sustaining higher stresses and temperatures envisaged for high-efficiency power plants. Research carried out in Europe is organized within the COST Programme (Co-Operation in Science and Technology) aiming at replacing the conventional steels of type X20CrMoV121 by the new class of 9-12% Cr-steels with modified composition. The resistance of materials against deformation at elevated temperatures depends on their microstructure. Frequently in 9-12% Cr-steels improved short-term creep properties do not persist in the long-term service [1, 2, 3, 4, 5, 6]. This is related with insufficient microstructural stability. Hardening contributions in 9-12% Cr-steels come from solute atoms of the ferritic matrix, from dislocations, and from precipitates of foreign phases within the matrix. The term ''carbide stabilized substructure hardening'' of 9-12% Cr steels [7, 8] indicates that the hardening contributions are interdependent. The dislocations are the carriers of plastic deformation. They interact with each other, with solute atoms and with precipitates. The dislocation-dislocation interaction leads to formation of planar dislocation networks constituting low-angle boundaries. They form a subgrain structure within the grains. At present, a full and detailed understanding of the effects exerted by the different components of microstructure on creep strength is still lacking. The present work makes a contribution to the efforts of understanding the microstructural basis of creep strength and of creep-fatigue interaction by transmission electron microscopic structure investigations coupled with creep tests. Investigations by transmission electron microscopy (TEM) were carried out with regard to hardening by subgrain boundaries

  10. On the microstructural basis of creep strength and creep-fatigue interaction in 9-12 % Cr steels for application in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Chilukuru, H.

    2007-03-06

    As part of the efforts of preserving the environment it is necessary to reduce of the CO2 emissions from power plants. This can be done by increasing the plant efficiency. Research groups around the world are engaged in developing new steels capable of sustaining higher stresses and temperatures envisaged for high-efficiency power plants. Research carried out in Europe is organized within the COST Programme (Co-Operation in Science and Technology) aiming at replacing the conventional steels of type X20CrMoV121 by the new class of 9-12% Cr-steels with modified composition. The resistance of materials against deformation at elevated temperatures depends on their microstructure. Frequently in 9-12% Cr-steels improved short-term creep properties do not persist in the long-term service [1, 2, 3, 4, 5, 6]. This is related with insufficient microstructural stability. Hardening contributions in 9-12% Cr-steels come from solute atoms of the ferritic matrix, from dislocations, and from precipitates of foreign phases within the matrix. The term ''carbide stabilized substructure hardening'' of 9-12% Cr steels [7, 8] indicates that the hardening contributions are interdependent. The dislocations are the carriers of plastic deformation. They interact with each other, with solute atoms and with precipitates. The dislocation-dislocation interaction leads to formation of planar dislocation networks constituting low-angle boundaries. They form a subgrain structure within the grains. At present, a full and detailed understanding of the effects exerted by the different components of microstructure on creep strength is still lacking. The present work makes a contribution to the efforts of understanding the microstructural basis of creep strength and of creep-fatigue interaction by transmission electron microscopic structure investigations coupled with creep tests. Investigations by transmission electron microscopy (TEM) were carried out with regard to hardening by

  11. Multiaxial creep-fatigue rules

    International Nuclear Information System (INIS)

    Spindler, M.W.; Hales, R.; Ainsworth, R.A.

    1997-01-01

    Within the UK, a comprehensive procedure, called R5, is used to assess the high temperature response of structures. One part of R5 deals with creep-fatigue initiation, and in this paper we describe developments in this part of R5 to cover multiaxial stress states. To assess creep-fatigue, damage is written as the linear sum of fatigue and creep components. Fatigue is assessed using Miner's law with the total endurance split into initiation and growth cycles. Initiation is assessed by entering the curve of initiation cycles vs strain range using a Tresca equivalent strain range. Growth is assessed by entering the curve of growth cycles vs strain range using a Rankine equivalent strain range. The number of allowable cycles is obtained by summing the initiation and growth cycles. In this way the problem of defining an equivalent strain range applicable over a range of endurance is avoided. Creep damage is calculated using ductility exhaustion methods. In this paper we address two aspects; first, the nature of stress relaxation and, hence, accumulated creep strain in multiaxial stress fields; secondly, the effect of multiaxial stress on creep ductility. The effect of multiaxial stress state on creep ductility has been examined using experimental data and mechanistic models. Good agreement is demonstrated between an empirical description of test data and a cavity growth model, provided a simple nucleation criterion is included. A simple scaling factor is applied to uniaxial creep ductility, defined as a function of stress state. The factor is independent of the cavity growth mechanisms and yields a value of equivalent strain which can be conveniently used in determining creep damage by ductility exhaustion. (author). 14 refs, 4 figs

  12. Creep-fatigue of low cobalt superalloys

    Science.gov (United States)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  13. The assessment of creep-fatigue initiation and crack growth

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.

    1991-01-01

    An outline of Nuclear Electric's Assessment Procedure for the High Temperature Response of Structures ('R5') for creep-fatigue initiation and crack growth is given. A unified approach is adopted for both regimes. For initiation, total damage is described in terms of separate creep and fatigue components. Ductility exhaustion is used for estimating creep damage whilst continuous cycling endurance data are used to evaluate the fatigue damage term. Evidence supporting this approach is given through the successful prediction of creep-fatigue endurances for a range of materials, cycle types, dwell period times, etc. Creep-fatigue crack growth is similarly described in terms of separated creep and fatigue components. Crack growth rates for each component are characterised in terms of fracture mechanics parameters. It is shown that creep crack growth rates can be rationalised on a ductility basis. Creep-fatigue interactions are accommodated in the cyclic growth component through the use of materials coefficients which depend on dwell time. (orig.)

  14. Multiaxial creep-fatigue life analysis using strainrange partitioning

    International Nuclear Information System (INIS)

    Manson, S.S.; Halford, G.R.

    1976-01-01

    Strain-Range Partitioning is a recently developed method for treating creep-fatigue interaction at elevated temperature. Most of the work to date has been on uniaxially loaded specimens, whereas practical applications often involve load multiaxiality. This paper shows how the method can be extended to treat multiaxiality through a set of rules for combining the strain components in the three principal directions. Closed hysteresis loops, as well as plastic and creep strain ratcheting, are included. An application to hold-time tests in torsion is used to illustrate the approach

  15. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1978-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a mininum strength heat is also shown to provide adequate predictions. The viability of using consistent properties (either actual or those of a minimum heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations

  16. Consistent creep and rupture properties for creep-fatigue evaluation

    International Nuclear Information System (INIS)

    Schultz, C.C.

    1979-01-01

    The currently accepted practice of using inconsistent representations of creep and rupture behaviors in the prediction of creep-fatigue life is shown to introduce a factor of safety beyond that specified in current ASME Code design rules for 304 stainless steel Class 1 nuclear components. Accurate predictions of creep-fatigue life for uniaxial tests on a given heat of material are obtained by using creep and rupture properties for that same heat of material. The use of a consistent representation of creep and rupture properties for a minimum strength heat is also shown to provide reasonable predictions. The viability of using consistent properties (either actual or those of a minimum strength heat) to predict creep-fatigue life thus identifies significant design uses for the results of characterization tests and improved creep and rupture correlations. 12 refs

  17. Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650 °C and probabilistic creep-fatigue modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dianyin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ma, Qihang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Shang, Lihong [Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5 (Canada); Gao, Ye [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Wang, Rongqiao, E-mail: wangrq@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China)

    2016-07-18

    Creep-fatigue experiments have been conducted in nickel-based superalloy GH720Li at an elevated temperature of 650 °C with a stress ratio of 0.1, based on which, different dwell times at the maximum loading were applied to investigate the effect of dwell time on the creep-fatigue behaviors. The tested specimens were cut from the rim region of an actual turbine disc in the hoop direction. The grain size and precipitates of the GH720Li superalloy were examined through scanning electronic microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses. Experimental data shows creep-fatigue lifetime decreases as the dwell time prolongs. Further, different scattering was observed in the creep-fatigue lifetime at different dwell times. Then a probabilistic model based on the applied mechanical work density (AMWD), with a linear heteroscedastic function that evaluates the non-constant deviation in the creep-fatigue lifetime, was formulated to describe the dependence of creep-fatigue lifetime on the dwell time. Finally, the possible microscopic mechanism of the creep-fatigue behavior has been discussed by SEM with EDS on the fracture surfaces.

  18. Creep-fatigue of High Temperature Materials for VHTR: Effect of Cyclic Loading and Environment

    Energy Technology Data Exchange (ETDEWEB)

    Celine Cabet; L. Carroll; R. Wright; R. Madland

    2011-05-01

    Alloy 617 is the one of the leading candidate materials for Intermediate Heat eXchangers (IHX) of a Very High Temperature Reactor (VHTR). System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Furthermore, the anticipated IHX operating temperature, up to 950°C, is in the range of creep so that creep-fatigue interaction, which can significantly increase the fatigue crack growth, may be one of the primary IHX damage modes. To address the needs for Alloy 617 codification and licensing, a significant creep-fatigue testing program is underway at Idaho National Laboratory. Strain controlled LCF tests including hold times up to 1800s at maximum tensile strain were conducted at total strain range of 0.3% and 0.6% in air at 950°C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The creep-fatigue tests resulted in failure times up to 1000 hrs. Fatigue resistance was significantly decreased when a hold time was added at peak stress and when the total strain was increased. The fracture mode also changed from transgranular to intergranular with introduction of a tensile hold. Changes in the microstructure were methodically characterized. A combined effect of temperature, cyclic and static loading and environment was evidenced in the targeted operating conditions of the IHX. This paper This paper reviews the data previously published by Carroll and co-workers in references 10 and 11 focusing on the role of inelastic strain accumulation and of oxidation in the initiation and propagation of surface fatigue cracks.

  19. Assessment of creep-fatigue damage using the UK strain based procedure

    International Nuclear Information System (INIS)

    Bate, S.K.

    1997-01-01

    The UK strain based procedures have been developed for the evaluation of damage in structures, arising from fatigue cycles and creep processes. The fatigue damage is assessed on the basis of modelling crack growth from about one grain depth to an allowable limit which represents an engineering definition of crack formation. Creep damage is based up on the exhaustion of available ductility by creep strain accumulation. The procedures are applicable only when level A and B service conditions apply, as defined in RCC-MR or ASME Code Case N47. The procedures require the components of strain to be evaluated separately, thus they may be used with either full inelastic analysis or simplified methods. To support the development of the UK strain based creep-fatigue procedures an experimental program was undertaken by NNC to study creep-fatigue interaction of structures operating at high temperature. These tests, collectively known as the SALTBATH tests considered solid cylinder and tube-plate specimens, manufactured from Type 316 stainless steel. These specimens were subjected to thermal cycles between 250 deg. C and 600 deg. C. In all the cases the thermal cycle produces tensile residual stresses during dwells at 600 deg. C. One of the tube-plate specimens was used as a benchmark for validating the strain based creep fatigue procedures and subsequently as part of a CEC co-operative study. This benchmark work is described in this paper. A thermal and inelastic stress analysis was carried out using the finite element code ABAQUS. The inelastic behaviour of the material was described using the ORNL constitutive equations. A creep fatigue assessment using the strain based procedures has been compared with an assessment using the RCC-MR inelastic rules. The analyses indicated that both the UK strain based procedures and the RCC-MR rules were conservative, but the conservatism was greater for the RCC-MR rules. (author). 8 refs, 8 figs, 4 tabs

  20. Study on the effect of prior fatigue and creep-fatigue damage on the fatigue and creep characteristics of 316 FR stainless steel. 2nd report. The effect of prior creep-fatigue damage on the creep and fatigue characteristics

    International Nuclear Information System (INIS)

    Yamauchi, Masafumi; Chuman, Yasuharu; Otani, Tomomi; Takahashi, Yukio

    2001-01-01

    The effect of prior creep-fatigue damage on the creep and the fatigue characteristics was studied to investigate the creep-fatigue life evaluation procedure of 316FR stainless steel. Creep and fatigue tests were conducted at 550degC by using the specimen exposed to prior creep-fatigue cycles at the same temperature and interrupted at 1/4 Nf, 1/2 Nf and 3/4 Nf cycle. The creep and fatigue strength of the pre-damaged material showed monotonic reduction with the prior creep-fatigue damage compared with the virgin material. The creep ductility also showed monotonic reduction with the prior creep-fatigue damage. These results were evaluated by the stress-based Time Fraction Rule and the strain-based Ductility Exhaustion Method. The result showed that the application of the Ductility Exhaustion Method to the creep-fatigue damage evaluation is more promising than the Time Fraction Rule. (author)

  1. Some aspects of thermomechanical fatigue of AISI 304L stainless steel: Part I. creep- fatigue damage

    Science.gov (United States)

    Zauter, R.; Christ, H. J.; Mughrabi, H.

    1994-02-01

    Thermomechanical fatigue (TMF) tests on the austenitic stainless steel AISI 304L have been conducted under “true≓ plastic-strain control in vacuum. This report considers the damage oc-curring during TMF loading. It is shown how the temperature interval and the phasing (in-phase, out-of-phase) determine the mechanical response and the lifetime of the specimens. If creep-fatigue interaction takes place during in-phase cycling, the damage occurs inside the ma-terial, leading to intergranular cracks which reduce the lifetime considerably. Out-of-phase cy-cling inhibits creep-induced damage, and no lifetime reduction occurs, even if the material is exposed periodically to temperatures in the creep regime. A formula is proposed which allows prediction of the failure mode, depending on whether creep-fatigue damage occurs or not. At a given strain rate, the formula is able to estimate the temperature of transition between pure fatigue and creep-fatigue damage.

  2. Evaluation of creep-fatigue life prediction methods for low-carbon/nitrogen-added SUS316

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1998-01-01

    Low-carbon/medium nitrogen 316 stainless steel called 316FR is a principal candidate for the high-temperature structural materials of a demonstration fast reactor plant. Because creep-fatigue damage is a dominant failure mechanism of the high-temperature materials subjected to thermal cycles, it is important to establish a reliable creep-fatigue life prediction method for this steel. Long-term creep tests and strain-controlled creep-fatigue tests have been conducted at various conditions for two different heats of the steel. In the constant load creep tests, both materials showed similar creep rupture strength but different ductility. The material with lower ductility exhibited shorter life under creep-fatigue loading conditions and correlation of creep-fatigue life with rupture ductility, rather than rupture strength, was made clear. Two kinds of creep-fatigue life prediction methods, i.e. time fraction rule and ductility exhaustion method were applied to predict the creep-fatigue life. Accurate description of stress relaxation behavior was achieved by an addition of 'viscous' strain to conventional creep strain and only the latter of which was assumed to contribute to creep damage in the application of ductility exhaustion method. The current version of the ductility exhaustion method was found to have very good accuracy in creep-fatigue life prediction, while the time fraction rule overpredicted creep-fatigue life as large as a factor of 30. To make a reliable estimation of the creep damage in actual components, use of ductility exhaustion method is strongly recommended. (author)

  3. Experimental and modeling results of creep fatigue life of Inconel 617 and Haynes 230 at 850 C

    International Nuclear Information System (INIS)

    Chen, Xiang; Sokolov, Mikhail A.; Sham, Sam; Erdman, Donald L. III; Busby, Jeremy T.; Mo, Kun; Stubbins, James

    2013-01-01

    Creep fatigue testing of Ni-based superalloy Inconel 617 and Haynes 230 were conducted in the air at 850 C. Tests were performed with fully reversed axial strain control at a total strain range of 0.5%, 1.0% or 1.5% and hold time at maximum tensile strain for 3, 10 or 30 min. In addition, two creep fatigue life prediction methods, i.e. linear damage summation and frequency-modified tensile hysteresis energy modeling, were evaluated and compared with experimental results. Under all creep fatigue tests, Haynes 230 performed better than Inconel 617. Compared to the low cycle fatigue life, the cycles to failure for both materials decreased under creep fatigue test conditions. Longer hold time at maximum tensile strain would cause a further reduction in both material creep fatigue life. The linear damage summation could predict the creep fatigue life of Inconel 617 for limited test conditions, but considerably underestimated the creep fatigue life of Haynes 230. In contrast, frequency-modified tensile hysteresis energy modeling showed promising creep fatigue life prediction results for both materials.

  4. Final Report for Project 13-4791: New Mechanistic Models of Creep-Fatigue Crack Growth Interactions for Advanced High Temperature Reactor Components

    Energy Technology Data Exchange (ETDEWEB)

    Kruzic, Jamie J [Oregon State Univ., Corvallis, OR (United States); Siegmund, Thomas [Purdue Univ., West Lafayette, IN (United States); Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2018-03-20

    This project developed and validated a novel, multi-scale, mechanism-based model to quantitatively predict creep-fatigue crack growth and failure for Ni-based Alloy 617 at 800°C. Alloy 617 is a target material for intermediate heat exchangers in Generation IV very high temperature reactor designs, and it is envisioned that this model will aid in the design of safe, long lasting nuclear power plants. The technical effectiveness of the model was shown by demonstrating that experimentally observed crack growth rates can be predicted under both steady state and overload crack growth conditions. Feasibility was considered by incorporating our model into a commercially available finite element method code, ABAQUS, that is commonly used by design engineers. While the focus of the project was specifically on an alloy targeted for Generation IV nuclear reactors, the benefits to the public are expected to be wide reaching. Indeed, creep-fatigue failure is a design consideration for a wide range of high temperature mechanical systems that rely on Ni-based alloys, including industrial gas power turbines, advanced ultra-super critical steam turbines, and aerospace turbine engines. It is envisioned that this new model can be adapted to a wide range of engineering applications.

  5. Improved methods of creep-fatigue life assessment of components

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Alfred; Berger, Christina [Inst. fuer Werkstoffkunde (IfW), Technische Univ. Darmstadt (Germany)

    2009-07-01

    The improvement of life assessment methods contributes to a reduction of efforts at design and an effective long term operation of high temperature components, reduces technical risk and increases high economical advantages. Creep-fatigue at multi-stage loading, covering cold start, warm start and hot start cycles in typical loading sequences e.g. for medium loaded power plants, was investigated here. At hold times creep and stress relaxation, respectively, lead to an acceleration of crack initiation. Creep fatigue life time can be calculated by a modified damage accumulation rule, which considers the fatigue fraction rule for fatigue damage and the life fraction rule for creep damage. Mean stress effects, internal stress and interaction effects of creep and fatigue are considered. Along with the generation of advanced creep data, fatigue data and creep fatigue data as well scatter band analyses are necessary in order to generate design curves and lower bound properties inclusive. Besides, in order to improve lifing methods the enhancement of modelling activities for deformation and life time are important. For verification purposes, complex experiments at variable creep conditions as well as at creep fatigue interaction under multi-stage loading are of interest. Generally, the development of methods to transfer uniaxial material properties to multiaxial loading situations is a current challenge. For specific design purposes, a constitutive material model is introduced which is implemented as an user subroutine for Finite Element applications due to start-up and shut-down phases of components. Identification of material parameters have been performed by Neural Networks. (orig.)

  6. Creep-fatigue life prediction method using Diercks equation for Cr-Mo steel

    International Nuclear Information System (INIS)

    Sonoya, Keiji; Nonaka, Isamu; Kitagawa, Masaki

    1990-01-01

    For dealing with the situation that creep-fatigue life properties of materials do not exist, a development of the simple method to predict creep-fatigue life properties is necessary. A method to predict the creep-fatigue life properties of Cr-Mo steels is proposed on the basis of D. Diercks equation which correlates the creep-fatigue lifes of SUS 304 steels under various temperatures, strain ranges, strain rates and hold times. The accuracy of the proposed method was compared with that of the existing methods. The following results were obtained. (1) Fatigue strength and creep rupture strength of Cr-Mo steel are different from those of SUS 304 steel. Therefore in order to apply Diercks equation to creep-fatigue prediction for Cr-Mo steel, the difference of fatigue strength was found to be corrected by fatigue life ratio of both steels and the difference of creep rupture strength was found to be corrected by the equivalent temperature corresponding to equal strength of both steels. (2) Creep-fatigue life can be predicted by the modified Diercks equation within a factor of 2 which is nearly as precise as the accuracy of strain range partitioning method. Required test and analysis procedure of this method are not so complicated as strain range partitioning method. (author)

  7. The effect of creep-fatigue damage relationships upon HTGR heat exchanger design

    International Nuclear Information System (INIS)

    Kozina, M.M.; King, J.H.; Basol, M.

    1984-01-01

    Materials for heat exchangers in the high temperature gas-cooled reactor (HTGR) are subjected to cyclic loading, extending the necessity to design against fatigue failure into the temperature region where creep processes become significant. Therefore, the fatigue life must be considered in terms of creep-fatigue interaction. In addition, since HTGR heat exchangers are subjected to holds at constant strain levels or constant stress levels in high-temperature environments, the cyclic life is substantially reduced. Of major concern in the design and analysis of HTGR heat exchangers is the accounting for the interaction of creep and fatigue. The accounting is done in conformance to the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Code Case N-47, which allows the use of the linear damage criterion for interaction of creep and fatigue. This method separates the damage incurred in the material into two parts: one due to fatigue and one due to creep. The summation of the creep-fatigue damage must be less than 1.0. Recent material test data have indicated that the assumption of creep and fatigue damage equals unity at failure may not always be valid for materials like Alloy 800H, which is used in the higher temperature sections of HTGR steam generators. Therefore, a more conservative creep-fatigue damage relationship was postulated for Alloy 800H. This more conservative bilinear damage relationship consists of a design locus drawn from D F =1.0, D C =0 to D F =0.1, D C =0.1 to D F =0, D C =1.0. D F is the fatigue damage and D C is the creep damage. A more conservative damage relationship for 2-1/4 Cr-1 Mo material consisted of including factors that degrade the fatigue curves. These revised relationships were used in a structural evaluation of the HTGR steam cycle/cogeneration (SC/C) steam generator design. The HTGR-SC/C steam generator, a once-through type, is comprised of an economizer-evaporator-superheater (ESS) helical bundle of 2-1/4 Cr-1

  8. Creep, fatigue and creep-fatigue damage evaluation and estimation of remaining life of SUS 304 austenitic stainless steel at high temperature

    International Nuclear Information System (INIS)

    Nishino, Seiichi; Sakane, Masao; Ohnami, Masateru

    1986-01-01

    Experimental study was made on the damage evaluation and estimation of remaining life of SUS 304 stainless steel in creep, low-cycle fatigue and creep-fatigue at 873 K in air. Creep, fatigue and creep-fatigue damage curves were drawn by the method proposed by D.A. Woodford and the relations between these damages and non-destructive parameters, i.e., microvickers hardness and quantities obtained from X-ray diffraction, were discussed. From these tests, the following conclusions were obtained. (1) Constant damage lines in the diagram of remaining lives in creep and fatigue could be drawn by changing load levels during the tests. Constant damage lines in creep-fatigue were also made by a linear damage rule using both static creep and fatigue damage curves, which agree well with the experimental data in creep-fatigue. (2) Microvickers hardness and half-value breadth in X-ray diffraction are appropriate parameters to evaluate creep damage but are not proper to evaluate fatigue damage. Particle size and microstrain obtained by X-ray profile analysis are good parameters to evaluate both creep and fatigue damages. (author)

  9. Predominantly elastic crack growth under combined creep-fatigue cycling

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1979-01-01

    A rationalization of the various observed effects of combined creep-fatigue cycling upon predominantly elastic fatigue-crack propagation in austenitic steel is presented. Existing and new evidence is used to show two main groups of behaviour: (i) material and cycling conditions which lead to modest increases (6-8 times) in the rate of crack growth are associated with relaxation-induced changes in the material deformation characteristics, and (ii) material and cycling conditions severe enough to generate internal fracture damage lead to significant (up to a factor of 30) increases in crack growth rate when compared with fast-cycling crack propagation rates at the same temperature. A working hypothesis is presented to show that the boundary between the two groups occurs when the scale of the nucleated creep damage is of the same magnitude as the crack tip opening displacement. This leads to the possibility of unstable crack advance. Creep crack growth rates are shown to provide an upper bound to creep-fatigue crack growth rates when crack advance is unstable. If the deformation properties only are affected by the creep-fatigue cycling then creep crack growth rates provide a lower bound. The role of intergranular oxygen corrosion in very low frequency crack growth tests is also briefly discussed. (author)

  10. Creep fatigue design of FBR components

    International Nuclear Information System (INIS)

    Bhoje, S.B.; Chellapandi, P.

    1997-01-01

    This paper deals with the characteristic features of Fast Breeder Reactor (FBR) with reference to creep fatigue, current creep fatigue design approach in compliance with RCCMR (1987) design code, material data, effects of weldments and neutron irradiation, material constitutive models employed, structural analysis and further R and D required for achieving maturity in creep fatigue design of FBR components. For the analysis reported in this paper, material constitutive models developed based on ORNIb (Oak Ridge National Laboratory) and Chaboche viscoplastic theories are employed to demonstrate the potential of FBR components for higher plant temperatures and/or longer life. The results are presented for the studies carried out towards life prediction of Prototype Fast Breeder Reactor (PFBR) components. (author). 24 refs, 8 figs, 5 tabs

  11. Development of nondestructive evaluation of creep-fatigue damage in SUS316 stainless steel

    International Nuclear Information System (INIS)

    Shoji, Tetsuo; Kawahara, Tetsuji; Awano, Masakazu; Sato, Yasumoto

    1999-01-01

    Creep-fatigue is a fatal failure mode of high temperature structural materials. It is recognized that the law of linear damage, according to which creep-fatigue damage is expressed by the sum of the creep damage and the fatigue damage, is inadequate to evaluate creep-fatigue damage. This is due to the fact that the law of linear damage does not include the effect of interaction between the creep damage and the fatigue damage. Consequently, development of direct measurement of damage accumulation on the sample of interest is required for plant life evaluation. In this study, the induced current focusing potential drop (ICFPD) technique was used to evaluate the depth of small surface cracks in SUS316FR stainless steel which was subjected to creep-fatigue damage. It is shown that the potential drop increased during the micro-crack initiation and propagation. Correspondingly, the ICFPD technique applied to estimate micro-crack depth changes was used to accurately evaluate the residual life of creep-fatigue damaged structural materials. (author)

  12. Creep-fatigue deformation behaviour of OFHC-copper and CuCrZr alloy with different heat treatments and with and without neutron irradiation

    International Nuclear Information System (INIS)

    Singh, B.N.; Johansen, B.S.; Li, M.; Stubbins, J.F.

    2005-08-01

    The creep-fatigue interaction behaviour of a precipitation hardened CuCrZr alloy was investigated at 295 and 573 K. To determine the effect of irradiation a number of fatigue specimens were irradiated at 333 and 573 K to a dose level in the range of 0.2 - 0.3 dpa and were tested at room temperature and 573 K, respectively. The creep-fatigue deformation behaviour of OFHC-copper was also investigated but only in the unirradiated condition and at room temperature. The creep-fatigue interaction was simulated by applying a certain holdtime on both tension and compression sides of the cyclic loading with a frequency of 0.5 Hz. Holdtimes of up to 1000 seconds were used. Creep-fatigue experiments were carried out using strain, load and extension controlled modes of cyclic loading. In addition, a number of 'interrupted' creep-fatigue tests were performed on the prime aged CuCuZr specimens in the strain controlled mode with a strain amplitude of 0.5% and a holdtime of 10 seconds. The lifetimes in terms of the number of cycles to failure were determined at different strain and load amplitudes at each holdtime. Post-deformation microstructures was investigated using a transmission electron microscopy. The main results of these investigations are presented and their implications are briefly discussed in the present report. The central conclusion emerging from the present work is that the application of holdtime generally reduces the number of cycles to failure. The largest reduction was found to be in the case of OFHC-copper. Surprisingly, the magnitude of this reduction is found to be larger at lower levels of strain or stress amplitudes, particularly when the level of the stress amplitude is below the monotonic yield strength of the material. The reduction in the yield strength due to overaging heat treatments causes a substantial decrease in the number of cycles to failure at all holdtimes investigated. The increase in the yield strength due to neutron irradiation at 333 K

  13. Creep-fatigue life property of FBR high-temperature structural materials under tension-torsion loading and life evaluation method

    International Nuclear Information System (INIS)

    Ogata, Takashi; Nitta, Akito

    1994-01-01

    Creep-fatigue damage in high temperature structural components in a FBR progress under multiaxial stress condition depending on their operating conditions and configuration. Therefore, multiaxial stress effects on creep-fatigue damage evolution must be clarified to make precise creep-fatigue damage evaluation of these components. In this study, creep-fatigue tests in FBR high temperature materials such as SUS304, 316FR stainless steels and a modified 9Cr steel were conducted under biaxial stress subjecting tension-compression and torsion loading, in order to examine biaxial stress effects on failure mechanism and life property, and to discuss creep-fatigue life evaluation methods under biaxial stress. Main results obtained in this study are summarized as follows: 1. The main cracks under cyclic torsion loading propagated by shear mode in three materials. But intergranular failure was occurred in SUS304 and 316FR, and transgranular failure was observed in Mod.9Cr steel. 2. Nonlinear damage accumulation model proposed based on uniaxial creep-fatigue test results was extended to apply for creep-fatigue damage evaluation under biaxial stress state by considering the biaxial stress effects on fatigue and creep damage evolution. 3. It was confirmed that creep-fatigue life under biaxial stress could be predicted by the extended evaluation method with higher accuracy than existing methods. (author)

  14. Creep and creep fatigue crack behavior of 1Cr- and 9Cr-steels

    International Nuclear Information System (INIS)

    Maile, K.; Klenk, A.; Schellenberg, G.; Granacher, J.; Tramer, M.

    2000-01-01

    A large database for creep crack initiation and propagation under constant load conditions is available on conventional power plant steels of types 1%Cr and 12%Cr. Modern plants are often used in the medium and peak load regime, thus the dominant loading situation in high temperature components is creep fatigue. For life assessment data about crack initiation and growth under creep fatigue loading are required. These characteristics can not be substituted by pure fatigue or creep crack data. Therefore, a comprehensive test programme was started to investigate the creep fatigue crack behaviour of a 1%CrMoNiV turbine rotor steel (30CrMoNiV 4 11) at 550 C and a new 9%CrMoVNb pipe steel (type P 9 1) at 600 C. DENT-specimen with 15 and 60 mm thickness as well as side grooved CT-specimen with 25 and 50 mm thickness have been tested to determine possible influences of geometry and thus to check the transferability of the data to components. The creep fatigue crack growth results of tests with dwell times between t H = 0,32h and 10 h lie in the scatterbands given by creep crack growth results. Nevertheless a higher crack growth rate under creep fatigue conditions can be stated. An increase in crack growth rate due to creep fatigue is clearly visible. Loading situations with frequencies higher than 1.10 -4 Hz should be not assessed with pure creep crack results or sufficient safety margins have to be applied. (orig.)

  15. The creep-fatigue crack growth behaviour of a 1CrMoV rotor steel

    International Nuclear Information System (INIS)

    Priest, R.H.; Miller, D.A.; Gladwin, D.N.; Maguire, J.

    1989-01-01

    Crack growth rates under simultaneous creep-fatigue conditions have been quantified for a 1CrMoV rotor steel. Measured growth rates were partitioned into cyclic and hold period contributions and these characterized by the relevant fracture mechanics parameters K and C. Cyclic growth rates measured in the creep-fatigue tests were enhanced compared with pure fatigue rates. This observation is compared with the behaviour of other steels and explained by quantitative metallography. The resulting crack growth equation can be used during integrity assessments for plant components containing cracks which are subject to thermal fatigue

  16. A knowledge based system for creep-fatigue assessment

    International Nuclear Information System (INIS)

    Holdsworth, S.R.

    1999-01-01

    A knowledge based system was developed in the BRITE-EURAM C-FAT project to store the material property information necessary to perform complex creep-fatigue assessments and to thereby improve the effectiveness of data retrieval for such purposes. The C-FAT KBS incorporates a multi-level database which is structured to contain not only 'reduced' deformation and fracture test data, but also to enable ready access to the derived parameter constants for the constitutive and model equations used in a range of assessment procedures. The data management scheme is reviewed. The C-FAT KBS also has a dynamic worked example module which allows the sensitivity of predicted lifetimes to material property input data to be evaluated by a number of procedures. Complex cycle creep-fatigue endurance predictions are particularly sensitive to the creep property data used in assessment, and this is demonstrated with reference to the results of a number of large single edge notched bend specimen feature tests performed on a 1CrMoV turbine casting steel at 550 C. (orig.)

  17. Creep-fatigue damage under multiaxial conditions

    International Nuclear Information System (INIS)

    Lobitz, D.W.; Nickell, R.E.

    1977-02-01

    ASME Code rules for design against creep-fatigue damage for Class 1 nuclear components operating at elevated temperatures are currently being studied by ASME working groups and task forces with a view toward major modification. In addition, the design rules being developed for Class 2 and Class 3 components would be affected by any major modifications of Class 1 Rules. The report represents an attempt to evaluate the differences between two competing procedures--linear damage summation and strainrange partitioning--for multiaxial stress conditions. A modified version of strainrange partitioning is also developed to alleviate some limitations on nonproportional loading

  18. Progress Report on Long Hold Time Creep Fatigue of Alloy 617 at 850°C

    International Nuclear Information System (INIS)

    Carroll, Laura Jill

    2015-01-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests that include long hold times up to 240 minutes at maximum tensile strain were conducted at 850°C. In terms of the total number of cycles to failure, the fatigue resistance decreased when a hold time was added at peak tensile strain. Increases in the tensile hold duration degraded the creep-fatigue resistance, at least to the investigated strain controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutes at the 1.0% strain range. The creep-fatigue deformation mode is considered relative to the lack of saturation, or continually decreasing number of cycles to failure with increasing hold times. Additionally, preliminary values from the 850°C creep-fatigue data are calculated for the creep-fatigue damage diagram and have higher values of creep damage than those from tests at 950°C.

  19. Update and Improve Subsection NH - Alternative Simplified Creep-Fatigue Design Methods

    International Nuclear Information System (INIS)

    Asayama, Tai

    2009-01-01

    This report described the results of investigation on Task 10 of DOE/ASME Materials NGNP/Generation IV Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 10 is to Update and Improve Subsection NH -- Alternative Simplified Creep-Fatigue Design Methods. Five newly proposed promising creep-fatigue evaluation methods were investigated. Those are (1) modified ductility exhaustion method, (2) strain range separation method, (3) approach for pressure vessel application, (4) hybrid method of time fraction and ductility exhaustion, and (5) simplified model test approach. The outlines of those methods are presented first, and predictability of experimental results of these methods is demonstrated using the creep-fatigue data collected in previous Tasks 3 and 5. All the methods (except the simplified model test approach which is not ready for application) predicted experimental results fairly accurately. On the other hand, predicted creep-fatigue life in long-term regions showed considerable differences among the methodologies. These differences come from the concepts each method is based on. All the new methods investigated in this report have advantages over the currently employed time fraction rule and offer technical insights that should be thought much of in the improvement of creep-fatigue evaluation procedures. The main points of the modified ductility exhaustion method, the strain range separation method, the approach for pressure vessel application and the hybrid method can be reflected in the improvement of the current time fraction rule. The simplified mode test approach would offer a whole new advantage including robustness and simplicity which are definitely attractive but this approach is yet to be validated for implementation at this point. Therefore, this report recommends the following two steps as a course of improvement of NH based on newly proposed creep-fatigue evaluation

  20. Creep-fatigue behavior of 2 1/4Cr-1Mo steel at 5500C in air and vacuum

    International Nuclear Information System (INIS)

    Asayama, T.; Cheng, S.Z.; Asada, Y.; Mitsuhashi, S.; Tachibana, Y.

    1987-01-01

    Following studies on creep-fatigue behaviors of 304 steel at 650 0 C (Asada et al (1980) and Morishita et al (1984), (1985), (1987)), 2 1/4Cr-1Mo steel was studied on its creep-fatigue behaviors at 550 0 C in air and vacuum of 100 and 0.1 μPa. The present study intends to give a base for an evaluation of the environmental effect through obtaining a pure creep-fatigue behavior of this steel which is free from the environmental effect. In the previous studies on 304 steel, tests were conducted in three kinds of environment of air, 100 and 0.1 μPa vacuum. It seemed to be plausible that the 0.1 μPa vacuum shows the pure creep-fatigue behavior of 304 steel at 650 0 C which is almost completely free from the environment. A creep-fatigue life in 0.1 μPa vacuum is almost one order of magnitude higher than that in air. The 100 μPa vacuum suggested that the environmental effect of air still remains but is so small that a creep-fatigue life in 100 μPa is same to that in 0.1 μPa in some strain wave forms. The present study intends to examine if similar observations are obtained with 2 1/4Cr-1Mo steel at 550 0 C. This paper describes the analysis of the overstress and damages, in addition to a creep-fatigue result. (orig.GL)

  1. A metallographic examination of structural degradation during creep-fatigue

    International Nuclear Information System (INIS)

    Hales, R.

    1979-07-01

    A series of specimens of T316 stainless steel, which had been tested under creep-fatigue conditions, has been examined by optical and scanning electron microscopy. The development of cavities which are associated with grain-boundary carbide precipitates has been recorded. These cavities increase in size and number with increasing hold time at peak tensile strain and cause the propagating fatigue crack to follow an intergranular path. At a strain range of +- 0.25% the dominant damage mechanism is due to creep damage when the tensile hold time is greater than one minute. The fatigue crack which causes final failure is nucleated at a stress raiser and it is possible that in a smooth specimen failure may occur without the nucleation of a fatigue crack at all but rather by ductile shearing. (author)

  2. Image-based creep-fatigue damage mechanism investigation of Alloy 617 at 950 °C

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Fraaz; Dahire, Sonam; Liu, Yongming, E-mail: yongming.liu@asu.edu

    2017-01-02

    Alloy 617 is a primary candidate material to be used in the next generation of nuclear power plants. Structural materials for these plants are expected to undergo creep and fatigue at temperatures as high as 950 °C. This study uses a hybrid-control creep-fatigue loading profile, as opposed to the traditional strain-controlled loading, to generate creep dominated failure. Qualitative and quantitative image analysis through SEM, EDS, and EBSD, is used to show that hybrid control testing is capable of producing creep dominated failure and that time fraction approach is not a valid indicator of creep or fatigue dominated damage. The focus of image analysis is on surface fatigue cracks and internal creep voids. A creep-fatigue damage interaction diagram based on these micro-scale features is plotted. It is shown that the classical time fraction approach suggested by the ASME code does not agree with the experimental findings and has a poor correlation with observed microscale damage features. A new definition of creep damage fraction based on an effective hold time is found to correlate well with the micro-scale image analysis.

  3. Further evaluation of creep-fatigue life prediction methods for low-carbon nitrogen-added 316 stainless steel

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1999-01-01

    Low-carbon, medium-nitrogen 316 stainless steel is a principal candidate for a main structural material of a demonstration fast breeder reactor plant in Japan. A number of long-term creep tests and creep-fatigue tests have been conducted for four products of this steel. Two representative creep-fatigue life prediction methods, i.e., time fraction rule and ductility exhaustion method were applied. Total stress relaxation behavior was simulated well by an addition of a viscous strain term to the conventional (primary plus secondary) creep strain, but only the letter was assumed to contribute to creep damage in the ductility exhaustion method. The present ductility exhaustion approach was found to have very good accuracy in creep-fatigue life prediction for all materials tested, while the time fraction rule tended to overpredict failure life as large as a factor of 30. Discussion was made on the reason for this notable difference

  4. Final report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 2

    International Nuclear Information System (INIS)

    Singh, B.N.; Johansen, B.S.; Taehtinen, S.; Moilanen, P.; Saarela, S.; Jacquet, P.; Dekeyser, J.; Stubbins, J.F.

    2008-01-01

    The main objective of the present work was to determine experimentally the mechanical response and resulting microstructural changes in CuCrZr (HT1) alloy exposed concurrently to flux of neutrons and creep-fatigue cyclic loading directly in a fission reactor. Using specially designed test facilities for this purpose, in-reactor creep-fatigue tests have been performed at strain amplitudes of 0.25 and 0.35 % with a holdtime of 10s in the BR-2 reactor at Mol (Belgium). These tests were performed at the ambient temperatures of 326K and 323K. For comparison purposes corresponding out-of-reactor creep-fatigue tests were also carried out. In the following we first describe the details of the creep-fatigue experiments. We then present the main results on the mechanical response of the material in the form of hysteresis loops and the maximum stress amplitude as a function of the number of creep-fatigue cycles during the out-of-reactor and the in-reactor tests carried out at different strain amplitudes. Finally, the dependence of the number of cycles to failure (i.e. creep-fatigue lifetime) on the strain amplitudes is shown. The details of microstructure of the specimens tested out-of-reactor as well as in the reactor were investigated using transmission electron microscopy. The main results on the mechanical response as well as changes in the microstructure are briefly discussed. The main conclusion emerging from the present work is that the lifetime of the in-reactor tested specimens is by a factor of about two longer than in the case of corresponding out-of-reactor tests. (au)

  5. Collection of creep fatigue laws and their comparison with experimental data

    International Nuclear Information System (INIS)

    Rieunier, J.B.; Dufresne, J.

    1982-07-01

    A systematic investigation has been undertaken to collect the main model describing phenomena of creep-fatigue interaction. A total of 13 models was collected. Simultaneously, 660 experimental data on 304 stainless steel were collected and compared to the results obtained from theoretical models. Conclusion are that none of these models describes correctly all phenomena considered (imposed strain or stress - hold time - two strain levels etc...) but each of those phenomena is well represented by some laws

  6. A study on the notch effect on the low cycle fatigue of metals in creep-fatigue interacting conditions at elevated temperature

    International Nuclear Information System (INIS)

    Sakane, M.; Oknami, M.

    1983-01-01

    Frequency and hold-time effects on fatigue lives of cylindrical notched specimens of SUS 316 stainless steel were studied at 600 0 C in air. From the tests, the following conclusions were obtained: Neuber's rule, as used in the ASME N-47 Code, predicts very conservatively the life of notched specimens in tests without a hold-time. But it gives a nonconservative estimate for the reduction in the life of the material by the introduction of a hold-time. An empirical formula of a ''frequency-elastic stress concentration factor modified equation'' was obtained by analysing the experimental data. It predicts accurately the life of the notched specimen tested at different frequencies

  7. Influences of cyclic deformation on creep property and creep-fatigue life prediction considering them

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    2009-01-01

    Evaluation of creep-fatigue is essential in design and life management of high-temperature components in power generation plants. Cyclic deformation may alter creep property of the materials and its consideration may improve predictability of creep-fatigue failure life. To understand them, creep tests were conducted for the materials subjected to cyclic loading and their creep rupture and deformation behaviors were compared with those of as-received materials. Both 316FR and modified 9Cr-1Mo steel were tested. (1) Creep rupture time and elongation generally tend to decrease with cyclic loading in both materials, and especially elongation of 316FR drastically decreases by being cyclically deformed. (2) Amount of primary creep deformation decreases by cyclic loading and the ways to improve its predictability were developed. (3) Use of creep rupture ductility after cyclic deformation, instead of that of as-received material, brought about clear improvement of life prediction in a modified ductility exhaustion approach. (author)

  8. Fatigue and creep-fatigue in sodium of 316 1 stainless steel

    International Nuclear Information System (INIS)

    Ardellier, A.

    1982-01-01

    Equipment and results obtained on type 316 L stainless stee1 at 450 0 C and 600 0 C with low-cycle fatique and creep fatigue tests are described. Comparison with runs in air on type 316 L stainless steel shows a better low-cycle fatigue behavior in a sodium environment. This beneficial effect can be attributed to the low oxygen content which limits the surface oxidazation

  9. Creep-fatigue evaluation method for modified 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Wada, Y.; Aoto, K.

    1997-01-01

    As creep-fatigue evaluation methods on normalized and tempered Modified 9Cr-1Mo steel for design use, the time fraction rule and the simplified conventional ductility exhaustion rule are investigated for the prediction of tension strain hold creep-fatigue damage of this material. For the above investigation, stress relaxation behaviour during strain hold has to be analyzed using stress-strain-time relation. The initial value of stress relaxation was determined by cyclic stress-strain curves in continuous cycling fatigue tests. Cyclic stress-strain behaviour of Mod.9Cr-1Mo(NT) steel is different from that of austenitic stainless steels, so this effect was considered. Stress relaxation analysis was performed using static creep strain-time relation and conventional hardening rule. The time fraction by using the above stress relaxation analysis results can give good prediction for creep-fatigue life of Mod.9Cr-1Mo(NT) steel. For design use it is practical to be able to estimate creep damages conservatively by both strain behaviour of cyclic plastic (in continuous cycling fatigue tests) and monotonic creep (in standard creep tests). The life reduction by strain hold at the minimum peak of compressive stress in creep-fatigue tests was examined, and this effects can be evaluated by the relationship between the location of oxidation and the effective deformation at crack tip. In an accelerated oxidation environment, for example in high temperature and high pressure steam, a different approach for life reduction should be developed based on the mechanism of growth of oxide and crack growth with oxidation. However, in the creep damage dominant region, its effect is saturated and the effect of cavity growth along grain boundary becomes dominant for long-term strain hold in the high temperature conditions. (author). 6 refs, 6 figs

  10. Influenced prior loading on the creep fatigue damage accumulation of heat resistant steels

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1990-01-01

    On two heat resistant power plant steels the influence of prior strain cycling on the creep rupture behaviour and the influence of prior creep loading on the strain cycling behaviour is investigated. These influences concern the number of cycles to failure and the rupture time being the reference values of the generalized damage accumulation rule and they are used for a creep fatigue analysis of the results of long term service-type strain cycling tests. (orig.) [de

  11. Creep-Fatigue Behavior of Alloy 617 at 850 and 950°C, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests including hold times up to 9000 s at maximum tensile strain were conducted at 850 and 950 degrees C. At both temperatures, the fatigue resistance decreased when a hold time was added at peak tensile strain. The magnitude of this effect depended on the specific mechanisms and whether they resulted in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatigue for a particular temperature and strain range combination. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance at 950 degrees C but did continue to degrade the lifetimes at 850 degrees C.

  12. Study on creep-fatigue life of irradiated austenitic stainless steel

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Miwa, Yukio; Tsuji, Hirokazu; Yonekawa, Minoru; Takada, Fumiki; Hoshiya, Taiji

    2001-01-01

    The low cycle creep-fatigue test with tensile strain hold of the austenitic stainless steel irradiated to 2 dpa was carried out at 823K in vacuum. The applicability of creep-fatigue life prediction methods to the irradiated specimen was examined. The fatigue life on the irradiated specimen without tensile strain hold time was reduced by a factor of 2-5 in comparison with the unirradiated specimen. The decline in fatigue life of the irradiated specimen with tensile strain hold was almost equal to that of the unirradiated specimen. The creep damage of both unirradiated and irradiated specimens was underestimated by the time fraction rule or the ductility exhaustion rule. The creep damage calculated by the time fraction rule or the ductility exhaustion rule increased by the irradiation. The predictions derived from the linear damage rule are unsafe as compared with the experimental fatigue lives. (author)

  13. Final report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 2

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Johansen, Bjørn Sejr; Tähtinen, S.

    facilities for this purpose, in-reactor creep-fatigue tests have been performed at strain amplitudes of 0.25 and 0.35 % with a holdtime of 10s in the BR-2 reactor at Mol (Belgium). These tests were performed at the ambient temperatures of 326K and 323K. For comparison purposes corresponding out...

  14. Influence of dynamic sodium environment on the creep-fatigue behaviour of Modified 9Cr-1Mo ferritic-martensitic steel

    International Nuclear Information System (INIS)

    Kannan, R.; Ganesan, V.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Mathew, M.D.; Bhanu Sankara Rao, K.

    2011-01-01

    Highlights: → The effects of dynamic sodium on the CFI behaviour of Mod. 9Cr-1Mo steel has investigated. → The cyclic stress response of Mod. 9Cr-1Mo steel under flowing sodium environment is similar to that of air environment. → The creep-fatigue endurance of the alloy is found to decrease with introduction of hold time and with increase in the duration of hold time and the factor of life increase in sodium compared to air environment is reduced with increase in hold time. → In contrast to air environment, tensile holds were found to be more damaging than compression hold in sodium environment. → Design rules based on air environment can be safely applied for the components operating in sodium environment. - Abstract: The use of liquid sodium as a heat transfer medium for sodium-cooled fast reactors (SFRs) necessitates a clear understanding of the effects of dynamic sodium on low cycle fatigue (LCF), creep and creep-fatigue interaction (CFI) behaviour of reactor structural materials. Mod. 9Cr-1Mo ferritic steel is the material of current interest for the steam generator components of sodium cooled fast reactors. The steam generator has a design life of 30-40 years. The effects of dynamic sodium on the LCF and CFI behaviour of Mod. 9Cr-1Mo steel have been investigated at 823 and 873 K. The CFI life of the steel showed marginal increase under flowing sodium environment when compared to air environment. Hence, the design rules for creep-fatigue interaction based on air tests can be safely applied for components operating in sodium environment. This paper attempts to explain the observed LCF and CFI results based on the detailed metallography and fractography conducted on the failed samples.

  15. Creep fatigue of low-cobalt superalloys: Waspalloy, PM U 700 and wrought U 700

    Science.gov (United States)

    Leis, B. N.; Rungta, R.; Hopper, A. T.

    1983-01-01

    The influence of cobalt content on the high temperature creep fatigue crack initiation resistance of three primary alloys was evaluated. These were Waspalloy, Powder U 700, and Cast U 700, with cobalt contents ranging from 0 up to 17 percent. Waspalloy was studied at 538 C whereas the U 700 was studied at 760 C. Constraints of the program required investigation at a single strain range using diametral strain control. The approach was phenomenological, using standard low cycle fatigue tests involving continuous cycling tension hold cycling, compression hold cycling, and symmetric hold cycling. Cycling in the absence of or between holds was done at 0.5 Hz, whereas holds when introduced lasted 1 minute. The plan was to allocate two specimens to the continuous cycling, and one specimen to each of the hold time conditions. Data was taken to document the nature of the cracking process, the deformation response, and the resistance to cyclic loading to the formation of small cracks and to specimen separation. The influence of cobalt content on creep fatigue resistance was not judged to be very significant based on the results generated. Specific conclusions were that the hold time history dependence of the resistance is as significant as the influence of cobalt content and increased cobalt content does not produce increased creep fatigue resistance on a one to one basis.

  16. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Yamauchi, Masafumi; Nomura, Shinichi.

    1992-01-01

    Prediction methods of macroscopic and local stress-strain behaviors of perforated plates in plastic and creep regime are proposed in this paper, and are applied to the creep-fatigue life prediction of perforated plates. Both equivalent-solid-plate properties corresponding to the macroscopic behavior and the stress-strain concentration around a hole were obtained by assuming the analogy between plasticity and creep and also by extending the authors' proposal in creep condition. The perforated plates which were made of Hastelloy XR were subjected to the strain-controlled cyclic test at 950degC in air in order to experimentally obtain the macroscopic behavior such as the cyclic stress-strain curve and creep-fatigue life around a hole. The results obtained are summarized as follows. (1) The macroscopic behavior of perforated plates including cyclic stress-strain behavior and relaxation is predictable by using the proposed method in this paper. (2) The creep-fatigue life around a hole can be predicted by using the proposed method for stress-strain concentration around a hole. (author)

  17. Creep-fatigue damage in austenitic stainless steels

    International Nuclear Information System (INIS)

    Rezgui, Brahim.

    1980-06-01

    This is a study of hold time effects on the low cycle fatigue (L.C.F.) properties of 316L austenitic stainless steel at 600 0 C in air. Results obtained for different plastic strain levels indicate that a tension hold time at peak strain lead to a reduction in fatigue life. The importance of this effect depend on the length of hold period, and also on the strain amplitude. No saturation had been observed. Metallographic and microstructural analysis of failed specimens indicates mechanisms by which failure is produced. For continuous cycling the fractures occurs by the initiation and the propagation of a trans-granular crack. Creep damage in the bulk of material is formed during periods of tensile stress relaxation; it causes a change in the failure mode which became intergranular. It is the interaction between this creep-damage and fatigue cracks which is partly responsable for the reduction in the fatigue life. Predictions based upon linear cumulative damage method indicate that virgin material properties may be irrelevant in creep-fatigue interactions [fr

  18. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    International Nuclear Information System (INIS)

    Lissenden, Cliff; Hassan, Tasnin; Rangari, Vijaya

    2014-01-01

    The research built upon a prior investigation to develop a unified constitutive model for design-@by-@analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-@fatigue and creep-@ratcheting tests were conducted on the nickel base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-@controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-@fatigue and creep-@ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-@fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-@ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched application of the

  19. Prediction of creep-fatigue life by use of creep rupture ductility

    International Nuclear Information System (INIS)

    Yamaguchi, Koji; Suzuki, Naoyuki; Ijima, Kiyoshi; Kanazawa, Kenji

    1985-01-01

    It was clarified that tension strain hold reduced creep-fatigue life of many engineering materials in different degrees depending on material, temperature and test duration. However the reduction in the life due to holding for various durations could be correlated to the fraction of intergranular facets on fracture surfaces which was considered to be an index of the damage introduced during strain hold. This fraction of intergranular facets by creep-fatigue failure exhibited a direct relation to the creep rupture ductility of the material tested at the same temperature and for the same creep-fatigue life-time. From these results an empirical equation has been derived as follow; (Δ sub(epsilonsub(i)))/Dsub(c).(N sub(h sup(α))) = C, where Δ sub(epsilonsub(i)) is inelastic strain range, Dsub(c) is the creep rupture ductility for the same duration as creep-fatigue life time, Nsub(h) is the creep-fatigue life under tension strain hold conditions, and α and C are constants depending on the material and testing temperature. From the equation the life prediction is possible for a given inelastic strain range Δ sub(epsilonsub(i)) if the constants α and C, and Dsub(c) are known. The value of α was found to be 0.62 and 0.74 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.69 for 1 1/4Cr-1/2Mo steel at 600 0 C. The value of C was found to be 0.50 and 0.59 for various austenitic stainless steels and NCF800 at 600 0 C and 700 0 C, respectively, and 0.49 for 1 1/4Cr-1/2Mo steel at 600 0 C. The creep rupture ductility Dsub(c) is available in the NRIM Creep Data Sheets up to 10 5 h for multi-heats of many kinds of heat resistant alloys. (author)

  20. Life prediction methods for the combined creep-fatigue endurance

    International Nuclear Information System (INIS)

    Wareing, J.; Lloyd, G.J.

    1980-09-01

    The basis and current status of development of the various approaches to the prediction of the combined creep-fatigue endurance are reviewed. It is concluded that an inadequate materials data base makes it difficult to draw sensible conclusions about the prediction capabilities of each of the available methods. Correlation with data for stainless steel 304 and 316 is presented. (U.K.)

  1. One-stage or multi-stage creep fatigue behaviour of heat-resistant steels

    International Nuclear Information System (INIS)

    Kloos, K.H.; Granacher, J.; Scholz, A.

    1994-01-01

    For one stage realistic long term alternating strain tests on two forged steels with the duration of tests up to an order of magnitude of 45,000 hours, the generalised damage accumulation rule, using an optimised evaluation process dealing with pre-stress effects leads to a relative creep fatigue service life of one. A replacement description by the modified service life share rule is indicated for the long term area. First results from realistic three step tests are classified in the scatter band of single stage stress, where there are only slight differences from different cycle counting processes. (orig.) [de

  2. The Effect of Hold Time on Creep-Fatigue in 9Cr-1Mo

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Tae Young; Kim, Dae Whan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Baek, Kyoung Ho [Chungnam National University, Daejeon (Korea, Republic of)

    2009-05-15

    9Cr-1Mo steel is a candidate material for reactor vessel for VHTR. Because 9Cr-1Mo steel has a good mechanical properties and a lower thermal expansion coefficient than austenitic stainless steel. The reactor vessel of VHTR is operated at about 450 .deg. C. At this temperature, fatigue occurs during start-up and cool-down, and creep occurs during normal operation. Creep-fatigue damage by the interaction between fatigue and creep is an important factor that limits VHTR reactor vessel life. In this study, Effect of hold time on low cycle fatigue behavior of 9Cr-1Mo at 600 .deg. C was investigated in air.

  3. The Effect of Hold Time on Creep-Fatigue in 9Cr-1Mo

    International Nuclear Information System (INIS)

    Oh, Tae Young; Kim, Dae Whan; Kim, Yong Wan; Baek, Kyoung Ho

    2009-01-01

    9Cr-1Mo steel is a candidate material for reactor vessel for VHTR. Because 9Cr-1Mo steel has a good mechanical properties and a lower thermal expansion coefficient than austenitic stainless steel. The reactor vessel of VHTR is operated at about 450 .deg. C. At this temperature, fatigue occurs during start-up and cool-down, and creep occurs during normal operation. Creep-fatigue damage by the interaction between fatigue and creep is an important factor that limits VHTR reactor vessel life. In this study, Effect of hold time on low cycle fatigue behavior of 9Cr-1Mo at 600 .deg. C was investigated in air

  4. Improved methods for prediction of creep-fatigue in next generation conventional and nuclear plant

    International Nuclear Information System (INIS)

    Payten, Warwick

    2012-01-01

    Materials technology poses a major challenge in the design and construction of next generation super critical/ultra super critical power plant (SC/USC) and Generation IV (GenIV) nuclear plant. New plant is expected to have in the order of a 60 year life-time, imposing complex design difficulties in areas of creep rupture and creep fatigue damage. For SC/USC plant, the main goal is the enhancement of performance by raising the steam pressure and temperatures. In order to achieve these goals materials with acceptable creep rupture strength at design temperatures and pressures must be used. In GenIV designs, the issue is more complex, with both low and high tempera-ture designs. A key requirement in the majority of the designs, however, will be acceptable resistance to creep rupture, fatigue cracking, creep fatigue interactions, with the additional effects of void swelling and irradiation creep. The accumulation of creep fatigue damage over time in both SC/USC and GenIV plant will be one of the principal damage mechanisms. This will eventually lead to crack initiation in critical high temperature equipment. Hence, improved knowledge of creep and fatigue interactions is a necessary development as components in power-generating plants move to operate at high temperature under cyclic conditions. The key to safe, reliable operation of these high-energy plants will depend on understanding the factors that affect damage initiation and propagation, as well as developing and validating technologies to predict the accumulation of damage in systems and components.

  5. Creep-fatigue life assessment of cruciform weldments using the linear matching method

    International Nuclear Information System (INIS)

    Gorash, Yevgen; Chen, Haofeng

    2013-01-01

    This paper presents a creep-fatigue life assessment of a cruciform weldment made of the steel AISI type 316N(L) and subjected to reversed bending and cyclic dwells at 550 °C using the Linear Matching Method (LMM) and considering different weld zones. The design limits are estimated by the shakedown analysis using the LMM and elastic-perfectly-plastic material model. The creep-fatigue analysis is implemented using the following material models: 1) Ramberg–Osgood model for plastic strains under saturated cyclic conditions; 2) power-law model in “time hardening” form for creep strains during primary creep stage. The number of cycles to failure N ⋆ under creep-fatigue interaction is defined by: a) relation for cycles to fatigue failure N ∗ dependent on numerical total strain range Δε tot for the fatigue damage ω f ; b) long-term strength relation for the time to creep rupture t ∗ dependent on numerical average stress σ ¯ during dwell Δt for the creep damage ω cr ; c) non-linear creep-fatigue interaction diagram for the total damage. Numerically estimated N ⋆ for different Δt and Δε tot shows good quantitative agreement with experiments. A parametric study of different dwell times Δt is used to formulate the functions for N ⋆ and residual life L ⋆ dependent on Δt and normalised bending moment M -tilde , and the corresponding contour plot intended for design applications is created. -- Highlights: ► Ramberg–Osgood model is used for plastic strains under saturated cyclic conditions. ► Power-law model in time-hardening form is used for creep strains during dwells. ► Life assessment procedure is based on time fraction rule to evaluate creep damage. ► Function for cycles to failure is dependent on dwell period and normalised moment. ► Function for FSRF dependent on dwell period takes into account the effect of creep

  6. Mechanical behavior of 9Cr-1Mo-1V steel due to creep fatigue deformation

    International Nuclear Information System (INIS)

    Kim, Sang Tae; Kim, Jae Kyoung; Lee, Hak Sun; Oh, Sang Hyun; Kwun, Sook In; Kim, Chung Seok

    2005-01-01

    Creep-fatigue tests with trapezoid load wave were performed on a 9Cr-1Mo-1V steel at high temperature(550 .deg. C). Trapezoid load wave is considering about hold time for creep effects. we could find out some information in the relationship between number of cycles to failure and hold time. The number of cycles to failure depended on hold time. The cyclic behavior of 9Cr-1Mo-1V steel was characterized by cyclic softening with increasing number of cycles in high temperature. Also we could observe some cavity in the specimens. The size of cavity was different from each hold time

  7. Elastic creep-fatigue evaluation for ASME code

    International Nuclear Information System (INIS)

    Severud, L.K.; Winkel, B.V.

    1987-01-01

    Experience with applying the ASME Code Case N-47 rules for evaluation of creep-fatigue with elastic analysis results has been problematic. The new elastic evaluation methods are intended to bound the stress level and strain range values needed for use in employing the code inelastic analysis creep-fatigue damage counting procedures. To account for elastic followup effects, ad hoc rules for stress classification, shakedown, and ratcheting are employed. Because elastic followup, inelastic strain concentration, and stress-time effects are accounted for, the design fatigue curves in Case N-47 for inelastic analysis are used instead of the more conservative elastic analysis curves. Creep damage assessments are made using an envelope stress-time history that treats multiple load events and repeated cycles during elevated temperature service life. (orig./GL)

  8. A cycle combining method for creep fatigue analysis

    International Nuclear Information System (INIS)

    Debaene, J.P.; Permezel, P.

    1987-01-01

    In codes such as RCC-Mr (2) or code case N 47, rules are written against the creep fatigue damage. During the design phase, the order of succession of transients is not known. In that case, the codes require to take the order of events which leads to the maximum damage, but they don't give the detailed rules to perform it. The method we present here consists in building the totality of possible loading histories. For each loading history we calculate the creep fatigue damage V+W. The choice of the most severe loading history is done a posteriori. In practice, we are lead to uncouple the calculation of V and W. We proceed as follows: 1. Build all the loading histories able to masimize V. 2. For each of these loading histories, maximize W. 3. Choose a posteriori the most damaging loading history. (orig./GL)

  9. Fatigue and creep-fatigue deformation of an ultra-fine precipitate strengthened advanced austenitic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, M.C., E-mail: Mark.Carroll@INL.gov [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States); Carroll, L.J. [Idaho National Laboratory, 1955 Fremont, PO Box 1625, Idaho Falls, ID 83415-2218 (United States)

    2012-10-30

    An advanced austenitic alloy, HT-UPS (high-temperature ultrafine-precipitation-strengthened), has been identified as an ideal candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS alloys demonstrate improved creep resistance relative to 316 stainless steel (SS) through additions of Ti and Nb, which precipitate to form a widespread dispersion of stable nanoscale metallic carbide (MC) particles in the austenitic matrix. To investigate the behavior in more representative conditions than are offered by uniaxial creep tests, the low-cycle continuous fatigue and combined creep-fatigue response of an HT-UPS alloy have been investigated at 650 Degree-Sign C and 1.0% total strain, with an R-ratio of -1 and hold times at peak tensile strain of up to 150 min. The cyclic deformation response of HT-UPS is directly compared to that of standard 316 SS. The measured values for total cycles to failure between the two alloys are similar, despite differences in peak stress profiles and in qualitative observations of the deformed microstructures. Crack propagation is primarily transgranular in both fatigue and creep-fatigue of each alloy at the investigated conditions. Internal grain boundary damage in the form of fine cracks resulting from the tensile hold is present following the application of hold times of 60 min and longer, and considerably more internal cracks are quantifiable in 316 SS than in HT-UPS. The dislocation substructures observed in the deformed material differ substantially; an equiaxed cellular structure is observed in the microstructure of 316 SS, whereas HT-UPS exhibits widespread and relatively homogenous tangles of dislocations pinned by the nanoscale MC precipitates. The significant effect of the fine distribution of precipitates on observed fatigue and creep-fatigue response is described in three distinct behavioral regions as the microstructure evolves with continued cycling.

  10. Novel experiments to characterise creep-fatigue degradation in VHTR alloys

    International Nuclear Information System (INIS)

    Simpson, J.A.; Wright, J.K.; Wright, R.N.

    2015-01-01

    It is well known in energy systems that the creep lifetime of high temperature alloys is significantly degraded when a cyclic load is superimposed on components operating in the creep regime. A test method has been developed in an attempt to characterise creep-fatigue behaviour of alloys at high temperature. The test imposes a hold time during the tensile phase of a fully reversed strain-controlled low cycle fatigue test. Stress relaxation occurs during the strain-controlled hold period. This type of fatigue stress relaxation test tends to emphasise the fatigue portion of the total damage and does not necessarily represent the behaviour of a component in-service well. Several different approaches to laboratory testing of creep-fatigue at 950 deg. C have been investigated for Alloy 617, the primary candidate for application in VHTR heat exchangers. The potential for mode switching in a cyclic test from strain control to load control, to allow specimen extension by creep, has been investigated to further emphasise the creep damage. In addition, tests with a lower strain rate during loading have been conducted to examine the influence of creep damage occurring during loading. Very short constant strain hold time tests have also been conducted to examine the influence of the rapid stress relaxation that occurs at the beginning of strain holds. (authors)

  11. Creep-Fatigue Relationsihps in Electroactive Polymer Systems and Predicted Effects in an Actuator Design

    Science.gov (United States)

    Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac

    2009-01-01

    The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.

  12. Elastic creep-fatigue evaluation for ASME [American Society of Mechanical Engineers] code

    International Nuclear Information System (INIS)

    Severud, L.K.; Winkel, B.V.

    1987-02-01

    Reassessment of past ASME N-47 creep-fatigue rules have been under way by committee members. The new proposed elastic creep-fatigue methods are easier to apply than those previously in the code case. They also provide a wider range of practical application while still providing conservative assessments. It is expected that new N-47 code rules for elastic creep-fatigue evaluation will be adopted in the near future

  13. Creep-fatigue damage evaluation for SS-316LN (ORNL PLATES): - RCC-MR vs. ASME SEC III - NH

    International Nuclear Information System (INIS)

    Sati, Bhuwan Chandra; Jalaldeen, S.; Velusamy, K.; Selvaraj, P.

    2016-01-01

    Investigations of high temperature tests done on ORNL plate with deformation control loading, under creep-fatigue damage have been presented. The test results with methodology of RCC-MR and ASME-NH life prediction under creep-fatigue loading have been assessed. The stress relaxation effect in calculating the life using RCC-MR under creep-fatigue damage is found to be significant in presence of secondary stress. RCC-MR: 2007 is more realistic number of cycles (predicts 51 number of cycles) as compared to ASME-NH (predicts 312 number of cycles) which is demonstrated by the experimental work (observed 86 numbers of cycles). Between RCC-MR and experimental work, design code seems to be more conservative for life prediction due to creep-fatigue damage. For fatigue damage, the approaches are same and the difference comes from material properties and the starting stress for applying Neuber's rule. ASME approach has the limitation of stress range magnitude. ASME approach predicts lower elastic plus plastic strain for the cases having S* above the linear stress limit. For creep strain and creep damage evaluation, ASME and RCC-MR have different approaches for calculating the stress at the beginning and during the hold period. The RCC-MR takes account of cyclic hardening or softening effects (hardening in the present case of 316 LN) by means of the cyclic stress-strain curve and the benefit of symmetrization effects which are significant for this material. The ASME code neglects these effects and instead relies on an approach based on the isochronous stress-strain curves. (author)

  14. Creep-fatigue behavior of 2 1/4Cr-1Mo steel at 5500C in air and vacuum

    International Nuclear Information System (INIS)

    Asayama, T.; Cheng, S.Z.; Asada, Y.; Mitsuhashi, S.; Tachibana, Y.

    1987-01-01

    Creep-fatigue tests were conducted with 2 1/4Cr-1Mo steel at 550 0 C under various strain wave forms in air and vacuum of 100 and 0.1 μPa. No indication of environmental effect of air was observed in 0.1 μPa vacuum in which a strain rate effect diminished. However, there observed still a time/rate dependent life reduction in a case of wave forms with a longer tension going time than compression. In addition, there observed an effect of mean stress with this steel. An analysis of stress-strain response showed the response is not affected by the test environment. Internal stresses of back and drag stress were obtained with this steel and an overstress was predicted based on phenomenology. A pure creep-fatigue life reduction was predicted based on a damage model composed of the overstress. The prediction showed a scatter of a factor of two. An effect of air environment was evaluated based on the prediction procedure. The method should be improved to include the effect of mean stress on creep-fatigue behavior of this steel

  15. Cumulative fatigue and creep-fatigue damage at 3500C on recrystallized zircaloy 4

    International Nuclear Information System (INIS)

    Brun, G.; Pelchat, J.; Floze, J.C.; Galimberti, M.

    1985-06-01

    An experimental programme undertaken by C.E.A., E.D.F. and FRAGEMA with the aim of characterizing the fatigue and creep fatigue behaviour of zircaloy-4 following annealing treatments (recrystallized, stress-delived) is in progress. The results given below concern only recrystallized material. Cyclic properties, low-cycle fatigue curves and creep behaviour laws under stresses have been established. Sequential tests of pure fatigue and creep-fatigue were performed. The cumulative life fractions at fracture depend on the sequence of leading, stress history and number of cycles of prestressing. The MINER's rule appears to be conservative with regard to a low-high loading sequence whereas it is not for the reverse high-low loading sequences. Fatigue and creep damage are not interchangeable. Pre-creep improves the fatigue resistance. Pre-fatigue improves the creep strength as long as the beneficial effect of cyclic hardening overcomes the damaging effect of surface cracking. The introduction of a tension hold time into the fatigue cycle slightly increases cyclic hardening and reduces the number of cycles to failure. For hold times of less than one hour, the sum of fatigue and creep life fractions is closed to one

  16. A survey of the French creep-fatigue design rules for LMFBR

    International Nuclear Information System (INIS)

    Tribout, J.; Cordier, G.; Moulin, D.

    1987-01-01

    The paper provides a survey of the creep-fatigue design rules for the LMFBR in France. These rules are the ones currently implemented in French component manufacturing. The background of each item is discussed and the trends for improvements currently investigated are described. The creep-fatigue rules apply to elastic analysis only. (orig.)

  17. Evaluation of creep-fatigue strength of P122 high temperature boiler material

    International Nuclear Information System (INIS)

    Pumwa, John

    2003-01-01

    In components, which operate at high temperatures, changes in conditions at the beginning and end of operation or during operation result in transient temperature gradients. If these transients are repeated, the differential thermal expansion during each transient may result in thermally induced cyclic stresses. The extent of the resulting fatigue damage depends on the nature and frequency of the transient, the thermal gradient in the component, and the material properties. Components, which are subjected to thermally induced stresses generally, operate within the creep range so that damage due to both fatigue and creep has to be taken into account. In order to select the correct materials for these hostile operating environmental conditions, it is vitally important to understand the behaviour of mechanical properties such as creep-fatigue properties of these materials. This paper reports the results of standard creep-fatigue tests conducted using P122 (HCM12A or 12Cr-1.8W-1.5Cu) high temperature boiler material. P122 is one of the latest developed materials for high temperature environments, which has the potential to be successful in such hostile operation environments. The tests were conducted at temperatures ranging from 550degC to 700degC at 50degC intervals with strain ranges of ±1.5 to ±3.0% at 0.5% intervals and a strain rate of 4 x 10 -3 s -1 with an application of 10-minute tensile hold time using a closed-loop hydraulic Instron material testing machine with a servo hydraulic controller. The results confirm that P122 is comparable to conventional high temperature steels. (author)

  18. Fatigue and creep-fatigue strength of 304 steel under biaxial strain conditions

    International Nuclear Information System (INIS)

    Asayama, Tai; Aoto, Kazumi; Wada, Yusaku

    1990-01-01

    A series of fatigue and creep-fatigue tests were conducted with 304 stainless steel at 550degC under a variety of biaxial strain conditions. Fatigue life under nonproportional loading conditions showed a significant life reduction compared with that of proportional loading, and this life reduction was reasonably estimated by taking into account the strain paths along which the strain history is imposed. Furthermore, a marked life reduction was shown to occur under nonproportional loading by imposing a strain hold period at a peak tensile strain. This life reduction was evaluated by the linear damage rule. It was shown to be possible to estimate the fatigue damage and the creep damage under nonproportional loading by a linear damage rule by estimating a stress relaxation behavior by Mises-type equivalent stress or Huddleston-type equivalent stress. (author)

  19. Creep-fatigue rules in the RCC-MR code

    International Nuclear Information System (INIS)

    Drubay, B.

    1988-01-01

    In 1978, CEA, Electricite de France (EDF) and NOVATOME decided to draw up a complete set of design and construction rules for LMFBR components. This RCC-MR code issued in June 1985 and completed in November 1987 was chosen as a sound basis for the next European Fast Reactor (EFR). The purpose of this paper is to describe the present RCC-MR creep-fatigue design rules to be applied with elastic analysis including the modifications adopted in the first addenda. This method is based on a separate evaluation of a fatigue usage fraction V and creep rupture usage fraction W with the common linear summation rule. The fatigue usage fraction is obtained from continuous fatigue curves (without hold times) and from total strain ranges (elastic + plastic + creep). The creep rupture usage fraction W is obtained from stress to rupture curves and a stress σk evaluating the stress generated during the cycle. (author)

  20. Magnetic characterization of creep-fatigue damage for energy structural materials

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Hashidate, Ryuta; Harada, Yoshihisa

    2012-01-01

    Magnetic characterization of creep-fatigue damage for welded specimens of austenitic stainless steel (SUS316FR) and high-chromium steel (Mod.9Cr-1Mo) steel was performed using magnetic force microscope and Hall sensor. In SUS316FR volume fraction of δ-ferrite at weld metal region decreased by creep or creep-fatigue and the remanent magnetic flux density at weld metal region also decreased. In Mod.9Cr-1Mo steel magnetic characteristics at weld metal region were different from those at base metal initially, however, during creep or creep fatigue the difference of magnetic characteristics between welded metal and base metal became small. It was found that the degradation mechanism for these energy structural materials during creep or creep fatigue could be clarified by magnetic characterization techniques. (author)

  1. Final Report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 1

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N. [Risoe National Lab. - DTU, Materials Research Dept., Roskilde (Denmark); Taehtinen, S.; Moilanen, P. [VTT Industrial Systems (Finland); Jacquet, P.; Dekeyser, J. [SCK-CEN, Reactor Technology Design Dept., Mol (Belgium); Edwards, D.J. [Pacific Northwest National Lab., Reactor Technology Design Dept., Richland (United States); Li, M. [Oak Ridge National Lab., Materials Science and Technology Div., Oak Ridge, Tennessee (United States); Stubbins, J.F. [Univ. of Illinois, Dept. of Nuclear, Plasma and Radiological Engineering, Urbane, Illinois (United States)

    2007-08-15

    At present, practically nothing is known about the deformation behaviour of materials subjected simultaneously to external cyclic force and neutron irradiation. The main objective of the present work is to determine experimentally the mechanical response and resulting microstructural changes in CuCrZr(HT1) alloy exposed concurrently to flux of neutrons and creep-fatigue cyclic loading directly in a fission reactor. Special experimental facilities were designed and fabricated for this purpose. A number of in-reactor creep-fatigue experiments were successfully carried out in the BR-2 reactor at Mol (Belgium). In the present report we first describe the experimental facilities and the details of the in-reactor creep-fatigue experiments carried out at 363 and 343K at a strain amplitude of 0.5% with hold-times of 10 and 100s, respectively. For comparison purposes, similar creep-fatigue tests were performed outside of the reactor. (i.e. in the absence of neutron irradiation). During in-reactor tests, the mechanical response was continuously registered throughout the whole test. The results are first presented in the form of hysteresis loops confirming that the nature of deformation during these tests was truly cyclic. The temporal evolution of the stress response in the specimens is presented in the form of the average maximum stress amplitude as a function of the number of cycles as well as a function of displacement dose accumulated during the tests. The results illustrate the nature and magnitude of cyclic hardening as well as softening as a function of the number of cycles and displacement dose. Details of the microstructure were investigated using TEM and STEM techniques. The fracture surface morphology was investigated using SEM technique. Both mechanical and microstructural results are briefly discussed. The main conclusion emerging from the limited amount of present results is that neither the irradiation nor the duration of the hold-time have any significant

  2. Thermal stress and creep fatigue limitations in first wall design

    International Nuclear Information System (INIS)

    Majumdar, S.; Misra, B.; Harkness, S.D.

    1977-01-01

    The thermal-hydraulic performance of a lithium cooled cylindrical first wall module has been analyzed as a function of the incident neutron wall loading. Three criteria were established for the purpose of defining the maximum wall loading allowable for modules constructed of Type 316 stainless steel and a vanadium alloy. Of the three, the maximum structural temperature criterion of 750 0 C for vanadium resulted in the limiting wall loading value of 7 MW/m 2 . The second criterion limited thermal stress levels to the yield strength of the alloy. This led to the lowest wall loading value for the Type 316 stainless steel wall (1.7 MW/m 2 ). The third criterion required that the creep-fatigue characteristics of the module allow a lifetime of 10 MW-yr/m 2 . At wall temperatures of 600 0 C, this lifetime could be achieved in a stainless steel module for wall loadings less than 3.2 MW/m 2 , while the same lifetime could be achieved for much higher wall loadings in a vanadium module

  3. Study on deformation behavior and life evaluation method for SUS304 notched plate under bending creep fatigue loading

    International Nuclear Information System (INIS)

    Fukuda, Yoshio; Satoh, Yoshimi; Nakamura, Kazuhiro; Takahashi, Yukio; Kuwabara, Kazuo.

    1990-01-01

    Creep-fatigue tests were carried out on notched plates under cyclic bending loads out of plane at 550degC, and the local strain at the notch-root and micro crack propagation behavior were measured. Then, inelastic analysis was performed for the experiment by using three kinds of constitutive models, such as kinematic hardening, ORNL and Ohno models. From the comparison of the experiment with the results of analysis, the following conclusions were obtained. (1) Creep strain caused at the notch-root during load holding was negligibly small compared with plastic strain, so that the neighborhood of the notch-root is subjected to constrained strain type damage. (2) The strain range at the notch-root can be calculated from the results of elastic-plastic analysis for monotonic loading independent of the constitutive models used, where the cyclic stress-strain relationship was used as the material monotonic deformation property. (3) The mean strain calculated was consistent with the experimental value in case of kinematic hardening or ORNL model, while not in case of Ohno model. (4) A method for predicting the crack initiation life of a notched plate has been proposed on the basis of micro-crack propagation behavior obtained by a fundamental creep-fatigue test. (author)

  4. Modeling of creep-fatigue interaction of zirconium {alpha} under cyclic loading at 200 C; Modelisation du comportement et de l`endommagement en fatigue-fluage du zirconium {alpha} a 200C

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C.

    1996-04-01

    The present work deals with mechanical behaviour of zirconium alpha at 200 deg. C and crack initiation prediction methods, particularly when loading conditions lead to interaction of fatigue and creep phenomena. A classical approach used to study interaction between cyclic effects and constant loading effects does not give easy understanding of experimental results. Therefore, a new approach has been developed, which allow to determine a number of cycles for crack initiation for complex structures under large loading conditions. To study influence of fatigue and creep interaction on crack initiation, a model was chosen, using a scalar variable, giving representation of the material deterioration state. The model uses a non linear cumulating effect between the damage corresponding to cyclic loads and the damage correlated to time influence. The model belongs to uncoupled approaches between damage and behaviour, which is described here by a two inelastic deformations model. This mechanical behaviour model is chosen because it allows distinction between a plastic and a viscous part in inelastic flow. Cyclic damage is function of stress amplitude and mean stress. For the peculiar sensitivity of the material to creep, a special parameter bas been defined to be critical toward creep damage. It is the kinematic term associated to state variables describing this type of hardening in the viscous mechanism. (author).

  5. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    Science.gov (United States)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  6. French recent developments in support to rules for creep and creep-fatigue analyses

    International Nuclear Information System (INIS)

    Touboul, F.; Moulin, D.

    1997-01-01

    RCC-MR proposes Design rules for creep and creep-fatigue damage evaluation in zones with no geometrical discontinuities. Rules have been developed, based on the σ d concept, in order to consider zones with geometrical discontinuities. Rule for Weld are proposed in the paragraph relative to shell design rules and reduction coefficient due to material properties are given in Appendix A9. For fatigue analysis, last version of RCC-MR (1993) has proposed a reduction factor on fatigue curves (Jf value), derived from preliminary tests performed within European program. Studies have been carried out in order to have a better understanding of the phenomena involved in these fatigue reduction factors. Tests have been performed on large plates, with varying applied displacements, weld geometry, plate thickness, weld direction. It appears that material effect is not the only purpose to be considered but that it is necessary to think about the geometrical effect, linked to the welded zone dimensions, and the elastic follow-up effect between the two materials: base metal and weld metal. As a first approach, simplified calculations have been achieved with precise material characterization. Roche's method and Zarka method's give conservative result in comparison to tests results. (author). 3 refs, 4 tabs

  7. Evaluation procedure of creep-fatigue defect growth in high temperature condition and application

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2003-12-01

    This study proposed the evaluation procedure of creep-fatigue defect growth on the high-temperature cylindrical structure applicable to the KALIMER, which is developed by KAERI. Parameters used in creep defect growth and the evaluation codes with these parameters were analyzed. In UK, the evaluation procedure of defect initiation and growth were proposed with R5/R6 code. In Japan, simple evauation method was proposed by JNC. In France, RCC-MR A16 code which was evaluation procedure of the creep-fatigue defect initiation and growth related to leak before break was developed, and equations related to load conditions were modified lately. As an application example, the creep-fatigue defect growth on circumferential semi-elliptical surface defect in high temperature cylindrical structure was evaluated by RCC-MR A16

  8. Final report on in-reactor creep-fatigue deformation behaviour of a CuCrZr alloy: COFAT 1

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Tähtinen, S.; Moilanen, P.

    CrZr(HT1) alloy exposed concurrently to flux of neutrons and creep-fatigue cyclic loading directly in a fission reactor. Special experimental facilities were designed and fabricated for this purpose. A number of in-reactor creep-fatigue experiments were successfully carried out in the BR-2 reactor at Mol...

  9. A method of creep damage summation based on accumulated strain for the assessment of creep-fatigue endurance

    International Nuclear Information System (INIS)

    Hales, R.

    1983-01-01

    A method of combining long term creep data with relatively short term mechanical behaviour to provide an estimate of creep-fatigue endurance is presented. It is proposed that the creep-fatigue effect in high temperature cyclic deformation is governed by a difference in strain rate around the cycle and the associated variation in ductility with strain rate. (author)

  10. Flaw assessment guide for high-temperature reactor components subject to creep-fatigue loading

    International Nuclear Information System (INIS)

    Ainsworth, R.A.; Takahashi, Y.

    1990-10-01

    A high-temperature flaw assessment procedure is described. This procedure is a result of a collaborative effort between Electric Power Research Institute in the United States, Central Research Institute of Electric Power Industry in Japan, and Nuclear Electric plc in the United Kingdom. The procedure addresses preexisting defects subject to creep-fatigue loading conditions. Laws employed to calculate the crack growth per cycle are defined in terms of fracture mechanics parameters and constants related to the component material. The crack-growth laws can be integrated to calculate the remaining life of a component or to predict the amount of crack extension in a given period. Fatigue and creep crack growth per cycle are calculated separately, and the total crack extension is taken as the simple sum of the two contributions. An interaction between the two propagation modes is accounted for in the material properties in the separate calculations. In producing the procedure, limitations of the approach have been identified. 25 refs., 1 fig

  11. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Nakano, Shohki; Nomura, Shinichi

    1991-01-01

    Prediction methods of macroscopic and local stress-strain behavior of perforated plates in plastic and creep regime which are proposed by the authors are applied to the inelastic analysis and creep-fatigue life prediction of perforated cylinder subjected to cyclic thermal stress. Stress-strain behavior of perforated cylinder is analyzed by modeling the perforated portion to cylinder with equivalent-solid-plate properties. Creep-fatigue lives at around a hole of perforated plates are predicted by using the local stress-strain behavior and are compared with experimentally observed lives. (author)

  12. Creep-fatigue damage rules for advanced fast reactor design. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    1997-03-01

    The IAEA, following the recommendations of the International Working Group on Fast Reactors, convened a Technical Committee Meeting on Creep-Fatigue Damage Rules to be used in Fast Reactor Design. The objective of the meeting was to review developments in design rules for creep-fatigue conditions and to identify any areas in which further work would be desirable. The meeting was hosted by AEA Technology, Risley, and held in Manchester, United Kingdom, 11-13 June 1996. It was attended by experts from the European Commission, France, India, Japan, the Republic of Korea, the Russian Federation and the United Kingdom. Refs, figs, tabs

  13. Creep-Fatigue Life Design with Various Stress and Temperature Conditions on the Basis of Lethargy Coefficient

    International Nuclear Information System (INIS)

    Park, Jung Eun; Yang, Sung Mo; Han, Jae Hee; Yu, Hyo Sun

    2011-01-01

    High temperature and stress are encounted in power plants and vehicle engines. Therefore, determination of the creep-fatigue life of a material is necessary prior to fabricating equipment. In this study, life design was determined on the basis of the lethargy coefficient for different temperatures, stress and rupture times. SP-Creep test data was compared with computed data. The SP-Creep test was performed to obtain the rupture time for X20CrMoV121 steel. The integration life equation was considered for three cases with various load, temperature and load-temperature. First, the lethargy coefficient was calculated by using the obtained rupture stress and the rupture time that were determined by carrying out the SP-Creep test. Next, life was predicted on the basis of the temperature condition. Finally, it was observed that life decreases considerably due to the coupling effect that results when fatigue and creep occur simultaneously

  14. Microstructural characterisation and constitutive behaviour of alloy RR1000 under fatigue and creep-fatigue loading conditions

    International Nuclear Information System (INIS)

    Stoecker, C.; Zimmermann, M.; Christ, H.-J.; Zhan, Z.-L.; Cornet, C.; Zhao, L.G.; Hardy, M.C.; Tong, J.

    2009-01-01

    Mechanical behaviour of a nickel-based superalloy, RR1000, has been investigated at 650 deg. C under cyclic and dwell loading conditions. The microstructural characteristics of the alloy have been studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the distribution patterns of the dislocations and slip planes have been compared between samples tested under fatigue and creep-fatigue loading conditions. Constitutive behaviour of the alloy was described by a unified constitutive model, where both cyclic plastic and viscoplastic strains were represented by one inelastic strain. The results show that the precipitation state is very stable at 650 deg. C and only minor differences exist in the dislocation arrangements formed under pure fatigue and combined creep and fatigue conditions. Hence, a unified constitutive model seems to be justified in describing and predicting the constitutive behaviour in both cases.

  15. Influence of creep ductility on creep-fatigue behaviour of 20%Cr/25%Ni/Nb stainless steel

    International Nuclear Information System (INIS)

    Gladwin, D.; Miller, D.A.

    1985-01-01

    The influence of creep ductility on creep-fatigue endurance of 20%Cr/25%Ni/Nb stainless steel has been examined. In order to induce different creep ductilities in the 20/25/Nb stainless steel, three different thermo-mechanical routes were employed. These resulted in a range of ductilities (3-36%) being obtained at the strain rates of interest. Strain controlled slow-fast creep-fatigue cycles were used with strain rates of 10 -6 s -1 , 10 -7 s -1 in tension and 10 -3 s -1 in compression. It was found that creep ductility strongly influenced the creep-fatigue endurance of the 20/25/Nb stainless steel. When failure was creep dominated endurance was found to be directly proportional to the creep ductility. A ductility exhaustion model has been used to successfully predict creep-fatigue endurance when failure was creep dominated. (author)

  16. Damage Assessment of Heat Resistant Steels through Electron BackScatter Diffraction Strain Analysis under Creep and Creep-Fatigue Conditions

    Science.gov (United States)

    Fujiyama, Kazunari; Kimachi, Hirohisa; Tsuboi, Toshiki; Hagiwara, Hiroyuki; Ogino, Shotaro; Mizutani, Yoshiki

    EBSD(Electron BackScatter Diffraction) analyses were conducted for studying the quantitative microstructural metrics of creep and creep-fatigue damage for austenitic SUS304HTB boiler tube steel and ferritic Mod.9Cr piping steel. KAM(Kernel Average Misorientation) maps and GOS(Grain Orientation Spread) maps were obtained for these samples and the area averaged values KAMave and GOSave were obtained. While the increasing trends of these misorientation metrics were observed for SUS304HTB steel, the decreasing trends were observed for damaged Mod.9Cr steel with extensive recovery of subgrain structure. To establish more universal parameter representing the accumulation of damage to compensate these opposite trends, the EBSD strain parameters were introduced for converting the misorientation changes into the quantities representing accumulated permanent strains during creep and creep-fatigue damage process. As KAM values were dependent on the pixel size (inversely proportional to the observation magnification) and the permanent strain could be expressed as the shear strain which was the product of dislocation density, Burgers vector and dislocation movement distance, two KAM strain parameters MεKAMnet and MεδKAMave were introduced as the sum of product of the noise subtracted KAMnet and the absolute change from initial value δKAMave with dislocation movement distance divided by pixel size. MεδKAMave parameter showed better relationship both with creep strain in creep tests and accumulated creep strain range in creep-fatigue tests. This parameter can be used as the strain-based damage evaluation and detector of final failure.

  17. Evaluation of hot hardness, creep, fatigue and fracture properties of zirconia ceramics by an indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ganguly, C.; Upadhyaya, D.D.

    1996-01-01

    Zirconia ceramics have wide range engineering applications at room and elevated temperatures. For understanding the mechanical behaviour, the indentation technique was adapted for quick evaluation of hot hardness, creep, fatigue and fracture properties. A Vicker's diamond indentor with 10 N load was employed for hot hardness and creep measurement up to 1300 deg. The fatigue data were evaluated at room temperature by repeated indentation with a constant load (10-2500N) at the same location for a dwell time of 5s until it resulted in the formation of a lateral chip on the sample surface. Thus, the number of cycles for chip formation at a specific indentation load was obtained. The fracture toughness was evaluated at room temperature with a load of 300N using a Vicker's diamond indentor. The results of hot hardness, creep, fatigue, and fracture data ol 3Y-TZP and Mg-PSZ are discussed along with their microstructural features. (authors)

  18. Ratchetting and creep-fatigue evaluation for nozzle-to-cylinder intersection

    International Nuclear Information System (INIS)

    Barsoum, R.S.; Loomis, R.W.; Stewart, B.D.

    1976-01-01

    The study is part of an analytical investigation on the applicability of the simplified ratchetting and creep-fatigue rules to LMFBR component geometry. Both the detailed inelastic rules and the simplified elastic rules are applied to the results obtained from a three-dimensional finite element analysis of the nozzle-to-cylinder intersection. The results of both evaluations are compared at several locations on the surface, and an assessment of the degree of conservatism of the simplified methods is discussed

  19. Creep-fatigue behaviour of the titanium alloy IMI 834 at 600 C

    International Nuclear Information System (INIS)

    Nowack, H.; Kordisch, T.

    1998-01-01

    In the present study the creep-fatigue behaviour of the titanium alloy IMI 834 at 600 C was investigated. A comparison of the crack initiation life behaviour and of the crack propagation as caused by different types of complex creep-fatigue cycles (with hold times into tension and/or into compression direction and with different loading rates into tension and/or into compression direction) showed, that a slow increase of the loadings into tension reduced the life and increased the crack velocity more than hold times at the maximum load. Furthermore, there existed environmental influences. On the basis of the experimental investigations the prediction capability of convenient crack initiation life prediction methods was evaluated. It turned out that the prediction capability of the strain range partitioning method could be improved if it was frequency modified. The prediction capability of the frequency modification method could also be improved, if mean stresses in the cycles were explicitely accounted for. In the short and long crack stage the propagation behaviour could be correlated well if the effective cyclic J-integral was used. This is of importance for damage tolerance considerations. Because the strains and the stresses at the crack tip are most important for the crack propagation behaviour, they were analysed on the basis of the finite element method. It was found that the strains and stresses differed for different types of creep-fatigue cycles. (orig.)

  20. An analysis of the creep/fatigue behaviour of type 316 weld metal

    International Nuclear Information System (INIS)

    Wood, D.S.; Wynn, J.

    The document presents creep/fatigue results obtained at UKAEA Risley Nuclear Labs. on type 316 weld metal and the associated stress rupture data and analyses them in the same way as that currently favoured for wrought material. The continuous cycling fatigue results are shown; the lower temperature is seen to give a higher endurance. The creep/fatigue results indicate that lower endurances are obtained at 625 deg. C and that with increasing hold time there is a tendency for the endurance to be lowered. The weld metal creep/fatigue endurances are compared with published UK data on wrought material for strain ranges of up to 3%. Under the conditions examined, it can be seen that the weld metal endurance is towards the top of the scatter band, the results at 550 deg. C forming the upper bound. The stress rupture data note that the ductility is reasonable at short times but fall to relatively low values at long times (10,000h)

  1. Study on creep-fatigue evaluation of chrome-molybdenum steel

    International Nuclear Information System (INIS)

    Aoto, Kazumi; Wada, Yusaku

    1993-01-01

    Though chrome-molybdenum steel has quite different basic material properties from austenitic stainless steel, the life fraction rule based on an advanced ductility exhaustion theory proposed for SUS304 is able to give proper prediction for creep-fatigue life of chrome-molybdenum steel. The applicability of the present evaluation method to chrome-molybdenum steel is validated by both mechanical study and micro-structural observation. The mechanism of creep-fatigue failure of Mod.9Cr-1Mo(NT) is one of the most controversial subjects among researchers. However, it is clarified in this report that creep-fatigue damage of this material under actual loading conditions is dominated by creep-cavitation of grain boundaries as same way as that of austenitic stainless steel. Furthermore, for the life reduction of low cycle fatigue of chrome-molybdenum steel with compression-side strain hold, both effects of mean stress and oxide-wedge are denied and it is insisted that the acceleration of fatigue-crack propagation is occurred by oxide-progress location and its thickness. (author)

  2. Development of plate-fin heat exchanger for intermediate heat exchanger of high-temperature gas cooled reactor. Fabrication process, high-temperature strength and creep-fatigue life prediction of plate-fin structure made of Hastelloy X

    International Nuclear Information System (INIS)

    Mizokami, Yorikata; Igari, Toshihide; Nakashima, Keiichi; Kawashima, Fumiko; Sakakibara, Noriyuki; Kishikawa, Ryouji; Tanihira, Masanori

    2010-01-01

    The helium/helium heat exchanger (i.e., intermediate heat exchanger: IHX) of a high-temperature gas-cooled reactor (HTGR) system with nuclear heat applications is installed between a primary system and a secondary system. IHX is operated at the highest temperature of 950degC and has a high capacity of up to 600 MWt. A plate-fin-type heat exchanger is the most suitable for IHX to improve construction cost. The purpose of this study is to develop an ultrafine plate-fin-type heat exchanger with a finer pitch fin than a conventional technology. In the first step, fabrication conditions of the ultrafine plate fin were optimized by press tests. In the second step, a brazing material was selected from several candidates through brazing tests of rods, and brazing conditions were optimized for plate-fin structures. In the third step, tensile strength, creep rupture, fatigue, and creep-fatigue tests were performed as typical strength tests for plate-fin structures. The obtained data were compared with those of the base metal and plate-fin element fabricated from SUS316. Finally, the accuracy of the creep-fatigue life prediction using both the linear cumulative damage rule and the equivalent homogeneous solid method was confirmed through the evaluation of creep-fatigue test results of plate-fin structures. (author)

  3. Creep fracture and creep-fatigue fracture in ceramics and ceramic composites

    International Nuclear Information System (INIS)

    Suresh, S.

    1993-01-01

    This paper summarizes recent advances in the areas of subcritical crack growth in ceramics subjected to static and cyclic loads at elevated temperatures. Attention is devoted to the specific role of pre-existing and in-situ-formed glass films in influencing creep fracture and creep-fatigue fracture. Experimental results on the effects of cyclic frequency and load ratio, along with detailed transmission electron microscopy of crack-tip and crack-wake damage are highlighted. Some general conclusions are drawn about the dependence of high-temperature damage tolerance on interfacial glass films and about the susceptibility of ceramic materials to cyclic fatigue fracture

  4. Thermal stresses and cyclic creep-fatigue in fusion reactor blanket

    International Nuclear Information System (INIS)

    Liu, K.C.

    1977-01-01

    Thermal stresses in the first walls of fusion reactor blankets were studied in detail. ORNL multibucket modules are emphasized. Practicality of using the bucket module rather than other blanket designs is examined. The analysis shows that applying intelligent engineering judgment in design can reduce the thermal stresses significantly. Arrangement of coolant flow and distribution of temperature are reviewed. Creep-fatigue property requirements for a first wall are discussed on the basis of existing design rules and criteria. Some major questions are pointed out and experiments needed to resolve basic uncertainties relative to key design decisions are discussed

  5. Evaluation of long-term creep-fatigue life of stainless steel weldment based on a microstructure degradation model

    International Nuclear Information System (INIS)

    Asayama, Tai; Hasebe, Shinichi

    1997-01-01

    This paper describes a newly developed analytical method of evaluation of creep-fatigue strength of stainless weld metals. Based on the observation that creep-fatigue crack initiates adjacent to the interface of sigma-phase/delta-ferrite and matrix, a mechanistic model which allows the evaluation of micro stress/strain concentration adjacent to the interface was developed. Fatigue and creep damage were evaluated using the model which describes the microstructure after exposed to high temperatures for a long time. Thus it was made possible to predict analytically the long-term creep-fatigue life of stainless steel metals whose microstructure is degraded as a result of high temperature service. (author)

  6. Influence of microstructural parameters on the deformation and failure behaviour of the ODS alloy PM 2000 under creep and creep-fatigue loading

    International Nuclear Information System (INIS)

    Bothe, K.; Kussmaul, K.; Maile, K.

    1999-01-01

    The influence of grain size, manufacturing type and specimen direction (anisotropy) with respect to deformation and failure behaviour under creep, fatigue and creep-fatigue load was investigated. Thus, a basis for the correlation between microstructure and mechanical behaviour has been established. The specific damage and failure behaviour could be explained by means of the different microstructures observed. (orig.)

  7. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    Energy Technology Data Exchange (ETDEWEB)

    Wasmer, K., E-mail: kilian.wasmer@empa.c [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Materials Processing, Feuerwerkerstrasse 39, 3602 Thun (Switzerland); Nikbin, K.M.; Webster, G.A. [Department of Mechanical Engineering, Imperial College London, London SW7 2BX (United Kingdom)

    2010-08-15

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 {sup o}C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  8. Influence of reference stress formulae on creep and creep-fatigue crack initiation and growth prediction in plate components

    International Nuclear Information System (INIS)

    Wasmer, K.; Nikbin, K.M.; Webster, G.A.

    2010-01-01

    Creep and creep-fatigue crack growth in pre-cracked plates of 316L(N) austenitic stainless steel, containing a semi-elliptical surface defect and tested at 650 o C under combined axial and bending loading, are investigated. The results have been interpreted in terms of the creep fracture mechanics parameter C* and compared with data obtained on standard compact tension (CT) specimens of the same material and batch. In making the assessments, the reference stress method has been used to determine C*. Several formulae exist for calculating the reference stress depending on whether it is based on a 'global' or a 'local' collapse mechanism and the assessment procedure adopted. When using this approach, it has been found that the most satisfactory comparison of crack growth rates with standard CT specimen data is obtained when the 'global' reference stress solution is used in conjunction with mean uniaxial creep properties. It has been found that the main effect of changing the fatigue cycle range from 0.1 to -1.0 is to cause an acceleration in the early stage of cracking.

  9. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    Energy Technology Data Exchange (ETDEWEB)

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  10. Investigations on creep and creep fatigue crack behaviour for component assessment

    International Nuclear Information System (INIS)

    Gengenbach, T.; Klenk, A.; Maile, K.

    2004-01-01

    There are various methods to assess crack initiation and crack growth behaviour of components under creep and creep fatigue loading. The programme system HT-Riss has been developed to support calculations aimed to determine the behaviour of a crack under creep or creep-fatigue loading using methods based on stress-intensity factor K (e.g. the Two-Criteria-Diagram) or C*-Integral. This paper describes the steps which have to be performed to assess crack initiation and growth of a component using this programme system. First the size of the maximum initial defect in a specimen or in a component has to be estimated and the necessary fracture mechanics parameters have to be determined. Then the time for creep crack initiation and creep crack growth is calculated. Using these values a prediction of life time and necessary inspection intervals is possible. For exemplification the crack assessment of a component-like specimen and a component is shown. (orig.)

  11. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    International Nuclear Information System (INIS)

    Brust, F.W.; Wilkowski, G.M.; Krishnaswamy, P.; Wichman, Keith

    2010-01-01

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  12. Evaluation of environmental effect on creep-fatigue of 2 1/4Cr-1Mo steel

    International Nuclear Information System (INIS)

    Yang Beinan; Ishikawa, Akiyoshi; Asada, Yasuhide.

    1991-01-01

    In the present study, a trial evaluation was made to evaluate the environmental effect of air separately from the behavior of material origin. Data with 2 1/4Cr-1Mo steel at 550degC in air were subjected to the evaluation based on data of the steel in high vacuum with a newly developed procedure using the overstress concept. An empirical expression was proposed to describe the environmental effect of air on the creep-fatigue behavior. Following conclusions were obtained in the present study on a separation of the environmental effect of air on a creep-fatigue behavior of 2 1/4Cr-1Mo steel at 550degC. 1) The environmental effect of air reduces a fatigue life, that is, it increases the time-independent damage component of the creep-fatigue. 2) The environmental effect of air brings on the frequency effect which is mainly dependent upon a strain rate or time in a compression going stroke. Other environmental effect on F-S or compression hold-time cycles depends upon the strain rate in compression. 3) The rate-time dependent damage component, that is, the creep damage is reduced by the environmental effect of air. That means a creep-fatigue life recovers in air environment. (author)

  13. Analytical investigation of the applicability of simplified ratchetting and creep-fatigue rules to a nozzle-to-sphere geometry

    International Nuclear Information System (INIS)

    Gwaltney, R.C.

    1982-01-01

    This paper presents an analysis of a nozzle-to-spherical-shell attachment and explores the applicability of simplified ratchetting and creep-fatigue rules to this attachment. A five-cycle inelastic analysis and creep-fatigue damage evaluation was carried out on this component. An elastic analysis also was done to provide input parameters required to apply the various rules and procedures of simplified analysis methods. Ten lines, or critical sections, were chosen for postprocessing to determine the ratchetting strain and creep-fatigue damage at both the inside and outside surfaces. At many of the 20 surface points analyzed, the inelastic analysis results did not develop a constant or decreasing pattern for the incremental strain or damage even after 5 cycles were analyzed. Failure to develop a constant or decreasing pattern was especially prevalent for creep damage. The results of the detailed inelastic analyses at the ten critical sections are compared with the results of elastic evaluations of ratchetting and creep-fatigue damage calculated according to American Society of Mechanical Engineers Boiler and Pressure Vessel Code Case N-47-13

  14. Feasibility study on ductility exhaustion approach for creep-fatigue damage assessment of FBR 316 stainless steel using published data

    International Nuclear Information System (INIS)

    Nonaka, Isamu; Kitagawa, Masaki; Torihata, Shoji.

    1995-01-01

    In order to investigate the applicability of a ductility exhaustion rule to the creep-fatigue life assessment of FBR 316 stainless steel, a feasibility study using the published data was conducted. The assessment method was proposed based on the linear damage summation rule. In the proposed method, fatigue damage was calculated by Minor's rule and creep damage was calculated by a ductility exhaustion rule. The creep-fatigue lives in the published data were predicted by the proposed method. The results obtained are as follows: (1) All the data could be predicted within a factor of two on life by the proposed method. (2) The creep-fatigue lives under 10 minute strain hold at 550degC were overestimated, while those under 60 minute strain hold at 550degC and 600degC were estimated adequately. From the above facts, the proposed method seemed to be effective for the prediction of creep-fatigue life in which the creep damage was dominant and also the intergranular cracking was remarkable. (3) The creep damage was simultaneously calculated by the time fraction rule in order to compare with the ductility exhaustion role. All the data could be also predicted within a factor of two on life by this rule, but it tended to overestimate the life. (author)

  15. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints

    International Nuclear Information System (INIS)

    Curtit, F.

    2000-01-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C * . These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C * . These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C * s considers a continuous evolution of creep deformations rate during the all test. (author)

  16. Monitoring microstructural evolution of alloy 617 with non-linear acoustics for remaining useful life prediction; multiaxial creep-fatigue and creep-ratcheting

    Energy Technology Data Exchange (ETDEWEB)

    Lissenden, Cliff [Pennsylvania State Univ., State College, PA (United States); Hassan, Tasnin [North Carolina State Univ., Raleigh, NC (United States); Rangari, Vijaya [Tuskegee Univ., Tuskegee, AL (United States)

    2014-10-30

    The research built upon a prior investigation to develop a unified constitutive model for design-­by-­analysis of the intermediate heat exchanger (IHX) for a very high temperature reactor (VHTR) design of next generation nuclear plants (NGNPs). Model development requires a set of failure data from complex mechanical experiments to characterize the material behavior. Therefore uniaxial and multiaxial creep-­fatigue and creep-­ratcheting tests were conducted on the nickel-­base Alloy 617 at 850 and 950°C. The time dependence of material behavior, and the interaction of time dependent behavior (e.g., creep) with ratcheting, which is an increase in the cyclic mean strain under load-­controlled cycling, are major concerns for NGNP design. This research project aimed at characterizing the microstructure evolution mechanisms activated in Alloy 617 by mechanical loading and dwell times at elevated temperature. The acoustic harmonic generation method was researched for microstructural characterization. It is a nonlinear acoustics method with excellent potential for nondestructive evaluation, and even online continuous monitoring once high temperature sensors become available. It is unique because it has the ability to quantitatively characterize microstructural features well before macroscale defects (e.g., cracks) form. The nonlinear acoustics beta parameter was shown to correlate with microstructural evolution using a systematic approach to handle the complexity of multiaxial creep-­fatigue and creep-­ratcheting deformation. Mechanical testing was conducted to provide a full spectrum of data for: thermal aging, tensile creep, uniaxial fatigue, uniaxial creep-­fatigue, uniaxial creep-ratcheting, multiaxial creep-fatigue, and multiaxial creep-­ratcheting. Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), and Optical Microscopy were conducted to correlate the beta parameter with individual microstructure mechanisms. We researched

  17. Review of ASME-NH Design Materials for Creep-Fatigue

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Kim, Jong Bum

    2010-01-01

    To review and recommend the candidate design materials for the Sodium-Cooled Fast Reactor, the material sensitivity evaluations by the comparison of design data between the ASME-NH materials were performed by using the SIE ASME-NH computer program implementing the material database of the ASME-NH. The design material data provided by the ASME-NH code are the elastic modulus and yield Strength, Time-Independent Allowable Stress Intensity value, time-dependent allowable stress intensity value, expected minimum stress-to rupture value, stress rupture Factors for weldment, isochronous stress-strain curves, and design fatigue curves. Among these, the data related with the creep-fatigue evaluation are investigated in this study

  18. Fracture mechanical evaluation of high temperature structure and creep-fatigue defect assessment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2004-02-01

    This study proposed the evaluation procedure of high temperature structures from the viewpoint of fracture mechanics on the cylindrical structure applicable to the KALIMER, which is developed by KAERI. For the evaluation of structural integrity, linear and non-linear fracture mechanics parameters were analyzed. Parameters used in creep defect growth applicable to high temperature structure of liquid metal reactor and the evaluation codes with these parameters were analyzed. The evaluation methods of defect initiation and defect growth which were established in R5/R6 code(UK), JNC method (Japan) and RCC-MR A16(France) code were analyzed respectively. The evaluation procedure of leak before break applicable to KALIMER was preliminarily developed and proposed. As an application example of defect growth, the creep-fatigue defect growth on circumferential throughwall defect in high temperature cylindrical structure was evaluated by RCC-MR A16 and this application technology was established.

  19. An Abnormal Increase of Fatigue Life with Dwell Time during Creep-Fatigue Deformation for Directionally Solidified Ni-Based Superalloy DZ445

    Science.gov (United States)

    Ding, Biao; Ren, Weili; Deng, Kang; Li, Haitao; Liang, Yongchun

    2018-03-01

    The paper investigated the creep-fatigue behavior for directionally solidified nickel-based superalloy DZ445 at 900 °C. It is found that the fatigue life shows an abnormal increase when the dwell time exceeds a critical value during creep-fatigue deformation. The area of hysteresis loop and fractograph explain the phenomenon quite well. The shortest life corresponds to the maximal area of hysteresis loop, i. e. the maximum energy to be consumed during the creep-fatigue cycle. The fractographic observation of failed samples further supports the abnormal behavior of fatigue life.

  20. Creep-fatigue monitoring system for header ligaments of fossil power plants

    International Nuclear Information System (INIS)

    Chen, K.L.; Deardorf, A.F.; Copeland, J.F.; Pflasterer, R.; Beckerdite, G.

    1993-01-01

    The cracking of headers (primary and secondary superheater outlet, and reheater outlet headers) at ligament locations is an important issue for fossil power plants. A model for crack initiation and growth has been developed, based on creep-fatigue damage mechanisms. This cracking model is included in a creep-fatigue monitoring system to assess header structural integrity under high temperature operating conditions. The following principal activities are required to achieve this goal: (1) the development of transfer functions and (2) the development of a ligament cracking model. The first task is to develop stress transfer functions to convert measured (monitored) temperatures, pressures and flow rates into stresses to be used to compute damage. Elastic three-dimensional finite element analyses were performed to study transient thermal stress behavior. The sustained pressure stress redistribution due to high temperature creep was studied by nonlinear finite element analyses. The preceding results are used to derive Green's functions and pressure stress gradient transfer functions for monitoring at the juncture of the tube with the header inner surface, and for crack growth at the ligaments. The virtual crack closure method is applied to derive a stress intensity factor K solution for a corner crack at the tube/header juncture. Similarly, using the reference stress method, the steady state creep crack growth parameter C * is derived for a header corner crack. The C * solution for a small corner crack in a header can be inserted directed into the available C t solution, along with K to provide the complete transient creep solution

  1. A study on creep-fatigue life analysis using a unified constitutive equation and a continuous damage law

    International Nuclear Information System (INIS)

    Hiroe, Tetsuyuki; Igari, Toshihide; Nakajima, Keiichi

    1986-01-01

    A newly developed type of life analysis is introduced using a unified constitutive equation and a continuous damage law on 2 1/4Cr - 1Mo steel at 600 deg C. the viscoplasticity theory based on total strain and overstress used for the rate effect at room temperature is extended for application to the inelastic analysis at elevated temperature, and the extended uniaxial model is shown to reproduce the inelastic stress and strain behavior with a strain rate change observed in the experiment. The incremental life prediction law is employed and its coupling with the viscoplasticity model produces both an inelastic stress-strain response and the damage accumulation, simultaneously and continuously. The life prediction for creep, fatigue and creep-fatigue loading shows good correspondence with the experimental data. (author)

  2. Evaluation of creep-fatigue crack growth for large-scale FBR reactor vessel and NDE assessment

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Sang; Kim, Jong Bum; Kim, Seok Hun; Yoo, Bong

    2001-03-01

    Creep fatigue crack growth contributes to the failure of FRB reactor vessels in high temperature condition. In the design stage of reactor vessel, crack growth evaluation is very important to ensure the structural safety and setup the in-service inspection strategy. In this study, creep-fatigue crack growth evaluation has been performed for the semi-elliptical surface cracks subjected to thermal loading. The thermal stress analysis of a large-scale FBR reactor vessel has been carried out for the load conditions. The distributions of axial, radial, hoop, and Von Mises stresses were obtained for the loading conditions. At the maximum point of the axial and hoop stress, the longitudinal and circumferential surface cracks (i.e. PTS crack, NDE short crack and shallow long crack) were postulated. Using the maximum and minimum values of stresses, the creep-fatigue crack growth of the proposed cracks was simulated. The crack growth rate of circumferential cracks becomes greater than that of longitudinal cracks. The total crack growth of the largest PTS crack is very small after 427 cycles. The structural integrity of a large-scale reactor can be maintained for the plant life. The crack depth growth of the shallow long crack is faster than that of the NDE short crack. In the ISI of the large-scale FBR reactor vessel, the ultrasonic inspection is beneficial to detect the shallow circumferential cracks.

  3. Creep-fatigue evaluation method for type 304 and 316FR SS

    International Nuclear Information System (INIS)

    Wada, Y.; Aoto, K.; Ueno, F.

    1997-01-01

    For long-term creep-fatigue of Type 304SS, intergranular failure is dominant in the case of significant life reduction. It is considered that this phenomenon has its origin in the grain boundary sliding as observed in cavity-type creep-rupture. Accordingly a simplified procedure to estimate intergranular damages caused by the grain boundary sliding is presented in connection with the secondary creep. In the conventional ductility exhaustion method, failure ductility includes plastic strain, and damage estimation is based on the primary creep strain, which is recoverable during strain cycling. Therefore the accumulated creep strain becomes a very large value, and quite different from grain boundary sliding strain. As a new concept on ductility exhaustion, the product of secondary creep rate and time to rupture (Monkman-Grant product) is applied to fracture ductility, and grain boundary sliding strain is approximately estimated using the accumulated secondary creep strain. From the new concept it was shown that the time fraction rule and the conventional ductility exhaustion method can be derived analytically. Furthermore an advanced method on cyclic stress relaxation was examined. If cyclic plastic strain hardening is softened thermally during strain hold, cyclic creep strain behaviour is also softened. An unrecoverable accumulated primary creep strain causes hardening of the primary creep, and the reduction of deformation resistance to the secondary creep caused by thermal softening accelerates grain boundary sliding rate. As the results creep damages depend not on applied stress but on effective stress. The new concept ductility exhaustion method based on the above consideration leads up to simplified time fraction estimation method only by continuous cycling fatigue and monotonic creep which was already developed in PNC for Monju design guide. This method gave good life prediction for the intergranular failure mode and is convenient for design use on the elastic

  4. Stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic steels: the role of precipitation

    International Nuclear Information System (INIS)

    Lloyd, G.J.; Wareing, J.

    1979-01-01

    The distinction between stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic stainless steels is introduced. The transition from one class of behavior to the other is related to the precipitate distribution and to the nature of the prevailing crack path. It is shown by reference to new studies and examples drawn from the literature that this behavior is common to both high strain and predominantly elastic fatigue in austenitic stainless steels. The relevance of this distinction to a mechanistic approach to high temperature plant design is discussed

  5. Life assessment of Mod.9Cr-1Mo steel. Quantitative evaluation of microstructural damage in creep interrupted specimens and in creep-fatigue specimens

    International Nuclear Information System (INIS)

    Maruyama, Kouichi; Kato, Syoichi; Nagae, Yuji

    1999-02-01

    Boiler and steam turbine components in power generating plants are used under creep and creep-fatigue conditions. It is important to measure both creep and creep-fatigue damage of the components in order to assess the residual life of the components. Modified 9Cr-1Mo steel, a candidate material for steam generator in FBR, has a tempered martensitic lath structure. It was proposed in the second report that lath width in the lath structure is closely related to creep strain, and using this relation one can assess residual creep life of a structural component made of the steel. The objectives of this study are to investigate the change of the lath structure during creep.fatigue deformation, and to estimate creep strain by measuring area of cell composing the lath structure. The area of cell can be a better measure of creep deformation than the lath width. The lath structure is covered during creep-fatigue deformation. The lath structure becomes equiaxed cell structure under creep-fatigue more quickly compared with the lath structure recovered during creep. The lath structure recovered under creep-fatigue has a stationary value of the lath width determined by maximum stress at Nf/2. (Nf: number of cycles) If the recovery process of the lath structure can be investigated under creep-fatigue, the lath width can be a measure of the life assessment under creep-fatigue. Area of cell composing the lath structure increases with creep deformation and reaches a stationary value S s determined by creep stress. The rate of increase in the area is faster at a higher stress and temperature. A normalized change in the area of cell, ΔS/ΔS s , was introduced as a measure of the recovery process of martensitic lath structure. ΔS is the change in area of cell from the initial value S 0 , ΔS s is the difference between S s and S 0 . ΔS/ΔS s is uniquely related to creep strain independent of creep conditions. However, the scatter of data in ΔS/ΔS s -strain relation is wider than

  6. Creep-fatigue crack initiation assessment on thick circumferentially notched 316L tubes under cyclic thermal shocks and uniform tension with the σd approach

    International Nuclear Information System (INIS)

    Michel, B.; Poette, C.

    1997-01-01

    For crack initiation assessment under creep fatigue loading, in high temperature Fast Reactor's components, specific approaches based on fracture mechanics analysis had to be developed. In the present paper the crack initiation assessment method proposed in the A16 document is presented. The so called ''σ d method'' is also validated on experimental results for tubular specimens with internal axisymmetric surface cracks. Experimental data are extracted from the TERFIS program carried out on a sodium test device at the CEA Cadarache. Metallurgical examinations on TERFIS specimens confirm that the initiation assessment of the ''σ d '' approach is conservative even for a different geometry than the CT specimen on which the method was set up. However, the conservatism is reduced when the creep residual stress field is relaxed during the hold time. An investigation concerning this last point is needed in order to know if relaxing the stress, when using a lower bound of the mechanical properties, always keeps a safety margin. (author). 14 refs, 10 figs, 4 tabs

  7. Comparison of various 9-12%Cr steels under fatigue and creep-fatigue loadings at high temperature

    International Nuclear Information System (INIS)

    Fournier, B.; Dalle, F.; Sauzay, M.; Longour, J.; Salvi, M.; Caes, C.; Tournie, I.; Giroux, P.F.; Kim, S.H.

    2011-01-01

    The present article compares the cyclic behaviour of various 9-12%Cr steels, both commercial grades and optimized materials (in terms of creep strength). These materials were subjected to high temperature fatigue and creep-fatigue loadings. TEM examinations of the microstructure after cyclic loadings were also carried out. It appears that all the tempered ferritic-martensitic steels suffer from a cyclic softening effect linked to the coarsening of the sub-grains and laths and to the decrease of the dislocation density. These changes of the microstructure lead to a drastic loss in creep strength for all the materials under study. However, due to a better precipitation state, several materials optimized for their creep strength still present a good creep resistance after cyclic softening. These results are discussed and compared to the literature in terms of the physical mechanisms responsible for cyclic and creep deformation at the microstructural scale. (authors)

  8. Creep-fatigue life prediction for different heats of Type 304 stainless steel by linear-damage rule, strain-range partitioning method, and damage-rate approach

    International Nuclear Information System (INIS)

    Maiya, P.S.

    1978-07-01

    The creep-fatigue life results for five different heats of Type 304 stainless steel at 593 0 C (1100 0 F), generated under push-pull conditions in the axial strain-control mode, are presented. The life predictions for the various heats based on the linear-damage rule, strain-range partitioning method, and damage-rate approach are discussed. The appropriate material properties required for computation of fatigue life are also included

  9. Local strain in front of cracks in the case of creep fatigue

    International Nuclear Information System (INIS)

    Rie Kyongtschong; Olfe, J.

    1993-01-01

    In-situ measurements of strain fields in front of cracks were performed for high temperature Low Cycle Fatigue (LCF) with different hold times by means of a grid method. The tests were carried out on the austenitic stainless steel 304 L and the ferritic steel X22 CrMoV 12 1. Simultaneous observation of crack growth leads to a correlation between crack growth and local strain. The interaction of creep and fatigue related to strain concentration at the crackk tip and crack growth was discussed. A model is proposed which is based on the formation of cavities on grain boundaries. (orig.) [de

  10. FBR structural material test facility in flowing sodium environment

    International Nuclear Information System (INIS)

    Shanmugasundaram, M.; Kumar, Hemant; Ravi, S.

    2016-01-01

    In Fast Breeder Reactor (FBR), components such as Control and Safety Rod Drive Mechanism (CSRDM), Diverse Safety Rod Drive Mechanism (DSRDM), Transfer arm and primary sodium pumps etc., are experiencing friction and wear between the moving parts in contact with liquid sodium at high temperature. Hence, it is essential to evaluate the friction and wear behaviour to validate the design of components. In addition, the above core structural reactor components such as core cover plate, control plugs etc., undergoes thermal striping which is random thermal cycling induced by flow stream resulting from the mixing of non isothermal jets near that component. This leads to development of surface cracks and assist in crack growth which in turn may lead to failure of the structural component. Further, high temperature components are often subjected to low cycle fatigue due to temperature gradient induced cyclic thermal stresses caused by start-ups, shutdowns and transients. Also steady state operation at elevated temperature introduces creep and the combination of creep and fatigue leads to creep-fatigue interactions. Therefore, resistance to low cycle fatigue, creep and creep-fatigue are important considerations in the design of FBR components. Liquid sodium is used as coolant and hence the study of the above properties in dynamic sodium are equally important. In view of the above, facility for materials testing in sodium (INSOT) has been constructed and in operation for conducting the experiments such as tribology, thermal stripping, low cycle fatigue, creep and creep-fatigue interaction etc. The salient features of the operation and maintenance of creep and fatigue loops of INSOT facility are discussed in detail. (author)

  11. A continuous damage approach for the analysis of creep-fatigue behavior of 2 1/4 Cr - 1 Mo steel

    International Nuclear Information System (INIS)

    Gomuc, R.; Biron, A.; Bui-Quoc, T.

    1985-01-01

    Components made from 2 1/4 Cr-1 Mo in thermal and nuclear power plants have usually been designed for lifetimes as long as forty years at service temperatures approaching 593 o C. While several experimental investigations on the creep-fatigue behaviour of such materials have been reported, a detailed analysis of material behavior under these loading conditions is not available, to the authors knowledge. The aim of the present paper is to report the results of an analysis on these experimental data using a recently developed procedure. (author)

  12. Creep-fatigue effects in structural materials used in advanced nuclear power generating systems

    International Nuclear Information System (INIS)

    Brinkman, C.R.

    1980-01-01

    Various aspects of time-dependent fatigue behavior of a number of structural alloys in use or planned for use in advanced nuclear power generating systems are reviewed. Materials included are types 304 and 316 stainless steel, Fe-2 1/4 Cr-1 Mo steel, and alloy 800H. Examples of environmental effects, including both chemical and physical interaction, are presented for a number of environments. The environments discussed are high-purity liquid sodium, high vacuum, air, impure helium, and irradiation damage, including internal helium bubble generation

  13. Study of creep-fatigue behavior in a 1000 MW rotor using a phenomenological lifetime model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nailong; Wang, Weizhe; Jiang, Jishen; Liu, Yingzheng [School of Mechanical Engineering, Shanghai (China)

    2017-02-15

    In this study, the phenomenological lifetime model was applied to part of an ultra-supercritical steam turbine rotor model to predict its lifetime as a post processing of the finite element method. To validate the accuracy and adaptation of the post processing program, stress strain hysteresis loops of a cylinderal model under service-like load cycle conditions in cycle N = 1 and 300 were constructed, and the comparison of the results with experimental data on the same cylinderal specimen showed them to be satisfactory. The temperature and von Mises stress distributions of the rotor during a startup-running-shutdown-natural cool process were numerically studied using ABAQUS and the damage caused by the interaction of creep and fatigue was subsequently computed and discussed. It was found that the maximum damage appeared at the inlet notch zone, with the blade groove areas and the front notch areas also suffering a large damage amplitude.

  14. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    Science.gov (United States)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the two more pairs of stress strain parameters must be ascertained.

  15. Testing strong interaction theories

    International Nuclear Information System (INIS)

    Ellis, J.

    1979-01-01

    The author discusses possible tests of the current theories of the strong interaction, in particular, quantum chromodynamics. High energy e + e - interactions should provide an excellent means of studying the strong force. (W.D.L.)

  16. The interpretation of stress reductions in creep-fatigue cycles of 316 stainless steel

    International Nuclear Information System (INIS)

    Hales, R.

    1986-11-01

    A statistical analysis of stress-drop results obtained on a number of different casts of 316 stainless steel in the temperature range 550 0 C to 700 0 C is presented. In all cases the results were obtained from strain controlled fatigue tests. The equations used to describe stress relaxation here are derived from forward creep equations which describe the dependence of creep rate on time, stress and temperature. Although there is no clear correspondence between creep and stress relaxation, creep equations offer an attractive starting point. Not all the models considered exhibited the expected response to changes in temperature. A revised analysis was carried out on the assumption that stress relaxation is thermally activated according to the Arrhenius equation. Two models were found to fit the data equally well and it was not possible to choose which of these relationships is the more appropriate to describe stress relaxation of cyclically conditioned material. On the basis of the evidence both are acceptable and may be used to calculate the creep damage according to the various high temperature design codes. Whichever gives the more conservative assessment should be used until a more mechanistically based judgement can be reached. (author)

  17. Creep-fatigue propagation of semi-elliptical crack at 650 deg. C in 316L(N) stainless steel plates with or without welded joints; Propagation de fissures semi-elliptiques en fatigue-fluage a 650 deg. C dans des plaques d'acier 316L(N) avec ou sans joints soudes

    Energy Technology Data Exchange (ETDEWEB)

    Curtit, F

    2000-07-01

    This study realised in LISN Laboratory of CEA Saclay, deals with the creep fatigue propagation of semi elliptical crack at the temperature of 650 deg C in 316L(N) stainless steel plates with or without welded joints. A vast majority of the studies on creep fatigue propagation models are based on specimen (CT) especially designed for crack propagation study. The PLAQFLU program performed in LISN laboratory deals with the application and adaptation of these models to complex crack shape, which are more representative of the cracks observed in industrial components. In this scope, we use propagation tests realised at the temperature of 650 deg C with wide plates containing semi elliptical defects. For some of them, the initial defect is machined in the middle of a welded joint, which constitute a privileged site for the crack initiation. The approach used in this study is based on global parameters of fracture mechanics. At first, tests on CT specimen are used in order to determine the propagation laws correlating the crack growth rate to the global parameters K or C{sup *}. These laws are then supposed to be intrinsic to our materials and are used to analysed the semi elliptical crack propagation. The analysis of the comportment of the crack during the hold time demonstrates the possibility to establish a correlation between the crack propagation both in the deepest and the surface point and the local value of C{sup *}. These correlations are coherent in the different points of the crack front for the different applied hold times, and they present a reasonably good agreement with the creep propagation law identified on CT specimen. The simulation of test performed on based metal specimen with a model of summation of both creep and pure fatigue crack growth gives acceptable results when the calculus of the simplified expression of C{sup *}{sub s} considers a continuous evolution of creep deformations rate during the all test. (author)

  18. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Tasnim [North Carolina State Univ., Raleigh, NC (United States); Lissenden, Cliff [Penn State Univ., University Park, PA (United States); Carroll, Laura [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.

  19. Multiaxial Creep-Fatigue and Creep-Ratcheting Failures of Grade 91 and Haynes 230 Alloys Toward Addressing Design Issues of Gen IV Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hassan, Tasnim; Lissenden, Cliff; Carroll, Laura

    2015-01-01

    The proposed research will develop systematic sets of uniaxial and multiaxial experimental data at a very high temperature (850-950°C) for Alloy 617. The loading histories to be prescribed in the experiments will induce creep-fatigue and creep-ratcheting failure mechanisms. These experimental responses will be scrutinized in order to quantify the influences of temperature and creep on fatigue and ratcheting failures. A unified constitutive model (UCM) will be developed and validated against these experimental responses. The improved UCM will be incorporated into the widely used finite element commercial software packages ANSYS. The modified ANSYS will be validated so that it can be used for evaluating the very high temperature ASME-NH design-by-analysis methodology for Alloy 617 and thereby addressing the ASME-NH design code issues.

  20. Thermal fatigue strength estimation of 2.25Cr-1Mo steel under creep-fatigue interaction

    International Nuclear Information System (INIS)

    Kuwahara, Kazuo; Nitta, Akihito; Kitamura, Takayuki

    1980-01-01

    A 2-1/4Cr-1Mo steel is one of principal materials for high temperature equipments in nuclear and thermal power plants. The authors experimentally analyzed the high temperature fatigue strength and creep strength of a 2-1/4 Cr-1Mo steel main steam pipe which had been used in a thermal plant for operation up to 130,000 hours, and pointed out that the strain-range vs. life curves crossed each other due to the difference of temperature-strain phase in thermal fatigue. This suggests that it is difficult to estimate thermal fatigue life of steel materials having been subjected to different temperature-strain phase on the basis of isothermal low-cycle fatigue life at the upper limit temperature of thermal fatigue, and that it is urgently required to establish an appropriate method of evaluating thermal fatigue life. The authors attempted to prove that the strain range partitioning method used for the evaluation of thermal fatigue life in SUS 304 steels is applicable to this 2-1/4Cr-1Mo steel. Consequently, it was found that the thermal fatigue life could be estimated within a factor of 2.5 by the application of this method. (author)

  1. Service life prediction. Development of models for predicting the service life of power plant components subject to thermomechanical creep fatigue; Lebensdauervorhersage. Entwicklung von Modellen zur Lebensdauervorhersage von Kraftwerksbauteilen unter thermisch-mechanischer Kriechermuedungsbeanspruchung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L.; Scholz, A. [Technische Univ. Darmstadt (Germany). Institut fuer Werkstoffkunde; Hartrott, P. von; Schlesinger, M. [Fraunhofer-Institut fuer Werkstoffmechanik (IWM), Freiburg im Breisgau (Germany)

    2009-07-01

    Extensive use is made of massive components of heat resistant and highly heat resistant materials in installations of the power and heating industry. These components are exposed to varying thermomechanical stress as a result of ramping-up and down processes. In this research project two computer-assisted methods of predicting service life until crack initiation were extended to include cases of thermomechanical multi-axis stress conducive to creep fatigue and of superposition of high-cycle stress on power plant components. Investigations were limited to rotor steel of type X12CrMoWVNbN10-1-1. Complex thermomechanical multi-axis experiments were performed on round, notched and cruciform test specimens of close-to-life dimensions in order to demonstrate by experiment the validity of these models. The results of these calculations showed an acceptable degree of agreement between experiment and simulation for both models. Calculations on earlier TMF experiments performed at IfW on hollow specimens of 1%CrMoNiV showed good predictability for both the SARA and the ThoMat programme. Calculations on experiments performed at MPA Stuttgart on model bodies consisting of the same 1%CrMoNiV showed a predictability of acceptable variability considering the complexity of the stresses involved. A further outcome of this project is that the use of SARA appears universally suitable for the construction of new plants and in the service area, while the use of ThoMat appears suited for detail optimisation in the development process.

  2. High temperature strength data-base of SUS304 steel and a study on life prediction method under ceep-fatigue interaction

    International Nuclear Information System (INIS)

    Matsubara, Masaaki; Nitta, Akito; Ogata, Takashi; Kuwabara, Kazuo

    1985-01-01

    As a part of ''Study for practical use of Tank Type FBR'', ''Practical use of inelastic analysis method to FBR structural design'' is carried out as a cooperative study for three years from 1984. In this cooperative study, to establish the life prediction method under creep-fatigue interaction is one of the most important theme. To attain this purpose, many different type tests are planned and then conducted. By the way, to use these many data rapidly and effectively, it is necessary to make a data base. So in this work, we developed the simple data base of high temperature strength. And the data of SUS304 obtained at this place to this day are inputted into this data base. Next, we investigated about five life prediction methods under creep-fatigue interaction, Frequency Modified Method, Ostergren Method, Strain Range Partitioning Method, Damage Rate Approach and Strain Energy Parameter Method. As a result, Strain Range Partitioning Method can predict the lives within Factor of 2. In the other four methods, it is supported that material constants in the prediction formula are dependent on temperature. (author)

  3. Development of system based code for integrity of FBR. Fundamental probabilistic approach, Part 1: Model calculation of creep-fatigue damage (Research report)

    International Nuclear Information System (INIS)

    Kawasaki, Nobuchika; Asayama, Tai

    2001-09-01

    Both reliability and safety have to be further improved for the successful commercialization of FBRs. At the same time, construction and operation costs need to be reduced to a same level of future LWRs. To realize compatibility among reliability, safety and, cost, the Structural Mechanics Research Group in JNC started the development of System Based Code for Integrity of FBR. This code extends the present structural design standard to include the areas of fabrication, installation, plant system design, safety design, operation and maintenance, and so on. A quantitative index is necessary to connect different partial standards in this code. Failure probability is considered as a candidate index. Therefore we decided to make a model calculation using failure probability and judge its applicability. We first investigated other probabilistic standards like ASME Code Case N-578. A probabilistic approach in the structural integrity evaluation was created based on these results, and also an evaluation flow was proposed. According to this flow, a model calculation of creep-fatigue damage was performed. This trial calculation was for a vessel in a sodium-cooled FBR. As the result of this model calculation, a crack initiation probability and a crack penetration probability were found to be effective indices. Last we discussed merits of this System Based Code, which are presented in this report. Furthermore, this report presents future development tasks. (author)

  4. Creep-fatique interactions in 316 stainless steel under torsional loading

    International Nuclear Information System (INIS)

    Wei, K.; Dyson, B.F.

    1982-01-01

    Some fatigue, fatigue with creep dwells and creep tests have been performed in torsion using 316 stainless steel at 600 0 C. As expected from push-pull testing, the introduction of a creep dwell reduced fatigue endurances and changed the fracture from classical transgranular to intergranular. Optical microscopical examination revealed a large number of intergranular cracks concentrated along shear planes, but quantitative assessment identified the importance of creep tensile stresses in crack development. In contrast, little intergranular damage was found after torsion creep, which is consistent with its exhibited buckling mode of failure. It is concluded that reverse plastic strain is the cause of intergranular crack formation in the material and is therefore the primary mechanism of creep-fatigue interaction. (author)

  5. Testing object Interactions

    NARCIS (Netherlands)

    Grüner, Andreas

    2010-01-01

    In this thesis we provide a unit testing approach for multi-purposes object-oriented programming languages in the style of Java and C#. Our approach includes the definition of a test specification language which results from extending the programming language with new designated specification

  6. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    Science.gov (United States)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  7. Material test data of SUS304 welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Asayama, Tai [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center; Kawakami, Tomohiro [Nuclear Energy System Incorporation, Tokyo (Japan)

    1999-10-01

    This report summarizes the material test data of SUS304 welded joints. Numbers of the data are as follows: Tensile tests 71 (Post-irradiation: 39, Others: 32), Creep tests 77 (Post-irradiation: 20, Others: 57), Fatigue tests 50 (Post-irradiation: 0), Creep-fatigue tests 14 (Post-irradiation: 0). This report consists of the printouts from 'the structural material data processing system'. (author)

  8. Some questions regarding the interaction of creep and fatigue

    International Nuclear Information System (INIS)

    James, L.A.

    1975-04-01

    Data are presented from fatigue-crack growth tests conducted on Type 304 S.S. in inert environments at elevated temperatures which show that the thermal-activation noted in similar tests run in air environments is not present in the inert environment. Similar observations from the literature are reviewed, including the observation that the time-dependency noted in tests conducted in elevated temperature air environments is also greatly suppressed in inert environments. These findings suggest that an interaction between the fatigue process and the corrosive air environments is responsible for the thermally activated time-dependent behavior often attributed to creep-fatigue interaction. Data are also presented which show that the fatigue-crack growth behavior of Type 304 S.S. subjected to significant creep damage prior to fatigue testing does not differ appreciably from the behavior of material not subjected to prior creep damage, again indicating minimal interaction between creep and fatigue. It is suggested that in the temperature range where pressure vessels and piping are generally designed to operate (i.e. below about one-half the absolute melting temperature of the alloy), the interaction between creep and fatigue is far less significant than once supposed, and that the major parameter interacting with the fatigue process is that of high-temperature corrosion. (39 references, 12 fig) (auth)

  9. Interaction of high cycle fatigue with high temperature creep in superalloy single crystals

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2002-01-01

    Roč. 93, č. 7 (2002), s. 661-665 ISSN 0044-3093 R&D Projects: GA AV ČR IAA2041002; GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z2041904 Keywords : Single crystals * Creep/fatigue interaction * Persistent slip bands Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.636, year: 2002

  10. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  11. Observations on the ductility of zircaloy-2 under simultaneous tension and bending

    International Nuclear Information System (INIS)

    Pettersson, K.

    1975-01-01

    The ductility of Zircaloy-2 in creep-fatigue interaction tests has been found to exceed the ductility in separate tensile tests. It was shown that the increase of ductility was due to either the suppression of the localized shear band instability causing final failure in a tensile test, or because the hydrostatic tension-shear stress ratio in the creep-fatigue test is lower than in the tensile test. Possible applications of the ductility increase in forming operations are suggested. (author)

  12. Plasma-Materials Interactions Test Facility

    International Nuclear Information System (INIS)

    Uckan, T.

    1986-11-01

    The Plasma-Materials Interactions Test Facility (PMITF), recently designed and constructed at Oak Ridge National Laboratory (ORNL), is an electron cyclotron resonance microwave plasma system with densities around 10 11 cm -3 and electron temperatures of 10-20 eV. The device consists of a mirror cell with high-field-side microwave injection and a heating power of up to 0.8 kW(cw) at 2.45 GHz. The facility will be used for studies of plasma-materials interactions and of particle physics in pump limiters and for development and testing of plasma edge diagnostics

  13. Automated Security Testing of Web Widget Interactions

    NARCIS (Netherlands)

    Bezemer, C.P.; Mesbah, A.; Van Deursen, A.

    2009-01-01

    This paper is a pre-print of: Cor-Paul Bezemer, Ali Mesbah, and Arie van Deursen. Automated Security Testing of Web Widget Interactions. In Proceedings of the 7th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering

  14. Validity of an Interactive Functional Reach Test.

    Science.gov (United States)

    Galen, Sujay S; Pardo, Vicky; Wyatt, Douglas; Diamond, Andrew; Brodith, Victor; Pavlov, Alex

    2015-08-01

    Videogaming platforms such as the Microsoft (Redmond, WA) Kinect(®) are increasingly being used in rehabilitation to improve balance performance and mobility. These gaming platforms do not have built-in clinical measures that offer clinically meaningful data. We have now developed software that will enable the Kinect sensor to assess a patient's balance using an interactive functional reach test (I-FRT). The aim of the study was to test the concurrent validity of the I-FRT and to establish the feasibility of implementing the I-FRT in a clinical setting. The concurrent validity of the I-FRT was tested among 20 healthy adults (mean age, 25.8±3.4 years; 14 women). The Functional Reach Test (FRT) was measured simultaneously by both the Kinect sensor using the I-FRT software and the Optotrak Certus(®) 3D motion-capture system (Northern Digital Inc., Waterloo, ON, Canada). The feasibility of implementing the I-FRT in a clinical setting was assessed by performing the I-FRT in 10 participants with mild balance impairments recruited from the outpatient physical therapy clinic (mean age, 55.8±13.5 years; four women) and obtaining their feedback using a NASA Task Load Index (NASA-TLX) questionnaire. There was moderate to good agreement between FRT measures made by the two measurement systems. The greatest agreement between the two measurement system was found with the Kinect sensor placed at a distance of 2.5 m [intraclass correlation coefficient (2,k)=0.786; PNASA/TLX questionnaire. FRT measures made using the Kinect sensor I-FRT software provides a valid clinical measure that can be used with the gaming platforms.

  15. Service-cycle component-feature specimen TMF testing of steam turbine rotor steels

    Energy Technology Data Exchange (ETDEWEB)

    Radosavljevic, M.; Holdsworth, S.R. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland); Mazza, E. [Eidgenoessische Materialpruefungs- und Forschungsanstalt, Duebendorf (Switzerland); Eidgenoessische Technische Hochschule (ETH), Zurich (Switzerland); Grossmann, P.; Ripamonti, L. [ALSTOM Power (Switzerland) Ltd., Baden (Switzerland)

    2010-07-01

    This paper reviews the methodology adopted in a Swiss Research Collaboration to devise a component-feature representative specimen geometry and the TMF cycle parameters necessary to closely simulate arduous steam turbine operating duty. Implementation of these service-like experimental conditions provides a practical indication of the effectiveness of deformation and crack initiation endurance predictions. Comprehensive post test inspection provides evidence to demonstrate the physical realism of the laboratory simulations in terms of the creep-fatigue damage generated during the benchmark tests. Mechanical response results and physical damage observations are presented and their practical implications discussed for the example of a 2%CrMoNiWV rotor service cycle. (orig.)

  16. Initial waste package interaction tests: status report

    International Nuclear Information System (INIS)

    Shade, J.W.; Bradley, D.J.

    1980-12-01

    This report describes the results of some initial investigations of the effects of rock media on the release of simulated fission products from a sngle waste form, PNL reference glass 76-68. All tests assemblies contained a minicanister prepared by pouring molten, U-doped 76-68 glass into a 2-cm-dia stanless steel tube closed at one end. The tubes were cut to 2.5 to 7.5 cm in length to expose a flat glass surface rimmed by the canister wall. A cylindrical, whole rock pellet, cut from one of the rock materials used, was placed on the glass surface then both the canister and rock pellet were packed in the same type of rock media ground to about 75 μm to complete the package. Rock materials used were a quartz monzonite basalt and bedded salt. These packages were run from 4 to 6 weeks in either 125 ml digestion bombs or 850 ml autoclaves capable of direct solution sampling, at either 250 or 150 0 C. Digestion bomb pressures were the vapor pressure of water, 600 psig at 250 0 C, and the autoclaves were pressurized at 2000 psig with an argon overpressure. In general, the solution chemistry of these initial package tests suggests that the rock media is the dominant controlling factor and that rock-water interaction may be similar to that observed in some geothermal areas. In no case was uranium observed in solution above 15 ppB. The observed leach rates of U glass not in contact with potential sinks (rock surfaces and alteration products) have been observed to be considerably higher. Thus the use of leach rates and U concentrations observed from binary leach experiments (waste-form water only) to ascertain long-term environmental consequences appear to be quite conservative compared to actual U release in the waste package experiments. Further evaluation, however, of fission product transport behavior and the role of alteration phases as fission product sinks is required

  17. Interactive Taste Tests Enhance Student Learning

    Science.gov (United States)

    Soh, Michael; Roth-Johnson, Elizabeth A.; Levis-Fitzgerald, Marc; Rowat, Amy

    2015-01-01

    If we could effectively engage students in general science curricula and lead them to recognize the everyday relevance of scientific concepts, we would significantly strengthen the understanding of science among our nation's future workforce. This article shows that increased levels of student cognition can be achieved through interactive taste…

  18. Data package for the Turkey Point material interaction test capsules

    International Nuclear Information System (INIS)

    Krogness, J.C.; Davis, R.B.

    1979-01-01

    Objective of the Materials Interaction Test (MIT) is to obtain interaction information on candidate package storage materials and geologies under prototypic temperatures in gamma and low level neutron fields. Compatibility, structural properties, and chemical transformations will be studied. The multiple test samples are contained within test capsules connected end-to-end to form a test train. Only passive instrumentation has been used to monitor temperatures and record neutron fluence. The test train contains seven capsules: three to test compatibility, two for structural tests, and two for chemical transformation studies. The materials tested are potential candidates for the spent fuel package canister and repository geologies

  19. Interactive test tool for interoperable C-ITS development

    NARCIS (Netherlands)

    Voronov, A.; Englund, C.; Bengtsson, H.H.; Chen, L.; Ploeg, J.; Jongh, J.F.C.M. de; Sluis, H.J.D. van de

    2015-01-01

    This paper presents the architecture of an Interactive Test Tool (ITT) for interoperability testing of Cooperative Intelligent Transport Systems (C-ITS). Cooperative systems are developed by different manufacturers at different locations, which makes interoperability testing a tedious task. Up until

  20. Data package for the Turkey Point material interaction test capsules

    International Nuclear Information System (INIS)

    Krogness, J.C.; Davis, R.B.

    1980-02-01

    Objective of the test is to obtain interaction information on candidate package storage materials and geologies under prototypic temperatures in gamma and low-level neutron fields. This document provides a fabrication record of the experiment

  1. NNWSI Phase II materials interaction test procedure and preliminary results

    International Nuclear Information System (INIS)

    Bates, J.K.; Gerding, T.J.

    1985-01-01

    The Nevada Nuclear Waste Storage Investigations (NNWSI) project is investigating the volcanic tuff beds of Yucca Mountain, Nevada, as a potential location for a high-level radioactive waste repository. This report describes a test method (Phase II) that has been developed to measure the release of radionuclides from the waste package under simulated repository conditions, and provides information on materials interactions that may occur in the repository. The results of 13 weeks of testing using the method are presented, and an analog test is described that investigates the relationship between the test method and expected repository conditions. 9 references, 10 figures, 11 tables

  2. Embedment Effect test on soil-structure interaction

    International Nuclear Information System (INIS)

    Nasuda, Toshiaki; Akino, Kinji; Izumi, Masanori.

    1991-01-01

    A project consisting of laboratory test and field test has been conducted to clarify the embedment effect on soil-structure interaction. The objective of this project is to obtain the data for improving and preparing seismic analysis codes regarding the behavior of embedded reactor buildings during earthquakes. This project was planned to study the effect of soil-structure interaction using small size soil-structure models as well as the large scale models. The project was started in April, 1986, and is scheduled to end in March, 1994. The laboratory test models and field test models, and the measurement with accelerometers and others are described. As the interim results, the natural frequency and damping factor increased, and the amplitude decreased by the embedment of the test models. Some earthquakes were recorded in a soft rock site. The epicenters of the earthquakes occurred in 1989 are shown. The field tests were carried out in three sites. Two sites were used for the dynamic test with four test models having 8 m x 8 m plane size and 10 m height. One site was used for the static test with one concrete block as a specimen. Two models represent BWR type reactor buildings, and two models represent PWR type buildings. (K.I.)

  3. Towards Automatic Testing of Reference Point Based Interactive Methods

    OpenAIRE

    Ojalehto, Vesa; Podkopaev, Dmitry; Miettinen, Kaisa

    2016-01-01

    In order to understand strengths and weaknesses of optimization algorithms, it is important to have access to different types of test problems, well defined performance indicators and analysis tools. Such tools are widely available for testing evolutionary multiobjective optimization algorithms. To our knowledge, there do not exist tools for analyzing the performance of interactive multiobjective optimization methods based on the reference point approach to communicating ...

  4. Improvement of turbine materials

    International Nuclear Information System (INIS)

    Jakobeit, W.; Pfeifer, J.P.

    1982-01-01

    Materials for turbine blades and rotors are discussed with a view to the following subjects: Long period creep behaviour, gas/metal reactions, fatigue behaviour in long-term and creep strength testing, fracture mechanics testing, creep/fatigue interactions, development of a turbine blade of TZM, jointing of TZM, decontamination. (orig./IHOE) [de

  5. Initial evaluation of an interactive test of sentence gist recognition.

    Science.gov (United States)

    Tye-Murray, N; Witt, S; Castelloe, J

    1996-12-01

    The laser videodisc-based Sentence Gist Recognition (SGR) test consists of sets of topically related sentences that are cued by short film clips. Clients respond to test items by selecting picture illustrations and may interact with the talker by using repair strategies when they do not recognize a test item. The two experiments, involving 40 and 35 adult subjects, respectively, indicated that the SGR may better predict subjective measures of speechreading and listening performance than more traditional audiologic sentence and nonsense syllable tests. Data from cochlear implant users indicated that the SGR accounted for a greater percentage of the variance for selected items of the Communication Profile for the Hearing-Impaired and the Speechreading Questionnaire for Cochlear-Implant Users than two other audiologic tests. As in previous work, subjects were most apt to ask the talker to repeat an utterance that they did not recognize than to ask the talker to restructure it. It is suggested that the SGR may reflect the interactive nature of conversation and provide a simulated real-world listening and/or speechreading task. The principles underlaying this test are consistent with the development of other computer technologies and concepts, such as compact discinteractive and virtual reality.

  6. Large scale sodium interactions. Part 1. Test facility design

    International Nuclear Information System (INIS)

    King, D.L.; Smaardyk, J.E.; Sallach, R.A.

    1977-01-01

    During the design of the test facility for large scale sodium interaction testing, an attempt was made to keep the system as simple and yet versatile as possible; therefore, a once through design was employed as opposed to any type of conventional sodium ''loop.'' The initial series of tests conducted at the facility call for rapidly dropping from 20 kg to 225 kg of sodium at temperatures from 825 0 K to 1125 0 K into concrete crucibles. The basic system layout is described. A commercial drum heater is used to melt the sodium which is in 55 gallon drums and then a slight argon pressurization is used to force the liquid sodium through a metallic filter and into a dump tank. Then the sodium dump tank is heated to the desired temperature. A diaphragm is mechanically ruptured and the sodium is dumped into a crucible that is housed inside a large steel test chamber

  7. Sodium-fuel interaction: dropping experiments and subassembly test

    International Nuclear Information System (INIS)

    Holtbecker, H.; Schins, H.; Jorzik, E.; Klein, K.

    1978-01-01

    Nine dropping tests, which bring together 2 to 4 kg of molten UO 2 with 150 l sodium, showed the incoherency and non-violence of these thermal interactions. The pressures can be described by sodium incipient boiling and bubble collapse; the UO 2 fragmentation by thermal stress and bubble collapse impact forces. The mildness of the interaction is principally due to the slowness and incoherency of UO 2 fragmentation. This means that parametric models which assume instantaneous mixing and fragmentation are of no use for the interpretation of dropping experiments. One parametric model, the Caldarola Fuel Coolant Interaction Variable Mass model, is being coupled to the two dimensional time dependent hydrodynamic REXCO-H code. In a first step the coupling is applicated to a monodimensional geometry. A subassembly test is proposed to validate the model. In this test rapid mixing between UO 2 and sodium has to be obtained. Dispersed molten UO 2 fuel is obtained by flashing injected sodium drops inside a UO 2 melt. This flashing is theoretically explained and modelled as a superheat limited explosion. The measured sodium drop dwell times of two experiments are compared to results obtained from the mentioned theory, which is the basis of the Press 2 Code

  8. A semiautomated computer-interactive dynamic impact testing system

    International Nuclear Information System (INIS)

    Alexander, D.J.; Nanstad, R.K.; Corwin, W.R.; Hutton, J.T.

    1989-01-01

    A computer-assisted semiautomated system has been developed for testing a variety of specimen types under dynamic impact conditions. The primary use of this system is for the testing of Charpy specimens. Full-, half-, and third-size specimens have been tested, both in the lab and remotely in a hot cell for irradiated specimens. Specimens are loaded into a transfer device which moves the specimen into a chamber, where a hot air gun is used to heat the specimen, or cold nitrogen gas is used for cooling, as required. The specimen is then quickly transferred from the furnace to the anvils and then broken. This system incorporates an instrumented tup to determine the change in voltage during the fracture process. These data are analyzed by the computer system after the test is complete. The voltage-time trace is recorded with a digital oscilloscope, transferred to the computer, and analyzed. The analysis program incorporates several unique features. It interacts with the operator and identifies the maximum voltage during the test, the amount of rapid fracture during the test (if any), and the end of the fracture process. The program then calculates the area to maximum voltage and the total area under the voltage-time curve. The data acquisition and analysis part of the system can also be used to conduct other dynamic testing. Dynamic tear and precracked specimens can be tested with an instrumented tup and analyzed in a similar manner. 3 refs., 7 figs

  9. Jet-Surface Interaction - High Aspect Ratio Nozzle Test: Test Summary

    Science.gov (United States)

    Brown, Clifford A.

    2016-01-01

    The Jet-Surface Interaction High Aspect Ratio Nozzle Test was conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center in the fall of 2015. There were four primary goals specified for this test: (1) extend the current noise database for rectangular nozzles to higher aspect ratios, (2) verify data previously acquired at small-scale with data from a larger model, (3) acquired jet-surface interaction noise data suitable for creating verifying empirical noise models and (4) investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise. These slides give a summary of the test with representative results for each goal.

  10. The Space Station Photovoltaic Panels Plasma Interaction Test Program: Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1989-01-01

    The Plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  11. The Space Station photovoltaic panels plasma interaction test program - Test plan and results

    Science.gov (United States)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1990-01-01

    The plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  12. A test to evaluation non-linear soil structure interaction

    International Nuclear Information System (INIS)

    Hagiwara, T.; Kitada, Y.

    2005-01-01

    JNES is planning a new project to study non-linear soil-structure interaction (SSI) effect under large earthquake ground motions equivalent to and/or over a design earthquake ground motion of S2. Concerning the SSI test, it is pointed out that handling of the scale effect of the specimen taking into account the surrounding soil on the earthquake response evaluation to the actual structure is essential issue for the scaled model test. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost. With this motivation, we have studied the test methodology which applying blasting power as for a big earthquake ground motion. The information from a coalmine company in the U.S.A. indicates that the works performed in the surface coalmine to blast a rock covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can apply artificial motions generated by the work if we construct a building model at a closed point to the blasting work area. The major purposes of the test are to understand (a) basic earthquake response characteristics of a Nuclear Power Plant (NPP) reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In the paper of ICONE-13, we will introduce the test method and basic characteristics of measured artificial ground motions generated by the blasting works on an actual site. (authors)

  13. Overview of the main challenges for the engineering design of the test facilities system of IFMIF

    International Nuclear Information System (INIS)

    Molla, J.; Nakamura, K.

    2009-01-01

    High intense radiation fields were demanded to IFMIF to address the lack of information on effects in materials due to radiation fields with fusion reactor features. Such intense radiation fields will also produce a number of unwanted effects in exposed materials and components. The main difficulties to achieve a reliable engineering design of the Test Facilities System during the Engineering Validation and the Engineering Design phase of IFMIF now under development are reviewed in this paper. The most challenging activities will be the design of the high flux test module, the creep fatigue test module, the test cell and the remote handling system. The intense radiation fields in the irradiation area and the high availability required for IFMIF (70%) are the main reasons for these difficulties.

  14. Cold leg condensation tests. Task C. Steam--water interaction tests

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Loiselle, V.

    1974-03-01

    A report is presented of tests to determine the condensation efficiency of ECC water injected into a quality fluid mixture flowing through the cold leg. In particular, a specific objective was to determine if the mixture of ECC water and quality fluid reached thermodynamic equilibrium before exiting the cold leg. Further, the stability of the ECC water/quality fluid interaction would be assessed by interpretation of thermocouple records and utilization of a section of cold leg piping with view ports to film the interaction whenever possible. The cold leg condensation tests showed complete condensation of the 5 lbm/sec steam quality mixtures in the cold leg by the ECC water flows of the test matrix. The cold leg exit fluid temperature remained below the saturation temperature and had good agreement with the predicted cold leg outlet temperature, calculated assuming total condensation. (U.S.)

  15. Interaction between Harmane and Nicotinic in the Passive Avoidance Test

    Directory of Open Access Journals (Sweden)

    M Piri

    2011-01-01

    Full Text Available Introduction & Objective: A number of β-carboline alkaloids such as harmane are naturally present in the human food chain. Furthermore, some plants which contain β-carboline have behavioral effects such as hallucination. In the present study, the effect of intra-dorsal hippocampus injection of nicotinic receptor agonist on memory impairment induced by harmane was examined in mice. Materials & Methods: This study was conducted at Shahid Beheshti University in 2009. Two hundred and forty mice were anesthetized with intra-peritoneal injection of ketamine hydrochloride, plus xylazine which afterwards were placed in a stereotaxic apparatus. Two cannuale were placed in the CA1 regions of the dorsal hippocampus. All animals were allowed to recover for a total week before beginning of the behavioral testing. After that, the animals were trained in a step-down type inhibitory avoidance task and tested 24 hours after training to measure step-down latency as a scale of memory. Results: Pre-training and post-training, intra-peritoneal injection of harmane impairs inhibitory avoidance memory, but pre-testing injection of harmane did not alter memory retrieval. Pre-testing administration of high dose of nicotine (0.5 µg/mice, intra-CA1 decreased memory retrieval. On the other hand, pre-test intra-CA1 injection of ineffective doses of nicotine (0.1 and 2.5 µg/mice fully reversed harmane induced impairment of memory. Conclusion: The present results indicated that complex interaction exists between nicotinic receptor of dorsal hippocampus and the impairment of inhibitory avoidance memory induced by harmane.

  16. High sensitivity tests of the standard model for electroweak interactions

    International Nuclear Information System (INIS)

    1994-01-01

    The work done on this project focused on two LAMPF experiments. The MEGA experiment is a high-sensitivity search for the lepton family number violating decay μ → eγ to a sensitivity which, measured in terms of the branching ratio, BR = [μ → eγ]/[μ eν μ ν e ] ∼ 10 -13 , will be over two orders of magnitude better than previously reported values. The second is a precision measurement of the Michel ρ parameter from the positron energy spectrum of μ → eν μ ν e to test the predictions V-A theory of weak interactions. In this experiment the uncertainty in the measurement of the Michel ρ parameter is expected to be a factor of three lower than the present reported value. The detectors are operational, and data taking has begun

  17. High sensitivity tests of the standard model for electroweak interactions

    International Nuclear Information System (INIS)

    Koetke, D.D.; Manweiler, R.W.; Shirvel Stanislaus, T.D.

    1993-01-01

    The work done on this project was focused on two LAMPF experiments. The MEGA experiment, a high-sensitivity search for the lepton-family-number-violating decay μ → e γ to a sensitivity which, measured in terms of the branching ratio, BR = [μ → e γ]/[μ → ev μ v e ] ∼ 10 -13 , is over two orders of magnitude better than previously reported values. The second is a precision measurement of the Michel ρ parameter from the positron energy spectrum of μ → ev μ v e to test the V-A theory of weak interactions. The uncertainty in the measurement of the Michel ρ parameter is expected to be a factor of three lower than the present reported value

  18. Effect of grain size on high temperature low-cycle fatigue properties of inconel 617

    International Nuclear Information System (INIS)

    Hattori, Hiroshi; Kitagawa, Masaki; Ohtomo, Akira

    1982-01-01

    The effect of grain size on the high temperature low-cycle fatigue behavior and other material strength properties of Inconel 617 was studied at 1 273 K in air. The strain controlled low-cycle fatigue tests were conducted with a symmetrical (FF type) and an asymmetrical (SF type) strain wave forms. The latter wave form was used for the evaluation of creep-fatigue interaction. The main results obtained in this study are as follows: 1) The tensile strength slightly increased with the increase of the grain diameter. On the other hand, the tensile ductility remarkabley decreased with the increase of the grain diameter. 2) The creep rupture life remarkabley increased with the increase of the grain diameter, especially at the lower stress levels. The effect of grain size on creep ductility has not detailed. 3) The low-cycle fatigue life remarkably decreased with the increase of the grain diameter, especially at the lower strain ranges. 4) The creep-fatigue life was less sensitive to the grain diameter than the fatigue life, because the grain size effects on creep and on fatigue were contrary. It is seemed that the creep-fatigue life is determined by the proportion of the creep and fatigue contribution. 5) The fatigue and creep-fatigue test results have good relations with the tensile and creep ductilities at the test temperature. (author)

  19. Field tests on partial embedment effects (embedment effect tests on soil-structure interaction)

    International Nuclear Information System (INIS)

    Kurimoto, O.; Tsunoda, T.; Inoue, T.; Izumi, M.; Kusakabe, K.; Akino, K.

    1993-01-01

    A series of Model Tests of Embedment Effect on Reactor Buildings has been carried out by the Nuclear Power Engineering Corporation (NUPEC), under the sponsorship of the Ministry of International Trade and lndustry (MITI) of Japan. The nuclear reactor buildings are partially embedded due to conditions for the construction or building arrangement in Japan. It is necessary to verify the partial embedment effects by experiments and analytical studies in order to incorporate the effects in the seismic design. Forced vibration tests, therefore, were performed using a model with several types of embedment. Correlated simulation analyses were also performed and the characteristics of partial embedment effects on soil-structure interaction were evaluated. (author)

  20. Mechanical properties test data of Alloy 718 for liquid metal fast breeder reactor applications

    International Nuclear Information System (INIS)

    Korth, G.E.

    1983-01-01

    Mechanical property test data are reported for Alloy 718 with two heat treatments: conventional heat treatment (CHT) for base metal and Idaho National Engineering Laboratory (INEL) heat treatment (IHT) for base and weld metal. Tests were conducted in air from 24 to 704 degree C and include elastic properties (Young's modulus, shear modulus, Poisson's ratio), tensile properties, creep-rupture properties, fatigue properties, creep-fatigue properties, and Charpy impact behavior. Effects of long term thermal aging at 538, 593, 649, and 704 degree C for times to 25,000 h are also reported for CHT material (tensile, creep-rupture, fatigue, and Charpy), and IHT material (tensile, and Charpy). 18 refs., 63 figs., 36 tabs

  1. Analytical study on model tests of soil-structure interaction

    International Nuclear Information System (INIS)

    Odajima, M.; Suzuki, S.; Akino, K.

    1987-01-01

    Since nuclear power plant (NPP) structures are stiff, heavy and partly-embedded, the behavior of those structures during an earthquake depends on the vibrational characteristics of not only the structure but also the soil. Accordingly, seismic response analyses considering the effects of soil-structure interaction (SSI) are extremely important for seismic design of NPP structures. Many studies have been conducted on analytical techniques concerning SSI and various analytical models and approaches have been proposed. Based on the studies, SSI analytical codes (computer programs) for NPP structures have been improved at JINS (Japan Institute of Nuclear Safety), one of the departments of NUPEC (Nuclear Power Engineering Test Center) in Japan. These codes are soil-spring lumped-mass code (SANLUM), finite element code (SANSSI), thin layered element code (SANSOL). In proceeding with the improvement of the analytical codes, in-situ large-scale forced vibration SSI tests were performed using models simulating light water reactor buildings, and simulation analyses were performed to verify the codes. This paper presents an analytical study to demonstrate the usefulness of the codes

  2. 20F beta spectrum shape and weak interaction tests

    Science.gov (United States)

    Voytas, Paul; George, Elizabeth; Chuna, Thomas; Naviliat-Cuncic, Oscar; Hughes, Max; Huyan, Xueying; Minamisono, Kei; Paulauskas, Stanley

    2016-09-01

    Precision measurements of the shape of beta spectra can test our understanding of the weak interaction. We are carrying out a measurement of the shape of the energy spectrum of β particles from 20F decay. The primary motivation is to test the so-called strong form of the conserved vector current (CVC) hypothesis. The measurement should also enable us to place competitive limits on the contributions of exotic tensor couplings in beta decay. We aim to achieve a relative precision better than 3% on the linear contribution to the shape. This represents an order of magnitude improvement compared to previous experiments in 20F. In order to control systematic effects, we are using a technique that takes advantage of high energy radioactive beams at the NSCL to implant the decaying nuclei in scintillation detectors deeply enough that the emitted beta particles cannot escape. The β-particle energy is measured with the implantation detector after switching off the implantation beam. Ancillary detectors are used to identify the 1.633-MeV γ-rays following the 20F β decay for coincidence measurements in order to tag the transition of interest and to reduce backgrounds. We report on the status of the analysis. Supported in part with Awards from the NSCL PAC and the National Science Foundation under Grant No. PHY-1506084.

  3. Thematic Apperception Test: an original proposal for interaction analysis

    Directory of Open Access Journals (Sweden)

    Doriana Dipaola

    2015-12-01

    Full Text Available The TAT as projective technique gives the opportunity to explore the inner world and the intra-psychic functioning, as well as the objectual representations and the prevailing thinking processes. Our hypothesis is that the TAT could also be deployed as a valid tool in the analysis of inter-personal functioning, specifically within the couple. From this assumption originates our proposal for an original methodology of TAT deployment and reading, which integrates the classical individual TAT methodology with the Common Rorschach method suggested by Willi. The goal is to experiment a parallel utilisation of the test that could contribute to the understanding of personalities and of how these intertwine in couple interaction. “In the relationship with the partner, the personality takes new shapes, given personality and character traits are strengthened, while others lose importance”, (Theodore Lidz, in Willi, 1990. The couple TAT presupposes a sequence of pictures proposed following procedures identical to the Common Rorschach ones to the single individuals at first and then to the couple. From the initial individual task follows the one of building a commonly shared history starting from the stimulus. The suggested methodology shall be exemplified through the presentation of clinical cases belonging to the research sample. The comprehension of the inter-personal dynamic, in a common task, could allow to explore the ways in which conflict expresses itself, the roles and prospects for collaboration, the “generativity” of the couple and the management of affects and anxieties in the interaction and could be successfully deployed as a tool in the context of couple counselling.

  4. Does interaction matter? Testing whether a confidence heuristic can replace interaction in collective decision-making.

    Science.gov (United States)

    Bang, Dan; Fusaroli, Riccardo; Tylén, Kristian; Olsen, Karsten; Latham, Peter E; Lau, Jennifer Y F; Roepstorff, Andreas; Rees, Geraint; Frith, Chris D; Bahrami, Bahador

    2014-05-01

    In a range of contexts, individuals arrive at collective decisions by sharing confidence in their judgements. This tendency to evaluate the reliability of information by the confidence with which it is expressed has been termed the 'confidence heuristic'. We tested two ways of implementing the confidence heuristic in the context of a collective perceptual decision-making task: either directly, by opting for the judgement made with higher confidence, or indirectly, by opting for the faster judgement, exploiting an inverse correlation between confidence and reaction time. We found that the success of these heuristics depends on how similar individuals are in terms of the reliability of their judgements and, more importantly, that for dissimilar individuals such heuristics are dramatically inferior to interaction. Interaction allows individuals to alleviate, but not fully resolve, differences in the reliability of their judgements. We discuss the implications of these findings for models of confidence and collective decision-making. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Gene-based testing of interactions in association studies of quantitative traits.

    Directory of Open Access Journals (Sweden)

    Li Ma

    Full Text Available Various methods have been developed for identifying gene-gene interactions in genome-wide association studies (GWAS. However, most methods focus on individual markers as the testing unit, and the large number of such tests drastically erodes statistical power. In this study, we propose novel interaction tests of quantitative traits that are gene-based and that confer advantage in both statistical power and biological interpretation. The framework of gene-based gene-gene interaction (GGG tests combine marker-based interaction tests between all pairs of markers in two genes to produce a gene-level test for interaction between the two. The tests are based on an analytical formula we derive for the correlation between marker-based interaction tests due to linkage disequilibrium. We propose four GGG tests that extend the following P value combining methods: minimum P value, extended Simes procedure, truncated tail strength, and truncated P value product. Extensive simulations point to correct type I error rates of all tests and show that the two truncated tests are more powerful than the other tests in cases of markers involved in the underlying interaction not being directly genotyped and in cases of multiple underlying interactions. We applied our tests to pairs of genes that exhibit a protein-protein interaction to test for gene-level interactions underlying lipid levels using genotype data from the Atherosclerosis Risk in Communities study. We identified five novel interactions that are not evident from marker-based interaction testing and successfully replicated one of these interactions, between SMAD3 and NEDD9, in an independent sample from the Multi-Ethnic Study of Atherosclerosis. We conclude that our GGG tests show improved power to identify gene-level interactions in existing, as well as emerging, association studies.

  6. Tests for genetic interactions in type 1 diabetes

    DEFF Research Database (Denmark)

    Morahan, Grant; Mehta, Munish; James, Ian

    2011-01-01

    Interactions between genetic and environmental factors lead to immune dysregulation causing type 1 diabetes and other autoimmune disorders. Recently, many common genetic variants have been associated with type 1 diabetes risk, but each has modest individual effects. Familial clustering of type 1...... diabetes has not been explained fully and could arise from many factors, including undetected genetic variation and gene interactions....

  7. Java Test Driver Generation from Object-Oriented Interaction Traces

    NARCIS (Netherlands)

    M.M. Bonsangue (Marcello); F.S. de Boer (Frank); A. Gruener; M. Steffen

    2009-01-01

    htmlabstractIn the context of test-driven development for object-oriented programs, mock objects are increasingly used for unit testing. Several Java mock object frameworks exist, which all have in common that mock objects, realizing the test environment, are directly specied at the Java program

  8. Design, testing, and delivery of an interactive graphics display subsystem

    Science.gov (United States)

    Holmes, B.

    1973-01-01

    An interactive graphics display system was designed to be used in locating components on a printed circuit card and outputting data concerning their thermal values. The manner in which this was accomplished in terms of both hardware and software is described. An analysis of the accuracy of this approach is also included.

  9. Tests of fundamental symmetries and interactions - using nuclei and lasers

    NARCIS (Netherlands)

    Jungmann, Klaus Peter

    State of the art laser technology and modern spectroscopic methods allow to address issues of fundamental symmetries and fundamental interactions in atoms with high precision experiments. In particular the discrete symmetries Parity (P), Charge Conjugation (C), Time Reversal (T) as well as their

  10. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of ∫ 0 1 F 2 (x, Q 2 )dx eliminate already all strong interaction field theories except QCD. A detailed study of scaling violations of F 2 (x, Q 2 ) in QCD shows their insensitivity to the gluon content of the hadron at presently measured values of Q 2 . (orig.) [de

  11. Cement/bentonite interaction. Results from 16 month laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Karnland, O. [Clay Technology AB, Lund (Sweden)

    1997-12-01

    The work concerns possible bentonite clay mineral alteration in constructions with bentonite in close contact with cement, and the effect of such changes on bentonite buffer properties. The investigation comprises a 16 months laboratory test series with hydrothermal cell tests, percolation tests and diffusion tests. MX-80 Wyoming bentonite was used in all tests. Two types of artificial cement pore water solutions were used in the percolation and diffusion tests. The swelling pressure and the hydraulic conductivity were measured continuously in the percolation tests. After termination, the clay was analyzed with respect to changes in element distribution, mineralogy and shear strength. The water solutions were analyzed with respect to pH, cations and major anions. The results concerning chemical and mineralogical changes are in summary: Ion exchange in the montmorillonite until equilibrium with cement pore-water ions was reached; Increase in cation exchange capacity; Dissolution of original cristobalite; Increase in quartz content; Minor increase in illite content; Minor formation of chlorite; Formation of CSH(I); Wash away of CSH-gel into surrounding water. A large decrease in swelling pressure and a moderate increase in hydraulic conductivity were recorded in the samples percolated by SULFACEM pore-water solution. The mineralogical alterations only concerned a minor part of the total bentonite mass and the changes in physical properties were therefore most likely due to the replacement of the original charge balancing cation by cement pore-water cations. Comparisons between the current test result and results from 4 month tests indicate that the rates of illite and chlorite formation were reduced during the tests. The presence of zeolites in the clay could not be ensured. However, the discovery of CSH material is important since CSH is expected to precede the formation of zeolites 5 refs, 48 figs, 11 tabs

  12. Contrast media: interactions with other drugs and clinical tests

    International Nuclear Information System (INIS)

    Morcos, Sameh K.; Exley, C.M.; Thomsen, Henrik S.

    2005-01-01

    Many patients with multiple medical problems who are receiving a variety of drugs are investigated with imaging techniques which require intravascular contrast media. The Contrast Media Safety Committee of the European Society of Urogenital Radiology therefore decided to review the literature and to draw up simple guidelines on interactions between contrast media and other drugs. An extensive literature search was carried out and summarized in a report. Based on the available information, simple guidelines have been drawn up. The report and guidelines were discussed at the 11th European Symposium on Urogenital Radiology in Santiago de Compostela. Contrast media may interact with other drugs, and may interfere with isotope studies and biochemical measurements. Awareness of the patient drug history is important to avoid potential hazards. Simple guidelines are presented. (orig.)

  13. Tests of electroweak interactions at CERN's LEP Collider

    Science.gov (United States)

    Fearnley, T. A.

    1995-08-01

    Precision measurements of electroweak interactions at the Z0 energy are performed at four experiments at the Large Electron Positron (LEP) Collider at CERN in Geneva, Switzerland. The large amount of data obtained from 1989 until today allows detailed comparisons with the predictions made by the Standard Model. Within the experimental errors the agreement with the Standard Model is good. Fits to the LEP data allow an indirect determination of the mass of the top quark: Mt=173+12+18-13-20 GeV, assuming a Higgs boson mass of 300 GeV. The first errors reflect the experimental errors (systematic and statistical) on the measurements. The second errors correspond to the variation of the central value when varying the Higgs mass between 60 and 1000 GeV. This paper reviews the results of the measurements of electroweak interactions, and compares the results with predictions made by the Standard Model.

  14. Comparison of Think-Aloud and Constructive Interaction in Usability Testing with Children

    DEFF Research Database (Denmark)

    Als, Benedikte Skibsted; Jensen, Janne Jul; Skov, Mikael B.

    2005-01-01

    Constructive interaction provides natural thinking-aloud as test subjects collaborate to solve tasks. Since children may face difficulties in following instructions for a standard think-aloud test, constructive interaction has been suggested as evaluation method when usability testing with childr......, the acquainted pairs reported that they had to put less effort into the testing than the think-aloud and non-acquainted children....

  15. Buyer–supplier interaction in business-to-business services : A typology test using case research

    NARCIS (Netherlands)

    van der Valk, W.; Wynstra, F.

    2012-01-01

    We empirically test a theory specifying distinct ideal interaction patterns for four business-to-business service types, which differ with regard to how they are used by the buying company. The ideal interaction patterns are conceptualised as configurations of five different interaction dimensions:

  16. Buyer-supplier interaction in business-to-business services : a typology test using case research

    NARCIS (Netherlands)

    Valk, van der W.; Wynstra, J.Y.F.

    2012-01-01

    We empirically test a theory specifying distinct ideal interaction patterns for four business-to-business service types, which differ with regard to how they are used by the buying company. The ideal interaction patterns are conceptualised as configurations of five different interaction dimensions:

  17. Discriminative deep inelastic tests of strong interaction field theories

    International Nuclear Information System (INIS)

    Glueck, M.; Reya, E.

    1979-02-01

    It is demonstrated that recent measurements of F 2 (x,Q 2 ) dx eliminate already all strong interaction field theories which do not include colored quarks as well as colored vector gluons. Detailed studies of scaling violations in F 2 (x,Q 2 ) cannot discriminate between a local gauge invariant theory (QCD) and one which has no local color gauge invariance, i.e. no triple-gluon coupling. This implies that all calculations on scaling violations done so far are insensitive to the gluon self-coupling, the latter might perhaps be delineated with future ep colliding beam facilities. (orig.) [de

  18. Shaking table test and analysis of embedded structure soil interaction considering input motion

    International Nuclear Information System (INIS)

    Matsushima, Y.; Mizuno, H.; Machida, N.; Sato, K.; Okano, H.

    1987-01-01

    The dynamic interaction between soil and structure is decomposed into inertial interaction (II) and kinematic interaction (KI). II denotes the interaction due to inertial force applied on foundations. KI denotes the interaction of massless foundations subjected to seismic waves. Forced vibration tests by exciters are not enough to evaluate the complete soil-structure interaction due to the lack of KI. To clarify the effects of KI on the seismic response of structure, the authors intended to carry out shaking table tests of the interaction between the soil and the embedded structure. A method to decompose II and KI is introduced which reveals the construction of embedment effects. Finally, the authors discuss the validity of three kinds of simulation analyses, that is, two-dimensional, approximate three-dimensional and rigorous three-dimensional analyses, comparing with the test results

  19. Computer-aided system for interactive psychomotor testing

    Science.gov (United States)

    Selivanova, Karina G.; Ignashchuk, Olena V.; Koval, Leonid G.; Kilivnik, Volodymyr S.; Zlepko, Alexandra S.; Sawicki, Daniel; Kalizhanova, Aliya; Zhanpeisova, Aizhan; Smailova, Saule

    2017-08-01

    Nowadays research of psychomotor actions has taken a special place in education, sports, medicine, psychology etc. Development of computer system for psychomotor testing could help solve many operational problems in psychoneurology and psychophysiology and also determine the individual characteristics of fine motor skills. This is particularly relevant issue when it comes to children, students, athletes for definition of personal and professional features. The article presents the dynamics of a developing psychomotor skills and application in the training process of means. The results of testing indicated their significant impact on psychomotor skills development.

  20. A combination test for detection of gene-environment interaction in cohort studies.

    Science.gov (United States)

    Coombes, Brandon; Basu, Saonli; McGue, Matt

    2017-07-01

    Identifying gene-environment (G-E) interactions can contribute to a better understanding of disease etiology, which may help researchers develop disease prevention strategies and interventions. One big criticism of studying G-E interaction is the lack of power due to sample size. Studies often restrict the interaction search to the top few hundred hits from a genome-wide association study or focus on potential candidate genes. In this paper, we test interactions between a candidate gene and an environmental factor to improve power by analyzing multiple variants within a gene. We extend recently developed score statistic based genetic association testing approaches to the G-E interaction testing problem. We also propose tests for interaction using gene-based summary measures that pool variants together. Although it has recently been shown that these summary measures can be biased and may lead to inflated type I error, we show that under several realistic scenarios, we can still provide valid tests of interaction. These tests use significantly less degrees of freedom and thus can have much higher power to detect interaction. Additionally, we demonstrate that the iSeq-aSum-min test, which combines a gene-based summary measure test, iSeq-aSum-G, and an interaction-based summary measure test, iSeq-aSum-I, provides a powerful alternative to test G-E interaction. We demonstrate the performance of these approaches using simulation studies and illustrate their performance to study interaction between the SNPs in several candidate genes and family climate environment on alcohol consumption using the Minnesota Center for Twin and Family Research dataset. © 2017 WILEY PERIODICALS, INC.

  1. Effects of Strength of Accent on an L2 Interactive Lecture Listening Comprehension Test

    Science.gov (United States)

    Ockey, Gary J.; Papageorgiou, Spiros; French, Robert

    2016-01-01

    This article reports on a study which aimed to determine the effect of strength of accent on listening comprehension of interactive lectures. Test takers (N = 21,726) listened to an interactive lecture given by one of nine speakers and responded to six comprehension items. The test taker responses were analyzed with the Rasch computer program…

  2. Thermal-Interaction Matrix For Resistive Test Structure

    Science.gov (United States)

    Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser

    1990-01-01

    Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.

  3. Model test on interaction of reactor building and soil. Part 1

    International Nuclear Information System (INIS)

    Iguchi, M.; Akino, K.; Kiva, Y.

    1989-01-01

    Theoretical and experimental studies on the effects of dynamic interaction between structures and soil have been carried out in recent years. Most of the dynamic tests, however, have been conducted using comparatively small-scale models. In order to evaluate the effects of soil-structure interaction for rigid structure such as reactor building, a series of tests, including forced vibration test and earthquake observations, was carried out. Large-scale models constructed on an actual soil were used. These tests included forced vibration tests on individual foundations, on foundations with superstructures, on cross interaction through the soil between adjacent structures. Tests on the embedded effects of foundation, on artificial ground-shaking, on large amplitude excitation, and aging effects in soil properties were performed. This paper describes the results of forced vibration tests and analyses of cross interaction through the soil between adjacent structures

  4. Remote Control and Testing of the Interactive TV-Decoder

    Directory of Open Access Journals (Sweden)

    K. Vlcek

    1995-12-01

    Full Text Available The article deals with assembling and application of a complex sequential circuit VHDL (VHSIC (Very High-Speed Integrated Circuit Hardware Description Language model. The circuit model is a core of a cryptographic device for the signal encoding and decoding of discreet transmissions by TV-cable net. The cryptographic algorithm is changable according to the user's wishes. The principles of creation and example implementations are presented in the article. The behavioural model is used to minimize mistakes in the ASICs (Application Specific Integrated Circuits. The circuit implementation uses the FPGA (Field Programmable Gate Array technology. The diagnostics of the circuit is based on remote testing by the IEEE Std 1149.1-1990. The VHDL model of diagnostic subsystem is created as an orthogonal model in relation to the cryptographic circuit VHDL model.

  5. Melt/concrete interactions: the Sandia experimental program, model development, and code comparison test

    International Nuclear Information System (INIS)

    Powers, D.A.; Muir, J.F.

    1979-01-01

    High temperature melt/concrete interactions have been studied both experimentally and analytically at Sandia under sponsorship of Reactor Safety Research of the US Nuclear Regulatory Commission. The purpose of these studies has been to develop an understanding of these interactions suitable for risk assessment. Results of the experimental program are summarized and a computer model of melt/concrete interactions is described. A melt/concrete interaction test that will allow this and other models of the interaction to be compared is also described

  6. The Influence of Anxiety and Quality of Interaction on Collaborative Test Performance

    Science.gov (United States)

    Pandey, Carol; Kapitanoff, Susan

    2011-01-01

    This research investigated the relationships among test performance, anxiety, and the quality of interaction during collaborative testing of college students. It also explored which students are most likely to benefit from collaborative testing. It was randomly determined whether a student would take each of six examinations alone or with a…

  7. Testing for constant nonparametric effects in general semiparametric regression models with interactions

    KAUST Repository

    Wei, Jiawei; Carroll, Raymond J.; Maity, Arnab

    2011-01-01

    We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work

  8. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  9. Large scale sodium interactions. Part 2. Preliminary test results for limestone concrete

    International Nuclear Information System (INIS)

    Smaardyk, J.E.; Sutherland, H.J.; King, D.L.; Dahlgren, D.A.

    1977-01-01

    Any sodium cooled reactor system must consider the interaction of hot sodium with cell liners, and given either a failed liner or a hypothetical core disruptive accident, the interaction of hot sodium with concrete. The data base available for safety assessments involving these interactions is limited, especially for the concrete and failed liner interactions. To better understand what happens when hot sodium comes in contact with concrete, a series of tests is being carried out to investigate sodium-concrete reactions under conditions which are similar to actual reactor accident conditions. Tests cover the cases of sodium spills on bare concrete and on cells with defective steel liners. Specific objectives have been to obtain a complete description of the sodium/concrete interaction including heat balance, gas evolution and flow, movement and heat generation of the reaction zone, reaction product formation, and the layering or movement of the products

  10. Review of time-dependent fatigue behavior and life prediction for 2 1/4 Cr-1 Mo steel

    International Nuclear Information System (INIS)

    Booker, M.K.; Majumdar, S.

    1982-01-01

    Available data on creep-fatigue life and fracture behavior of 2 1/4 Cr-1 Mo steel are reviewed. Whereas creep-fatigue interaction is important for Type 304 stainless steel, oxidation effects appear to dominate the time-dependent fatigue behavior of 2 1/4 Cr-1 Mo steel. Four of the currently available predictive methods - the Linear Damage Rule, Frequency Separation Equation, Strain Range Partitioning Equation, and Damage Rate Equation - are evaluated for their predictive capability. Variations in the parameters for the various predictive methods with temperature, heat of material, heat treatment, and environment are investigated. Relative trends in the lives predicted by the various methods as functions of test duration, waveshape, etc., are discussed. The predictive methods will need modification in order to account for oxidation and aging effects in the 2 1/4 Cr-1 Mo steel. Future tests that will emphasize the difference between the various predictive methods are proposed

  11. The Sally-Anne Test: An Interactional Analysis of a Dyadic Assessment

    Science.gov (United States)

    Korkiakangas, Terhi; Dindar, Katja; Laitila, Aarno; Kärnä, Eija

    2016-01-01

    Background: The Sally-Anne test has been extensively used to examine children's theory of mind understanding. Many task-related factors have been suggested to impact children's performance on this test. Yet little is known about the interactional aspects of such dyadic assessment situations that might contribute to the ways in which children…

  12. THE SIMULATED SOCIAL-INTERACTION TEST - A PSYCHOMETRIC EVALUATION WITH DUTCH SOCIAL PHOBIC PATIENTS

    NARCIS (Netherlands)

    MERSCH, PPA; BREUKERS, P; EMMELKAMP, PMG

    1992-01-01

    The Simulated Social Interaction Test (SSIT) was translated and adjusted for use on a population of Dutch males and females. Seventy-four social phobic patients were assessed with the SSIT, a conversation test, and an interview with an independent observer. Results show that the SSIT is a relatively

  13. Melt water interaction tests. PREMIX tests PM10 and PM11

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, A.; Schuetz, W.; Will, H. [Forschungszentrum Karlsruhe Inst. fuer Reaktorsicherheit, Karlsruhe (Germany)

    1998-01-01

    A series of experiments is being performed in the PREMIX test facility in which the mixing behaviour is investigated of a hot alumina melt discharged into water. The major parameters have been: the melt mass, the number of nozzles, the distance between the nozzle and the water, and the depth of the water. The paper describes the last two tests in which 20 kg of melt were released through one and three nozzles, respectively, directly into the water whose depth was 500 mm. The melt penetration and the associated phenomena of mixing are described by means of high-speed films and various measurements. The steam production and, subsequently, the pressure increased markedly only after the melt had reached the bottom of the pool. Spreading of the melt across the bottom caused violent boiling in both tests. Whereas the boiling lasted for minutes in the single-jet test, a steam explosion occurred in the triple-jet test about one second after the start of melt penetration. (author)

  14. Testing GxG interactions between coinfecting microbial parasite genotypes within hosts

    Directory of Open Access Journals (Sweden)

    Rebecca D Schulte

    2014-05-01

    Full Text Available Host-parasite interactions represent one of the strongest selection pressures in nature. They are often governed by genotype-specific (GxG interactions resulting in host genotypes that differ in resistance and parasite genotypes that differ in virulence depending on the antagonist’s genotype. Another type of GxG interactions, which is often neglected but which certainly influences host-parasite interactions, are those between coinfecting parasite genotypes. Mechanistically, within-host parasite interactions may range from competition for limited host resources to cooperation for more efficient host exploitation. The exact type of interaction, i.e. whether competitive or cooperative, is known to affect life-history traits such as virulence. However, the latter has been shown for chosen genotype combinations only, not considering whether the specific genotype combination per se may influence the interaction (i.e. GxG interactions. Here, we want to test for the presence of GxG interactions between coinfections of the bacterium Bacillus thuringiensis infecting the nematode Caenorhabditis elegans by combining two non-pathogenic and five pathogenic strains in all possible ways. Furthermore, we evaluate whether the type of interaction, reflected by the direction of virulence change of multiple compared to single infections, is genotype-specific. Generally, we found no indication for GxG interactions between non-pathogenic and pathogenic bacterial strains, indicating that virulence of pathogenic strains is equally affected by both non-pathogenic strains. Specific genotype combinations, however, differ in the strength of virulence change, indicating that the interaction type between coinfecting parasite strains and thus the virulence mechanism is specific for different genotype combinations. Such interactions are expected to influence host-parasite interactions and to have strong implications for coevolution.

  15. Experimental strength evaluation of cylinders with a flat head subjected to internal pressure at elevated temperature

    International Nuclear Information System (INIS)

    Suzuki, Mitsuru; Makino, Yutaka

    1978-01-01

    The experiments using component test models such as a cylinder with a flat head and F.E.M. elastic analyses to investigate the secondary stress, peak stress and creep-fatigue interaction effect are described. The comparison of uniaxial stress with multiaxial stress about deformation and strength at elevated temperatures are also described here. The results of experiments and analysis are summarized as follows: (1) The maximum stress as the equivalent stress is the most suitable for the prediction of the creep failure life of cylinders subjected to internal pressure using the uniaxial creep test results. And the Mises's equivalent stress is the suitable for this prediction using the data of the onset of the uniaxial tertiary creep. (2) In the creep characteristics of the cylinder there, is no tertiary creep stage, and the rupture elongation of the cylinder accords with the elongation of the onset of the uniaxial tertiary creep. (3) It was recognized that the secondary stress occurred at the corner of the cylinder with a flat head has a little effect on creep and creep-fatigue life. (4) The life reduction effect due to the creep-fatigue interaction around the corner was recognized by the linear damage rule and compared with the value of Code Case 1592. (5) A difference of failure modes by imposed conditions for vessel with the size-discontinuity section was recognized by the cyclic internal pressure tests with hold time. (author)

  16. Cold crucible technique for interaction test of molten corium with structure

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; An, Sang Mo; Min, Beong Tae; Kim, Hwan Yeol

    2012-01-01

    During a severe accident, the molten corium might interact with several structures in a nuclear power plant such as core peripheral structures, lower plenum, lower head vessel, and external structures of a reactor vessel. The interaction of the molten corium with the structure depends on the molten corium composition, temperature, structural materials, and environmental conditions such as pressure and humidity. For example, the interaction of a metallic molten corium containing metal uranium (U) and zirconium (Zr) with the oxidized steel structure (Fe 2O3 ) is affected by not only thermal ablation but oxidation reduction reaction because the oxidation quotients of the U and Zr are higher than that of Fe. KAERI set up an experimental facility and technique using a cold crucible melting method to verify the interaction mechanism between the metallic molten corium and structural materials. This technique includes the generation of the metallic melt, melt delivery, measurement of the interaction process, and post analyses after the test

  17. Decomposing the interaction between retention interval and study/test practice: the role of retrievability.

    Science.gov (United States)

    Jang, Yoonhee; Wixted, John T; Pecher, Diane; Zeelenberg, René; Huber, David E

    2012-01-01

    Even without feedback, test practice enhances delayed performance compared to study practice, but the size of the effect is variable across studies. We investigated the benefit of testing, separating initially retrievable items from initially nonretrievable items. In two experiments, an initial test determined item retrievability. Retrievable or nonretrievable items were subsequently presented for repeated study or test practice. Collapsing across items, in Experiment 1, we obtained the typical cross-over interaction between retention interval and practice type. For retrievable items, however, the cross-over interaction was quantitatively different, with a small study benefit for an immediate test and a larger testing benefit after a delay. For nonretrievable items, there was a large study benefit for an immediate test, but one week later there was no difference between the study and test practice conditions. In Experiment 2, initially nonretrievable items were given additional study followed by either an immediate test or even more additional study, and one week later performance did not differ between the two conditions. These results indicate that the effect size of study/test practice is due to the relative contribution of retrievable and nonretrievable items.

  18. Usability Testing for Developing Effective Interactive Multimedia Software: Concepts, Dimensions, and Procedures

    Directory of Open Access Journals (Sweden)

    Sung Heum Lee

    1999-04-01

    Full Text Available Usability testing is a dynamic process that can be used throughout the process of developing interactive multimedia software. The purpose of usability testing is to find problems and make recommendations to improve the utility of a product during its design and development. For developing effective interactive multimedia software, dimensions of usability testing were classified into the general categories of: learnability; performance effectiveness; flexibility; error tolerance and system integrity; and user satisfaction. In the process of usability testing, evaluation experts consider the nature of users and tasks, tradeoffs supported by the iterative design paradigm, and real world constraints to effectively evaluate and improve interactive multimedia software. Different methods address different purposes and involve a combination of user and usability testing, however, usability practitioners follow the seven general procedures of usability testing for effective multimedia development. As the knowledge about usability testing grows, evaluation experts will be able to choose more effective and efficient methods and techniques that are appropriate to their goals.

  19. Verification of hybrid analysis concept of soil-foundation interaction by field vibration tests - Analytical phase

    International Nuclear Information System (INIS)

    Katayama, I.; Niwa, A.; Kubo, Y.; Penzien, J.

    1987-01-01

    In connection with the previous paper under the same subject, which describes the results obtained by the field vibration tests of five different models, this paper describes the outline of the hybrid analysis code of soil-structure interaction (HASSI) and the results of numerical simulation of the responses obtained at the model 2C in both cases of the forced vibration test and the natural earthquake excitation

  20. Models test on dynamic structure-structure interaction of nuclear power plant buildings

    International Nuclear Information System (INIS)

    Kitada, Y.; Hirotani, T.

    1999-01-01

    A reactor building of an NPP (nuclear power plant) is generally constructed closely adjacent to a turbine building and other buildings such as the auxiliary building, and in increasing numbers of NPPs, multiple plants are being planned and constructed closely on a single site. In these situations, adjacent buildings are considered to influence each other through the soil during earthquakes and to exhibit dynamic behaviour different from that of separate buildings, because those buildings in NPP are generally heavy and massive. The dynamic interaction between buildings during earthquake through the soil is termed here as 'dynamic cross interaction (DCI)'. In order to comprehend DCI appropriately, forced vibration tests and earthquake observation are needed using closely constructed building models. Standing on this background, Nuclear Power Engineering Corporation (NUPEC) had planned the project to investigate the DCI effect in 1993 after the preceding SSI (soil-structure interaction) investigation project, 'model tests on embedment effect of reactor building'. The project consists of field and laboratory tests. The field test is being carried out using three different building construction conditions, e.g. a single reactor building to be used for the comparison purposes as for a reference, two same reactor buildings used to evaluate pure DCI effects, and two different buildings, reactor and turbine building models to evaluate DCI effects under the actual plant conditions. Forced vibration tests and earthquake observations are planned in the field test. The laboratory test is planned to evaluate basic characteristics of the DCI effects using simple soil model made of silicon rubber and structure models made of aluminum. In this test, forced vibration tests and shaking table tests are planned. The project was started in April 1994 and will be completed in March 2002. This paper describes an outline and the summary of the current status of this project. (orig.)

  1. A comparison of usability methods for testing interactive health technologies: Methodological aspects and empirical evidence

    NARCIS (Netherlands)

    Jaspers, Monique W. M.

    2009-01-01

    OBJECTIVE: Usability evaluation is now widely recognized as critical to the success of interactive health care applications. However, the broad range of usability inspection and testing methods available may make it difficult to decide on a usability assessment plan. To guide novices in the

  2. Verification of hybrid analysis concept of soil-foundation interaction by field vibration tests. Pt. 2

    International Nuclear Information System (INIS)

    Katayama, I.; Niwa, A.; Kubo, Y.; Penzien, J.

    1987-01-01

    The paper describes the outline of the hybrid analysis code for soil-structure interaction (HASSI) and the results of numerical simulation of the responses obtained at the model 2C in both cases of the forced vibration test and the natural earthquake excitation. (orig./HP)

  3. Testing the Effectiveness of Interactive Multimedia for Library-User Education

    Science.gov (United States)

    Markey, Karen; Armstrong, Annie; De Groote, Sandy; Fosmire, Michael; Fuderer, Laura; Garrett, Kelly; Georgas, Helen; Sharp, Linda; Smith, Cheri; Spaly, Michael; Warner, Joni E.

    2005-01-01

    A test of the effectiveness of interactive multimedia Web sites demonstrates that library users' topic knowledge was significantly greater after visiting the sites than before. Library users want more such sites about library services, their majors, and campus life generally. Librarians describe the roles they want to play on multimedia production…

  4. Evaluation of Two Methods for Modeling Measurement Errors When Testing Interaction Effects with Observed Composite Scores

    Science.gov (United States)

    Hsiao, Yu-Yu; Kwok, Oi-Man; Lai, Mark H. C.

    2018-01-01

    Path models with observed composites based on multiple items (e.g., mean or sum score of the items) are commonly used to test interaction effects. Under this practice, researchers generally assume that the observed composites are measured without errors. In this study, we reviewed and evaluated two alternative methods within the structural…

  5. Interactions between domestic and export markets for softwood lumber and plywood: tests of six hypotheses.

    Science.gov (United States)

    David R. Darr

    1981-01-01

    Price formation in export markets and available data on export and domestic markets are discussed. The results of tests of several hypotheses about interactions between domestic and export markets are presented and interpreted from the standpoints of trade promotion and trade policy.

  6. Assessment of residual life of fast breeder test reactor

    International Nuclear Information System (INIS)

    Srinivasan, G.

    2016-01-01

    The Fast Breeder Test Reactor (FBTR) is a loop type sodium cooled fast reactor and has been in operation since 1985. As a part of regulatory requirement for relicensing, residual life assessment had to be carried out. The systems are made of SS 316, and designed for creep and fatigue. The design life for creep is 100,000 h at 550°C. The design fatigue cycle for operation from shutdown to full power varies from component to component. In general, most of the components are designed for 2000 cycles. The reactor has operated mostly below the design temperatures. It is seen that enough creep-fatigue life is available for the non-replaceable, permanent components. The residual life was found to be governed by the residual ductility of the Grid Plate supporting the core after neutron irradiation. Fast flux measurements were carried out at the grid plate location. Samples were irradiated and tensile tested. Results indicate the allowable dpa for a 10% residual ductility criterion as 4.37. This gave a residual life of ~ 6 Effective Full Power Years for the reactor as of Feb 2012. Measures to reduce the neutron dose on the grid plate are being taken. (author)

  7. Testing advanced driver assistance systems with the interactive driving simulator; Erprobung von Fahrerassistenzsystemen mit dem Interactive Driving Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichs, A.; Grosse-Kappenberg, S.; Happe, J. [Zentrum fuer Lern- und Wissensmanagement und Lehrstuhl Informatik im Maschinenbau ZLW/IMA der RWTH Aachen (Germany)

    2005-07-01

    The Centre for Learning and Knowledge Management and Department of Computer Science in Engineering of the Technical University Aachen has developed a truck driving simulator which combines a driving simulation as well as traffic flow calculations to the interactive Driving Simulator (InDriveS). In real-time the effects of the driver's behaviour on the surrounding traffic are considered and vice versa. The integrative part of InDriveS is a software-in-the-loop and hardware-in-the-loop development environment. By means of this tool, all phases of development (Analysis, Design, Modelling, Simulation, Implementation as well as Testing and Evaluation) of new vehicle technologies, e.g. Information and Assistance Systems, can be realised in consideration of the road traffic and the driver's behaviour. (orig.)

  8. Measurement of Nuclear Interaction Rates in Crystal Using the CERN-SPS North Area Test Beams

    CERN Document Server

    Losito, R; Taratin, A

    2010-01-01

    A number of tests were performed in the North area of the SPS in view of investigating crystal-particles interactions for future application in hadron colliders. The rate of nuclear interactions was measured with 400 GeV proton beams directed into a silicon bent crystal. In this way the background induced by the crystal either in amorphous or in channeling orientation was revealed. The results provide fundamental information to put in perspective the use of silicon crystals to assist halo collimation in hadron colliders, whilst minimizing the induced loss.

  9. Some tests of the basic properties of the neutral weak interaction. II. With massive neutrinos

    International Nuclear Information System (INIS)

    Dass, G.V.; Babu, P.R.

    1983-01-01

    Assuming a general nonderivative point interaction, and Born approximation, the angular distributions for neutrino scatterings by electrons are written, using only simple considerations, allowing all leptons to have nonzero mass. Our distributions have been previously obtained for some special cases, from general considerations by Bell et al., or in the results of explicit calculations. Applications to (i) determination of the Lorentz structure of the neutral weak interaction, and (ii) tests of lepton locality are considered. For illustration, two explicit calculations are given; one of these could hold for heavy lepton production, and the other for scattering of very low energy cosmic neutrinos

  10. Mouse Social Interaction Test (MoST): a quantitative computer automated analysis of behavior.

    Science.gov (United States)

    Thanos, Panayotis K; Restif, Christophe; O'Rourke, Joseph R; Lam, Chiu Yin; Metaxas, Dimitris

    2017-01-01

    Rodents are the most commonly used preclinical model of human disease assessing the mechanism(s) involved as well as the role of genetics, epigenetics, and pharmacotherapy on this disease as well as identifying vulnerability factors and risk assessment for disease critical in the development of improved treatment strategies. Unfortunately, the majority of rodent preclinical studies utilize single housed approaches where animals are either entirely housed and tested in solitary environments or group housed but tested in solitary environments. This approach, however, ignores the important contribution of social interaction and social behavior. Social interaction in rodents is found to be a major criterion for the ethological validity of rodent species-specific behavioral characteristics (Zurn et al. 2007; Analysis 2011). It is also well established that there is significant and growing number of reports, which illustrates the important role of social environment and social interaction in all diseases, with particularly significance in all neuropsychiatric diseases. Thus, it is imperative that research studies be able to add large-scale evaluations of social interaction and behavior in mice and benefit from automated tracking of behaviors and measurements by removing user bias and by quantifying aspects of behaviors that cannot be assessed by a human observer. Single mouse setups have been used routinely, but cannot be easily extended to multiple-animal studies where social behavior is key, e.g., autism, depression, anxiety, substance and non-substance addictive disorders, aggression, sexual behavior, or parenting. While recent efforts are focusing on multiple-animal tracking alone, a significant limitation remains the lack of insightful measures of social interactions. We present a novel, non-invasive single camera-based automated tracking method described as Mouse Social Test (MoST) and set of measures designed for estimating the interactions of multiple mice at the

  11. Oxide-metal corium-concrete interaction test in the Vulcano facility

    International Nuclear Information System (INIS)

    Journeau, Ch.; Piluso, P.; Haquet, J.F.; Saretta, S.; Boccaccio, E.; Bonnet, J.M.

    2007-01-01

    Corium is likely to melt through the vessel and interact with the reactor pit concrete. Corium is made of a UO 2 -rich oxidic part, in which most of the decay heat is dissipated, and of a metallic part, mainly molten steel. An experiment has been set up in the Vulcano facility in which oxidic and metallic mixtures are molten in separate furnaces and poured in a concrete cavity. Induction heating is provided to the pool upper part thanks to shielding coils, so that, in case of stratification, the lighter oxidic corium-concrete mixture receives most of the power. Pre-calculations with the TOLBIAC-ICB corium-concrete interaction code based on the phase segregation model have provided valuable information for the dimensioning of this test: a thick metallic layer (>10 kg or 4 cm) has been chosen in order to obtain significant cavity ablation profiles depending on the selected heat transfer and stratification models. Stratification of the two liquid phases is predicted to occur in less than 10 minutes. In September 2006, the experiment was performed in the Vulcano facility. The corium was made of about 15 kg of steel at 1700 C and 30 kg of oxides (70% UO 2 , 16 % ZrO 2 and 14% concrete load) above 2000 C. It was poured in a limestone-rich concrete. This concrete type was selected for the first test, since the ablation is isotropic except for the initial transient, during oxidic corium-concrete interaction tests. 32 kW of induction power have been provided to the pool during the 4-hour test. The destruction of in-concrete thermocouples indicates that ablation was first mainly radial then became isotropic. This is quite similar to the ablation progression observed during previous tests with oxidic corium interacting with this type of concrete. Important 'volcanic activity' has been observed at the corium pool surface, compared to the previous oxidic corium experiments at Vulcano. (authors)

  12. Ageing management practice in Fast Breeder Test Reactor

    International Nuclear Information System (INIS)

    Srinivasan, G.; Ramanathan, V.; Swaminathan, P.R.; Babu, A.; Rajasekarappa, E.; Rajendran, B.; Ramalingam, P.V.

    2006-01-01

    Fast Breeder Test Reactor is a 40 MWt, sodium cooled, PuC-UC fuelled fast reactor, located at Kalpakkam, India. The reactor went critical in October 85 with Mark I core rated for 10.5 MWt at a peak LHR of 320 W/cm. The reactor core was progressively enlarged and TG was synchronized to the grid in July 97. The present core has 41 fuel subassemblies rated for 15.7 MWt at a peak LHR of 320 W/cm. The reactor has so far been operated for 33000 h and has seen 660 EFPD of operation corresponding to peak LHR of 320 W/cm. The peak burnup reached by the carbide fuel is 127 GWd/t, without any fuel clad failure. The four sodium pumps have been operating satisfactorily for a cumulative time of more than 5,00,000 h. Creep, fatigue and fluence govern the life of the nuclear systems. Because of the reduced power and temperature at which the reactor has so far been operated, there is little ageing of the nuclear systems. The life of the nuclear components is being monitored by periodic surveillance. Periodic assessment of the fluence seen by reactor components is being made. The conventional systems have been in service for the past 19 years. Civil structures are 25 years old. These have been maintained by periodic preventive maintenance and replacement / repair wherever required. This paper details the various ageing management practices in FBTR. (author)

  13. Design related aspects in advanced nuclear fission plants

    International Nuclear Information System (INIS)

    Hoffelner, Wolfgang

    2011-01-01

    Important issues to be considered for design of future reactors are: extrapolation of stress rupture data, creep-fatigue, negligible creep, damage monitoring. The paper highlights some new developments taking examples from a martensitic steel (mod 9% Cr), oxide dispersion strengthened (ODS) steels and nickel-base superalloys. Traditional approaches to extrapolation of (thermal) stress rupture data like Larson-Miller Parameter or Monkman-Grant rule seem to be valid concepts also for advanced reactors. However, a significant influence of cyclic softening on creep rates and stress rupture data can be expected as shown for grade 91. This is particularly true for creep-fatigue interactions. Based on cyclic stress-strain behaviour it is also possible to get very good life-time predictions under creep-fatigue with a strain range separation (inelastic fatigue and creep ranges) technique which could replace the currently used linear life fraction rule. Results from in-beam irradiation creep reveal no significant influence of dispersoid size. It can be assumed that irradiation creep is a matrix property. Finally it is shown that micro-sample testing of exposed material could be used as an advanced method for damage assessment in future nuclear power plants.

  14. Results of thermal interaction tests for various materials performed in the Ispra tank facility

    International Nuclear Information System (INIS)

    Fasoli-Stella, P.; Holtbecker, H.; Jorzik, E.; Schlittenhardt, P.; Thoma, U.

    A test facility for fuel/coolant thermal interaction measurements is described together with recent improvements of the melting oven design, the instrumentation and the collection and cleaning of the debris. The formation of a UO 2 crust on the melting crucible is investigated theoretically taking into account the heat losses during transport of the crucible from the oven to the reaction chamber. Experimental results for the systems steel-sodium, steel-water and UO 2 -sodium are presented and discussed with respect to particle size distribution and appearence of the debris. A sodium/fuel interaction model is introduced in the hydrodynamic REXCO-H-code. The results of test calculations are dealt with

  15. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  16. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2016-01-01

    Roč. 117, č. 19 (2016), 1-9, č. článku 192001. ISSN 0031-9007 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * testing hadronic Interactions * ultrahigh energies * air showers Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 8.462, year: 2016

  17. ATTILA 2 S. A technical and interactive test language for architecture allowing simultaneity

    International Nuclear Information System (INIS)

    Batllo, M.

    1980-01-01

    The name ATTILA 2 S is inspired from ATLAS, test language adopted by the Department of Defence of America (D.O.D.) but cannot be implemented on our installation. ATTILA 2 S is principally characterized by: its technical vocabulary (P.O.L.), its interactivity, its simultaneity with main job (Multiprogramming and Multiprocessing allowed by multiprocessors architecture. This language has been developed for the Paris C.R.T. system (Photographies analysis system) on Control Data Cyber 72 computer [fr

  18. Two-dimensional interaction of oxidic corium with concretes: The VULCANO VB test series

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe [CEA, DEN, STRI/LMA, Cadarache, F-13108 St Paul lez Durance (France)], E-mail: christophe.journeau@cea.fr; Piluso, Pascal; Haquet, Jean-Francois; Boccaccio, Eric; Saldo, Valerie; Bonnet, Jean-Michel; Malaval, Sophie; Carenini, Laure [CEA, DEN, STRI/LMA, Cadarache, F-13108 St Paul lez Durance (France); Brissonneau, Laurent [CEA, DEN, STPA/LPC, Cadarache, F-13108 St Paul lez Durance (France)

    2009-10-15

    Three two-dimensional Molten Core-Concrete Interaction tests have been conducted in the VULCANO facility with prototypic oxidic corium. The major finding is that for the two tests with silica-rich concrete, the ablation was anisotropic while it was isotropic for limestone-rich concrete. The cause of this behaviour is not yet well understood. Post Test Examinations have indicated that for the silica-rich concrete, the corium melt mixed specifically with mortar, while, for limestone-rich concretes, the analysed samples were in accordance with a corium-concrete mixing. The experimental results are described and compared to numerical codes. Separate Effect Tests with Artificial Concretes and prototypic corium are proposed to understand the phenomena governing the ablation geometry.

  19. Two-dimensional interaction of oxidic corium with concretes: The VULCANO VB test series

    International Nuclear Information System (INIS)

    Journeau, Christophe; Piluso, Pascal; Haquet, Jean-Francois; Boccaccio, Eric; Saldo, Valerie; Bonnet, Jean-Michel; Malaval, Sophie; Carenini, Laure; Brissonneau, Laurent

    2009-01-01

    Three two-dimensional Molten Core-Concrete Interaction tests have been conducted in the VULCANO facility with prototypic oxidic corium. The major finding is that for the two tests with silica-rich concrete, the ablation was anisotropic while it was isotropic for limestone-rich concrete. The cause of this behaviour is not yet well understood. Post Test Examinations have indicated that for the silica-rich concrete, the corium melt mixed specifically with mortar, while, for limestone-rich concretes, the analysed samples were in accordance with a corium-concrete mixing. The experimental results are described and compared to numerical codes. Separate Effect Tests with Artificial Concretes and prototypic corium are proposed to understand the phenomena governing the ablation geometry.

  20. Testing for constant nonparametric effects in general semiparametric regression models with interactions

    KAUST Repository

    Wei, Jiawei

    2011-07-01

    We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work was originally motivated by a unique testing problem in genetic epidemiology (Chatterjee, et al., 2006) that involved a typical generalized linear model but with an additional term reminiscent of the Tukey one-degree-of-freedom formulation, and their interest was in testing for main effects of the genetic variables, while gaining statistical power by allowing for a possible interaction between genes and the environment. Later work (Maity, et al., 2009) involved the possibility of modeling the environmental variable nonparametrically, but they focused on whether there was a parametric main effect for the genetic variables. In this paper, we consider the complementary problem, where the interest is in testing for the main effect of the nonparametrically modeled environmental variable. We derive a generalized likelihood ratio test for this hypothesis, show how to implement it, and provide evidence that our method can improve statistical power when compared to standard partially linear models with main effects only. We use the method for the primary purpose of analyzing data from a case-control study of colorectal adenoma.

  1. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data

    Science.gov (United States)

    White, Molly E.; Hyatt, Andrew J.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  2. Is it possible to develop a cross-country test of social interaction?

    Science.gov (United States)

    Berg, Brett; Atler, Karen; Fisher, Anne G

    2017-11-01

    The Evaluation of Social Interaction (ESI) is used in Asia, Australia, North America and Europe. What is considered to be appropriate social interaction, however, differs amongst countries. If social interaction varies, the relative difficulty of the ESI items and types of social exchange also could vary, resulting in differential item functioning (DIF) and test bias in the form of differential test functioning (DTF). Yet, because the ESI scoring criteria are designed to account for culture, the ESI should be free of DIF and DTF. The purpose, therefore, was to determine whether the ESI demonstrates DIF or DTF related to country. A retrospective, descriptive, cross-sectional study of 9811 participants 2-102 years, 55% female, from 12 countries was conducted using many-facet Rasch analyses. DIF analyses compared paired item and social exchange type values by country against a critical effect size (±0.55 logit). DTF analyses compared paired ESI measures by country to 95% confidence intervals. All paired social exchange types and 98.3% of paired items differed by less than ±0.55 logit. All persons fell within 95% confidence intervals. Minimal DIF resulted in no test bias, supporting the cross-country validity of the ESI.

  3. Toxicity tests based on predator-prey and competitive interactions between freshwater macroinvertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, E.J.; Blockwell, S.J.; Pascoe, D. [Univ. of Wales Coll. of Cardiff (United Kingdom)

    1994-12-31

    Simple multi-species toxicity tests based on the predation of Daphnia magna Straus by Hydra oligactis (Pallas) and competition between Gammarus pulex (L.) and Asellus aquaticus (L.) were used to determine the effects of three reference chemicals. Criteria examined included functional responses; time to first captures; handling times (predator/prey systems) and co-existence and growth. The tests which proved most practicable and sensitive (lowest observed effects 0.1, 21, and 80 {micro}g/l for lindane, copper and 3,4 dichloroaniline, respectively) were: (1) predator-prey tests: determining changes in the size-structure of predated D. magna populations and (2) competition tests: measuring the feeding rate of G. pulex competing with A. aquaticus, using a bioassay based on the time-response analysis of the consumption of Artemia salina eggs. The concentration of a chemical which affected particular response criteria was fond to depend on the test system employed. Results of the tests indicated that effects were often not dose-related and that a given criterion could be variously affected by different test concentrations. The complex pattern of responses may be explained in terms of the differential sensitivity of the interacting species and perhaps subtle alteration in strategies. The sensitivity of the bioassay endpoints is compared to those of a range of single species tests, and their value for predicting the impact pollutants may have upon natural freshwater ecosystems is discussed.

  4. Report on FY17 testing in support of integrated EPP-SMT design methods development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanli . [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jetter, Robert I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sham, T. -L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    The goal of the proposed integrated Elastic Perfectly-Plastic (EPP) and Simplified Model Test (SMT) methodology is to incorporate a SMT data-based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The purpose of this methodology is to minimize over-conservatism while properly accounting for localized defects and stress risers. To support the implementation of the proposed methodology and to verify the applicability of the code rules, thermomechanical tests continued in FY17. This report presents the recent test results for Type 1 SMT specimens on Alloy 617 with long hold times, pressurization SMT on Alloy 617, and two-bar thermal ratcheting test results on SS316H at the temperature range of 405 °C to 705 °C. Preliminary EPP strain range analysis on the two-bar tests are critically evaluated and compared with the experimental results.

  5. Introduction to the modified TROI test facility for fuel coolant interaction under a submerged reactor vessel

    International Nuclear Information System (INIS)

    Na, Young Su; Hong, Seong-Wan; Song, Jin Ho; Hong, Seong-Ho

    2014-01-01

    The molten Fuel-Coolant Interaction (FCI) can threaten the integrity of the reactor cavity under a severe accident. A steam explosion can be occurred by the rapid energy transfer in the high-temperature corium melt jet penetrating into water, which makes the dynamic load applying to the surrounding structure. Before a steam explosion, the corium melt jet breaks into small-sized particles, and the steam is generated continuously by the film boiling on the hot surface of the melt contacting with water. The premixing phase consisting of the corium melt, water, and steam can determine the intensity of the steam explosion. Unfortunately, the previous experimental studies on the FCI phenomena have carried out under a free fall of the corium melt jet in a gas phase before interacting with water. The previous TROI (Test for Real cOrium Interaction with water) test facility, that is a well-known test facility for the FCI phenomena in the world, has observed a steam explosion under a free fall of a corium melt jet in a gas phase before contacting a coolant since 2000, which is changing to simulate the FCI phenomena under a submerged reactor vessel. This study introduces the modified TROI test facility as shown in Fig. 1 and the considerations for the experiment with success. The previous TROI test facility, that has observed the molten Fuel-Coolant Interaction (FCI) with a free fall of the prototypic corium melt in a gas phase before contacting a coolant, was modified to simulate the FCI phenomena under a submerged reactor vessel for the assessment of the In-Vessel Retention (IVR) concept, i.e., without a free-fall distance of the corium melt before contacting water. The superheated prototypic corium melt created by the cold crucible melting method moves on a releasing valve newly installed just above the water level in the interaction vessel. The corium melt will stay on a releasing valve in less than 0.2 seconds to reduce heat loss for preventing the solidification, and

  6. Core-concrete interactions with overlying water pools. The WETCOR-1 test

    Energy Technology Data Exchange (ETDEWEB)

    Blose, R.E. [Ktech Corp., Albuquerque, NM (United States); Powers, D.A.; Copus, E.R.; Brockmann, J.E.; Simpson, R.B.; Lucero, D.A. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    The WETCOR-1 test of simultaneous interactions of a high-temperature melt with water and a limestone/common-sand concrete is described. The test used a 34.1-kg melt of 76.8 w/o Al{sub 2}O{sub 3}, 16.9 w/o CaO, and 4.0 w/o SiO{sub 2} heated by induction using tungsten susceptors. Once quasi-steady attack on concrete by the melt was established, an attempt was made to quench the melt at 1850 K with 295 K water flowing at 57 liters per minute. Net power into the melt at the time of water addition was 0.61 {plus_minus} 0.19 W/cm{sup 3}. The test configuration used in the WETCOR-1 test was designed to delay melt freezing to the walls of the test fixture. This was done to test hypotheses concerning the inherent stability of crust formation when high-temperature melts are exposed to water. No instability in crust formation was observed. The flux of heat through the crust to the water pool maintained over the melt in the test was found to be 0.52 {plus_minus} 0.13 MW/m{sup 2}. Solidified crusts were found to attenuate aerosol emissions during the melt concrete interactions by factors of 1.3 to 3.5. The combination of a solidified crust and a 30-cm deep subcooled water pool was found to attenuate aerosol emissions by factors of 3 to 15.

  7. Results of fission product release from intermediate-scale MCCI [molten core-concrete interaction] tests

    International Nuclear Information System (INIS)

    Spencer, B.W.; Thompson, D.H.; Fink, J.K.; Gunther, W.H.; Sehgal, B.R.

    1988-01-01

    A program of reactor-material molten core-concrete interaction (MCCI) tests and related analyses are under way at Argonne National Laboratory under sponsorship of the Electric Power Research Institute (EPRI). The particular objective of these tests is to provide data pertaining to the release of nonvolatile fission products such as La, Ba, and Sr, plus other aerosol materials, from the coupled thermal-hydraulic and chemical processes of the MCCI. The first stages of the program involving small and intermediate-scale tests have been completed. Three small-scale tests (/approximately/5 kg corium) and nine intermediate-scale tests (/approximately/30 kg corium) were performed between September 1985 and September 1987. Real reactor materials were used in these tests. Sustained internal heat generation at nominally 1 kW per kg of melt was provided by direct electrical heating of the corium mixture. MCCI tests were performed with both fully and partially oxidized corium mixtures that contained a variety of nonradioactive materials such as La 2 O 3 , BaO, and SrO to represent fission products. Both limestone/common sand and basaltic concrete basemats were used. The system was instrumented for characterization of the thermal hydraulic, chemical, gas release, and aerosol release processes

  8. A novel test for gene-ancestry interactions in genome-wide association data.

    Directory of Open Access Journals (Sweden)

    Joanna L Davies

    Full Text Available Genome-wide association study (GWAS data on a disease are increasingly available from multiple related populations. In this scenario, meta-analyses can improve power to detect homogeneous genetic associations, but if there exist ancestry-specific effects, via interactions on genetic background or with a causal effect that co-varies with genetic background, then these will typically be obscured. To address this issue, we have developed a robust statistical method for detecting susceptibility gene-ancestry interactions in multi-cohort GWAS based on closely-related populations. We use the leading principal components of the empirical genotype matrix to cluster individuals into "ancestry groups" and then look for evidence of heterogeneous genetic associations with disease or other trait across these clusters. Robustness is improved when there are multiple cohorts, as the signal from true gene-ancestry interactions can then be distinguished from gene-collection artefacts by comparing the observed interaction effect sizes in collection groups relative to ancestry groups. When applied to colorectal cancer, we identified a missense polymorphism in iron-absorption gene CYBRD1 that associated with disease in individuals of English, but not Scottish, ancestry. The association replicated in two additional, independently-collected data sets. Our method can be used to detect associations between genetic variants and disease that have been obscured by population genetic heterogeneity. It can be readily extended to the identification of genetic interactions on other covariates such as measured environmental exposures. We envisage our methodology being of particular interest to researchers with existing GWAS data, as ancestry groups can be easily defined and thus tested for interactions.

  9. Sequence Design for a Test Tube of Interacting Nucleic Acid Strands.

    Science.gov (United States)

    Wolfe, Brian R; Pierce, Niles A

    2015-10-16

    We describe an algorithm for designing the equilibrium base-pairing properties of a test tube of interacting nucleic acid strands. A target test tube is specified as a set of desired "on-target" complexes, each with a target secondary structure and target concentration, and a set of undesired "off-target" complexes, each with vanishing target concentration. Sequence design is performed by optimizing the test tube ensemble defect, corresponding to the concentration of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of the test tube. To reduce the computational cost of accepting or rejecting mutations to a random initial sequence, the structural ensemble of each on-target complex is hierarchically decomposed into a tree of conditional subensembles, yielding a forest of decomposition trees. Candidate sequences are evaluated efficiently at the leaf level of the decomposition forest by estimating the test tube ensemble defect from conditional physical properties calculated over the leaf subensembles. As optimized subsequences are merged toward the root level of the forest, any emergent defects are eliminated via ensemble redecomposition and sequence reoptimization. After successfully merging subsequences to the root level, the exact test tube ensemble defect is calculated for the first time, explicitly checking for the effect of the previously neglected off-target complexes. Any off-target complexes that form at appreciable concentration are hierarchically decomposed, added to the decomposition forest, and actively destabilized during subsequent forest reoptimization. For target test tubes representative of design challenges in the molecular programming and synthetic biology communities, our test tube design algorithm typically succeeds in achieving a normalized test tube ensemble defect ≤1% at a design cost within an order of magnitude of the cost of test tube analysis.

  10. Testing the Social Interaction Learning Model's Applicability to Adolescent Substance Misuse in an Australian Context.

    Science.gov (United States)

    Mehus, Christopher J; Doty, Jennifer; Chan, Gary; Kelly, Adrian B; Hemphill, Sheryl; Toumbourou, John; McMorris, Barbara J

    2018-03-06

    Parents and peers both influence the development of adolescent substance misuse, and the Social Interaction Learning (SIL) model provides a theoretical explanation of the paths through which this occurs. The SIL model has primarily been tested with conduct outcomes and in US samples. This study adds to the literature by testing the SIL model with four substance use outcomes in a sample of Australian youth. We used structural equation modeling to test the fit of the SIL model to a longitudinal sample (n = 907) of students recruited in grade 5 in Victoria, Australia participating in the International Youth Development Study, who were resurveyed in grades 6 and 10. The model fit was good (χ2(95) = 248.52, p role in the formation of adolescent peer relations that influence substance misuse and identifies etiological pathways that can guide the targets of prevention. The SIL pathways appear robust to the Australian social and policy context.

  11. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.

    Science.gov (United States)

    Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza

    2017-09-27

    Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.

  12. The design and testing of interactive hospital spaces to meet the needs of waiting children.

    Science.gov (United States)

    Biddiss, Elaine; McPherson, Amy; Shea, Geoffrey; McKeever, Patricia

    2013-01-01

    To design an innovative interactive media display in a pediatric hospital clinic waiting space that addresses the growing demand for accessible, contact-surface-free options for play. In healthcare settings, waiting can be anxiety provoking for children and their accompanying family members. Opportunities for positive distraction have been shown to reduce waiting anxiety, leading to positive health outcomes. An interactive media display, ScreenPlay, was created and evaluated using a participatory design approach and a combination of techniques including quality function deployment and mixed data elicitation methods (questionnaires, focus groups, and observations). The user and organizational design requirements were established and used to review contemporary strategies for positive distraction in healthcare waiting spaces and to conceptualize and test ScreenPlay. Ten staff members, 11 children/youths, and 6 parents participated in the design and evaluation of ScreenPlay. ScreenPlay provided a positive, engaging experience without the use of contact surfaces through which infections can be spread. It was accessible to children, youth, and adults of all motor abilities. All participants strongly agreed that the interactive media display would improve the healthcare waiting experience. ScreenPlay is an interactive display that is the result of a successful model for the design of healthcare waiting spaces that is collaborative, interdisciplinary, and responsive to the needs of its community. Design process, healing environments, hospital, interdisciplinary, pediatric.

  13. Investigation of special capsule technologies for material in-pile irradiation test and development plan in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Cho, M. S.; Son, J. M.; Kim, D. S.; Park, S. J.; Cho, Y. G.; Seo, C. K.; Kang, Y. H. [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    In-pile test for several materials such as Zr alloy, stainless steel, Cr-Ni steel etc. which are used as structural material of the advanced reactor and KNGR(Korea Next Generation Reactor) like SMART, is necessary to produce the design data for developing new reactor materials. Advanced countries like USA, Europe and Japan etc. are not only performing the simple irradiation test for materials, but developing many kinds of special capsule to perform in-pile test having special purpose. For the special test items of fuel rod, fission products, total heat generation, swelling, deformation, sweep gas, temperature ramping and BOCA etc. are being actively concerned. There are capsules measuring creep, fatigue, crack growth, and controlling fluence etc. for special irradiation test of materials. In addition, the advanced countries are developing several instrument technologies suitable for the special capsules. In HANARO, non-instrumented, instrumented material capsules and non-instrumented fuel capsule have been developed and they have been utilized in the irradiation test for users, and creep capsule loading single specimen was made and is planned to test in the reactor soon. For some forthcoming years, special capsules not only measuring creep deformation with multi-specimens, fatigue, controlling fluence but crack propagation and gas sweep considering the requirements of users will be developed in HANARO.

  14. Two-Sample Tests for High-Dimensional Linear Regression with an Application to Detecting Interactions.

    Science.gov (United States)

    Xia, Yin; Cai, Tianxi; Cai, T Tony

    2018-01-01

    Motivated by applications in genomics, we consider in this paper global and multiple testing for the comparisons of two high-dimensional linear regression models. A procedure for testing the equality of the two regression vectors globally is proposed and shown to be particularly powerful against sparse alternatives. We then introduce a multiple testing procedure for identifying unequal coordinates while controlling the false discovery rate and false discovery proportion. Theoretical justifications are provided to guarantee the validity of the proposed tests and optimality results are established under sparsity assumptions on the regression coefficients. The proposed testing procedures are easy to implement. Numerical properties of the procedures are investigated through simulation and data analysis. The results show that the proposed tests maintain the desired error rates under the null and have good power under the alternative at moderate sample sizes. The procedures are applied to the Framingham Offspring study to investigate the interactions between smoking and cardiovascular related genetic mutations important for an inflammation marker.

  15. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    Science.gov (United States)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  16. Oxide-metal corium-concrete interaction test in the Vulcano facility

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Ch.; Piluso, P.; Haquet, J.F.; Saretta, S.; Boccaccio, E.; Bonnet, J.M. [CEA Cadarache, Severe Accident Mastery experimental Lab. (DEN/DTN/STRI/LMA), 13 - Saint Paul lez Durance (France)

    2007-07-01

    Corium is likely to melt through the vessel and interact with the reactor pit concrete. Corium is made of a UO{sub 2}-rich oxidic part, in which most of the decay heat is dissipated, and of a metallic part, mainly molten steel. An experiment has been set up in the Vulcano facility in which oxidic and metallic mixtures are molten in separate furnaces and poured in a concrete cavity. Induction heating is provided to the pool upper part thanks to shielding coils, so that, in case of stratification, the lighter oxidic corium-concrete mixture receives most of the power. Pre-calculations with the TOLBIAC-ICB corium-concrete interaction code based on the phase segregation model have provided valuable information for the dimensioning of this test: a thick metallic layer (>10 kg or 4 cm) has been chosen in order to obtain significant cavity ablation profiles depending on the selected heat transfer and stratification models. Stratification of the two liquid phases is predicted to occur in less than 10 minutes. In September 2006, the experiment was performed in the Vulcano facility. The corium was made of about 15 kg of steel at 1700 C and 30 kg of oxides (70% UO{sub 2}, 16 % ZrO{sub 2} and 14% concrete load) above 2000 C. It was poured in a limestone-rich concrete. This concrete type was selected for the first test, since the ablation is isotropic except for the initial transient, during oxidic corium-concrete interaction tests. 32 kW of induction power have been provided to the pool during the 4-hour test. The destruction of in-concrete thermocouples indicates that ablation was first mainly radial then became isotropic. This is quite similar to the ablation progression observed during previous tests with oxidic corium interacting with this type of concrete. Important 'volcanic activity' has been observed at the corium pool surface, compared to the previous oxidic corium experiments at Vulcano. (authors)

  17. Synergistic effect of the interaction between curcumin and diclofenac on the formalin test in rats.

    Science.gov (United States)

    De Paz-Campos, Marco A; Ortiz, Mario I; Chávez Piña, Aracely E; Zazueta-Beltrán, Liliana; Castañeda-Hernández, Gilberto

    2014-10-15

    The association of non-steroidal anti-inflammatory drugs with certain plant extracts can increase antinociceptive activity, permitting the use of lower doses and thus limiting side effects. Therefore, the aim objective of the current study was to examine the effects of curcumin on the nociception and pharmacokinetics of diclofenac in rats. Antinociception was assessed using the formalin test. Diluted formalin was injected subcutaneously into the dorsal surface of the right hind paw. Nociceptive behavior was quantified as the number of flinches of the injected paw during 60 min after injection, and a reduction in formalin-induced flinching was interpreted as an antinociceptive response. Rats were treated with oral diclofenac (1-31 mg/kg), curcumin (3.1-100 mg/kg) or the diclofenac-curcumin combination (2.4-38.4 mg/kg). To determine the possibility of a pharmacokinetic interaction, the oral bioavailability of diclofenac (10 mg/kg) was studied in presence and the absence of curcumin (31 mg/kg). Diclofenac, curcumin, or diclofenac-curcumin combination produced an antinociceptive effect on the formalin test. ED30 values were estimated for the individual drugs, and an isobologram was constructed. The derived theoretical ED30 for the antinociceptive effect (19.2 mg/kg) was significantly different from the observed experimental ED30 value (9.8 mg/kg); hence, the interaction between diclofenac and curcumin that mediates the antinociceptive effect was synergistic. Notwithstanding, the interaction does not appear to involve pharmacokinetic mechanisms, as oral curcumin failed to produce any significant alteration in oral diclofenac bioavailability. Data suggest that the diclofenac-curcumin combination can interact at the systemic level and may have therapeutic advantages for the clinical treatment of inflammatory pain. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Tablet-Based Functional MRI of the Trail Making Test: Effect of Tablet Interaction Mode

    Directory of Open Access Journals (Sweden)

    Mahta Karimpoor

    2017-10-01

    Full Text Available The Trail Making Test (TMT is widely used for assessing executive function, frontal lobe abilities, and visual motor skills. Part A of this pen-and-paper test (TMT-A involves linking numbers randomly distributed in space, in ascending order. Part B (TMT-B alternates between linking numbers and letters. TMT-B is more demanding than TMT-A, but the mental processing that supports the performance of this test remains incompletely understood. Functional MRI (fMRI may help to clarify the relationship between TMT performance and brain activity, but providing an environment that supports real-world pen-and-paper interactions during fMRI is challenging. Previously, an fMRI-compatible tablet system was developed for writing and drawing with two modes of interaction: the original cursor-based, proprioceptive approach, and a new mode involving augmented reality to provide visual feedback of hand position (VFHP for enhanced user interaction. This study characterizes the use of the tablet during fMRI of young healthy adults (n = 22, with half of the subjects performing TMT with VFHP and the other half performing TMT without VFHP. Activation maps for both TMT-A and TMT-B performance showed considerable overlap between the two tablet modes, and no statistically differences in brain activity were detected when contrasting TMT-B vs. TMT-A for the two tablet modes. Behavioral results also showed no statistically different interaction effects for TMT-B vs. TMT-A for the two tablet modes. Tablet-based TMT scores showed reasonable convergent validity with those obtained by administering the standard pen-and-paper TMT to the same subjects. Overall, the results suggest that despite the slightly different mechanisms involved for the two modes of tablet interaction, both are suitable for use in fMRI studies involving TMT performance. This study provides information for using tablet-based TMT methods appropriately in future fMRI studies involving patients and healthy

  19. A comparison of usability methods for testing interactive health technologies: methodological aspects and empirical evidence.

    Science.gov (United States)

    Jaspers, Monique W M

    2009-05-01

    Usability evaluation is now widely recognized as critical to the success of interactive health care applications. However, the broad range of usability inspection and testing methods available may make it difficult to decide on a usability assessment plan. To guide novices in the human-computer interaction field, we provide an overview of the methodological and empirical research available on the three usability inspection and testing methods most often used. We describe two 'expert-based' and one 'user-based' usability method: (1) the heuristic evaluation, (2) the cognitive walkthrough, and (3) the think aloud. All three usability evaluation methods are applied in laboratory settings. Heuristic evaluation is a relatively efficient usability evaluation method with a high benefit-cost ratio, but requires high skills and usability experience of the evaluators to produce reliable results. The cognitive walkthrough is a more structured approach than the heuristic evaluation with a stronger focus on the learnability of a computer application. Major drawbacks of the cognitive walkthrough are the required level of detail of task and user background descriptions for an adequate application of the latest version of the technique. The think aloud is a very direct method to gain deep insight in the problems end users encounter in interaction with a system but data analyses is extensive and requires a high level of expertise both in the cognitive ergonomics and in computer system application domain. Each of the three usability evaluation methods has shown its usefulness, has its own advantages and disadvantages; no single method has revealed any significant results indicating that it is singularly effective in all circumstances. A combination of different techniques that compliment one another should preferably be used as their collective application will be more powerful than applied in isolation. Innovative mobile and automated solutions to support end-user testing have

  20. Comparison of Crack Growth Test Results at Elevated Temperature and Design Code Material Properties for Grade 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeong-Yeon; Kim, Woo-Gon; Kim, Nak-Hyun [Korea Atomic Energy Reserach Institute, Daejeon (Korea, Republic of)

    2015-01-15

    The material properties of crack growth models at an elevated temperature were derived from the results of numerous crack growth tests for Mod.9Cr-1Mo (ASME Grade 91) steel specimens under fatigue loading and creep loading at an elevated temperature. These crack growth models were needed for defect assessment under creep-fatigue loading. The mathematical crack growth rate models for fatigue crack growth (FCG) and creep crack growth (CCG) were determined based on the test results, and the models were compared with those of the French design code RCCMRx to investigate the conservatism of the code. The French design code RCC-MRx provides an FCG model and a CCG model for Grade 91 steel in Section III Tome 6. It was shown that the FCG model of RCC-MRx is conservative, while the CCG model is non-conservative compared with the present test data. Thus, it was shown that further validation of the property was required. Mechanical strength tests and creep tests were also conducted, and the test results were compared with those of RCC-MRx.

  1. Heavy quark mass effects and improved tests of the flavor independence of strong interactions

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, P.N. [Univ. of Oxford (United Kingdom); SLD Collaboration

    1998-08-01

    A review is given of latest results on tests of the flavor independence of strong interactions. Heavy quark mass effects are evident in the data and are now taken into account at next-to-leading order in QCD perturbation theory. The strong-coupling ratios {alpha}{sub s}{sup b}/{alpha}{sub s}{sup uds} and {alpha}{sub s}{sup c}/{alpha}{sub s}{sup uds} are found to be consistent with unity. Determinations of the b-quark mass m{sub b} (M{sub Z}) are discussed.

  2. Large-scale seismic test for soil-structure interaction research in Hualien, Taiwan

    International Nuclear Information System (INIS)

    Ueshima, T.; Kokusho, T.; Okamoto, T.

    1995-01-01

    It is important to evaluate dynamic soil-structure interaction more accurately in the aseismic design of important facilities such as nuclear power plants. A large-scale model structure with about 1/4th of commercial nuclear power plants was constructed on the gravelly layers in seismically active Hualien, Taiwan. This international joint project is called 'the Hualien LSST Project', where 'LSST' is short for Large-Scale Seismic Test. In this paper, research tasks and responsibilities, the process of the construction work and research tasks along the time-line, main results obtained up to now, and so on in this Project are described. (J.P.N.)

  3. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  4. OECD/MCCI 2-D Core Concrete Interaction (CCI) tests : final report February 28, 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the EPRI-sponsored Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust itself is expected to periodically fracture the crust and restore contact with the melt. Although crust fracturing does not ensure that coolability will be achieved, it nonetheless provides a pathway for water to recontact the underlying melt, thereby allowing other debris cooling mechanisms to proceed. A related task of the current program, which is not addressed in this particular report, is to measure crust strength to check the hypothesis that a corium crust would not be strong enough to sustain melt/crust separation in a plant accident. The second important issue concerns long-term, two-dimensional concrete ablation by a prototypic core oxide melt. As discussed by Foit the existing

  5. Test of hadronic interaction models with the KASCADE-Grande muon data

    Directory of Open Access Journals (Sweden)

    Schieler H.

    2013-06-01

    Full Text Available KASCADE-Grande is an air-shower observatory devoted for the detection of cosmic rays with energies in the interval of 1014 – 1018 eV, where the Grande array is responsible for the higher energy range. The experiment comprises different detection systems which allow precise measurements of the charged, electron and muon numbers of extensive air-showers (EAS. These data is employed not only to reconstruct the properties of the primary cosmic-ray particle but also to test hadronic interaction models at high energies. In this contribution, predictions of the muon content of EAS from QGSJET II-2, SIBYLL 2.1 and EPOS 1.99 are confronted with the experimental measurements performed with the KASCADE-Grande experiment in order to test the validity of these hadronic models commonly used in EAS simulations.

  6. Creep/fatigue damage prediction of fast reactor components using shakedown methods

    International Nuclear Information System (INIS)

    Buckthorpe, D.E.

    1997-01-01

    The present status of the shakedown method is reviewed, the application of the shakedown based principles to complex hardening and creep behaviour is described and justified and the prediction of damage against design criteria outlined. Comparisons are made with full inelastic analysis solutions where these are available and against damage assessments using elastic and inelastic design code methods. Current and future developments of the method are described including a summary of the advances made in the development of the post process ADAPT, which has enabled the method to be applied to complex geometry features and loading cases. The paper includes a review of applications of the method to typical Fast Reactor structural example cases within the primary and secondary circuits. For the primary circuit this includes structures such as the large diameter internal shells which are surrounded by hot sodium and subject to slow and rapid thermal transient loadings. One specific case is the damage assessment associated with thermal stratifications within sodium and the effects of moving sodium surfaces arising from reactor trip conditions. Other structures covered are geometric features within components such as the Above Core structure and Intermediate Heat Exchanger. For the secondary circuit the method has been applied to alternative and more complex forms of geometry namely thick section tubeplates of the Steam Generator and a typical secondary circuit piping run. Both of these applications are in an early stage of development but are expected to show significant advantages with respect to creep and fatigue damage estimation compared with existing code methods. The principle application of the method to design has so far been focused on Austenitic Stainless steel components however current work shows some significant benefits may be possible from the application of the method to structures made from Ferritic steels such as Modified 9Cr 1Mo. This aspect is briefly discussed as a potential application and future development of the method. 8 refs, 14 figs, 5 tabs

  7. Room temperature creep-fatigue response of selected copper alloys for high heat flux applications

    DEFF Research Database (Denmark)

    Li, M.; Singh, B.N.; Stubbins, J.F.

    2004-01-01

    times. The influence of hold times on fatigue life in the low cycle fatigue, short life regime (i.e., at high strain amplitudes) was minimal. When hold time effects were observed, fatigue lives were reduced with hold times as short as two seconds. Appreciable stress relaxation was observed during...

  8. Validation of a new multiaxial criteria for creep-fatigue damage evaluation

    International Nuclear Information System (INIS)

    Cabrillat, M.T.; Martin, P.

    1989-01-01

    For many years, design codes evaluated creep damage using the Von Mises criterion to take account of multiaxiality of stresses. However, recent studies have confirmed that the Von Mises criterion is overconservative for nonuniaxial stress state. Various criteria have been put forward to take account of the real stress state. This paper describes a criterion which was introduced in 1987 and the various studies which led to its adoption

  9. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  10. Risk based lifetime assessment of piping under creep-fatigue conditions

    International Nuclear Information System (INIS)

    Bielak, O.; Bina, V.; Korous, J.

    2003-01-01

    The analysis of the steam pipeline lifetime is based on: (i) technical procedures supplied by Nuclear Electric R5; (ii) random interpretation of material damage accumulation laws for creep and fatigue; (iii) a stochastic model of the creep process (creep rupture strength, deformation characteristics); (iv) probabilistic description of geometrical quantities of the steam pipeline. The probabilistic procedure results in the calculation of the crack initiation risks both for the critical localities and for the steam pipeline as a whole (its subsystems, if need be). The residual lifetime was calculated from the conditional (a posteriori) probabilities. The risks of crack initiation was calculated for different operating periods (inspection frequency), and the periods were optimised to meet (i) the minimum risk of crack initiation and (2) the operation and economy criteria. The method also involves calculation of the residual lifetime from the updated data (material properties, dimensions). In the standard service-life calculations there is no difference between the weld and BM, the justification being that the weld is exposed to axial stress caused by internal pressure, which is one half of the hoop stress. Thus, the low creep resistant properties of the weld were ignored, as well as the uneven state of stress and its redistribution. In a number of cases it is the welds that are a weak point and therefore should receive considerable attention. The probabilistic method of lifetime and reliability assessment was verified on over 29 piping systems in power and petrochemical plants

  11. Validation of PWR core seismic models with shaking table tests on interacting scale 1 fuel assemblies

    International Nuclear Information System (INIS)

    Viallet, E.; Bolsee, G.; Ladouceur, B.; Goubin, T.; Rigaudeau, J.

    2003-01-01

    The fuel assembly mechanical strength must be justified with respect to the lateral loads under accident conditions, in particular seismic loads. This justification is performed by means of time-history analyses with dynamic models of an assembly row in the core, allowing for assembly deformations, impacts at grid locations and reactor coolant effects. Due to necessary simplifications, the models include 'equivalent' parameters adjusted with respect to dynamic characterisation tests of the fuel assemblies. Complementing such tests on isolated assemblies by an overall model validation with shaking table tests on interacting assemblies is obviously desirable. Seismic tests have been performed by French CEA (Commissariat a l'Energie Atomique) on a row of six full scale fuel assemblies, including two types of 17 x 17 12ft design. The row models are built according to the usual procedure, with preliminary characterisation tests performed on a single assembly. The test-calculation comparisons are made for two test configurations : in air and in water. The relatively large number of accelerograms (15, used for each configuration) is also favourable to significant comparisons. The results are presented for the impact forces at row ends, displacements at mid assembly, and also 'statistical' parameters. Despite a non-negligible scattering in the results obtained with different accelerograms, the calculations prove realistic, and the modelling process is validated with a good confidence level. This satisfactory validation allows to evaluate precisely the margins in the seismic design methodology of the fuel assemblies, and thus to confirm the safety of the plants in case of seismic event. (author)

  12. Eye and hand motor interactions with the Symbol Digit Modalities Test in early multiple sclerosis.

    Science.gov (United States)

    Nygaard, Gro O; de Rodez Benavent, Sigrid A; Harbo, Hanne F; Laeng, Bruno; Sowa, Piotr; Damangir, Soheil; Bernhard Nilsen, Kristian; Etholm, Lars; Tønnesen, Siren; Kerty, Emilia; Drolsum, Liv; Inge Landrø, Nils; Celius, Elisabeth G

    2015-11-01

    Eye and hand motor dysfunction may be present early in the disease course of relapsing-remitting multiple sclerosis (RRMS), and can affect the results on visual and written cognitive tests. We aimed to test for differences in saccadic initiation time (SI time) between RRMS patients and healthy controls, and whether SI time and hand motor speed interacted with the written version of the Symbol Digit Modalities Test (wSDMT). Patients with RRMS (N = 44, age 35.1 ± 7.3 years), time since diagnosis < 3 years and matched controls (N = 41, age 33.2 ± 6.8 years) were examined with ophthalmological, neurological and neuropsychological tests, as well as structural MRI (white matter lesion load (WMLL) and brainstem lesions), visual evoked potentials (VEP) and eye-tracker examinations of saccades. SI time was longer in RRMS than controls (p < 0.05). SI time was not related to the Paced Auditory Serial Addition Test (PASAT), WMLL or to the presence of brainstem lesions. 9 hole peg test (9HP) correlated significantly with WMLL (r = 0.58, p < 0.01). Both SI time and 9HP correlated negatively with the results of wSDMT (r = -0.32, p < 0.05, r = -0.47, p < 0.01), but none correlated with the results of PASAT. RRMS patients have an increased SI time compared to controls. Cognitive tests results, exemplified by the wSDMT, may be confounded by eye and hand motor function. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Development and feasibility testing of the Pediatric Emergency Discharge Interaction Coding Scheme.

    Science.gov (United States)

    Curran, Janet A; Taylor, Alexandra; Chorney, Jill; Porter, Stephen; Murphy, Andrea; MacPhee, Shannon; Bishop, Andrea; Haworth, Rebecca

    2017-08-01

    Discharge communication is an important aspect of high-quality emergency care. This study addresses the gap in knowledge on how to describe discharge communication in a paediatric emergency department (ED). The objective of this feasibility study was to develop and test a coding scheme to characterize discharge communication between health-care providers (HCPs) and caregivers who visit the ED with their children. The Pediatric Emergency Discharge Interaction Coding Scheme (PEDICS) and coding manual were developed following a review of the literature and an iterative refinement process involving HCP observations, inter-rater assessments and team consensus. The coding scheme was pilot-tested through observations of HCPs across a range of shifts in one urban paediatric ED. Overall, 329 patient observations were carried out across 50 observational shifts. Inter-rater reliability was evaluated in 16% of the observations. The final version of the PEDICS contained 41 communication elements. Kappa scores were greater than .60 for the majority of communication elements. The most frequently observed communication elements were under the Introduction node and the least frequently observed were under the Social Concerns node. HCPs initiated the majority of the communication. Pediatric Emergency Discharge Interaction Coding Scheme addresses an important gap in the discharge communication literature. The tool is useful for mapping patterns of discharge communication between HCPs and caregivers. Results from our pilot test identified deficits in specific areas of discharge communication that could impact adherence to discharge instructions. The PEDICS would benefit from further testing with a different sample of HCPs. © 2017 The Authors. Health Expectations Published by John Wiley & Sons Ltd.

  14. Testing odorant-receptor interaction theories in humans through discrimination of isotopomers

    Directory of Open Access Journals (Sweden)

    Mara Andrione

    2017-12-01

    Full Text Available Odour reception takes place on the olfactory receptor neuron membrane, where molecular receptors interact with volatile odorant molecules. This interaction is classically thought to rely on chemical and structural features of the odorant, e.g. size, shape, functional groups. However, this model does not allow formulating a correct prediction for the smell of an odorant, suggesting that other molecular properties may play a role in the odour transduction process. An alternative model of olfaction maintains that odorant receptors can probe not only the structural and chemical features, but also the molecular vibration spectrum of the odorants. This constitutes the so-called vibration model of olfaction. According to this model, two isotopomers of the same molecule, i.e. two forms of the same molecule, one unaltered and one in which one or more hydrogen atoms are substituted with deuterium – which are therefore structurally and chemically identical, but with different molecular vibration spectra – would interact differently with an olfactory receptor, producing different olfactory perceptions in the brain. Here, we report on a duo-trio discrimination experiment conducted on human subjects, testing isotopomer pairs that have recently been shown to be differentially encoded in the honeybee brain.

  15. [Attachment representation and a projective test with pictures of parent-child interaction].

    Science.gov (United States)

    Kubo, M

    2000-02-01

    The purpose of this study was to assess individual differences in attachment representation. They were assessed, not through direct verbal reports, but indirectly as indicated in a projective test. The test required subjects to tell their impressions of pictures, which depicted daily, routine parent-child interactions. A series of pictures were developed for story-making task, which was named PARS (Picture Attachment Related Study). Three hundred and two (302) undergraduate and vocational students were asked to see the pictures, and freely imagine the situation, think what they would feel, and create the further story. They were then to recall their own experiences with their parents, and fill out a questionnaire of how they see their relationship with others. It was found that those who made a trustful PARS story recalled their own attachment experiences in an autonomous way, and had lower distrust in their relationship with others. Thus, results of the projective test were shown to reflect individual personal attachment experiences, and the test be useful.

  16. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-28

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys

  17. The Role of Cohesive Particle Interactions on Solids Uniformity and Mobilization During Jet Mixing: Testing Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Wells, Beric E.; Bamberger, Judith A.; Fort, James A.; Chun, Jaehun; Jenks, Jeromy WJ

    2010-04-01

    Radioactive waste that is currently stored in large underground tanks at the Hanford Site will be staged in selected double-shell tanks (DSTs) and then transferred to the Waste Treatment and Immobilization Plant (WTP). Before being transferred, the waste will be mixed, sampled, and characterized to determine if the waste composition and meets the waste feed specifications. Washington River Protection Solutions is conducting a Tank Mixing and Sampling Demonstration Program to determine the mixing effectiveness of the current baseline mixing system that uses two jet mixer pumps and the adequacy of the planned sampling method. The overall purpose of the demonstration program is to mitigate the technical risk associated with the mixing and sampling systems meeting the feed certification requirements for transferring waste to the WTP.The purpose of this report is to analyze existing data and evaluate whether scaled mixing tests with cohesive simulants are needed to meet the overall objectives of the small-scale mixing demonstration program. This evaluation will focus on estimating the role of cohesive particle interactions on various physical phenomena that occur in parts of the mixing process. A specific focus of the evaluation will be on the uniformity of suspended solids in the mixed region. Based on the evaluation presented in this report and the absence of definitive studies, the recommendation is to conduct scaled mixing tests with cohesive particles and augment the initial testing with non-cohesive particles. In addition, planning for the quantitative tests would benefit from having test results from some scoping experiments that would provide results on the general behavior when cohesive inter-particle forces are important.

  18. Fluid Structure Interaction in a Cold Flow Test and Transient CFD Analysis of Out-of-Round Nozzles

    Science.gov (United States)

    Ruf, Joseph; Brown, Andrew; McDaniels, David; Wang, Ten-See

    2010-01-01

    This viewgraph presentation describes two nozzle fluid flow interactions. They include: 1) Cold flow nozzle tests with fluid-structure interaction at nozzle separated flow; and 2) CFD analysis for nozzle flow and side loads of nozzle extensions with various out-of-round cases.

  19. Precision Tests of the Electroweak Interaction using Trapped Atoms and Ions

    Energy Technology Data Exchange (ETDEWEB)

    Melconian, Daniel George [Texas A & M Univ., College Station, TX (United States)

    2017-06-21

    The objective of the proposed research is to study fundamental aspects of the electroweak interaction via precision measurements in beta decay to test our current understanding of fundamental particles and forces as contained in the so-called "Standard Model" of particle physics. By comparing elegant experiments to rigorous theoretical predictions, we will either confirm the Standard Model to a higher degree and rule out models which seek to extend it, or find evidence of new physics and help guide theorists in developing the New Standard Model. The use of ion and neutral atom traps at radioactive ion beam facilities has opened up a new vista in precision low-energy nuclear physics experiments. Traps provide an ideal source of decaying atoms: they can be extremely cold (~1 mK); they are compact (~1 mm^3); and perhaps most importantly, the daughter particles escape with negligible distortions to their momenta in a scattering-free, open environment. The project is taking advantage of these technologies and applying them to precision beta-decay studies at radioactive beam facilities. The program consists of two complementary efforts: 1) Ion traps are an extremely versatile tool for purifying, cooling and bunching low-energy beams of short-lived nuclei. A large-bore (210~mm) superconducting 7-Tesla solenoid is at the heart of a Penning trap system for which there is a dedicated beamline at T-REX, the upgraded radioactive beam facility at the Cyclotron Institute, Texas A&M University. In addition to providing a general-purpose decay station, the flagship program for this system is measuring the ft-values and beta-neutrino correlation parameters from isospin T=2 superallowed beta-delayed proton decays, complimenting and expanding the already strong program in fundamental interactions at the Institute. 2) A magneto-optical trap is being used at the TRIUMF Neutral Atom Trap facility to observe the (un)polarized angular distribution parameters of isotopes of potassium. We

  20. INTERACT

    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions ...

  1. Coherent single pion production by antineutrino charged current interactions and test of PCAC

    Science.gov (United States)

    Marage, P.; Aderholz, M.; Allport, P.; Armenise, N.; Baton, J. P.; Berggren, M.; Bertrand, D.; Brisson, V.; Bullock, F. W.; Burkot, W.; Calicchio, M.; Clayton, E. F.; Coghen, T.; Cooper-Sarkar, A. M.; Erriquez, O.; Fitch, P. J.; Gerbier, G.; Guy, J.; Hamisi, F.; Hulth, P. O.; Jones, G. T.; Kasper, P.; Klein, H.; Middleton, R. P.; Miller, D. B.; Mobayyen, M. M.; Morrison, D. R. O.; Natali, S.; Neveu, M.; O'Neale, S. W.; Parker, M. A.; Petiau, P.; Sacton, J.; Sansum, R. A.; Simopoulou, E.; Vallée, C.; Varvell, K.; Vayaki, A.; Venus, W.; Wachsmuth, H.; Wells, J.; Wittek, W.

    1986-06-01

    The cross section for coherent production of a single π- meson in charged current antineutrino interactions on neon nuclei has been measured in BEBC to be (175±25) 10-40 cm2/neon nucleus, averaged over the energy spectrum of the antineutrino wide band beam at the CERN SPS; this corresponds to (0.9±0.1) % of the total charged currentbar v_μ cross section. The distributions of kinematical variables are in agreement with theoretical predictions based on the PCAC hypothesis and the meson dominance model; in particular, the Q 2 dependence is well described by a propagator containing a mass m=(1.35±0.18) GeV. The absolute value of the cross section is also in agreement with the model. This analysis thus provides a test of the PCAC hypothesis in the antineutrino energy range 5 150 GeV.

  2. Coherent single pion production by antineutrino charged current interactions and test of PCAC

    International Nuclear Information System (INIS)

    Marage, P.; Bertrand, D.; Sacton, J.; Aderholz, M.; Wittek, W.; Allport, P.; Wells, J.; Baton, J.P.; Gerbier, G.; Neveu, M.; Clayton, E.F.; Hamisi, F.; Miller, D.B.; Mobayyen, M.M.; Cooper-Sarkar, A.M.; Guy, J.; Kasper, P.; Venus, W.; Klein, H.; Morrison, D.R.O.; Parker, M.A.; Wachsmuth, H.; Simopoulou, E.; Vayaki, A.

    1986-01-01

    The cross section for coherent production of a single π - meson in charged current antineutrino interactions on neon nuclei has been measured in BEBC to be (175+-25) 10 -40 cm 2 /neon nucleus, averaged over the energy spectrum of the antineutrino wide band beam at the CERN SPS; this corresponds to (0.9+-0.1)% of the total charged current anti νsub(μ) cross section. The distributions of kinematical variables are in agreement with theoretical predictions based on the PCAC hypothesis and the meson dominance model; in particular, the Q 2 dependence is well described by a propagator containing a mass m=(1.35+-0.18)GeV. The absolute value of the cross section is also in agreement with the model. This analysis thus provides a test of the PCAC hypothesis in the antineutrino energy range 5-150 GeV. (orig.)

  3. Behavioral interactions of simvastatin and fluoxetine in tests of anxiety and depression

    Directory of Open Access Journals (Sweden)

    Santos T

    2012-10-01

    Full Text Available Tainaê Santos,1 Monaliza Marizete Baungratz,1 Suellen Priscila Haskel,2 Daniela Delwing de Lima,3 Júlia Niehues da Cruz,4 Débora Delwing Dal Magro,5 José Geraldo Pereira da Cruz51Department of Medicine, 2Department of Physiotherapy, Regional University of Blumenau, Santa Catarina, Brazil; 3Department of Pharmacy, University of Joinville Region, Santa Catarina, Brazil; 4Department of Medicine, University of the Extreme South of Santa Catarina, Santa Catarina, Brazil; 5Department of Natural Sciences, Regional University of Blumenau, Santa Catarina, BrazilAbstract: Simvastatin inhibits 3-hydroxy-3-methylglutaryl CoA reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway, and is widely used to control plasma cholesterol levels and prevent cardiovascular disease. However, emerging evidence indicates that the beneficial effects of simvastatin extend to the central nervous system. The effects of simvastatin combined with fluoxetine provide an exciting and potential paradigm to decreased anxiety and depression. Thus, the present paper investigates the possibility of synergistic interactions between simvastatin and fluoxetine in models of anxiety and depression. We investigated the effects of subchronically administered simvastatin (1 or 10 mg/kg/day combined with fluoxetine (2 or 10 mg/kg at 24, 5, and 1 hour on adult rats before conducting behavioral tests. The results indicate that simvastatin and/or fluoxetine treatment reduces anxiety-like behaviors in the elevated plus-maze and open-field tests. Our results showed that simvastatin and/or fluoxetine induced a significant increase in the swimming activity during the forced swimming test (antidepressant effect, with a concomitant increase in climbing time in simvastatin-treated animals only (noradrenergic activation. We hypothesize that anxiolytic and antidepressant effects of simvastatin and/or fluoxetine produce their behavioral effects through similar mechanisms and provide

  4. LCT-coil design: Mechanical interaction between composite winding and steel casing under various test conditions

    International Nuclear Information System (INIS)

    Dolensky, B.; Messemer, G.; Zehlein, H.; Erb, J.

    1981-01-01

    Finite element computations for the structural design of the large superconducting toroidal field coil contributed by EURATOM to the Large Coil Test Facility (LCTF) at ORNL, USA were performed at KfK, using the ASKA code. The layout of the coil must consider different types of requirements: firstly, an optimal D-shaped contour minimizing circumferential stress gradients under normal operation in the toroidal arrangement must be defined. Secondly, the three-dimensional real design effects due to the actual support conditions, manufacturing tolerances etc. must be mastered for different basic operational and failure load cases. And, thirdly, the design must stand a single coil qualification test in the TOSKA-facility at KfK, Karlsruhe, FRG, before it is plugged into the LCTF. The emphasis of the paper is three-pronged according to these requirements: i) the 3D magnetic body forces as well as the underlying magnetic fields as computed by the HEDO-code are described. ii) The mechanical interaction between casing and winding as given elsewhere in terms of high stress regions, gaps, slide movements and contact forces for various load cases representing the LCTF test conditions is illustrated here by a juxtaposition of the operational deformations and stresses within the LCTF and the TOSKA. iii) Particular effects like the restraint imposed by a corset-type reinforcement of the coil in the TOSKA test facility to limit the breathing deformation are parametrically studied. Moreover, the possibilities to derive scaling laws which make essential results transferable to larger coils by extracting a 1D mechanical response from the 3D finite element model is also demonstrated. (orig./GG)

  5. Human Birth Weight and Reproductive Immunology: Testing for Interactions between Maternal and Offspring KIR and HLA-C Genes.

    Science.gov (United States)

    Clark, Michelle M; Chazara, Olympe; Sobel, Eric M; Gjessing, Håkon K; Magnus, Per; Moffett, Ashley; Sinsheimer, Janet S

    2016-01-01

    Maternal and offspring cell contact at the site of placentation presents a plausible setting for maternal-fetal genotype (MFG) interactions affecting fetal growth. We test hypotheses regarding killer cell immunoglobulin-like receptor (KIR) and HLA-C MFG effects on human birth weight by extending the quantitative MFG (QMFG) test. Until recently, association testing for MFG interactions had limited applications. To improve the ability to test for these interactions, we developed the extended QMFG test, a linear mixed-effect model that can use multi-locus genotype data from families. We demonstrate the extended QMFG test's statistical properties. We also show that if an offspring-only model is fit when MFG effects exist, associations can be missed or misattributed. Furthermore, imprecisely modeling the effects of both KIR and HLA-C could result in a failure to replicate if these loci's allele frequencies differ among populations. To further illustrate the extended QMFG test's advantages, we apply the extended QMFG test to a UK cohort study and the Norwegian Mother and Child Cohort (MoBa) study. We find a significant KIR-HLA-C interaction effect on birth weight. More generally, the QMFG test can detect genetic associations that may be missed by standard genome-wide association studies for quantitative traits. © 2017 S. Karger AG, Basel.

  6. Deuteron beam interaction with lithium jet in a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1996-01-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (≥14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities. (orig.)

  7. Study on soil-pile-structure-TMD interaction system by shaking table model test

    Science.gov (United States)

    Lou, Menglin; Wang, Wenjian

    2004-06-01

    The success of the tuned mass damper (TMD) in reducing wind-induced structural vibrations has been well established. However, from most of the recent numerical studies, it appears that for a structure situated on very soft soil, soil-structure interaction (SSI) could render a damper on the structure totally ineffective. In order to experimentally verify the SSI effect on the seismic performance of TMD, a series of shaking table model tests have been conducted and the results are presented in this paper. It has been shown that the TMD is not as effective in controlling the seismic responses of structures built on soft soil sites due to the SSI effect. Some test results also show that a TMD device might have a negative impact if the SSI effect is neglected and the structure is built on a soft soil site. For structures constructed on a soil foundation, this research verifies that the SSI effect must be carefully understood before a TMD control system is designed to determine if the control is necessary and if the SSI effect must be considered when choosing the optimal parameters of the TMD device.

  8. Deuteron beam interaction with Li jet for a neutron source test facility

    International Nuclear Information System (INIS)

    Hassanein, A.

    1995-09-01

    Testing and evaluating candidate fusion reactor materials in a high-flux, high-energy neutron environment are critical to the success and economic feasibility of a fusion device. The current understanding of materials behavior in fission-like environments and existing fusion facilities is insufficient to ensure the necessary performance of future fusion reactor components. An accelerator-based deuterium-lithium system to generate the required high neutron flux for material testing is considered to be the most promising approach in the near future. In this system, a high-energy (30-40 MeV) deuteron beam impinges on a high-speed (10-20 m/s) lithium jet to produce the high-energy (>14 MeV) neutrons required to simulate a fusion environment via the Li (d,n) nuclear stripping reaction. Interaction of the high-energy deuteron beam and the subsequent response of the high-speed lithium jet are evaluated in detail. Deposition of the deuteron beam, jet-thermal hydraulic response, lithium-surface vaporization rate, and dynamic stability of the jet are modeled. It is found that lower beam kinetic energies produce higher surface temperature and consequently higher Li vaporization rates. Larger beam sizes significantly reduce both bulk and surface temperatures. Thermal expansion and dynamic velocities (normal to jet direction) due to beam energy deposition and momentum transfer are much lower than jet flow velocity and decrease substantially at lower beam current densities

  9. Impurity Control Test Facility (ICTF) for the study of fusion reactor plasma/edge materials interactions

    International Nuclear Information System (INIS)

    Brooks, J.N.; Mattas, R.F.; Ehst, D.A.; Boley, C.D.; Hershkowitz, N.

    1984-05-01

    A test facility for investigating many of the impurity control issues associated with the interactions of materials with the plasma edge is outlined. Analysis indicates that the plasma edge conditions expected in TFCX, INTOR, etc. can be readily produced at the end cells of an rf stabilized mirror, similar in some respects to the Phaedrus device at the University of Wisconsin. A steady-state, Impurity Control Test Facility (ICTF) based on such a mirror device is expected to produce a plasma with typical parameters of n/sub e/ approx. 3 x 10 18 m -3 , T/sub e/ = 50 eV, and T/sub i/ = 100 eV at each end cell. A heat load of approx. 2 MW/m 2 over areas of approx. 1600 cm 2 could be produced at each end with 800 kW of ICRH power. These conditions would provide a unique capability for examining issues such as erosion/redeposition behavior, properties of redeposited materials, high recycling regimes, plasma edge operating limits for high-Z materials, and particle pumping efficiencies for limiter and divertor designs

  10. Assesing tree-root & soil interaction using pull-out test apparatus

    Science.gov (United States)

    Wibowo, J.; Corcoran, M. K.; Kala, R.; Leavell, D.

    2011-12-01

    Knowing in situ root strength provides a better understanding of the responses of tree root systems against external loads. Root pullout devices are used to record these strengths and can be expressed in two ways: pullout force, which is a direct output from the load cell (measured in pounds) or pullout stress, which is the pullout force divided by root cross section area (measured in pounds per square in.). Pullout tests show not only the possible tensile strength of a tree root, but also the interaction between the tree root and the surrounding geological materials. After discussion with engineers from the University of Nottingham-Trent, the U.S. Army Engineer Research and Development Center (ERDC) constructed a root pullout apparatus with some modifications. These modifications included using a T-System configuration at the base of an aluminum frame instead of a diagonal rod and varying the size of the clamp placed around the tested root. The T-System is placed in front of the root perpendicular to the root path. In the ERDC pullout device, the root was pulled directly without a lever system. A string pot was used to measure displacement when the root was pulled. The device is capable of pulling tree roots with a diameter of up to 2.5 in. and a maximum load of 5000 lbs. Using this device, ERDC conducted field operations in Portland, Oregon; Burlington, Washington; and Albuquerque, New Mexico, on Oregon ash, alder, maple, and cedar trees. In general, pullout tests were conducted approximately 60 deg around the tree selected for the tests. The location of a test depended on the availability of a root near the ground surface. A backhoe was used to remove soil around the tree to locate roots. Before the root was secured in a clamp, root diameter was measured and recorded, and the root was photographed. The tree species, dip angle and dip direction of the root, root location with respect to the tree, tree location, dates, weather, and soil type were also recorded

  11. Improvement of life prediction accuracy by introduction of strain-rate effect into modified ductility exhaustion method

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1994-01-01

    It is important to use a reliable creep-fatigue damage evaluation method to prevent failures due to creep-fatigue damage accumulated during operation life in the structural design for fast breeder reactor plants. In this study, slow strain-rate fatigue tests were conducted for SUS316 steel for fast breeder application (316FR) and the improvement of creep-fatigue life estimation method was proposed based on test results. Main results can be summarized as follows: (1) In the slow strain-rate fatigue tests, life reduction caused by creep damage was observed as in the case of strain-hold creep-fatigue tests. (2) Strain-rate dependency of creep damage was introduced into the modified ductility exhaustion method previously proposed by the author. Good agreement of predicted lives with observed lives was achieved for SUS304 and 316FR steels with the method proposed here. (author)

  12. Basic Mechanisms Leading to Fatigue Failure of Structural Materials

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Petráš, Roman; Mazánová, Veronika

    2016-01-01

    Roč. 69, č. 2 (2016), s. 289-294 ISSN 0972-2815. [International Conference on CREEP , FATIGUE and CREEP -FATIGUE INTERACTION /7./. Kalpakkam, 19.01.2016-22.01.2016] R&D Projects: GA ČR(CZ) GA13-23652S Institutional support: RVO:68081723 Keywords : Damage mechanism * Fatigue crack initiation * Austenitic steel * Oxide cracking Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016

  13. A Dynamic Behavior of the Nuclear Test Rig with Coolant using the Fluid-Structural interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tae-Ho; Hong, Jintae; Ahn, Sung-Ho; Joung, Chang-Young; Jang, Seo-Yun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yeon, Kon-Whi [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the dynamic behavior of the test rig in the coolant flow simulator is evaluated by using the 2-way fluid-structural interaction analysis. The maximum value and location of the deformation and equivalent stress in the test rig is confirmed. The fluid-structural interaction analysis is applied to perform the fluid and structural analysis A fluid-structure interaction analysis is used to simulate the relationship between the deformation and hydraulic pressure. There are two types of fluid-structural interaction analysis. One is a 1-way direction analysis in which the hydraulic pressure is calculated by a CFD and transmitted to the surface of the structure, and a structural analysis is then performed. The other is a 2-way direction analysis that is performed by changing the data between the deformation of the structural and pressure of the coolant water for every time step. The location of the maximum deformation of the test rig is the bottom parts of the test rig. It is expected that the equivalent stress of the test rig is occurred. The maximum equivalent stress in the test rig under the circulation of the coolant is 90.1 MPa. The location of the maximum stress in the test rig is the connect part between the fuel rod and flow divider. A safety factor on the test rig is 3, approximately. The deformation motion of the test rig at the bottom part of the test rig is caused about the fluid-induced vibration. A test on the fluid-induced vibration of the test rig will be performed and compared with results of the analysis in further paper.

  14. Interaction fatigue-creep-environment in an austenitic stainless steel Z2 CND 17-13 (Type 316 L) at 600 and 650 deg C. Microstructural evolution and damage

    International Nuclear Information System (INIS)

    Rezgui, B.

    1982-12-01

    The resistance of steel to continuous fatigue is directly related to its behaviour towards the surroundings (oxidation). This interaction considerably lowers resistance to crack initiation but has no effect on propagation, and rupture is transgranular. Conversely the influence of the environment is negligible under fatigue conditions with a hold time and rupture becomes intergranular whatever the surroudings. Cavities are created inside the material during the hold time and their interaction with each other and with cracks from the surface are the factors responsible for the degradation of fatigue properties. Transgranular rupture initiated in slip bands, which characterises damage by pure fatigue, is gradually replaced by intergranular rupture under fatigue with hold time. Meanwhile a new deformation mode appears: intergranular slip. The longer the hold time the stronger its effect, a tendency offset at high temperature. Hold time, temperature and deformation promote dynamic structural aging and restoration in the material. Since the mechanisms and kinetics of creep fatigue damage are different according to the deformation level and the hold time duration it would not be safe to extrapolate the results [fr

  15. Severe transient tests on operation steam generators: Analysis of the fluid structure dynamic thermal interaction

    International Nuclear Information System (INIS)

    Billon, F.; David, J.; Procaccia, H.

    1983-01-01

    The operating efficiency of steam generators (S.G.s) and their structural integrity depend on the design configurations of the feedwater spray within the S.G., and on the operating procedure. To check the merit of some design modifications, and to verify the fluid-structure interaction with a view to preserve the S.G.s integrity during severe operating transients, a special instrumentation that admits the determination of the instantaneous thermal hydraulic characteristics of the flow in the secondary water and the S.G. tube sheet, has been installed by EDF on one steam generator of Tricastin unit 1 power plant. In parallel, FRAMATOME has developped a computer code, TEMPTRON, that allows the calculations of the thermal loads and the consequent stresses in the most sollicited zones of the steam generator during transient operation of the plant. This code divides the S.G. into three parts: - the first concerns the S.G.s region above the downcomer, zone where the mixing between hot water and cold feedwater occurs, - the second is the downcomer itself which is divided into n segments, - the third concerns the tube sheet zone which is also divided into n segments. The most severe transient test performed is the auxiliary cold feedwater injection into the steam generator during a hot standby of the plant: two levels of flow rate have been realised: 55 and 110 m 3 /h of 42 0 C feedwater. The tests have shown that if the cold feedwater injection occurs when the steam generator water level is below feedwater ring, the lowest fluid temperature reached at tube sheet inlet is about 230 0 C. (orig.)

  16. Beam-Plasma Interaction Experiments on the Princeton Advanced Test Stand

    Science.gov (United States)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I. D.; Davidson, R. C.

    2011-10-01

    The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the fundamental physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a 100 keV ion beam source mounted on a six-foot-long vacuum chamber with numerous ports for diagnostic access. A 100 keV Ar+ beam is launched into a volumetric plasma, which is produced by a ferroelectric plasma source (FEPS). Beam diagnostics upstream and downstream of the FEPS allow for detailed studies of the effects that the plasma has on the beam. This setup is designed for studying the dependence of charge and current neutralization and beam emittance growth on the beam and plasma parameters. This work reports initial measurements of beam quality produced by the extraction electrodes that were recently installed on the PATS device. The transverse beam phase space is measured with double-slit emittance scanners, and the experimental results are compared to WARP simulations of the extraction system. This research is supported by the U.S. Department of Energy.

  17. Testing the master constraint programme for loop quantum gravity: V. Interacting field theories

    International Nuclear Information System (INIS)

    Dittrich, B; Thiemann, T

    2006-01-01

    This is the fifth and final paper in our series of five in which we test the master constraint programme for solving the Hamiltonian constraint in loop quantum gravity. Here we consider interacting quantum field theories, specifically we consider the non-Abelian Gauss constraints of Einstein-Yang-Mills theory and 2 + 1 gravity. Interestingly, while Yang-Mills theory in 4D is not yet rigorously defined as an ordinary (Wightman) quantum field theory on Minkowski space, in background-independent quantum field theories such as loop quantum gravity (LQG) this might become possible by working in a new, background-independent representation. While for the Gauss constraint the master constraint can be solved explicitly, for the 2 + 1 theory we are only able to rigorously define the master constraint operator. We show that the, by other methods known, physical Hilbert is contained in the kernel of the master constraint, however, to systematically derive it by only using spectral methods is as complicated as for 3 + 1 gravity and we therefore leave the complete analysis for 3 + 1 gravity

  18. Interaction of radionuclides with argillite from the Eleana Formation on the Nevada Test Site

    International Nuclear Information System (INIS)

    Dosch, R.G.; Lynch, A.W.

    1979-02-01

    Distribution coefficients have been determined for 137 Cs, 85 Sr, 144 Ce, 99 Tc, 152 Eu, 238 Pu, 244 Cm, and 243 Am between argillite from the Eleana Formation on the Nevada Test Site (NTS) and several aqueous phases. Radionuclide concentrations in the range of 1 to 0.001 μCi/ml were used with contact times of 14, 28, and 56 days. Reaction mechanism, concentration effects, exchange capacity, equilibration times, and particle size effects were addressed in a more comprehensive study of the interaction of argillite with Cs in deionized water. The experimental parameters used in the distribution coefficient measurements were based in part on this work. The aqueous phases included a simulated groundwater with composition based on the analysis of a NTS groundwater, the same simulant and deionized water which were pre-equilibrated with powdered argillite, and a groundwater simulant with approximately the same qualitative composition of the NTS simulant, but with a higher ionic strength. A system to provide continuous pH control by CO 2 addition during equilibration of the argillite-solution mixtures was designed and assembled. Initial experiments were done with Cs and Eu and the effects of pH on their distribution coefficients are discussed

  19. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    Science.gov (United States)

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  20. Effects of Metabolic Cage Housing on Rat Behavior and Performance in the Social Interaction Test.

    Science.gov (United States)

    Whittaker, Alexandra L; Lymn, Kerry A; Howarth, Gordon S

    2016-01-01

    Although the metabolic cage is commonly used for housing nonhuman animals in the laboratory, it has been recognized as constituting a unique stressor. Such an environment would be expected to affect behavioral change in animals housed therein. However, few studies have specifically addressed the nature or magnitude of this change. The current study sought to characterize the behavioral time budget of rats in metabolic cage housing in comparison to that of individually housed animals in standard open-top cages. Rats in metabolic cages spent less time moving, manipulating enrichment, and carrying out rearing behaviors, and there was a corresponding shift toward inactivity. In an applied Social Interaction Test, behavioral scoring implied that metabolic cage housing had an anxiogenic effect. In conclusion, metabolic cage housing produces measurable effects on spontaneous and evoked behavior in rats in the laboratory. These behavioral changes may lead to a negative emotional state in these animals, which could have negative welfare consequences. Further research is needed to quantify the existence and magnitude of such an effect on rat well being.

  1. OECD MCCI project 2-D Core Concrete Interaction (CCI) tests : CCI-3 test data report-thermalhydraulic results. Rev. 0 October 15, 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of a third long-term 2-D Core-Concrete Interaction (CCI) experiment designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-3 experiment, which was conducted on September 22, 2005. Test specifications for CCI-3 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 375

  2. OECD MMCI 2-D Core Concrete Interaction (CCI) tests : CCCI-1 test data report-thermalhydraulic results. Rev 0 January 31, 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten coreconcrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-1 experiment, which was conducted on December 19, 2003. Test specifications for CCI-1 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg

  3. OECD MCCI 2-D Core Concrete Interaction (CCI) tests : CCI-2 test data report-thermalhydraulic results, Rev. 0 October 15, 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. This data report provides thermal hydraulic test results from the CCI-2 experiment, which was conducted on August 24, 2004. Test specifications for CCI-2 are provided in Table 1-1. This experiment investigated the interaction of a fully oxidized 400 kg

  4. Interactions between cask components and content of packaging for the transport of radioactive material during drop tests

    International Nuclear Information System (INIS)

    Quercetti, T.; Ballheimer, V.; Zeisler, P.; Mueller, K.

    2003-01-01

    This paper describes the analytical, numerical and experimental investigations on the phenomenon of interactions between cask components and content of packages for the transport of radioactive material during drop tests required according to the IAEA Regulations for the Safe Transport of Radioactive Material. Radial and axial gaps between cask components and content are usually necessary for thermal reasons but larger gaps can exist because of the geometrical dimensions of the specified content. Consequently interactions between content and cask components (lid system, cask body, etc.) are possible and can not be excluded during drop tests. Interactions in this context are relative movements between cask and content which are mainly due to elastic spring effects after releasing the cask for the free drop. These relative movements can cause interior collisions between content and cask during the main impact of the package onto the unyielding target. Drop tests with various types of Type A and Type B packages fully instrumented with strain gauges and accelerometers showed that these interactions respectively interior collisions can be considerable relating to high forces acting on cask lids, lid bolts and the content. Of course the real quantitative consequences of the interactions depend upon different conditions, among others the drop orientation, the design characteristics of the impact limiters, the dimensions of the gaps, the material characteristics of the contents, etc. . In order to investigate more precisely the phenomenon of interactions BAM carried out finite element calculations for the named casks using the ABAQUS/ Standard and ABAQUS/ Explicit computer code comparing them with results obtained from experiments. Additionally, tests with a simplified model instrumented with accelerometers were carried out accompanied by finite element calculations and analytical calculations using MATHEMATICA. The investigations on the mentioned phenomena of interaction

  5. Robust Tests for Additive Gene-Environment Interaction in Case-Control Studies Using Gene-Environment Independence

    DEFF Research Database (Denmark)

    Liu, Gang; Lee, Seunggeun; Lee, Alice W

    2018-01-01

    test with case-control data. Our simulation studies suggest that the EB approach uses the gene-environment independence assumption in a data-adaptive way and provides power gain compared to the standard logistic regression analysis and better control of Type I error when compared to the analysis......There have been recent proposals advocating the use of additive gene-environment interaction instead of the widely used multiplicative scale, as a more relevant public health measure. Using gene-environment independence enhances the power for testing multiplicative interaction in case......-control studies. However, under departure from this assumption, substantial bias in the estimates and inflated Type I error in the corresponding tests can occur. This paper extends the empirical Bayes (EB) approach previously developed for multiplicative interaction that trades off between bias and efficiency...

  6. Fuel-coolant interaction visualization test for in-vessel corium retention external reactor vessel cooling (IVR-ERVC) condition

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Hong, Seong Ho; Song, Jin Ho; Hong, Seong Wan [Severe Accident and PHWR Safety Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-12-15

    A visualization test of the fuel-coolant interaction in the Test for Real cOrium Interaction with water (TROI) test facility was carried out. To experimentally simulate the In-Vessel corium Retention (IVR)- External Reactor Vessel Cooling (ERVC) conditions, prototypic corium was released directly into the coolant water without a free fall in a gas phase before making contact with the coolant. Corium (34.39 kg) consisting of uranium oxide and zirconium oxide with a weight ratio of 8:2 was superheated, and 22.54 kg of the 34.39 kg corium was passed through water contained in a transparent interaction vessel. An image of the corium jet behavior in the coolant was taken by a high-speed camera every millisecond. Thermocouple junctions installed in the vertical direction of the coolant were cut sequentially by the falling corium jet. It was clearly observed that the visualization image of the corium jet taken during the fuel-coolant interaction corresponded with the temperature variations in the direction of the falling melt. The corium penetrated through the coolant, and the jet leading edge velocity was 2.0 m/s. Debris smaller than 1 mm was 15% of the total weight of the debris collected after a fuel-coolant interaction test, and the mass median diameter was 2.9 mm.

  7. Short presentation of the activities of the Joint Research Center, Ispra establishment in the field of material research in reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, H [JRC, Ispra (Italy)

    1977-07-01

    The Commission of the European Communities (CEC) disposes of a joint Research Center (JRC) composed of four establishments. In the ISPRA establishment, which is the largest of four, the largest project, Reactor Safety, includes the following: reliability analysis; blowdown; sodium thermohydraulics; fuel-coolant interaction and post accident heat removal; dynamic structural loading and response (LMFBR); structural failure prevention. The last is described in this paper. It deals with: code validation program for primary containment response in a LMFBR following core disruptive accident (COVA); dynamic material testing; fracture mechanics; creep fatigue; creep crack growth; creep damage evaluation; non-destructive testing.

  8. Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J.; Link, S.O. (Pacific Northwest Lab., Richland, WA (USA))

    1988-07-01

    Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

  9. Testing the Interacting Dark Energy Model with Cosmic Microwave Background Anisotropy and Observational Hubble Data

    Directory of Open Access Journals (Sweden)

    Weiqiang Yang

    2017-07-01

    Full Text Available The coupling between dark energy and dark matter provides a possible approach to mitigate the coincidence problem of the cosmological standard model. In this paper, we assumed the interacting term was related to the Hubble parameter, energy density of dark energy, and equation of state of dark energy. The interaction rate between dark energy and dark matter was a constant parameter, which was, Q = 3 H ξ ( 1 + w x ρ x . Based on the Markov chain Monte Carlo method, we made a global fitting on the interacting dark energy model from Planck 2015 cosmic microwave background anisotropy and observational Hubble data. We found that the observational data sets slightly favored a small interaction rate between dark energy and dark matter; however, there was not obvious evidence of interaction at the 1 σ level.

  10. Test-retest reliability of an interactive voice response (IVR) version of the EORTC QLQ-C30

    NARCIS (Netherlands)

    Lundy, J.J.; Coons, S.J.; Aaronson, N.K.

    2015-01-01

    Objective: The objective of this study was to assess the test-retest reliability of an interactive voice response (IVR) version of the European Organisation for Research and Treatment of Cancer (EORTC) QLQ-C30. Methods: A convenience sample of outpatient cancer clinic patients (n = 127) was asked to

  11. Reliability and Validity of the Interactive Drawing Test: A Measure of Reciprocity for Children and Adolescents with Autism Spectrum Disorder

    Science.gov (United States)

    Backer van Ommeren, Tineke; Koot, Hans M.; Scheeren, Anke M.; Begeer, Sander

    2015-01-01

    Poor reciprocity is a defining feature of an autism spectrum disorder (ASD). In the current study, we examined the reliability and validity of the Interactive Drawing Test (IDT), a new instrument to assess reciprocal behavior. The IDT was administered to children and adolescents with ASD (n = 131) and to a typically developing group (n = 62). The…

  12. Employing think-aloud protocols and constructive interaction to test the usability of online library catalogues: A methodological comparison

    NARCIS (Netherlands)

    Van Den Haak, M. J.; De Jong, M. D T; Schellens, P. J.

    2004-01-01

    This paper describes a comparative study of three usability test approaches: concurrent think-aloud protocols, retrospective think-aloud protocols, and constructive interaction. These three methods were compared by means of an evaluation of an online library catalogue, which involved four points of

  13. Employing think-aloud protocols and constructive interaction to test the usability of online library catalogues: a methodological comparison.

    NARCIS (Netherlands)

    van den Haak, M.J.; de Jong, Menno D.T.; Schellens, P.J.

    2004-01-01

    This paper describes a comparative study of three usability test approaches: concurrent think-aloud protocols, retrospective think-aloud protocols, and constructive interaction. These three methods were compared by means of an evaluation of an online library catalogue, which involved four points of

  14. An R package "VariABEL" for genome-wide searching of potentially interacting loci by testing genotypic variance heterogeneity

    Directory of Open Access Journals (Sweden)

    Struchalin Maksim V

    2012-01-01

    Full Text Available Abstract Background Hundreds of new loci have been discovered by genome-wide association studies of human traits. These studies mostly focused on associations between single locus and a trait. Interactions between genes and between genes and environmental factors are of interest as they can improve our understanding of the genetic background underlying complex traits. Genome-wide testing of complex genetic models is a computationally demanding task. Moreover, testing of such models leads to multiple comparison problems that reduce the probability of new findings. Assuming that the genetic model underlying a complex trait can include hundreds of genes and environmental factors, testing of these models in genome-wide association studies represent substantial difficulties. We and Pare with colleagues (2010 developed a method allowing to overcome such difficulties. The method is based on the fact that loci which are involved in interactions can show genotypic variance heterogeneity of a trait. Genome-wide testing of such heterogeneity can be a fast scanning approach which can point to the interacting genetic variants. Results In this work we present a new method, SVLM, allowing for variance heterogeneity analysis of imputed genetic variation. Type I error and power of this test are investigated and contracted with these of the Levene's test. We also present an R package, VariABEL, implementing existing and newly developed tests. Conclusions Variance heterogeneity analysis is a promising method for detection of potentially interacting loci. New method and software package developed in this work will facilitate such analysis in genome-wide context.

  15. Cannabidiol exhibits anxiolytic but not antipsychotic property evaluated in the social interaction test.

    Science.gov (United States)

    Almeida, Valéria; Levin, Raquel; Peres, Fernanda Fiel; Niigaki, Suzy T; Calzavara, Mariana B; Zuardi, Antônio W; Hallak, Jaime E; Crippa, José A; Abílio, Vanessa C

    2013-03-05

    Cannabidiol (CBD), a non-psychotomimetic compound of the Cannabis sativa, has been reported to have central therapeutic actions, such as antipsychotic and anxiolytic effects. We have recently reported that Spontaneously Hypertensive Rats (SHRs) present a deficit in social interaction that is ameliorated by atypical antipsychotics. In addition, SHRs present a hyperlocomotion that is reverted by typical and atypical antipsychotics, suggesting that this strain could be useful to study negative symptoms (modeled by a decrease in social interaction) and positive symptoms (modeled by hyperlocomotion) of schizophrenia as well as the effects of potential antipsychotics drugs. At the same time, an increase in social interaction in control animals similar to that induced by benzodiazepines is used to screen potential anxiolytic drugs. The aim of this study was to investigate the effects of CBD on social interaction presented by control animals (Wistar) and SHRs. The lowest dose of CBD (1mg/kg) increased passive and total social interaction of Wistar rats. However, the hyperlocomotion and the deficit in social interaction displayed by SHRs were not altered by any dose of CBD. Our results do not support an antipsychotic property of cannabidiol on symptoms-like behaviors in SHRs but reinforce the anxiolytic profile of this compound in control rats. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Testing spatial theories of plant coexistence: no consistent differences in intra- and interspecific interaction distances.

    Science.gov (United States)

    Vogt, Deborah R; Murrell, David J; Stoll, Peter

    2010-01-01

    Plants stand still and interact with their immediate neighbors. Theory has shown that the distances over which these interactions occur may have important consequences for population and community dynamics. In particular, if intraspecific competition occurs over longer distances than interspecific competition (heteromyopia), coexistence can be promoted. We examined how intraspecific and interspecific competition scales with neighbor distance in a target-neighbor greenhouse competition experiment. Individuals from co-occurring forbs from calcareous grasslands were grown in isolation and with single conspecific or heterospecific neighbors at distances of 5, 10, or 15 cm (Plantago lanceolata vs. Plantago media and Hieracium pilosella vs. Prunella grandiflora). Neighbor effects were strong and declined with distance. Interaction distances varied greatly within and between species, but we found no evidence for heteromyopia. Instead, neighbor identity effects were mostly explained by relative size differences between target and neighbor. We found a complex interaction between final neighbor size and identity such that neighbor identity may become important only as the neighbor becomes very large compared with the target individual. Our results suggest that species-specific size differences between neighboring individuals determine both the strength of competitive interactions and the distance over which these interactions occur.

  17. Materials interactions test methods to measure radionuclide release from waste forms under repository-relevant conditions

    International Nuclear Information System (INIS)

    Strickert, R.G.; Erikson, R.L.; Shade, J.W.

    1984-10-01

    At the request of the Basalt Waste Isolation Project, the Materials Characterization Center has collected and developed a set of procedures into a waste form compliance test method (MCC-14.4). The purpose of the test is to measure the steady-state concentrations of specified radionuclides in solutions contacting a waste form material. The test method uses a crushed waste form and basalt material suspended in a synthetic basalt groundwater and agitated for up to three months at 150 0 C under anoxic conditions. Elemental and radioisotopic analyses are made on filtered and unfiltered aliquots of the solution. Replicate experiments are performed and simultaneous tests are conducted with an approved test material (ATM) to help ensure precise and reliable data for the actual waste form material. Various features of the test method, equipment, and test conditions are reviewed. Experimental testing using actinide-doped borosilicate glasses are also discussed. 9 references, 2 tables

  18. Soil-Geosynthetic Interaction Test to Develop Specifications for Geosynthetic-Stabilized Roadways

    Science.gov (United States)

    2018-05-01

    soil-geosynthetic composite (KSGC) for a wide range of geosynthetics. The tests were conducted after establishment of test configurations that were found suitable for specification of geosynthetic-stabilized base roadways. Field performance of experi...

  19. OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002

    International Nuclear Information System (INIS)

    Farmer, M.T.; Kilsdonk, D.J.; Lomperski, S.; Aeschliman, R.W.; Basu, S.

    2011-01-01

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series has been initiated to provide fundamental information on the ability of water to ingress into cracks and fissures that form in the debris during quench, thereby augmenting the otherwise conduction-limited heat transfer process. A test plan for Melt Eruption Separate Effects Tests (MESET) has also been developed to provide information on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions. In terms of the second program objective, the project Management Board (MB) has approved startup activities required to carry out

  20. Robust cross-links in molluscan adhesive gels: testing for contributions from hydrophobic and electrostatic interactions.

    Science.gov (United States)

    Smith, A M; Robinson, T M; Salt, M D; Hamilton, K S; Silvia, B E; Blasiak, R

    2009-02-01

    The cross-linking interactions that provide cohesive strength to molluscan adhesive gels were investigated. Metal-based interactions have been shown to play an important role in the glue of the slug Arion subfuscus (Draparnaud), but other types of interactions may also contribute to the glue's strength and their role has not been investigated. This study shows that treatments that normally disrupt hydrophobic or electrostatic interactions have little to no effect on the slug glue. High salt concentrations and non-ionic detergent do not affect the solubility of the proteins in the glue or the ability of the glue proteins to stiffen gels. In contrast, metal chelation markedly disrupts the gel. Experiments with gel filtration chromatography identify a 40 kDa protein that is a central component of the cross-links in the glue. This 40 kDa protein forms robust macromolecular aggregations that are stable even in the presence of high concentrations of salt, non-ionic detergent, urea or metal chelators. Metal chelation during glue secretion, however, may block some of these cross-links. Such robust, non-specific interactions in an aqueous environment are highly unusual for hydrogels and reflect an intriguing cross-linking mechanism.

  1. I just ran a thousand analyses: benefits of multiple testing in understanding equivocal evidence on gene-environment interactions.

    Directory of Open Access Journals (Sweden)

    Vera E Heininga

    Full Text Available In psychiatric genetics research, the volume of ambivalent findings on gene-environment interactions (G x E is growing at an accelerating pace. In response to the surging suspicions of systematic distortion, we challenge the notion of chance capitalization as a possible contributor. Beyond qualifying multiple testing as a mere methodological issue that, if uncorrected, leads to chance capitalization, we advance towards illustrating the potential benefits of multiple tests in understanding equivocal evidence in genetics literature.We focused on the interaction between the serotonin-transporter-linked promotor region (5-HTTLPR and childhood adversities with regard to depression. After testing 2160 interactions with all relevant measures available within the Dutch population study of adolescents TRAILS, we calculated percentages of significant (p < .05 effects for several subsets of regressions. Using chance capitalization (i.e. overall significance rate of 5% alpha and randomly distributed findings as a competing hypothesis, we expected more significant effects in the subsets of regressions involving: 1 interview-based instead of questionnaire-based measures; 2 abuse instead of milder childhood adversities; and 3 early instead of later adversities. Furthermore, we expected equal significance percentages across 4 male and female subsamples, and 5 various genotypic models of 5-HTTLPR.We found differences in the percentages of significant interactions among the subsets of analyses, including those regarding sex-specific subsamples and genetic modeling, but often in unexpected directions. Overall, the percentage of significant interactions was 7.9% which is only slightly above the 5% that might be expected based on chance.Taken together, multiple testing provides a novel approach to better understand equivocal evidence on G x E, showing that methodological differences across studies are a likely reason for heterogeneity in findings - but chance

  2. Syndemics of psychosocial problems and HIV risk: A systematic review of empirical tests of the disease interaction concept.

    Science.gov (United States)

    Tsai, Alexander C; Burns, Bridget F O

    2015-08-01

    In the theory of syndemics, diseases co-occur in particular temporal or geographical contexts due to harmful social conditions (disease concentration) and interact at the level of populations and individuals, with mutually enhancing deleterious consequences for health (disease interaction). This theory has widespread adherents in the field, but the extent to which there is empirical support for the concept of disease interaction remains unclear. In January 2015 we systematically searched 7 bibliographic databases and tracked citations to highly cited publications associated with the theory of syndemics. Of the 783 records, we ultimately included 34 published journal articles, 5 dissertations, and 1 conference abstract. Most studies were based on a cross-sectional design (32 [80%]), were conducted in the U.S. (32 [80%]), and focused on men who have sex with men (21 [53%]). The most frequently studied psychosocial problems were related to mental health (33 [83%]), substance abuse (36 [90%]), and violence (27 [68%]); while the most frequently studied outcome variables were HIV transmission risk behaviors (29 [73%]) or HIV infection (9 [23%]). To test the disease interaction concept, 11 (28%) studies used some variation of a product term, with less than half of these (5/11 [45%]) providing sufficient information to interpret interaction both on an additive and on a multiplicative scale. The most frequently used specification (31 [78%]) to test the disease interaction concept was the sum score corresponding to the total count of psychosocial problems. Although the count variable approach does not test hypotheses about interactions between psychosocial problems, these studies were much more likely than others (14/31 [45%] vs. 0/9 [0%]; χ2 = 6.25, P = 0.01) to incorporate language about "synergy" or "interaction" that was inconsistent with the statistical models used. Therefore, more evidence is needed to assess the extent to which diseases interact, either at the

  3. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E.; Matalucci, R.V. [Sandia National Lab., Albuquerque, NM (United States); Hoag, D.L.; Blankenship D.A. [RE/SPEC Inc., Albuquerque, NM (United States)] [and others

    1997-02-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests.

  4. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Munson, D.E.; Matalucci, R.V.; Hoag, D.L.; Blankenship D.A.

    1997-02-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests

  5. Gender discrimination may be worse than you think: testing ordinal interactions in power research.

    Science.gov (United States)

    Elias, Steven M; Cropanzano, Russell

    2006-04-01

    The authors reanalyze the data of a study by S. M. Elias and R. J. Loomis (2004), which aimed to determine how an instructor's gender may influence his or her ability to gain student compliance. S. M. Elias and R. J. Loomis observed few significant gender effects using traditional multivariate analyses of variance. The authors reanalyze this data using the more appropriate statistical techniques for detecting ordinal interactions recommended by M. J. Strube and P. Bobko (1989) and S. M. Elias (2004). An ordinal interaction occurs when 1 cell of a 2 x 2 design is responsible for a significant interaction (e.g., female instructors suffering only when rated by male students). Reanalysis of the data resulted in more robust findings.

  6. Elaboration of the recently proposed test of Pauli's principle under strong interactions

    International Nuclear Information System (INIS)

    Ktorides, C.N.; Myung, H.C.; Santilli, R.M.

    1980-01-01

    The primary objective of this paper is to stimulate the experimental verification of the validity or invalidity of Pauli's principle under strong interactions. We first outline the most relevant steps in the evolution of the notion of particle. The spin as well as other intrinsic characteristics of extended, massive, particles under electromagnetic interactions at large distances might be subjected to a mutation under additional strong interactions at distances smaller than their charge radius. These dynamical effects can apparently be conjectured to account for the nonpointlike nature of the particles, their necessary state of penetration to activate the strong interactions, and the consequential emergence of broader forces which imply the breaking of the SU(2)-spin symmetry. We study a characterization of the mutated value of the spin via the transition from the associative enveloping algebra of SU(2) to a nonassociative Lie-admissible form. The departure from the original associative product then becomes directly representative of the breaking of the SU(2)-spin symmetry, the presence of forces more general than those derivable from a potential, and the mutated value of the spin. In turn, such a departure of the spin from conventional quantum-mechanical values implies the inapplicability of Pauli's exclusion principle under strong interactions, because, according to this hypothesis, particles that are fermions under long-range electromagnetic interactions are no longer fermions under these broader, short-range, forces. In nuclear physics possible deviations from Pauli's exclusion principle can at most be very small. These experimental data establish that, for the nuclei considered, nucleons are in a partial state of penetration of their charge volumes although of small statistical character

  7. Leach test methodology for the Waste/Rock Interactions Technology Program

    International Nuclear Information System (INIS)

    Bradley, D.J.; McVay, G.L.; Coles, D.G.

    1980-05-01

    Experimental leach studies in the WRIT Program have two primary functions. The first is to determine radionuclide release from waste forms in laboratory environments which attempt to simulate repository conditions. The second is to elucidate leach mechanisms which can ultimately be incorporated into nearfield transport models. The tests have been utilized to generate rates of removal of elements from various waste forms and to provide specimens for surface analysis. Correlation between constituents released to the solution and corresponding solid state profiles is invaluable in the development of a leach mechanism. Several tests methods are employed in our studies which simulate various proposed leach incident scenarios. Static tests include low temperature (below 100 0 C) and high temperature (above 100 0 C) hydrothermal tests. These tests reproduce nonflow or low-flow repository conditions and can be used to compare materials and leach solution effects. The dynamic tests include single-pass, continuous-flow(SPCF) and solution-change (IAA)-type tests in which the leach solutions are changed at specific time intervals. These tests simulate repository conditions of higher flow rates and can also be used to compare materials and leach solution effects under dynamic conditions. The modified IAEA test is somewhat simpler to use than the one-pass flow and gives adequate results for comparative purposes. The static leach test models the condition of near-zero flow in a repository and provides information on element readsorption and solubility limits. The SPCF test is used to study the effects of flowing solutions at velocities that may be anticipated for geologic groundwaters within breached repositories. These two testing methods, coupled with the use of autoclaves, constitute the current thrust of WRIT leach testing

  8. Tests for qualitative treatment-by-centre interaction using a 'pushback' procedure.

    Science.gov (United States)

    Ciminera, J L; Heyse, J F; Nguyen, H H; Tukey, J W

    1993-06-15

    In multicentre clinical trials using a common protocol, the centres are usually regarded as being a fixed factor, thus allowing any treatment-by-centre interaction to be omitted from the error term for the effect of treatment. However, we feel it necessary to use the treatment-by-centre interaction as the error term if there is substantial evidence that the interaction with centres is qualitative instead of quantitative. To make allowance for the estimated uncertainties of the centre means, we propose choosing a reference value (for example, the median of the ordered array of centre means) and converting the individual centre results into standardized deviations from the reference value. The deviations are then reordered, and the results 'pushed back' by amounts appropriate for the corresponding order statistics in a sample from the relevant distribution. The pushed-back standardized deviations are then restored to the original scale. The appearance of opposite signs among the destandardized values for the various centres is then taken as 'substantial evidence' of qualitative interaction. Procedures are presented using, in any combination: (i) Gaussian, or Student's t-distribution; (ii) order-statistic medians or outward 90 per cent points of the corresponding order statistic distributions; (iii) pooling or grouping and pooling the internally estimated standard deviations of the centre means. The use of the least conservative combination--Student's t, outward 90 per cent points, grouping and pooling--is recommended.

  9. An Interactive Method to Solve Infeasibility in Linear Programming Test Assembling Models

    Science.gov (United States)

    Huitzing, Hiddo A.

    2004-01-01

    In optimal assembly of tests from item banks, linear programming (LP) models have proved to be very useful. Assembly by hand has become nearly impossible, but these LP techniques are able to find the best solutions, given the demands and needs of the test to be assembled and the specifics of the item bank from which it is assembled. However,…

  10. Calculation methods of Structure-Soil-Structure Interaction (3SI) for embedded buildings: Application to NUPEC tests

    International Nuclear Information System (INIS)

    Clouteau, D.; Broc, D.; Devesa, G.; Guyonvarh, V.; Massin, P.

    2012-01-01

    This work aims at improving and validating methods coupling Finite Element (FE) and Boundary Element (BE) Methods in the context of Soil-Structure Interaction (SSI) and Structure-Soil-Structure Interaction (3SI) tests performed by NUPEC on mock-up structures built on an unmade ground. Several cases have been tested: single and juxtaposed buildings, shallow and embedded foundations, with various loading conditions: forced and natural seismic loadings. The numerical simulations of forced vibration tests are in good agreement with the results of the NUPEC experiments in the case of two embedded buildings either in terms of amplitude and resonance. The numerical simulation of seismic response tests by FEM and BEM allows for a proper choice of the 'reference point' where the computed and the experimental displacements coincide. A parametric analysis of Structure-Soil-Structure Interaction carried out by the FEM has allowed to determine the influence of some parameters on SSI. Most of them like the position of the building in the excavation, the direction of the load, the quality of the contact between the sidewalls of the buildings and the soil for embedded foundations, do not show to have a strong influence on the dynamic system behaviour, which is mainly governed by the stiffness of the first soil layer. As far as 3SI is concerned, this paper shows that when the cross interaction has a small effect on the building response in the case of surface foundations, it has a strong influence in the case of embedded foundations with an important decrease of the response at the top of the buildings. (authors)

  11. Wing-Body Interaction: Numerical simulation, Wind-tunnel and In-flight Testing

    Czech Academy of Sciences Publication Activity Database

    Popelka, Lukáš; Zelený, L.; Šimurda, David; Matějka, M.

    2010-01-01

    Roč. 34, č. 2 (2010), s. 29-36 ISSN 0744-8996. [OSTIV CONGRESS /29./. Lüsse, 06.08.2008-13.08.2008] R&D Projects: GA MŠk(CZ) 1M06031; GA AV ČR IAA2076403; GA ČR GA101/08/1155 Institutional research plan: CEZ:AV0Z20760514 Keywords : wing-fuselage interaction * turbulent separation * vortex generators Subject RIV: BK - Fluid Dynamics

  12. Antiproton interaction with 4He as a test of GUT cosmology

    International Nuclear Information System (INIS)

    Chechetkin, V.M.; Khlopov, M.Yu.; Zeldovich, Ya.B.

    1982-01-01

    A new possibility of checking some GUT models is suggested, basing on the analysis of their cosmological consequences and the experimental study of the anti p 4 He interaction. The study of annihilation of antiprotons with 4 He may provide limits on the possible amount of antimatter in the early Universe, limits on the probability of formation of primordial black holes and restrictions on the GUT parameters determining the properties of domains of antimatter

  13. Association testing to detect gene-gene interactions on sex chromosomes in trio data

    Directory of Open Access Journals (Sweden)

    Yeonok eLee

    2013-11-01

    Full Text Available Autism Spectrum Disorder (ASD occurs more often among males than females in a 4:1 ratio. Among theories used to explain the causes of ASD, the X chromosome and the Y chromosome theories attribute ASD to X-linked mutation and the male-limited gene expressions on the Y chromosome, respectively. Despite the rationale of the theory, studies have failed to attribute the sex-biased ratio to the significant linkage or association on the regions of interest on X chromosome. We further study the gender biased ratio by examining the possible interaction effects between two genes in the sex chromosomes. We propose a logistic regression model with mixed effects to detect gene-gene interactions on sex chromosomes. We investigated the power and type I error rates of the approach for a range of minor allele frequencies and varying linkage disequilibrium between markers and QTLs. We also evaluated the robustness of the model to population stratification. We applied the model to a trio-family data set with an ASD affected male child to study gene-gene interactions on sex chromosomes.

  14. Effect of Soil-Structure Interaction on Seismic Performance of Long-Span Bridge Tested by Dynamic Substructuring Method

    Directory of Open Access Journals (Sweden)

    Zhenyun Tang

    2017-01-01

    Full Text Available Because of the limitations of testing facilities and techniques, the seismic performance of soil-structure interaction (SSI system can only be tested in a quite small scale model in laboratory. Especially for long-span bridge, a smaller tested model is required when SSI phenomenon is considered in the physical test. The scale effect resulting from the small scale model is always coupled with the dynamic performance, so that the seismic performance of bridge considering SSI effect cannot be uncovered accurately by the traditional testing method. This paper presented the implementation of real-time dynamic substructuring (RTDS, involving the combined use of shake table array and computational engines for the seismic simulation of SSI. In RTDS system, the bridge with soil-foundation system is divided into physical and numerical substructures, in which the bridge is seen as physical substructures and the remaining part is seen as numerical substructures. The interface response between the physical and numerical substructures is imposed by shake table and resulting reaction force is fed back to the computational engine. The unique aspect of the method is to simulate the SSI systems subjected to multisupport excitation in terms of a larger physical model. The substructuring strategy and the control performance associated with the real-time substructuring testing for SSI were performed. And the influence of SSI on a long-span bridge was tested by this novel testing method.

  15. Fuel rod-grid interaction wear: in-reactor tests (LWBR development program)

    International Nuclear Information System (INIS)

    Stackhouse, R.M.

    1979-11-01

    Wear of the Zircaloy cladding of LWBR irradiation test fuel rods, resulting from relative motion between rod and rod support contacts, is reported. Measured wear depths were small, 0.0 to 2.7 mils, but are important in fuel element behavior assessment because of the local loss of cladding thickness, as well as the effect on grid spring forces that laterally restrain the rods. An empirical wear analysis model, based on out-of-pile tests, is presented. The model was used to calculate the wear on the irradiation test fuel rods attributed to a combination of up-and-down motions resulting from power and pressure/temperature cycling of the test reactor, flow-induced vibrations, and assembly handling scratches. The calculated depths are generally deeper than the measured depths

  16. Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-01

    This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.

  17. Behavior of 99Tc in doped-glass/basalt hydrothermal interaction tests

    International Nuclear Information System (INIS)

    Coles, D.G.; Apted, M.J.

    1984-01-01

    The release of polyvalent radionuclides from a nuclear waste repository located in basalt may be sensitively related to the redox potential (Eh) imposed by the basalt. A series of tests are reported here, evaluating the effect of basalt on the concentrations of 99 Tc released into solution from a borosilicate glass waste form. Crushed PNL 76-68 glass, doped with 0.7 mg 99 Tc/g glass, was reacted with reference basalt groundwater under oxic hydrothermal conditions in a sampling autoclave, both alone and in the presence of crushed basalt. The steady state fluid concentrations of 99 Tc and various table species were determined from samples obtained at the test conditions of 200 0 C, 30 MPa, and a initial solution to solid mass ratio of 10 for both tests. In the glass + groundwater test, the 99 Tc concentration rose rapidly to about 50 mg/L after only 200 hr of run time and remained at a value between 50 and 60 mg/L throughout the duration of the test. For the basalt + glass + groundwater test, the 99 Tc concentration rose to an initial value of about 2.5 mg/L. At about 700 hr, the 99 Tc concentration began to drop rapidly until a value near the analytical detection limit (approximately 0.005 mg/L) was reached after a test duration of 1400 hr. It is concluded that the presence of basalt in these hydrothermal experiments reduces the concentration of 99 Tc in solution by nearly four orders of magnitude, probably by control of solution Eh and subsequent precipitation of a solid containing a reduced form of technetium. Reaction mechanisms are discussed that can account for these observations. 17 references, 1 figure

  18. Testing Hadronic Interaction Models using a Highly Granular Silicon-Tungsten Calorimeter

    CERN Document Server

    Bilki, B.; Schlereth, J.; Xia, L.; Deng, Z.; Li, Y.; Wang, Y.; Yue, Q.; Yang, Z.; Eigen, G.; Mikami, Y.; Price, T.; Watson, N.K.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Carloganu, C.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Lima, J.G.R.; Salcido, P.; Zutshi, V.; Boisvert, V.; Green, B.; Misiejuk, A.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cauwenbergh, S.; Tytgat, M.; Zaganidis, N.; Hostachy, J.Y.; Morin, L.; Gadow, K.; Göttlicher, P.; Günter, C.; Krüger, K.; Lutz, B.; Reinecke, M.; Sefkow, F.; Feege, N.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Kaplan, A.; Norbeck, E.; Northacker, D.; Onel, Y.; Kim, E.J.; van Doren, B.; Wilson, G.W.; Wing, M.; Bobchenko, B.; Chadeeva, M.; Chistov, R.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Popova, E.; Gabriel, M.; Kiesling, C.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci-Giannelli, M.; Fleury, J.; Frisson, T.; Kégl, B.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëne, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; Matthieu, A.; Mora de Freitas, P.; Videau, H.; Augustin, J.-E.; David, J.; Ghislain, P.; Lacour, D.; Lavergne, L.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Götze, M.

    2015-09-11

    A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 600,000 selected negatively changed pion events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the GEANT4 simulation tool kit are compared to this data. Although a reasonable overall description of the data is observed, there are significant quantitative discrepancies in the longitudinal and transverse distributions of reconstructed energy.

  19. The neutron electric dipole moments as a test of the superweak interaction theory

    CERN Document Server

    Wolfenstein, Lincoln

    1974-01-01

    Theoretical calculations of the neutron electric dipole moment D/sub n / are reviewed for various theories of CP violation. It is shown that for the superweak interaction theory D/sub n/ is less than 10/sup -29/ e.cm in contrast to values of 10/sup -23/ to 10/sup -24/ predicted by many but not all milliweak theories. It is concluded that prospective measurements of D/sub n/ may provide decisive evidence against or significant evidence in favour of the superweak theory. (26 refs).

  20. The Hualien Large-Scale Seismic Test for soil-structure interaction research

    International Nuclear Information System (INIS)

    Tang, H.T.; Stepp, J.C.; Cheng, Y.H.

    1991-01-01

    A Large-Scale Seismic Test (LSST) Program at Hualien, Taiwan, has been initiated with the primary objective of obtaining earthquake-induced SSI data at a stiff soil site having similar prototypical nuclear power plant soil conditions. Preliminary soil boring, geophysical testing and ambient and earthquake-induced ground motion monitoring have been conducted to understand the experiment site conditions. More refined field and laboratory tests will be conducted such as the state-of-the-art freezing sampling technique and the large penetration test (LPT) method to characterize the soil constitutive behavior. The test model to be constructed will be similar to the Lotung model. The instrumentation layout will be designed to provide data for studies of SSI, spatial incoherence, soil stability, foundation uplifting, ground motion wave field and structural response. A consortium consisting of EPRI, Taipower, CRIEPI, TEPCO, CEA, EdF and Framatome has been established to carry out the project. It is envisaged that the Hualien SSI array will be ready to record earthquakes by the middle of 1992. The duration of the recording scheduled for five years. (author)

  1. Energetic event in fuel-coolant interaction test FARO L-33

    International Nuclear Information System (INIS)

    Magallon, D.; Huhtiniemi, I.

    2001-01-01

    The paper presents the results of the energetic event triggered in FARO test L-33, which was the last test of the FARO series dedicated to large-scale experimental investigation of FCI in light water reactors. In FARD L-33, 100 kg of UO 2 -ZrO 2 corium at 3000 K were released via a 50 mm orifice to a pool of sub-cooled water 1.6 m in height and 0.71 m in diameter at 0.4 MPa system pressure. A self-sustained propagating event triggered by an explosive charge occurred when the melt leading edge reached the pool bottom and about 22 kg of melt had entered the water. The maximum pressure measured at the inner vessel wall located at a radial distance of 350 mm form the centre of the test section was 10 MPa. The maximum impulse was 20 kPa.s and the mechanical energy release about 110 kJ (i.e., two orders of magnitude higher than the trigger energy), giving a maximum efficiency of the order of 0.2 %. The energetic event caused the inner test vessel to deform plastically and lift inside the housing pressure vessel FAT, which moved 2.5 mm upward and downward but was not damaged. After the event, the rest of the melt discharged undisturbed into the water and quenched as in the previous FARO tests. (authors)

  2. Energetic event in fuel-coolant interaction test FARO L-33

    Energy Technology Data Exchange (ETDEWEB)

    Magallon, D.; Huhtiniemi, I. [European Commission, Institute for Systems, Informatics and Safety, Ispra, VA (Italy)

    2001-07-01

    The paper presents the results of the energetic event triggered in FARO test L-33, which was the last test of the FARO series dedicated to large-scale experimental investigation of FCI in light water reactors. In FARD L-33, 100 kg of UO{sub 2}-ZrO{sub 2} corium at 3000 K were released via a 50 mm orifice to a pool of sub-cooled water 1.6 m in height and 0.71 m in diameter at 0.4 MPa system pressure. A self-sustained propagating event triggered by an explosive charge occurred when the melt leading edge reached the pool bottom and about 22 kg of melt had entered the water. The maximum pressure measured at the inner vessel wall located at a radial distance of 350 mm form the centre of the test section was 10 MPa. The maximum impulse was 20 kPa.s and the mechanical energy release about 110 kJ (i.e., two orders of magnitude higher than the trigger energy), giving a maximum efficiency of the order of 0.2 %. The energetic event caused the inner test vessel to deform plastically and lift inside the housing pressure vessel FAT, which moved 2.5 mm upward and downward but was not damaged. After the event, the rest of the melt discharged undisturbed into the water and quenched as in the previous FARO tests. (authors)

  3. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Div.; Hoag, D.L.; Blankenship, D.A.; DeYonge, W.F.; Schiermeister, D.M. [RE/SPEC, Inc., Albuquerque, NM (United States); Jones, R.L.; Baird, G.T. [Tech Reps, Inc., Albuquerque, NM (United States)

    1997-04-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information.

  4. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Munson, D.E.; Jones, R.L.; Baird, G.T.

    1997-04-01

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information

  5. Configuration color vision tests: the interaction between aging and the complexity of figure-ground segregation.

    Science.gov (United States)

    Stanford, T; Pollack, R H

    1984-09-01

    A cross-sectional study comparing response time and the percentage of items correctly identified in three color vision tests (Pflügertrident, HRR-AO pseudoisochromatic plates, and AO pseudoisochromatic plates) was carried out on 72 women (12 in each decade) ranging from ages 20 to 79 years. Overall, time scores increased across the age groups. Analysis of the correctness scores indicated that the AO pseudoisochromatic plates requiring the identification of numbers was more difficult than the other tests which consisted of geometric forms or the letter E. This differential difficulty increased as a function of age. There was no indication of color defect per se which led to the conclusion that figure complexity may be the key variable determining performance. The results were similar to those obtained by Lee and Pollack (1978) in their study of the Embedded Figures Test.

  6. Mechanical interaction between historical brick and repair mortar: experimental and numerical tests

    International Nuclear Information System (INIS)

    Bocca, P; Grazzini, A; Masera, D; Alberto, A; Valente, S

    2011-01-01

    An innovative laboratory procedure, developed at the Non Destructive Testing Laboratory of the Politecnico di Torino, as a preliminary design stage for the pre-qualification of repair mortars applied to historical masonry buildings is described. Tested repair mortars are suitable for new dehumidified plaster in order to stop the rising damp effects by capillary action on historical masonry walls. Long-term plaster delamination occurs frequently as a consequence of not compatible mechanical characteristics of mortar. Preventing this phenomenon is the main way to increase the durability of repair work. In this direction, it is useful to analyse, through the cohesive crack model, the evolutionary phenomenon of plaster delamination. The parameters used in the numerical simulation of experimental tests are able to characterize the mechanical behaviour of the interface. It is therefore possible to predict delamination in problems with different boundary conditions.

  7. Human-robot interaction tests on a novel robot for gait assistance.

    Science.gov (United States)

    Tagliamonte, Nevio Luigi; Sergi, Fabrizio; Carpino, Giorgio; Accoto, Dino; Guglielmelli, Eugenio

    2013-06-01

    This paper presents tests on a treadmill-based non-anthropomorphic wearable robot assisting hip and knee flexion/extension movements using compliant actuation. Validation experiments were performed on the actuators and on the robot, with specific focus on the evaluation of intrinsic backdrivability and of assistance capability. Tests on a young healthy subject were conducted. In the case of robot completely unpowered, maximum backdriving torques were found to be in the order of 10 Nm due to the robot design features (reduced swinging masses; low intrinsic mechanical impedance and high-efficiency reduction gears for the actuators). Assistance tests demonstrated that the robot can deliver torques attracting the subject towards a predicted kinematic status.

  8. Usability Testing of a Collaborative and Interactive University on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Gavin McArdle

    2009-10-01

    Full Text Available Abstract - The use of mobile devices for delivering learning tools is an attractive concept. Termed mobile learning (m-learning, this new technology allows people to participate in learning activities without being tied to a fixed location and provides users with convenient and flexible access to learning resources anytime and anywhere. While many m-learning applications have been developed to date, most provide tools to help students’ with specific learning tasks rather than a general interface to online courses. Few sup-port online learning communities or allow users to download multimedia learning content. These features would engage mobile users and enable them to interact with one another, thus allowing them to participate in group learning activities despite their changing location. In this article, we describe an m-learning system which we have developed which aims to incorporate these facilities. This system provides access to multimedia learning resources and supports mobile users in an interactive synchronous learning environment with their desktop peers. Details of the evaluation techniques which we utilised to appraise the system are provided and the results are presented. Feedback suggests that the features offered by our system are beneficial for collaborative m-learning.

  9. Tensile testing study of dynamic interactions between dislocations and precipitate in vanadium alloys

    International Nuclear Information System (INIS)

    Tougou, Kouichi; Nogiwa, Kimihiro; Tachikawa, Kazuhiro; Fukumoto, Ken-ichi

    2013-01-01

    To investigate the hardening of fine Ti(OCN) precipitate, we performed in situ transmission electron microscopy (TEM) observations during tensile testing of dislocations gliding through fine Ti(OCN) precipitates in thermally aged V–4Cr–4Ti alloys. The obstacle strength parameter was estimated from the critical bow-out angle, ϕ, of the dislocation lines from the microstructural change during tensile deformation observed in the TEM images. From image processing analysis of the dislocation motion, the value of the obstacle strength parameter of Ti(OCN) precipitates of 4-nm size was determined to be 0.30. The increase in yield stress calculated from the measured dislocation behavior pinned around precipitates was Δσ in situ = 43 MPa, and the increase in yield stress measured by the micro-Vickers hardness test was Δσ HV = 49.5 MPa. Data from in situ TEM observations during tensile testing and from micro-Vickers hardness tests were in good agreement; thus, the obstacle strength parameter of the Ti(OCN) precipitates of 4-nm size was successfully obtained experimentally. The obstacle strength parameter also was compared with data from a previous study, and there was also quite good agreement. Therefore, the obstacle strength parameter obtained from this study is measurable and is a reliable measure of mechanical property changes following precipitation in V–4Cr–4Ti alloys

  10. Validation of a Wave-Body Interaction Model by Experimental Tests

    DEFF Research Database (Denmark)

    Ferri, Francesco; Kramer, Morten; Pecher, Arthur

    2013-01-01

    Within the wave energy field, numerical simulation has recently acquired a worldwide consent as being a useful tool, besides physical model testing. The main goal of this work is the validation of a numerical model by experimental results. The numerical model is based on a linear wave-body intera...

  11. Child-Robot Interaction in the Wild : Field Testing Activities of the ALIZ-E Project

    NARCIS (Netherlands)

    Greeff, J. de; Blanson Henkemans, O.A.; Fraaije, A.; Solms, L.; Wigdor, N.; Bierman, B.

    2014-01-01

    A field study was conducted in which CRI activities developed by the ALIZ-E project were tested with the project's primary user group: children with diabetes. This field study resulted in new insights in the modalities and roles a robot aimed at CRI in a healthcare setting might utilise, while in

  12. Usability testing of interaction components: taking the message exchange as a measure of usability

    NARCIS (Netherlands)

    Brinkman, W.P.; Haakma, R.; Bouwhuis, D.G.; Jacob, R.J.K.; Limbourg, Q; Vanderdonckt, J.

    2004-01-01

    Component-based Software Engineering (CBSE) is concerned with the development of systems from reusable parts (components), and the development and maintenance of these parts. This study addresses the issue of usability testing in a CBSE environment, and specifically automatically measuring the

  13. Supra-Additive Interaction of Docosahexaenoic Acid and Naproxen and Gastric Safety on the Formalin Test in Rats.

    Science.gov (United States)

    Arroyo-Lira, Arlette Guadalupe; Rodríguez-Ramos, Fernando; Ortiz, Mario I; Castañeda-Hernández, Gilberto; Chávez-Piña, Aracely Evangelina

    2017-11-01

    Preclinical Research The aim of this work was to evaluate the effect of docosahexaenoic acid (DHA) on the pharmacokinetics and pharmacodynamics-nociception-of naproxen in rats, as well as to determine the gastric safety resulting from this combination versus naproxen alone. Female Wistar rats were orally administered DHA, naproxen or the DHA-naproxen mixture at fixed-ratio combination of 1:3. The antinociceptive effect was evaluated using the formalin test. The gastric injury was determined 3 h after naproxen administration. An isobolographic analysis was performed to characterize the antinociceptive interaction between DHA and naproxen. To determine the possibility of pharmacokinetic interactions, the oral bioavailability of naproxen was evaluated in presence and absence of oral DHA. The experimental effective dose ED 30 values (Zexp) were decreased from theoretical additive dose values (Zadd; P supra-additive interaction. The oral administration of DHA increased the pharmacokinetic parameter AUC 0- t of naproxen (P supra-additive antinociceptive effect in the formalin test so that this combination could be useful to management of inflammatory pain. Drug Dev Res 78 : 332-339, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Genotype x environment interaction for grain yield of wheat genotypes tested under water stress conditions

    International Nuclear Information System (INIS)

    Sail, M.A.; Dahot, M.U.; Mangrio, S.M.; Memon, S.

    2007-01-01

    Effect of water stress on grain yield in different wheat genotypes was studied under field conditions at various locations. Grain yield is a complex polygenic trait influenced by genotype, environment and genotype x environment (GxE) interaction. To understand the stability among genotypes for grain yield, twenty-one wheat genotypes developed Through hybridization and radiation-induced mutations at Nuclear Institute of Agriculture (NIA) TandoJam were evaluated with four local check varieties (Sarsabz, Thori, Margalla-99 and Chakwal-86) in multi-environmental trails (MET/sub s/). The experiments were conducted over 5 different water stress environments in Sindh. Data on grain yield were recorded from each site and statistically analyzed. Combined analysis of variance for all the environments indicated that the genotype, environment and genotype x environment (GxE) interaction were highly significant (P greater then 0.01) for grain yield. Genotypes differed in their response to various locations. The overall highest site mean yield (4031 kg/ha) recorded at Moro and the lowest (2326 kg/ha) at Thatta. Six genotypes produced significantly (P=0.01) the highest grain yield overall the environments. Stability analysis was applied to estimate stability parameters viz., regression coefficient (b), standard error of regression coefficient and variance due to deviation from regression (S/sub 2/d) genotypes 10/8, BWS-78 produced the highest mean yield over all the environments with low regression coefficient (b=0.68, 0.67 and 0.63 respectively and higher S/sup 2/ d value, showing specific adaptation to poor (un favorable) environments. Genotype 8/7 produced overall higher grain yield (3647 kg/ha) and ranked as third high yielding genotype had regression value close to unity (b=0.9) and low S/sup d/ value, indicating more stability and wide adaptation over the all environments. The knowledge of the presence and magnitude of genotype x environment (GE) interaction is important to

  15. FY17 Status Report on Testing Supporting the Inclusion of Grade 91 Steel as an Acceptable Material for Application of the EPP Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Messner, Mark C. [Argonne National Lab. (ANL), Argonne, IL (United States); Sham, Sam [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Yanli [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This report summarizes the experiments performed in FY17 on Gr. 91 steels. The testing of Gr. 91 has technical significance because, currently, it is the only approved material for Class A construction that is strongly cyclic softening. Specific FY17 testing includes the following activities for Gr. 91 steel. First, two types of key feature testing have been initiated, including two-bar thermal ratcheting and Simplified Model Testing (SMT). The goal is to qualify the Elastic – Perfectly Plastic (EPP) design methodologies and to support incorporation of these rules for Gr. 91 into the ASME Division 5 Code. The preliminary SMT test results show that Gr. 91 is most damaging when tested with compression hold mode under the SMT creep fatigue testing condition. Two-bar thermal ratcheting test results at a temperature range between 350 to 650o C were compared with the EPP strain limits code case evaluation, and the results show that the EPP strain limits code case is conservative. The material information obtained from these key feature tests can also be used to verify its material model. Second, to provide experimental data in support of the viscoplastic material model development at Argonne National Laboratory, selective tests were performed to evaluate the effect of cyclic softening on strain rate sensitivity and creep rates. The results show the prior cyclic loading history decreases the strain rate sensitivity and increases creep rates. In addition, isothermal cyclic stress-strain curves were generated at six different temperatures, and a nonisothermal thermomechanical testing was also performed to provide data to calibrate the viscoplastic material model.

  16. The relationship of self-regulation and aggression: an empirical test of personality systems interaction theory.

    Science.gov (United States)

    Ross, Thomas; Fontao, María Isabel

    2008-10-01

    On the basis of personality systems interaction (PSI) theory, the authors examine self-regulation, conflict behaviour, behavioural resources, and personality disorders in a sample of 83 male offenders and explore the role self-regulatory variables play with respect to aggressive behaviour. Although substantial correlations between self-regulatory functions and aggressive behaviour were found, these variables did not predict aggression in a subsequent regression analysis with measures of self-regulation, conflict behaviour, and personality disorders as independent variables. Antisocial behaviour, behavioural self-control, and affect were among the strongest predictors of aggression. Specific predictions based on PSI theory could not be confirmed. Theoretical implications of the findings are discussed and put into relation with treatment issues of offenders.

  17. Soil-structure interaction analysis of large scale seismic test model at Hualien in Taiwan

    International Nuclear Information System (INIS)

    Jang, J. B.; Ser, Y. P.; Lee, J. L.

    2001-01-01

    The issue of SSI in seismic analysis and design of NPPs is getting important, as it may be inevitable to build NPPs at sites with soft foundation due to ever-increasing difficulty in acquiring new construction sites for NPPs. And, the improvement of seismic analysis technique including soil-structure interaction analysis essential to achieve reasonable seismic design for structures and equipments, etc. of NPPs. Therefore, among the existing SSI analysis programs, the most prevalent SASSI is verified through the comparison numerical analysis results with recorded response results of Hualien project in this study. As a result, SASSI accurately estimated the recorded response results for the fundamental frequency and peak acceleration of structure and was proved to be reliable and useful for the seismic analysis and design of NPPs

  18. Test of the Zweig rule in. pi. /sup -/p interactions at 19 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Woodworth, P L; Treille, D; Thompson, A S; Strub, R; Sonderegger, P; Palazzi-Cerrina, C; Mitaroff, W A; French, B R [European Organization for Nuclear Research, Geneva (Switzerland); Kumar, R [Glasgow Univ. (UK). Dept. of Natural Philosophy; Kenyon, I R [Birmingham Univ. (UK). Dept. of Physics

    1976-10-25

    Phi production has been observed in ..pi../sup -/p interactions at 19 GeV/c with (44+-10) events in the final state phi..pi../sup +/..pi../sup -/..pi../sup -/p and (45+-9) events in phiK/sup +/K/sup -/..pi../sup -/p. The production ratios phi..pi../sup +/..pi../sup -/..pi../sup -/p/..omega pi../sup +/..pi../sup -/..pi../sup -/p approximately 0.005 and phiK/sup +/K/sup -/..pi../sup -/p/rho/sup 0/K/sup +/K/sup -/..pi../sup -/p approximately 0.45 agree with Zweig-rule expectations.

  19. Compound-nuclear tests of time reversal invariance in the nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    French, J.B.; Pandey, A.; Smith, J.

    1987-01-01

    The theory for the effects of time-reversal noninvariance (TRNI) in complex systems is reviewed. Applied to the compound-nuclear data for energy-level, width and cross-section fluctuations (the latter for detailed-balance pairs of reactions proceeding through the compound nucleus) this gives bounds on multiparticle TRNI Hamiltonian matrix elements. Using a fluctuation-free form of statistical spectroscopy the results are reduced to bounds on α, the relative magnitude of the TRNI nucleon-nucleon interaction. The level and width analyses for heavy nuclei gave α ≤ 2 x 10 -3 at high (∼99%) statistical confidence; preliminary calculations for detailed balance with 24 Mg(α,p) 27 Al and its inverse gives α ≤ 4 x 10 -3 at the same high confidence, but ≤0.2 x 10 -3 at 80% confidence. Suggestions are made about experiments which should yield sharper bounds. 28 refs., 1 tab

  20. Genomic testing interacts with reproductive surplus in reducing genetic lag and increasing economic net return

    DEFF Research Database (Denmark)

    Hjortø, Line; Ettema, Jehan Frans; Kargo, Morten

    2015-01-01

    Until now, genomic information has mainly been used to improve the accuracy of genomic breeding values for breeding animals at a population level. However, we hypothesize that the use of information from genotyped females also opens up the possibility of reducing genetic lag in a dairy herd......, especially if genomic tests are used in combination with sexed semen or a high management level for reproductive performance, because both factors provide the opportunity for generating a reproductive surplus in the herd. In this study, sexed semen is used in combination with beef semen to produce high......-value crossbred beef calves. Thus, on average there is no surplus of and selection among replacement heifers whether to go into the herd or to be sold. In this situation, the selection opportunities arise when deciding which cows to inseminate with sexed semen, conventional semen, or beef semen. We tested...

  1. Interactions of heart disease and lung disease on radionuclide tests of lung anatomy and function

    International Nuclear Information System (INIS)

    Pierson, R.N. Jr.; Barrett, C.R. Jr.; Yamashina, A.; Friedman, M.I.

    1984-01-01

    This paper considers the effects of heat diseases on lung anatomy, lung function, and pulmonary nuclear test procedures, and also the effects of lung diseases on cardiac function, with particular reference to radionuclide tests. Historically, pulmonary nuclear medicine has been focused on discovering and quantifying pulmonary embolism, but the potential of nuclear tracer techniques to carry out high-precision, regional, quantitative measurements of blood flow, air flow, and membrane transport promises a much more powerful and wide-ranging diagnostic application than the search for pulmonary emboli. The authors therefore define normal anatomy and function in a framework suitable to develop the relationships between cardiac and pulmonary function, with particular attention to regional differences in lung function, since regional measurements provide a special province for radionuclide lung studies

  2. New Integrated Testing System for the Validation of Vehicle-Snow Interaction Models

    Science.gov (United States)

    2010-08-06

    are individual wheel speeds, accelerator pedal position, vehicle speed, yaw rate, lateral acceleration, steering wheel angle and brake ...forces and moments at each wheel center, vehicle body slip angle , speed, acceleration, yaw rate, roll, and pitch. The profilometer has a 3-D scanning...Stability Program. The test vehicle provides measurements that include three forces and moments at each wheel center, vehicle body slip angle , speed

  3. MODELLING AND VALIDATION OF A TESTING TRAILER FOR ABS AND TYRE INTERACTION ON ROUGH TERRAIN

    OpenAIRE

    Žuraulis, Vidas; van der Merwe, Nico A.; Scholtz, Odette; Els, P. Schalk

    2017-01-01

    The main purpose of a vehicle anti-lock braking system (ABS) is to prevent the tyres from locking-up in order to brake efficiently whilst maintaining steering control and stability. Sport utility vehicles (SUV) are designed to drive on various roads under different driving conditions, making it challenging to identify optimal operating conditions for ABS algorithms to be implemented. This paper describes the development and modelling of a testing trailer that is designed to benefit the res...

  4. Interaction between contours and eye movements in the perception of afterimages: A test of the signal ambiguity theory.

    Science.gov (United States)

    Powell, Georgie; Sumner, Petroc; Harrison, James J; Bompas, Aline

    2016-05-01

    An intriguing property of afterimages is that conscious experience can be strong, weak, or absent following identical stimulus adaptation. Previously we suggested that postadaptation retinal signals are inherently ambiguous, and therefore the perception they evoke is strongly influenced by cues that increase or decrease the likelihood that they represent real objects (the signal ambiguity theory). Here we provide a more definitive test of this theory using two cues previously found to influence afterimage perception in opposite ways and plausibly at separate loci of action. However, by manipulating both cues simultaneously, we found that their effects interacted, consistent with the idea that they affect the same process of object interpretation rather than being independent influences. These findings bring contextual influences on afterimages into more general theories of cue combination, and we suggest that afterimage perception should be considered alongside other areas of vision science where cues are found to interact in their influence on perception.

  5. Intermediate-scale tests of sodium interactions with calcite and dolomite aggregate concretes

    International Nuclear Information System (INIS)

    Randich, E.; Acton, R.U.

    1983-09-01

    Two intermediate-scale tests were performed to compare the behavior of calcite and dolomite aggregate concretes when attacked by molten sodium. The tests were performed as part of an interlaboratory comparison between Sandia National Laboratories and Hanford Engineering Development Laboratories. Results of the tests at Sandia National Laboratories are reported here. The results show that both concretes exhibit similar exothermic reactions with molten sodium. The large difference in reaction vigor suggested by thermodynamic considerations of CO 2 release from calcite and dolomite was not realized. Penetration rates of 1.4 to 1.7 mm/min were observed for short periods of time with reaction zone temperatures in excess of 800 0 C during the energetic attack. The penetration was not uniform over the entire sodium-concrete contact area. Rapid attack may be localized due to inhomogeneities in the concrete. The chemical reaction zone is less then one cm thick for the calcite concrete but is about seven cm thick for the dolomite concrete

  6. Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground

    Science.gov (United States)

    Tang, Liang; Ling, Xianzhang; Xu, Pengju; Gao, Xia; Wang, Dongsheng

    2010-03-01

    This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three El Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun.

  7. Dose assessment, radioecology, and community interaction at former nuclear test sites

    International Nuclear Information System (INIS)

    Robison, W.L.

    1994-11-01

    The US conducted a nuclear testing program at Bikini and Enewetak Atolls in the Marshall Islands from 1946 through 1958. A total of 66 nuclear devices were tested--23 at Bikini Atoll (total yield of 77 megatons) and 43 at Enewetak Atoll (total yield of 33 megatons). This resulted in contamination of many of the islands at each atoll. The BRAVO test (yield 15 megatons) on March 1, 1954 contaminated several atolls to the east of Bikini Atoll some of which were inhabited. The author has conducted an experimental, monitoring, and dose assessment program at atolls in the northern Marshall Islands for the past 20 years. The goals have been to: (1) determine the radiological conditions at the atolls; (2) provide dose assessments for resettlement options and alternate living patterns; (3) develop and evaluate remedial measures to reduce the dose to people reinhabiting the atolls; and (4) discuss the results with each of the communities and the Republic of the Marshall Islands government officials to help them understand the data as a basis for resettlement decisions. The remaining radionuclides at the atolls that contribute any significant dose are 137 Cs, 90 Sr, 239+240 Pu, and 241 Am

  8. Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing.

    Science.gov (United States)

    Invitto, Sara; Faggiano, Chiara; Sammarco, Silvia; De Luca, Valerio; De Paolis, Lucio T

    2016-03-18

    In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user's hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects). After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP) components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning.

  9. Interaction between dexibuprofen and dexketoprofen in the orofacial formalin test in mice.

    Science.gov (United States)

    Miranda, H F; Noriega, V; Sierralta, F; Prieto, J C

    2011-01-01

    Animal models are used to research the mechanisms of pain and to mimic human pain. The purpose of this study was to determine the degree of interaction between dexketoprofen and dexibuprofen, by isobolographic analysis using the formalin orofacial assay in mice. This assay presents two-phase time course: an early short-lasting, phase I, starting immediately after the formalin injection producing a tonic acute pain, leaving a 15 min quiescent period, followed by a prolonged, phase II, after the formalin and representing inflammatory pain. Administration of dexketoprofen or dexibuprofen produced a dose-dependent antinociception, with different potency, either during phases I or II. The co-administration of dexketoprofen and dexibuprofen produced synergism in phase I and II. In conclusion, both dexketoprofen and dexibuprofen are able to induce antinociception in the orofacial formalin assay. Their co-administration produced a synergism, which could be related to the different degree of COX inhibition and other mechanisms of analgesics. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing

    Directory of Open Access Journals (Sweden)

    Sara Invitto

    2016-03-01

    Full Text Available In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user’s hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects. After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning.

  11. Neutron-Antineutron oscillation as a test of a New Interaction

    International Nuclear Information System (INIS)

    Addazi, A.

    2015-01-01

    We propose to search Neutron-Antineutron transitions, in condition of strong magnetic field rather than suppressed one. It is commonly accepted that such an oscillation has to be searched in no magnetic field conditions (for instance, the experiment have to be shielded by the Earth’s magnetic field). But, Neutron (and Antineutron) could be coupled to a 5. force spin-independent background Φ generated by the Earth, as eV Φ¯nγ 0 n. The background condensate simulates a difference in neutron and antineutron masses, in other words a CPT violation. Compatible with Equivalence Principle (EP) limits for a neutron inside nuclei, the 5. force background could be as high as Φ ∼ 10 −11 ÷ 10 −10 eV. As consequence, the transition probability is amplified rather than suppressed with a magnetic field of B ∼ 1–10 Gauss, if we consider neutrons immersed in a background saturating the EP limit. There are intriguing connections among: the existence of a Majorana neutron, Baryon violations Beyond the Standard Model, the Matter-Antimatter asymmetry in our Universe (Baryogenesis and Leptogenesis), the possibility of a new fifth force interaction, the possible apparent violation of the Equivalence Principle and the CPT. These strongly motivate an improvement of our current best limits in n-¯n physics.

  12. Haptic, Virtual Interaction and Motor Imagery: Entertainment Tools and Psychophysiological Testing

    Science.gov (United States)

    Invitto, Sara; Faggiano, Chiara; Sammarco, Silvia; De Luca, Valerio; De Paolis, Lucio T.

    2016-01-01

    In this work, the perception of affordances was analysed in terms of cognitive neuroscience during an interactive experience in a virtual reality environment. In particular, we chose a virtual reality scenario based on the Leap Motion controller: this sensor device captures the movements of the user’s hand and fingers, which are reproduced on a computer screen by the proper software applications. For our experiment, we employed a sample of 10 subjects matched by age and sex and chosen among university students. The subjects took part in motor imagery training and immersive affordance condition (a virtual training with Leap Motion and a haptic training with real objects). After each training sessions the subject performed a recognition task, in order to investigate event-related potential (ERP) components. The results revealed significant differences in the attentional components during the Leap Motion training. During Leap Motion session, latencies increased in the occipital lobes, which are entrusted to visual sensory; in contrast, latencies decreased in the frontal lobe, where the brain is mainly activated for attention and action planning. PMID:26999151

  13. Metals interaction tested in children’s hair originating from industrial and rural areas

    Directory of Open Access Journals (Sweden)

    Jerzy Kwapulinski

    2014-09-01

    Full Text Available Introduction. Different biological samples (blood, gallstone, teeth, hair serve as a biomarker of exposure to metals for many years. This method appeared to be useful not only in clinical medicine, but also in the studies on the environment. Aim. The study is to compare the amount of selected metals in children’s hair residing in industrial and rural areas. Material and methods. Research of occurrence of 12 metals in children’s hair at the age of 7, 10 and 14 living in an industrial (Nowy Bytom town and a rural (Strumień town areas has been presented. Determination of Pb, Cd, Ni, Co Na, K, Mg, Zn, Cu, Mn, Fe and Ca was carried out by atomic absorption spectrophotometry (AAS using a spectrometer PerkinElmer 400. Results. In the case of seven-year old children, regardless of gender a common mechanism of co-occurrence was noticed for manganese and calcium, manganese and magnesium, calcium and magnesium, sodium and potassium. Apart from the correlation of metals for the seven-year-old-children mentioned, in case of ten-year old children, an additional correlation between calcium and zinc appears. Conclusion: The amount of some metals in the hair with the diversified possibility of interaction between the metals themselves and their relation to gender and age of children revealed different environmental exposure.

  14. Glia-neuron interactions in neurological diseases: Testing non-cell autonomy in a dish.

    Science.gov (United States)

    Meyer, Kathrin; Kaspar, Brian K

    2017-02-01

    For the past century, research on neurological disorders has largely focused on the most prominently affected cell types - the neurons. However, with increasing knowledge of the diverse physiological functions of glial cells, their impact on these diseases has become more evident. Thus, many conditions appear to have more complex origins than initially thought. Since neurological pathologies are often sporadic with unknown etiology, animal models are difficult to create and might only reflect a small portion of patients in which a mutation in a gene has been identified. Therefore, reliable in vitro systems to studying these disorders are urgently needed. They might be a pre-requisite for improving our understanding of the disease mechanisms as well as for the development of potential new therapies. In this review, we will briefly summarize the function of different glial cell types in the healthy central nervous system (CNS) and outline their implication in the development or progression of neurological conditions. We will then describe different types of culture systems to model non-cell autonomous interactions in vitro and evaluate advantages and disadvantages. This article is part of a Special Issue entitled SI: Exploiting human neurons. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. StudTest – A Platform Supporting Complex and Interactive Knowledge Assessment

    Directory of Open Access Journals (Sweden)

    Vlado Glavinić

    2008-12-01

    Full Text Available This paper describes the model and prototype implementation of a knowledge assessment framework based on problem management components. In order to support student testing with complex problem types and enable usage of rich graphical user interfaces for solution entry, we have developed an e-examination model in which the core concept is a component that can generate complex questions and evaluate students' solutions with additional explanation generation, which we named prlet. The respective system implementation is described, which can operate under heavy loads.

  16. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    Science.gov (United States)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  17. WIPP [Waste Isolation Pilot Plant]/SRL in situ tests: Part 2, Pictorial history of MIIT [Materials Interface Interactions Tests] and final MIIT matrices, assemblies, and sample listings

    International Nuclear Information System (INIS)

    Wicks, G.G.; Weinle, M.E.; Molecke, M.A.

    1987-01-01

    In situ testing of Savannah River Plant [SRP] waste glass is an important component in ensuring technical and public confidence in the safety and effective performance of the wasteforms. Savannah River Laboratory [SRL] is currently involved in joint programs involving field testing of SRP waste in Sweden, Belgium, and the United Kingdom. Most recently, this in situ effort has been expanded to include the first field tests to be conducted in the United States, involving burial of a variety of simulated nuclear waste systems. This new effort, called the Materials Interface Interactions Tests or MIIT, is a program jointly conducted by Sandia National Laboratory/Waste Isolation Pilot Plant [WIPP] and SRL. Over 1800 samples, supplied by the United States, France, West Germany, Belgium, Canada, Japan, and the United Kingdom, were buried approximately 650m below the earth's surface in the salt geology at WIPP, near Carlsbad, New Mexico. The MIIT program is one of the largest cooperative efforts ever undertaken in the waste management field; the data produced from these tests are designed to benefit a wide cross-section of the waste management community. An earlier document provided an overview of the WIPP MIIT program and described its place in the waste glass assessment program at Savannah River. This document represents the second in this series and its objectives include: (1) providing a pictorial history of assembly and installation of wasteforms, metals, and geologic samples in WIPP; (2) providing 'finalized and completed' sample matrices for the entire 7-part MIIT program; (3) documenting final sample assemblies by the use of schematic drawings, including each sample, its orientation, and its environment; and (4) providing a complete listing of all samples and the means for managing analyses and resulting data

  18. Interaction between morphine and noradrenergic system of basolateral amygdala on anxiety and memory in the elevated plus-maze test based on a test-retest paradigm.

    Science.gov (United States)

    Valizadegan, Farhad; Oryan, Shahrbanoo; Nasehi, Mohammad; Zarrindast, Mohammad Reza

    2013-05-01

    The amygdala is the key brain structure for anxiety and emotional memory storage. We examined the involvement of β-adrenoreceptors in the basolateral amygdala (BLA) and their interaction with morphine in modulating these behaviors. The elevated plus-maze has been employed for investigating anxiety and memory. Male Wistar rats were used for this test. We injected morphine (4, 5, and 6 mg/kg) intraperitoneally, while salbutamol (albuterol) (1, 2, and 4 μg/rat) and propranolol (1, 2, and 4 μg/rat) were injected into the BLA. Open- arms time percentage (%OAT), open- arms entry percentage (%OAE), and locomotor activity were determined by this behavioral test. Retention was tested 24 hours later. Intraperitoneal injection of morphine (6 mg/kg) had an anxiolytic-like effect and improvement of memory. The highest dose of salbutamol decreased the anxiety parameters in test session and improved the memory in retest session. Coadministration of salbutamol and ineffective dose of morphine presenting anxiolytic response. In this case, the memory was improved. Intra-BLA administration of propranolol (4 μg/rat) decreased %OAT in the test session, while had no effect on memory formation. Coadministration of propranolol and morphine (6 mg/kg) showed an increase in %OAT. There was not any significant change in the above- mentioned parameter in the retest session. Coadministration of morphine and propranolol with the effective dose of salbutamol showed that propranolol could reverse anxiolytic-like effect. We found that opioidergic and β-adrenergic systems have the same effects on anxiety and memory in the BLA; but these effects are independent of each other.

  19. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Chouh, Hamza

    2016-01-01

    In order to fulfill increasing reliability and safety requirements, non-destructive testing techniques are constantly evolving and so does their complexity. Consequently, simulation is an essential part of their design. We developed a tool for the simulation of the ultrasonic field radiated by any planar probes into non-destructive testing configurations involving meshed geometries without prominent edges, isotropic and anisotropic, homogeneous and heterogeneous materials, and wave trajectories that can include reflections and transmissions. We approximate the ultrasonic wave fronts by using polynomial interpolators that are local to ultrasonic ray pencils. They are obtained using a surface research algorithm based on pencil tracing and successive subdivisions. Their interpolators enable the computation of the necessary quantities for the impulse responses on each point of a sampling of the transducer surface that fulfills the Shannon criterion. By doing so, we can compute a global impulse response which, when convolved with the excitation signal of the transducer, results in the ultrasonic field. The usage of task parallelism and of SIMD instructions on the most computationally expensive steps yields an important performance boost. Finally, we developed a tool for progressive visualization of field images. It benefits from an image reconstruction technique and schedules field computations in order to accelerate convergence towards the final image. (author) [fr

  20. Waste Isolation Pilot Plant Materials Interface Interactions Test: Papers presented at the Commission of European Communities workshop on in situ testing of radioactive waste forms and engineered barriers

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.

    1993-08-01

    The three papers in this report were presented at the second international workshop to feature the Waste Isolation Pilot Plant (WIPP) Materials Interface Interactions Test (MIIT). This Workshop on In Situ Tests on Radioactive Waste Forms and Engineered Barriers was held in Corsendonk, Belgium, on October 13--16, 1992, and was sponsored by the Commission of the European Communities (CEC). The Studiecentrum voor Kernenergie/Centre D'Energie Nucleaire (SCK/CEN, Belgium), and the US Department of Energy (via Savannah River) also cosponsored this workshop. Workshop participants from Belgium, France, Germany, Sweden, and the United States gathered to discuss the status, results and overviews of the MIIT program. Nine of the twenty-five total workshop papers were presented on the status and results from the WIPP MIIT program after the five-year in situ conclusion of the program. The total number of published MIIT papers is now up to almost forty. Posttest laboratory analyses are still in progress at multiple participating laboratories. The first MIIT paper in this document, by Wicks and Molecke, provides an overview of the entire test program and focuses on the waste form samples. The second paper, by Molecke and Wicks, concentrates on technical details and repository relevant observations on the in situ conduct, sampling, and termination operations of the MIIT. The third paper, by Sorensen and Molecke, presents and summarizes the available laboratory, posttest corrosion data and results for all of the candidate waste container or overpack metal specimens included in the MIIT program

  1. Hemoglobin interactions with αB crystallin: a direct test of sensitivity to protein instability.

    Directory of Open Access Journals (Sweden)

    Tyler J W Clark

    Full Text Available As a small stress response protein, human αB crystallin, detects protein destabilization that can alter structure and function to cause self assembly of fibrils or aggregates in diseases of aging. The sensitivity of αB crystallin to protein instability was evaluated using wild-type hemoglobin (HbA and hemoglobin S (HbS, the glutamate-6-valine mutant that forms elongated, filamentous aggregates in sickling red blood cells. The progressive thermal unfolding and aggregation of HbA and HbS in solution at 37°C, 50°C and 55°C was measured as increased light scattering. UV circular dichroism (UVCD was used to evaluate conformational changes in HbA and HbS with time at the selected temperatures. The changes in interactions between αB crystallin and HbA or HbS with temperature were analyzed using differential centrifugation and SDS PAGE at 37°C, 50°C and 55°C. After only 5 minutes at the selected temperatures, differences in the aggregation or conformation of HbA and HbS were not observed, but αB crystallin bound approximately 6% and 25% more HbS than HbA at 37°C, and 50°C respectively. The results confirmed (a the remarkable sensitivity of αB crystallin to structural instabilities at the very earliest stages of thermal unfolding and (b an ability to distinguish the self assembling mutant form of HbS from the wild type HbA in solution.

  2. Experimental test of the PCAC-hypothesis in charged current neutrino and antineutrino interactions on protons

    Science.gov (United States)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; O'Neale, S. W.; Klein, H.; Morrison, D. R. O.; Schmid, P.; Wachsmuth, H.; Miller, D. B.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hoffmann, E.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Allport, P.; Myatt, G.; Radojicic, D.; Bullock, F. W.; Burke, S.

    1987-03-01

    Data obtained with the bubble chamber BEBC at CERN are used for the first significant test of Adler's prediction for the neutrino and antineutrino-proton scattering cross sections at vanishing four-momentum transfer squared Q 2. An Extended Vector Meson Dominance Model (EVDM) is applied to extrapolate Adler's prediction to experimentally accessible values of Q 2. The data show good agreement with Adler's prediction for Q 2→0 thus confirming the PCAC hypothesis in the kinematical region of high leptonic energy transfer ν>2 GeV. The good agreement of the data with the theoretical predictions also at higher Q 2, where the EVDM terms are dominant, also supports this model. However, an EVDM calculation without PCAC is clearly ruled out by the data.

  3. Experimental test of the PCAC-hypothesis in charged current neutrino and antineutrino interactions on protons

    International Nuclear Information System (INIS)

    Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; O'Neale, S.W.; Klein, H.; Morrison, D.R.O.; Schmid, P.; Wachsmuth, H.; Allport, P.; Myatt, G.; Radojicic, D.; Bullock, F.W.; Burke, S.

    1987-01-01

    Data obtained with the bubble chamber BEBC at CERN are used for the first significant test of Adler's prediction for the neutrino and antineutrino-proton scattering cross sections at vanishing four-momentum transfer squared Q 2 . An Extended Vector Meson Dominance Model (EVDM) is applied to extrapolate Adler's prediction to experimentally accessible values of Q 2 . The data show good agreement with Adler's prediction for Q 2 → 0 thus confirming the PCAC hypothesis in the kinematical region of high leptonic energy transfer ν > 2 GeV. The good agreement of the data with the theoretical predictions also at higher Q 2 , where the EVDM terms are dominant, also supports this model. However, an EVDM calculation without PCAC is clearly ruled out by the data. (orig.)

  4. Interactive ultrasonic field simulations for complex non-destructive testing configurations

    International Nuclear Information System (INIS)

    Bhatia, Navnina

    2016-01-01

    Cone tomography is a well established inspection technique for industrial inspection purposes. The generation of scattering noise is inherent to the physical phenomena involved, and occurs both inside the material and the detector. This leads to the apparition of various blurring effects in 2D projections and to reconstruction errors when this effect is not properly taken into account. This works proposes an evolution of the scattering kernel superposition method, aiming at correcting these scattering effect directly in the 2D projections, before the reconstruction process. It consists in fitting analytical kernels that are used to generate realistic scattering contributions, which are in turn subtracted from the 2D projections. The proposed method has been tested using experimental data in cases involving complex materials and different levels of energy. Finally, a joint use of simulated and experimental data is described in the last chapter, in order to enhance the scattering kernels estimation. (author) [fr

  5. Lab-scale impact test to investigate the pipe-soil interaction and comparative study to evaluate structural responses

    Directory of Open Access Journals (Sweden)

    Dong-Man Ryu

    2015-07-01

    Full Text Available This study examined the dynamic response of a subsea pipeline under an impact load to determine the effect of the seabed soil. A laboratory-scale soil-based pipeline impact test was carried out to investigate the pipeline deformation/strain as well as the interaction with the soil-pipeline. In addition, an impact test was simulated using the finite element technique, and the calculated strain was compared with the experimental results. During the simulation, the pipeline was described based on an elasto-plastic analysis, and the soil was modeled using the Mohr-Coulomb fail-ure criterion. The results obtained were compared with ASME D31.8, and the differences between the analysis results and the rules were specifically investigated. Modified ASME formulae were proposed to calculate the precise structural behavior of a subsea pipeline under an impact load when considering sand- and clay-based seabed soils.

  6. FARO test L-14 on fuel coolant interaction and quenching. Comparison report, volume 1 + 2, analysis of the results

    International Nuclear Information System (INIS)

    Annunziato, A.; Addabbo, C.; Yerkess, A.; Silverii, R.; Brewka, W.; Leva, G.

    1997-01-01

    This report provides a comparative analysis of the results from the ISP-39 exercise promoted by OECD-CSNI in the frame of the NEA activities. ISP-39 has been conceived to benchmark the predictive capabilities of computer codes used in the evaluation of fuel-coolant interaction (FCI) and quenching phenomenologies of relevance in water cooled reactors severe accidents safety analysis. The ISP-39 reference case is FARO test L-14, a non-energetic FCI test performed under realistic melt composition and prototypical accident conditions in the FARO experimental installation (Ispra, Italy). Thirteen research organizations from ten countries participated in the exercise submitting 15 prediction calculations with 8 different codes or code versions (COMETA, MC3D, IVA, IFCI, JASMINE, TEXAS, THIRMAL, VAPEX). ISP-39 was conducted as an open exercise. Conclusions are given concerning code capabilities, users effect and sensitivity analyses, numerical accuracy quantification of the predictions, code improvements, general considerations

  7. Improving allowed outage time and surveillance test interval requirements: a study of their interactions using probabilistic methods

    International Nuclear Information System (INIS)

    Martorell, S.A.; Serradell, V.G.; Samanta, P.K.

    1995-01-01

    Technical Specifications (TS) define the limits and conditions for operating nuclear plants safely. We selected the Limiting Conditions for Operations (LCO) and Surveillance Requirements (SR), both within TS, as the main items to be evaluated using probabilistic methods. In particular, we focused on the Allowed Outage Time (AOT) and Surveillance Test Interval (STI) requirements in LCO and SR, respectively. Already, significant operating and design experience has accumulated revealing several problems which require modifications in some TS rules. Developments in Probabilistic Safety Assessment (PSA) allow the evaluation of effects due to such modifications in AOT and STI from a risk point of view. Thus, some changes have already been adopted in some plants. However, the combined effect of several changes in AOT and STI, i.e. through their interactions, is not addressed. This paper presents a methodology which encompasses, along with the definition of AOT and STI interactions, the quantification of interactions in terms of risk using PSA methods, an approach for evaluating simultaneous AOT and STI modifications, and an assessment of strategies for giving flexibility to plant operation through simultaneous changes on AOT and STI using trade-off-based risk criteria

  8. Laser-Plasma Interactions on NIKE and the Fusion Test Facility

    Science.gov (United States)

    Phillips, Lee; Weaver, James

    2008-11-01

    Recent proposed designs for a Fusion Test Facility (FTF) (Obenchain et al., Phys. Plasmas 13 056320 (2006)) for direct-drive ICF targets for energy applications involve high implosion velocities combined with higher laser irradiances. The use of high irradiances increases the likelihood of deleterious laser plasma instabilities (LPI) but the proposed use of a 248 nm KrF laser to drive these targets is expected to minimize the LPI risk. We examine, using simulation results from NRL's FAST hydrocode, the proposed operational regimes of the FTF in relation to the thresholds for the SRS, SBS, and 2-plasmon instabilities. Simulations are also used to help design and interpret ongoing experiments being conducted at NRL's NIKE facility for the purpose of generating and studying LPI. Target geometries and laser pulseshapes were devised in order to create plasma conditions with long scalelengths and low electron temperatures that allow the growth of parametric instabilities. These simulations include the effects of finite beam angles through the use of raytracing.

  9. Electrophoretic characterization of protein interactions suggesting limited feasibility of accelerated shelf-life testing of ultra-high temperature milk.

    Science.gov (United States)

    Grewal, Manpreet Kaur; Chandrapala, Jayani; Donkor, Osaana; Apostolopoulos, Vasso; Vasiljevic, Todor

    2017-01-01

    Accelerated shelf-life testing is applied to a variety of products to estimate keeping quality over a short period of time. The industry has not been successful in applying this approach to ultra-high temperature (UHT) milk because of chemical and physical changes in the milk proteins that take place during processing and storage. We investigated these protein changes, applying accelerated shelf-life principles to UHT milk samples with different fat levels and using native- and sodium dodecyl sulfate-PAGE. Samples of UHT skim and whole milk were stored at 20, 30, 40, and 50°C for 28d. Irrespective of fat content, UHT treatment had a similar effect on the electrophoretic patterns of milk proteins. At the start of testing, proteins were bonded mainly through disulfide and noncovalent interactions. However, storage at and above 30°C enhanced protein aggregation via covalent interactions. The extent of aggregation appeared to be influenced by fat content; whole milk contained more fat than skim milk, implying aggregation via melted or oxidized fat, or both. Based on reduction in loss in absolute quantity of individual proteins, covalent crosslinking in whole milk was facilitated mainly by products of lipid oxidation and increased access to caseins for crosslinking reactions. Maillard and dehydroalanine products were the main contributors involved in protein changes in skim milk. Protein crosslinking appeared to follow a different pathway at higher temperatures (≥40°C) than at lower temperatures, making it very difficult to extrapolate these changes to protein interactions at lower temperatures. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Testing a Dynamic Field Account of Interactions between Spatial Attention and Spatial Working Memory

    Science.gov (United States)

    Johnson, Jeffrey S.; Spencer, John P.

    2016-01-01

    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: if attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal is reexamined in light of a neural process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color-discrimination task during the delay interval of a spatial recall task. In the critical shifting attention condition, the color stimulus could appear either toward or away from the memorized location relative to a midline reference axis. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors but no change in directional error, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations—as predicted by the model—there should be systematic changes in the pattern of spatial recall errors depending on the direction of the shift. Results were consistent with the latter possibility—recall errors were biased toward the location of discrimination targets appearing during the delay. PMID:26810574

  11. Testing a dynamic-field account of interactions between spatial attention and spatial working memory.

    Science.gov (United States)

    Johnson, Jeffrey S; Spencer, John P

    2016-05-01

    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: If attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal was reexamined in light of a neural-process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color discrimination task during the delay interval of a spatial-recall task. In the critical shifting-attention condition, the color stimulus could appear either toward or away from the midline reference axis, relative to the memorized location. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors, but no change in directional errors, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations-as predicted by the model-systematic changes in the patterns of spatial-recall errors should occur that would depend on the direction of the shift. The results were consistent with the latter possibility-recall errors were biased toward the locations of discrimination targets appearing during the delay.

  12. Fatigue crack growth behaviour of 21/4Cr1Mo steel tube at elevated temperature

    International Nuclear Information System (INIS)

    Bulloch, J.H.; Buchanan, L.W.

    1987-01-01

    The fatigue crack growth characteristics of 21/4Cr1Mo steel tube have been examined at 588 0 C over the frequency range 0.02-20 Hz and dwell time range 10-960 min. All tests were conducted under load control in laboratory air at an R-ratio of 0.5. The elevated temperature fatigue crack growth characteristics were adequately described in terms of the stress intensity range ΔKAPPA. The continuous cyclic test data exhibited a significant effect of frequency that agreed well with predicted effects using a simple mathematical model of the high temperature fatigue process. With the dwell time range of 10-100 min there was a significant dwell time effect on the critical ΔKAPPA level for creep-fatigue interactive growth. At dwell times > 100 min the dwell time effect saturates. When creep-fatigue interactive growth occurs, growth rates reside above the maximum for continuum-controlled fatigue crack growth, and exhibit a da/dN varies as ΔKAPPA 10 dependence; failure is then intergranular in nature. (author)

  13. Genotype-by-Environment Interaction and Testing Environments for Plantain and Banana (Musa spp. L. Breeding in West Africa

    Directory of Open Access Journals (Sweden)

    Ortiz, R.

    1999-01-01

    Full Text Available With reduced budgets allocated for international agricultural research, site rationalisation had become an important issue to consider when carrying out multilocational testing of promising selections. The aim of this paper was to determine the importance of the genotype-by-environment interaction in multilocational trials of plantains and bananas (Musa spp. L. in selected sites of West Africa comprising the humid forest and the forest-savanna transition zones. A sample of plantain-banana hybrids, plantain landraces, exotic banana cultivars and diploid parental banana accessions were evaluated in three locations : Mbalmayo and Onne (humid forest and Ibadan (forest-savanna transition. The experimental results of our research suggested that multilocational testing is more profitable than single site evaluation over several years in the Musa breeding station. Furthermore, based on correlated responses across environments for yield potential, we suggest that one of the selection sites in the humid forest (i. e., Mbalmayo be dropped since selections in one site (Onne may be well adapted to the other location in the same agroecozone. Conversely, the relatively poor performance of most genotypes in dry environments (e. g. Ibadan reinforces the importance of early testing across a wide range of environments. In this way selections with broad or specific adaptation may be identified for further release to targeted farmers.

  14. Testing usability and trainability of indirect touch interaction: perspective for the next generation of air traffic control systems.

    Science.gov (United States)

    Causse, Mickaël; Alonso, Roland; Vachon, François; Parise, Robert; Orliaguet, Jean-Pierre; Tremblay, Sébastien; Terrier, Patrice

    2014-01-01

    This study aims to determine whether indirect touch device can be used to interact with graphical objects displayed on another screen in an air traffic control (ATC) context. The introduction of such a device likely requires an adaptation of the sensory-motor system. The operator has to simultaneously perform movements on the horizontal plane while assessing them on the vertical plane. Thirty-six right-handed participants performed movement training with either constant or variable practice and with or without visual feedback of the displacement of their actions. Participants then performed a test phase without visual feedback. Performance improved in both practice conditions, but accuracy was higher with visual feedback. During the test phase, movement time was longer for those who had practiced with feedback, suggesting an element of dependency. However, this 'cost' of feedback did not extend to movement accuracy. Finally, participants who had received variable training performed better in the test phase, but accuracy was still unsatisfactory. We conclude that continuous visual feedback on the stylus position is necessary if tablets are to be introduced in ATC.

  15. Probabilistic residual life assessment of high temperature pipings in nuclear power plants against creep fatigue damage: final report

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    2014-02-01

    Residual life assessment of components of nuclear power plants is essential for their operational safety, reliability and financial viability. The high risks involved in the event of failures in nuclear power plants have led to the development of design philosophies that incorporate extreme conservatism in design. The implications of such conservatism in design leads to more frequent maintenance operations than necessary

  16. Helium and its effects on the creep-fatigue behaviour of electron beam welds in the steel AISI-316-L

    International Nuclear Information System (INIS)

    Paulus, M.

    1992-12-01

    Within the scope of R and D work for materials development for the NET fusion experiment (Next European Torus) and the International Thermonuclear Experimental Reactor (ITER), the task reported was to examine electron beam welds in the austenitic stainless steel AISI 316 L (NET reference material) for their fatigue behaviour under creep load, and the effects of helium implantation on there mechanical properties. (orig.) [de

  17. Test

    DEFF Research Database (Denmark)

    Bendixen, Carsten

    2014-01-01

    Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers.......Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers....

  18. An interactional test of the reformulated helplessness theory of depression in women receiving clinical treatment for eating disorders.

    Science.gov (United States)

    Rotenberg, Ken J; Costa, Paula; Trueman, Mark; Lattimore, Paul

    2012-08-01

    The study tested the Reformulated Helplessness model that individuals who show combined internal locus of control, high stability and high globality attributions for negative life events are prone to depression. Thirty-six women (M=29 years-8 months of age) receiving clinical treatment for eating disorders completed: the Attribution Style Questionnaire, the Beck Depression Inventory, and the Stirling Eating Disorder Scales. An HRA yielded a three-way interaction among the attributional dimensions on depressive symptoms. Plotting of the slopes showed that the attribution of negative life events to the combination of internal locus of control, high stability, and a high globality, was associated with the optimal level of depressive symptoms. The findings supported the Reformulated Helplessness as a model of depression. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Some observations on the relationship between microstructures, fatigue and creep behaviours in a type 316 stainless steel

    International Nuclear Information System (INIS)

    Horton, C.A.P.; Lai, J.K.L.; Skelton, R.P.

    Comparisons have been made between microstructures in Type 316 steel after high strain fatigue or creep at 625 deg. C and which had been subjected to various pre-test ageing treatments. The microstructures observed in the specimens generally consisted of a three dimensional dislocation network together with 'cells' delineated by dislocation sub-boundaries. In fatigue, under strain control conditions, pre-ageing reduced the dislocation density and coarsened the cell structure produced during test. This was related to less solute hardening and strain induced precipitation after pre-ageing and was accompanied by a lower rate of cyclic strain hardening. During fatigue with dwell, the dislocations introduced led to five times more precipitation than that observed during stress free ageing solution treated material. The 'cell' structure produced by fatigue was retained even after solution treatment at 1050 deg. C. In creep, under constant loads, a coarser and more clearly defined dislocation sub-grain structure developed and its size was not influenced by pre-ageing. However, creep testing after various pre-treatments, including fatigue, demonstrated that the creep resistance was dependent on a combination of solution strengthening, cell size and dislocation density. Consequently prior fatigue considerably increased the creep resistance. The work has demonstrated the microstructural aspects of creep-fatigue interaction and that the use of creep data obtained from solution treated material is likely to lead to errors in creep-fatigue life fraction summations

  20. Which visual sight skill tested and developed the interaction between central and peripheral vision case duels dribbling soccer skills

    Directory of Open Access Journals (Sweden)

    Zerf Mohammed

    2016-09-01

    Full Text Available The present paper analyses the effects of visual keep sight to test and develop the interaction between central and peripheral vision the case of duels dribbling among soccer under 17 years. Where This research aims to propose a method evaluating and coaching this skill in the absence of laboratory tests and virtual visual exercises as a way for Algerian coaches to control the progress of their players. From the principle that the team which wins the most duels has the best chance of winning the game. [1] Our research supports the hypothesis which confirms in one hand that Dynamic visual acuity is the combine between Peripheral and Central vision to have one eye on the ball and the other on the defined [2] . While some authors confirm that the Top-class football players do not watch their steps, but dribble with their heads up [3]. Whereas Previous studies confirm estimate of distance ball foot player is the strategy to master this skill [4] which requires the involvement of the commitment of peripheral vision for information and central vision to master the ball [5]. From the proof and results statistics applied in the current study, we confirm that narrow spaces require the interaction of central vision than peripheral vision. Otherwise, free spaces require peripheral vision than the central vision. Which leaves us to confirm that peripheral vision in the limited space [6] can suffer because the player needs to pay close attention to each contact with the ball [7].

  1. [Evaluation of postural characteristics in patients with vertigo by modified clinical test of sensory interaction and balance].

    Science.gov (United States)

    Liu, Bo; Kong, Weijia; Lai, Changqin

    2009-02-01

    To investigate the application of modified clinical test of sensory interaction and balance (mCTSIB) in the patients with vertigo. One hundred and six patients with vertigo (62 cases with peripheral and 44 cases with central vestibular disorder) were taken the mCTSIB of the firm surface and foam surface with eye open and eye closed for 30 seconds respectively. The standing foam surface was to interrupt the somatosensory and closing eyes was to interrupt the visual input in the postural stability. The falling during the test was recorded. The results between the mCTSIB and video nystagmography (VNG) were compared. In vestibular peripheral disorder, the abnormal of mCTSIB was 45.16% (28/62) and agreement to VNG was 67.74% (42/62). In vestibular central disorder, the abnormal of mCTSIB was 27.27% (12/44) and agreement to VNG was 81.82% (36/44). For all these patients with vertigo in this study, the abnormal of mCTSIB was 37.74% (40/106) and agreement to VNG was 73.58% (78/106). Regarding the falling as abnormality, the mCTSIB was not significant different between the vestibular peripheral and central disorders (chi2 = 3.505, P > 0.05). Although the mCTSIB, which was easy to carry out, can not be a method to differentiate the vestibular peripheral and central disorders, it was a suitable to assess the ability of sensory interaction to maintain balance in patients with vertigo.

  2. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  3. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    International Nuclear Information System (INIS)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems

  4. Low cycle fatigue of PM/HIP astroloy

    Energy Technology Data Exchange (ETDEWEB)

    Choe, S.J.; Stoloff, N.S.; Duquette, D.J. (Rensselaer Polytechnic Institute, Troy, NY (USA))

    Low cycle fatigue and creep-fatigue-environment interactions of PM/HIP Astrology were studied at 650 C and 725 C. Total strain range was varied from 1.5% to 2.7% at a frequency of 0.3Hz. Creep-fatigue tests were performed with 2 min. or 5 min. tensile hold times. All tests were run in high purity argon in an attempt to minimize environmental effects. Employing a tensile hold was more damaging than raising temperature by 75 C. Slopes of Coffin-Manson plots were nearly independent of temperature and hold time. Raising temperature from 650 C to 725 C did not change the transgranular (TG) crack propagation mode, whereas employing hold times caused TG+IG propagation. All samples displayed multiple fracture origins associated with inclusions located at the specimen surface; pre-existing pores did not affect fatigue crack initiation. Examination of secondary cracks showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold times.

  5. Evaluation of bundle duct interaction by out of pile compressive test of FBR bundles. FFTF type bundle

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kosuke; Yamamoto, Yuji; Nagamine, Tsuyoshi; Maeda, Koji [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-10-01

    Bundle duct interaction (BDI) caused by expansion of fuel pin bundle becomes one of the main limiting factors for fuel life times. Then, it is important for the design of fast reactor fuel assembly to understand the BDI behavior in detail. In order to understand the BDI behavior, out of pile compressive tests were conducted for FFTF type bundle by use of X-ray CT equipment. In these compressive tests, two type bundles with different accuracy of initial wire position were conducted. The objective of this test is to evaluate the influence of the initial error from standard position of wire at the same axial position. The locations of the pins and the duct flats are analyzed from CT image data. Quantitative evaluation was performed at the CT image data and discussed the bundle deformation status under BDI condition. Following results are obtained. 1) The accuracy of initial wire position is strongly depends on the pin-to-duct contact behavior. In the case of bundle with large error from standard position, pin-to-duct contact is delayed. 2) The BDI mitigation of the bundle with small error from standard wire position is following: The elastic ovality is the dominant deformation in mild BDI condition, then the wire dispersion and pin dispersion are occurred in severe BDI condition. 3) The BDI mitigation of the bundle with large error from standard wire position is following: The elastic ovality and local bowing of pins with large error from standard wire position are occurred in mild BDI condition, then pin dispersion is occurred around pins with large error from standard wire position, finally wire dispersion is occurred in severe BDI condition. 4) The existence of pins with large error from standard wire position is effective to delay the pin-to-duct contact, but the existence of these pins is possible to contact of pin- to- pin. (author)

  6. Correcting systematic inflation in genetic association tests that consider interaction effects: application to a genome-wide association study of posttraumatic stress disorder.

    Science.gov (United States)

    Almli, Lynn M; Duncan, Richard; Feng, Hao; Ghosh, Debashis; Binder, Elisabeth B; Bradley, Bekh; Ressler, Kerry J; Conneely, Karen N; Epstein, Michael P

    2014-12-01

    Genetic association studies of psychiatric outcomes often consider interactions with environmental exposures and, in particular, apply tests that jointly consider gene and gene-environment interaction effects for analysis. Using a genome-wide association study (GWAS) of posttraumatic stress disorder (PTSD), we report that heteroscedasticity (defined as variability in outcome that differs by the value of the environmental exposure) can invalidate traditional joint tests of gene and gene-environment interaction. To identify the cause of bias in traditional joint tests of gene and gene-environment interaction in a PTSD GWAS and determine whether proposed robust joint tests are insensitive to this problem. The PTSD GWAS data set consisted of 3359 individuals (978 men and 2381 women) from the Grady Trauma Project (GTP), a cohort study from Atlanta, Georgia. The GTP performed genome-wide genotyping of participants and collected environmental exposures using the Childhood Trauma Questionnaire and Trauma Experiences Inventory. We performed joint interaction testing of the Beck Depression Inventory and modified PTSD Symptom Scale in the GTP GWAS. We assessed systematic bias in our interaction analyses using quantile-quantile plots and genome-wide inflation factors. Application of the traditional joint interaction test to the GTP GWAS yielded systematic inflation across different outcomes and environmental exposures (inflation-factor estimates ranging from 1.07 to 1.21), whereas application of the robust joint test to the same data set yielded no such inflation (inflation-factor estimates ranging from 1.01 to 1.02). Simulated data further revealed that the robust joint test is valid in different heteroscedasticity models, whereas the traditional joint test is invalid. The robust joint test also has power similar to the traditional joint test when heteroscedasticity is not an issue. We believe the robust joint test should be used in candidate-gene studies and GWASs of

  7. Failure Mechanisms and Damage Model of Ductile Cast Iron Under Low-Cycle Fatigue Conditions

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; MacNeil, Ryan; Zhang, Zhong; Sloss, Clayton

    2014-10-01

    Strain-controlled low-cycle fatigue (LCF) tests were conducted on ductile cast iron (DCI) at strain rates of 0.02, 0.002, and 0.0002/s in the temperature range from room temperature to 1073 K (800 °C). A constitutive-damage model was developed within the integrated creep-fatigue theory (ICFT) framework on the premise of strain decomposition into rate-independent plasticity and time-dependent creep. Four major damage mechanisms: (i) plasticity-induced fatigue, (ii) intergranular embrittlement (IE), (iii) creep, and (iv) oxidation were considered in a nonlinear creep-fatigue interaction model which represents the overall damage accumulation process consisting of oxidation-assisted fatigue crack nucleation and propagation in coalescence with internally distributed damage ( e.g., IE and creep), leading to final fracture. The model was found to agree with the experimental observations of the complex DCI-LCF phenomena, for which the linear damage summation rule would fail.

  8. The Trier Social Stress Test as a paradigm to study how people respond to threat in social interactions

    Science.gov (United States)

    Frisch, Johanna U.; Häusser, Jan A.; Mojzisch, Andreas

    2015-01-01

    In our lives, we face countless situations in which we are observed and evaluated by our social interaction partners. Social-evaluative threat is frequently associated with strong neurophysiological stress reactions, in particular, an increase in cortisol levels. Yet, social variables do not only cause stress, but they can also buffer the neurophysiological stress response. Furthermore, social variables can themselves be affected by the threat or the threat-induced neurophysiological stress response. In order to study this complex interplay of social-evaluative threat, social processes and neurophysiological stress responses, a paradigm is needed that (a) reliably induces high levels of social-evaluative threat and (b) is extremely adaptable to the needs of the researcher. The Trier Social Stress Test (TSST) is a well-established paradigm in biopsychology that induces social-evaluative threat in the laboratory by subjecting participants to a mock job-interview. In this review, we aim at demonstrating the potential of the TSST for studying the complex interplay of social-evaluative threat, social processes and neurophysiological stress responses. PMID:25698987

  9. Materials interaction tests to identify base and coating materials for an enhanced in-vessel core catcher design

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Knudson, D.L.; Condie, K.G.; Swank, W.D. [Idaho National Engineering and Environmental Laboratory, Idaho Falls ID (United States); Cheung, F.B. [Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park PA (United States); Suh, K.Y. [Seoul National University, Department of Nuclear Engineering, Seoul (Korea, Republic of); Kim, S.B. [Korea Atomic Energy Research Institute, Severe Accident Research Project, Taejon (Korea, Republic of)

    2004-07-01

    An enhanced in-vessel core catcher is being designed and evaluated, it must ensure In-Vessel Retention of core materials that may relocate under severe accident conditions in advanced reactors. To reduce cost and simplify manufacture and installation, this new core catcher design consists of several interlocking sections that are machined to fit together when inserted into the lower head. If needed, the core catcher can be manufactured with holes to accommodate lower head penetrations. Each section of the core catcher consists of two material layers with an option to add a third layer (if deemed necessary): a base material, which has the capability to support and contain the mass of core materials that may relocate during a severe accident; an insulating oxide coating material on top of the base material, which resists interactions with high-temperature core materials; and an optional coating on the bottom side of the base material to prevent any potential oxidation of the base material during the lifetime of the reactor. Initial evaluations suggest that a thermally-sprayed oxide material is the most promising candidate insulator coating for a core catcher. Tests suggest that 2 coatings can provide adequate protection to a stainless steel core catcher: -) a 500 {mu}m thick zirconium dioxide coating over a 100-200 {mu}m Inconel 718 bond coating, and -) a 500 {mu}m thick magnesium zirconate coating.

  10. Interaction between an Eco-Spiral Bolt and Crushed Rock in a Borehole Evaluated by Pull-Out Testing

    Directory of Open Access Journals (Sweden)

    Seong-Seung Kang

    2017-01-01

    Full Text Available The interactions between an eco-spiral bolt and crushed rocks in a borehole were evaluated by pull-out testing in a laboratory and numerical analysis. The porosity of the crushed rock surrounding the bolt depended on the size of the eco-spiral bolt and affected the eco-spiral bolt’s axial resistance force. The axial resistance force and the porosity of the crushed rocks in the borehole showed an inverse relationship. The porosity was also related to the size of the eco-spiral bolt. The maximum principal stress between the bolt and the rock was related to the porosity of the crushed rock and the size difference between the eco-spiral bolt and the borehole. At low porosity the experimental and numerical analyses show similar relationships between the axial resistance force and the displacement. However, at high porosity, the numerical results deviated greatly from the experimental observation. The initial agreement is attributed to the state of residual resistance after the maximum axial resistance force, and the latter divergence was due to the decreasing axial resistance force owing to slippage.

  11. Evaluation of bundle duct interaction by out-of-pile compression test of FBR fuel pin bundles

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Kosuke; Yamamoto, Yuji; Nagamine, Tsuyoshi; Maeda, Koji [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2001-06-01

    Bundle duct interaction (BDI) caused by expansion of fuel pin bundle is a main factor to limit the fuel lifetime. Therefore, it is important for the design of fast reactor fuel assembly to understand the fuel pin deformation behavior under BDI condition. In order to understand the fuel pin deformation behavior under BDI condition, out-of-pile compression tests were conducted for FBR fuel pin bundle by use of X-ray CT equipment. In these compression tests, two kinds of fuel pin bundles were conducted. One was the fuel pin bundle with the short wire-pitch and the other was the fuel pin bundle with the short wire-pitch and large diameter claddings. The general discussions were also performed based on the results of out-of-pile compression tests obtained by use of X-ray CT equipment in the previous work. Following results were obtained. 1) The occurrence of the pin-to-duct contact depends on the wire-pitch. In the fuel pin bundle with large wire-pitch, the pin-to-duct contact occurred at the early stage of BDI. The reason of this result is due to the low bowing rigidity of the fuel pins with long wire-pitch. 2) The value of the ovalation stiffness strongly depends on the geometry of cladding (diameter, thickness) and especially on wire-pitch. This result in this work revealed that the occurrence of the pin-to-duct contact depends on the value of the ovalation stiffness. 3) The occurrence of wire dispersion and dispersive displacement of pins depends on the wire-pitch strongly. In the fuel pin bundle with the long wire-pitch, the occurrence of the above-mentioned suppression mechanism to BDI is remarkable. 4) The suppression mechanism to BDI of the fuel pin bundle with the long wire-pitch is elastic oval deformation of cladding, wire dispersion and dispersive displacement of pins. On the other hand, the elastic and plastic oval deformation of cladding is the major suppression mechanism to BDI in the fuel pin bundle with the short wire-pitch. 5) The appearance of

  12. Development and preliminary user testing of the DCIDA (Dynamic computer interactive decision application) for 'nudging' patients towards high quality decisions.

    Science.gov (United States)

    Bansback, Nick; Li, Linda C; Lynd, Larry; Bryan, Stirling

    2014-08-01

    Patient decision aids (PtDA) are developed to facilitate informed, value-based decisions about health. Research suggests that even when informed with necessary evidence and information, cognitive errors can prevent patients from choosing the option that is most congruent with their own values. We sought to utilize principles of behavioural economics to develop a computer application that presents information from conventional decision aids in a way that reduces these errors, subsequently promoting higher quality decisions. The Dynamic Computer Interactive Decision Application (DCIDA) was developed to target four common errors that can impede quality decision making with PtDAs: unstable values, order effects, overweighting of rare events, and information overload. Healthy volunteers were recruited to an interview to use three PtDAs converted to the DCIDA on a computer equipped with an eye tracker. Participants were first used a conventional PtDA, and then subsequently used the DCIDA version. User testing was assessed based on whether respondents found the software both usable: evaluated using a) eye-tracking, b) the system usability scale, and c) user verbal responses from a 'think aloud' protocol; and useful: evaluated using a) eye-tracking, b) whether preferences for options were changed, and c) and the decisional conflict scale. Of the 20 participants recruited to the study, 11 were male (55%), the mean age was 35, 18 had at least a high school education (90%), and 8 (40%) had a college or university degree. Eye-tracking results, alongside a mean system usability scale score of 73 (range 68-85), indicated a reasonable degree of usability for the DCIDA. The think aloud study suggested areas for further improvement. The DCIDA also appeared to be useful to participants wherein subjects focused more on the features of the decision that were most important to them (21% increase in time spent focusing on the most important feature). Seven subjects (25%) changed their

  13. Analysis of the forced vibration test of the Hualien large scale soil-structure interaction model using a flexible volume substructuring method

    International Nuclear Information System (INIS)

    Tang, H.T.; Nakamura, N.

    1995-01-01

    A 1/4-scale cylindrical reactor containment model was constructed in Hualien, Taiwan for foil-structure interaction (SSI) effect evaluation and SSI analysis procedure verification. Forced vibration tests were executed before backfill (FVT-1) and after backfill (FVT-2) to characterize soil-structure system characteristics under low excitations. A number of organizations participated in the pre-test blind prediction and post-test correlation analyses of the forced vibration test using various industry familiar methods. In the current study, correlation analyses were performed using a three-dimensional flexible volume substructuring method. The results are reported and soil property sensitivities are evaluated in the paper. (J.P.N.)

  14. Geographic-didactical games as interactive tools to test and improve student's basic knowledge in Physical Geography

    Science.gov (United States)

    Winkler, S.; Tintrup Gen. Suntrup, A.

    2009-04-01

    Due to an increasing disproportion between experienced teaching staff and student numbers at German universities, the time available for teaching the fundamental basic knowledge in Physical Geography was condensed during the past decade. Unfortunately, this mainly has been achieved at the expense of practical lessons of testing student's knowledge. The recent introduction of the Bachelor/Master degree has not solved this problem, but rather accelerated that tend. The "losers" of this tendency are those students enrolled in trainee teacher studies in Geography. In conjunction with the recent modifications of the study programs putting more focus on applied or specialized fields of Geography and its methodology, the trainee teacher students often express their critics and urgently demand opportunities to improve and test their basic knowledge (because it is especially that knowledge, they need at school and for their traditional examination). As the study program is quite dense, there is no room for special courses or seminars. By contrast, one has to use some free time slots available e.g. in the evenings of the usually quite long German excursions or of weekend seminars. However, after a day in the field or in the classroom, the teacher has to find a method owing enough excitement and clearly visible benefit for the students to achieve sufficient motivation. Interactive geographic-didactical games have been developed exclusively for this purpose and applied at different occasions. Those games had the goal of testing student's basic knowledge in a rather unconventional and "casual" style in order to motivate active participation. Most of the games could be played in small groups of students with the teacher only occasionally being involved as referee. Of course, the games had the general aim of improving the basic knowledge - or at least give the students the possibility to discover their own strength (or weakness) just before it is too late (as it e.g. would be

  15. Long-term high temperature strength of 316FR steel

    International Nuclear Information System (INIS)

    Takahashi, Yukio

    1995-01-01

    As low-carbon medium-nitrogen type 316 stainless steel (316FR) was selected as a primary candidate for main structural material of a next fast reactor plant in Japan, its long-term high-temperature strength gains much interest from many organizations involved in design activities of the plant. Central Research Institute of Electric Power Industry (CRIEPI), as a research organization for electric power industry in Japan, has been conducting a multi-year project under the sponsorship of Ministry of International Trade and Industry (MITI) for studying the long-term high temperature strength of this steel. Data obtained by various strength tests, including short-time tensile, fatigue, creep and creep-fatigue tests for this steel are given in this paper. The results of study on creep-fatigue life prediction methods are also presented. It was found that modified ductility exhaustion method previously proposed by the author has satisfactory accuracy in creep-fatigue life estimation

  16. The effect of combined treatment with risperidone and antidepressants on the MK-801-induced deficits in the social interaction test in rats.

    Science.gov (United States)

    Kamińska, Katarzyna; Rogóż, Zofia

    2015-12-01

    Several clinical reports have suggested that augmentation of atypical antipsychotics' activity by antidepressants may efficiently improve the treatment of negative and some cognitive symptoms of schizophrenia. The aim of the present study was to investigate the effect of antidepressant mirtazapine or escitalopram and risperidone (an atypical antipsychotic), given separately or jointly, on the MK-801-induced deficits in the social interaction test in rats. Antidepressants and risperidone were given 60 and 30 min before the test, respectively. The social interaction of male Wistar rats was measured for 10 min, starting 4 h after MK-801 (0.1 mg/kg) administration. In the social interaction test, MK-801-induced deficits in the parameters studied, i.e. the number of episodes and the time of interactions. Risperidone at a higher dose (0.1 mg/kg) reversed that effect. Co-treatment with an ineffective dose of risperidone (0.01 mg/kg) and mirtazapine (2.5 or 5 mg/kg) or escitalopram only at a dose of 5 mg/kg (but not 2.5 and 10 mg/kg) abolished the deficits evoked by MK-801. The obtained results suggest that especially mirtazapine, and to a smaller degree escitalopram may enhance the antipsychotic-like effect of risperidone in the animal test modeling some negative symptoms of schizophrenia. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Interaction of Reward Seeking and Self-Regulation in the Prediction of Risk Taking: A Cross-National Test of the Dual Systems Model

    Science.gov (United States)

    Duell, Natasha; Steinberg, Laurence; Chein, Jason; Al-Hassan, Suha M.; Bacchini, Dario; Lei, Chang; Chaudhary, Nandita; Di Giunta, Laura; Dodge, Kenneth A.; Fanti, Kostas A.; Lansford, Jennifer E.; Malone, Patrick S.; Oburu, Paul; Pastorelli, Concetta; Skinner, Ann T.; Sorbring, Emma; Tapanya, Sombat; Uribe Tirado, Liliana Maria; Alampay, Liane Peña

    2016-01-01

    In the present analysis, we test the dual systems model of adolescent risk taking in a cross-national sample of over 5,200 individuals aged 10 through 30 (M = 17.05 years, SD = 5.91) from 11 countries. We examine whether reward seeking and self-regulation make independent, additive, or interactive contributions to risk taking, and ask whether…

  18. Modelling of turbulent hydrocarbon combustion. Test of different reactor concepts for describing the interactions between turbulence and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C; Kremer, H [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P; Hupa, M [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1998-12-31

    The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated

  19. Effect of Withania somnifera on forced swimming test induced immobility in mice and its interaction with various drugs.

    Science.gov (United States)

    Shah, P C; Trivedi, N A; Bhatt, J D; Hemavathi, K G

    2006-01-01

    The objective of the present study was to evaluate the antidepressant action of Withania somnifera (WS) as well as its interaction with the conventional antidepressant drugs and to delineate the possible mechanism of its antidepressant action using forced swimming model in mice. Effect of different doses of WS, fluoxetine and imipramine were studied on forced swimming test induced mean immobility time (MIT). Moreover effect of WS 100 mg/kg, i.p. was observed at different time intervals. Effect produced by combination of sub therapeutic doses of WS with imipramine (2.5 mg/kg, i.p.) as well as fluoxetine (2.5 mg/kg, i.p.) were also observed. Effect of WS (100 mg/kg, i.p.) as well as combination of WS (37.5 mg/kg, i.p.) with either imipramine (2.5 mg/kg, i.p.) or fluoxetine (2.5 mg/kg, i.p.) were observed in mice pretreated with reserpine (2 mg/kg, i.p.) and clonidine (0.15 mg/kg, i.p.). Effects of prazosin (3 mg/kg, i.p.) or haloperidol (0.1 mg/kg, i.p.) pre-treatment were also observed on WS induced decrease in MIT. WS produced dose dependent decrease in MIT. Maximum effect in MIT was observed after 30 min of treatment with WS 100 mg/kg, i.p. Combination of WS (37.5 mg/kg, i.p.) with imipramine (2.5 mg/kg, i.p.) or fluoxetine (2.5 mg/kg, i.p.) also produced significant decrease in the MIT. Clonidine and reserpine induced increase in MIT, was significantly reversed by treatment with WS (100 mg/kg, i.p.) as well as combination of WS (37.5 mg/kg, i.p.) with either imipramine (2.5 mg/kg, i.p.) or fluoxetine (2.5 mg/kg, i.p.). Pre-treatment with prazosin but not haloperidol, significantly antagonized the WS (100 mg/kg, i.p.) induced decrease in MIT. It is concluded that, WS produced significant decrease in MIT in mice which could be mediated partly through a adrenoceptor as well as alteration in the level of central biogenic amines.

  20. Modelling of turbulent hydrocarbon combustion. Test of different reactor concepts for describing the interactions between turbulence and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Kremer, H. [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-12-31

    The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated

  1. Double-Bottom Chaotic Map Particle Swarm Optimization Based on Chi-Square Test to Determine Gene-Gene Interactions

    Science.gov (United States)

    Yang, Cheng-Hong; Chang, Hsueh-Wei

    2014-01-01

    Gene-gene interaction studies focus on the investigation of the association between the single nucleotide polymorphisms (SNPs) of genes for disease susceptibility. Statistical methods are widely used to search for a good model of gene-gene interaction for disease analysis, and the previously determined models have successfully explained the effects between SNPs and diseases. However, the huge numbers of potential combinations of SNP genotypes limit the use of statistical methods for analysing high-order interaction, and finding an available high-order model of gene-gene interaction remains a challenge. In this study, an improved particle swarm optimization with double-bottom chaotic maps (DBM-PSO) was applied to assist statistical methods in the analysis of associated variations to disease susceptibility. A big data set was simulated using the published genotype frequencies of 26 SNPs amongst eight genes for breast cancer. Results showed that the proposed DBM-PSO successfully determined two- to six-order models of gene-gene interaction for the risk association with breast cancer (odds ratio > 1.0; P value <0.05). Analysis results supported that the proposed DBM-PSO can identify good models and provide higher chi-square values than conventional PSO. This study indicates that DBM-PSO is a robust and precise algorithm for determination of gene-gene interaction models for breast cancer. PMID:24895547

  2. Planning, developing, and fielding of thermal/structural interactions in situ tests for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Munson, D.E.; Matalucci, R.V.

    1986-01-01

    Large-scale, well-instrumented underground tests to determine in situ thermal/structural response of bedded salt are being constructed in the WIPP facility in southeastern New Mexico. These tests are an essential component of a broad research and development program to resolve thermal/structural issues, to validate long-term prediction methods, and to develop a design basis for a future repository. They are the result of an extensive planning and evaluation procedure to determine the appropriate test configuration. All details of the tests, including background, decisions, design, site operations, and testing organization are explained. These procedures may be useful in developing other in situ tests

  3. Behaviour of ODS Steels in Cyclic Loading

    Czech Academy of Sciences Publication Activity Database

    Kuběna, Ivo; Kruml, Tomáš; Polák, Jaroslav

    2016-01-01

    Roč. 69, č. 2 (2016), s. 309-313 ISSN 0972-2815. [International Conference on CREEP , FATIGUE and CREEP -FATIGUE INTERACTION /7./. Kalpakkam, 19.01.2016-22.01.2016] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : ODS steels * low cycle fatigue * small fatigue crack * microstructure Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 0.533, year: 2016 http://link.springer.com/article/10.1007/s12666-015-0814-3

  4. An analysis of lethal and sublethal interactions among type I and type II pyrethroid pesticide mixtures using standard Hyalella azteca water column toxicity tests.

    Science.gov (United States)

    Hoffmann, Krista Callinan; Deanovic, Linda; Werner, Inge; Stillway, Marie; Fong, Stephanie; Teh, Swee

    2016-10-01

    A novel 2-tiered analytical approach was used to characterize and quantify interactions between type I and type II pyrethroids in Hyalella azteca using standardized water column toxicity tests. Bifenthrin, permethrin, cyfluthrin, and lambda-cyhalothrin were tested in all possible binary combinations across 6 experiments. All mixtures were analyzed for 4-d lethality, and 2 of the 6 mixtures (permethrin-bifenthrin and permethrin-cyfluthrin) were tested for subchronic 10-d lethality and sublethal effects on swimming motility and growth. Mixtures were initially analyzed for interactions using regression analyses, and subsequently compared with the additive models of concentration addition and independent action to further characterize mixture responses. Negative interactions (antagonistic) were significant in 2 of the 6 mixtures tested, including cyfluthrin-bifenthrin and cyfluthrin-permethrin, but only on the acute 4-d lethality endpoint. In both cases mixture responses fell between the additive models of concentration addition and independent action. All other mixtures were additive across 4-d lethality, and bifenthrin-permethrin and cyfluthrin-permethrin were also additive in terms of subchronic 10-d lethality and sublethal responses. Environ Toxicol Chem 2016;35:2542-2549. © 2016 SETAC. © 2016 SETAC.

  5. An overview of fatigue

    International Nuclear Information System (INIS)

    Mc Evily, A.J.

    1987-01-01

    Four topics are briefly discussed in this paper: fatigue crack initiation and growth in a nickel-base superalloy single crystal, the environment effect on near-threshold fatigue crack growth behaviour, the role of crack closure in load-interaction effects in fatigue crack growth, and the nature of creep-fatigue interactions, if any, during fatigue crack growth. (Author)

  6. An Observational Approach to Testing Bi-Directional Parent-Child Interactions as Influential to Child Eating and Weight

    Science.gov (United States)

    Demir, Defne; Skouteris, Helen; Dell'Aquila, Daniela; Aksan, Nazan; McCabe, Marita P.; Ricciardelli, Lina A.; Milgrom, Jeannette; Baur, Louise A.

    2012-01-01

    Obesity among children has been on the rise globally for the past few decades. Previous research has centred mainly on self/parent-reported measures examining only uni-directional parental feeding styles and practices. Recent discussions in the literature have raised the importance of bi-directional parent-child interactions in influencing…

  7. Progressive and Regressive Developmental Changes in Neural Substrates for Face Processing: Testing Specific Predictions of the Interactive Specialization Account

    Science.gov (United States)

    Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.

    2011-01-01

    Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e. increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of…

  8. Supervisor-employee power distance incompatibility, gender similarity, and relationship conflict: A test of interpersonal interaction theory.

    Science.gov (United States)

    Graham, Katrina A; Dust, Scott B; Ziegert, Jonathan C

    2018-03-01

    According to interpersonal interaction theory, relational harmony surfaces when two individuals have compatible interaction styles. Building from this theory, we propose that supervisor-employee power distance orientation incompatibility will be related to employees' experience of higher levels of relationship conflict with their supervisors. Additionally, we propose an asymmetrical incongruence effect such that relationship conflict will be highest when supervisors are high in power distance and employees are low in power distance. Furthermore, we address calls in interpersonal interaction research for more direct attention to the social context of the dyadic interaction and explore the moderating effects of supervisor-employee gender (dis)similarity on the relationship between this incompatibility and conflict. We propose that supervisor-employee gender dissimilarity (e.g., male-female or female-male pairs) acts as a conditional moderator, neutralizing the power distance incongruence effect and the asymmetrical incongruence effect. Using 259 supervisor-employee dyads in the physical therapy industry, the hypotheses were generally supported. Theoretical and practical implications regarding the unique benefits of power distance compatibility and gender diversity in supervisor-employee dyads are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Multiple Homicide as a Function of Prisonization and Concurrent Instrumental Violence: Testing an Interactive Model--A Research Note

    Science.gov (United States)

    DeLisi, Matt; Walters, Glenn D.

    2011-01-01

    Prisonization (as measured by number of prior incarcerations) and concurrent instrumental offending (as measured by contemporaneous kidnapping, rape, robbery, and burglary offenses) were found to interact in 160 multiple-homicide offenders and 494 single-homicide offenders. Controlling for age, gender, race, criminal history, prior incarcerations,…

  10. The Other End of the Leash: An Experimental Test to Analyze How Owners Interact with Their Pet Dogs.

    Science.gov (United States)

    Cimarelli, Giulia; Turcsán, Borbála; Range, Friederike; Virányi, Zsófia

    2017-10-13

    It has been suggested that the way in which owners interact with their dogs can largely vary and influence the dog-owner bond, but very few objective studies, so far, have addressed how the owner interacts with the dog. The goal of the present study was to record dog owners' interaction styles by means of objective observation and coding. The experiment included eight standardized situations in which owners of pet dogs were asked to perform specific tasks including both positive (i.e. playing, teaching a new task, showing a preference towards an object in a food searching task, greeting after separation) and potentially distressing tasks (i.e. physical restriction during DNA sampling, putting a T-shirt onto the dog, giving basic obedience commands while the dog was distracted). The video recordings were coded off-line using a specifically designed coding scheme including scores for communication, social support, warmth, enthusiasm, and play style, as well as frequency of behaviors like petting, praising, commands, and attention sounds. Exploratory Factor Analysis of the 20 variables measured revealed 3 factors, labeled as Owner Warmth, Owner Social Support, and Owner Control, which can be viewed as analogues to parenting style dimensions. The experimental procedure introduced here represents the first standardized measure of interaction styles of dog owners. The methodology presented here is a useful tool to investigate individual variation in the interaction style of pet dog owners that can be used to explain differences in the dog-human relationship, dogs' behavioral outcomes, and dogs stress coping strategies, all crucial elements both from a theoretical and applied point of view.

  11. TRIP-ID: A tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig

    Science.gov (United States)

    Farroni, Flavio; Lamberti, Raffaele; Mancinelli, Nicolò; Timpone, Francesco

    2018-03-01

    Tyres play a key role in ground vehicles' dynamics because they are responsible for traction, braking and cornering. A proper tyre-road interaction model is essential for a useful and reliable vehicle dynamics model. In the last two decades Pacejka's Magic Formula (MF) has become a standard in simulation field. This paper presents a Tool, called TRIP-ID (Tyre Road Interaction Parameters IDentification), developed to characterize and to identify with a high grade of accuracy and reliability MF micro-parameters from experimental data deriving from telemetry or from test rig. The tool guides interactively the user through the identification process on the basis of strong diagnostic considerations about the experimental data made evident by the tool itself. A motorsport application of the tool is shown as a case study.

  12. Family-site interaction in Pinus radiata: implications for progeny testing strategy and regionalised breeding in New Zealand.

    Science.gov (United States)

    G.R. Johnson; R.D. Brudon

    1990-01-01

    A progeny test of 170 open-pollinated families from second-generation plus trees of Pinus radiata was established on four sites in New Zealand in 1981. Two test sites were on volcanic purnice soils in the Central North Island region and two were on phosphate-retentive clay soils in the Northland region.Assessments of volume growth, stem straightness, mal-...

  13. Task and socioemotional behaviors of physicians: a test of reciprocity and social interaction theories in analogue physician-patient encounters.

    Science.gov (United States)

    Roberts, C A; Aruguete, M S

    2000-02-01

    The purpose of the present study is to assess social interaction and reciprocity theories as explanations for patient responses to a physician in a medical consultation. Social interaction theory predicts that patients mostly recognize and react to socioemotional behavior of their physicians due to a lack of understanding of physician task behaviors or a preoccupation with anxiety. Reciprocity theory predicts that patients recognize socioemotional and task behaviors of their physicians, and they respond to these behaviors in thematically similar ways. We examined these hypotheses by having subjects view one of four videotapes which varied in physician task behavior (thorough or minimum levels of explanation of etiology, symptoms, and treatment) and physician socioemotional behavior (high or low levels of concern and affection displayed verbally and non-verbally). Results supported the general proposition of social interaction theory in that high levels of socioemotional behavior of the physician increased measures of patient self-disclosure, trust, satisfaction, and likelihood of recommending the physician. Physician task behavior had no effect on patient response to the physician, a finding inconsistent with reciprocity theory.

  14. Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area.

    Science.gov (United States)

    Meyer, Sebastian; Warnke, Ingeborg; Rössler, Wulf; Held, Leonhard

    2016-05-01

    Spatio-temporal interaction is inherent to cases of infectious diseases and occurrences of earthquakes, whereas the spread of other events, such as cancer or crime, is less evident. Statistical significance tests of space-time clustering usually assess the correlation between the spatial and temporal (transformed) distances of the events. Although appealing through simplicity, these classical tests do not adjust for the underlying population nor can they account for a distance decay of interaction. We propose to use the framework of an endemic-epidemic point process model to jointly estimate a background event rate explained by seasonal and areal characteristics, as well as a superposed epidemic component representing the hypothesis of interest. We illustrate this new model-based test for space-time interaction by analysing psychiatric inpatient admissions in Zurich, Switzerland (2007-2012). Several socio-economic factors were found to be associated with the admission rate, but there was no evidence of general clustering of the cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Methodological study of the diffusion of interacting cations through clays. Application: experimental tests and simulation of coupled chemistry-diffusion transport of alkaline ions through a synthetical bentonite

    International Nuclear Information System (INIS)

    Melkior, Th.

    2000-01-01

    The subject of this work deals with the project of underground disposal of radioactive wastes in deep geological formations. It concerns the study of the migration of radionuclides through clays. In these materials, the main transport mechanism is assumed to be diffusion under natural conditions. Therefore, some diffusion experiments are conducted. With interacting solutes which present a strong affinity for the material, the duration of these tests will be too long, for the range of concentrations of interest. An alternative is to determine on one hand the geochemical retention properties using batch tests and crushed rock samples and, on the other hand, to deduce the transport parameters from diffusion tests realised with a non-interacting tracer, tritiated water. These data are then used to simulate the migration of the reactive elements with a numerical code which can deal with coupled chemistry-diffusion equations. The validity of this approach is tested by comparing the numerical simulations with the results of diffusion experiments of cations through a clay. The subject is investigated in the case of the diffusion of cesium, lithium and sodium through a compacted sodium bentonite. The diffusion tests are realised with the through-diffusion method. The comparison between the experimental results and the simulations shows that the latter tends to under estimate the propagation of the considered species. The differences could be attributed to surface diffusion and to a decrease of the accessibility to the sites of fixation of the bentonite, from the conditions of clay suspensions in batch tests to the situation of compacted samples. The influence of the experimental apparatus used during the diffusion tests on the results of the measurement has also been tested. It showed that these apparatus have to be taken into consideration when the experimental data are interpreted. A specific model has been therefore developed with the numerical code CASTEM 2000. (author)

  16. Validation Test Report For The CRWMS Analysis and Logistics Visually Interactive Model Version 3.0, 10074-Vtr-3.0-00

    International Nuclear Information System (INIS)

    Gillespie, S.

    2000-01-01

    This report describes the tests performed to validate the CRWMS ''Analysis and Logistics Visually Interactive'' Model (CALVIN) Version 3.0 (V3.0) computer code (STN: 10074-3.0-00). To validate the code, a series of test cases was developed in the CALVIN V3.0 Validation Test Plan (CRWMS M and O 1999a) that exercises the principal calculation models and options of CALVIN V3.0. Twenty-five test cases were developed: 18 logistics test cases and 7 cost test cases. These cases test the features of CALVIN in a sequential manner, so that the validation of each test case is used to demonstrate the accuracy of the input to subsequent calculations. Where necessary, the test cases utilize reduced-size data tables to make the hand calculations used to verify the results more tractable, while still adequately testing the code's capabilities. Acceptance criteria, were established for the logistics and cost test cases in the Validation Test Plan (CRWMS M and O 1999a). The Logistics test cases were developed to test the following CALVIN calculation models: Spent nuclear fuel (SNF) and reactivity calculations; Options for altering reactor life; Adjustment of commercial SNF (CSNF) acceptance rates for fiscal year calculations and mid-year acceptance start; Fuel selection, transportation cask loading, and shipping to the Monitored Geologic Repository (MGR); Transportation cask shipping to and storage at an Interim Storage Facility (ISF); Reactor pool allocation options; and Disposal options at the MGR. Two types of cost test cases were developed: cases to validate the detailed transportation costs, and cases to validate the costs associated with the Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) and Regional Servicing Contractors (RSCs). For each test case, values calculated using Microsoft Excel 97 worksheets were compared to CALVIN V3.0 scenarios with the same input data and assumptions. All of the test case results compare with

  17. Development of elevated temperature fatigue design information for type 316 stainless steel

    International Nuclear Information System (INIS)

    Jaske, C.E.; Mindlin, H.; Perrin, J.S.

    1975-01-01

    To develop material properties information for use in elevated-temperature fatigue design, an extensive study of the fatigue and stress-strain behaviour of Type 316 stainless steel was conducted at temperatures from 21 to 649 0 C. Fatigue life and cyclic stress-strain curves were developed. Creep-fatigue interaction was evaluated by conducting strain hold-time tests at 566 and 649 0 C. Hold periods at peak tensile strain produced a large reduction in cyclic life. It was found that both a linear damage rule and the strain-partitioning method could be used to assess cumulative creep and fatigue damage. Aging for 1000 h at test temperature before testing caused only small or no changes in continuous cycling fatigue resistance at 566 and 649 0 C and in tension hold-time fatigue resistance at 566 0 C. This aging produced a significant increase in tension hold-time fatigue resistance at 649 0 C. (author)

  18. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Science.gov (United States)

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales

  19. WWC Review of the Report "Interactive Online Learning on Campus: Testing MOOCs and Other Platforms in Hybrid Formats in the University System of Maryland." What Works Clearinghouse Single Study Review

    Science.gov (United States)

    What Works Clearinghouse, 2015

    2015-01-01

    In the 2014 study, "Interactive Online Learning on Campus: Testing MOOCs and Other Platforms in Hybrid Formats in the University System of Maryland," researchers examined the impact of using hybrid forms of interactive online learning in seven undergraduate courses across seven universities in Maryland. Hybrid forms of interactive online…

  20. Testing T-odd, p-even interactions with gamma-rays from neutron p-wave resonances

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1992-01-01

    A new method for the study of time reversal violation is described. It consists of measurements of the forward-backward asymmetry in individual gamma-ray transitions resulting from unpolarized neutron capture in p-wave resonance. An experiment with a 113 Cd target performed at the Dubna pulsed neutron source has been analyzed and a limit on the time reversal odd, parity even interaction extracted. The possibilities of experiments using the powerful pulsed neutron source at Los Alamos are considered. 23 refs.; 2 figs

  1. Test of complex effective interaction by folding analysis of 32S elastic scattering on s-d shell nuclei

    International Nuclear Information System (INIS)

    Bilwes, B.; Bilwes, R.; Diaz, J.; Ferrero, J.L.; Pacheco, J.C.; Ruiz, J.A.

    1988-01-01

    Experimental data of elastic scattering between nuclei of various structures on a large energy scale has been analyzed in the framework of the folding model by use of the complex effective interaction of Faessler et al (1981). A general good reproduction of the data is obtained if renormalization coefficients for the real and the imaginary parts of the optical potential are introduced. The application of the dispersion relation of Mahaux et al (1986) allows to reproduce the observed energy dependence of the real part of the potential

  2. Using imputed genotype data in the joint score tests for genetic association and gene-environment interactions in case-control studies.

    Science.gov (United States)

    Song, Minsun; Wheeler, William; Caporaso, Neil E; Landi, Maria Teresa; Chatterjee, Nilanjan

    2018-03-01

    Genome-wide association studies (GWAS) are now routinely imputed for untyped single nucleotide polymorphisms (SNPs) based on various powerful statistical algorithms for imputation trained on reference datasets. The use of predicted allele counts for imputed SNPs as the dosage variable is known to produce valid score test for genetic association. In this paper, we investigate how to best handle imputed SNPs in various modern complex tests for genetic associations incorporating gene-environment interactions. We focus on case-control association studies where inference for an underlying logistic regression model can be performed using alternative methods that rely on varying degree on an assumption of gene-environment independence in the underlying population. As increasingly large-scale GWAS are being performed through consortia effort where it is preferable to share only summary-level information across studies, we also describe simple mechanisms for implementing score tests based on standard meta-analysis of "one-step" maximum-likelihood estimates across studies. Applications of the methods in simulation studies and a dataset from GWAS of lung cancer illustrate ability of the proposed methods to maintain type-I error rates for the underlying testing procedures. For analysis of imputed SNPs, similar to typed SNPs, the retrospective methods can lead to considerable efficiency gain for modeling of gene-environment interactions under the assumption of gene-environment independence. Methods are made available for public use through CGEN R software package. © 2017 WILEY PERIODICALS, INC.

  3. Interaction of heat production, strain rate and stress power in a plastically deforming body under tensile test

    Science.gov (United States)

    Paglietti, A.

    1982-01-01

    At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.

  4. Experimental simulations of interactions between glass and environmental materials, from laboratory benches to in-site testing

    International Nuclear Information System (INIS)

    Godon, N.

    1997-01-01

    This paper summarizes the results of 26 long-duration tests simulating a variety of storage conditions. The effects of the back-filling materials, glass cracking and the nature of the host rock are discussed. Moreover, two experiments have been in progress for over 15 and 7 years in a granite medium and a clay medium. (author)

  5. Analysis of diffractive pd to Xd and pp to Xp interactions and test of the finite-mass sum rule

    CERN Document Server

    Akimov, Y; Golovanov, L B; Goulianos, K; Gross, D; Malamud, E; Melissinos, A C; Mukhin, S; Nitz, D; Olsen, S; Sticker, H; Tsarev, V A; Yamada, R; Zimmerman, P

    1976-01-01

    The first moment finite mass sum rule is tested by utilising cross- sections for pp to Xp extracted from recent Fermilab data on pd to Xd and also comparing with CERN ISR data. The dependences on M/sub x//sup 2/, t and s are also discussed. (11 refs).

  6. The relationship between office type and job satisfaction: Testing a multiple mediation model through ease of interaction and well-being.

    Science.gov (United States)

    Otterbring, Tobias; Pareigis, Jörg; Wästlund, Erik; Makrygiannis, Alexander; Lindström, Anton

    2018-05-01

    Objectives This cross-sectional study investigated the associations between office type (cellular, shared-room, small open-plan, and medium-sized open-plan) and employees' ease of interaction with coworkers, subjective well-being, and job satisfaction. Methods A brief survey including measures of office type, ease of interaction with coworkers, subjective well-being, and job satisfaction was sent electronically to 1500 Swedish real-estate agents, 271 of whom returned usable surveys. The data were analyzed using a regression-based serial multiple mediation model (PROCESS Model 6), which tested whether the relationship between office type and job satisfaction would be mediated by ease of interaction and, in turn, subjective well-being. Results A negative relationship was found between the number of coworkers sharing an office and employees' job satisfaction. This association was serially mediated by ease of interaction with coworkers and subjective well-being, with employees working in small and medium-sized open-plan offices reporting lower levels of both these aspects than employees who work in either cellular or shared-room offices. Conclusions Open-plan offices may have short-term financial benefits, but these benefits may be lower than the costs associated with decreased job satisfaction and well-being. Therefore, decision-makers should consider the impact of office type on employees rather than focusing solely on cost-effective office layout, flexibility, and productivity.

  7. How do Nutritional Stress and La Crosse Virus Infection Interact? Tests for Effects on Willingness to Blood Feed and Fecundity in Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Westby, Katie M; Muturi, Ephantus J; Juliano, Steven A

    2016-01-01

    Evolutionary theory predicts that vector-borne pathogens should have low virulence for their vector because of selection against pathogens that harm the vector sufficiently to reduce transmission. Environmental factors such as nutritional stress can alter vector-pathogen associations by making the vectors more susceptible to pathogens (condition-dependent competence) and vulnerable to the harm caused by pathogen replication (condition-dependent virulence). We tested the hypotheses of condition-dependent competence and condition-dependent virulence by examining the interactive effects of short-term sugar deprivation and exposure to La Crosse virus (LACV) in female Aedes albopictus (Skuse). We predicted that infection status interacts with sugar deprivation to alter willingness to blood feed and fecundity in the second gonotrophic cycle (condition-dependent virulence). Sugar deprivation had no effect on body infection or disseminated infection rates. Infection status, sugar treatment, and their interaction had no effect on fecundity. Mosquitoes that had intermittent access to sugar were significantly more willing to take a second bloodmeal compared with those that had continuous access to sugar. Infection status and the interaction with sugar treatment had no effect on blood-feeding behavior. Thus, we found no evidence of short-term sugar deprivation leading to condition-dependent competence for, or condition-dependent virulence of, LACV in Ae. albopictus. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Testing Left-Right extensions of the standard model of electroweak interactions with double-beta decay and LHC measurements

    Science.gov (United States)

    Civitarese, O.; Suhonen, J.; Zuber, K.

    2015-07-01

    The minimal extension of the standard model of electroweak interactions allows for massive neutrinos, a massive right-handed boson WR, and a left-right mixing angle ζ. While an estimate of the light (electron) neutrino can be extracted from the non-observation of the neutrinoless double beta decay, the limits on the mixing angle and the mass of the righthanded (RH) boson may be extracted from a combined analysis of the double beta decay measurements (GERDA, EXO-200 and KamLAND-Zen collaborations) and ATLAS data on the two-jets two-leptons signals following the excitation of a virtual RH boson mediated by a heavy-mass neutrino. In this work we shall compare results of both types of experiments, and show that the estimates are not in tension.

  9. Testing complex networks of interaction at the onset of the Near Eastern Neolithic using modelling of obsidian exchange.

    Science.gov (United States)

    Ibáñez, Juan José; Ortega, David; Campos, Daniel; Khalidi, Lamya; Méndez, Vicenç

    2015-06-06

    In this paper, we explore the conditions that led to the origins and development of the Near Eastern Neolithic using mathematical modelling of obsidian exchange. The analysis presented expands on previous research, which established that the down-the-line model could not explain long-distance obsidian distribution across the Near East during this period. Drawing from outcomes of new simulations and their comparison with archaeological data, we provide results that illuminate the presence of complex networks of interaction among the earliest farming societies. We explore a network prototype of obsidian exchange with distant links which replicates the long-distance movement of ideas, goods and people during the Early Neolithic. Our results support the idea that during the first (Pre-Pottery Neolithic A) and second (Pre-Pottery Neolithic B) phases of the Early Neolithic, the complexity of obsidian exchange networks gradually increased. We propose then a refined model (the optimized distant link model) whereby long-distance exchange was largely operated by certain interconnected villages, resulting in the appearance of a relatively homogeneous Neolithic cultural sphere. We hypothesize that the appearance of complex interaction and exchange networks reduced risks of isolation caused by restricted mobility as groups settled and argue that these networks partially triggered and were crucial for the success of the Neolithic Revolution. Communities became highly dynamic through the sharing of experiences and objects, while the networks that developed acted as a repository of innovations, limiting the risk of involution. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. High Temperature Materials Interim Data Qualification Report

    International Nuclear Information System (INIS)

    Lybeck, Nancy

    2010-01-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: (1) Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing - 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. (2) Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram - 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  11. The synchronous neural interactions test as a functional neuromarker for post-traumatic stress disorder (PTSD): a robust classification method based on the bootstrap

    Science.gov (United States)

    Georgopoulos, A. P.; Tan, H.-R. M.; Lewis, S. M.; Leuthold, A. C.; Winskowski, A. M.; Lynch, J. K.; Engdahl, B.

    2010-02-01

    Traumatic experiences can produce post-traumatic stress disorder (PTSD) which is a debilitating condition and for which no biomarker currently exists (Institute of Medicine (US) 2006 Posttraumatic Stress Disorder: Diagnosis and Assessment (Washington, DC: National Academies)). Here we show that the synchronous neural interactions (SNI) test which assesses the functional interactions among neural populations derived from magnetoencephalographic (MEG) recordings (Georgopoulos A P et al 2007 J. Neural Eng. 4 349-55) can successfully differentiate PTSD patients from healthy control subjects. Externally cross-validated, bootstrap-based analyses yielded >90% overall accuracy of classification. In addition, all but one of 18 patients who were not receiving medications for their disease were correctly classified. Altogether, these findings document robust differences in brain function between the PTSD and control groups that can be used for differential diagnosis and which possess the potential for assessing and monitoring disease progression and effects of therapy.

  12. Individual differences in the forced swimming test and the effect of environmental enrichment: searching for an interaction.

    Science.gov (United States)

    Sequeira-Cordero, A; Mora-Gallegos, A; Cuenca-Berger, P; Fornaguera-Trías, J

    2014-04-18

    Animals with low and high immobility in the forced swimming test (FST) differ in a number of neurobehavioral factors. A growing body of evidence suggests that the exposure to enriched environments mediates a number of changes in the brain. Therefore, we studied if animals' individuality can somehow modulate the response to environmental stimuli. Male rats were classified according to their immobility time scores in the FST test session as animals with low, medium or high immobility. Then, rats from groups with low and high immobility were randomly distributed in two groups to be reared in different housing conditions (i.e., enriched and standard conditions) during 8weeks. Animals were subjected to the open field test (OFT) before and 6weeks after the start of housing protocol. Rats with high immobility in the FST also showed high ambulation and high rearing time in the first OFT. Such findings were not observed in the second OFT. Conversely, an effect of environmental enrichment was found in the second OFT where enriched animals showed lower ambulation and higher grooming time than the standard control group. Rats were sacrificed after the housing protocol and neurochemical content and/or gene expression were studied in three different brain regions: the prefrontal cortex, the hippocampus and the nucleus accumbens. Rats with low immobility showed significantly higher accumbal 5-HT levels than animals with high immobility, whereas no neurochemical differences were observed between enriched and standard animals. Regarding expression data, however, an effect of enrichment on accumbal corticotropin-releasing factor (CRF) and its receptor 1 (CRFR1) levels was observed, and such effect depended on immobility levels. Thus, our results not only allowed us to identify a number of differences between animals with low and high immobility or animals housed in standard and enriched conditions, but also suggested that animals' individuality modulated in some way the response to

  13. Sensitivity analysis using DECOMP and METOXA subroutines of the MAAP code in modelling core concrete interaction phenomena and post test calculations for ACE-MCCI experiment L-5

    International Nuclear Information System (INIS)

    Passalacqua, R.A.

    1991-01-01

    A parametric analysis approach was chosen in order to study core-concrete interaction phenomena. The analysis was performed using a stand-alone version of the MAAP-DECOMP model (DOE version). This analysis covered only those parameters known to have the largest effect on thermohydraulics and fission product aerosol release. Even though the main purpose of the effort was model validation, it eventually resulted in a better understanding of the core-concrete interaction physics and to a more correct interpretation of the ACE-MCCI L5 experimental data. Unusual low heat transfer fluxes from the debris pool to the cavity (corium surrounding volume) were modeled in order to have a good benchmark with the experimental data. Therefore, higher debris pool temperatures were predicted. In case of water flooding, as a consequence of the critical heat flux through the upper crust and the increase of the crust thickness, resulting high debris pool temperatures cause an increase in the concrete ablation rate in the short term. DECOMP model predicts a quick increase of the crust thickness and as a result, causes the quenching of the molten mass. However, especially for fast transient, phenomena of crust bridge formation can occur. Thus, the upward directed heat flux is minimized and the concrete erosion rate remains conspicuous also in the long term. The model validation is based, in these calculations, on post-test predictions using the MCCI L5 test data: these data are derived from results of the 'Molten Core Concrete Interaction' (MCCI) experiments, which in turn are part of the larger Advanced Containment Experiment (ACE) program. Other calculations were also performed for the new proposed MACE (Melt Debris Attack and Coolability) experiments simulating the water flooding of the cavity. Those calculations are preliminarily compared with the recent MACE scoping test results. (author) 4 tabs., 59 figs., 5 refs

  14. Testing model energy spectra of charged particles produced in hadron interactions on the basis of atmospheric muons

    International Nuclear Information System (INIS)

    Dedenko, L. G.; Roganova, T. M.; Fedorova, G. F.

    2015-01-01

    An original method for calculating the spectrum of atmospheric muons with the aid of the CORSIKA 7.4 code package and numerical integration is proposed. The first step consists in calculating the energy distribution of muons for various fixed energies of primary-cosmic-ray particles and within several chosen hadron-interaction models included in the CORSIKA 7.4 code package. After that, the spectrum of atmospheric muons is calculated via integrating the resulting distribution densities with the chosen spectrum of primary-cosmic-ray particles. The atmospheric-muon fluxes that were calculated on the basis of the SIBYLL 2.1, QGSJET01, and QGSJET II-04 models exceed the predictions of the wellknown Gaisser approximation of this spectrum by a factor of 1.5 to 1.8 in the range of muon energies between about 10 3 and 10 4 GeV.Under the assumption that, in the region of extremely highmuon energies, a dominant contribution to the muon flux comes from one to two generations of charged π ± and K ± mesons, the production rate calculated for these mesons is overestimated by a factor of 1.3 to 1.5. This conclusion is confirmed by the results of the LHCf and TOTEM experiments

  15. Sexual videos in Internet: a test of 11 hypotheses about intimate practices and gender interactions in Latin America

    OpenAIRE

    Monge-Nájera, Julián; Corrales, Karla Vega

    2015-01-01

    There is a marked lack of literature on user-submitted sexual videos from Latin America. To start filling that gap, we present a formal statistical testing of several hypotheses about the characteristics of 214 videos from Nereliatube.com posted from the inauguration of the site until December 2010. We found that in most cases the video was made consensually and the camera was operated by the man. The most frequent practice shown was fellatio, followed by vaginal penetration.  The great major...

  16. Cryogenic explosion environment modeling and testing of space shuttle and light-weight radioisotope heater unit interactions

    International Nuclear Information System (INIS)

    Johnson, E.W.

    1985-10-01

    In order to assess the risk to the world's populace in the event of a Space Shuttle accident when radioisotope-containing heat sources are on board, testing of that system must be performed to determine release point, environments required, and the size distribution of the released fuel. To evaluate the performance of the Light-Weight Radioisotope Heater Unit (LWRHU) (101 of these 1-W items are placed on the Galileo spacecraft which will be launched from the Space Shuttle), some high-velocity impact and flyer plate testing was carried out. The results showed that a bare urania-fueled LWRHU clad (approximately 1-mm thick platinum-30 wt % rhodium alloy) will withstand 1100 m/s flyer plate (3.5-mm thick aluminum) impacts and 330 m/s impacts upon the Space Shuttle floor (approximately 12-mm thick aluminum) without rupture or fuel release. Velocities in the order of 600 m/s on a steel surface will cause clad failure with fuel release. The fuel breakup patterns were characterized as to quantity in a specific size range. These data were employed in the formal Safety Analysis Report for the LWRHU to support the planned 1986 Galileo launch. 19 figs

  17. Antinociceptive effect and interaction of uncompetitive and competitive NMDA receptor antagonists upon capsaicin and paw pressure testing in normal and monoarthritic rats.

    Science.gov (United States)

    Pelissier, Teresa; Infante, Claudio; Constandil, Luis; Espinosa, Jeannette; Lapeyra, Carolina De; Hernández, Alejandro

    2008-01-01

    We assessed whether intrathecal administration of the uncompetitive and competitive NMDA receptor antagonists ketamine and (+/-)CPP, respectively, could produce differential modulation on chemical and mechanical nociception in normal and monoarthritic rats. In addition, the antinociceptive interaction of ketamine and (+/-)CPP on monoarthritic pain was also studied using isobolographic analysis. Monoarthritis was produced by intra-articular injection of complete Freund's adjuvant into the tibio-tarsal joint. Four weeks later, the antinociceptive effect of intrathecal administration of the drugs alone or combined was evaluated by using the intraplantar capsaicin and the paw pressure tests. Ketamine (0.1, 1, 10, 30, 100, 300 and 1000 microg i.t.) and (+/-)CPP (0.125, 2.5, 7.5, 12.5, 25 and 50 microg i.t.) produced significantly greater dose-dependent antinociception in the capsaicin than in the paw pressure test. Irrespective of the nociceptive test employed, both antagonists showed greater antinociceptive activity in monoarthritic than in healthy rats. Combinations produced synergy of a supra-additive nature in the capsaicin test, but only additive antinociception in paw pressure testing. The efficacy of the drugs, alone or combined, is likely to depend on the differential sensitivity of tonic versus phasic pain and/or chemical versus mechanical pain to NMDA antagonists.

  18. Development and Alpha Testing of QuitIT: An Interactive Video Game to Enhance Skills for Coping With Smoking Urges.

    Science.gov (United States)

    Krebs, Paul; Burkhalter, Jack E; Snow, Bert; Fiske, Jeff; Ostroff, Jamie S

    2013-09-11

    Despite many efforts at developing relapse prevention interventions, most smokers relapse to tobacco use within a few months after quitting. Interactive games offer a novel strategy for helping people develop the skills required for successful tobacco cessation. The objective of our study was to develop a video game that enables smokers to practice strategies for coping with smoking urges and maintaining smoking abstinence. Our team of game designers and clinical psychologists are creating a video game that integrates the principles of smoking behavior change and relapse prevention. We have reported the results of expert and end-user feedback on an alpha version of the game. The alpha version of the game consisted of a smoking cue scenario often encountered by smokers. We recruited 5 experts in tobacco cessation research and 20 current and former smokers, who each played through the scenario. Mixed methods were used to gather feedback on the relevance of cessation content and usability of the game modality. End-users rated the interface from 3.0 to 4.6/5 in terms of ease of use and from 2.9 to 4.1/5 in terms of helpfulness of cessation content. Qualitative themes showed several user suggestions for improving the user interface, pacing, and diversity of the game characters. In addition, the users confirmed a high degree of game immersion, identification with the characters and situations, and appreciation for the multiple opportunities to practice coping strategies. This study highlights the procedures for translating behavioral principles into a game dynamic and shows that our prototype has a strong potential for engaging smokers. A video game modality exemplifies problem-based learning strategies for tobacco cessation and is an innovative step in behavioral management of tobacco use.

  19. Thrill Seeking and Religiosity in Relation to Adolescent Substance Use: Tests of Joint, Interactive, and Indirect Influences

    Science.gov (United States)

    Mason, W. Alex; Spoth, Richard L.

    2011-01-01

    Thrill seeking is a robust positive predictor of adolescent substance use. Religiosity is negatively associated with substance use among teens, although findings are mixed. Few studies have examined the interplay between these two prominent risk and protective factors. The current study addresses this gap by examining the joint, interactive, and indirect influences of thrill seeking and each of two dimensions of religiosity, religious salience and religious attendance, in relation to adolescent substance use. Participants were 667 rural youths (345 girls and 322 boys) and their families participating in a longitudinal family-focused prevention trial. Data were collected via self-report surveys at six time points across seven years, spanning ages 11 through 18. Results from latent growth curve analyses showed that both religious salience and religious attendance growth factors were associated negatively with late adolescent substance use, while adjusting for thrill seeking and selected covariates. Although the link between thrill seeking and substance use was not moderated by religiosity, there was a statistically significant indirect effect of thrill seeking on the outcome through a faster rate of downturn in religious attendance. Family intervention also predicted a slower rate of downturn in religious attendance and was associated negatively with substance use in late adolescence. Early adolescent substance use predicted a faster rate of decrease in religious salience throughout the teen years. The pattern of associations was similar for boys and girls. Findings suggest that teens who are elevated on thrill seeking could be targeted for specially-designed substance use prevention programs and provide additional evidence for the efficacy of family interventions. PMID:21574673

  20. Test for the presence of long-ranged Coulomb interactions in thin TiN films near the superconductor-insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Kronfeldner, Klaus; Strunk, Christoph [Institute for Experimental and Applied Physics, University of Regensburg (Germany); Baturina, Tatyana [A.V. Rzhanov Institute of Semiconductor Physics, SB RAS (Russian Federation)

    2016-07-01

    We have measured the conductance of square shaped TiN films on the superconducting and the insulating side of the superconductor/insulator transition. The conductance shows thermally activated behaviour with an activation energy k{sub B}T{sub 0}(L) ∝ lnL, with L being the lateral size of the squares. Such behavior is consistent with 2D long-ranged Coulomb interactions with a large electrostatic screening length Λ ≅ 200 μm. To independently test whether long ranged Coulomb interactions can be responsible for the observed size dependence we compare R(T,B) of a large TiN film in the critical region with and without a screening Pd layer in a distance t ∼ 60 nm to the TiN film. The screening Pd-layer is expected to reduce the activation energy from ∝ ln [min(L,Λ)] to ∝ ln(t) and the thermally activated resistance in films with L >or similar Λ by the large number Λ/t ≅ 3000. In contrast, our experiment showed no significant reduction of R(T) and T{sub 0}. This suggests that the measured size dependent conductance of our TiN film is not related to long-ranged Coulomb interactions.