WorldWideScience

Sample records for crack arrest statistics

  1. Dynamic photoelastic investigation of crack arrest

    International Nuclear Information System (INIS)

    Irwin, G.R.; Dally, J.W.; Kobayashi, T.; Fourney, W.L.

    1977-01-01

    Crack arrest and crack arrest toughness are of great interest, particularly for studies pertaining to safety of nuclear reactor pressure vessels. Investigations are needed in which the instantaneous values of stress intensity factor (K) can be observed during crack propagation and arrest. Such observations are possible if the test specimens are made from plates of a transparent photoelastic sensitive material. Values of K as a function of crack speed are shown for Homalite 100 and various epoxy blends. 9 figures

  2. Dynamic propagation and cleavage crack arrest in bainitic steel

    International Nuclear Information System (INIS)

    Hajjaj, M.

    2006-06-01

    In complement of the studies of harmfulness of defects, generally realized in term of initiation, the concept of crack arrest could be used as complementary analyses to the studies of safety. The stop occurs when the stress intensity factor becomes lower than crack arrest toughness (KIa) calculated in elasto-statics (KI ≤ KIa). The aim of this thesis is to understand and predict the stop of a crack propagating at high speed in a 18MND5 steel used in the pressure water reactor (PWR). The test chosen to study crack arrest is the disc thermal shock test. The observations under the scanning electron microscope of the fracture surface showed that the crack arrest always occurs in cleavage mode and that the critical microstructural entity with respect to the propagation and crack arrest corresponds to at least the size of the prior austenitic grain. The numerical analyses in elasto-statics confirm the conservatism of the codified curve of the RCC-M with respect to the values of KIa. The dynamic numerical analyses show that the deceleration of the crack measured at the end of the propagation is related to the global dynamic of the structure (vibrations). The transferability to components of crack arrest toughness obtained from tests analysed in static is thus not assured. The disc thermal shock tests were also modelled by considering a criterion of propagation and arrest of the type 'RKR' characterized by a critical stress sc which depends on the temperature. The results obtained account well for the crack jump measured in experiments as well as the shape of the crack arrest front. (author)

  3. An energy analysis of crack-initiation and arrest in epoxy

    Science.gov (United States)

    Chudnovsky, A.; Kim, A.; Bosnyak, C. P.

    1992-01-01

    The objective of this work is to study fracture processes such as crack initiation and arrest in epoxy. A compact tension specimen with displacement-controlled loading is employed to observe multiple crack initiations and arrests. The energy release rate at crack initiation is significantly higher than that at crack arrest, as has been observed elsewhere. In this study, the difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in strength theory, is conventionally attributed to the statistics of defects which control the fracture process. Triangular shaped ripples, deltoids, are formed on the fracture surface of the epoxy during the slow sub-critical crack growth, prior to the smooth mirrorlike surface characteristic of fast cracks. The deltoids are complimentary on the two crack faces which excludes any inelastic deformation from consideration. The deltoids are analogous to the ripples created on a river surface downstream from a small obstacle. However, in spite of the expectation based on this analogy and the observed scale effect, there are no 'defects' at the apex of the deltoids detectable down to the 0.1 micron level. This suggests that the formation of deltoids during the slow process of subcritical crack growth is an intrinsic feature of the fracture process itself, triggered by inhomogeneity of material on a submicron scale. This inhomogeneity may be related to a fluctuation in the cross-link density of the epoxy.

  4. Interfacial Crack Arrest in Sandwich Panels with Embedded Crack Stoppers Subjected to Fatigue Loading

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J. H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device has been implemented in sandwich panels and tested using a special rig to apply out-of-plane loading on the sandwich panel face-sheets. Fatigue crack propagation was induced in the face-core interface of the sandwich panels which met the crack arrester. The effect o...

  5. A crack arrest test using a toughness gradient steel plate

    International Nuclear Information System (INIS)

    Okamura, H.; Yagawa, G.; Urabe, Y.; Satoh, M.; Sano, J.

    1995-01-01

    Pressurized thermal shock (PTS) is a phenomenon that can occur in the reactor pressure vessels (RPVs) with internal pressure and is one of the most severe stress conditions that can be applied to the vessel. Preliminary research has shown that no PTS concern is likely to exist on Japanese RPVs during their design service lives. However, public acceptance of vessel integrity requires analyses and experiment in order to establish an analytical method and a database for life extension of Japanese RPVs. The Japanese PTS integrity study was carried out from FY 1983 to FY 1991 as a national project by Japan Power Engineering and Inspection Corporation (JAPEIC) under contract with Ministry of International Trade and Industry (MITI) in cooperation with LWR utilities and vendors. Here, a crack arrest test was carried out using a toughness gradient steel plate with three layers to study the concept of crack arrest toughness. Four-point bending load with thermal shock was applied to the large flat plate specimen with a surface crack. Five crack initiations and arrests were observed during the test and the propagated crack bifurcated. Finally, cracks were arrested at the boundary of the first and the second layer, except for a small segment of the crack. The first crack initiation took place slightly higher than the lower bound of K Ic data obtained by ITCT specimens. That is, the K IC concept for brittle crack initiation was verified for heavy section steel plates. The first crack arrest took place within the scatter band of K Ia and K Id data for the first layer. That is, the K Ia concept appears applicable for crack arrest of a short crack jump

  6. Comparison of analysis and experimental data for a unique crack arrest specimen

    International Nuclear Information System (INIS)

    Ayres, D.J.; Fabi, R.J.; Schonenberg, R.Y.; Norris, D.M.

    1988-01-01

    A new fracture test specimen has been developed to study crack extension and arrest in nuclear reactor vessel steels subject to stress-intensity factor and toughness gradients similar to those in postulated pressurized thermal shock situations. A summary of the results of all the tests performed is presented to illustrate the range of crack arrest and crack reinitiation conditions observed. One test of this specimen with the corresponding stress analysis is described in detail. During this test the crack initiated, extended, arrested, reinitiated, extended again, and reached a final arrest. Comparison of detailed dynamic elastic-plastic finite-element analyses and dynamic strain and displacement measurements of the crack extension, arrest, and reinitiation events, combined with topographic analysis of the future surfaces, has led to a new understanding of the crack extension and arrest process. The results of the tests demonstrate crack arrest in rising stress-intensity field at near-upper-shelf temperature conditions and show that the toughness required for arrest is lower than would be predicted by the analysis procedures usually employed for pressurized thermal shock evaluations

  7. Interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device – Numerical modelling

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J.H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device is implemented in foam-cored composite sandwich beams and tested using the Sandwich Tear Test (STT) configuration. A finite element model of the setup is developed, and the predictions are correlated with observations and results from a recently conducted experiment...... concept, as well as a design tool that can be used for the implementation of crack arresting devises in engineering applications of sandwich components and structures....

  8. An engineering interpretation of pop-in arrest and tearing arrest in terms of static crack arrest, Ksub(Ia)

    International Nuclear Information System (INIS)

    Witt, F.J.

    1983-01-01

    When fracture toughness specimens are tested under displacement controlled conditions, they are often observed to exhibit unstable cleavage fracture followed by arrest of the cleavage mode wherein a significant load remains on the specimen (pop-in arrest). This behavior carries over into the ductile tearing regime wherein tearing may occur rapidly identified by load reduction and then proceeds at a discernible less rate (tearing arrest). Both these behaviors represent an initiation condition followed by an arrest condition. In this paper it is demonstrated that from either of the arrest conditions an arrest value may be determined which, for available experimental data, is shown to be an engineering estimate for the static crack arrest toughness, Ksub(Ia). A data analysis procedure is outlined and Ksub(Ic) and Ksub(Ia) estimates from sixty-eight 1/2, 1 and 2 in. thick compact specimens from two steels (A533 Grade B Class 1 and AISI 1018) tested between -40 deg F and 200 deg F are summarized. The crack arrest estimates are seen to compare favorably with Ksub(Ia) results obtained by other investigators using 2 in. thick specimens. Also it is demonstrated that when failure is by fully ductile tearing, the crack arrest toughness is at least equal to the estimate for Ksub(Ic) for the specimen. (author)

  9. HSST crack-arrest studies overview

    International Nuclear Information System (INIS)

    Pugh, C.E.; Whitman, G.D.

    1985-01-01

    An overview is given of the efforts underway in the Heavy-Section Steel Technology (HSST) Program to better understand and model crack-arrest behavior in reactor pressure vessel steels. The efforts are both experimental and analytical. The experimental work provides K/sub Ia/ data from laboratory-sized specimens, from thick-wall cylinders which exhibit essentially-full restraint and from nonisothermal wide-plate specimens. These data serve to define toughness-temperature trends and to provide validation data under prototypical reactor conditions. The analytical efforts interpret and correlate the data, plus provide LEFM, elastodynamic and viscoplastic methods for analyzing crack run-arrest behavior in reactor vessels. The analysis methods are incorporated into finite element computer programs which are under development at three separate laboratories. 22 refs., 10 figs

  10. Experimental investigation of interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J.H.; Berggreen, Christian

    2017-01-01

    A recently proposed face-sheet–core interface crack arresting device is implemented in sandwich beams and tested using the Sandwich Tear Test configuration. Fatigue loading conditions are applied to propagate the crack and determine the effect of the crack stopper on the fatigue growth rate and a...

  11. Crack arrest concepts for failure prevention and life extension. Proceedings

    International Nuclear Information System (INIS)

    Wiesner, C.S.

    1996-01-01

    These proceedings contain the thirteen papers presented at a seminar on crack arrest concepts for failure prevention and life extension. They provide a picture of the current position of crack arrest testing, models and applications, discussion of the relevance of recent research to industrial problems, and an assessment of whether the application of crack arrest models provides additional safety. Separate abstracts have been prepared for seven papers of relevance to the nuclear industry and, in particular, reactor pressure vessels. (UK)

  12. The relevance of crack arrest phenomena for pressure vessel structural integrity assessment

    International Nuclear Information System (INIS)

    Connors, D.C.; Dowling, A.R.; Flewitt, P.E.J.

    1996-01-01

    The potential role of a crack arrest argument for the structural integrity assessments of steel pressure vessels and the relationship between crack initiation and crack arrest philosophies are described. A typical structural integrity assessment using crack initiation fracture mechanics is illustrated by means of a case study based on assessment of the steel pressure vessels for Magnox power stations. Evidence of the occurrence of crack arrest in structures is presented and reviewed, and the applications to pressure vessels which are subjected to similar conditions are considered. An outline is given of the material characterisation that would be required to undertake a crack arrest integrity assessment. It is concluded that crack arrest arguments could be significant in the structural integrity assessment of PWR reactor pressure vessels under thermal shock conditions, whereas for Magnox steel pressure vessels it would be limited in its potential to supporting existing arguments. (author)

  13. Crack propagation and arrest simulation of X90 gas pipe

    International Nuclear Information System (INIS)

    Yang, Fengping; Huo, Chunyong; Luo, Jinheng; Li, He; Li, Yang

    2017-01-01

    To determine whether X90 steel pipe has enough crack arrest toughness or not, a damage model was suggested as crack arrest criterion with material parameters of plastic uniform percentage elongation and damage strain energy per volume. Fracture characteristic length which characterizes fracture zone size was suggested to be the largest mesh size on expected cracking path. Plastic uniform percentage elongation, damage strain energy per volume and fracture characteristic length of X90 were obtained by five kinds of tensile tests. Based on this criterion, a length of 24 m, Φ1219 × 16.3 mm pipe segment model with 12 MPa internal gas pressure was built and computed with fluid-structure coupling method in ABAQUS. Ideal gas state equation was used to describe lean gas behavior. Euler grid was used to mesh gas zone inside the pipe while Lagrangian shell element was used to mesh pipe. Crack propagation speed and gas decompression speed were got after computation. The result shows that, when plastic uniform percentage elongation is equal to 0.054 and damage strain energy per volume is equal to 0.64 J/mm"3, crack propagation speed is less than gas decompression speed, which means the simulated X90 gas pipe with 12 MPa internal pressure can arrest cracking itself. - Highlights: • A damage model was suggested as crack arrest criterion. • Plastic uniform elongation and damage strain energy density are material parameters. • Fracture characteristic length is suggested to be largest mesh size in cracking path. • Crack propagating simulation with coupling of pipe and gas was realized in ABAQUS. • A Chinese X90 steel pipe with 12 MPa internal pressure can arrest cracking itself.

  14. Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines

    Science.gov (United States)

    Wang, Linyuan; Song, Shulei; Deng, Hongbo; Zhong, Kai

    2018-04-01

    In nowadays, repair method using fiber reinforced composites as the mainstream pipe repair technology, it can provide security for X100 high-grade steel energy long-distance pipelines in engineering. In this paper, analysis of cracked X100 high-grade steel pipe was conducted, simulation analysis was made on structure of pipes and crack arresters (CAs) to obtain the J-integral value in virtue of ANSYS Workbench finite element software and evaluation on crack arrest effects was done through measured elastic-plastic fracture mechanics parameter J-integral and the crack arrest coefficient K, in a bid to summarize effect laws of composite CAs and size of pipes and cracks for repairing CAs. The results indicate that the K value is correlated with laying angle λ, laying length L2/D1, laying thickness T1/T2of CAs, crack depth c/T1 and crack length a/c, and calculate recommended parameters for repairing fiber reinforced composite CAs in terms of two different crack forms.

  15. Crack-arrest tests on two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstad, R.K.

    1994-03-01

    The objective of the Heavy-Section Steel Irradiation Program Sixth Irradiation Series is to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest toughness data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degrees C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). This is the second report giving the results of the tests on irradiated duplex-type crack-arrest specimens. A previous report gave results of tests on irradiated weld-embrittled-type specimens. Charpy V-notch (CVN) specimens irradiated in the same capsules as the crack-arrest specimens were also tested, and a 41-J transition temperature shift was determined from these specimens. open-quotes Mean close-quote curves of the same form as the American Society of Mechanical Engineers (ASME) K la curve were fit to the data with only the open-quotes reference temperatureclose quotes as a parameter. The shift between the mean curves agrees well with the 41-J transition temperature shift obtained from the CVN specimen tests. Moreover, the four data points resulting from tests on the duplex crack-arrest specimens of the present study did not make a significant change to mean curve fits to either the previously obtained data or all the data combined

  16. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)

    2017-01-15

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  17. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    International Nuclear Information System (INIS)

    Taheri, Said; Julan, Emricka; Tran, Xuan-Van; Robert, Nicolas

    2017-01-01

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  18. Crack arrest toughness of structural steels evaluated by compact test

    International Nuclear Information System (INIS)

    Nakano, Yoshifumi; Tanaka, Michihiro

    1982-01-01

    Crack arrest tests such as compact, ESSO and DCB tests were made on SA533B Cl. 1, HT80 and KD32 steels to evaluate the crack arrest toughness. The main results obtained are as follows: (1) The crack arrest toughness could be evaluated by K sub(Ia) which was obtained by the static analysis of compact test. (2) K sub(ID) determined by the dynamic analysis of compact test was greater than K sub(Ia), though K sub(ID) became close to K sub(Ia)/K sub(Q) became a unity where K sub(Q) is the stress intensity factor at the crack initiation. (3) No significant difference was observed between K sub(Ia) and K sub(ca) obtained by ESSO and DCB tests, though K sub(ca) obtained by DCB test tended to be smaller than K sub(Ia) at lower temperatures. (4) K sub(Ia) was smaller than K sub(Ic) in the transition temperature range, while it was greater than K sub(Id). In the temperature range where K sub(Ic), which was determined from J sub(Ic), decreased with temperature increase, however, it was smaller than K sub(Ia). (5) The fracture appearance transition temperature and the absorbed energy obtained by 2 mm V-notch Charpy test were appropriate parameters for representing the crack arrest toughness, while the NDT temperature was not. (author)

  19. Crack arrest toughness measurements with A533B steel

    International Nuclear Information System (INIS)

    Salonen, Seppo.

    1979-11-01

    This work covers crack arrest toughness measurements on A533B steel done at the Technical Research Centre of Finland. These measurements are one part of a multinational effort, involving 30 laboratories. The aim of the cooperative test program is to examine two test procedures for measuring the crack arrest toughness, to give information about their reproducibility, and to identify the factors affecting the interpretation. The principles given for the testing were easy to apply in general and the results were satisfactory. Some factors in the test runs and in the specimen's behaviour are indicated which can cause error in the results or make implementation of the test more difficult. By comparing the results from our laboratory with average values from the test program a good agreement can be seen. Crack arrest toughness values derived from the compared procedures with a static analysis agree closely, but values calculated using a dynamic analysis differ considerably. (author)

  20. Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch.

    Science.gov (United States)

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Klocke, Arndt; Schneider, Gerold A

    2010-05-01

    Enamel and dentin compose the crowns of human teeth. They are joined at the dentinoenamel junction (DEJ) which is a very strong and well-bonded interface unlikely to fail within healthy teeth despite the formation of multiple cracks within enamel during a lifetime of exposure to masticatory forces. These cracks commonly are arrested when reaching the DEJ. The phenomenon of crack arrest at the DEJ is described in many publications but there is little consensus on the underlying cause and mechanism. Explanations range from the DEJ having a larger toughness than both enamel and dentin up to the assumption that not the DEJ itself causes crack arrest but the so-called mantle dentin, a thin material layer close to the DEJ that is somewhat softer than the bulk dentin. In this study we conducted 3-point bending experiments with bending bars consisting of the DEJ and surrounding enamel and dentin to investigate crack propagation and arrest within the DEJ region. Calculated stress intensities around crack tips were found to be highly influenced by the elastic modulus mismatch between enamel and dentin and hence, the phenomenon of crack arrest at the DEJ could be explained accordingly via this elastic modulus mismatch. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Conservatism of ASME KIR-reference curve with respect to crack arrest

    International Nuclear Information System (INIS)

    Wallin, K.; Rintamaa, R.; Nagel, G.

    1999-01-01

    The conservatism of the RT NDT temperature indexing parameter and the ASME K IR -reference curve with respect to crack arrest toughness, has been evaluated. Based on an analysis of the original ASME K Ia data, it was established that inherently, the ASME K IR -reference curve corresponds to an overall 5% lower bound curve with respect to crack arrest. It was shown that the scatter of crack arrest toughness is essentially material independent and has a standard deviation of 18% and the temperature dependence of K Ia has the same form as predicted by the master curve for crack initiation toughness. The 'built in' offset between the mean 100 MPa√(m) crack arrest temperature, TK Ia , and RT NDT is 38 C (TK Ia =RT NDT +38 C) and the experimental relation between TK Ia and NDT is, TK Ia =NDT+28 C. The K IR -reference curve using NDT as reference temperature will be conservative with respect to the general 5% lower bound K Ia(5%) -curve, with a 75% confidence. The use of RT NDT , instead of NDT, will generally increase the degree of conservatism, both for non-irradiated as well as irradiated materials, close to a 95% confidence level. This trend is pronounced for materials with Charpy-V upper shelf energies below 100 J. It is shown that the K IR -curve effectively constitutes a deterministic lower bound curve for crack arrest. The findings are valid both for nuclear pressure vessel plates, forgings and welds. (orig.)

  2. Conservatism of ASME KIR-reference curve with respect to crack arrest

    International Nuclear Information System (INIS)

    Wallin, K.; Rintamaa, R.; Nagel, G.

    2001-01-01

    The conservatism of the RT NDT temperature indexing parameter and the ASME K IR -reference curve with respect to crack arrest toughness, has been evaluated. Based on an analysis of the original ASME K Ia data, it was established that inherently, the ASME K IR -reference curve corresponds to an overall 5% lower bound curve with respect to crack arrest. It was shown that the scatter of crack arrest toughness is essentially material independent and has a standard deviation (S.D.) of 18% and the temperature dependence of K Ia has the same form as predicted by the master curve for crack initiation toughness. The 'built in' offset between the mean 100 MPa√m crack arrest temperature, TK Ia , and RT NDT is 38 deg. C (TK Ia =RT NDT +38 deg. C) and the experimental relation between TK Ia and NDT is, TK Ia =NDT+28 deg. C. The K IR -reference curve using NDT as reference temperature will be conservative with respect to the general 5% lower bound K Ia(5%) -curve, with a 75% confidence. The use of RT NDT , instead of NDT, will generally increase the degree of conservatism, both for non-irradiated as well as irradiated materials, close to a 95% confidence level. This trend is pronounced for materials with Charpy-V upper shelf energies below 100 J. It is shown that the K IR -curve effectively constitutes a deterministic lower bound curve for crack arrest The findings are valid both for nuclear pressure vessel plates, forgings and welds

  3. Master curve based correlation between static initiation toughness KIC and crack arrest toughness KIa

    International Nuclear Information System (INIS)

    Wallin, K.; Rintamaa, R.

    1999-01-01

    Historically the ASME reference curve concept assumes a constant relation between static fracture toughness initiation toughness and crack arrest toughness. In reality, this is not the case. Experimental results show that the difference between K IC and K Ia is material specific. For some materials there is a big difference while for others they nearly coincide. So far, however, no systematic study regarding a possible correlation between the two parameters has been performed. The recent Master curve method, developed for brittle fracture initiation estimation, has enabled a consistent analysis of fracture initiation toughness data. The Master curve method has been modified to be able to describe also crack arrest toughness. Here, this modified 'crack arrest master curve' is further validated and used to develop a simple, but yet (for safety assessment purpose) adequately accurate correlation between the two fracture toughness parameters. The correlation enables the estimation of crack arrest toughness from small Charpy-sized static fracture toughness tests. The correlation is valid for low Nickel steels ≤ (1.2% Ni). If a more accurate description of the crack arrest toughness is required, it can either be measured experimentally or estimated from instrumented Charpy-V crack arrest load information. (orig.)

  4. Evaluation of the presence of constraint in crack run/arrest events

    International Nuclear Information System (INIS)

    Schwartz, C.W.; Bass, B.R.

    1988-01-01

    Crack arrest studies currently being conducted by the Heavy-Section Steel Technology Program are designed to improve our understanding of the conditions contributing to the arrest of a propagating fracture in a pressure vessel. These studies are generating data spanning a wide temperature range for a variety of experimental configurations. Dynamic crack arrest parameters are back-figured from these experiments through 'generation mode' dynamic viscoplastic finite element calculations driven by the measured crack tip history input. A major approximation in these analyses, which is dictated by the practical limitations of current supercomputer hardware, is the assumption of two-dimensional plane stress conditions. Although this approximation is reasonable over most of the problem domain for many test specimen geometries, it deteriorates at locations near the crack tip due to triaxial constraint effects. This paper describes plans for a fine-grained three-dimensional computational study to investigate the importance of these near-tip triaxial constraint effects on crack tip yielding and to develop appropriate algorithms for incorporating these effects into conventional two-dimensional plane stress approximations. (author)

  5. Comparison of crack arrest methodologies

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The ASTM Cooperative Test Program Data were used to compare the static (K/sub Ia/) and dynamic (K/sud ID/, K/sub IDm/) approaches to crack arrest. K/sub Ia/ is not dependent on K/sub Q/. This is consistent with the requirements of the static approach, but not the dynamic one which requires that K/sub Ia/ decrease with K/sub Q/ if K/sub ID/ (= K/sub IDm/) is a constant. K/sub ID/ increases systematically with K/sub Q/ at a rate that is consistent with calculations based on the use of a constant value for K/sub Ia/ which is equal to its measured mean value. Only in the limiting case of very short crack jumps (associated with very low average crack speeds) can K/sub ID/ be identified as a minimum value at which K/sub ID/ = K/sub IDm/. In this case K/sub IDm/ approx. K/sub Ia/ approx. K/sub Im/. The latter is the idealized minimum value of K that will support the continued propagation of a running crack

  6. Results of crack-arrest tests on irradiated a 508 class 3 steel

    International Nuclear Information System (INIS)

    Iskander, S.K.; Milella, P.P.; Pini, M.A.

    1998-02-01

    Ten crack-arrest toughness values for irradiated specimens of A 508 class 3 forging steel have been obtained. The tests were performed according to the American Society for Testing and Materials (ASTM) Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, K la of Ferritic Steels, E 1221-88. None of these values are strictly valid in all five ASTM E 1221-88 validity criteria. However, they are useful when compared to unirradiated crack-arrest specimen toughness values since they show the small (averaging approximately 10 degrees C) shifts in the mean and lower-bound crack-arrest toughness curves. This confirms that a low copper content in ASTM A 508 class 3 forging material can be expected to result in small shifts of the transition toughness curve. The shifts due to neutron irradiation of the lower bound and mean toughness curves are approximately the same as the Charpy V-notch (CVN) 41-J temperature shift. The nine crack-arrest specimens were irradiated at temperatures varying from 243 to 280 degrees C, and to a fluence varying from 1.7 to 2.7 x 10 19 neutrons/cm 2 (> 1 MeV). The test results were normalized to reference values that correspond to those of CVN specimens irradiated at 284 degrees C to a fluence of 3.2 x 10 19 neutrons/cm 2 (> 1 MeV) in the same capsule as the crack-arrest specimens. This adjustment resulted in a shift to lower temperatures of all the data, and in particular moved two data points that appeared to lie close to or lower than the American Society of Mechanical Engineers K la curve to positions that seemed more reasonable with respect to the remaining data. A special fixture was designed, fabricated, and successfully used in the testing. For reasons explained in the text, special blocks to receive the Oak Ridge National Laboratory clip gage were designed, and greater-than-standard crack-mouth opening displacements measured were accounted for. 24 refs., 13 figs., 12 tabs

  7. Advances in crack-arrest technology for reactor pressure vessels

    International Nuclear Information System (INIS)

    Bass, B.R.; Pugh, C.E.

    1988-01-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory (ORNL) under the sponsorship of the US Nuclear Regulatory Commission is continuing to improve the understanding of conditions that govern the initiation, rapid propagation, arrest, and ductile tearing of cracks in reactor pressure vessel (RPV) steels. This paper describes recent advances in a coordinated effort being conducted under the HSST Program by ORNL and several subcontracting groups to develop the crack-arrest data base and the analytical tools required to construct inelastic dynamic fracture models for RPV steels. Large-scale tests are being carried out to generate crack-arrest toughness data at temperatures approaching and above the onset of Charpy upper-shelf behavior. Small- and intermediate-size specimens subjected to static and dynamic loading are being developed and tested to provide additional fracture data for RPV steels. Viscoplastic effects are being included in dynamic fracture models and computer programs and their utility validated through analyses of data from carefully controlled experiments. Recent studies are described that examine convergence problems associated with energy-based fracture parameters in viscoplastic-dynamic fracture applications. Alternative techniques that have potential for achieving convergent solutions for fracture parameters in the context of viscoplastic-dynamic models are discussed. 46 refs., 15 figs., 3 tabs

  8. Critical experiments, measurements, and analyses to establish a crack arrest methodology for nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Hahn, G.T.

    1977-01-01

    Substantial progress was made in three important areas: crack propagation and arrest theory, two-dimensional dynamic crack propagation analyses, and a laboratory test method for the material property data base. The major findings were as follows: Measurements of run-arrest events lent support to the dynamic, energy conservation theory of crack arrest. A two-dimensional, dynamic, finite-difference analysis, including inertia forces and thermal gradients, was developed. The analysis was successfully applied to run-arrest events in DCB (double-cantilever-beam) and SEN (single-edge notched) test pieces. A simplified procedure for measuring K/sub D/ and K/sub Im/ values with ordinary and duplex DCB specimens was demonstrated. The procedure employs a dynamic analysis of the crack length at arrest and requires no special instrumentation. The new method was applied to ''duplex'' specimens to measure the large K/sub D/ values displayed by A533B steel above the nil-ductility temperature. K/sub D/ crack velocity curves and K/sub Im/ values of two heats of A533B steel and the corresponding values for the plane strain fracture toughness associated with static initiation (K/sub Ic/), dynamic initiation (K/sub Id/), and the static stress intensity at crack arrest (K/sub Ia/) were measured. Possible relations among these toughness indices are identified. During the past year the principal investigators of the participating groups reached agreement on a crack arrest theory appropriate for the pressure vessel problem. 7 figures

  9. Results of crack-arrest tests on two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstead, R.K.

    1990-12-01

    The objective of this study was to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). Evaluation of the results shows that the neutron-irradiation-induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower-bound curves (for the range of test temperatures covered) did not seem to have been altered by irradiation compared to those of the ASME K Ia curve. 9 refs., 21 figs., 10 tabs

  10. Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch

    OpenAIRE

    Bechtle, Sabine

    2010-01-01

    Enamel and dentin compose the crowns of human teeth. They are joined at the dentinoenamel junction (DEJ) which is a very strong and well-bonded interface unlikely to fail within healthy teeth despite the formation of multiple cracks within enamel during a lifetime of exposure to masticatory forces. These cracks commonly are arrested when reaching the DEJ. The phenomenon of crack arrest at the DEJ is described in many publications but there is little consensus on the underlying cause and mecha...

  11. Use of forces from instrumented Charpy V-notch testing to determine crack-arrest toughness

    International Nuclear Information System (INIS)

    Iskander, S.K.; Nanstad, R.K.; Sokolov, M.A.; McCabe, D.E.; Hutton, J.T.

    1996-06-01

    The objective of this investigation is an estimation of the crack-arrest toughness, particularly of irradiated materials, from voltage versus time output of an instrumented setup during a test on a Charpy V-notch (CVN) specimen. This voltage versus time trace (which can be converted to force versus displacement) displays events during fracture of the specimen. Various stages of the fracture process can be identified on the trace, including an arrest point indicating arrest of brittle fracture. The force at arrest, F a , versus test temperature, T, relationship is examined to explore possible relationships to other experimental measures of crack-arrest toughness such as the drop-weight nil-ductility temperature (NDT), or crack-arrest toughness, K a . For a wide range of weld and plate materials, the temperature at which F a = 2.45 kN correlates with NDT with a standard deviation, sigma, of about 11 K. Excluding the so-called low upper-shelf energy (USE) welds from the analysis resulted in F a = 4.12 kN and σ = 6.6 K. The estimates of the correlation of the temperature for F a = 7.4 kN with the temperature at 100-MPa√m level for a mean American Society of Mechanical Engineers (ASME) type K Ia curve through crack-arrest toughness values show that prediction of conservative values of K a are possible

  12. Effects of irradiation on crack-arrest toughness of two high-copper welds

    International Nuclear Information System (INIS)

    Iskander, S.K.; Corwin, W.R.; Nanstad, R.K.

    1990-01-01

    The objective of this study is to determine the effect of neutron irradiation on the shift and shape of the lower-bound curve to crack-arrest data. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Crack-arrest specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to an average fluence of 1.9 x 10 19 neutrons/cm 2 (>1 MeV). A preliminary evaluation of the results shows that the neutron-irradiation induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower-bound curves, (for the range of test temperatures covered), compared to those of the ASME K Ia -curve did not seem to have been altered by irradiation. 10 refs., 9 figs., 7 tabs

  13. Summary of HSST wide-plate crack-arrest tests and analyses

    International Nuclear Information System (INIS)

    Naus, D.J.; Bass, B.R.; Keeney-Walker, J.; Fields, R.J.; DeWit, R.; Low, S.R. III

    1988-01-01

    Eleven wide-plate crack-arrest tests have been completed to date, seven utilizing specimens fabricated from A533B class 1 material (WP-1 series), and four fabricated from a low upper-shelf base material (WP-2 series). With the exception of one test in the WP-1 series and two tests in the WP-2 series which utilized 152-mm-thick specimens, each test utilized a single-edge notched (SEN) plate specimen 1 by 1 by 0.1 m that was subjected to a linear thermal gradient along the plane of crack propagation. Test results exhibit an increase in crack-arrest toughness with temperature, with the rate of increase becoming greater as the temperature increases. When the wide-place test results are combined with other large-specimen results (Japanese ESSO, thermal-shock experiments and pressurized-thermal-shock experiments) the data show a consistent trend in which the K Ia data extends above the limit provided in ASME Section XI. (author)

  14. Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1991-01-01

    Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. An important element of the Heavy-Section Steel Technology (HSST) Program is devoted to the investigation and evaluation of these proposals. This paper presents the technological bases and fracture-margin assessment objectives for some of the recently proposed crack-initiation and arrest-technology developments. The HSST Program approach to the evaluation of the proposals is described and the results and conclusions obtained to date are presented

  15. Nuclear reactor pressure vessel integrity insurance by crack arrestability evaluation using load from CVN tests

    International Nuclear Information System (INIS)

    Fabry, A.

    1997-01-01

    The present work is undertaken in the framework of nuclear reactor pressure vessel (RPV) surveillance and aims at revisiting the crack arrest approach to structural integrity insurance. This approach, performed under normal plant operation conditions, can also offer an attractive alternative to the crack initiation philosophy promoted for accidental analysis. To this end, an accidental conservative, cost effective and robust methodology is forwarded and demonstrated: it makes use of the crack arrest information contained in the instrumented Charpy V-notch impact test and/or in the shear fracture appearance of broken samples. Particular attention is paid to the appraisal of uncertainties and the related safety margin. The resulting capability is placed in perspective with the state-of-the-art crack initiation methodology based on the slow bend testing of recracked specimens, presently under standardization world-wide. The investigation leads to highlight three conceptual weaknesses of current enfgineering and regulatory practices. Improved crack arrestability evaluation emerges as an optimal approach to insure safe PWR operation up to design end-of-life and beyond

  16. Nuclear reactor pressure vessel integrity insurance by crack arrestability evaluation using load from CVN tests

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.

    1997-10-15

    The present work is undertaken in the framework of nuclear reactor pressure vessel (RPV) surveillance and aims at revisiting the crack arrest approach to structural integrity insurance. This approach, performed under normal plant operation conditions, can also offer an attractive alternative to the crack initiation philosophy promoted for accidental analysis. To this end, an accidental conservative, cost effective and robust methodology is forwarded and demonstrated: it makes use of the crack arrest information contained in the instrumented Charpy V-notch impact test and/or in the shear fracture appearance of broken samples. Particular attention is paid to the appraisal of uncertainties and the related safety margin. The resulting capability is placed in perspective with the state-of-the-art crack initiation methodology based on the slow bend testing of recracked specimens, presently under standardization world-wide. The investigation leads to highlight three conceptual weaknesses of current enfgineering and regulatory practices. Improved crack arrestability evaluation emerges as an optimal approach to insure safe PWR operation up to design end-of-life and beyond.

  17. Crack arrest: some comments on microscopic and macroscopic aspects in relation to the assurance of structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Lidbury, D.P.G.; Druce, S.G.; Tomkins, B. [AEA Technology, Risley (United Kingdom)

    1996-12-31

    Fracture prevention in high integrity structures in general, and steel nuclear reactor pressure vessels (RPVs) in particular, is based upon the avoidance of crack initiation, with due regard to real or postulated defects, material toughness and anticipated normal and off-normal loading conditions. However, avoidance of crack initiation can never be guaranteed in any absolute sense. Thus, in cases where there is the possibility of an initiated crack propagating by brittle, cleavage fracture, the crack arrest concept may be usefully applied to provide some additional assurance of structural integrity. Within this context, the mechanical processes operative during the initiation and arrest of cleavage cracks are briefly compared and contrasted. The empirical evidence for indexing and onset-of-upper-shelf temperature for initiation (OUST) and the crack arrest temperature (CAT) relative to the Pellini drop-weight nil-ductility transition temperature (NDTT) is examined, and estimates of the parameter (OUST-CAT) are made for a range of steels. In the light of this, correlations between small-scale tests and more structurally relevant, large-scale tests are examined in relation to both initiation- and arrest-based failure avoidance methodologies. (author).

  18. Full thickness crack arrest investigations on compact specimens and a heavy wide-plate

    International Nuclear Information System (INIS)

    Kussmaul, K.; Gillot, R.; Elenz, T.

    1993-01-01

    In order to determine the influence of specimen size and testing procedure on the crack arrest toughness K Ia at various temperatures, investigations were carried out on a wide-plate and compact specimens using a highly brittle material. Test interpretation included static as well as dynamic methods. The comparison of the measured K Ia -values shows good agreement although there is a distinct difference in specimen size. In general, the (static) ASTM test method yields a lower and thus conservative estimate of the crack arrest toughness K Ia . 14 refs., 27 figs., 3 tabs

  19. European experiences of the proposed ASTM test method for crack arrest toughness of ferritic materials

    International Nuclear Information System (INIS)

    Jutla, T.; Lidbury, D.P.G.; Ziebs, J.; Zimmermann, C.

    1986-01-01

    The proposed ASTM test method for measuring the crack arrest toughness of ferritic materials using wedge-loaded, side-grooved, compact specimens was applied to three steels: A514 bridge steel, A588 bridge steel, and A533B pressure vessel steel. Five sets of results from different laboratories are discussed here. Notches were prepared by spark erosion, although root radii varied from ∝0.1-1.5 mm. Although fast fractures were successfully initiated, arrest did not occur in a significant number of cases. The results showed no obvious dependence of crack arrest toughness, K a , (determined by a static analysis) on crack initiation toughness, K 0 . It was found that K a decreases markedly with increasing crack jump distance. A limited amount of further work on smaller specimens of the A533B steel showed that lower K a values tended to be recorded. It is concluded that a number of points relating to the proposed test method and notch preparation are worthy of further consideration. It is pointed out that the proposed validity criteria may screen out lower bound data. Nevertheless, for present practical purposes, K a values may be regarded as useful in providing an estimate of arrest toughness - although not necessarily a conservative estimate. (orig./HP)

  20. Crack-arrest behavior in SEN wide plates of low-upper-shelf base metal tested under nonisothermal conditions: WP-2 series

    International Nuclear Information System (INIS)

    Naus, D.J.; Keeney-Walker, J.; Bass, B.R.; Robinson, G.C. Jr.; Iskander, S.K.; Alexander, D.J.; Fields, R.J.; deWit, R.; Low, S.R.; Schwartz, C.W.

    1990-08-01

    The Heavy-Section Steel Technology (HSST) Program at the Oak Ridge National Laboratory under the sponsorship of the Nuclear Regulatory Commission is conducting analytical and experimental studies aimed at understanding the circumstances that would initiate the growth of an existing crack in a reactor pressure vessel (RPV) and the conditions leading to arrest of a propagating crack. Objectives of these studies are to determine (1) if the material will exhibit crack-arrest behavior when the driving force on a crack exceeds the ASME limit, (2) the relationship between K Ia and temperature, and (3) the interaction of fracture modes (arrest, stable crack growth, unstable crack growth, and tensile instability) when arrest occurs at high temperatures. In meeting these objectives, crack-arrest data are being developed over an expanded temperature range through tests involving large thermally shocked cylinders, pressurized thermally shocked vessels, and wide-plate specimens. The wide-plate specimens provide the opportunity for a significant number of data points to be obtained at relatively affordable costs. These tests are designed to provide fracture-toughness measurements approaching or above the onset of the Charpy upper-shelf regime in a rising toughness region and with an increasing driving force. This document discusses test methodology and results. 23 refs., 92 figs., 25 tabs

  1. A dynamic analysis of crack propagation and arrest of pressurized thermal shock experiments (PTSE)

    International Nuclear Information System (INIS)

    Brickstad, B.; Nilsson, F.

    1984-01-01

    The PTS-experiments performed at ORNL are dynamically analysed by aid ot a two-dimensional FEM-code with capability of simulating rapid crack growth.It is found that both a quasistatic and a dynamic treatment agree well with the experimentally obtained crack arrest lengths. (author)

  2. Prediction of cleavage crack propagation and arrest in a nuclear pressure vessel steel (16MND5) under thermal shock

    International Nuclear Information System (INIS)

    Yang, Xiaoyu

    2015-01-01

    the critical stress was developed. The results of this analytical model is in good agreement with the empirical criterion identified. In order to test the validity of the identified criterion, the prediction of the crack propagation and arrest by the criterion was first performed for isothermal tests. It was performed both on CT25 specimens (crack was solicited in mode I) and on ring specimens in mixed mode loading which were carried out at three different temperatures. The numerical results of prediction were in good agreement with experiments. They showed the validity of the criterion for experiments under isothermal loading for two different specimen geometries. In order to test the validity of criterion for the situation of thermal shock, experiments were carried out on ring specimens. At first, one ring specimen was cooled down to -150 C, and then hot water (∼90 C) was injected through the inner side of the ring specimen. At the same time of thermal shock, this specimen was submitted to a mechanical compressive loading (-750 kN). The prediction of crack propagation and arrest by the criterion for this situation was calculated in both 2D and 3D. The predicted results were in good agreement with experiments for both crack speed and crack length. This confirmed that the criterion is relevant to predict the crack propagation and arrest for thermal shock. In parallel, some experiments were performed on extended CT25 specimens (same height but double the width of the CT25 specimen). The crack path on this kind of specimen was curved. A statistical effect by a random selection in the propagation direction was introduced to take into account the instability during the crack propagation. The numerical results correctly reproduce the curvature and the dispersion of the crack paths. (author) [fr

  3. Viscoplastic-dynamic analyses of small-scale fracture tests to obtain crack arrest toughness values for PTS conditions

    International Nuclear Information System (INIS)

    Kanninen, M.F.; Hudak, S.J. Jr; Dexter, R.J.; Couque, H.; O'Donoghue, P.E.; Polch, E.Z.

    1988-01-01

    Reliable predictions of crack arrest at the high upper shelf toughness conditions involved in postulated pressurized thermal shock (PTS) events require procedures beyond those utilized in conventional fracture mechanics treatments. To develop such a procedure, viscoplastic-dynamic fracture mechanics finite element analyses, viscoplastic material characterization testing, and small-scale crack propagation and arrest experimentation are being combines in this research. The approach couples SwRI's viscoplastic-dynamic fracture mechanics finite element code VISCRK with experiments using duplex 4340/A533B steel compact specimens. The experiments are simulated by VISCRK computations employing the Bodner-Partom viscoplastic constitutive relation and the nonlinear fracture mechanics parameter T. The goal is to develop temperature-dependent crack arrest toughness values for A533B steel. While only room temperature K Ia values have been obtained so far, these have been found to agree closely with those obtained from wide plate tests. (author)

  4. Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1991-01-01

    Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. This paper presents an overview of ongoing Heavy-Section Steel Technology (HSST) Program research aimed at refining the fracture toughness data used in the analysis of fracture margins under pressurized-thermal-shock loading conditions. 33 refs., 13 figs

  5. Critical experiments, measurements and analyses to establish a crack arrest methodology for nuclear pressure vessel steels. Task 62. Second annual progress report, 1 July 1975 to 30 June 1976

    International Nuclear Information System (INIS)

    Hahn, G.T.; Gehlen, P.C.; Hoagland, R.G.; Marschall, C.W.; Kanninen, M.F.; Popelar, C.; Rosenfield, A.R.

    1976-10-01

    Developments of the theory, the analyses and the materials characterization for assessments of crack arrest in heavy walled nuclear pressure vessels are described. A two-dimensional, dynamic, finite difference analysis of crack propagation and arrest, including inertia forces and thermal stresses is derived. The analysis is used to treat run-arrest events in DCB- and SEN-specimens. Calculations based on the one-dimensional analysis are compared with detailed measurements of run-arrest in two polymeric materials. The agreements between calculations and experiments support the dynamic, energy conservation theory of crack arrest. Implications of a K/sub ID/-crack velocity curve with a negative slope are examined. The quantity K/sub Im/, the minimum propagating crack toughness, is identified as the crack arrest material property for engineering applications. Considerations entering the design of a crack arrest property measuring procedure, including specimen shape, size, thickness and the crack jump are discussed. The influence of side grooves on the propensity for crack branching is examined. Compliance measurements for rectangular DCB-specimens are presented and analyzed. Energy losses arising from damping remote from the crack tip in an A533B steel DCB specimen are described, and classed as negligible. Interactions between test pieces and the loading system are examined. A simplified procedure for measuring K/sub D/-, K/sub m/-, and K/sub a/-values, based on the dynamic analysis of the crack length at arrest is demonstrated. Measurements of K/sub D/ at temperatures in the range (NDT-66)C to (NDT +34)C and for crack velocities in the range 200 ms -1 to 1000 ms -1 are presented. The connection between propagating crack toughness values and the rapidly loaded stationary crack toughness K/sub Id/ is examined

  6. Fracture mechanical modeling of brittle crack propagation and arrest of steel. 3. Application to duplex-type test; Kozai no zeisei kiretsu denpa teisi no rikigaku model. 3. Konseigata shiken eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S.; Tsuchida, Y. [Nippon Steel Corp., Tokyo (Japan); Machida, S.; Yoshinari, H. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1996-12-31

    A proposal was made previously on a model of brittle crack propagation and arrest that considers the effect of crack opening suppression by using unbroken ligaments generated on steel plate surface and the effect that cracks precede in the central part of the plate thickness, based on a local limit stress theory for brittleness fracture. This paper discusses applicability of this model to a mixed type test, and elucidates causes for difference in the arrest tenacity of both types in a double tensile test of the standard size. The brittle crack propagation and arrest model based on the local limit stress theory was found applicable to a simulation of the mixed type test. Experimental crack propagation speed history and behavior of the arrest were reproduced nearly completely by using this model. When load stress is increased, the arrests in the mixed type test may be classified into arrests of both inside the steel plate and near the surface, cracks in the former position or arrest in the latter position, and rush of cracks into both positions. Furthermore, at higher stresses, the propagation speed drops once after cracks rushed into the test plate, but turns to a rise, leading to propagation and piercing. 8 refs., 15 figs., 3 tabs.

  7. Fracture mechanical modeling of brittle crack propagation and arrest of steel. 3. Application to duplex-type test; Kozai no zeisei kiretsu denpa teisi no rikigaku model. 3. Konseigata shiken eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S; Tsuchida, Y [Nippon Steel Corp., Tokyo (Japan); Machida, S; Yoshinari, H [The University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1997-12-31

    A proposal was made previously on a model of brittle crack propagation and arrest that considers the effect of crack opening suppression by using unbroken ligaments generated on steel plate surface and the effect that cracks precede in the central part of the plate thickness, based on a local limit stress theory for brittleness fracture. This paper discusses applicability of this model to a mixed type test, and elucidates causes for difference in the arrest tenacity of both types in a double tensile test of the standard size. The brittle crack propagation and arrest model based on the local limit stress theory was found applicable to a simulation of the mixed type test. Experimental crack propagation speed history and behavior of the arrest were reproduced nearly completely by using this model. When load stress is increased, the arrests in the mixed type test may be classified into arrests of both inside the steel plate and near the surface, cracks in the former position or arrest in the latter position, and rush of cracks into both positions. Furthermore, at higher stresses, the propagation speed drops once after cracks rushed into the test plate, but turns to a rise, leading to propagation and piercing. 8 refs., 15 figs., 3 tabs.

  8. In situ observations of crack arrest and bridging by nanoscale twins in copper thin films

    International Nuclear Information System (INIS)

    Kim, Seong-Woong; Li Xiaoyan; Gao Huajian; Kumar, Sharvan

    2012-01-01

    In situ tensile experiments in a transmission electron microscope revealed that micro-cracks in ultrafine grained, free-standing, thin copper foils containing nanoscale twins initiated in matrix domains separated by the twins and then arrested at twin boundaries as twin boundary sliding proceeded. The adjacent microcracks eventually coalesced through shear failure of the bridging twins. To investigate the atomic mechanism of this rarely seen nanoscale crack bridging behavior, molecular dynamics simulations were performed to show that during crack propagation twin boundaries are impinged upon by numerous dislocations from the plastically deforming matrix. These dislocations react at the interface and evolve into substantially impenetrable dislocation walls that strongly confine crack nucleation and resist crack propagation, leading to the experimentally observed crack bridging behavior. The present results raise an approach to significantly toughening polycrystalline thin films by incorporating nanoscale twin structures into individual grains that serve as crack bridging ligaments.

  9. Dynamic analysis of crack growth and arrest in a pressure vessel subjected to thermal and pressure loading

    International Nuclear Information System (INIS)

    Brickstad, B.

    1984-01-01

    Predictions of crack arrest behaviour are performed for a cracked reactor pressure vessel under both thermal and pressure loading. The object is to compare static and dynamic calculations. The dynamic calculations are made using an explicit finite element technique where crack growth is simulated by gradual nodal release. Three different load cases and the effect of different velocity dependence on the crack propagation toughness are studied. It is found that for the analysed cases the static analysis is slightly conservative, thus justifying its use for these problems. (orig.)

  10. Comparisons of irradiation-induced shifts in fracture toughness, crack arrest toughness, and Charpy impact energy in high-copper welds

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Iskander, S.K.

    1991-01-01

    The Heavy-Section Steel Irradiation (HSSI) Program is examining relative shifts and changes in shape of fracture and crack-arrest toughness versus temperature behavior for two high-copper welds. Fracture toughness 100-MPa√m temperature shifts are greater than Charpy 41-J shifts for both welds. Mean curve fits to the fracture toughness data provide mixed results regarding curve shape changes, but curves constructed as lower boundaries indicate lower slopes. Preliminary crack-arrest toughness results indicate that shifts of lower-bound curves are approximately the same as CVN 41-J shifts with no shape changes

  11. An evaluation of analysis methodologies for predicting cleavage arrest of a deep crack in an RPV subjected to PTS loading conditions

    International Nuclear Information System (INIS)

    Keeney-Walker, J.; Bass, B.R.

    1992-01-01

    Several calculational procedures are compared for predicting cleavage arrest of a deep crack in the wall of a prototypical reactor pressure vessel (RPV) subjected to pressurized-thermal-shock (PTS) types of loading conditions. Three procedures examined in this study utilized the following models: (1) a static finite-element model (full bending); (2) a radially constrained static model; and (3) a thermoelastic dynamic finite-element model. A PTS transient loading condition was selected that produced a deep arrest of an axially-oriented initially shallow crack according to calculational results obtained from the static (full-bending) model. Results from the two static models were compared with those generated from the detailed thermoelastic dynamic finite-element analysis. The dynamic analyses modeled cleavage-crack propagation using node-release technique and an application-mode methodology based on dynamic fracture toughness curves generated from measured data. Comparisons presented here indicate that the degree to which dynamic solutions can be approximated by static models is highly dependent on several factors, including the material dynamic fracture curves and the propensity for cleavage reinitiation of the arrested crack under PTS loading conditions. Additional work is required to develop and validate a satisfactory dynamic fracture toughness model applicable to postcleavage arrest conditions in an RPV

  12. Analysis of Mode I and Mode II Crack Growth Arrest Mechanism with Z-Fibre Pins in Composite Laminated Joint

    Science.gov (United States)

    Jeevan Kumar, N.; Ramesh Babu, P.

    2018-04-01

    This paper presents the numerical study of the mode I and mode II interlaminar crack growth arrest in hybrid laminated curved composite stiffened joint with Z-fibre reinforcement. A FE model of hybrid laminated skin-stiffener joint reinforced with Z-pins is developed to investigate the effect of Z- fibre pins on mode I and mode II crack growth where the delamination is embedded inbetween the skin and stiffener interface. A finite element model was developed using S4R element of a 4-node doubly curved thick shell elements to model the composite laminates and non linear interface elements to simulate the reinforcements. The numerical analyses revealed that Z-fibre pinning were effective in suppressing the delamination growth when propagated due to applied loads. Therefore, the Z-fibre technique effectively improves the crack growth resistance and hence arrests or delays crack growth extension.

  13. Statistical crack mechanics

    International Nuclear Information System (INIS)

    Dienes, J.K.

    1993-01-01

    Although it is possible to simulate the ground blast from a single explosive shot with a simple computer algorithm and appropriate constants, the most commonly used modelling methods do not account for major changes in geology or shot energy because mechanical features such as tectonic stresses, fault structure, microcracking, brittle-ductile transition, and water content are not represented in significant detail. An alternative approach for modelling called Statistical Crack Mechanics is presented in this paper. This method, developed in the seventies as a part of the oil shale program, accounts for crack opening, shear, growth, and coalescence. Numerous photographs and micrographs show that shocked materials tend to involve arrays of planar cracks. The approach described here provides a way to account for microstructure and give a representation of the physical behavior of a material at the microscopic level that can account for phenomena such as permeability, fragmentation, shear banding, and hot-spot formation in explosives

  14. Criterion of cleavage crack propagation and arrest in a nuclear PWR vessel steel

    International Nuclear Information System (INIS)

    Bousquet, Amaury

    2013-01-01

    The purpose of this PhD thesis is to understand physical mechanisms of cleavage crack propagation and arrest in the 16MND5 PWR vessel steel and to propose a robust predicting model based on a brittle fracture experimental campaign of finely instrumented laboratory specimens associated with numerical computations. First, experiments were carried out on thin CT25 specimens at five temperatures (-150 C, -125 C, -100 C, -7 C, -50 C). Two kinds of crack path, straight or branching path, have been observed. To characterize crack propagation and to measure crack speed, a high-speed framing camera system was used, combined with the development of an experimental protocol which allowed to observe CT surface without icing inside the thermal chamber and on the specimen. The framing camera (520 000 fps) has allowed to have a very accurate estimation of crack speed on the complete ligament of CT (∼ 25 mm). Besides, to analyse experiments and to study the impact of viscosity on the mechanical response around the crack tip, the elastic-viscoplastic behavior of the ferritic steel has been studied up to a strain rate of 104 s -1 for the tested temperatures.The extended Finite Element Method (X-FEM) was used in CAST3M FE software to model crack propagation. Numerical computations combine a local non linear dynamic approach with a RKR type fracture stress criterion to a characteristic distance. The work carried out has confirmed the form of the criterion proposed by Prabel at -125 C, and has identified the dependencies of the criterion on temperature and strain rate. From numerical analyzes in 2D and 3D, a multi-temperature fracture stress criterion, increasing function of the strain rate, was proposed. Predictive modeling were used to confirm the identified criterion on two specimen geometries (CT and compressive ring) in mode I at different temperatures. SEM observations and 3D analyzes made with optical microscope showed that the fracture mechanism was the cleavage associated

  15. Crack Arrest Toughness of Two High Strength Steels (AISI 4140 and AISI 4340)

    Science.gov (United States)

    Ripling, E. J.; Mulherin, J. H.; Crosley, P. B.

    1982-04-01

    The crack initiation toughness ( K c ) and crack arrest toughness ( K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed on K a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures, K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, the K a values showed a more pronounced transition temperature than the K c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.

  16. The use of COD and plastic instability in crack propagation and arrest in shells

    Science.gov (United States)

    Erdogan, F.; Ratwani, M.

    1974-01-01

    The initiation, growth, and possible arrest of fracture in cylindrical shells containing initial defects are dealt with. For those defects which may be approximated by a part-through semi-elliptic surface crack which is sufficiently shallow so that part of the net ligament in the plane of the crack is still elastic, the existing flat plate solution is modified to take into account the shell curvature effect as well as the effect of the thickness and the small scale plastic deformations. The problem of large defects is then considered under the assumptions that the defect may be approximated by a relatively deep meridional part-through surface crack and the net ligament through the shell wall is fully yielded. The results given are based on an 8th order bending theory of shallow shells using a conventional plastic strip model to account for the plastic deformations around the crack border.

  17. The reinitiation of fracture at the tip of an arrested crack in a reactor pressure vessel: The effect of ligaments on the reinitiation K value

    International Nuclear Information System (INIS)

    Smith, E.

    1986-01-01

    During a hypothetical thermal shock event involving a water-cooled nuclear reactor steel pressure vessel, it is possible for a crack to propagate deep into the reactor vessel thickness by a series of run-arrest-reinitiation events. Furthermore, within the transition temperature regime, crack propagation and arrest are associated with a combination of cleavage and ductile rupture processes, the latter being manifested by ligaments that are normal to the crack plane and parallel to the direction of crack propagation. Earlier work by the author has modelled the effect of ligaments on the reinitiation of fracture at the tip of an arrested crack. Proceeding from the basis that the ligaments fail by a ductile rupture process, reinitiation K values were calculated. These values were appreciably higher than the experimental reinitiation K values for cracks in model vessels subject to thermal shock; it was therefore argued that the ligaments, which are present at arrest, are unlikely to fail entirely by ductile rupture prior to the reinitiation of fracture at an arrested crack tip. Instead it was suggested that the ligaments fail by cleavage, and consequently do not markedly affect the reinitiation K value, which therefore correlates with Ksub(IC). This paper's theoretical analysis extends the earlier work by relaxing a key assumption in the earlier work that, when calculating the reinitiation K value on the basis that the ligaments fail by ductile rupture, they should disappear completely prior to reinitiation. The new results, however, show that the predicted reinitiation K values are still so much greater than the model test reinitiation K values, that it is unlikely that the ligaments fail solely by ductile rupture prior to reinitiation. The view that the ligaments can fail by cleavage is therefore reinforced. (orig.)

  18. Critical experiments, measurements and analyses to establish a crack arrest methodology for nuclear pressure vessel steels. Sixth quarterly progress report, January--March 1976

    International Nuclear Information System (INIS)

    Hahn, G.T.; Gehlen, P.C.; Hoagland, R.G.; Kanninen, M.F.; Popelar, C.; Rosenfield, A.R.

    1976-07-01

    Governing equations for a complete two-dimensional analysis of fast fracture and crack arrest (including inertia and thermal gradients) are derived. Strain energy and compliance values calculated for an SEN specimen agree with experiment. In the case of a nonstationary crack, the strain energy release rate is computed from the nodal displacements in the immediate vicinity of the crack tip. This value of G is sensitive to the spacings between nodes in the x and y direction. Results of two-dimensional analyses of propagation and arrest in the SEN test piece are also described; they are in general accord with one propagation event measured in an SEN A533B steel test piece. Compliance measurements were carried out on the rectangular DCB specimen to test the accuracy of the compliance values calculated with the one-dimensional beam-on-elastic-foundation model. These compliance values and the derivatives of compliance with crack length are used to relate the loads or displacements at fracture onset and at arrest to K/sub Q/, K/sub D/, and K/sub a/. Efforts were also made to test the assumption that energy losses arising from damping remote from the crack tip can be neglected. Measurements of damped oscillations in an A533B DCB specimen with a stationary crack indicate that total damping rates are relatively low, and that oscillations of the load pins in the pinhole account for the bulk of the damping. Finally, a new procedure for measuring K/sub D/ and K/sub m/ values is described; it is based on a dynamic analysis of the crack length at arrest and dynamically stiff wedge loading (the tie-down device) and eliminates the need for crack velocity measurements. It can also be applied to both small and large crack jumps and to ordinary and duplex-DCB specimens. Results for A533B steel agree with K/sub D/-values obtained from velocity measurements. The new procedure is also used to analyze results for a series of ship steels

  19. Statistical distribution of time to crack initiation and initial crack size using service data

    Science.gov (United States)

    Heller, R. A.; Yang, J. N.

    1977-01-01

    Crack growth inspection data gathered during the service life of the C-130 Hercules airplane were used in conjunction with a crack propagation rule to estimate the distribution of crack initiation times and of initial crack sizes. A Bayesian statistical approach was used to calculate the fraction of undetected initiation times as a function of the inspection time and the reliability of the inspection procedure used.

  20. Prediction of crack propagation and arrest in X100 natural gas transmission pipelines with a strain rate dependent damage model (SRDD). Part 2: Large scale pipe models with gas depressurisation

    International Nuclear Information System (INIS)

    Oikonomidis, F.; Shterenlikht, A.; Truman, C.E.

    2014-01-01

    Part 1 of this paper described a specimen for the measurement of high strain rate flow and fracture properties of pipe material and for tuning a strain rate dependent damage model (SRDD). In part 2 the tuned SRDD model is used for the simulation of axial crack propagation and arrest in X100 natural gas pipelines. Linear pressure drop model was adopted behind the crack tip, and an exponential gas depressurisation model was used ahead of the crack tip. The model correctly predicted the crack initiation (burst) pressure, the crack speed and the crack arrest length. Strain rates between 1000 s −1 and 3000 s −1 immediately ahead of the crack tip are predicted, giving a strong indication that a strain rate material model is required for the structural integrity assessment of the natural gas pipelines. The models predict the stress triaxiality of about 0.65 for at least 1 m ahead of the crack tip, gradually dropping to 0.5 at distances of about 5–7 m ahead of the crack tip. Finally, the models predicted a linear drop in crack tip opening angle (CTOA) from about 11−12° at the onset of crack propagation down to 7−8° at crack arrest. Only the lower of these values agree with those reported in the literature for quasi-static measurements. This discrepancy might indicate substantial strain rate dependence in CTOA. - Highlights: • Finite element simulations of 3 burst tests of X100 pipes are detailed. • Strain rate dependent damage model, tuned on small scale X100 samples, was used. • The models correctly predict burst pressure, crack speed and crack arrest length. • The model predicts a crack length dependent critical CTOA. • The strain rate dependent damage model is verified as mesh independent

  1. Determination of crack arrest toughness in A508 CL.3 forging steel from ASTM E1221-88 procedure. Comparison with the values obtained from thermal loading tests

    International Nuclear Information System (INIS)

    Frund, J.M.; Difant, M.; Bethmont, M.

    1994-01-01

    A crack arrest study is under way at Electricite de France as part of the analysis of the risk of fast fracture of PWR vessels in emergency conditions. The first objective of this study is to evaluate the toughness which characterizes crack arrest through tests on reduced-size specimens. Some of the tests on a forging steel (A508 Cl.3) were conducted in conformity with two experimental methods. One method recommended by the ASTM calls for the use of an imposed-displacement mechanical loading on specimens kept under homogeneous temperature. Since the stress intensity factor K applied to the outside loading decreases along the crack growth, we can observe the arrest of the crack. In order to obtain brittle crack initiations in cleavage in the whole studied range of temperature and crack propagation of a sufficient length, the application of a weld point at the top of the notch is done. The other experimental method is based on a thermal loading. It requires the use of a disk or a cylinder with a longitudinal initial crack of the external surface. We dip this specimen in liquid nitrogen and we heat its internal surface with inducing current. There is a temperature gradient in the thickness of the specimen which produces a stress field which tends to open the crack. When the value of K is reached the crack initiation takes place. Several phenomena act to oppose the crack growth, they even go as far as stopping it. First the value of K, after increasing, gets steady then decreases, then, the rate of energy dissipated by plasticity at the top of the crack increases because the crack meets warmer and warmer areas on its way. The arrest toughness values which were obtained were then analyzed and compared to one another and with values proposed by RCC-m code. (authors). 12 refs., 11 figs., 3 tabs

  2. Experimental assessment of welded joints brittle fracture on the crack arrest criterion for WWER-1000 RPV

    International Nuclear Information System (INIS)

    Blumin, A.A.; Timofeev, B.T.

    2000-01-01

    The crack arrest fracture toughness in a vessel steel used in WWER-1000 reactor, namely in steel 15Kh2NMFA and its submerged arc welded joints, produced with Sv-08KhGNMTA, Sv-12 Kh2NMFA welding wires and NF-18 M, FZ-16 A welding fluxes, is under study. Experimental studies are carried out using three heats with the chemical composition meeting the specifications. Weld specimens 100-200 mm thick are subjected to tempering according various regimes to induce the embrittlement and simulate mechanical properties (yield strength and ductile-brittle transition temperature) corresponding to those at the end of service life under neutron radiation effect. Base metal and weld properties are compared. The wide scatter is noted for experimental data on fracture toughness temperature dependences. A possibility to use the dependence of K Ia = f (T-T k ) for determining the crack arrest fracture toughness is discussed taking in account that K Ia is a stress intensity factor calculated within the frame of static fracture mechanics [ru

  3. Investigation Analysis of Crack Growth Arresting with Fasteners in Hybrid Laminated Skin-Stiffener Joint

    Science.gov (United States)

    Jeevan Kumar, N.; Ramesh Babu, P.

    2018-02-01

    In recent years carbon fibre-reinforced polymers (CFRP) emerged its increasing demand in aerospace engineering. Due to their high specific strength to weight ratio, these composites offer more characteristics and considerable advantages compared to metals. Metals, unlike composites, offer plasticity effects to evade high stress concentrations during postbuckling. Under compressive load, composite structures show a wide range of damage mechanisms where a set of damage modes combined together might lead to the eventual structural collapse. Crack is one of the most critical damages in fiber composites, which are being employed in primary aircraft structures. A parametric study is conducted to investigate the arrest mechanism of the delamination or crack growth with installation of multiple fasteners when the delamination is embedded in between the skin and stiffener interface.

  4. The role of ductile ligaments and warm prestress on the re-initiation of fracture from a crack arrested during thermal shock

    International Nuclear Information System (INIS)

    Smith, E.

    1982-01-01

    The protection offered by warm prestress can be important for preserving a nuclear pressure vessel's integrity during a postulated emergency condition involving a loss of coolant, when the emergency core cooling water subjects the pressure vessel to a thermal shock. There are two aspects to the problem: (a) the initial extension of a defect into the vessel wall, and (b) the subsequent re-initiation of fracture at an arrested crack tip. This note considers the effect of warm prestress on the re-initiation of fracture from an arrested crack, and emphasizes the role of ductile ligaments. It is argued that the warm prestress concept is applicable, thus complementing the limited experimental results provided by the HSST Thermal Shock experimental programme. (orig.)

  5. Fatigue crack initiation and growth life prediction with statistical consideration

    International Nuclear Information System (INIS)

    Kwon, J.D.; Choi, S.H.; Kwak, S.G.; Chun, K.O.

    1991-01-01

    Life prediction or residual life prediction of structures or machines is one of the most strongly world wide needed problems as requirement in the stage of slowly developing economy which comes after rapidly and highly developing stage. For the purpose of statistical life prediction, fatigue test was conducted under the 3 stress levels, and for each stress level, 20 specimens are used. The statistical properties of the crack growth parameter m and C in the fatigue crack growth law of da/dN = C(ΔK) m , and the relationship between m and C, and the statistical distribution pattern of fatigue crack initiation, growth and fracture lives can be obtained by experimental results

  6. Critical experiments, measurements and analyses to establish a crack arrest methodology for nuclear pressure vessel steels. First annual progress report

    International Nuclear Information System (INIS)

    Hahn, G.T.; Gehlen, P.C.; Hoagland, R.G.; Kanninen, M.F.; Popelar, C.; Rosenfield, A.R.; deCampos, V.S.

    1975-08-01

    The one-dimensional, Timoshenko beam-on-a-generalized elastic foundation treatment has been extended to contoured-DCB specimens and to the conditions attending tensile loading in an ordinary testing machine. Preliminary calculations show that the crack propagation and arrest events in contoured DCB specimens are very similar to those calculated for regular DCB-specimens for comparable initiation conditions. In both cases the calculated K/sub Ia/-values are between 44 and 100 percent of K/sub ID,min/ and show a systematic variation with the initiation K/sub Q/-level. In contrast with stiff wedge loading, which favors a continuous event, the calculations for rectangular and contoured DCB specimens in series with an idealized testing machine load train display one or more halts and restarts before the final arrest. A series of experiments designed to distinguish between the K/sub D/ and K/sub a/ approaches to predicting crack arrest are described. Studies of the effect of side grooves in rectangular DCB specimens confirm that grooves with depths representing up to 60 percent of the cross section have no significant effect on either K/sub ID/ or K/sub Ia/ measurements. (auth)

  7. Study on Semi-Parametric Statistical Model of Safety Monitoring of Cracks in Concrete Dams

    Directory of Open Access Journals (Sweden)

    Chongshi Gu

    2013-01-01

    Full Text Available Cracks are one of the hidden dangers in concrete dams. The study on safety monitoring models of concrete dam cracks has always been difficult. Using the parametric statistical model of safety monitoring of cracks in concrete dams, with the help of the semi-parametric statistical theory, and considering the abnormal behaviors of these cracks, the semi-parametric statistical model of safety monitoring of concrete dam cracks is established to overcome the limitation of the parametric model in expressing the objective model. Previous projects show that the semi-parametric statistical model has a stronger fitting effect and has a better explanation for cracks in concrete dams than the parametric statistical model. However, when used for forecast, the forecast capability of the semi-parametric statistical model is equivalent to that of the parametric statistical model. The modeling of the semi-parametric statistical model is simple, has a reasonable principle, and has a strong practicality, with a good application prospect in the actual project.

  8. Statistical analysis of fatigue crack growth behavior for grade B cast steel

    International Nuclear Information System (INIS)

    Li, W.; Sakai, T.; Li, Q.; Wang, P.

    2011-01-01

    Tests for fatigue crack growth rate (FCGR) and crack-tip opening displacement (CTOD) were performed to clarify the fatigue crack growth behavior of a railway grade B cast steel. The threshold values of this steel with specific survival probabilities are evaluated, in which the mean value is 8.3516 MPa m 1/2 , very similar to the experimental value, about 8.7279 MPa m 1/2 . Under the conditions of plane strain and small-scale yielding, the values of fracture toughness for this steel with specific survival probabilities are converted from the corresponding critical CTOD values, in which the mean value is about 138.4256 MPa m 1/2 . In consideration of the inherent variability of crack growth rates, six statistical models are proposed to represent the probabilistic FCGR curves of this steel in entire crack propagation region from the viewpoints of statistical evaluation on the number of cycles at a given crack size and the crack growth rate at a given stress intensity factor range, stochastic characteristic of crack growth as well as statistical analysis of coefficient and exponent in FCGR power law equation. Based on the model adequacy checking, result shows that all models are basically in good agreement with test data. Although the probabilistic damage-tolerant design based on some models may involve a certain amount of risk in stable crack propagation region, they just accord with the fact that the dispersion degree of test data in this region is relatively smaller.

  9. Fracture statistics of brittle materials with intergranular cracks

    International Nuclear Information System (INIS)

    Batdorf, S.B.

    1975-01-01

    When brittle materials are used for structural purposes, the initial design must take their relatively large dispersion in fracture stress properly into account. This is difficult when failure probabilities must be extremely low, because empirically based statistical theories of fracture, such as that of Weibull, cannot reliably predict the stresses corresponding to failure probabilities much lower than n -1 , where n is the number of specimens tested. Recently McClintock proposed a rational method of predicting the size distribution of intergranular cracks. The method assumed that large cracks are random aggregations of cracked grain boundaries. The present paper employs this method to find the size distribution of penny-shaped cracks, and also P(f), the probability of failure of a specimen of volume V subjected to a tensile stress sigma. The present paper is a pioneering effort, which should be applicable to ceramics and related materials

  10. An analysis for crack layer stability

    Science.gov (United States)

    Sehanobish, K.; Botsis, J.; Moet, A.; Chudnovsky, A.

    1986-01-01

    The problem of uncontrolled crack propagation and crack arrest is considered with respect to crack layer (CL) translational stability. CL propagation is determined by the difference between the energy release rate and the amount of energy required for material transformation, and necessary and sufficient conditions for CL instability are derived. CL propagation in polystyrene is studied for two cases. For the case of remotely applied fixed load fatigue, the sufficient condition of instability is shown to be met before the necessary condition, and the necessary condition controls the stability. For the fixed displacement case, neither of the instability conditions are met, and CL propagation remains stable, resulting in crack arrest.

  11. Statistical analysis of failure time in stress corrosion cracking of fuel tube in light water reactor

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi

    1991-01-01

    This report is to show how the life due to stress corrosion cracking breakdown of fuel cladding tubes is evaluated by applying the statistical techniques to that examined by a few testing methods. The statistical distribution of the limiting values of constant load stress corrosion cracking life, the statistical analysis by making the probabilistic interpretation of constant load stress corrosion cracking life, and the statistical analysis of stress corrosion cracking life by the slow strain rate test (SSRT) method are described. (K.I.)

  12. An appraisal of crack arrest results and their relevance to the onset of upper shelf temperature issue

    International Nuclear Information System (INIS)

    Smith, E.

    1996-01-01

    The paper appraises experimental results which support the view that a crack can propagate by cleavage mechanism in a ferritic steel as used in a nuclear reactor pressure vessel, at temperatures that are markedly in excess of the onset of upper shelf temperature as estimated using an initiation based criterion. At temperatures in the vicinity of the onset shelf as estimated by such a criterion, cleavage crack propagation can occur at K values that are markedly less than the static fracture toughness values appropriate to the same temperature regime. It is demonstrated how these conclusions are reflected in the ASME Code Section III Appendix G procedure for defining the pressure-temperature limits associated with the normal operation of a PWR reactor pressure vessel in the USA. This procedure defines the onset of upper shelf temperature in relation to the crack arrest toughness curve and not the initiation toughness curve, the difference between the onset of upper shelf temperatures using the two definitions being about 80 o F. (author)

  13. Non-equilibrium statistical theory about microscopic fatigue cracks of metal in magnetic field

    International Nuclear Information System (INIS)

    Zhao-Long, Liu; Hai-Yun, Hu; Tian-You, Fan; Xiu-San, Xing

    2010-01-01

    This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of micro-crack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field. (cross-disciplinary physics and related areas of science and technology)

  14. Statistical damage analysis of transverse cracking in high temperature composite laminates

    International Nuclear Information System (INIS)

    Sun Zuo; Daniel, I.M.; Luo, J.J.

    2003-01-01

    High temperature polymer composites are receiving special attention because of their potential applications to high speed transport airframe structures and aircraft engine components exposed to elevated temperatures. In this study, a statistical analysis was used to study the progressive transverse cracking in a typical high temperature composite. The mechanical properties of this unidirectional laminate were first characterized both at room and high temperatures. Damage mechanisms of transverse cracking in cross-ply laminates were studied by X-ray radiography at room temperature and in-test photography technique at high temperature. Since the tensile strength of unidirectional laminate along transverse direction was found to follow Weibull distribution, Monte Carlo simulation technique based on experimentally obtained parameters was applied to predict transverse cracking at different temperatures. Experiments and simulation showed that they agree well both at room temperature and 149 deg. C (stress free temperature) in terms of applied stress versus crack density. The probability density function (PDF) of transverse crack spacing considering statistical strength distribution was also developed, and good agreements with simulation and experimental results are reached. Finally, a generalized master curve that predicts the normalized applied stress versus normalized crack density for various lay-ups and various temperatures was established

  15. Multiple-shock initiation via statistical crack mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dienes, J.K.; Kershner, J.D.

    1998-12-31

    Statistical Crack Mechanics (SCRAM) is a theoretical approach to the behavior of brittle materials that accounts for the behavior of an ensemble of microcracks, including their opening, shear, growth, and coalescence. Mechanical parameters are based on measured strain-softening behavior. In applications to explosive and propellant sensitivity it is assumed that closed cracks act as hot spots, and that the heating due to interfacial friction initiates reactions which are modeled as one-dimensional heat flow with an Arrhenius source term, and computed in a subscale grid. Post-ignition behavior of hot spots is treated with the burn model of Ward, Son and Brewster. Numerical calculations using SCRAM-HYDROX are compared with the multiple-shock experiments of Mulford et al. in which the particle velocity in PBX 9501 is measured with embedded wires, and reactions are initiated and quenched.

  16. Impact initiation of explosives and propellants via statistical crack mechanics

    Science.gov (United States)

    Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.

    2006-06-01

    A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using

  17. Crack Tip Parameters for Growing Cracks in Linear Viscoelastic Materials

    DEFF Research Database (Denmark)

    Brincker, Rune

    In this paper the problem of describing the asymptotic fields around a slowly growing crack in a linearly viscoelastic material is considered. It is shown that for plane mixed mode problems the asymptotic fields must be described by 6 parameters: 2 stress intensity factors and 4 deformation...... intensity factors. In the special case of a constant Poisson ratio only 2 deformation intensity factors are needed. Closed form solutions are given both for a slowly growing crack and for a crack that is suddenly arrested at a point at the crack extension path. Two examples are studied; a stress boundary...... value problem, and a displacement boundary value problem. The results show that the stress intensity factors and the displacement intensity factors do not depend explicitly upon the velocity of the crack tip....

  18. Statistical model of stress corrosion cracking based on extended ...

    Indian Academy of Sciences (India)

    2016-09-07

    Sep 7, 2016 ... Abstract. In the previous paper (Pramana – J. Phys. 81(6), 1009 (2013)), the mechanism of stress corrosion cracking (SCC) based on non-quadratic form of Dirichlet energy was proposed and its statistical features were discussed. Following those results, we discuss here how SCC propagates on pipe wall ...

  19. Initiation and arrest - two approaches to pressure vessel safety

    International Nuclear Information System (INIS)

    Brumovsky, M.; Filip, R.; Stepanek, S.

    1976-01-01

    The safety analysis is described of the reactor pressure vessel related to brittle fracture based on the fracture mechanics theory using two different approximations, i.e., the Crack Arrest Temperature (CAT) or Nil Ductility Temperature (NDT), and fracture toughness. The variation of CAT with stress was determined for different steel specimens of 120 to 200 mm in thickness. A diagram is shown of CAT variation with stress allowing the determination of crack arrest temperature for all types of commonly used steels independently of the NDT initial value. The diagram also shows that the difference between fracture transition elastic (FTE) and NDT depends on the type of material and determines the value of the ΔTsub(sigma) factor typical of the safety coefficient. The so-called fracture toughness reference value Ksub(IR) is recommended for the computation of pressure vessel criticality. Also shown is a defect analysis diagram which may be used for the calculation of pressure vessel safety prior to and during operation and which may also be used in making the decision on what crack sizes are critical, what cracks may be arrested and what cracks are likely to expand. The diagram is also important for the fact that it is material-independent and may be employed for the estimates of pre-operational and operational inspections and for pressure vessel life prediction. It is generally applicable to materials of greater thickness in the region where the validity of linear elastic fracture mechanics is guaranteed. (J.P.)

  20. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Oskarsson, Magnus; Bergqvist, Hans

    2003-04-01

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  1. Catalytic Cracking of Palm Oil Over Zeolite Catalysts: Statistical Approach

    Directory of Open Access Journals (Sweden)

    F. A. A. Twaiq and S. Bhatia

    2012-08-01

    Full Text Available The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.

  2. STAC -- a new Swedish code for statistical analysis of cracks in SG-tubes

    International Nuclear Information System (INIS)

    Poern, K.

    1997-01-01

    Steam generator (SG) tubes in pressurized water reactor plants are exposed to various types of degradation processes, among which stress corrosion cracking in particular has been observed. To be able to evaluate the safety importance of such cracking of SG-tubes one has to have a good and empirically founded knowledge about the scope and the size of the cracks as well as the rate of their continuous growth. The basis of experience is to a large extent constituted of the annually performed SG-inspections and crack sizing procedures. On the basis of this experience one can estimate the distribution of existing crack lengths, and modify this distribution with regard to maintenance (plugging) and the predicted rate of crack propagation. Finally, one can calculate the rupture probability of SG-tubes as a function of a given critical crack length. On account of the Swedish Nuclear Power Inspectorate an introductory study has been performed in order to get a survey of what has been done elsewhere in this field. The study resulted in a proposal of a computerizable model to be able to estimate the distribution of true cracks, to modify this distribution due to the crack growth and to compute the probability of tube rupture. The model has now been implemented in a compute code, called STAC (STatistical Analysis of Cracks). This paper is aimed to give a brief outline of the model to facilitate the understanding of the possibilities and limitations associated with the model

  3. A probabilistic approach to crack instability

    Science.gov (United States)

    Chudnovsky, A.; Kunin, B.

    1989-01-01

    A probabilistic model of brittle fracture is examined with reference to two-dimensional problems. The model is illustrated by using experimental data obtained for 25 macroscopically identical specimens made of short-fiber-reinforced composites. It is shown that the model proposed here provides a predictive formalism for the probability distributions of critical crack depth, critical loads, and crack arrest depths. It also provides similarity criteria for small-scale testing.

  4. The Dugdale solution for two unequal straight cracks weakening

    Indian Academy of Sciences (India)

    A crack arrest model is proposed for an infinite elastic perfectly-plastic plate weakened by two unequal, quasi-static, collinear straight cracks. The Dugdale model solution is obtained for the above problem when the developed plastic zones are subjected to normal cohesive quadratically varying yield point stress. Employing ...

  5. Development of a viscoplastic dynamic fracture mechanics treatment for crack arrest predictions in a PTS event

    International Nuclear Information System (INIS)

    Kanninen, M.F.; Hudak, S.J. Jr.; Reed, K.W.; Dexter, R.J.; Polch, E.Z.; Cardinal, J.W.; Achenbach, J.D.; Popelar, C.H.

    1986-01-01

    The objective of this research is to develop a fundamentally correct methodology for the prediction of crack arrest at the high upper shelf conditions occurring in a postulated pressurized thermal shock (PTS) event. The effort is aimed at the development of a versatile finite-element method for the solution of time-dependent boundary value problems that admit inertia effects, a prescribed spatial temperature distribution, and viscoplastic constitutive and fracture behavior. Supporting this development are (1) material characterization and fracture experimentation, (2) detailed mathematical analyses of the near-tip region, (3) elastodynamic fracture analysis, and (4) elastic-plastic tearing instability analyses. As a first step, dynamic-viscoplastic analyses are currently being made of the wide plate tests being performed by the National Bureau of Standards in a companion HSST program. Some preliminary conclusions drawn from this work and from the supporting research activities are offered in this paper. The outstanding critical issues that subsequent research must focus on are also described

  6. Effects of irradiation on initiation and crack-arrest toughness of two high-copper welds and on stainless steel cladding

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Iskander, S.K.; Haggag, F.M.

    1990-01-01

    The objective of the study on the high-copper welds is to determine the effect of neutron irradiation on the shift and shape of the ASME K Ic and K Ia toughness curves. Two submerged-arc welds with copper contents of 0.23 and 0.31 wt % were commercially fabricated in 220-mm-thick plate. Compact specimens fabricated from these welds were irradiated at a nominal temperature of 288 degree C to fluences from 1.5 to 1.9 x 10 19 neutrons/cm 2 (>1 MeV). The fracture toughness test results show that the irradiation-induced shifts at 100 MPa/m were greater than the Charpy 41-J shifts by about 11 and 18 degree C. Mean curve fits indicate mixed results regarding curve shape changes, but curves constructed as lower boundaries to the data do indicate curves of lower slopes. A preliminary evaluation of the crack-arrest results shows that the neutron-irradiation induced crack-arrest toughness temperature shift is about the same as the Charpy V-notch impact temperature shift at the 41-J energy level. The shape of the lower bound curves (for the range of test temperatures covered), compared to those of the ASME K Ia curve did not appear to have been altered by the irradiation. Three-wire stainless steel weld overlay cladding was irradiated at 288 degree C to fluences of 2 and 5 x 10 19 neutrons/cm 2 (>1 MeV). Charpy 41-J temperature shifts of 13 and 28 degree C were observed, respectively. For the lower fluence only, 12.7-mm thick compact specimens showed decreases in both J Ic and the tearing modulus. Comparison of the fracture toughness results with typical plate and a low upper-shelf weld reveals that the irradiated stainless steel cladding possesses low ductile initiation fracture toughness comparable to the low upper-shelf weld. 8 refs., 12 figs., 2 tabs

  7. Statistical aspects of fatigue crack growth life of base metal, weld metal and heat affected zone in FSWed 7075-T651aluminum alloy

    International Nuclear Information System (INIS)

    Sohn, Hye Jeong; Haryadi, Gunawan Dwi; Kim, Seon Jin

    2014-01-01

    The statistical aspects of fatigue crack growth life of base metal (BM), weld metal (WM) and heat affected zone (HAZ) in friction stir welded (FSWed) 7075-T651 aluminum alloy has been studied by Weibull statistical analysis. The fatigue crack growth tests were performed at room temperature on ASTM standard CT specimens under three different constant stress intensity factor range controls. The main objective of this paper is to investigate the effects of statistical aspects of fatigue crack growth life on stress intensity factor ranges and material properties, namely BM, WM and HAZ specimens. In this work, the Weibull distribution was employed to estimate the statistical aspects of fatigue crack growth life. The shape parameter of Weibull distribution for fatigue crack growth life was significantly affected by material properties and the stress intensity factor range. The scale parameter of WM specimen exhibited the lowest value at all stress intensity factor ranges.

  8. Crack propagation of brittle rock under high geostress

    Science.gov (United States)

    Liu, Ning; Chu, Weijiang; Chen, Pingzhi

    2018-03-01

    Based on fracture mechanics and numerical methods, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering under high geostress.

  9. Principal Components of Superhigh-Dimensional Statistical Features and Support Vector Machine for Improving Identification Accuracies of Different Gear Crack Levels under Different Working Conditions

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-01-01

    Full Text Available Gears are widely used in gearbox to transmit power from one shaft to another. Gear crack is one of the most frequent gear fault modes found in industry. Identification of different gear crack levels is beneficial in preventing any unexpected machine breakdown and reducing economic loss because gear crack leads to gear tooth breakage. In this paper, an intelligent fault diagnosis method for identification of different gear crack levels under different working conditions is proposed. First, superhigh-dimensional statistical features are extracted from continuous wavelet transform at different scales. The number of the statistical features extracted by using the proposed method is 920 so that the extracted statistical features are superhigh dimensional. To reduce the dimensionality of the extracted statistical features and generate new significant low-dimensional statistical features, a simple and effective method called principal component analysis is used. To further improve identification accuracies of different gear crack levels under different working conditions, support vector machine is employed. Three experiments are investigated to show the superiority of the proposed method. Comparisons with other existing gear crack level identification methods are conducted. The results show that the proposed method has the highest identification accuracies among all existing methods.

  10. Adaptive numerical modeling of dynamic crack propagation

    International Nuclear Information System (INIS)

    Adouani, H.; Tie, B.; Berdin, C.; Aubry, D.

    2006-01-01

    We propose an adaptive numerical strategy that aims at developing reliable and efficient numerical tools to model dynamic crack propagation and crack arrest. We use the cohesive zone theory as behavior of interface-type elements to model crack. Since the crack path is generally unknown beforehand, adaptive meshing is proposed to model the dynamic crack propagation. The dynamic study requires the development of specific solvers for time integration. As both geometry and finite element mesh of the studied structure evolve in time during transient analysis, the stability behavior of dynamic solver becomes a major concern. For this purpose, we use the space-time discontinuous Galerkin finite element method, well-known to provide a natural framework to manage meshes that evolve in time. As an important result, we prove that the space-time discontinuous Galerkin solver is unconditionally stable, when the dynamic crack propagation is modeled by the cohesive zone theory, which is highly non-linear. (authors)

  11. Transient subcritical crack-growth behavior in transformation-toughened ceramics

    International Nuclear Information System (INIS)

    Dauskardt, R.H.; Ritchie, R.O.; Carter, W.C.; Veirs, D.K.

    1990-01-01

    Transient subcritical crack-growth behavior following abrupt changes in the applied load are studied in transformation-toughened ceramics. A mechanics analysis is developed to model the transient nature of transformation shielding of the crack tip, K s , with subcritical crack extension following the applied load change. conditions for continued crack growth, crack growth followed by arrest, and no crack growth after the load change, are considered and related to the magnitude and sign of the applied load change and to materials properties such as the critical transformation stress. The analysis is found to provide similar trends in K s compared to values calculated from experimentally measured transformation zones in a transformation-toughened Mg-PSZ. In addition, accurate prediction of the post load-change transient crack-growth behavior is obtained using experimentally derived steady-state subcritical crack-growth relationships for cyclic fatigue in the same material

  12. Elastodynamic fracture analyses of large crack-arrest experiments

    International Nuclear Information System (INIS)

    Bass, B.R.; Pugh, C.E.; Walker, J.K.

    1985-01-01

    Results obtained to date show that the essence of the run-arrest events, including dynamic behavior, is being modeled. Refined meshes and optimum solution algorithms are important parameters in elastodynamic analysis programs to give sufficient resolution to the geometric and time-dependent aspects of fracture analyses. Further refinements in quantitative representation of material parameters and the inclusion of rate dependence through viscoplastic modeling is expected to give an even more accurate basis for assessing the fracture behavior of reactor pressure vessels under PTS and other off-normal loading conditions

  13. Fatigue crack growth threshold as a design criterion - statistical scatter and load ratio in the Kitagawa-Takahashi diagram

    International Nuclear Information System (INIS)

    Kolitsch, S.; Gänser, H.-P.; Maierhofer, J.; Pippan, R.

    2016-01-01

    Cracks in components reduce the endurable stress so that the endurance limit obtained from common smooth fatigue specimens cannot be used anymore as a design criterion. In such cases, the Kitagawa-Takahashi diagram can be used to predict the admissible stress range for infinite life, at a given crack length and stress range. This diagram is constructed for a single load ratio R. However, in typical mechanical engineering applications, the load ratio R varies widely due to the applied load spectra and residual stresses. In the present work an extended Kitagawa-Takahashi diagram accounting for crack length, crack extension and load ratio is constructed. To describe the threshold behaviour of short cracks, a master resistance curve valid for a wide range of steels is developed using a statistical approach. (paper)

  14. Study of toughening mechanisms through the observations of crack propagation in nanostructured and layered metallic sheet

    International Nuclear Information System (INIS)

    Chen, A.Y.; Li, D.F.; Zhang, J.B.; Liu, F.; Liu, X.R.; Lu, J.

    2011-01-01

    Highlights: → A nanostructured and layered steel exhibits high strength and large ductility. → The excellent combination originates from a multiple interlaminar cracking. → The initiation and propagation of cracks are controlled by three aspects. → The cracks are deflected by interface and arrested by compressive residual stress. → Finally, the cracks are blunted by the graded grain size distribution. - Abstract: A layered and nanostructured (LN) 304 SS sheet was produced by combination of surface mechanical attrition treatment (SMAT) with warm co-rolling. The microstructure of LN sheet is characterized by a periodic distribution of nanocrystalline layers and micron-grained layers with a graded transition of grain size. Tensile test results show that exceptional properties of high yield strength and large elongation to fracture are achieved. A multiple interlaminar cracking was observed by scanning electron microscopy, which is induced by repeated crack initiation and propagation. The toughening mechanisms of the LN sheet are proposed to be controlling the crack propagation path by several strategies. The main cracks initiating at interface defects are arrested by large compressive residual stress, deflected by weak interface bonding and blunted by the graded grain size distribution.

  15. Experimental investigation of flawed pipes with respect to fracture behavior and development of crack opening area

    Energy Technology Data Exchange (ETDEWEB)

    Stoppler, W [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1993-12-31

    The critical length of a longitudinal through-wall flaw, defined as that causing rupture, was first determined hydro-statically on large experimental vessels under internal pressure; the leak before rupture diagram for the base material of the vessel is established by experiment and calculation; it gives a limit between the two modes of failure, leakage or rupture (catastrophic failure), depending on slit length and loading conditions. Tests under pneumatic pressure were then carried out to investigate crack arrest, with notched discs made of a brittle material welded in the cylindrical part of the vessel, and cracks triggered by means of a small charged ignited over the notch. In the case of discs of a diameter smaller than the critical slit length, crack arrest occurred when the crack entered the tough material, while a disc corresponding to the critical crack length of the vessel led to rupture. 5 refs., 16 figs., 2 tabs.

  16. Brutal crack propagation in dynamic fracture: industrial application to the length of the crack arrest

    International Nuclear Information System (INIS)

    Dumouchel, P.E.

    2008-03-01

    This research thesis aims at understanding and analysing some mechanisms involved in the dynamic failure under various loadings which are notably present in industrial environment, and more particularly in some parts of EDF's plants where networks of micro-cracks may steadily grow: heterogeneous zones, defects under coating. The author presents a simplified model based on the de-bonding of a film to understand the mechanisms of a sudden failure under a quasi-static loading. He develops a similar model to explore the influence of a defect on crack propagation under a quasi-static loading, and then under a sudden loading. This model is then generalized to the case of several defects, and more particularly very small defects. Finally, the author gives a numerical interpretation of a sudden propagation under quasi-static loading

  17. Influence of MSD crack pattern on the residual strength of flat stiffened sheets

    Science.gov (United States)

    Nilsson, K.-F.

    A parameter study of the residual strength for a multiple site damaged (MSD) stiffened sheet is presented. The analysis is based on an elastic-plastic fracture analysis using the yield-strip model for interaction between a lead crack and the smaller MSD cracks. Two crack growth criteria, one with a pronounced crack growth resistance and one with no crack growth resistance and five different MSD crack patterns, are analysed for different sizes of the lead crack and the smaller MSD cracks. The analysis indicates that the residual strength reduction depends on all these parameters and that MSD may totally erode the crack arrest capability of a tear strap. Another important outcome is that for certain combinations also very small MSD cracks may induce a significant residual strength reduction.

  18. Use of the Master Curve methodology for real three dimensional cracks

    International Nuclear Information System (INIS)

    Wallin, Kim

    2007-01-01

    At VTT, development work has been in progress for 15 years to develop and validate testing and analysis methods applicable for fracture resistance determination from small material samples. The VTT approach is a holistic approach by which to determine static, dynamic and crack arrest fracture toughness properties either directly or by correlations from small material samples. The development work has evolved a testing standard for fracture toughness testing in the transition region. The standard, known as the Master Curve standard is in a way 'first of a kind', since it includes guidelines on how to properly treat the test data for use in structural integrity assessment. No standard, so far, has done this. The standard is based on the VTT approach, but presently, the VTT approach goes beyond the standard. Key components in the standard are statistical expressions for describing the data scatter, and for predicting a specimens size (crack front length) effect and an expression (Master Curve) for the fracture toughness temperature dependence. The standard and the approach, it is based upon, can be considered to represent the state of the art of small specimen fracture toughness characterization. Normally, the Master Curve parameters are determined using test specimens with 'straight' crack fronts and comparatively uniform stress state along the crack front. This enables the use of a single K I value and single constraint value to describe the whole specimen. For a real crack in a structure, this is usually not the case. Normally, both K I and constraint vary along the crack front and in the case of a thermal shock, even the temperature will vary along the crack front. A proper means of applying the Master Curve methodology for such cases is presented here

  19. Use of the master curve methodology for real three dimensional cracks

    International Nuclear Information System (INIS)

    Wallin, K.; Rintamaa, R.

    2005-01-01

    At VTT, development work has been in progress for 15 years to develop and validate testing and analysis methods applicable for fracture resistance determination from small material samples. The VTT approach is a holistic approach by which to determine static, dynamic and crack arrest fracture toughness properties either directly or by correlations from small material samples. The development work has evolved a testing standard for fracture toughness testing in the transition region. The standard, known as the Master Curve standard is in a way 'first of a kind', since it includes guidelines on how to properly treat the test data for use in structural integrity assessment. No standard, so far, has done this. The standard is based on the VTT approach, but presently, the VTT approach goes beyond the standard. Key components in the standard are statistical expressions for describing the data scatter, and for predicting a specimen's size (crack front length) effect and an expression (Master Curve) for the fracture toughness temperature dependence. The standard and the approach it is based upon can be considered to represent the state of the art of small specimen fracture toughness characterization. Normally, the Master Curve parameters are determined using test specimens with 'straight' crack fronts and comparatively uniform stress state along the crack front. This enables the use of a single KI value and single constraint value to describe the whole specimen. For a real crack in a structure, this is usually not the case. Normally, both KI and constraint varies along the crack front and in the case of a thermal shock, even the temperature will vary along the crack front. A proper means of applying the Master Curve methodology for such cases is presented here. (authors)

  20. Crack retardation by load reduction during fatigue crack propagation

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Ahn, Seok Hwan; Do, Jae Yoon

    2003-01-01

    Fracture life and crack retardation behavior were examined experimentally using CT specimens of aluminum alloy 5083. Crack retardation life and fracture life were a wide difference between 0.8 and 0.6 in proportion to ratio of load reduction. The wheeler model retardation parameter was used successfully to predict crack growth behavior. By using a crack propagation rule, prediction of fracture life can be evaluated quantitatively. A statistical approach based on Weibull distribution was applied to the test data to evaluate the dispersion in the retardation life and fracture life by the change of load reduction

  1. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.

    1997-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.

  2. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  3. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles. 55 refs., 6 figs

  4. Probabilistic modeling of crack networks in thermal fatigue

    International Nuclear Information System (INIS)

    Malesys, N.

    2007-11-01

    Thermal superficial crack networks have been detected in mixing zone of cooling system in nuclear power plants. Numerous experimental works have already been led to characterize initiation and propagation of these cracks. The random aspect of initiation led to propose a probabilistic model for the formation and propagation of crack networks in thermal fatigue. In a first part, uniaxial mechanical test were performed on smooth and slightly notched specimens in order to characterize the initiation of multiple cracks, their arrest due to obscuration and the coalescence phenomenon by recovery of amplification stress zones. In a second time, the probabilistic model was established under two assumptions: the continuous cracks initiation on surface, described by a Poisson point process law with threshold, and the shielding phenomenon which prohibits the initiation or the propagation of a crack if this one is in the relaxation stress zone of another existing crack. The crack propagation is assumed to follow a Paris' law based on the computation of stress intensity factors at the top and the bottom of crack. The evolution of multiaxial cracks on the surface can be followed thanks to three quantities: the shielding probability, comparable to a damage variable of the structure, the initiated crack density, representing the total number of cracks per unit surface which can be compared to experimental observations, and the propagating crack density, representing the number per unit surface of active cracks in the network. The crack sizes distribution is also computed by the model allowing an easier comparison with experimental results. (author)

  5. Statistical analysis of fatigue crack propagation data of materials from ancient portuguese metallic bridges

    Directory of Open Access Journals (Sweden)

    J A F O. Correia

    2017-10-01

    Full Text Available In Portugal there is a number of old metallic riveted railway and highway bridges that were erected by the end of the 19th century and beginning of the 20th century, and are still in operation, requiring inspections and remediation measures to overcome fatigue damage. Residual fatigue life predictions should be based on actual fatigue data from bridge materials which is scarce due to the material specificities. Fatigue crack propagation data of materials from representative Portuguese riveted bridges, namely the Pinh�o and Luiz I road bridges, the Viana road/railway bridge, the F�o road bridge and the Trez�i railway bridge were considered in this study. The fatigue crack growth rates were correlated using the Pariss law. Also, a statistical analysis of the pure mode I fatigue crack growth (FCG data available for the materials from the ancient riveted metallic bridges is presented. Based on this analysis, design FCG curves are proposed and compared with BS7910 standard proposal, for the Paris region, which is one important fatigue regime concerning the application of the Fracture Mechanics approaches, to predict the remnant fatigue life of structural details

  6. Detailed statistical analysis plan for the target temperature management after out-of-hospital cardiac arrest trial

    DEFF Research Database (Denmark)

    Nielsen, Niklas; Winkel, Per; Cronberg, Tobias

    2013-01-01

    Animal experimental studies and previous randomized trials suggest an improvement in mortality and neurological function with temperature regulation to hypothermia after cardiac arrest. According to a systematic review, previous trials were small, had a risk of bias, evaluated select populations......, and did not treat hyperthermia in the control groups. The optimal target temperature management (TTM) strategy is not known. To prevent outcome reporting bias, selective reporting and data-driven results, we present the a priori defined detailed statistical analysis plan as an update to the previously...

  7. Crystallographic fatigue crack growth in a polycrystal: simulations based on FEM and discrete dislocation dynamics

    International Nuclear Information System (INIS)

    Bertolino, G.; Sauzay, M.; Bertolino, G.; Doquet, V.

    2003-01-01

    An attempt to model the variability of short cracks development in high-cycle fatigue is made by coupling finite element calculations of the stresses ahead of a microcrack in a polycrystal with simulations of crack growth along slip planes based on discrete dislocations dynamics. The model predicts a large scatter in growth rates related to the roughness of the crack path. It also describes the influence of the mean grain size and the fact that overloads may suppress the endurance limit by allowing arrested cracks to cross the grain boundaries. (authors)

  8. Probability of brittle failure

    Science.gov (United States)

    Kim, A.; Bosnyak, C. P.; Chudnovsky, A.

    1991-01-01

    A methodology was developed for collecting statistically representative data for crack initiation and arrest from small number of test specimens. An epoxy (based on bisphenol A diglycidyl ether and polyglycol extended diglycyl ether and cured with diethylene triamine) is selected as a model material. A compact tension specimen with displacement controlled loading is used to observe multiple crack initiation and arrests. The energy release rate at crack initiation is significantly higher than that at a crack arrest, as has been observed elsewhere. The difference between these energy release rates is found to depend on specimen size (scale effect), and is quantitatively related to the fracture surface morphology. The scale effect, similar to that in statistical strength theory, is usually attributed to the statistics of defects which control the fracture process. Triangular shaped ripples (deltoids) are formed on the fracture surface during the slow subcritical crack growth, prior to the smooth mirror-like surface characteristic of fast cracks. The deltoids are complementary on the two crack faces which excludes any inelastic deformation from consideration. Presence of defects is also suggested by the observed scale effect. However, there are no defects at the deltoid apexes detectable down to the 0.1 micron level.

  9. Thermal shock experiment analysis, the use of crack arrest toughness measurements

    International Nuclear Information System (INIS)

    Miannay, D.; Pellissier-Tanon, A.; Chavaillard, J.P.

    1984-06-01

    The main purpose of thermal shock experiment is to assess the procedure codified in the ASME XI appendix 1 or RCC-M-B appendix ZG, and allow comparisons with numerical simulations. The analysis of the integrity of the PWR vessel belt line under accidental transients is based on reference curves. The test-piece is a cylinder of SA 508 cl.3 steel. Arrest toughness measured agrees with reference curve

  10. The epidemiology of physical attack and rape among crack-using women.

    Science.gov (United States)

    Falck, R S; Wang, J; Carlson, R G; Siegal, H A

    2001-02-01

    This prospective study examines the epidemiology of physical attack and rape among a sample of 171 not-in-treatment, crack-cocaine using women. Since initiating crack use, 62% of the women reported suffering a physical attack. The annual rate of victimization by physical attack was 45%. Overall, more than half of the victims sought medical care subsequent to an attack. The prevalence of rape since crack use was initiated was 32%, and the annual rate was 11%. Among those women having been raped since they initiated crack use, 83% reported they were high on crack when the crime occurred as were an estimated 57% of the perpetrators. Logistic regression analyses showed that duration of crack use, arrest for prostitution, and some college education were predictors of having experienced a physical attack. Duration of crack use and a history of prostitution were predictors of suffering a rape. Drug abuse treatment programs must be sensitive to high levels of violence victimization experienced by crack-cocaine using women. Screening women for victimization, and treating the problems that emanate from it, may help make drug abuse treatment more effective.

  11. Growth of 2D and 3D plane cracks under thermo-mechanical loading with varying amplitudes

    International Nuclear Information System (INIS)

    Sbitti, Amine

    2009-01-01

    After a presentation of the phenomenon of thermal fatigue (in industrial applications and nuclear plants), this research thesis reports the investigation of the growth and arrest of a 2D crack under thermal fatigue (temperature and stress distribution over thickness, calculation of stress intensity factors, laws of fatigue crack growth, growth under varying amplitude), and the investigation of 3D crack growth under cyclic loading with varying amplitudes (analytic and numerical calculation of stress intensity factors, variational formulation in failure mechanics, 3D crack propagation under fatigue, use of the Aster code, use of the extended finite element method or X-FEM). The author discusses the origin and influence of the 3D crack network under thermal fatigue

  12. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  13. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    Directory of Open Access Journals (Sweden)

    Suvi Papula

    2017-06-01

    Full Text Available Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility.

  14. A study on fatigue crack growth behavior subjected to a single tensile overload: Part II. Transfer of stress concentration and its role in overload-induced transient crack growth

    International Nuclear Information System (INIS)

    Lee, S.Y.; Choo, H.; Liaw, P.K.; An, K.; Hubbard, C.R.

    2011-01-01

    The combined effects of overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are suggested to be responsible for the observed changes in the crack opening load and resultant post-overload transient crack growth behavior [Lee SY, Liaw PK, Choo H, Rogge RB, Acta Mater 2010;59:485-94]. In this article, in situ neutron diffraction experiments were performed to quantify the influence of the combined effects by investigating the internal-stress evolution at various locations away from the crack tip. In the overload-retardation period, stress concentration occurs in the crack blunting region (an overload point) until a maximum crack arrest load is reached. The stress concentration is then transferred from the blunting region to the propagating crack tip (following the overload), requiring a higher applied load, as the closed crack is gradually opened. The transfer phenomena of the stress concentration associated with a crack opening process account for the nonlinearity of strain response in the vicinity of the crack tip. The delaying action of stress concentration at the crack tip is understood in conjunction with the concept of a critical stress (i.e. the stress required to open the closed crack behind the crack tip). A linear relationship between Δε eff and ΔK eff provides experimental support for the hypothesis that ΔK eff can be considered as the fatigue crack tip driving force.

  15. Crack characterization for in-service inspection planning

    International Nuclear Information System (INIS)

    Waale, J.; Ekstroem, P.

    1995-12-01

    During in-service inspection by non destructive testing the reliability is highly dependent on how the equipment is adjusted to the specific object and to the anticipated crack feature.The crack feature and morphology vary widely between different cracking mechanisms and between material types in which the cracks appear. The major objective of this study was to characterize a number of morphology parameters for common crack mechanism and structure material combinations. Critical morphology parameters are crack orientation, shape, width, surface roughness and branching. The crack parameters were evaluated from failure analyses reported from the nuclear and non-nuclear industry. In addition, a literature review was carried out on crack parameter reports and on failure analysis reports, which were further evaluated. The evaluated crack parameters were plotted and statistically processed in data groups with respect to crack mechanism and material type. The fatigue crack mechanism were classified as mechanical, thermal or corrosion fatigue and stress corrosion crack mechanism as intergranular, transgranular or inter dendritic stress corrosion cracking. Furthermore, some common weld defects were characterized for comparison. The materials were divided into three broad groups, ferritic low alloy steels, stainless steels and nickel base alloys. The results indicate significant differences between crack parameters when comparing data from different crack mechanism/material type combinations. Typical parameter values and scatter were derived for several combinations where the data was sufficient for statistical significance. 10 refs, 105 figs, 14 tabs

  16. Crack characterization for in-service inspection planning

    Energy Technology Data Exchange (ETDEWEB)

    Waale, J [SAQ Inspection Ltd, Stockholm (Sweden); Ekstroem, P [ABB Atom AB, Vaesteraas (Sweden)

    1995-12-01

    During in-service inspection by non destructive testing the reliability is highly dependent on how the equipment is adjusted to the specific object and to the anticipated crack feature.The crack feature and morphology vary widely between different cracking mechanisms and between material types in which the cracks appear. The major objective of this study was to characterize a number of morphology parameters for common crack mechanism and structure material combinations. Critical morphology parameters are crack orientation, shape, width, surface roughness and branching. The crack parameters were evaluated from failure analyses reported from the nuclear and non-nuclear industry. In addition, a literature review was carried out on crack parameter reports and on failure analysis reports, which were further evaluated. The evaluated crack parameters were plotted and statistically processed in data groups with respect to crack mechanism and material type. The fatigue crack mechanism were classified as mechanical, thermal or corrosion fatigue and stress corrosion crack mechanism as intergranular, transgranular or inter dendritic stress corrosion cracking. Furthermore, some common weld defects were characterized for comparison. The materials were divided into three broad groups, ferritic low alloy steels, stainless steels and nickel base alloys. The results indicate significant differences between crack parameters when comparing data from different crack mechanism/material type combinations. Typical parameter values and scatter were derived for several combinations where the data was sufficient for statistical significance. 10 refs, 105 figs, 14 tabs.

  17. Fracture Anisotropy and Toughness in the Mancos Shale: Implications for crack-growth geometry

    Science.gov (United States)

    Chandler, M. R.; Meredith, P. G.; Brantut, N.; Crawford, B. R.

    2013-12-01

    The hydraulic fracturing of gas-shales has drawn attention to the fundamental fracture properties of shales. Fracture propagation is dependent on a combination of the in-situ stress field, the fracturing fluid and pressure, and the mechanical properties of the shale. However, shales are strongly anisotropic, and there is a general paucity of available experimental data on the anisotropic mechanical properties of shales in the scientific literature. The mode-I stress intensity factor, KI, quantifies the concentration of stress at crack tips. The Fracture Toughness of a linear elastic material is then defined as the critical value of this stress intensity factor; KIc, beyond which rapid catastrophic crack growth occurs. However, shales display significant non-linearity, which produces hysteresis during experimental cyclic loading. This allows for the calculation of a ductility coefficient using the residual displacement after successive loading cycles. From this coefficient, a ductility corrected Fracture Toughness value, KIcc can be determined. In the Mancos Shale this ductility correction can be as large as 60%, giving a Divider orientation KIcc value of 0.8 MPa.m0.5. Tensile strength and mode-I Fracture Toughness have been experimentally determined for the Mancos Shale using the Brazil Disk and Short-Rod methodologies respectively. The three principal fracture orientations; Arrester, Divider and Short-Transverse were all analysed. A significant anisotropy is observed in the tensile strength, with the Arrester value being 1.5 times higher than the Short-Transverse value. Even larger anisotropy is observed in the Fracture Toughness, with KIcc in the Divider and Arrester orientations being around 1.8 times that in the Short-Transverse orientation. For both tensile strength and fracture toughness, the Short-Transverse orientation, where the fracture propagates in the bedding plane in a direction parallel to the bedding, is found to have significantly lower values than

  18. Influence of hydride microstructure on through-thickness crack growth in zircaloy-4 sheet

    International Nuclear Information System (INIS)

    Raynaud, P.A.; Meholic, M.J.; Koss, D.A.; Motta, A.T.; Chan, K.S.

    2007-01-01

    The fracture toughness of cold-worked and stress-relieved Zircaloy-4 sheet subject to through-thickness crack growth within a 'sunburst' hydride microstructure was determined at 25 o C. The results were obtained utilizing a novel testing procedure in which a narrow linear strip of hydride blister was fractured at small loads under bending to create a well-defined sharp pre-crack that arrested at the blister-substrate interface. The hydriding procedure also forms 'sunburst' hydrides emanating from the blister that were aligned both in the plane of the crack and in the crack growth direction. Subsequent tensile loading caused crack growth initiation into the field of 'sunburst' hydrides. Specimen failure occurred under near-linear elastic behavior, and the fracture toughness for crack growth initiation into sunburst hydrides was in the range K Q ∼10-15 MPa√m. These results, when combined with those of a previous study, indicate that the through-thickness crack growth initiation toughness at 25 o C is very sensitive to the hydride microstructure. (author)

  19. Subcritical crack growth law and its consequences for lifetime statistics and size effect of quasibrittle structures

    International Nuclear Information System (INIS)

    Le, Jia-Liang; Bazant, Zdenek P; Bazant, Martin Z

    2009-01-01

    For brittle failures, the probability distribution of structural strength and lifetime are known to be Weibullian, in which case the knowledge of the mean and standard deviation suffices to determine the loading or time corresponding to a tolerable failure probability such as 10 -6 . Unfortunately, this is not so for quasibrittle structures, characterized by material inhomogeneities that are not negligible compared with the structure size (as is typical, e.g. for concrete, fibre composites, tough ceramics, rocks and sea ice). For such structures, the distribution of structural strength was shown to vary from almost Gaussian to Weibullian as a function of structure size (and also shape). Here we predict the size dependence of the distribution type for the lifetime of quasibrittle structures. To derive the lifetime statistics from the strength statistics, the subcritical crack growth law is requisite. This empirical law is shown to be justified by fracture mechanics of random crack jumps in the atomic lattice and the condition of equality of the energy dissipation rates calculated on the nano-scale and the macro-scale. The size effect on the lifetime is found to be much stronger than that on the structural strength. The theory is shown to match the experimentally observed systematic deviations of lifetime histograms from the Weibull distribution.

  20. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    Science.gov (United States)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input

  1. Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality

    OpenAIRE

    Li, Zhanchao; Gu, Chongshi; Wu, Zhongru

    2013-01-01

    The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model ...

  2. Reinforcement against crack propagation of PWR absorbers by development of boron-carbon-hafnium composites

    International Nuclear Information System (INIS)

    Provot, B.; Herter, P.

    2000-01-01

    In order to improve the mechanical behaviour of materials used as neutron absorbers in nuclear reactors, we have developed CERCER or CERMET composites with boron and hafnium. Thus a new composite B 4 C/HfB 2 has been especially studied. We have identified three kinds of degradation under irradiation (thermal gradient, swelling due to fission products and accidental corrosion) that induce imposed deformations cracking phenomena. Mechanical behaviour and crack propagation resistance have been studied by ball-on-three-balls and double torsion tests. A special device was developed to enable crack propagation and associated stress intensity factor measurements. Effects of structure and of a second phase are underline. First results show that these materials present crack initiation and propagation resistance much higher than pure boron carbide or hafnium diboride. We observe R-Curves effects, crack bridging or branching, crack arrests, and toughness increases that we can relate respectively to the composite structures. (author)

  3. "House Arrest" or "Developmental Arrest"? A Study of Youth Under House Arrest.

    Science.gov (United States)

    Chamiel, Elad; Walsh, Sophie D

    2018-06-01

    Studies have examined the potential benefits and risks of alternative forms of detention, such as house arrest, for adults but, despite its growing use, little research has examined the implications of house arrest for juveniles. The current research examined the experience of 14 adolescents under house arrest. Six main themes were identified in the narratives of the participants: the experience of detention, daily schedule and utilization of time, emotions and self-reflection, relationships with peers, relation to parents and supervisor(s), and contact with professionals. Findings emphasized the potential developmental dangers of house arrest at the critical stage of adolescence. Yet, analysis also showed that the period of house arrest has the potential to be a period of positive changes, and can be used for successful rehabilitation.

  4. Multiple cracks initiation and propagation behavior of stainless steel in high temperature water environment

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo

    2001-01-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. On the other hand, crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which quite a few cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in a high temperature water environment at the constant potentials of ECP +50 mV and ECP +150 mV. Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was studied. From the model, it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  5. Initiation and propagation of multiple cracks of stainless steel in high temperature water environment

    Energy Technology Data Exchange (ETDEWEB)

    Kamaya, Masayuki; Chiba, Goro; Nakajima, Nobuo; Totsuka, Nobuo [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Environmentally assisted crack initiation behavior is greatly affected by applied stress and environmental factors, such as water temperature, contained impurities and so on. Crack initiation behavior also influences crack propagation. A typical example of this influence can be observed as the interference effects of multiple cracks, such as the coalescence of approaching crack tips or the arrest phenomena in the relaxation zone of an adjacent crack. To understand these effects of crack initiation on crack propagation behavior is very important to predict the lifetime of components, in which relatively large number of cracks tend to occur. This study aimed at revealing the crack initiation behavior and the influence of this behavior on propagation. At first, to evaluate the effect of applied stress on crack initiation behavior, sensitized stainless steel was subjected to a four-point bending test in high temperature water environment at the constant potentials of +50 mV SHE and +150 mV SHE Secondly, a crack initiation and growth simulation model was developed, in which the interference effect of multiple cracks is evaluated by the finite element method, based on the experimental results. Using this model, the relationship between crack initiation and propagation was investigated, and it was revealed that the increasing number of the cracks accelerates crack propagation and reduces life. (author)

  6. Circulatory Arrest, Brain Arrest and Death Determination

    Directory of Open Access Journals (Sweden)

    Sam David Shemie

    2018-03-01

    Full Text Available Technological advances, particularly in the capacity to support, replace or transplant failing organs, continue to challenge and refine our understanding of human death. Given the ability to reanimate organs before and after death, both inside and outside of the body, through reinstitution of oxygenated circulation, concepts related to death of organs (e.g. cardiac death are no longer valid. This paper advances the rationale for a single conceptual determination of death related to permanent brain arrest, resulting from primary brain injury or secondary to circulatory arrest. The clinical characteristics of brain arrest are the permanent loss of capacity for consciousness and loss of all brainstem functions. In the setting of circulatory arrest, death occurs after the arrest of circulation to the brain rather than death of the heart. Correspondingly, any intervention that resumes oxygenated circulation to the brain after circulatory arrest would invalidate the determination of death.

  7. A practical method for computation of ductile crack growth by means of finite elements and parametric 3D-modelling

    International Nuclear Information System (INIS)

    Baumjohann, F.; Kroening, J.

    1999-01-01

    The present paper originates from a contribution to the safety assessment of a reactor pressure vessel (RPV). Investigations evaluating the safety against brittle fracture (exclosure of crack initiation and arrest assessments) are completed by calculations concerning ductile crack extension. Crack geometries including the expected crack extension are generated parametrically by a computer code and are used for further calculations with finite element programs. J-integrals of ductile growing cracks located between two comparative contours are determined by interpolation. The comparative contours are loaded by instationary temperature and pressure fields and are evaluated in advance. Taking the stability condition into consideration, the ductile crack extension is determined by pursuing the equilibrium between loading and crack resistance. The automatic modelling and a mathematical program processing the finite element results evaluate the crack growth of the finite element results very effectively. (orig.)

  8. Combined effect of electric field and residual stress on propagation of indentation cracks in a PZT-5H ferroelectric ceramic

    International Nuclear Information System (INIS)

    Huang, H.Y.; Chu, W.Y.; Su, Y.J.; Qiao, L.J.; Gao, K.W.

    2005-01-01

    The combined effect of electric field and residual stress on propagation of unloaded indentation cracks in a PZT-5 ceramic has been studied. The results show that residual stress itself is too small to induce delayed propagation of the indentation cracks in silicon oil. If applied constant electric field is larger than 0.2 kV/cm, the combined effect of electric field and residual stress can cause delayed propagation of the indentation crack after passing an incubation time in silicon oil, but the crack will arrest after propagating for 10-30 μm because of decrease of the resultant stress intensity factor induced by the field and residual stress with increasing the crack length. The threshold electric field for delayed propagation of the indentation crack in silicon oil is E DP = 0.2 kV/cm. If the applied electric field is larger than 5.25 kV/cm, combined effect of the electric field and residual stress can cause instant propagation of the indentation crack, and under sustained electric field, the crack which has propagated instantly can propagate continuously, until arrest at last. The critical electric field for instant propagation of the indentation crack is E P = 5.25 kV/cm. If the applied electric field is larger than 12.6 kV/cm, the microcracks induced by the electric field initiate everywhere, grow and connect in a smooth specimen, resulting in delayed failure, even without residual stress. The threshold electric field for delayed failure of a smooth specimen in silicon oil is E DF = 12.6 kV/cm and the critical electric field for instant failure is E F = 19.1 kV/cm

  9. Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality

    Directory of Open Access Journals (Sweden)

    Zhanchao Li

    2013-01-01

    Full Text Available The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model and change of sequence distribution law of nonparametric statistical model. On this basis, through the reduction of change point problem, the establishment of basic nonparametric change point model, and asymptotic analysis on test method of basic change point problem, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is created in consideration of the situation that in practice concrete dam crack behavior may have more abnormality points. And the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is used in the actual project, demonstrating the effectiveness and scientific reasonableness of the method established. Meanwhile, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality has a complete theoretical basis and strong practicality with a broad application prospect in actual project.

  10. Crack Cocaine-Induced Cardiac Conduction Abnormalities Are Reversed by Sodium Bicarbonate Infusion

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Miranda

    2013-01-01

    Full Text Available We report a dramatic case of a 19-year-old man with crack cocaine overdose with important clinical complications as cardiac arrest due to ventricular fibrillation and epileptics status. During this intoxication, electrocardiographic abnormalities similar to those found in tricyclic antidepressant poisoning were observed, and they were reversed by intravenous sodium bicarbonate infusion.

  11. Influence of microstructure on stress corrosion cracking of mild steel in synthetic caustic-nitrate nuclear waste solution

    International Nuclear Information System (INIS)

    Sarafian, P.G.

    1975-12-01

    The influence of alloy microstructure on stress corrosion cracking of mild steel in caustic-nitrate synthetic nuclear waste solutions was studied. An evaluation was made of the effect of heat treatment on a representative material (ASTM A 516 Grade 70) used in the construction of high activity radioactive waste storage tanks at Savannah River Plant. Several different microstructures were tested for susceptibility to stress corrosion cracking. Precracked fracture specimens loaded in either constant load or constant crack opening displacement were exposed to a variety of caustic-nitrate and nitrate solutions. Results were correlated with the mechanical and corrosion properties of the microstructures. Crack velocity and crack arrest stress intensity were found to be related to the yield strength of the steel microstructures. Fractographic evidence indicated pH depletion and corrosive crack tip chemistry conditions even in highly caustic solutions. Experimental results were compatible with crack growth by a strain-assisted anodic dissolution mechanism; however, hydrogen embrittlement also was considered possible

  12. [Clinical and social vulnerabilities in crack users according to housing status: a multicenter study in six Brazilian state capitals].

    Science.gov (United States)

    Halpern, Silvia Chwartzmann; Scherer, Juliana Nichterwitz; Roglio, Vinicius; Faller, Sibele; Sordi, Anne; Ornell, Felipe; Dalbosco, Carla; Pechansky, Flavio; Kessler, Félix; Diemen, Lísia von

    2017-07-03

    The study had the goal to evaluate psychoactive substance use severity, violence, physical and emotional health of crack users who seeks specialized treatment in Psychosocial Care Centers for Alcohol and Drugs (CAPSad) concerning housing status. This is a multicenter cross-sectional study in six Brazilian capitals with 564 crack users categorized into two groups (1) users who have been homeless sometime in life (n = 266) and (2) individuals who have never lived on streets (n = 298). To assess the substance use severity and the characteristics of the individuals, the Addiction Severity Index, 6th version (ASI-6) was used. Group 1 users showed worse indicators regarding alcohol, medical and psychiatric problems, employment and family support subscales, as well as greater involvement with legal problems, violence, sexual abuse, suicide risk and health related problems such as HIV/AIDS, hepatitis and tuberculosis. In addition they have lower income to pay for basic needs. After analysis and control for possible confounders, not having enough income to pay for basic needs, showing depression symptoms, and having been arrested for theft remained statistically significant. This study evaluated more deeply drug use severity and housing status of crack users. Interventions developed in outpatient treatment should be designed and tailored to specific profiles and demands of drug users, especially homeless individuals.

  13. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    Science.gov (United States)

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  14. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy

    Science.gov (United States)

    Wang, Jin; Wang, Hui-Ping; Wang, Xiaojie; Cui, Haichao; Lu, Fenggui

    2015-03-01

    This paper investigates hot cracking rate in Al fiber laser welding under various process conditions and performs corresponding process optimization. First, effects of welding process parameters such as distance between welding center line and its closest trim edge, laser power and welding speed on hot cracking rate were investigated experimentally with response surface methodology (RSM). The hot cracking rate in the paper is defined as ratio of hot cracking length over the total weld seam length. Based on the experimental results following Box-Behnken design, a prediction model for the hot cracking rate was developed using a second order polynomial function considering only two factor interaction. The initial prediction result indicated that the established model could predict the hot cracking rate adequately within the range of welding parameters being used. The model was then used to optimize welding parameters to achieve cracking-free welds.

  15. Modelling of liquid sodium induced crack propagation in T91 martensitic steel: Competition with ductile fracture

    Energy Technology Data Exchange (ETDEWEB)

    Hemery, Samuel [Institut PPRIME, CNRS, Université de Poitiers, ISAE ENSMA, UPR 3346, Téléport 2, 1 Avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Berdin, Clotilde, E-mail: clotilde.berdin@u-psud.fr [Univ Paris-Sud, SP2M-ICMMO, CNRS UMR 8182, F-91405 Orsay Cedex (France); Auger, Thierry; Bourhi, Mariem [Ecole Centrale-Supelec, MSSMat CNRS UMR 8579, F-92295 Chatenay Malabry Cedex (France)

    2016-12-01

    Liquid metal embrittlement (LME) of T91 steel is numerically modeled by the finite element method to analyse experimental results in an axisymmetric notched geometry. The behavior of the material is identified from tensile tests then a crack with a constant crack velocity is introduced using the node release technique in order to simulate the brittle crack induced by LME. A good agreement between the simulated and the experimental macroscopic behavior is found: this suggests that the assumption of a constant crack velocity is correct. Mechanical fields during the embrittlement process are then extracted from the results of the finite element model. An analysis of the crack initiation and propagation stages: the ductile fracture probably breaks off the LME induced brittle fracture. - Highlights: • T91 martensitic steel is embrittled by liquid sodium depending on the loading rate at 573 K. • The mechanical behavior is modeled by a von Mises elastic-plastic law. • The LME induced crack propagates at a constant velocity. • The mechanical state at the crack tip does not explain a brittle crack arrest. • The occurrence of the ductile fracture breaks off the brittle fracture.

  16. Reactor pressure vessel failure probability following through-wall cracks due to pressurized thermal shock events

    International Nuclear Information System (INIS)

    Simonen, F.A.; Garnich, M.R.; Simonen, E.P.; Bian, S.H.; Nomura, K.K.; Anderson, W.E.; Pedersen, L.T.

    1986-04-01

    A fracture mechanics model was developed at the Pacific Northwest Laboratory (PNL) to predict the behavior of a reactor pressure vessel following a through-wall crack that occurs during a pressurized thermal shock (PTS) event. This study, which contributed to a US Nuclear Regulatory Commission (NRC) program to study PTS risk, was coordinated with the Integrated Pressurized Thermal Shock (IPTS) Program at Oak Ridge National Laboratory (ORNL). The PNL fracture mechanics model uses the critical transients and probabilities of through-wall cracks from the IPTS Program. The PNL model predicts the arrest, reinitiation, and direction of crack growth for a postulated through-wall crack and thereby predicts the mode of vessel failure. A Monte-Carlo type of computer code was written to predict the probabilities of the alternative failure modes. This code treats the fracture mechanics properties of the various welds and plates of a vessel as random variables. Plant-specific calculations were performed for the Oconee-1, Calvert Cliffs-1, and H.B. Robinson-2 reactor pressure vessels for the conditions of postulated transients. The model predicted that 50% or more of the through-wall axial cracks will turn to follow a circumferential weld. The predicted failure mode is a complete circumferential fracture of the vessel, which results in a potential vertically directed missile consisting of the upper head assembly. Missile arrest calculations for the three nuclear plants predict that such vertical missiles, as well as all potential horizontally directed fragmentation type missiles, will be confined to the vessel enclosre cavity. The PNL failure mode model is recommended for use in future evaluations of other plants, to determine the failure modes that are most probable for postulated PTS events

  17. Probability of crack-initiation and application to NDE

    Energy Technology Data Exchange (ETDEWEB)

    Prantl, G [Nuclear Safety Inspectorate HSK, (Switzerland)

    1988-12-31

    Fracture toughness is a property with a certain variability. When a statistical distribution is assumed, the probability of crack initiation may be calculated for a given problem defined by its geometry and the applied stress. Experiments have shown, that cracks which experience a certain small amount of ductile growth can reliably be detected by acoustic emission measurements. The probability of crack detection by AE-techniques may be estimated using this experimental finding and the calculated probability of crack initiation. (author).

  18. Research progress on expansive soil cracks under changing environment.

    Science.gov (United States)

    Shi, Bei-xiao; Zheng, Cheng-feng; Wu, Jin-kun

    2014-01-01

    Engineering problems shunned previously rise to the surface gradually with the activities of reforming the natural world in depth, the problem of expansive soil crack under the changing environment becoming a control factor of expansive soil slope stability. The problem of expansive soil crack has gradually become a research hotspot, elaborates the occurrence and development of cracks from the basic properties of expansive soil, and points out the role of controlling the crack of expansive soil strength. We summarize the existing research methods and results of expansive soil crack characteristics. Improving crack measurement and calculation method and researching the crack depth measurement, statistical analysis method, crack depth and surface feature relationship will be the future direction.

  19. Attractive and repulsive cracks in a heterogeneous material

    International Nuclear Information System (INIS)

    Cortet, Pierre-Philippe; Huillard, Guillaume; Vanel, Loïc; Ciliberto, Sergio

    2008-01-01

    We study experimentally the paths of an assembly of cracks growing in interaction in a heterogeneous two-dimensional elastic brittle material submitted to uniaxial stress. For a given initial crack assembly geometry, we observe two types of crack path. The first one corresponds to a repulsion followed by an attraction on one end of the crack and a tip-to-tip attraction on the other end. The second one corresponds to a pure attraction. Only one of the crack path types is observed in a given sample. Thus, selection between the two types appears as a statistical collective process

  20. Statistical model of stress corrosion cracking based on extended

    Indian Academy of Sciences (India)

    The mechanism of stress corrosion cracking (SCC) has been discussed for decades. Here I propose a model of SCC reflecting the feature of fracture in brittle manner based on the variational principle under approximately supposed thermal equilibrium. In that model the functionals are expressed with extended forms of ...

  1. Statistical analyses of variability/reproducibility of environmentally assisted cyclic crack growth rate data utilizing JAERI Material Performance Database (JMPD)

    International Nuclear Information System (INIS)

    Tsuji, Hirokazu; Yokoyama, Norio; Nakajima, Hajime; Kondo, Tatsuo

    1993-05-01

    Statistical analyses were conducted by using the cyclic crack growth rate data for pressure vessel steels stored in the JAERI Material Performance Database (JMPD), and comparisons were made on variability and/or reproducibility of the data between obtained by ΔK-increasing and by ΔK-constant type tests. Based on the results of the statistical analyses, it was concluded that ΔK-constant type tests are generally superior to the commonly used ΔK-increasing type ones from the viewpoint of variability and/or reproducibility of the data. Such a tendency was more pronounced in the tests conducted in simulated LWR primary coolants than those in air. (author)

  2. Ductile fracture prediction of an axially cracked pressure vessel under pressurized thermal shock

    International Nuclear Information System (INIS)

    Takahashi, Jun; Okamura, Hiroyuki

    1991-01-01

    In this paper, the J-value of an axially cracked cylinder under several PTS conditions are evaluated using a simple estimation scheme which we proposed. Results obtained are summerized as follow: (1) Under any PTS conditions, the effect of internal pressure is so predominant upon the J-value and dJ/da that it is very important to grasp the transient of internal pressure under any imaginable accident from the viewpoint of structural integrity. (2) Under any IP, TS, and PTS conditions, J - a/W relation shows that the J-value reaches its maximum at a certain crack depth, then drops to zero at a/W ≅ 0.9. Though the effect of inertia is not taken into account, this fact may explain the phenomena of crack arrest qualitatively. (3) The compliance of a cylindrical shell plays an important role in the fracture prediction of a pressure vessel. (4) Under typical PTS conditions, the region at the crack tip dominated by the Hutchinson-Rice-Rosengren singularity is substantially large enough to apply the J-based criterion to predict unstable ductile fracture. (author)

  3. Determination of crack morphology parameters from service failures for leak-rate analyses

    Energy Technology Data Exchange (ETDEWEB)

    Wilkowski, G.; Ghadiali, N.; Paul, D. [Battelle Memorial Institute, Columbus, OH (United States)] [and others

    1997-04-01

    In leak-rate analyses described in the literature, the crack morphology parameters are typically not well agreed upon by different investigators. This paper presents results on a review of crack morphology parameters determined from examination of service induced cracks. Service induced cracks were found to have a much more tortuous flow path than laboratory induced cracks due to crack branching associated with the service induced cracks. Several new parameters such as local and global surface roughnesses, as well as local and global number of turns were identified. The effect of each of these parameters are dependent on the crack-opening displacement. Additionally, the crack path is typically assumed to be straight through the pipe thickness, but the service data show that the flow path can be longer due to the crack following a fusion line, and/or the number of turns, where the number of turns in the past were included as a pressure drop term due to the turns, but not the longer flow path length. These parameters were statistically evaluated for fatigue cracks in air, corrosion-fatigue, IGSCC, and thermal fatigue cracks. A refined version of the SQUIRT leak-rate code was developed to account for these variables. Sample calculations are provided in this paper that show how the crack size can vary for a given leak rate and the statistical variation of the crack morphology parameters.

  4. Measurement and accompanying numerical simulation of fast crack propagation in modified DCB specimens made of Araldit B

    International Nuclear Information System (INIS)

    Stoeckl, H.

    1991-06-01

    Numerical simulations of fracture-mechanical experiments with the aim of determining the stress intensity factor and its relation to the fracture velocity from the measured data of the crack length are problematic with the conventional DCB specimen loaded through wedge and bolt namely because of the not clearly definable limiting conditions. Experiments were therefore carried out with modified DCB specimens made of ARALDIT B, with the loading wedge pressed directly into the crack mouth. In the case of suitable specimen dimensions, K I already in the initial phase of crack propagation before arrival of the first reflected waves covers a great part of the relevant range. Numerical simulations agree well with the shadow-optical measurements in this phase. A specimen variant with T-shaped extension at the counterbearing is suitable especially for crack arrest investigations, since high fracture velocities and brief crack jump lengths can be combined in tests with this specimen. The constant member in the series development of the stress distribution at the crack tip according to Williams determines the directional stability of the crack. The theories established by Cotterell, Schindler, Streit and Finnie are discussed by means of the kinking cracks observed during some experiments. (orig.) [de

  5. Eddy current crack detection capability assessment approach using crack specimens with differing electrical conductivity

    Science.gov (United States)

    Koshti, Ajay M.

    2018-03-01

    Like other NDE methods, eddy current surface crack detectability is determined using probability of detection (POD) demonstration. The POD demonstration involves eddy current testing of surface crack specimens with known crack sizes. Reliably detectable flaw size, denoted by, a90/95 is determined by statistical analysis of POD test data. The surface crack specimens shall be made from a similar material with electrical conductivity close to the part conductivity. A calibration standard with electro-discharged machined (EDM) notches is typically used in eddy current testing for surface crack detection. The calibration standard conductivity shall be within +/- 15% of the part conductivity. This condition is also applicable to the POD demonstration crack set. Here, a case is considered, where conductivity of the crack specimens available for POD testing differs by more than 15% from that of the part to be inspected. Therefore, a direct POD demonstration of reliably detectable flaw size is not applicable. Additional testing is necessary to use the demonstrated POD test data. An approach to estimate the reliably detectable flaw size in eddy current testing for part made from material A using POD crack specimens made from material B with different conductivity is provided. The approach uses additional test data obtained on EDM notch specimens made from materials A and B. EDM notch test data from the two materials is used to create a transfer function between the demonstrated a90/95 size on crack specimens made of material B and the estimated a90/95 size for part made of material A. Two methods are given. For method A, a90/95 crack size for material B is given and POD data is available. Objective of method A is to determine a90/95 crack size for material A using the same relative decision threshold that was used for material B. For method B, target crack size a90/95 for material A is known. Objective is to determine decision threshold for inspecting material A.

  6. Disruptive tension under normalized atmospheric pulse and residual tension on lightning arresters power systems: statistical methods application. Practical results and comments; Ensaios de tensao disruptiva sob impulso atmosferico normalizado e tensao residual em para-raios para sistemas de potencia: a aplicacao de metodos estatisticos. Comentarios e resultados praticos

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.L.B. [ELETRONORTE, Brasilia (Brazil); Oliveira, A.L. [Eletricidade da Sao Paulo S.A. (ELETROPAULO), Sao Paulo, SP (Brazil)

    1991-12-31

    The necessity of complementary assays of disruptive tension under normalized atmospheric pulses and residual tension on lightning arresters, as well as the adequate use of a statistical treatment of its results are commented. Some statistical methods and its applicability on lightning arresters characteristics surveys, and its quality control are proposed 8 refs., 5 figs., 3 tabs.

  7. SCC crack propagation behavior in 316L weld metal under high temperature water

    International Nuclear Information System (INIS)

    Nakade, Katsuyuki; Hirasaki, Toshifumi; Suzuki, Shunichi; Takamori, Kenro; Kumagai, Katsuhiko; Tanaka, Yoshihiko; Umeoka, Kuniyoshi

    2008-01-01

    Intergranular stress corrosion cracking (SCC) of 316L weld metal is of concern to the BWR plants. PLR pipes in commercial BWR plants have shown SCC in almost HAZ area in high temperature water, whereas, SCC has been arrested around fusion boundary for long time in the actual PLR pipe. The SCC behavior could be characterized in terms of dendrite direction, which was defined as the angle between dendrite growth direction and macro-SCC direction. In this study, the relationship between dendrite growth direction and macro-SCC direction was clearly showed on the fracture surface. The relative large difference of SCC susceptibility of 316L HAZ and weld metal was observed on the fracture surface. In the case of 0 degree, SCC has rapidly propagated into the weld metal parallel to the dendrite structure. In the case of more than 30 degree SCC direction, SCC was arrested around fusion area, and 60 degree SCC was drastically arrested around the fusion area. The large inclined dendrite structure for SCC is highly resistant to SCC. (author)

  8. Modified Dugdale cracks and Fictitious cracks

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1998-01-01

    A number of theories are presented in the literature on crack mechanics by which the strength of damaged materials can be predicted. Among these are theories based on the well-known Dugdale model of a crack prevented from spreading by self-created constant cohesive flow stressed acting in local...... areas, so-called fictitious cracks, in front of the crack.The Modified Dugdale theory presented in this paper is also based on the concept of Dugdale cracks. Any cohesive stress distribution, however, can be considered in front of the crack. Formally the strength of a material weakened by a modified...... Dugdale crack is the same as if it has been weakened by the well-known Griffith crack, namely sigma_CR = (EG_CR/phi)^1/2 where E and 1 are Young's modulus and crack half-length respectively, and G_CR is the so-called critical energy release rate. The physical significance of G_CR, however, is different...

  9. Application of Interfacial Propagation and Kinking Crack Concept to ECC/Concrete Overlay Repair System

    Directory of Open Access Journals (Sweden)

    Yaw ChiaHwan

    2014-01-01

    Full Text Available Research on the application of ultraductile engineered cementitious composite (ECC as overlay in the repair of deteriorated concrete structures is performed in this paper. Also, interfacial crack kinking and trapping mechanism experimentally observed in ECC/concrete overlay repair system are described by comparison of toughness and energy release rate. The mechanism involves cycles of extension, kinking, and arrest of interfacial crack into the overlay. Experimental testing of overlay repair system reveals significant improvements in load carrying capacity and ductility over conventional concrete overlay. The commonly observed overlay system failure mode of delamination or spalling is eliminated when ECC is applied. These failure modes are suppressed when ECC is used as an ideal and durable candidate overlay repair material.

  10. Experimental and theoretical investigations on the behaviour of cracks in primary coolant piping

    International Nuclear Information System (INIS)

    Steinbuch, R.; Bartholome, G.; Felski, N.; Kastner, W.

    1981-01-01

    During the investigations of the government-sponsored R+D programs (RS 104 and RS 320) experimental and theoretical work has been performed to describe the leak before break behaviour and the extent of instable crack growth. The test pipes are 300 mm ID pipes made of 20MnMoNi55. Three of them had been welded to a pressure reservoir to simulate the situation of a real system of piping and components as related to hydrodynamics. The instrumentation of the specimen was designed to describe - temperature and pressure during failure - effect of reservoir on depressurisation - motion of the pipe - leakage area as function of time - crack arrest length. At two experiments the pressure dropped to saturation but in others for a short period the pressure was remarkably lower. (orig./GL)

  11. Crack layer morphology and toughness characterization in steels

    Science.gov (United States)

    Chudnovsky, A.; Bessendorf, M.

    1983-01-01

    Both the macro studies of crack layer propagation are presented. The crack extension resistance parameter R sub 1 based on the morphological study of microdefects is introduced. Experimental study of the history dependent nature of G sub c supports the representation of G sub c as a product of specific enthalpy of damage (material constant) and R sub 1. The latter accounts for the history dependence. The observation of nonmonotonic crack growth under monotonic changes of J as well as statistical features of the critical energy release rate (variance of G sub c) indicate the validity of the proposed damage characterization.

  12. Fatigue crack growth behaviors in hot-rolled low carbon steels: A comparison between ferrite–pearlite and ferrite–bainite microstructures

    International Nuclear Information System (INIS)

    Guan, Mingfei; Yu, Hao

    2013-01-01

    The roles of microstructure types in fatigue crack growth behaviors in ferrite–pearlite steel and ferrite–bainite steel were investigated. The ferrite–bainite dual-phase microstructure was obtained by intermediate heat treatment, conducted on ferrite–pearlite hot-rolled low carbon steel. This paper presents the results from investigation using constant stress-controlled fatigue tests with in-situ scanning electron microscopy (SEM), fatigue crack growth (FCG) rate tests, and fatigue fractography analysis. Microscopy images arrested by in-situ SEM showed that the fatigue crack propagation in F–P steel could become unstable more ealier compared with that in F–B steel. The fatigue cracks in ferrite–pearlite were more tortuous and could propagate more freely than that in ferrite–bainite microstructures. However, frequent crack branching were observed in ferrite–bainite steel and it indicated that the second hard bainite phase effectively retarded the crack propagation. The variation of FCG rate (da/dN) with stress intensity factor range (ΔK) for F–P and F–B steels was discussed within the Paris region. It was shown that FCG rate of F–P steel was higher than that of F–B steel. Moreover, the fatigue fracture surface analysis proved that grain boundaries could also play a role in the resistance of crack propagation.

  13. Probabilistic modeling of fatigue crack growth in Ti-6Al-4V

    International Nuclear Information System (INIS)

    Soboyejo, W.O.; Shen, W.; Soboyejo, A.B.O.

    2001-01-01

    This paper presents the results of a combined experimental and analytical study of the probabilistic nature of fatigue crack growth in Ti-6Al-4V. A simple experimental fracture mechanics framework is presented for the determination of statistical fatigue crack growth parameters from two fatigue tests. The experimental studies show that the variabilities in long fatigue crack growth rate data and the Paris coefficient are well described by the log-normal distributions. The variabilities in the Paris exponent are also shown to be well characterized by a normal distribution. The measured statistical distributions are incorporated into a probabilistic fracture mechanics framework for the estimation of material reliability. The implications of the results are discussed for the probabilistic analysis of fatigue crack growth in engineering components and structures. (orig.)

  14. Sodium/hydrogen-exchanger inhibition during cardioplegic arrest and cardiopulmonary bypass: an experimental study.

    Science.gov (United States)

    Cox, Charles S; Sauer, Henning; Allen, Steven J; Buja, L Maximilian; Laine, Glen A

    2002-05-01

    We sought to determine whether pretreatment with a sodium/hydrogen-exchange inhibitor (EMD 96 785) improves myocardial performance and reduces myocardial edema after cardioplegic arrest and cardiopulmonary bypass. Anesthetized dogs (n = 13) were instrumented with vascular catheters, myocardial ultrasonic crystals, and left ventricular micromanometers to measure preload recruitable stroke work, maximum rate of pressure rise (positive and negative), and left ventricular end-diastolic volume and pressure. Cardiac output was measured by means of thermodilution. Myocardial tissue water content was determined from sequential biopsy. After baseline measurements, hypothermic (28 degrees C) cardiopulmonary bypass was initiated. Cardioplegic arrest (4 degrees C Bretschneider crystalloid cardioplegic solution) was maintained for 2 hours, followed by reperfusion-rewarming and separation from cardiopulmonary bypass. Preload recruitable stroke work and myocardial tissue water content were measured at 30, 60, and 120 minutes after bypass. EMD 96 785 (3 mg/kg) was given 15 minutes before bypass, and 2 micromol was given in the cardioplegic solution. Control animals received the same volume of saline vehicle. Arterial-coronary sinus lactate difference was similar in both animals receiving EMD 96 785 and control animals, suggesting equivalent myocardial ischemia in each group. Myocardial tissue water content increased from baseline in both animals receiving EMD 96 785 and control animals with cardiopulmonary bypass and cardioplegic arrest but was statistically lower in animals receiving EMD 96 785 compared with control animals (range, 1.0%-1.5% lower in animals receiving EMD 96 785). Preload recruitable stroke work decreased from baseline (97 +/- 2 mm Hg) at 30 (59 +/- 6 mm Hg) and 60 (72 +/- 9 mm Hg) minutes after cardiopulmonary bypass and cardioplegic arrest in control animals; preload recruitable stroke work did not decrease from baseline (98 +/- 2 mm Hg) in animals receiving

  15. Metoclopramide-induced cardiac arrest

    Directory of Open Access Journals (Sweden)

    Martha M. Rumore

    2011-11-01

    Full Text Available The authors report a case of cardiac arrest in a patient receiving intravenous (IV metoclopramide and review the pertinent literature. A 62-year-old morbidly obese female admitted for a gastric sleeve procedure, developed cardiac arrest within one minute of receiving metoclopramide 10 mg via slow intravenous (IV injection. Bradycardia at 4 beats/min immediately appeared, progressing rapidly to asystole. Chest compressions restored vital function. Electrocardiogram (ECG revealed ST depression indicative of myocardial injury. Following intubation, the patient was transferred to the intensive care unit. Various cardiac dysrrhythmias including supraventricular tachycardia (SVT associated with hypertension and atrial fibrillation occurred. Following IV esmolol and metoprolol, the patient reverted to normal sinus rhythm. Repeat ECGs revealed ST depression resolution without pre-admission changes. Metoclopramide is a non-specific dopamine receptor antagonist. Seven cases of cardiac arrest and one of sinus arrest with metoclopramide were found in the literature. The metoclopramide prescribing information does not list precautions or adverse drug reactions (ADRs related to cardiac arrest. The reaction is not dose related but may relate to the IV administration route. Coronary artery disease was the sole risk factor identified. According to Naranjo, the association was possible. Other reports of cardiac arrest, severe bradycardia, and SVT were reviewed. In one case, five separate IV doses of 10 mg metoclopramide were immediately followed by asystole repeatedly. The mechanism(s underlying metoclopramide’s cardiac arrest-inducing effects is unknown. Structural similarities to procainamide may play a role. In view of eight previous cases of cardiac arrest from metoclopramide having been reported, further elucidation of this ADR and patient monitoring is needed. Our report should alert clinicians to monitor patients and remain diligent in surveillance and

  16. AN EFFECT OF SHOT PEENING ON GROWTH AND RETARDATION OF PHYSICALLY SHORT FATIGUE CRACKS IN AN AIRCRAFT Al-ALLOY

    Directory of Open Access Journals (Sweden)

    Ivo Černý

    2009-11-01

    Full Text Available Results of an investigation of effect of shot peening on development of physically short fatigue crack in an aircraft V-95 Al-alloy, which is of a similar type as 7075 alloy, are described and discussed in the paper. The first part deals with adaptation and verification of direct current potential drop method for detection and measurement of short crack initiation and growth. The specific material and quite large dimensions of flat specimens with side necking of a low stress concentration factor had to be considered when position of electrodes was specified and the measurement method verified. The specimen type and dimensions were proposed taking account of the investigation of shot peening effects. Physically short fatigue cracks of the length from 0.2 mm to more than 3 mm, most of them between 0.8 – 1.5 mm, were prepared under high cycle fatigue loading of a constant nominal stress amplitude plus/minus 160 MPa. Specimens with existing short fatigue cracks were shot peened using two different groups of parameters. Development of crack growth after shot peening was measured and compared with crack growth in specimens without shot peening. Retardation of crack growth was significant particularly with cracks shorter than 2 mm. For the specific stress amplitude, evaluated results enable to estimate threshold length of defects, which after the application of shot peening will be reliably arrested.

  17. Location of cardiac arrest and impact of pre-arrest chronic disease and medication use on survival

    DEFF Research Database (Denmark)

    Granfeldt, Asger; Wissenberg, Mads; Hansen, Steen Møller

    2017-01-01

    location and a higher mortality can be explained by differences in chronic diseases and medication. METHODS: We identified 27,771 out-of-hospital cardiac arrest patients ≥18 years old from the Danish Cardiac Arrest Registry (2001-2012). Using National Registries, we identified pre-arrest chronic disease......INTRODUCTION: Cardiac arrest in a private location is associated with a higher mortality when compared to public location. Past studies have not accounted for pre-arrest factors such as chronic disease and medication. AIM: To investigate whether the association between cardiac arrest in a private...

  18. A crack growth evaluation method for interacting multiple cracks

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2003-01-01

    When stress corrosion cracking or corrosion fatigue occurs, multiple cracks are frequently initiated in the same area. According to section XI of the ASME Boiler and Pressure Vessel Code, multiple cracks are considered as a single combined crack in crack growth analysis, if the specified conditions are satisfied. In crack growth processes, however, no prescription for the interference between multiple cracks is given in this code. The JSME Post-Construction Code, issued in May 2000, prescribes the conditions of crack coalescence in the crack growth process. This study aimed to extend this prescription to more general cases. A simulation model was applied, to simulate the crack growth process, taking into account the interference between two cracks. This model made it possible to analyze multiple crack growth behaviors for many cases (e.g. different relative position and length) that could not be studied by experiment only. Based on these analyses, a new crack growth analysis method was suggested for taking into account the interference between multiple cracks. (author)

  19. The stability of growth of a through-wall circumferential crack in a cylindrical pipe subjected to bending deformation

    International Nuclear Information System (INIS)

    Smith, E.

    1987-01-01

    Tada, Paris and Gamble have used the tearing modulus approach to examine the stability of growth of a through-wall circumferential crack in a 304 stainless steel circular cylindrical pipe subject to bending deformation. They showed that crack growth is stable, in the sense that growth requires the rotation imposed at the pipe-ends to be increased, provided the pipe length is less than a critical length Lsub(c), which is given by their analysis. The Tada-Paris-Gamble analysis focuses on the question of the stability, or otherwise, of crack growth at the onset of crack extension. The analysis does not consider the possibilities that (a) instability might occur after some stable crack growth, and (b) arrest might occur after some unstable growth. A study of these aspects of the circumferential crack growth problem using the tearing modulus approach is precluded by the geometry dependence of the J-crack growth resistance curve. Consequently the present paper uses a crack tip opening angle criterion to describe crack growth, and thereby demonstrates that possibilities (a) and (b) should both occur, depending on the initial crack length and pipe length. In terms of relevance to the technologically important problem of cracking in Boiling Water Reactor piping, the important conclusion stemming from the paper's analysis is that stability of crack growth after the onset of crack extension is assured if the pipe length is less than a critical length L'sub(c). L'sub(c) is less than Lsub(c), the critical length relevant to the onset of crack extension, but it is still appreciably greater than the pipe run lengths in actual reactor piping systems, and safety against guillotine failure of a pipe is therefore generally assured. (author)

  20. Delayed hydride cracking: alternative pre-cracking method

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Ponzoni, Lucio M.E.; Vigna, Gustavo L.; Domizzi, Gladys

    2009-01-01

    The internal components of nuclear reactors built-in Zr alloys are prone to a failure mechanism known as Delayed Hydride Cracking (DHC). This situation has triggered numerous scientific studies in order to measure the crack propagation velocity and the threshold stress intensity factor associated to DHC. Tests are carried out on fatigued pre-crack samples to ensure similar test conditions and comparable results. Due to difficulties in implementing the fatigue pre-crack method it would be desirable to replace it with a pre-crack produced by the same process of DHC, for which is necessary to demonstrate equivalence of this two methods. In this work tests on samples extracted from two Zr-2.5 Nb tubes were conducted. Some of the samples were heat treated to obtain a range in their metallurgical properties as well as different DHC velocities. A comparison between velocities measured in test samples pre-cracked by fatigue and RDIH is done, demonstrating that the pre-cracking method does not affect the measured velocity value. In addition, the incubation (t inc ), which is the time between the application of the load and the first signal of crack propagation, in samples pre-cracked by RDIH, was measured. It was found that these times are sufficiently short, even in the worst cases (lower speed) and similar to the ones of fatigued pre-cracked samples. (author)

  1. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    Science.gov (United States)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-07-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included

  2. Improved performance of maternal-fetal medicine staff after maternal cardiac arrest simulation-based training.

    Science.gov (United States)

    Fisher, Nelli; Eisen, Lewis A; Bayya, Jyothshna V; Dulu, Alina; Bernstein, Peter S; Merkatz, Irwin R; Goffman, Dena

    2011-09-01

    To determine the impact of simulation-based maternal cardiac arrest training on performance, knowledge, and confidence among Maternal-Fetal Medicine staff. Maternal-Fetal Medicine staff (n = 19) participated in a maternal arrest simulation program. Based on evaluation of performance during initial simulations, an intervention was designed including: basic life support course, advanced cardiac life support pregnancy modification lecture, and simulation practice. Postintervention evaluative simulations were performed. All simulations included a knowledge test, confidence survey, and debriefing. A checklist with 9 pregnancy modification (maternal) and 16 critical care (25 total) tasks was used for scoring. Postintervention scores reflected statistically significant improvement. Maternal-Fetal Medicine staff demonstrated statistically significant improvement in timely initiation of cardiopulmonary resuscitation (120 vs 32 seconds, P = .042) and cesarean delivery (240 vs 159 seconds, P = .017). Prompt cardiopulmonary resuscitation initiation and pregnancy modifications application are critical in maternal and fetal survival during cardiac arrest. Simulation is a useful tool for Maternal-Fetal Medicine staff to improve skills, knowledge, and confidence in the management of this catastrophic event. Published by Mosby, Inc.

  3. Effect of Water Environment on Subcritical Crack Growth of Machinable Ceramics; Kaisakusei seramikkusu no kiretsu shinten tokusei ni oyobosu mizu kankyo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Kaizu, K.; Inotani, T. [Miyazaki Univ., Miyazaki (Japan); Yoshikawa, A.; Adachi, K.; Igaki, H. [Osaka Sangyo Univ., Osaka (Japan)

    1997-06-15

    The fatigue behavior of ceramics has been discussed on the basis of the relation between stress intensity facter (KI) and crack velocity (V). In this paper, the effect of environment on the relation between KI and V was studied on machinable ceramics (mica glass ceramics) and two kinds of glass ceramics with different grain sizes. The double torsion (DT) technique was used for the determination of the KI-V characteristics under different environments of air and ion-exchanged water. The characteristics of acoustic emission (AE) during stress corrosion cracking of mica glass ceramics was also examined. In water environment, the region II in the KI-V curve, in which crack velocity varies slowly with KI, disappeared. From this experimental fact, it was considered that at high KI, the crack velocity is encouraged by diffusion of the corrosive species to the crack and thus depended on the amount of water. SEM farc tography revealed that mica single crystals in the material caused crack arrest and deflection to occur. It is also found that AE event rate is quantitatively related to the crack velocity. AE measurement can be used in studying the crack propagation behavior of mica glass ceramics. 11 refs., 12 figs., 3 tabs.

  4. Forced oscillations of cracked beam under the stochastic cyclic loading

    Science.gov (United States)

    Matsko, I.; Javors'kyj, I.; Yuzefovych, R.; Zakrzewski, Z.

    2018-05-01

    An analysis of forced oscillations of cracked beam using statistical methods for periodically correlated random processes is presented. The oscillation realizations are obtained on the basis of numerical solutions of differential equations of the second order, for the case when applied force is described by a sum of harmonic and stationary random process. It is established that due to crack appearance forced oscillations acquire properties of second-order periodical non-stationarity. It is shown that in a super-resonance regime covariance and spectral characteristics, which describe non-stationary structure of forced oscillations, are more sensitive to crack growth than the characteristics of the oscillation's deterministic part. Using diagnostic indicators formed on their basis allows the detection of small cracks.

  5. Depth-Sizing Technique for Crack Indications in Steam Generator Tubing

    International Nuclear Information System (INIS)

    Cho, Chan Hee; Lee, Hee Jeong; Kim, Hong Deok

    2009-01-01

    The nuclear power plants have been safely operated by plugging the steam generator tubes which have the crack indications. Tube rupture events can occur if analysts fail to detect crack indications during in-service inspection. There are various types of crack indication in steam generator tubes and they have been detected by the eddy current test. The integrity assessment should be performed using the crack-sizing results from eddy current data when the crack indication is detected. However, it is not easy to evaluate the crack-depth precisely and consistently due to the complexity of the methods. The current crack-sizing methods were reviewed in this paper and the suitable ones were selected through the laboratory tests. The retired steam generators of Kori Unit 1 were used for this study. The round robin tests by the domestic qualified analysts were carried out and the statistical models were introduced to establish the appropriate depth-sizing techniques. It is expected that the proposed techniques in this study can be utilized in the Steam Generator Management Program

  6. Detection of cracks in shafts with the Approximated Entropy algorithm

    Science.gov (United States)

    Sampaio, Diego Luchesi; Nicoletti, Rodrigo

    2016-05-01

    The Approximate Entropy is a statistical calculus used primarily in the fields of Medicine, Biology, and Telecommunication for classifying and identifying complex signal data. In this work, an Approximate Entropy algorithm is used to detect cracks in a rotating shaft. The signals of the cracked shaft are obtained from numerical simulations of a de Laval rotor with breathing cracks modelled by the Fracture Mechanics. In this case, one analysed the vertical displacements of the rotor during run-up transients. The results show the feasibility of detecting cracks from 5% depth, irrespective of the unbalance of the rotating system and crack orientation in the shaft. The results also show that the algorithm can differentiate the occurrence of crack only, misalignment only, and crack + misalignment in the system. However, the algorithm is sensitive to intrinsic parameters p (number of data points in a sample vector) and f (fraction of the standard deviation that defines the minimum distance between two sample vectors), and good results are only obtained by appropriately choosing their values according to the sampling rate of the signal.

  7. Study of fatigue crack propagation in magnesium alloys

    International Nuclear Information System (INIS)

    Yarema, S.Ya.; Zinyuk, O.D.; Ostash, O.P.; Kudryashov, V.G.; Elkin, F.M.

    1981-01-01

    Fatigue crack propagation in standard (MA2-1, MA8) and super light (MA21, MA18) alloys has been investigated in the whole range of load amplitude changes-from threshold to critical; the materials have been compared by cyclic crack resistance, fractographic analysis has been made. It is shown that MA2-1 alloy crack resistance is slightly lower than the resistance of the other three alloys. MA8 and MA21 alloys having similar mechanical properties almost do not differ in cyclic crack resistance as well. MA18 alloy has the highest resistance to fatigue crack propagation in the whole range of Ksub(max) changes. The presented results on cyclic crack resistance of MA21 and MA18 alloys agree with the data on statistic fracture toughness. The fractures have been also investigated using a scanning electron microscope. Fracture microrelieves of MA8 and MA21 alloys are very similar. At low crack propagation rates (v - 7 m/cycle) it develops through grains, in MA2-1 alloy fracture intergrain fracture areas can be observed. In MA8 and MA21 alloy fractures groove covered areas can be seen alonside with areas of slipping plane laminatron; their specific weight increases with #betta# decrease. Lower crack propagation rates and higher values of threshold stress intensity factors for MA8 and MA21 alloys than for MA2-1 alloy are caused by the absence of intergrain fracture

  8. Witnessed arrest, but not delayed bystander cardiopulmonary resuscitation improves prehospital cardiac arrest survival.

    Science.gov (United States)

    Vukmir, R B

    2004-05-01

    This study correlated the effect of witnessing a cardiac arrest and instituting bystander CPR (ByCPR), as a secondary end point in a study evaluating the effect of bicarbonate on survival. This prospective, randomised, double blinded clinical intervention trial enrolled 874 prehospital cardiopulmonary arrest patients encountered in a prehospital urban, suburban, and rural regional emergency medical service (EMS) area. This group underwent conventional advanced cardiac life support intervention followed by empiric early administration of sodium bicarbonate (1 mEq/l), monitoring conventional resuscitation parameters. Survival was measured as presence of vital signs on emergency department (ED) arrival. Data were analysed using chi(2) with Pearson correlation and odds ratio where appropriate. The overall survival rate was 13.9% (110 of 792) of prehospital cardiac arrest patients. The mean (SD) time until provision of bystander cardiopulmonary resuscitation (ByCPR) by laymen was 2.08 (2.77) minutes, and basic life support (BLS) by emergency medical technicians was 6.62 (5.73) minutes. There was improved survival noted with witnessed cardiac arrest-a 2.2-fold increase in survival, 18.9% (76 of 402) versus 8.6% (27 of 315) compared with unwitnessed arrests (ptwo minutes (p = 0.3752). Survival after prehospital cardiac arrest is more likely when witnessed, but not necessarily when ByCPR was performed by laymen.

  9. Modified Dugdale crack models - some easy crack relations

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    the same strength as a plain Dugdale model. The critical energy release rates Gamma_CR, however, become different. Expressions (with easy computer algorithms) are presented in the paper which relate critical energy release rates and crack geometry to arbitrary cohesive stress distributions.For future...... lifetime analysis of viscoelastic materials strain energy release rates, crack geometries, and cohesive stress distributions are considered as related to sub-critical loads sigma stress-deformation tests......The Dugdale crack model is widely used in materials science to predict strength of defective (cracked) materials. A stable Dugdale crack in an elasto-plastic material is prevented from spreading by uniformly distributed cohesive stresses acting in narrow areas at the crack tips. These stresses...

  10. Teenagers' High Arrest Rates: Features of Young Age or Youth Poverty?

    Science.gov (United States)

    Males, Mike A.; Brown, Elizabeth A.

    2014-01-01

    The association of more crime with youthful age is widely accepted in social science. However, a literature search revealed no studies of the age-crime relationship that controlled for young ages' economic disadvantage. This research gap is addressed using the California Criminal Justice Statistics Center's arrest detail and Census poverty…

  11. Crack classification in concrete beams using AE parameters

    Science.gov (United States)

    Bahari, N. A. A. S.; Shahidan, S.; Abdullah, S. R.; Ali, N.; Zuki, S. S. Mohd; Ibrahim, M. H. W.; Rahim, M. A.

    2017-11-01

    The acoustic emission (AE) technique is an effective tool for the evaluation of crack growth. The aim of this study is to evaluate crack classification in reinforced concrete beams using statistical analysis. AE has been applied for the early monitoring of reinforced concrete structures using AE parameters such as average frequency, rise time, amplitude counts and duration. This experimental study focuses on the utilisation of this method in evaluating reinforced concrete beams. Beam specimens measuring 150 mm × 250 mm × 1200 mm were tested using a three-point load flexural test using Universal Testing Machines (UTM) together with an AE monitoring system. The results indicated that RA value can be used to determine the relationship between tensile crack and shear movement in reinforced concrete beams.

  12. Cardiac Arrest: MedlinePlus Health Topic

    Science.gov (United States)

    ... Handouts Cardiac arrest (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus Email Updates Get Cardiac Arrest updates ... this? GO MEDICAL ENCYCLOPEDIA Cardiac arrest Related Health Topics Arrhythmia CPR Pacemakers and Implantable Defibrillators National Institutes ...

  13. Estimating the Initial Crack Size in a Particulate Composite Material: An Analytical and Experimental Approach

    National Research Council Canada - National Science Library

    Liu, C

    2001-01-01

    The objectives in this report are to: determine the inherent critical initial crack size in a particulate composite material, determine the statistical distribution function of the inherent critical crack size, normal distribution, two...

  14. Crack modeling of rotating blades with cracked hexahedral finite element method

    Science.gov (United States)

    Liu, Chao; Jiang, Dongxiang

    2014-06-01

    Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.

  15. The real performance of radioactive lightning arrester

    International Nuclear Information System (INIS)

    Leite, D.M.

    1985-01-01

    The study of the performance of radioactive lightning arrester comparing to the performance of conventional one are presented. Measurements of currents between lightning arrester and an energyzed plate with wind simulation were done for radioactive and conventional lightning arresters, separately. The attraction range of radioactive and conventional lightning arresters using atmospheric pulses produced by a generator of 3MV were verified, separately and simultaneously. The influence of ionization produced by radioactive lightning arrester on critical disruptive tension of a spark plate, testing two lightning arresters for differents nominal attraction distances with applications of atmospheric pulses (positive and negative polarity) and tensions of 60 Hz was verified. The radiation emitted by a radioactive lightning had used in a building was retired and handled without special carefullness by a personnel without worthy of credence to evaluate the hazard in handling radioactive lightning arrester was measured. Critical disruptive tensions of radioactive and conventional lightning arrester using a suspensed electrode and external pulse generator of 6MV was measured. The effect of attraction of a radioactive and conventional lightning arresters disposed symmetrically regarding the same suspensed electrode was verified simultaneously. Seven cases on faults of radioactive lightning arrester in external areas are present. (M.C.K.) [pt

  16. Corrosion cracking

    International Nuclear Information System (INIS)

    Goel, V.S.

    1985-01-01

    This book presents the papers given at a conference on alloy corrosion cracking. Topics considered at the conference included the effect of niobium addition on intergranular stress corrosion cracking, corrosion-fatigue cracking in fossil-fueled-boilers, fracture toughness, fracture modes, hydrogen-induced thresholds, electrochemical and hydrogen permeation studies, the effect of seawater on fatigue crack propagation of wells for offshore structures, the corrosion fatigue of carbon steels in seawater, and stress corrosion cracking and the mechanical strength of alloy 600

  17. Crack closure and growth behavior of short fatigue cracks under random loading (part I : details of crack closure behavior)

    International Nuclear Information System (INIS)

    Lee, Shin Young; Song, Ji Ho

    2000-01-01

    Crack closure and growth behavior of physically short fatigue cracks under random loading are investigated by performing narrow-and wide-band random loading tests for various stress ratios. Artificially prepared two-dimensional, short through-thickness cracks are used. The closure behavior of short cracks under random loading is discussed, comparing with that of short cracks under constant-amplitude loading and also that of long cracks under random loading. Irrespective of random loading spectrum or block length, the crack opening load of short cracks is much lower under random loading than under constant-amplitude loading corresponding to the largest load cycle in a random load history, contrary to the behavior of long cracks that the crack opening load under random loading is nearly the same as or slightly higher than constant-amplitude results. This result indicates that the largest load cycle in a random load history has an effect to enhance crack opening of short cracks

  18. Analysis of crack opening stresses for center- and edge-crack tension specimens

    Directory of Open Access Journals (Sweden)

    Tong Di-Hua

    2014-04-01

    Full Text Available Accurate determination of crack opening stress is of central importance to fatigue crack growth analysis and life prediction based on the crack-closure model. This paper studies the crack opening behavior for center- and edge-crack tension specimens. It is found that the crack opening stress is affected by the crack tip element. By taking the crack tip element into account, a modified crack opening stress equation is given for the center-crack tension specimen. Crack surface displacement equations for an edge crack in a semi-infinite plate under remote uniform tension and partially distributed pressure are derived by using the weight function method. Based on these displacements, a crack opening stress equation for an edge crack in a semi-infinite plate under uniform tension has been developed. The study shows that the crack opening stress is geometry-dependent, and the weight function method provides an effective and reliable tool to deal with such geometry dependence.

  19. A consistent partly cracked XFEM element for cohesive crack growth

    DEFF Research Database (Denmark)

    Asferg, Jesper L.; Poulsen, Peter Noe; Nielsen, Leif Otto

    2007-01-01

    Present extended finite element method (XFEM) elements for cohesive crack growth may often not be able to model equal stresses on both sides of the discontinuity when acting as a crack-tip element. The authors have developed a new partly cracked XFEM element for cohesive crack growth with extra...... enrichments to the cracked elements. The extra enrichments are element side local and were developed by superposition of the standard nodal shape functions for the element and standard nodal shape functions for a sub-triangle of the cracked element. With the extra enrichments, the crack-tip element becomes...... capable of modelling variations in the discontinuous displacement field on both sides of the crack and hence also capable of modelling the case where equal stresses are present on each side of the crack. The enrichment was implemented for the 3-node constant strain triangle (CST) and a standard algorithm...

  20. Estimation of leak rate through circumferential cracks in pipes in nuclear power plants

    Directory of Open Access Journals (Sweden)

    Jai Hak Park

    2015-04-01

    Full Text Available The leak before break (LBB concept is widely used in designing pipe lines in nuclear power plants. According to the concept, the amount of leaking liquid from a pipe should be more than the minimum detectable leak rate of a leak detection system before catastrophic failure occurs. Therefore, accurate estimation of the leak rate is important to evaluate the validity of the LBB concept in pipe line design. In this paper, a program was developed to estimate the leak rate through circumferential cracks in pipes in nuclear power plants using the Henry–Fauske flow model and modified Henry–Fauske flow model. By using the developed program, the leak rate was calculated for a circumferential crack in a sample pipe, and the effect of the flow model on the leak rate was examined. Treating the crack morphology parameters as random variables, the statistical behavior of the leak rate was also examined. As a result, it was found that the crack morphology parameters have a strong effect on the leak rate and the statistical behavior of the leak rate can be simulated using normally distributed crack morphology parameters.

  1. Steam generator tubes rupture probability estimation - study of the axially cracked tube case

    International Nuclear Information System (INIS)

    Mavko, B.; Cizelj, L.; Roussel, G.

    1992-01-01

    The objective of the present study is to estimate the probability of a steam generator tube rupture due to the unstable propagation of axial through-wall cracks during a hypothetical accident. For this purpose the probabilistic fracture mechanics model was developed taking into account statistical distributions of influencing parameters. A numerical example considering a typical steam generator seriously affected by axial stress corrosion cracking in the roll transition area, is presented; it indicates the change of rupture probability with different assumptions focusing mostly on tubesheet reinforcing factor, crack propagation rate and crack detection probability. 8 refs., 4 figs., 4 tabs

  2. Unsaturated Seepage Analysis of Cracked Soil including Development Process of Cracks

    Directory of Open Access Journals (Sweden)

    Ling Cao

    2016-01-01

    Full Text Available Cracks in soil provide preferential pathways for water flow and their morphological parameters significantly affect the hydraulic conductivity of the soil. To study the hydraulic properties of cracks, the dynamic development of cracks in the expansive soil during drying and wetting has been measured in the laboratory. The test results enable the development of the relationships between the cracks morphological parameters and the water content. In this study, the fractal model has been used to predict the soil-water characteristic curve (SWCC of the cracked soil, including the developmental process of the cracks. The cracked expansive soil has been considered as a crack-pore medium. A dual media flow model has been developed to simulate the seepage characteristics of the cracked expansive soil. The variations in pore water pressure at different part of the model are quite different due to the impact of the cracks. This study proves that seepage characteristics can be better predicted if the impact of cracks is taken into account.

  3. Fracture mechanical analysis of operational damaged piping

    International Nuclear Information System (INIS)

    Azodi, D.

    1987-01-01

    A series of crack arrest experiments by means of transverse wedge-loaded compact specimen was simulated numerically to verify the dynamic J-integral formulation, for applications in brittle and ductile regions as well as for two- and three-dimensional geometries. The transverse wedge-loaded compact crack arrest test is a widely used small scale test to evaluate the crack arrest toughness of nuclear pressure vessel steels. In this test method the crack attains a high velocity after initiation, then decelerates to a low velocity prior to arrest. The opening displacement remains constant during the crack propagation. Crack extension and the opening displacement behaviour were measured using a sensitive time scale. Regarding material toughness two entirely different kind of steels, HFX 760 (brittle) and 20 MnMoNi 55 (ductile) were considered. The testing temperature was the room temperature. The numerical analyses were performed by an extended version of the finite element code ADINA. Crack propagation was simulated by 'node shift and fixity release' procedure. Discussions in this report are, among others, directed to the: Numerical stability of different J-integral contours during the fast crack propagation and comparison between the static approach, dynamic finite element analyses and experimental results for crack initiation toughness and arrest toughness. The numerical simulation results and experimental data were in close agreement. The achieved results confirm that the dynamic J-integral formulation is able to describe the rapid crack propagation and the crack arrest in steel components sufficiently. (orig.) [de

  4. Confocal examination of subsurface cracking in ceramic materials.

    Science.gov (United States)

    Etman, Maged K

    2009-10-01

    The original ceramic surface finish and its microstructure may have an effect on crack propagation. The purpose of this study was to investigate the relation between crack propagation and ceramic microstructure following cyclic fatigue loading, and to qualitatively evaluate and quantitatively measure the surface and subsurface crack depths of three types of ceramic restorations with different microstructures using a Confocal Laser Scanning Microscope (CLSM) and Scanning Electron Microscope (SEM). Twenty (8 x 4 x 2 mm(3)) blocks of AllCeram (AC), experimental ceramic (EC, IPS e.max Press), and Sensation SL (SSL) were prepared, ten glazed and ten polished of each material. Sixty antagonist enamel specimens were made from the labial surfaces of permanent incisors. The ceramic abraders were attached to a wear machine, so that each enamel specimen presented at 45 degrees to the vertical movement of the abraders, and immersed in artificial saliva. Wear was induced for 80K cycles at 60 cycles/min with a load of 40 N and 2-mm horizontal deflection. The specimens were examined for cracks at baseline, 5K, 10K, 20K, 40K, and 80K cycles. Twenty- to 30-microm deep subsurface cracking appeared in SSL, with 8 to 10 microm in AC, and 7 microm close to the margin of the wear facets in glazed EC after 5K cycles. The EC showed no cracks with increasing wear cycles. Seventy-microm deep subsurface cracks were detected in SSL and 45 microm in AC after 80K cycles. Statistically, there was significant difference among the three materials (p 0.05) in crack depth within the same ceramic material with different surface finishes. The ceramic materials with different microstructures showed different patterns of subsurface cracking.

  5. Infectious complications after out-of-hospital cardiac arrest-A comparison between two target temperatures

    DEFF Research Database (Denmark)

    Dankiewicz, Josef; Nielsen, Niklas; Linder, Adam

    2017-01-01

    -to-treat population. Five-hundred patients (53%) developed pneumonia, severe sepsis or septic shock which was associated with mortality in multivariate analysis (Hazard ratio [HR] 1.39; 95%CI 1.13-1.70; p=0.001). There was no statistically significant difference in the incidence of infectious complications between......BACKGROUND: It has been suggested that target temperature management (TTM) increases the probability of infectious complications after cardiac arrest. We aimed to compare the incidence of pneumonia, severe sepsis and septic shock after out-of-hospital cardiac arrest (OHCA) in patients with two...... complications were recorded daily during the ICU-stay. Pneumonia, severe sepsis and septic shock were considered infectious complications. Procalcitonin (PCT) and C-reactive-protein (CRP) levels were measured at 24h, 48h and 72h after cardiac arrest. RESULTS: There were 939 patients in the modified intention...

  6. Nominally brittle cracks in inhomogeneous solids: From microstructural disorder to continuum-level scale

    Directory of Open Access Journals (Sweden)

    Jonathan eBarés

    2014-11-01

    Full Text Available We analyze the intermittent dynamics of cracks in heterogeneous brittle materials and the roughness of the resulting fracture surfaces by investigating theoretically and numerically crack propagation in an elastic solid of spatially-distributed toughness. The crack motion split up into discrete jumps, avalanches, displaying scale-free statistical features characterized by universal exponents. Conversely, the ranges of scales are non-universal and the mean avalanche size and duration depend on the loading microstructure and specimen parameters according to scaling laws which are uncovered. The crack surfaces are found to be logarithmically rough. Their selection by the fracture parameters is formulated in term of scaling laws on the structure functions measured on one-dimensional roughness profiles taken parallel and perpendicular to the direction of crack growth.

  7. A TESSELLATION MODEL FOR CRACK PATTERNS ON SURFACES

    Directory of Open Access Journals (Sweden)

    Werner Nagel

    2011-05-01

    Full Text Available This paper presents a model of random tessellations that reflect several features of crack pattern. There are already several theoretical results derivedwhich indicate that thismodel can be an appropriate referencemodel. Some potential applications are presented in a tentative statistical study.

  8. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation - An In vitro Study.

    Science.gov (United States)

    Devale, Madhuri R; Mahesh, M C; Bhandary, Shreetha

    2017-01-01

    Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files significantly more number of cracks were seen at WL than

  9. Runway Arrested Landing Site (RALS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Runway Arrested Landing Site includes an underground complex located on a Mod 2, Mod 3, and Mod 3+ arresting gear and are located under the runway and accurately...

  10. Crack detecting method

    International Nuclear Information System (INIS)

    Narita, Michiko; Aida, Shigekazu

    1998-01-01

    A penetration liquid or a slow drying penetration liquid prepared by mixing a penetration liquid and a slow drying liquid is filled to the inside of an artificial crack formed to a member to be detected such as of boiler power generation facilities and nuclear power facilities. A developing liquid is applied to the periphery of the artificial crack on the surface of a member to be detected. As the slow-drying liquid, an oil having a viscosity of 56 is preferably used. Loads are applied repeatedly to the member to be detected, and when a crack is caused to the artificial crack, the permeation liquid penetrates into the crack. The penetration liquid penetrated into the crack is developed by the developing liquid previously coated to the periphery of the artificial crack of the surface of the member to be detected. When a crack is caused, since the crack is developed clearly even if it is a small opening, the crack can be recognized visually reliably. (I.N.)

  11. Crack

    Science.gov (United States)

    ... spending time in a rehab facility or getting cognitive-behavioral therapy or other treatments. Right now, there are no medicines to treat a crack addiction. If you smoke crack, talking with a counselor ...

  12. Cardiac arrest risk standardization using administrative data compared to registry data.

    Directory of Open Access Journals (Sweden)

    Anne V Grossestreuer

    Full Text Available Methods for comparing hospitals regarding cardiac arrest (CA outcomes, vital for improving resuscitation performance, rely on data collected by cardiac arrest registries. However, most CA patients are treated at hospitals that do not participate in such registries. This study aimed to determine whether CA risk standardization modeling based on administrative data could perform as well as that based on registry data.Two risk standardization logistic regression models were developed using 2453 patients treated from 2000-2015 at three hospitals in an academic health system. Registry and administrative data were accessed for all patients. The outcome was death at hospital discharge. The registry model was considered the "gold standard" with which to compare the administrative model, using metrics including comparing areas under the curve, calibration curves, and Bland-Altman plots. The administrative risk standardization model had a c-statistic of 0.891 (95% CI: 0.876-0.905 compared to a registry c-statistic of 0.907 (95% CI: 0.895-0.919. When limited to only non-modifiable factors, the administrative model had a c-statistic of 0.818 (95% CI: 0.799-0.838 compared to a registry c-statistic of 0.810 (95% CI: 0.788-0.831. All models were well-calibrated. There was no significant difference between c-statistics of the models, providing evidence that valid risk standardization can be performed using administrative data.Risk standardization using administrative data performs comparably to standardization using registry data. This methodology represents a new tool that can enable opportunities to compare hospital performance in specific hospital systems or across the entire US in terms of survival after CA.

  13. Multi-cracking in uniaxial and biaxial fatigue of 304L stainless steel

    International Nuclear Information System (INIS)

    Rupil, J.

    2012-01-01

    When a mechanical part is subjected to a repeated mechanical stress, it may be damaged after a number of cycles by several cracks initiation and propagation of a main crack. This is the phenomenon of fatigue damage. The thesis deals specifically with possible damage to some components of nuclear plants due to thermal fatigue. Unlike conventional mechanical fatigue damage where a main crack breaks the part, the thermal fatigue damage usually results in the appearance of a surface crack network. Two aspects are discussed in the thesis. The first is the experimental study of fatigue multiple cracking stage also called multi-cracking. Two mechanical test campaigns with multi-cracking detection by digital image correlation were conducted. These campaigns involve uniaxial and equi-biaxial mechanical loads in tension/compression without mean stress. This work allows to monitor and to observe the evolution of different networks of cracks through mechanical solicitations. The second is the numerical simulation of the phenomenon of fatigue damage. Several types of model are used (stochastic, probabilistic, cohesive finite elements). The experimental results have led to identify a multiple crack initiation law in fatigue which is faced with the numerical results. This comparison shows the relevance of the use of an analytical probabilistic model to find statistical results on the density of cracks that can be initiated with thermal and mechanical fatigue loadings. (author) [fr

  14. Crack shape developments and leak rates for circumferential complex-cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brickstad, B.; Bergman, M. [SAQ Inspection Ltd., Stockholm (Sweden)

    1997-04-01

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  15. Effect of Instrumentation Length and Instrumentation Systems: Hand Versus Rotary Files on Apical Crack Formation – An In vitro Study

    Science.gov (United States)

    Mahesh, MC; Bhandary, Shreetha

    2017-01-01

    Introduction Stresses generated during root canal instrumentation have been reported to cause apical cracks. The smaller, less pronounced defects like cracks can later propagate into vertical root fracture, when the tooth is subjected to repeated stresses from endodontic or restorative procedures. Aim This study evaluated occurrence of apical cracks with stainless steel hand files, rotary NiTi RaCe and K3 files at two different instrumentation lengths. Materials and Methods In the present in vitro study, 60 mandibular premolars were mounted in resin blocks with simulated periodontal ligament. Apical 3 mm of the root surfaces were exposed and stained using India ink. Preoperative images of root apices were obtained at 100x using stereomicroscope. The teeth were divided into six groups of 10 each. First two groups were instrumented with stainless steel files, next two groups with rotary NiTi RaCe files and the last two groups with rotary NiTi K3 files. The instrumentation was carried out till the apical foramen (Working Length-WL) and 1 mm short of the apical foramen (WL-1) with each file system. After root canal instrumentation, postoperative images of root apices were obtained. Preoperative and postoperative images were compared and the occurrence of cracks was recorded. Descriptive statistical analysis and Chi-square tests were used to analyze the results. Results Apical root cracks were seen in 30%, 35% and 20% of teeth instrumented with K-files, RaCe files and K3 files respectively. There was no statistical significance among three instrumentation systems in the formation of apical cracks (p=0.563). Apical cracks were seen in 40% and 20% of teeth instrumented with K-files; 60% and 10% of teeth with RaCe files and 40% and 0% of teeth with K3 files at WL and WL-1 respectively. For groups instrumented with hand files there was no statistical significance in number of cracks at WL and WL-1 (p=0.628). But for teeth instrumented with RaCe files and K3 files

  16. Cardiac arrest

    Science.gov (United States)

    ... magnesium. These minerals help your heart's electrical system work. Abnormally high or low levels can cause cardiac arrest. Severe physical stress. Anything that causes a severe stress on your ...

  17. Daily Arrests

    Data.gov (United States)

    Montgomery County of Maryland — This dataset provides the public with arrest information from the Montgomery County Central Processing Unit (CPU) systems. The data presented is derived from every...

  18. Cardiac arrest – cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Basri Lenjani

    2014-01-01

    Conclusions: All survivors from cardiac arrest have received appropriate medical assistance within 10 min from attack, which implies that if cardiac arrest occurs near an institution health care (with an opportunity to provide the emergent health care the rate of survival is higher.

  19. Ductile crack growth simulation from near crack tip dissipated energy

    International Nuclear Information System (INIS)

    Marie, S.; Chapuliot, S.

    2000-01-01

    A method to calculate ductile tearing in both small scale fracture mechanics specimens and cracked components is presented. This method is based on an estimation of the dissipated energy calculated near the crack tip. Firstly, the method is presented. It is shown that a characteristic parameter G fr can be obtained, relevant to the dissipated energy in the fracture process. The application of the method to the calculation of side grooved crack tip (CT) specimens of different sizes is examined. The value of G fr is identified by comparing the calculated and experimental load line displacement versus crack extension curve for the smallest CT specimen. With this identified value, it is possible to calculate the global behaviour of the largest specimen. The method is then applied to the calculation of a pipe containing a through-wall thickness crack subjected to a bending moment. This pipe is made of the same material as the CT specimens. It is shown that it is possible to simulate the global behaviour of the structure including the prediction of up to 90-mm crack extension. Local terms such as the equivalent stress or the crack tip opening angle are found to be constant during the crack extension process. This supports the view that G fr controls the fields in the vicinity near the crack tip. (orig.)

  20. Sex Disparities in Arrest Outcomes for Domestic Violence

    Science.gov (United States)

    Hamilton, Melissa; Worthen, Meredith G. F.

    2011-01-01

    Domestic violence arrests have been historically focused on protecting women and children from abusive men. Arrest patterns continue to reflect this bias with more men arrested for domestic violence compared to women. Such potential gender variations in arrest patterns pave the way to the investigation of disparities by sex of the offender in…

  1. Crisis management during anaesthesia: cardiac arrest.

    Science.gov (United States)

    Runciman, W B; Morris, R W; Watterson, L M; Williamson, J A; Paix, A D

    2005-06-01

    Cardiac arrest attributable to anaesthesia occurs at the rate of between 0.5 and 1 case per 10 000 cases, tends to have a different profile to that of cardiac arrest occurring elsewhere, and has an in-hospital mortality of 20%. However, as individual practitioners encounter cardiac arrest rarely, the rapidity with which the diagnosis is made and the consistency of appropriate management varies considerably. To examine the role of a previously described core algorithm "COVER ABCD-A SWIFT CHECK", supplemented by a sub-algorithm for cardiac arrest, in the management of cardiac arrest occurring in association with anaesthesia. The potential performance of this structured approach for each the relevant incidents among the first 4000 reported to the Australian Incident Monitoring Study (AIMS) was compared with the actual management as reported by the anaesthetists involved. There were 129 reports of cardiac arrest associated with anaesthesia among the first 4000 AIMS incident reports. Identified aetiological factors were grouped into five categories: (1) anaesthetic technique (11 cases with this category alone; 32 with this and one or more of the other categories, representing 25% of all 129 cardiac arrests); (2) drug related (16; 32, 25%); (3) associated with surgical procedure (9; 29, 22%); (4) associated with pre-existing medical or surgical disease (30; 82, 64%); (5) unknown (8; 14, 11%). The "real life" presentation and management of cardiac arrest in association with anaesthesia differs substantially from that detailed in general published guidelines. Cardiac rhythms at the time were sinus bradycardia (23%); asystole (22%); tachycardia/ventricular tachycardia/ventricular fibrillation (14%); and normal (7%), with a further third unknown. Details of treatment were recorded in 110 reports; modalities employed included cardiac compression (72%); adrenaline (61%); 100% oxygen (58%); atropine (38%); intravenous fluids (25%), and electrical defibrillation (17%). There

  2. Extracorporeal membrane oxygenation for refractory cardiac arrest

    Directory of Open Access Journals (Sweden)

    Steven A Conrad

    2017-01-01

    Full Text Available Extracorporeal cardiopulmonary resuscitation (ECPR is the use of rapid deployment venoarterial (VA extracorporeal membrane oxygenation to support systemic circulation and vital organ perfusion in patients in refractory cardiac arrest not responding to conventional cardiopulmonary resuscitation (CPR. Although prospective controlled studies are lacking, observational studies suggest improved outcomes compared with conventional CPR when ECPR is instituted within 30-60 min following cardiac arrest. Adult and pediatric patients with witnessed in-hospital and out-of-hospital cardiac arrest and good quality CPR, failure of at least 15 min of conventional resuscitation, and a potentially reversible cause for arrest are candidates. Percutaneous cannulation where feasible is rapid and can be performed by nonsurgeons (emergency physicians, intensivists, cardiologists, and interventional radiologists. Modern extracorporeal systems are easy to prime and manage and are technically easy to manage with proper training and experience. ECPR can be deployed in the emergency department for out-of-hospital arrest or in various inpatient units for in-hospital arrest. ECPR should be considered for patients with refractory cardiac arrest in hospitals with an existing extracorporeal life support program, able to provide rapid deployment of support, and with resources to provide postresuscitation evaluation and management.

  3. On applicability of crack shape characterization rules for multiple in-plane surface cracks

    International Nuclear Information System (INIS)

    Kim, Jong Min; Choi, Suhn; Park, Keun Bae; Choi, Jae Boong; Huh, Nam Su

    2009-01-01

    The fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Regarding such an interaction effect, the relative distance between adjacent cracks, crack aspect ratio and loading condition were known to be important factors for multiple cracks, which affects the fracture mechanics assessment parameters. Although several guidance (ASME Sec. XI, BS7910, British Energy R6 and API RP579) on a crack interaction effect (crack combination rule) have been proposed and used for assessing the interaction effect, each guidance provides different rules for combining multiple surface cracks into a single surface crack. Based on the systematic elastic and elastic-plastic finite element analyses, the present study investigated the acceptability of the crack combination rules provided in the existing guidance, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed. To quantify the interaction effect, the elastic stress intensity factor and elastic-plastic J-integral along the crack front were used. As for the loading condition, only axial tension was considered. As a result, BS7910 seems to provide the most relevant crack combination rule for in-plane dual surface cracks, whereas API RP579 provides the most conservative results. In particular, ASME Sec. XI still seems to have some room for a revision to shorten the critical distance between two adjacent cracks for a crack combination. The overall tendency of the elastic-plastic analyses results is identical to that of the elastic analyses results.

  4. Prevention of stress corrosion cracking in nuclear waste storage tanks

    International Nuclear Information System (INIS)

    Ondrejcin, R.S.

    1983-01-01

    At the Savannah River Plant, stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste is prevented by stress relief and specification of limits on waste composition and temperature. Actual cases of cracking have occurred in the primary steel shell of tanks designed and built before 1960 and were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also, as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh wastes, concentrations of the inhibitor ions are maintained within specific ranges to protect against nitrate cracking. The concentration and temperature range limits to prevent cracking were determined by a series of statistically designed experiments

  5. Sudden Cardiac Arrest during Participation in Competitive Sports.

    Science.gov (United States)

    Landry, Cameron H; Allan, Katherine S; Connelly, Kim A; Cunningham, Kris; Morrison, Laurie J; Dorian, Paul

    2017-11-16

    The incidence of sudden cardiac arrest during participation in sports activities remains unknown. Preparticipation screening programs aimed at preventing sudden cardiac arrest during sports activities are thought to be able to identify at-risk athletes; however, the efficacy of these programs remains controversial. We sought to identify all sudden cardiac arrests that occurred during participation in sports activities within a specific region of Canada and to determine their causes. In this retrospective study, we used the Rescu Epistry cardiac arrest database (which contains records of every cardiac arrest attended by paramedics in the network region) to identify all out-of-hospital cardiac arrests that occurred from 2009 through 2014 in persons 12 to 45 years of age during participation in a sport. Cases were adjudicated as sudden cardiac arrest (i.e., having a cardiac cause) or as an event resulting from a noncardiac cause, on the basis of records from multiple sources, including ambulance call reports, autopsy reports, in-hospital data, and records of direct interviews with patients or family members. Over the course of 18.5 million person-years of observation, 74 sudden cardiac arrests occurred during participation in a sport; of these, 16 occurred during competitive sports and 58 occurred during noncompetitive sports. The incidence of sudden cardiac arrest during competitive sports was 0.76 cases per 100,000 athlete-years, with 43.8% of the athletes surviving until they were discharged from the hospital. Among the competitive athletes, two deaths were attributed to hypertrophic cardiomyopathy and none to arrhythmogenic right ventricular cardiomyopathy. Three cases of sudden cardiac arrest that occurred during participation in competitive sports were determined to have been potentially identifiable if the athletes had undergone preparticipation screening. In our study involving persons who had out-of-hospital cardiac arrest, the incidence of sudden cardiac

  6. Subsurface metals fatigue cracking without and with crack tip

    Directory of Open Access Journals (Sweden)

    Andrey Shanyavskiy

    2013-07-01

    Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.

  7. Prehospital cardiac arrest survival and neurologic recovery.

    Science.gov (United States)

    Hillis, M; Sinclair, D; Butler, G; Cain, E

    1993-01-01

    Many studies of prehospital defibrillation have been conducted but the effects of airway intervention are unknown and neurologic follow-up has been incomplete. A non-randomized cohort prospective study was conducted to determine the effectiveness of defibrillation in prehospital cardiac arrest. Two ambulance companies in the study area developed a defibrillation protocol and they formed the experimental group. A subgroup of these patients received airway management with an esophageal obturator airway (EOA) or endotracheal intubation (ETT). The control group was composed of patients who suffered a prehospital cardiac arrest and did not receive prehospital defibrillation. All survivors were assessed for residual deficits using the Sickness Impact Profile (SIP) and the Dementia Rating Scale (DRS). A total of 221 patients were studied over a 32-month period. Both the experimental group (N = 161) and the control group (N = 60) were comparable with respect to age, sex distribution, and ambulance response time. Survival to hospital discharge was 2/60 (3.3%) in the control group and 12/161 (6.3%) in the experimental group. This difference is not statistically significant. Survival in the experimental group by airway management technique was basic airway support (3/76 3.9%), EOA (3/67 4.5%), and ETT (6/48 12.5%). The improved effect on survival by ETT management was statistically significant. Survivors had minor differences in memory, work, and recreation as compared to ischemic heart disease patients as measured by the SIP and DRS. No effect of defibrillation was found on survival to hospital discharge. However, endotracheal intubation improved survival in defibrillated patients. Survivors had a good functional outcome.

  8. The dentin-enamel junction and the fracture of human teeth

    Science.gov (United States)

    Imbeni, V.; Kruzic, J. J.; Marshall, G. W.; Marshall, S. J.; Ritchie, R. O.

    2005-03-01

    The dentin-enamel junction (DEJ), which is the interfacial region between the dentin and outer enamel coating in teeth, is known for its unique biomechanical properties that provide a crack-arrest barrier for flaws formed in the brittle enamel1. In this work, we re-examine how cracks propagate in the proximity of the DEJ, and specifically quantify, using interfacial fracture mechanics, the fracture toughness of the DEJ region. Careful observation of crack penetration through the interface and the new estimate of the DEJ toughness (~5 to 10 times higher than enamel but ~75% lower than dentin) shed new light on the mechanism of crack arrest. We conclude that the critical role of this region, in preventing cracks formed in enamel from traversing the interface and causing catastrophic tooth fractures, is not associated with the crack-arrest capabilities of the interface itself; rather, cracks tend to penetrate the (optical) DEJ and arrest when they enter the tougher mantle dentin adjacent to the interface due to the development of crack-tip shielding from uncracked-ligament bridging.

  9. Fracture mechanical materials characterisation

    International Nuclear Information System (INIS)

    Wallin, K.; Planman, T.; Nevalainen, M.

    1998-01-01

    The experimental fracture mechanics development has been focused on the determination of reliable lower-bound fracture toughness estimates from small and miniature specimens, in particular considering the statistical aspects and loading rate effects of fracture mechanical material properties. Additionally, materials aspects in fracture assessment of surface cracks, with emphasis on the transferability of fracture toughness data to structures with surface flaws have been investigated. Further a modified crack-arrest fracture toughness test method, to increase the effectiveness of testing, has been developed. (orig.)

  10. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)

    2013-08-15

    Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.

  11. Investigation of Helicopter Longeron Cracks

    Science.gov (United States)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  12. Arrested larval development in cattle nematodes.

    Science.gov (United States)

    Armour, J; Duncan, M

    1987-06-01

    Most economically important cattle nematodes are able to arrest their larval development within the host - entering a period of dormancy or hypobiosis. Arrested larvae have a low death rate, and large numbers can accumulate in infected cattle during the grazing season. Because of this, outbreaks of disease caused by such nematodes can occur at times when recent infection with the parasites could not have occurred, for example during winter in temperature northern climates when cattle are normally housed. The capacity to arrest is a heritable trait. It is seen as an adaptation by the parasite to avoid further development to its free-living stages during times when the climate is unsuitable for free-living survival. But levels of arrestment can vary markedly in different regions, in different cattle, and under different management regimes. Climatic factors, previous conditioning, host immune status, and farm management all seem to affect arrestment levels. In this article, James Armour and Mary Duncan review the biological basis of the phenomenon, and discuss the apparently conflicting views on how it is controlled.

  13. Crack growth prediction method considering interaction between multiple cracks. Growth of surface cracks of dissimilar size under cyclic tensile and bending load

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Miyokawa, Eiichi; Kikuchi, Masanori

    2011-01-01

    When multiple cracks approach one another, the stress intensity factor is likely to change due to the interaction of the stress field. This causes change in growth rate and shape of cracks. In particular, when cracks are in parallel position to the loading direction, the shape of cracks becomes non-planar. In this study, the complex growth of interacting cracks is evaluated by using the S-Version finite element method, in which local detailed finite element mesh (local mesh) is superposed on coarse finite element model (global mesh) representing the global structure. In order to investigate the effect of interaction on the growth behavior, two parallel surface cracks are subjected to cyclic tensile or bending load. It is shown that the smaller crack is shielded by larger crack due to the interaction and stops growing when the difference in size of two cracks is significant. Based on simulations of various conditions, a procedure and criteria for evaluating crack growth for fitness-for-service assessment is proposed. According to the procedure, the interaction is not necessary to be considered in the crack growth prediction when the difference in size of two cracks exceeds the criterion. (author)

  14. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    International Nuclear Information System (INIS)

    Han, Jeong Woo; Woo, Eun Taek; Han, Seung Ho

    2015-01-01

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%

  15. Estimation of Fatigue Crack Growth Behavior of Cracked Specimen Under Mixed-mode Loads

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jeong Woo [KIMM, Daejeon (Korea, Republic of); Woo, Eun Taek; Han, Seung Ho [Dong-A University, Busan (Korea, Republic of)

    2015-07-15

    To estimate the fatigue crack propagation behavior of compact tension shear (CTS) specimen under mixed-mode loads, crack path prediction theories and Tanaka’s equation were applied. The stress intensity factor at a newly created crack tip was calculated using a finite element method via ANSYS, and the crack path and crack increment were then obtained from the crack path prediction theories, Tanaka’s equation, and the Paris’ equation, which were preprogrammed in Microsoft Excel. A new method called the finite element crack tip updating method (FECTUM) was developed. In this method, the finite element method and Microsoft Excel are used to calculate the stress intensity factors and the crack path, respectively, at the crack tip per each crack increment. The developed FECTUM was applied to simulate the fatigue crack propagation of a single-edge notched bending (SENB) specimen under eccentric three-point bending loads. The results showed that the number of cycles to failure of the specimen obtained experimentally and numerically were in good agreement within an error range of less than 3%.

  16. Study of fatigue crack propagation in laminated metal composites alluminium 1100/alluminium 2024

    International Nuclear Information System (INIS)

    Tavares, R.I.

    1984-01-01

    A study has been made of fatigue crack propagation in laminated metal composites with different volume fraction of constituents. The composites were produced by hot rolling, combining 1100 and 2024 aluminum alloys in crack divider orientation. Mechanical and metallurgical properties of the composites and original alloys sheets have been evaluated. Paris type relationship, corresponding to stage II of fatigue crack propagation curves, has been determined by two different methods, wich have shown to be equivalent. A computer software in FORTRAN language was developed for all the mathematical manipulation of fatigue data including statistical analysis and graphics. (Author) [pt

  17. Detecting cracks in aircraft engine fan blades using vibrothermography nondestructive evaluation

    International Nuclear Information System (INIS)

    Gao, Chunwang; Meeker, William Q.; Mayton, Donna

    2014-01-01

    Inspection is an important part of many maintenance processes, especially for safety-critical system components. This work was motivated by the need to develop more effective methods to detect cracks in rotating components of aircraft engines. This paper describes the analysis of data from vibrothermography inspections on aircraft engine turbine blades. Separate but similar analysis were done for two different purposes. In both analyses, we fit statistical models with random effects to describe the crack-to-crack variability and the effect that the experimental variables have on the responses. In the first analysis, the purpose of the study was to find vibrothermography equipment settings that will provide good crack detection capability over the population of similar cracks in the particular kind of aircraft engine turbine blades that were inspected. Then, the fitted model was used to determine the test conditions where the probability of detection (POD) is expected to be high and probability of alarm is expected to be low. In our second analysis, crack size information was added and a similar model was fit. This model provides an estimate of POD as a function of crack size for specified test conditions. This function is needed as an input to models for planning in-service inspection intervals. - Highlights: • Developed experimental design methods to optimize the inspection parameters for a vibrothermography inspection system. • Used mixed effects modeling to describe crack-to-crack variability. • Fit an extended model to provide estimates of the probability of detection as a function of crack length. • Investigated the coverage probability of confidence intervals for probability of detection

  18. Evaluation of crack interaction effect for in-plane surface cracks using elastic finite element analyses

    International Nuclear Information System (INIS)

    Huh, Nam Su; Choi, Suhn; Park, Keun Bae; Kim, Jong Min; Choi, Jae Boong; Kim, Young Jin

    2008-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters, such as the elastic stress intensity factor and the elastic-plastic J-integral, for a surface crack can be significantly affected by adjacent cracks. Such a crack interaction effect due to multiple cracks can magnify the fracture mechanics assessment parameters. There are many factors to be considered, for instance the relative distance between adjacent cracks, crack shape and loading condition, to quantify a crack interaction effect on the fracture mechanics assessment parameters. Thus, the current guidance on a crack interaction effect (crack combination rule), including ASME Sec. XI, BS7910, British Energy R6 and API RP579, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates a crack interaction effect by evaluating the elastic stress intensity factor of adjacent surface cracks in a plate along the crack front through detailed 3-dimensional elastic finite element analyses. The effects of the geometric parameters, the relative distance between cracks and the crack shape, on the stress intensity factor are systematically investigated. As for the loading condition, only axial tension is considered. Based on the elastic finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks in a plate were discussed

  19. Crack-opening area calculations for circumferential through-wall pipe cracks

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, K.; Zahoor, A.

    1988-08-01

    This report describes the estimation schemes for crack opening displacement (COD) of a circumferential through-wall crack, then compares the COD predictions with pipe experimental data. Accurate predictions for COD are required to reliably predict the leak rate through a crack in leak-before-break applications.

  20. Crack-opening area calculations for circumferential through-wall pipe cracks

    International Nuclear Information System (INIS)

    Kishida, K.; Zahoor, A.

    1988-08-01

    This report describes the estimation schemes for crack opening displacement (COD) of a circumferential through-wall crack, then compares the COD predictions with pipe experimental data. Accurate predictions for COD are required to reliably predict the leak rate through a crack in leak-before-break applications

  1. A model of survival following pre-hospital cardiac arrest based on the Victorian Ambulance Cardiac Arrest Register.

    Science.gov (United States)

    Fridman, Masha; Barnes, Vanessa; Whyman, Andrew; Currell, Alex; Bernard, Stephen; Walker, Tony; Smith, Karen L

    2007-11-01

    This study describes the epidemiology of sudden cardiac arrest patients in Victoria, Australia, as captured via the Victorian Ambulance Cardiac Arrest Register (VACAR). We used the VACAR data to construct a new model of out-of-hospital cardiac arrest (OHCA), which was specified in accordance with observed trends. All cases of cardiac arrest in Victoria that were attended by Victorian ambulance services during the period of 2002-2005. Overall survival to hospital discharge was 3.8% among 18,827 cases of OHCA. Survival was 15.7% among 1726 bystander witnessed, adult cardiac arrests of presumed cardiac aetiology, presenting in ventricular fibrillation or ventricular tachycardia (VF/VT), where resuscitation was attempted. In multivariate logistic regression analysis, bystander CPR, cardiac arrest (CA) location, response time, age and sex were predictors of VF/VT, which, in turn, was a strong predictor of survival. The same factors that affected VF/VT made an additional contribution to survival. However, for bystander CPR, CA location and response time this additional contribution was limited to VF/VT patients only. There was no detectable association between survival and age younger than 60 years or response time over 15min. The new model accounts for relationships among predictors of survival. These relationships indicate that interventions such as reduced response times and bystander CPR act in multiple ways to improve survival.

  2. Crack embryo formation before crack initiation and growth in high temperature water

    International Nuclear Information System (INIS)

    Arioka, Koji; Yamada, Takuyo; Terachi, Takumi; Miyamoto, Tomoki

    2008-01-01

    Crack growth measurements were performed in high temperature water and in air to examine the role of creep on IGSCC growth using cold rolled non-sensitized Type316(UNS S31600), TT690 alloy, MA600 alloy, and Carbon steel (STPT42). In addition, crack initiation tests were performed also in high temperature water and in air using specially designed CT specimen. The obtained major results are as follows: (1) TT690 did crack in intergranularly in hydrogenated high temperature water if material is cold worked in heavily. (2) Cold worked carbon steel also cracked in intergranularly in dearated high temperature water. (3) Intergranular crack growth was recognized on cold worked 316, TT690, MA600, and carbon steel even in air which might be crack embryo of IGSCC. (4) Simple Arrhenius type temperature dependence was observed on IGSCC in high temperature water and creep crack growth in air. This suggested that intergranular crack growth rate was determined by some thermal activated reaction. (5) Vacancy condensation was recognized at just ahead of the crack tips of IGSCC and creep crack of cold worked steel. This showed that IGSCC and creep crack growth was controlled by same mechanism. (6) Clear evidence of vacancies condensation was recognized at just beneath the surface before crack initiation. This proved that crack did initiate as the result of diffusion of vacancies in the solid. And the incubation time seems to be controlled by the required time for the condensation of vacancies to the stress concentrated zone. (7) Diffusion of subsituational atoms was also driven by stress gradient. This is the important knowledge to evaluate the SCC initiation after long term operation in LWR's. Based on the observed results, IGSCC initiation and growth mechanism were proposed considering the diffusion process of cold worked induced vacancies. (author)

  3. Microstructural modelling of creep crack growth from a blunted crack

    NARCIS (Netherlands)

    Onck, P.R.; Giessen, E. van der

    1998-01-01

    The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the

  4. Crack-tip chemistry modeling of stage I stress corrosion cracking

    International Nuclear Information System (INIS)

    Jones, R.H.; Simonen, E.P.

    1991-10-01

    Stage I stress corrosion cracking usually exhibits a very strong K dependence with Paris law exponents of up to 30. 2 Model calculations indicate that the crack velocity in this regime is controlled by transport through a salt film and that the K dependence results from crack opening controlled salt film dissolution. An ionic transport model that accounts for both electromigration through the resistive salt film and Fickian diffusion through the aqueous solution was used for these predictions. Predicted crack growth rates are in excellent agreement with measured values for Ni with P segregated to the grain boundaries and tested in IN H 2 SO 4 at +900 mV. This salt film dissolution may be applicable to stage I cracking of other materials

  5. Sudden Cardiac Arrest (SCA) Risk Assessment

    Science.gov (United States)

    ... HRS Find a Specialist Share Twitter Facebook SCA Risk Assessment Sudden Cardiac Arrest (SCA) occurs abruptly and without ... people of all ages and health conditions. Start Risk Assessment The Sudden Cardiac Arrest (SCA) Risk Assessment Tool ...

  6. Analysis of short and long crack behavior and single overload effect by crack opening stress

    International Nuclear Information System (INIS)

    Song, Sam Hong; Lee, Kyeong Ro

    1999-01-01

    The study analyzed the behaviors of short and long crack as well as the effect of single tensile overload on the crack behaviors by using fatigue crack opening behavior. Crack opening stress is measured by an elastic compliance method which may precisely and continuously provide many data using strain gages during experiment. The unusual growth behaviors of short crack and crack after the single tensile overload applied, was explained by the variations of crack opening stress. In addition, fatigue crack growth rate was expressed as a linear form for short crack as for long crack by using effective stress intensity factor range as fracture mechanical parameter, which is based on crack closure concept. And investigation is performed with respect to the relation between plastic zone size formed at the crack tip and crack retardation, crack length and the number of cycles promoted or retarded, and the overload effect on the fatigue life

  7. Fatigue crack growth from a cracked elastic particle into a ductile matrix

    NARCIS (Netherlands)

    Groh, S.; Olarnrithinun, S.; Curtin, W. A.; Needleman, A.; Deshpande, V. S.; Van der Giessen, E.

    2008-01-01

    The monotonic and cyclic crack growth rate of cracks is strongly influenced by the microstructure. Here, the growth of cracks emanating from pre-cracked micron-scale elastic particles and growing into single crystals is investigated, with a focus on the effects of (i) plastic confinement due to the

  8. Improvement of elastic-plastic fatigue crack growth evaluation method. 2. Crack opening behavior

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yukio [Central Research Inst. of Electric Power Industry, Tokyo (Japan)

    2001-05-01

    Evaluation of crack growth behavior under cyclic loading is often required in the structural integrity assessment of cracked components. Closing and re-opening of the crack give large influence on crack growth rate through the change of fracture mechanics parameters. Based on the finite element analysis for a center-cracked plate, dependency of crack opening ratio on applied stress range and mean stress was examined. Simple formulae for representing the results were derived for plane stress and plane strain conditions. (author)

  9. Laser photothermal non-destructive metrology of cracks in un-sintered powder metallurgy manufactured automotive transmission sprockets

    International Nuclear Information System (INIS)

    Tolev, J; Mandelis, A

    2010-01-01

    A non-contact and non-intrusive method of revealing crack presence in un-sintered (green) automotive transmission parts (sprockets), manufactured by means of a powder metallurgy technology based on analysis of photo-thermal radiometric (PTR) signals and their statistical analysis was developed. The inspection methodology relies on the interaction of a modulated laser generated thermal wave with the potential crack and the resulting change in amplitude and phase of the detected signal [1-5]. The crack existence at points in high stress regions of a group of green (unsintered) sprockets was evaluated through frequency scans. The results were validated by independent destructive cross-sectioning of the sprockets following sintering and polishing. Examination of the sectioned sprockets under a microscope at the locations where signal changes was used for correlation with the PTR signals. Statistical analysis confirmed the capabilities of the method to detect the presence of hairline cracks (∼5 - 10 μm size) with excellent sensitivity (91%) and good accuracy (78%) and specificity (61%). This measurement technique and the associated statistical analysis can be used as a simple and reliable on-line inspection methodology of industrial powder metallurgy manufactured steel products for non-destructive quality and feedback control of the parts forming process.

  10. Identification of cracks in thick beams with a cracked beam element model

    Science.gov (United States)

    Hou, Chuanchuan; Lu, Yong

    2016-12-01

    The effect of a crack on the vibration of a beam is a classical problem, and various models have been proposed, ranging from the basic stiffness reduction method to the more sophisticated model involving formulation based on the additional flexibility due to a crack. However, in the damage identification or finite element model updating applications, it is still common practice to employ a simple stiffness reduction factor to represent a crack in the identification process, whereas the use of a more realistic crack model is rather limited. In this paper, the issues with the simple stiffness reduction method, particularly concerning thick beams, are highlighted along with a review of several other crack models. A robust finite element model updating procedure is then presented for the detection of cracks in beams. The description of the crack parameters is based on the cracked beam flexibility formulated by means of the fracture mechanics, and it takes into consideration of shear deformation and coupling between translational and longitudinal vibrations, and thus is particularly suitable for thick beams. The identification procedure employs a global searching technique using Genetic Algorithms, and there is no restriction on the location, severity and the number of cracks to be identified. The procedure is verified to yield satisfactory identification for practically any configurations of cracks in a beam.

  11. Production of steam cracking feedstocks by mild cracking of plastic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Angyal, Andras; Miskolczi, Norbert; Bartha, Laszlo; Tungler, Antal; Nagy, Lajos; Vida, Laszlo; Nagy, Gabor

    2010-11-15

    In this work the utility of new possible petrochemical feedstocks obtained by plastic waste cracking has been studied. The cracking process of polyethylene (PE), polyethylene-polypropylene (PEPP) and polyethylene-polystyrene (PEPS) has been carried out in a pilot scale tubular reactor. In this process mild reaction parameters has been applied, with the temperature of 530 C and the residence time of 15 min. The produced hydrocarbon fractions as light- and middle distillates were tested by using a laboratory steam cracking unit. It was concluded that the products of the mild cracking of plastic wastes could be applied as petrochemical feedstocks. Based on the analytical data it was determined that these liquid products contained in significant concentration (25-50 wt.%) of olefin hydrocarbons. Moreover the cracking of polystyrene containing raw material resulted in liquid products with significant amounts of aromatic hydrocarbons too. The steam cracking experiments proved that the products obtained by PE and PEPP cracking resulted in similar or better ethylene and propylene yields than the reference samples, however the aromatic content of PEPS products reduced the ethylene and propylene yields. (author)

  12. The initiation of environmentally-assisted cracking in semi-elliptical surface cracks

    International Nuclear Information System (INIS)

    James, L.A.

    1997-01-01

    A criterion to predict under what conditions EAC would Initiate In cracks In a high-sulfur steel in contact with low-oxygen water was recently proposed by Wire and U. This EAC Initiation Criterion was developed using transient analyses for the diffusion of sulfides plus experimental test results. The experiments were conducted mainly on compact tension-type specimens with initial crack depths of about 2.54 mm. The present paper expands upon the work of Wire and U by presenting results for significantly deeper initial semi-elliptical surface cracks. In addition, in one specimen, the surface crack penetrated weld-deposited cladding into the high-sulfur steel. The results for the semi-elliptical surface cracks agreed quite well with the EAC Initiation Criterion, and provide confirmation of the applicability of the criterion to crack configurations with more restricted access to water

  13. Association of National Initiatives to Improve Cardiac Arrest Management With Rates of Bystander Intervention and Patient Survival After Out-of-Hospital Cardiac Arrest

    DEFF Research Database (Denmark)

    Wissenberg, Mads; Lippert, Freddy K; Folke, Fredrik

    2013-01-01

    resuscitation was attempted were identified between 2001 and 2010 in the nationwide Danish Cardiac Arrest Registry. Of 29 111 patients with cardiac arrest, we excluded those with presumed noncardiac cause of arrest (n = 7390) and those with cardiac arrests witnessed by emergency medical services personnel (n...

  14. Fracture mechanical investigations about crack resistance behaviour in non-transforming ceramics in particular aluminum oxide

    International Nuclear Information System (INIS)

    Baer, K.K.O.; Kleist, G.; Nickel, H.

    1991-03-01

    The aim of this work is the clearification of R-curve behaviour of non-transforming ceramics, in particular aluminum oxide exhibiting incrystalline fracture. Investigations of crack growth in controlled bending experiments were performed using 3-Pt- and 4-Pt-bending samples of differing sizes under inert conditions. The fracture experiments were realized using several loading techniques, for example constant and varying displacement rates, load rupture (P = 0) and relaxation tests (v = 0). In addition unloading and reloading experiments were performed to investigate hysteresis curves and residual displacements in accordance with R-curve behaviour. During the crack-growth experiments, the crack extension was measured in situ using a high resolution immersion microscope. With this technique, the fracture processes near the crack tip (crack activity zone) was observed as well. The crack resistance as a function of crack extension (R-curve) was determined using differing calculation methods. All of the methods used resulted in approximately identical R-curves, within the statistical error band. The crack resistance at initiation R 0 was 20 N/m. The crack resistance increased during approximately 3 mm of growth to a maximum of 90 N/m. A decrease in the crack resistance was determined for large a/W (crack length normalized with sample height) values, independant of the calculation methods. The R-curve behaviour was interpreted as due to a functional resistance behind the observed crack tip, which arises from a volume dilatation in the crack activity zone while the crack proceeds. (orig.) [de

  15. Image-based method for monitoring of crack opening on masonry and concrete using Mobile Platform

    Directory of Open Access Journals (Sweden)

    A. P. Martins

    Full Text Available This paper proposes an automatic method based on the computing vision, implemented in a mobile platform, to inspect cracks in masonry and concrete. The developed algorithm for image processing performs this task from images of the cracks evolution. The contribution of this paper is the development of a mobile tool with quick response aiming to assist technicians in periodic visits when monitoring the crack opening in masonry and concrete. The obtained results show, successfully, the dimensional alterations of cracks detected by mobile phone in a faster and accurate way compared with the conventional measurement technique. Regardless the irregular shape of the cracks, the proposed method has the advantage of producing results statistically significant in measurement repetition by decreasing the subjectivity inherent to manual measurement technique.

  16. Cracked gas generator

    Energy Technology Data Exchange (ETDEWEB)

    Abthoff, J; Schuster, H D; Gabler, R

    1976-11-17

    A small cracked-gas generator in a vehicle driven, in particular, by an air combustion engine has been proposed for the economic production of the gases necessary for low toxicity combustion from diesel fuel. This proceeds via catalytic crack-gasification and exploitation of residual heat from exhaust gases. This patent application foresees the insertion of one of the catalysts supporting the cracked-gas reaction in a container through which the reacting mixture for cracked-gas production flows in longitudinal direction. Further, air ducts are embedded in the catalyst through which exhaust gases and fresh air flow in counter direction to the cracked gas flow in the catalyst. The air vents are connected through heat conduction to the catalyst. A cracked gas constituting H/sub 2//CO/CO/sub 2//CH/sub 4/ and H/sub 2/O can be produced from the air-fuel mixture using appropriate catalysts. By the addition of 5 to 25% of cracked gas to the volume of air drawn in by the combustion engine, a more favourable combustion can be achieved compared to that obtained under normal combustion conditions.

  17. Quarter elliptical crack growth using three dimensional finite element method and crack closure technique

    Energy Technology Data Exchange (ETDEWEB)

    Gozin, Mohammad-Hosein; Aghaie-Khafri, Mehrdad [K. N. Toosi University of Technology, Tehran (Korea, Republic of)

    2014-06-15

    Shape evolution of a quarter-elliptical crack emanating from a hole is studied. Three dimensional elastic-plastic finite element analysis of the fatigue crack closure was considered and the stress intensity factor was calculated based on the duplicated elastic model at each crack tip node. The crack front node was advanced proportional to the imposed effective stress intensity factor. Remeshing was applied at each step of the crack growth and solution mapping algorithm was considered. Crack growth retardation at free surfaces was successfully observed. A MATLAB-ABAQUS interference code was developed for the first time to perform crack growth on the basis of crack closure. Simulation results indicated that crack shape is sensitive to the remeshing strategy. Predictions based on the proposed models were in good agreement with Carlson's experiments results.

  18. C.A.U.S.E.: Cardiac arrest ultra-sound exam--a better approach to managing patients in primary non-arrhythmogenic cardiac arrest.

    Science.gov (United States)

    Hernandez, Caleb; Shuler, Klaus; Hannan, Hashibul; Sonyika, Chionesu; Likourezos, Antonios; Marshall, John

    2008-02-01

    Cardiac arrest is a condition frequently encountered by physicians in the hospital setting including the Emergency Department, Intensive Care Unit and medical/surgical wards. This paper reviews the current literature involving the use of ultrasound in resuscitation and proposes an algorithmic approach for the use of ultrasound during cardiac arrest. At present there is the need for a means of differentiating between various causes of cardiac arrest, which are not a direct result of a primary ventricular arrhythmia. Identifying the cause of pulseless electrical activity or asystole is important as the underlying cause is what guides management in such cases. This approach, incorporating ultrasound to manage cardiac arrest aids in the diagnosis of the most common and easily reversible causes of cardiac arrest not caused by primary ventricular arrhythmia, namely; severe hypovolemia, tension pneumothorax, cardiac tamponade, and massive pulmonary embolus. These four conditions are addressed in this paper using four accepted emergency ultrasound applications to be performed during resuscitation of a cardiac arrest patient with the aim of determining the underlying cause of a cardiac arrest. Identifying the underlying cause of cardiac arrest represents the one of the greatest challenges of managing patients with asystole or PEA and accurate determination has the potential to improve management by guiding therapeutic decisions. We include several clinical images demonstrating examples of cardiac tamponade, massive pulmonary embolus, and severe hypovolemia secondary to abdominal aortic aneurysm. In conclusion, this protocol has the potential to reduce the time required to determine the etiology of a cardiac arrest and thus decrease the time between arrest and appropriate therapy.

  19. A case of thyroid storm with cardiac arrest

    Directory of Open Access Journals (Sweden)

    Nakashima Y

    2014-05-01

    Full Text Available Yutaka Nakashima,1 Tsuneaki Kenzaka,2 Masanobu Okayama,3 Eiji Kajii31Department for Support of Rural Medicine, Yamaguchi Grand Medical Center, 2Division of General Medicine, Center for Community Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan; 3Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University School of Medicine, Shimotsuke, JapanAbstract: A 23-year-old man became unconscious while jogging. He immediately received basic life support from a bystander and was transported to our hospital. On arrival, his spontaneous circulation had returned from a state of ventricular fibrillation and pulseless electrical activity. Following admission, hyperthyroidism led to a suspicion of thyroid storm, which was then diagnosed as a possible cause of the cardiac arrest. Although hyperthyroidism-induced cardiac arrest including ventricular fibrillation is rare, it should be considered when diagnosing the cause of treatable cardiac arrest.Keywords: hyperthyroidism, ventricular fibrillation, treatable cardiac arrest, cardiac arrest, cardiopulmonary arrest

  20. Role of plasticity-induced crack closure in fatigue crack growth

    Directory of Open Access Journals (Sweden)

    Jesús Toribio

    2013-07-01

    Full Text Available The premature contact of crack surfaces attributable to the near-tip plastic deformations under cyclic loading, which is commonly referred to as plasticity induced crack closure (PICC, has long been focused as supposedly controlling factor of fatigue crack growth (FCG. Nevertheless, when the plane-strain near-tip constraint is approached, PICC lacks of straightforward evidence, so that its significance in FCG, and even the very existence, remain debatable. To add insights into this matter, large-deformation elastoplastic simulations of plane-strain crack under constant amplitude load cycling at different load ranges and ratios, as well as with an overload, have been performed. Modeling visualizes the Laird-Smith conceptual mechanism of FCG by plastic blunting and re-sharpening. Simulation reproduces the experimental trends of FCG concerning the roles of stress intensity factor range and overload, but PICC has never been detected. Near-tip deformation patterns discard the filling-in a crack with material stretched out of the crack plane in the wake behind the tip as supposed PICC origin. Despite the absence of closure, load-deformation curves appear bent, which raises doubts about the trustworthiness of closure assessment from the compliance variation. This demonstrates ambiguities of PICC as a supposedly intrinsic factor of FCG and, by implication, favors the stresses and strains in front of the crack tip as genuine fatigue drivers.

  1. The Effects of Salt Water on the Slow Crack Growth of Soda Lime Silicate Glass

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth parameters of soda-lime silicate were measured in distilled and salt water of various concentrations in order to determine if stress corrosion susceptibility is affected by the presence of salt and the contaminate formation of a weak sodium film. Past research indicates that solvents effect the rate of crack growth, however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the slow crack growth parameters A and n. However, for typical engineering purposes, the effect can be ignored.

  2. The fatigue life and fatigue-crack-through-thickness behavior of a surface-cracked plate, 3

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Matsui, Kentaro; Ando, Kotoji; Ogura, Nobukazu

    1989-01-01

    The LBB (leak-before-break) design is one of the most important subjects for the evaluation and the assurance of safety in pressure vessels, piping systems, LNG carriers and various other structures. In the LBB design, it is necessary to evaluate precisely the lifetime of steel plate. Furthermore, the change in crack shape that occurs during the propagation after through thickness is of paramount importance. For this reason, in a previous report, the authors proposed a simplified evaluation model for the stress intensity factor after cracking through thickness. Using this model, the crack propagation behavior, crack-opening displacement and crack shape change of surface-cracked smooth specimens and surface-cracked specimens with a stress concentration were evaluated quantitatively. The present study was also done to investigate the fatigue crack propagation behavior of surface cracks subjected to combined tensile and bending stress. Estimation of fatigue crack growth was done using the Newman-Raju formula before through thickness, and using formula (7) and (8) after through thickness. Crack length a r at just through thickness increases with increasing a bending stress. Calculated fatigue crack shape showed very good agreement with experimental one. It was also found that particular crack growth behavior and change in crack shape after cracking through thickness can be explained quantitatively using the K value based on Eqs. (7) and (8). (author)

  3. Strength of tensed and compressed concrete segments in crack spacing under short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Galyautdinov Zaur

    2018-01-01

    Full Text Available Formation of model describing dynamic straining of reinforced concrete requires taking into account the basic aspects influencing the stress-strain state of structures. Strength of concrete segments in crack spacing is one of the crucial aspects that affect general strain behavior of reinforced concrete. Experimental results demonstrate significant change in strength of tensed and compressed concrete segments in crack spacing both under static and under dynamic loading. In this case, strength depends on tensile strain level and the slope angle of rebars towards the cracks direction. Existing theoretical and experimental studies estimate strength of concrete segments in crack spacing under static loading. The present work presents results of experimental and theoretical studies of dynamic strength of plates between cracks subjected to compression-tension. Experimental data was analyzed statistically; the dependences were suggested to describe dynamic strength of concrete segments depending on tensile strain level and slope angle of rebars to cracks direction.

  4. Performance of Surge Arrester Installation to Enhance Protection

    Directory of Open Access Journals (Sweden)

    Mbunwe Muncho Josephine

    2017-01-01

    Full Text Available The effects of abnormal voltages on power system equipment and appliances in the home have raise concern as most of the equipments are very expensive. Each piece of electrical equipment in an electrical system needs to be protected from surges. To prevent damage to electrical equipment, surge protection considerations are paramount to a well designed electrical system. Lightning discharges are able to damage electric and electronic devices that usually have a low protection level and these are influenced by current or voltage pulses with a relatively low energy, which are induced by lightning currents. This calls for proper designed and configuration of surge arresters for protection on the particular appliances. A more efficient non-linear surge arrester, metal oxide varistor (MOV, should be introduced to handle these surges. This paper shows the selection of arresters laying more emphasis on the arresters for residential areas. In addition, application and installation of the arrester will be determined by the selected arrester. This paper selects the lowest rated surge arrester as it provides insulation when the system is under stress. It also selected station class and distribution class of arresters as they act as an open circuit under normal system operation and to bring the system back to its normal operation mode as the transient voltage is suppressed. Thus, reduces the risk of damage, which the protection measures can be characterized, by the reduction value of the economic loss to an acceptable level.

  5. On fatigue crack growth in ductile materials by crack-tip blunting

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2004-01-01

    One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during...

  6. Crack layer theory

    Science.gov (United States)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  7. Characterization of Mitochondrial Injury after Cardiac Arrest (COMICA)

    Science.gov (United States)

    Donnino, Michael W.; Liu, Xiaowen; Andersen, Lars W.; Rittenberger, Jon C.; Abella, Benjamin S.; Gaieski, David F.; Ornato, Joseph P.; Gazmuri, Raúl J.; Grossestreur, Anne V.; Cocchi, Michaen N.; Abbate, Antonio; Uber, Amy; Clore, John; Peberdy, Mary Anne; Callaway, Clifton

    2017-01-01

    Introduction Mitochondrial injury post-cardiac arrest has been described in pre-clinical settings but the extent to which this injury occurs in humans remains largely unknown. We hypothesized that increased levels of mitochondrial biomarkers would be associated with mortality and neurological morbidity in post-cardiac arrest subjects. Methods We performed a prospective multicenter study of post-cardiac arrest subjects. Inclusion criteria were comatose adults who suffered an out-of-hospital cardiac arrest. Mitochondrial biomarkers were measured at 0, 12, 24, 36 and 48 hours after return of spontaneous circulation as well as in healthy controls. Results Out of 111 subjects enrolled, 102 had evaluable samples at 0 hours. Cardiac arrest subjects had higher baseline cytochrome c levels compared to controls (2.18 ng/mL [0.74, 7.74] vs. 0.16 ng/mL [0.03, 0.91], p<0.001), and subjects who died had higher 0 hours cytochrome c levels compared to survivors (3.66 ng/mL [1.40, 14.9] vs. 1.27 ng/mL [0.16, 2.37], p<0.001). There were significantly higher RNAase P (3.3 [1.2, 5.7] vs. 1.2 [0.8, 1.2], p<0.001) and B2M (12.0 [1.0, 22.9], vs. 0.6 [0.6, 1.3], p<0.001) levels in cardiac arrest subjects at baseline compared to the control subjects. There were no differences between survivors and non-survivors for mitochondrial DNA, nuclear DNA, or cell free DNA. Conclusions Cytochrome C was increased in post-cardiac arrest subjects compared to controls, and in post-cardiac arrest non-survivors compared to survivors. Nuclear DNA and cell free DNA was increased in plasma of post-cardiac arrest subjects. There were no differences in mitochondrial DNA, nuclear DNA, or cell free DNA between survivors and non-survivors. Mitochondrial injury markers showed mixed results in post-arrest period. Future research needs to investigate these differences. PMID:28126408

  8. Characterization of mitochondrial injury after cardiac arrest (COMICA).

    Science.gov (United States)

    Donnino, Michael W; Liu, Xiaowen; Andersen, Lars W; Rittenberger, Jon C; Abella, Benjamin S; Gaieski, David F; Ornato, Joseph P; Gazmuri, Raúl J; Grossestreuer, Anne V; Cocchi, Michael N; Abbate, Antonio; Uber, Amy; Clore, John; Peberdy, Mary Anne; Callaway, Clifton W

    2017-04-01

    Mitochondrial injury post-cardiac arrest has been described in pre-clinical settings but the extent to which this injury occurs in humans remains largely unknown. We hypothesized that increased levels of mitochondrial biomarkers would be associated with mortality and neurological morbidity in post-cardiac arrest subjects. We performed a prospective multicenter study of post-cardiac arrest subjects. Inclusion criteria were comatose adults who suffered an out-of-hospital cardiac arrest. Mitochondrial biomarkers were measured at 0, 12, 24, 36 and 48h after return of spontaneous circulation as well as in healthy controls. Out of 111 subjects enrolled, 102 had evaluable samples at 0h. Cardiac arrest subjects had higher baseline cytochrome c levels compared to controls (2.18ng/mL [0.74, 7.74] vs. 0.16ng/mL [0.03, 0.91], p<0.001), and subjects who died had higher 0h cytochrome c levels compared to survivors (3.66ng/mL [1.40, 14.9] vs. 1.27ng/mL [0.16, 2.37], p<0.001). There were significantly higher Ribonuclease P (RNaseP) (3.3 [1.2, 5.7] vs. 1.2 [0.8, 1.2], p<0.001) and Beta-2microglobulin (B2M) (12.0 [1.0, 22.9], vs. 0.6 [0.6, 1.3], p<0.001) levels in cardiac arrest subjects at baseline compared to the control subjects. There were no differences between survivors and non-survivors for mitochondrial DNA, nuclear DNA, or cell free DNA. Cytochrome c was increased in post- cardiac arrest subjects compared to controls, and in post-cardiac arrest non-survivors compared to survivors. Nuclear DNA and cell free DNA was increased in plasma of post-cardiac arrest subjects. There were no differences in mitochondrial DNA, nuclear DNA, or cell free DNA between survivors and non-survivors. Mitochondrial injury markers showed mixed results in the post-cardiac arrest period. Future research needs to investigate these differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Curvilinear crack layer propagation

    Science.gov (United States)

    Chudnovsky, Alexander; Chaoui, Kamel; Moet, Abdelsamie

    1987-01-01

    An account is given of an experiment designed to allow observation of the effect of damage orientation on the direction of crack growth in the case of crack layer propagation, using polystyrene as the model material. The direction of crack advance under a given loading condition is noted to be determined by a competition between the tendency of the crack to maintain its current direction and the tendency to follow the orientation of the crazes at its tip. The orientation of the crazes is, on the other hand, determined by the stress field due to the interaction of the crack, the crazes, and the hole. The changes in craze rotation relative to the crack define the active zone rotation.

  10. Nucleation and arrest of slow slip earthquakes: mechanisms and nonlinear simulations using realistic fault geometries and heterogeneous medium properties

    Science.gov (United States)

    Alves da Silva Junior, J.; Frank, W.; Campillo, M.; Juanes, R.

    2017-12-01

    Current models for slow slip earthquakes (SSE) assume a simplified fault embedded on a homogeneous half-space. In these models SSE events nucleate on the transition from velocity strengthening (VS) to velocity weakening (VW) down dip from the trench and propagate towards the base of the seismogenic zone, where high normal effective stress is assumed to arrest slip. Here, we investigate SSE nucleation and arrest using quasi-static finite element simulations, with rate and state friction, on a domain with heterogeneous properties and realistic fault geometry. We use the fault geometry of the Guerrero Gap in the Cocos subduction zone, where SSE events occurs every 4 years, as a proxy for subduction zone. Our model is calibrated using surface displacements from GPS observations. We apply boundary conditions according to the plate convergence rate and impose a depth-dependent pore pressure on the fault. Our simulations indicate that the fault geometry and elastic properties of the medium play a key role in the arrest of SSE events at the base of the seismogenic zone. SSE arrest occurs due to aseismic deformations of the domain that result in areas with elevated effective stress. SSE nucleation occurs in the transition from VS to VW and propagates as a crack-like expansion with increased nucleation length prior to dynamic instability. Our simulations encompassing multiple seismic cycles indicate SSE interval times between 1 and 10 years and, importantly, a systematic increase of rupture area prior to dynamic instability, followed by a hiatus in the SSE occurrence. We hypothesize that these SSE characteristics, if confirmed by GPS observations in different subduction zones, can add to the understanding of nucleation of large earthquakes in the seismogenic zone.

  11. Crack Characterisation for In-service Inspection Planning - An Update

    Energy Technology Data Exchange (ETDEWEB)

    Waale, Jan [lnspecta Technology AB, Stockholm (Sweden)

    2006-05-15

    ; Mechanical fatigue; and Solidification cracking in weld metal. The evaluated parameters were divided into visually detectable and metallurgical parameters, which need to be evaluated from a cross-section. The visually detectable parameters are; location, orientation and shape in surface direction and finally the number of cracks in the cracked region. The metallurgical parameters are; orientation and shape in the through thickness direction, macroscopic branching, crack tip radius, crack surface roughness, crack width and finally discontinuous appearance. The morphology parameters were statistically processed and the results are presented as minimum, maximum. mean, median and scatter values for each data group, both in tables and in various graphs. Finally each morphology parameter is compared between the seven data groups. A brief description of typical characteristics of each data group is given below. Most IGSCC develop next to welds with straight or winding cracks oriented almost parallel to the weld. Single cracking is most common but occasionally two cracks are formed on each side of the weld. In the through thickness direction IGSCC is typically winding or lightly bend and macroscopic branching is rare. The surface roughness is normally on a grain size magnitude and the cracks are particularly narrow providing secondary corrosion is small. Similar characteristics to IGSCC in austenitic stainless steels may be expected. However, cracking close to weld are less frequent and macroscopic branching is more common for IGSCC in nickel base alloys compared to austenitic stainless steels. Typically IDSCC is winding or straight, single cracking in the weld metal transverse to the weld. In the through thickness direction IDSCC cause typically winding, non branched cracks with large surface roughness due to course solidification microstructure. The crack width often shows large variation along the crack and a width close to zero at the surface intersection is common. Typically

  12. Crack Characterisation for In-service Inspection Planning - An Update

    International Nuclear Information System (INIS)

    Waale, Jan

    2006-05-01

    ; Mechanical fatigue; and Solidification cracking in weld metal. The evaluated parameters were divided into visually detectable and metallurgical parameters, which need to be evaluated from a cross-section. The visually detectable parameters are; location, orientation and shape in surface direction and finally the number of cracks in the cracked region. The metallurgical parameters are; orientation and shape in the through thickness direction, macroscopic branching, crack tip radius, crack surface roughness, crack width and finally discontinuous appearance. The morphology parameters were statistically processed and the results are presented as minimum, maximum. mean, median and scatter values for each data group, both in tables and in various graphs. Finally each morphology parameter is compared between the seven data groups. A brief description of typical characteristics of each data group is given below. Most IGSCC develop next to welds with straight or winding cracks oriented almost parallel to the weld. Single cracking is most common but occasionally two cracks are formed on each side of the weld. In the through thickness direction IGSCC is typically winding or lightly bend and macroscopic branching is rare. The surface roughness is normally on a grain size magnitude and the cracks are particularly narrow providing secondary corrosion is small. Similar characteristics to IGSCC in austenitic stainless steels may be expected. However, cracking close to weld are less frequent and macroscopic branching is more common for IGSCC in nickel base alloys compared to austenitic stainless steels. Typically IDSCC is winding or straight, single cracking in the weld metal transverse to the weld. In the through thickness direction IDSCC cause typically winding, non branched cracks with large surface roughness due to course solidification microstructure. The crack width often shows large variation along the crack and a width close to zero at the surface intersection is common. Typically

  13. Race/Ethnic-Specific Homicide Rates in New York City: Evaluating the Impact of Broken Windows Policing and Crack Cocaine Markets

    Science.gov (United States)

    Chauhan, Preeti; Cerdá, Magdalena; Messner, Steven F.; Tracy, Melissa; Tardiff, Kenneth; Galea, Sandro

    2012-01-01

    The current study evaluated a range of social influences including misdemeanor arrests, drug arrests, cocaine consumption, alcohol consumption, firearm availability, and incarceration that may be associated with changes in gun-related homicides by racial/ethnic group in New York City (NYC) from 1990 to 1999. Using police precincts as the unit of analysis, we used cross-sectional, time series data to examine changes in Black, White, and Hispanic homicides, separately. Bayesian hierarchical models with a spatial error term indicated that an increase in cocaine consumption was associated with an increase in Black homicides. An increase in firearm availability was associated with an increase in Hispanic homicides. Last, there were no significant predictors for White homicides. Support was found for the crack cocaine hypotheses but not for the broken windows hypothesis. Examining racially/ethnically disaggregated data can shed light on group-sensitive mechanisms that may explain changes in homicide over time. PMID:22328820

  14. Fuel micro-mechanics: homogenization, cracking, granular media

    International Nuclear Information System (INIS)

    Monerie, Yann

    2010-01-01

    cracked media. Cracking: The main aim of this topic is the numerical simulation of multiple cracking of strongly heterogeneous media from their sound state to their fractured state. A method called 'Non Smooth Fracture Dynamics' is proposed. It is based on a cohesive-volume finite element model and on a non-regular dynamic multi-body management (implicit scheme). The main theoretical and practical difficulties of the cohesive-volume method are discussed in detail: non-uniqueness of solutions, instabilities, dependence on the mesh system, local diversity, and experimental identification of the cohesive properties. By combining this method with analytical and numerical homogenization techniques, a two-scale volume and surface approach is developed for the cracking of media with a property gradient: the effect of the spatial distribution of weakening inclusions on the macroscopic fracture criteria and on the tortuosity of crack paths is revealed. An intermediate result of this work is the statistical characterization of the representative elementary volumes in cracking and fracture. Granular media: This more recent topic includes the numerical and stochastic analysis of discrete media in the presence or absence of a fluid phase. For the numerical analysis, the non-regular dynamic multi-body method is used. In the case of an interstitial or surrounding fluid, this method is coupled with two other classes of method according to the inertial regime and the size of the system considered: porous medium methods (homogeneous fluid equivalent) or fictitious domain type (direct numerical simulation). These methods are confirmed on fluidization and sedimentation tests. For the analysis, some results are obtained for gravity flows: blocking statistic in silo configuration, compaction effects during undersea avalanches. (author)

  15. Theoretical and experimental study of stress corrosion cracking of pipeline steel in near neutral pH environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.; Fan, J.; Chudnovsky, A. [Illinois Univ., Chicago, IL (United States); Gogotsi, Y. [Drexel Univ., Philadelphia, PA (United States); Teitsma, A. [Gas Technology Inst., Chicago, IL (United States)

    2000-07-01

    Field observations indicate that stress corrosion cracking (SCC) in a near neutral pH environment starts with microcracks growing from corrosion pits on the external surface of the buried pipe. A complex phenomenon, SCC combines stochasticity and determinism resulting in the evolution of a SCC colony. The authors proposed a statistical model which generates a random field of corrosion pits and crack initiation at randomly selected pits. Using the framework of the Crack Layer theory, a thermodynamic model of individual stress corrosion growth was also developed recently. Relations between the crack growth, hydrogen diffusion and corrosion rates on one hand and corresponding thermodynamic forces on the other were used to develop the mathematical realization of the stress corrosion crack growth model. Additionally, there is a quick overview of the experimental program for determination of the kinetic coefficients employed in the crack growth equations. A simulation of SCC colony evolution, including a stage of the large-scale crack interaction is provided by applying the individual crack growth law to random configuration of multiple cracks. Finally, the FRANC2D Finite Element Methods resulted in a computer simulation of multi-crack cluster formation within the colony. 14 refs., 15 figs.

  16. Management of simulated maternal cardiac arrest by residents: didactic teaching versus electronic learning.

    Science.gov (United States)

    Hards, Andrea; Davies, Sharon; Salman, Aliya; Erik-Soussi, Magda; Balki, Mrinalini

    2012-09-01

    Successful resuscitation of a pregnant woman undergoing cardiac arrest and survival of the fetus require prompt, high-quality cardiopulmonary resuscitation. The objective of this observational study was to assess management of maternal cardiac arrest by anesthesia residents using high-fidelity simulation and compare subsequent performance following either didactic teaching or electronic learning (e-learning). Twenty anesthesia residents were randomized to receive either didactic teaching (Didactic group, n = 10) or e-learning (Electronic group, n = 10) on maternal cardiac arrest. Baseline management skills were tested using high-fidelity simulation, with repeat simulation testing one month after their teaching intervention. The time from cardiac arrest to start of perimortem Cesarean delivery (PMCD) was measured, and the technical and nontechnical skills scores between the two teaching groups were compared. The median [interquartile range] time to PMCD decreased after teaching, from 4.5 min [3.4 to 5.1 min] to 3.5 min [2.5 to 4.0 min] (P = 0.03), although the change within each group was not statistically significant (Didactic group 4.9 to 3.8 min, P = 0.2; Electronic group 3.9 to 2.5 min, P = 0.07; Didactic group vs Electronic group, P = 1.0). Even after teaching, only 65% of participants started PMCD within four minutes. Technical and nontechnical skills scores improved after teaching in both groups, and there were no differences between the groups. There are gaps in the knowledge and implementation of resuscitation protocols and the recommended modifications for pregnancy among residents. Teaching can improve performance during management of maternal cardiac arrest. Electronic learning and didactic teaching offer similar benefits.

  17. Fully plastic crack opening analyses of complex-cracked pipes for Ramberg-Osgood materials

    International Nuclear Information System (INIS)

    Jeong, Jae Uk; Choi, Jae Boong; Huh, Nam Su; Kim, Yun Jae

    2016-01-01

    The plastic influence functions for calculating fully plastic Crack opening displacement (COD) of complex-cracked pipes were newly proposed based on systematic 3-dimensional (3-D) elastic-plastic Finite element (FE) analyses using Ramberg-Osgood (R-O) relation, where global bending moment, axial tension and internal pressure are considered separately as a loading condition. Then, crack opening analyses were performed based on GE/EPRI concept by using the new plastic influence functions for complex-cracked pipes made of SA376 TP304 stainless steel, and the predicted CODs were compared with FE results based on deformation plasticity theory of tensile material behavior. From the comparison, the confidence of the proposed fully plastic crack opening solutions for complex-cracked pipes was gained. Therefore, the proposed engineering scheme for COD estimation using the new plastic influence functions can be utilized to estimate leak rate of a complex-cracked pipe for R-O material.

  18. The fatigue life and fatigue crack through thickness behavior of a surface cracked plate, 2

    International Nuclear Information System (INIS)

    Nam, Ki-Woo; Fujibayashi, Shinpei; Ando, Kotoji; Ogura, Nobukazu.

    1987-01-01

    Most structures have a region where stresses concentrate, and the probability of fatigue crack initiation may be higher than in other parts. Therefore, to improve the reliability of an LBB design, it is necessary to evaluate the growth and through thickness behavior of fatigue cracks in the stress concentration part. In this paper, a fatigue crack growth test at a stress concentration region has been made on 3 % NiCrMo and HT 80 steel. Stress concentration is caused by a fillet on the plate. The main results obtained are as follows : (1) Before cracking through the plate thickness, stress concentration has a remarkable effect on the fatigue crack growth behavior and it flatens the shape of a surface crack. The crack growth behavior can be explained quantatively by using the Newman-Raju equation and the stress resolving method proposed by ASME B and P Code SecXI. (2) The da/dN-ΔK relation obtained in a stress concentration specimen shows good agreement with that obtained in a surface cracked smooth specimen. (3) It is shown that stress concentration caused by a fillet has little effect on the crack growth rate after cracking through the plate thickness. (4) By using the K value based on eq. (1), (2), particular crack growth behavior and the change in crack shape after cracking through thickness can be explained quantatively. (author)

  19. Incorporating Small Fatigue Crack Growth in Probabilistic Life Prediction: Effect of Stress Ratio in Ti-6Al-2Sn-4Zr-6-Mo (Preprint)

    Science.gov (United States)

    2012-08-01

    contains color. 14. ABSTRACT The effect of stress ratio on the statistical aspects of small fatigue crack growth behavior was studied in a duplex ...on the statistical aspects of small fatigue crack growth behavior was studied in a duplex microstructure of Ti-6Al-2Sn-4Zr-6Mo (Ti-6-2-4-6) at 260°C...Similarly, an accurate representation of the R effect is required in problems where the crack grows through regions of varying stress state, such as a weld

  20. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials

    Directory of Open Access Journals (Sweden)

    Shujie Fan

    2017-11-01

    Full Text Available Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  1. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials

    Science.gov (United States)

    Fan, Shujie; Li, Tongchun; Zhou, Jun; Liu, Xiaoqing; Liu, Xiaoming; Qi, Huijun; Mu, Zhiyong

    2017-11-01

    Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz) non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS) during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  2. Pattern of perioperative cardiac arrests at University of Maiduguri Teaching Hospital.

    Science.gov (United States)

    Kwari, Y D; Bello, M R; Eni, U E

    2010-01-01

    Perioperative cardiac arrests and death on the table represent the most serious complications of surgery and anaesthesia. This paper was designed to study their pattern, causes and outcomes following cardiopulmonary resuscitation (CPR) and intensive care unit (ICU) management in our institution. Three year retrospective review of perioperative cardiac arrests and death on operating table following surgical procedure under anaesthesia. For each cardiac arrest or death on the table the sequence of events leading to the arrest was evaluated using case notes, anaesthetic chart and ICU records. Study variables which include demographic data, ASA score, anaesthetic technique, causes and outcome were analysed and discussed. Fourteen perioperative cardiac arrests were encountered following 4051 anaesthetics administered over the three year study period. Twelve out of the fourteen cardiac arrests occurred following general anaesthesia, while the remaining two occurred following spinal anaesthesia. There was no cardiac arrest following local anaesthesia. Children suffered more cardiac arrest than adults. ASA class III and IV risk status suffered more arrests than ASA I and II. Hypoxia from airway problems was the commonest cause of cardiac arrest followed by septic shock. Monitoring with pulse oximeter was done in only 4 out of the 14 cardiac arrests. Only 2 (14%) out of 14 cardiac arrests recovered to home discharge, one of them with significant neurological deficit. Majority of arrests were due to hypoxia from airway problems that were not detected early There is need to improve on patient monitoring, knowledge of CPR and intensive care so as to improve the outcome of perioperative cardiac arrest.

  3. VALIDATION OF CRACK INTERACTION LIMIT MODEL FOR PARALLEL EDGE CRACKS USING TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. Daud

    2013-06-01

    Full Text Available Shielding interaction effects of two parallel edge cracks in finite thickness plates subjected to remote tension load is analyzed using a developed finite element analysis program. In the present study, the crack interaction limit is evaluated based on the fitness of service (FFS code, and focus is given to the weak crack interaction region as the crack interval exceeds the length of cracks (b > a. Crack interaction factors are evaluated based on stress intensity factors (SIFs for Mode I SIFs using a displacement extrapolation technique. Parametric studies involved a wide range of crack-to-width (0.05 ≤ a/W ≤ 0.5 and crack interval ratios (b/a > 1. For validation, crack interaction factors are compared with single edge crack SIFs as a state of zero interaction. Within the considered range of parameters, the proposed numerical evaluation used to predict the crack interaction factor reduces the error of existing analytical solution from 1.92% to 0.97% at higher a/W. In reference to FFS codes, the small discrepancy in the prediction of the crack interaction factor validates the reliability of the numerical model to predict crack interaction limits under shielding interaction effects. In conclusion, the numerical model gave a successful prediction in estimating the crack interaction limit, which can be used as a reference for the shielding orientation of other cracks.

  4. On crack interaction effects of in-plane surface cracks using elastic and elastic-plastic finite element analyses

    International Nuclear Information System (INIS)

    Kim, Jong Min; Huh, Nam Su

    2010-01-01

    The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components

  5. The Reflective Cracking in Flexible Pavements

    Directory of Open Access Journals (Sweden)

    Pais Jorge

    2013-07-01

    Full Text Available Reflective cracking is a major concern for engineers facing the problem of road maintenance and rehabilitation. The problem appears due to the presence of cracks in the old pavement layers that propagate into the pavement overlay layer when traffic load passes over the cracks and due to the temperature variation. The stress concentration in the overlay just above the existing cracks is responsible for the appearance and crack propagation throughout the overlay. The analysis of the reflective cracking phenomenon is usually made by numerical modeling simulating the presence of cracks in the existing pavement and the stress concentration in the crack tip is assessed to predict either the cracking propagation rate or the expected fatigue life of the overlay. Numerical modeling to study reflective cracking is made by simulating one crack in the existing pavement and the loading is usually applied considering the shear mode of crack opening. Sometimes the simulation considers the mode I of crack opening, mainly when temperature effects are predominant.

  6. Cell cycle arrest induced by radiation

    International Nuclear Information System (INIS)

    Okaichi, Yasuo; Matsumoto, Hideki; Ohnishi, Takeo

    1994-01-01

    It is known that various chemical reactions, such as cell cycle arrest, DNA repair and cell killing, can occur within the cells when exposed to ionizing radiation and ultraviolet radiation. Thus protein dynamics involved in such chemical reactions has received considerable attention. In this article, cell cycle regulation is first discussed in terms of the G2/M-phase and the G1/S-phase. Then, radiation-induced cell cycle arrest is reviewed. Cell cycle regulation mechanism involved in the G2 arrest, which is well known to occur when exposed to radiation, has recently been investigated using yeasts. In addition, recent study has yielded a noticeable finding that the G1 arrest can occur with intracellular accumulation of p53 product following ionization radiation. p53 is also shown to play an extremely important role in both DNA repair and cell killing due to DNA damage. Studies on the role of genes in protein groups induced by radiation will hold promise for the elucidation of cell cycle mechanism. (N.K.) 57 refs

  7. Vibration based algorithm for crack detection in cantilever beam containing two different types of cracks

    Science.gov (United States)

    Behzad, Mehdi; Ghadami, Amin; Maghsoodi, Ameneh; Michael Hale, Jack

    2013-11-01

    In this paper, a simple method for detection of multiple edge cracks in Euler-Bernoulli beams having two different types of cracks is presented based on energy equations. Each crack is modeled as a massless rotational spring using Linear Elastic Fracture Mechanics (LEFM) theory, and a relationship among natural frequencies, crack locations and stiffness of equivalent springs is demonstrated. In the procedure, for detection of m cracks in a beam, 3m equations and natural frequencies of healthy and cracked beam in two different directions are needed as input to the algorithm. The main accomplishment of the presented algorithm is the capability to detect the location, severity and type of each crack in a multi-cracked beam. Concise and simple calculations along with accuracy are other advantages of this method. A number of numerical examples for cantilever beams including one and two cracks are presented to validate the method.

  8. Cardiac arrest upon induction of anesthesia in children with cardiomyopathy: an analysis of incidence and risk factors.

    LENUS (Irish Health Repository)

    Lynch, Johanne

    2012-02-01

    INTRODUCTION: It is thought that patients with cardiomyopathy have an increased risk of cardiac arrest on induction of anesthesia, but there is little available data. The purpose of this study was to identify the incidence and potential risk factors for cardiac arrest upon induction of anesthesia in children with cardiomyopathy in our institution. METHODS: A retrospective chart review was performed. Eligible patients included patients admitted between 1998 and 2008 with the International Statistical Classification of Disease code for cardiomyopathy (ICD-9 code 425) who underwent airway intervention for sedation or general anesthesia in the operating room, cardiac diagnostic and interventional unit (CDIU) or intensive care unit. Patients undergoing emergency airway intervention following cardiovascular collapse were excluded. For each patient, we recorded patient demographics, disease severity, anesthesia location, and anesthetic technique. RESULTS: One hundred and twenty-nine patients with cardiomyopathy underwent a total of 236 anesthetic events, and four cardiac arrests were identified. One was related to bradycardia (HR<60), two were attributed to bradycardia in association with severe hypotension (systolic blood pressure<45), and the fourth arrest was related to isolated severe hypotension. Two occurred in the operating suite and two in the CDIU. There was no resulting mortality. One patient progressed to heart transplantation. Multiple combinations of anesthetic drugs were used for induction of anesthesia. CONCLUSION: We performed a review of the last 10 years of anesthesia events in children with cardiomyopathy. We report four cardiac arrests in two patients and 236 anesthetic events (1.7%). To the best of our knowledge, this is the largest review of these patients to date but is limited by its retrospective nature. The low cardiac arrest incidence prevents the identification of risk factors and the development of a cardiac arrest risk predictive clinical

  9. Fatigue-crack propagation in gamma-based titanium aluminide alloys at large and small crack sizes

    International Nuclear Information System (INIS)

    Kruzic, J.J.; Campbell, J.P.; Ritchie, R.O.

    1999-01-01

    Most evaluations of the fracture and fatigue-crack propagation properties of γ+α 2 titanium aluminide alloys to date have been performed using standard large-crack samples, e.g., compact-tension specimens containing crack sizes which are on the order of tens of millimeters, i.e., large compared to microstructural dimensions. However, these alloys have been targeted for applications, such as blades in gas-turbine engines, where relevant crack sizes are much smaller ( 5 mm) and (c ≅ 25--300 microm) cracks in a γ-TiAl based alloy, of composition Ti-47Al-2Nb-2Cr-0.2B (at.%), specifically for duplex (average grain size approximately17 microm) and refined lamellar (average colony size ≅150 microm) microstructures. It is found that, whereas the lamellar microstructure displays far superior fracture toughness and fatigue-crack growth resistance in the presence of large cracks, in small-crack testing the duplex microstructure exhibits a better combination of properties. The reasons for such contrasting behavior are examined in terms of the intrinsic and extrinsic (i.e., crack bridging) contributions to cyclic crack advance

  10. Correction to the crack extension direction in numerical modelling of mixed mode crack paths

    DEFF Research Database (Denmark)

    Lucht, Tore; Aliabadi, M.H.

    2007-01-01

    In order to avoid introduction of an error when a local crack-growth criterion is used in an incremental crack growth formulation, each straight crack extension would have to be infinitesimal or have its direction corrected. In this paper a new procedure to correct the crack extension direction...

  11. Same-Sex and Race-Based Disparities in Statutory Rape Arrests.

    Science.gov (United States)

    Chaffin, Mark; Chenoweth, Stephanie; Letourneau, Elizabeth J

    2016-01-01

    This study tests a liberation hypothesis for statutory rape incidents, specifically that there may be same-sex and race/ethnicity arrest disparities among statutory rape incidents and that these will be greater among statutory rape than among forcible sex crime incidents. 26,726 reported incidents of statutory rape as defined under state statutes and 96,474 forcible sex crime incidents were extracted from National Incident-Based Reporting System data sets. Arrest outcomes were tested using multilevel modeling. Same-sex statutory rape pairings were rare but had much higher arrest odds. A victim-offender romantic relationship amplified arrest odds for same-sex pairings, but damped arrest odds for male-on-female pairings. Same-sex disparities were larger among statutory than among forcible incidents. Female-on-male incidents had uniformly lower arrest odds. Race/ethnicity effects were smaller than gender effects and more complexly patterned. The findings support the liberation hypothesis for same-sex statutory rape arrest disparities, particularly among same-sex romantic pairings. Support for race/ethnicity-based arrest disparities was limited and mixed. © The Author(s) 2014.

  12. On the transition of short cracks into long fatigue cracks in reactor pressure vessel steels

    Directory of Open Access Journals (Sweden)

    Singh Rajwinder

    2018-01-01

    Full Text Available Short fatigue cracks, having dimension less than 1 mm, propagate at much faster rates (da/dN even at lower stress intensity factor range (da/dN as compared to the threshold stress intensity factor range obtained from long fatigue crack growth studies. These short cracks originate at the sub-grain level and some of them ultimately transit into critical long cracks over time. Therefore, designing the components subjected to fatigue loading merely on the long crack growth data and neglecting the short crack growth behavior can overestimate the component’s life. This aspect of short fatigue cracks become even more critical for materials used for safety critical applications such as reactor pressure vessel (RPV steel in nuclear plants. In this work, the transition behaviour of short fatigue crack gowth into long fatigue crack is studied in SA508 Grade 3 Class I low alloy steel used in RPVs. In-situ characterization of initiation, propagation and transition of short fatigue cracks is performed using fatigue stage for Scanning Electron Microscope (SEM in addition to digital microscopes fitted over a servo-hydraulic fatigue machine and correlated with the microtructural information obtained using electron backscatter diffraction (EBSD. SA508 steel having an upper bainitic microstructure have several microstructural interfaces such as phase and grain boundaries that play a significant role in controlling the short fatigue crack propagation. Specially designed and prepared short fatigue specimens (eletro-polished with varying initial crack lengths of the order of tens of microns are used in this study. The transition of such short initial cracks into long cracks is then tracked to give detailed insight into the role of each phase and phase/grain boundary with an objective of establishing Kitagawa-Takahashi diagram for the given RPV steel. The behavior of the transited long cracks is then compared with the crack propagation behavior obtained using

  13. Refinement and evaluation of crack-opening-area analyses for circumferential through-wall cracks in pipes

    International Nuclear Information System (INIS)

    Rahman, S.; Brust, F.; Ghadiali, N.; Krishnaswamy, P.; Wilkowski, G.; Choi, Y.H.; Moberg, F.; Brickstad, B.

    1995-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet impingement shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. These leak rates depend on the crack-opening area of a through-wall crack in the pipe. In addition to LBB analyses, which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section 11. This study was requested by the NRC to review, evaluate, and refine current analytical models for crack-opening-area analyses of pipes with circumferential through-wall cracks. Twenty-five pipe experiments were analyzed to determine the accuracy of the predictive models. Several practical aspects of crack-opening such as; crack-face pressure, off-center cracks, restraint of pressure-induced bending, cracks in thickness transition regions, weld residual stresses, crack-morphology models, and thermal-hydraulic analysis, were also investigated. 140 refs., 105 figs., 41 tabs

  14. Cohesive zone model for intergranular slow crack growth in ceramics: influence of the process and the microstructure

    International Nuclear Information System (INIS)

    Romero de la Osa, M; Olagnon, C; Chevalier, J; Estevez, R; Tallaron, C

    2011-01-01

    Ceramic polycrystals are prone to slow crack growth (SCG) which is stress and environmentally assisted, similarly to observations reported for silica glasses. The kinetics of fracture are known to be dependent on the load level, the temperature and the relative humidity. In addition, evidence is available on the influence of the microstructure on the SCG rate with an increase in the crack velocity with decreasing the grain size. Crack propagation takes place beyond a load threshold, which is grain size dependent. We present a cohesive zone model for the intergranular failure process. The methodology accounts for an intrinsic opening that governs the length of the cohesive zone and allows the investigation of grain size effects. A rate and temperature-dependent cohesive model is proposed (Romero de la Osa M, Estevez R et al 2009 J. Mech. Adv. Mater. Struct. 16 623–31) to mimic the reaction–rupture mechanism. The formulation is inspired by Michalske and Freiman's picture (Michalske and Freiman 1983 J. Am. Ceram. Soc. 66 284–8) together with a recent study by Zhu et al (2005 J. Mech. Phys. Solids 53 1597–623) of the reaction–rupture mechanism. The present investigation extends a previous work (Romero de la Osa et al 2009 Int. J. Fracture 158 157–67) in which the problem is formulated. Here, we explore the influence of the microstructure in terms of grain size, their elastic properties and residual thermal stresses originating from the cooling from the sintering temperature down to ambient conditions. Their influence on SCG for static loadings is reported and the predictions compared with experimental trends. We show that the initial stress state is responsible for the grain size dependence reported experimentally for SCG. Furthermore, the account for the initial stresses enables the prediction of a load threshold below which no crack growth is observed: a crack arrest takes place when the crack path meets a region in compression

  15. An Audit Of Perioperative Cardiac Arrest At Lagos University ...

    African Journals Online (AJOL)

    Objective: Intraoperative cardiac arrests are not uncommon and are related to both surgical and anaesthetic factors. This study aimed to examine the factors which predispose to a periopeartive cardiac arrest, to assess the appropriateness of therapy and the outcome. Materials and Methods: All perioperative cardiac arrests ...

  16. Distinct mechanisms act in concert to mediate cell cycle arrest.

    Science.gov (United States)

    Toettcher, Jared E; Loewer, Alexander; Ostheimer, Gerard J; Yaffe, Michael B; Tidor, Bruce; Lahav, Galit

    2009-01-20

    In response to DNA damage, cells arrest at specific stages in the cell cycle. This arrest must fulfill at least 3 requirements: it must be activated promptly; it must be sustained as long as damage is present to prevent loss of genomic information; and after the arrest, cells must re-enter into the appropriate cell cycle phase to ensure proper ploidy. Multiple molecular mechanisms capable of arresting the cell cycle have been identified in mammalian cells; however, it is unknown whether each mechanism meets all 3 requirements or whether they act together to confer specific functions to the arrest. To address this question, we integrated mathematical models describing the cell cycle and the DNA damage signaling networks and tested the contributions of each mechanism to cell cycle arrest and re-entry. Predictions from this model were then tested with quantitative experiments to identify the combined action of arrest mechanisms in irradiated cells. We find that different arrest mechanisms serve indispensable roles in the proper cellular response to DNA damage over time: p53-independent cyclin inactivation confers immediate arrest, whereas p53-dependent cyclin downregulation allows this arrest to be sustained. Additionally, p21-mediated inhibition of cyclin-dependent kinase activity is indispensable for preventing improper cell cycle re-entry and endoreduplication. This work shows that in a complex signaling network, seemingly redundant mechanisms, acting in a concerted fashion, can achieve a specific cellular outcome.

  17. Inspecting cracks in foam insulation

    Science.gov (United States)

    Cambell, L. W.; Jung, G. K.

    1979-01-01

    Dye solution indicates extent of cracking by penetrating crack and showing original crack depth clearly. Solution comprised of methylene blue in denatured ethyl alcohol penetrates cracks completely and evaporates quickly and is suitable technique for usage in environmental or structural tests.

  18. Propagation of stress-corrosion cracks in unirradiated zircaloy

    International Nuclear Information System (INIS)

    Norring, K.; Haag, Y.; Wikstroem, C.

    1982-01-01

    Propagation of iodine-induced stress-corrosion cracks in Zircaloy was studied using pre-cracked and internally pressurized cladding tubes. These were recrystallized at different temperatures, to obtain grain sizes between 4 μm and 10 μm. No statistically significant difference in propagation rate due to the difference in grain size was observed. If the obtained data, with Ksub(I) values ranging from 4 to 11 MNmsup(-3/2), were log-log plotted (da/dt = CKsub(I)sup(N)), as usual, they fell within the scatter-band of data reported earlier. But from this plot it could also be seen that the Ksub(I) interval can be divided into two separate parts having different da/dt-Ksub(I) relations. The transition takes place at a Ksub(I) value of about 8 MNmsup(-3/2). The region with lower Ksub(I) values shows a substantially lower n value than the upper region (2.4 and 9.8 respectively), and earlier reported values (n = 7 to 10). This transition is in good agreement with a transition from an intergranular to a transgranular propagation mode of the stress-corrosion crack. (orig.)

  19. Risk behaviors for sexually transmitted diseases among crack users

    Directory of Open Access Journals (Sweden)

    Rafael Alves Guimarães

    2015-08-01

    Full Text Available AbstractObjectives: to investigate the prevalence and risk behaviors by means of reporting of sexually transmitted diseases among crack users.Method: cross-sectional study carried out with 588 crack users in a referral care unit for the treatment of chemical dependency. Data were collected by means of face-to-face interview and analyzed using Stata statistical software, version 8.0.Results: of the total participants, 154 (26.2%; 95% CI: 22.8-29.9 reported antecedents of sexually transmitted diseases. Ages between 25 and 30 years (RP: 2.1; 95% CI: 1.0-4.0 and over 30 years (RP: 3.8; 95% CI: 2.1-6.8, alcohol consumption (RP: 1.9; 95% CI: 1.1-3.3, antecedents of prostitution (RP: 1.9; 95% CI: 1.3-2.9 and sexual intercourse with person living with human immunodeficiency virus/AIDS (RP: 2.7; 95% CI: 1.8-4.2 were independently associated with reporting of sexually transmitted diseases.Conclusion: the results of this study suggest high risk and vulnerability of crack users for sexually transmitted diseases.

  20. Fatigue crack threshold relevant to stress ratio, crack wake and loading histories

    International Nuclear Information System (INIS)

    Okazaki, Masakazu; Iwasaki, Akira; Kasahara, Naoto

    2013-01-01

    Fatigue crack propagation behavior was investigated in a low alloy steel which experienced several kind of loading histories. Both the effects of stress ratio, test temperature on the fatigue crack threshold, and the change in the threshold depending on the thermo-mechanical loading histories, were experimentally investigated. It was shown that the thermo-mechanical loading history left its effect along the prior fatigue crack wake resulting in the change of fatigue crack threshold. Some discussions are made on how this type of loading history effect should be treated from engineering point of view. (author)

  1. Serum tau and neurological outcome in cardiac arrest

    DEFF Research Database (Denmark)

    Mattsson, Niklas; Zetterberg, Henrik; Nielsen, Niklas

    2017-01-01

    OBJECTIVE: To test serum tau as a predictor of neurological outcome after cardiac arrest. METHODS: We measured the neuronal protein tau in serum at 24, 48, and 72 hours after cardiac arrest in 689 patients in the prospective international Target Temperature Management trial. The main outcome...... was poor neurological outcome, defined as Cerebral Performance Categories 3-5 at 6 months. RESULTS: Increased tau was associated with poor outcome at 6 months after cardiac arrest (median = 38.5, interquartile range [IQR] = 5.7-245ng/l in poor vs median = 1.5, IQR = 0.7-2.4ng/l in good outcome, for tau....... The accuracy in predicting outcome by serum tau was equally high for patients randomized to 33 °C and 36 °C targeted temperature after cardiac arrest. INTERPRETATION: Serum tau is a promising novel biomarker for prediction of neurological outcome in patients with cardiac arrest. It may be significantly better...

  2. Chloride Penetration through Cracks in High-Performance Concrete and Surface Treatment System for Crack Healing

    Directory of Open Access Journals (Sweden)

    In-Seok Yoon

    2012-01-01

    Full Text Available For enhancing the service life of concrete structures, it is very important to minimize crack at surface. Even if these cracks are very small, the problem is to which extend these cracks may jeopardize the durability of these decks. It was proposed that crack depth corresponding with critical crack width from the surface is a crucial factor in view of durability design of concrete structures. It was necessary to deal with chloride penetration through microcracks characterized with the mixing features of concrete. This study is devoted to examine the effect of high strength concrete and reinforcement of steel fiber on chloride penetration through cracks. High strength concrete is regarded as an excellent barrier to resist chloride penetration. However, durability performance of cracked high strength concrete was reduced seriously up to that of ordinary cracked concrete. Steel fiber reinforcement is effective to reduce chloride penetration through cracks because steel fiber reinforcement can lead to reduce crack depth significantly. Meanwhile, surface treatment systems are put on the surface of the concrete in order to seal the concrete. The key-issue is to which extend a sealing is able to ensure that chloride-induced corrosion can be prevented. As a result, penetrant cannot cure cracks, however, coating and combined treatment can prevent chloride from flowing in concrete with maximum crack width of 0.06 mm and 0.08 mm, respectively.

  3. Out-of-hospital cardiac arrest: determinant factors for immediate survival after cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Daniela Aparecida Morais

    2014-08-01

    Full Text Available OBJECTIVE: to analyze determinant factors for the immediate survival of persons who receive cardiopulmonary resuscitation from the advanced support units of the Mobile Emergency Medical Services (SAMU of Belo Horizonte.METHOD: this is a retrospective, epidemiological study which analyzed 1,165 assistance forms, from the period 2008 - 2010. The collected data followed the Utstein style, being submitted to descriptive and analytical statistics with tests with levels of significance of 5%.RESULTS: the majority were male, the median age was 64 years, and the ambulance response time, nine minutes. Immediate survival was observed in 239 persons. An association was ascertained of this outcome with "cardiac arrest witnessed by persons trained in basic life support" (OR=3.49; p<0.05; CI 95%, "cardiac arrest witnessed by Mobile Emergency Medical Services teams" (OR=2.99; p<0.05; CI95%, "only the carry out of basic life support" (OR=0.142; p<0.05; CI95%, and "initial cardiac rhythm of asystole" (OR=0.33; p<0.05; CI 95%.CONCLUSION: early access to cardiopulmonary resuscitation was related to a favorable outcome, and the non-undertaking of advanced support, and asystole, were associated with worse outcomes. Basic and advanced life support techniques can alter survival in the event of cardiac arrest.

  4. Cracking in Flexural Reinforced Concrete Members

    DEFF Research Database (Denmark)

    Rasmussen, Annette Beedholm; Fisker, Jakob; Hagsten, Lars German

    2017-01-01

    The system of cracks developing in reinforced concrete is in many aspects essential when modelling structures in both serviceability- and ultimate limit state. This paper discusses the behavior concerning crack development in flexural members observed from tests and associates it with two different...... existing models. From the investigations an approach is proposed on how to predict the crack pattern in flexural members involving two different crack systems; primary flexural cracks and local secondary cracks. The results of the approach is in overall good agreement with the observed tests and captures...... the pronounced size effect associated with flexural cracking in which the crack spacing and crack widths are approximately proportional to the depth of the member....

  5. Deterministic and probabilistic crack growth analysis for the JRC Ispra 1/5 scale pressure vessel n0 R2

    International Nuclear Information System (INIS)

    Bruckner-Foit, A.; Munz, D.

    1989-10-01

    A deterministic and a probabilistic crack growth analysis is presented for the major defects found in the welds during ultrasonic pre-service inspection. The deterministic analysis includes first a determination of the number of load cycles until crack initiation, then a cycle-by-cycle calculation of the growth of the embedded elliptical cracks, followed by an evaluation of the growth of the semi-elliptical surface crack formed after the crack considered has broken through the wall and, finally, a determination of the critical crack size and shape. In the probabilistic analysis, a Monte-Carlo simulation is performed with a sample of cracks where the statistical distributions of the crack dimensions describe the uncertainty in sizing of the ultrasonic inspection. The distributions of crack depth, crack length and location are evaluated as a function of the number of load cycles. In the simulation, the fracture mechanics model of the deterministic analysis is employed for each random crack. The results of the deterministic and probabilistic crack growth analysis are compared with the results of the second in-service inspection where stable extension of some of the cracks had been observed. It is found that the prediction and the experiment agree only with a probability of the order of 5% or less

  6. Behavior of underclad cracks in reactor pressure vessels - evaluation of mechanical analyses with tests on cladded mock-ups

    International Nuclear Information System (INIS)

    Moinereau, D.; Rousselier, G.; Bethmont, M.

    1993-01-01

    Innocuity of underclad flaws in the reactor pressure vessels must be demonstrated in the French safety analyses, particularly in the case of a severe transient at the end of the pressure vessel lifetime, because of the radiation embrittlement of the vessel material. Safety analyses are usually performed with elastic and elasto-plastic analyses taking into account the effect of the stainless steel cladding. EDF has started a program including experiments on large size cladded specimens and their interpretations. The purpose of this program is to evaluate the different methods of fracture analysis used in safety studies. Several specimens made of ferritic steel A508 C1 3 with stainless steel cladding, containing small artificial defects, are loaded in four-point bending. Experiments are performed at very low temperature to simulate radiation embrittlement and to obtain crack instability by cleavage fracture. Three tests have been performed on mock-ups containing a small underclad crack (with depth about 5 mn) and a fourth test has been performed on one mock-up with a larger crack (depth about 13 mn). In each case, crack instability occurred by cleavage fracture in the base metal, without crack arrest, at a temperature of about - 170 deg C. Each test is interpreted using linear elastic analysis and elastic-plastic analysis by two-dimensional finite element computations. The fracture are conservatively predicted: the stress intensity factors deduced from the computations (K cp or K j ) are always greater than the base metal toughness. The comparison between the elastic analyses (including two plasticity corrections) and the elastic-plastic analyses shows that the elastic analyses are often conservative. The beneficial effect of the cladding in the analyses is also shown : the analyses are too conservative if the cladding effects is not taken into account. (authors). 9 figs., 6 tabs., 10 refs

  7. Effect of Irradiation on Apoptosis, Cell Cycle Arrest and Calcified Nodule Formation of Rat Calvarial Osteoblast

    International Nuclear Information System (INIS)

    Lee, Young Mi; Choi, Hang Moon; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won

    2000-01-01

    The study was aimed to detect the induction of apoptosis, cell cycle arrest and calcified nodule formation after irradiation on primarily cultured osteoblasts. Using rat calvarial osteoblasts, the effects of irradiation on apoptosis, cell cycle arrest, and calcified nodule formation were studied. The single irradiation of 10, 20 Gy was done with 5.38 Gy/min dose rate using the 137 Cs cell irradiator at 4th and 14th day of culture. Apoptosis induction and cell cycle arrest were assayed by the flow cytometry at 1, 2, 3, and 4 days after irradiation. The formation of calcified nodules was observed by alizarin red staining at 1, 3, 10, 14 days after irradiation at 4th day of culture, and at 1, 4, 5 days after irradiation at 14th day of culture. Apoptosis was not induced by 10 or 20 Gy independent of irradiation and culture period. Irradiation did not induced G1 arrest in post-irradiated osteoblasts. After irradiation at 4th-day of culture, G2 arrest was induced but it was not statistically significant after irradiation at 14th-day of culture. In the case of irradiated cells at 4th day of culture, calcified nodules were not formed and at 14th-day of culture after irradiation, calcified nodule formation did not affected. Taken together, these results suggest that irradiation at the dose of 10-20 Gy would not affect apoptosis induction of osteoblasts. Cell cycle and calcified nodule formation were influenced by the level of differentiation of osteblasts.

  8. Epidemiology and Outcomes After In-Hospital Cardiac Arrest After Pediatric Cardiac Surgery

    Science.gov (United States)

    Gupta, Punkaj; Jacobs, Jeffrey P.; Pasquali, Sara K.; Hill, Kevin D.; Gaynor, J. William; O’Brien, Sean M.; He, Max; Sheng, Shubin; Schexnayder, Stephen M.; Berg, Robert A.; Nadkarni, Vinay M.; Imamura, Michiaki; Jacobs, Marshall L.

    2014-01-01

    Background Multicenter data regarding cardiac arrest in children undergoing heart operations are limited. We describe epidemiology and outcomes associated with postoperative cardiac arrest in a large multiinstitutional cohort. Methods Patients younger than 18 years in the Society of Thoracic Surgeons Congenital Heart Surgery Database (2007 through 2012) were included. Patient factors, operative characteristics, and outcomes were described for patients with and without postoperative cardiac arrest. Multivariable models were used to evaluate the association of center volume with cardiac arrest rate and mortality after cardiac arrest, adjusting for patient and procedural factors. Results Of 70,270 patients (97 centers), 1,843 (2.6%) had postoperative cardiac arrest. Younger age, lower weight, and presence of preoperative morbidities (all p < 0.0001) were associated with cardiac arrest. Arrest rate increased with procedural complexity across common benchmark operations, ranging from 0.7% (ventricular septal defect repair) to 12.7% (Norwood operation). Cardiac arrest was associated with significant mortality risk across procedures, ranging from 15.4% to 62.3% (all p < 0.0001). In multivariable analysis, arrest rate was not associated with center volume (odds ratio, 1.06; 95% confidence interval, 0.71 to 1.57 in low- versus high-volume centers). However, mortality after cardiac arrest was higher in low-volume centers (odds ratio, 2.00; 95% confidence interval, 1.52 to 2.63). This association was present for both high- and low-complexity operations. Conclusions Cardiac arrest carries a significant mortality risk across the stratum of procedural complexity. Although arrest rates are not associated with center volume, lower-volume centers have increased mortality after cardiac arrest. Further study of mechanisms to prevent cardiac arrest and to reduce mortality in those with an arrest is warranted. PMID:25443018

  9. Development and field application of a nonlinear ultrasonic modulation technique for fatigue crack detection without reference data from an intact condition

    Science.gov (United States)

    Lim, Hyung Jin; Kim, Yongtak; Koo, Gunhee; Yang, Suyoung; Sohn, Hoon; Bae, In-hwan; Jang, Jeong-Hwan

    2016-09-01

    In this study, a fatigue crack detection technique, which detects a fatigue crack without relying on any reference data obtained from the intact condition of a target structure, is developed using nonlinear ultrasonic modulation and applied to a real bridge structure. Using two wafer-type lead zirconate titanate (PZT) transducers, ultrasonic excitations at two distinctive frequencies are applied to a target inspection spot and the corresponding ultrasonic response is measured by another PZT transducer. Then, the nonlinear modulation components produced by a breathing-crack are extracted from the measured ultrasonic response, and a statistical classifier, which can determine if the nonlinear modulation components are statistically significant in comparison with the background noise level, is proposed. The effectiveness of the proposed fatigue crack detection technique is experimentally validated using the data obtained from aluminum plates and aircraft fitting-lug specimens under varying temperature and loading conditions, and through a field testing of Yeongjong Grand Bridge in South Korea. The uniqueness of this study lies in that (1) detection of a micro fatigue crack with less than 1 μm width and fatigue cracks in the range of 10-20 μm in width using nonlinear ultrasonic modulation, (2) automated detection of fatigue crack formation without using reference data obtained from an intact condition, (3) reliable and robust diagnosis under varying temperature and loading conditions, (4) application of a local fatigue crack detection technique to online monitoring of a real bridge.

  10. Visualizing Vpr-induced G2 arrest and apoptosis.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Murakami

    Full Text Available Vpr is an accessory protein of human immunodeficiency virus type 1 (HIV-1 with multiple functions. The induction of G2 arrest by Vpr plays a particularly important role in efficient viral replication because the transcriptional activity of the HIV-1 long terminal repeat is most active in G2 phase. The regulation of apoptosis by Vpr is also important for immune suppression and pathogenesis during HIV infection. However, it is not known whether Vpr-induced apoptosis depends on the ability of Vpr to induce G2 arrest, and the dynamics of Vpr-induced G2 arrest and apoptosis have not been visualized. We performed time-lapse imaging to examine the temporal relationship between Vpr-induced G2 arrest and apoptosis using HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator2 (Fucci2. The dynamics of G2 arrest and subsequent long-term mitotic cell rounding in cells transfected with the Vpr-expression vector were visualized. These cells underwent nuclear mis-segregation after prolonged mitotic processes and then entered G1 phase. Some cells subsequently displayed evidence of apoptosis after prolonged mitotic processes and nuclear mis-segregation. Interestingly, Vpr-induced apoptosis was seldom observed in S or G2 phase. Likewise, visualization of synchronized HeLa/Fucci2 cells infected with an adenoviral vector expressing Vpr clearly showed that Vpr arrests the cell cycle at G2 phase, but does not induce apoptosis at S or G2 phase. Furthermore, time-lapse imaging of HeLa/Fucci2 cells expressing SCAT3.1, a caspase-3-sensitive fusion protein, clearly demonstrated that Vpr induces caspase-3-dependent apoptosis. Finally, to examine whether the effects of Vpr on G2 arrest and apoptosis were reversible, we performed live-cell imaging of a destabilizing domain fusion Vpr, which enabled rapid stabilization and destabilization by Shield1. The effects of Vpr on G2 arrest and subsequent apoptosis were reversible. This study is the first to

  11. Statistical study on applied stress dependence of failure time in stress corrosion cracking of Zircaloy-4 alloy

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi; Tanaka, Akiei.

    1988-01-01

    Effects of applied stress on failure time in stress corrosion cracking of Zircaloy-4 alloy were investigated by Weibull distribution method. Test pieces in the evaculated silica tubes were annealed at 1,073 K for 7.2 x 10 3 s, and then quenched into ice-water. These species under constant applied stresses of 40∼90 % yield stress were immersed in CH 3 OH-1 w% I 2 solution at room temperature. The probability distribution of failure times under applied stress of 40 % of yield stress was described as single Weibull distribution, which had one shape parameter. The probability distributions of failure times under applied stress above 60 % of yield stress were described as composite and mixed Weibull distributions, which had the two shape parameters of Weibull distributions for the regions of the shorter time and longer one of failure. The values of these shape parameters in this study were larger than the value of 1 which corresponded to that of wear out failure. The observation of fracture surfaces and the stress dependence of the shape parameters indicated that the shape parameters both for the times of failure under 40 % of yield stress and for the longer ones above 60 % of yield stress corresponded to intergranular cracking, and that for shorter times of failure corresponded to transgranular cracking and dimple fracture. (author)

  12. Investigation of Cracks Found in Helicopter Longerons

    Science.gov (United States)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  13. Ultrasonic sizing of fatigue cracks

    International Nuclear Information System (INIS)

    Burns, D.J.

    1983-12-01

    Surface and buried fatigue cracks in steel plates have been sized using immersion probes as transmitters-receivers, angled to produce shear waves in the steel. Sizes have been estimated by identifying the ultrasonic waves diffracted from the crack tip and by measuring the time taken for a signal to travel to and from the crack tip. The effects of compression normal to a fatigue crack and of crack front curvature are discussed. Another diffraction technique, developed by UKAEA, Harwell, is reviewed

  14. 32 CFR 935.125 - Citation in place of arrest.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Citation in place of arrest. 935.125 Section 935... INSULAR REGULATIONS WAKE ISLAND CODE Peace Officers § 935.125 Citation in place of arrest. In any case in which a peace officer may make an arrest without a warrant, he may issue and serve a citation if he...

  15. Crack propagation in teeth: a comparison of perimortem and postmortem behavior of dental materials and cracks.

    Science.gov (United States)

    Hughes, Cris E; White, Crystal A

    2009-03-01

    This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.

  16. Associates of Cardiopulmonary Arrest in the Perihemodialytic Period

    Science.gov (United States)

    Flythe, Jennifer E.; Li, Nien-Chen; Brunelli, Steven M.; Lacson, Eduardo

    2014-01-01

    Cardiopulmonary arrest during and proximate to hemodialysis is rare but highly fatal. Studies have examined peridialytic sudden cardiac event risk factors, but no study has considered associates of cardiopulmonary arrests (fatal and nonfatal events including cardiac and respiratory causes). This study was designed to elucidate patient and procedural factors associated with peridialytic cardiopulmonary arrest. Data for this case-control study were taken from the hemodialysis population at Fresenius Medical Care, North America. 924 in-center cardiopulmonary events (cases) and 75,538 controls were identified. Cases and controls were 1 : 5 matched on age, sex, race, and diabetes. Predictors of cardiopulmonary arrest were considered for logistic model inclusion. Missed treatments due to hospitalization, lower body mass, coronary artery disease, heart failure, lower albumin and hemoglobin, lower dialysate potassium, higher serum calcium, greater erythropoietin stimulating agent dose, and normalized protein catabolic rate (J-shaped) were associated with peridialytic cardiopulmonary arrest. Of these, lower albumin, hemoglobin, and body mass index; higher erythropoietin stimulating agent dose; and greater missed sessions had the strongest associations with outcome. Patient health markers and procedural factors are associated with peridialytic cardiopulmonary arrest. In addition to optimizing nutritional status, it may be prudent to limit exposure to low dialysate potassium (<2 K bath) and to use the lowest effective erythropoietin stimulating agent dose. PMID:25530881

  17. Associates of Cardiopulmonary Arrest in the Perihemodialytic Period

    Directory of Open Access Journals (Sweden)

    Jennifer E. Flythe

    2014-01-01

    Full Text Available Cardiopulmonary arrest during and proximate to hemodialysis is rare but highly fatal. Studies have examined peridialytic sudden cardiac event risk factors, but no study has considered associates of cardiopulmonary arrests (fatal and nonfatal events including cardiac and respiratory causes. This study was designed to elucidate patient and procedural factors associated with peridialytic cardiopulmonary arrest. Data for this case-control study were taken from the hemodialysis population at Fresenius Medical Care, North America. 924 in-center cardiopulmonary events (cases and 75,538 controls were identified. Cases and controls were 1 : 5 matched on age, sex, race, and diabetes. Predictors of cardiopulmonary arrest were considered for logistic model inclusion. Missed treatments due to hospitalization, lower body mass, coronary artery disease, heart failure, lower albumin and hemoglobin, lower dialysate potassium, higher serum calcium, greater erythropoietin stimulating agent dose, and normalized protein catabolic rate (J-shaped were associated with peridialytic cardiopulmonary arrest. Of these, lower albumin, hemoglobin, and body mass index; higher erythropoietin stimulating agent dose; and greater missed sessions had the strongest associations with outcome. Patient health markers and procedural factors are associated with peridialytic cardiopulmonary arrest. In addition to optimizing nutritional status, it may be prudent to limit exposure to low dialysate potassium (<2 K bath and to use the lowest effective erythropoietin stimulating agent dose.

  18. Delayed Hydride Cracking in Zr-2.5Nb Tubes with the Direction of An Approach to Temperature

    International Nuclear Information System (INIS)

    Kim, Young Suk; Im, Kyung Soo; Kim, Kang Soo; Ahn, Sang Bok; Cheong, Yong Moo

    2006-01-01

    One of the unique features of delayed hydride cracking (DHC) of zirconium alloys is that the DHC velocity (DHCV) of zirconium alloys strongly depends on the path to the test temperature. Ambler reported that the DHCV of Zr-2.5Nb tubes at temperatures above 180 .deg. C depended upon the direction of an approach to the test temperatures, and reported on a presence of the DHC arrest temperature or TDAT above which the DHCV decreased upon an approach to the test temperature by a heating. Ambler proposed a hydrogen transfer from the bulk to the crack tip assuming that the hydrides formed at the crack tip and in the bulk region are fully constrained and partially constrained at the crack tip, respectively. In other words, the terminal solid solubility (TSS) of hydrogen would be governed by elastic strain energy induced by the precipitating hydrides, leading to a higher TSS in the bulk region than that at the crack tip. In a sense, his assumption that the hydrogen concentration is higher in the bulk region than that at the crack tip due to a higher TSS in the bulk region is, in a way, similar to Kim's DHC model. Even though Ambler assumed a different strain energy of the matrix hydrides with the direction of an approach to the test temperature, the peak temperature, hydrogen concentration and the hydride phase, a feasible rationale for this assumption is yet to be given. In this study, a path dependence of DHC velocity of Zr-2.5Nb tubes will be investigated using Kim's DHC model where a driving force for DHC is the supersaturated hydrogen concentration between the crack tip and the bulk region. To this ends, the furnace cooled and water-quenched Zr-2.5Nb specimens were subjected to DHC tests at different test temperatures that were approached by a heating or by a cooling. Kim's DHC model predicts that the water-quenched Zr- 2.5Nb will have DHC crack growth even at temperatures above 180 .deg. C where the furnace-cooled Zr-2.5Nb will not. This experiment will provide

  19. Delayed Hydride Cracking in Zr-2.5Nb Tubes with the Direction of An Approach to Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Im, Kyung Soo; Kim, Kang Soo; Ahn, Sang Bok; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    One of the unique features of delayed hydride cracking (DHC) of zirconium alloys is that the DHC velocity (DHCV) of zirconium alloys strongly depends on the path to the test temperature. Ambler reported that the DHCV of Zr-2.5Nb tubes at temperatures above 180 .deg. C depended upon the direction of an approach to the test temperatures, and reported on a presence of the DHC arrest temperature or TDAT above which the DHCV decreased upon an approach to the test temperature by a heating. Ambler proposed a hydrogen transfer from the bulk to the crack tip assuming that the hydrides formed at the crack tip and in the bulk region are fully constrained and partially constrained at the crack tip, respectively. In other words, the terminal solid solubility (TSS) of hydrogen would be governed by elastic strain energy induced by the precipitating hydrides, leading to a higher TSS in the bulk region than that at the crack tip. In a sense, his assumption that the hydrogen concentration is higher in the bulk region than that at the crack tip due to a higher TSS in the bulk region is, in a way, similar to Kim's DHC model. Even though Ambler assumed a different strain energy of the matrix hydrides with the direction of an approach to the test temperature, the peak temperature, hydrogen concentration and the hydride phase, a feasible rationale for this assumption is yet to be given. In this study, a path dependence of DHC velocity of Zr-2.5Nb tubes will be investigated using Kim's DHC model where a driving force for DHC is the supersaturated hydrogen concentration between the crack tip and the bulk region. To this ends, the furnace cooled and water-quenched Zr-2.5Nb specimens were subjected to DHC tests at different test temperatures that were approached by a heating or by a cooling. Kim's DHC model predicts that the water-quenched Zr- 2.5Nb will have DHC crack growth even at temperatures above 180 .deg. C where the furnace-cooled Zr-2.5Nb will not. This experiment

  20. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Mengjia; Xu, Jijin, E-mail: xujijin_1979@sjtu.edu.cn; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-12-30

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  1. Fractal and probability analysis of creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses

    International Nuclear Information System (INIS)

    Xu, Mengjia; Xu, Jijin; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-01-01

    Graphical abstract: - Highlights: • Statistical and fractal analysis is applied to study the creep fracture surface. • The tensile residual stresses promote the initiation of creep crack. • The fractal dimension of a mixed mode fracture surface shows a wavy variation. • The fractal dimension increases with increasing intergranular fracture percentage. • Height coordinates of intergranular fracture surface fit Gaussian distribution. - Abstract: In order to clarify creep crack growth behavior in 2.25Cr–1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  2. Atomistics of crack propagation

    International Nuclear Information System (INIS)

    Sieradzki, K.; Dienes, G.J.; Paskin, A.; Massoumzadeh, B.

    1988-01-01

    The molecular dynamic technique is used to investigate static and dynamic aspects of crack extension. The material chosen for this study was the 2D triangular solid with atoms interacting via the Johnson potential. The 2D Johnson solid was chosen for this study since a sharp crack in this material remains stable against dislocation emission up to the critical Griffith load. This behavior allows for a meaningful comparison between the simulation results and continuum energy theorems for crack extension by appropriately defining an effective modulus which accounts for sample size effects and the non-linear elastic behavior of the Johnson solid. Simulation results are presented for the stress fields of moving cracks and these dynamic results are discussed in terms of the dynamic crack propagation theories, of Mott, Eshelby, and Freund

  3. Crack-tip constraint analyses and constraint-dependent LBB curves for circumferential through-wall cracked pipes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.L.; Wang, G.Z., E-mail: gzwang@ecust.edu.cn; Xuan, F.Z.; Tu, S.T.

    2015-04-15

    Highlights: • Solution of constraint parameter τ* for through-wall cracked pipes has been obtained. • Constraint increases with increasing crack length and radius–thickness ratio of pipes. • Constraint-dependent LBB curve for through-wall cracked pipes has been constructed. • For increasing accuracy of LBB assessments, constraint effect should be considered. - Abstract: The leak-before-break (LBB) concept has been widely applied in the structural integrity assessments of pressured pipes in nuclear power plants. However, the crack-tip constraint effects in LBB analyses and designs cannot be incorporated. In this paper, by using three-dimensional finite element calculations, the modified load-independent T-stress constraint parameter τ* for circumferential through-wall cracked pipes with different geometries and crack sizes has been analyzed under different loading conditions, and the solutions of the crack-tip constraint parameter τ* have been obtained. Based on the τ* solutions and constraint-dependent J–R curves of a steel, the constraint-dependent LBB (leak-before-break) curves have been constructed. The results show that the constraint τ* increases with increasing crack length θ, mean radius R{sub m} and radius–thickness ratio R{sub m}/t of the pipes. In LBB analyses, the critical crack length calculated by the J–R curve of the standard high constraint specimen for pipes with shorter cracks is over-conservative, and the degree of conservatism increases with decreasing crack length θ, R{sub m} and R{sub m}/t. Therefore, the constraint-dependent LBB curves should be constructed to modify the over-conservatism and increase accuracy of LBB assessments.

  4. Universal Shapes formed by Interacting Cracks

    Science.gov (United States)

    Fender, Melissa; Lechenault, Frederic; Daniels, Karen

    2011-03-01

    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in dental enamel and cleaved silicon to geological faults and planetary ice crusts. In each of these situations, with complicated curvature and stress geometries, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths known in the geologic literature as en passant cracks. While the fragmentation of solids via many interacting cracks has seen wide investigation, less attention has been paid to the details of individual crack-crack interactions. We investigate the origins of this widely observed crack pattern using a rectangular elastic plate which is notched on each long side and then subjected to quasistatic uniaxial strain from the short side. The two cracks propagate along approximately straight paths until the pass each other, after which they curve and release a lenticular fragment. We find that, for materials with diverse mechanical properties, the shape of this fragment has an aspect ratio of 2:1, with the length scale set by the initial cracks offset s and the time scale set by the ratio of s to the pulling velocity. The cracks have a universal square root shape, which we understand by using a simple geometric model and the crack-crack interaction.

  5. Effects of rust in the crack face on crack detection based on Sonic-IR method

    International Nuclear Information System (INIS)

    Harai, Y.; Izumi, Y.; Tanabe, H.; Takamatsu, T.; Sakagami, T.

    2015-01-01

    Sonic-IR, which is based on the thermographic detection of the temperature rise due to frictional heating at the defect faces under ultrasonic excitation, has an advantage in the detection of closed and small defects. However, this method has a lot of nuclear factors relating to heat generation. In this study, effects of rust in the crack faces on the crack detection based on the sonic-IR method is experimentally investigated by using crack specimens. The heat generation by ultrasonic excitation was observed regularly during rust accelerated test using original device. The distribution of temperature change around the crack was changed with the progress of rust. This change in heat generation, it believed to be due to change in the contact state of the crack surface due to rust. As a result, it was found that heat generation by ultrasonic excitation is affected by rust in the crack faces. And it was also found that crack detection can be conducted by sonic-IR even if rust was generated in the crack faces. (author)

  6. Leak-before-break assessment of RBMK-1500 fuel channel in case of delayed hydride cracking

    International Nuclear Information System (INIS)

    Klimasauskas, A.; Grybenas, A.; Makarevicius, V.; Nedzinskas, L.; Levinskas, R.; Kiselev, V.

    2003-01-01

    One of the factors determining remaining lifetime of Zr-2.5% Nb fuel channel (FC) is the amount of hydrogen dissolved during corrosion process. When the concentration of hydrogen exceeds the terminal solid solubility limit zirconium hydrides are precipitated. As a result form necessary conditions for delayed hydride cracking (DHC). Data from the RBMK-1500 fuel channel tubes (removed from service) shows that hydrogen in some cases distributes unevenly and hydrogen concentration can differ several times between individual FC tubes or separate zones of the same tube and possibly, can reach dangerous levels in the future. Consequently, lacking statistical research data, it is difficult to forecast increase of hydrogen concentration and formation of DHC. So it is important to verify if under the most unfavorable situation leak before break condition will be satisfied in the case of DHC. To estimate possible DHC rates in RBMK 1500 FC pressure tubes experiments were done in the following order: hydriding of the Zr-2.5Nb pressure tube material to the required hydrogen concentration; hydrogen analysis; machining of specimens, fatigue crack formation in the axial direction, DHC testing; average crack length measurement and DHC velocity calculation. During the tests in average DHC values were determined at 283, 250 and 144 degC (with hydrogen concentrations correspondingly 76, 54 and 27 ppm). The fracture resistance dependence from hydrogen concentration was measured at 20 degC. To calculate leak through the postulated flaw, statistical distribution of DHC surface irregularity was determined. Leak before break analysis was carried out according to requirements of RBMK 1500 regulatory documents. J integral and crack opening were calculated using finite element method. Loading of the FC was determined using RELAP5 code. Critical crack length was calculated using R6 and J-integral methods. Coolant flow rate through the postulated crack was estimated using SQUIRT software

  7. High temperature cracking of steels: effect of geometry on creep crack growth laws

    International Nuclear Information System (INIS)

    Kabiri, M.R.

    2003-12-01

    This study was performed at Centre des Materiaux de l'Ecole des Mines de Paris. It deals with identification and transferability of high temperature creep cracking laws of steels. A global approach, based on C * and J non-linear fracture mechanics parameters has been used to characterize creep crack initiation and propagation. The studied materials are: the ferritic steels 1Cr-1Mo-1/4V (hot and cold parts working at 540 and 250 C) used in the thermal power stations and the austenitic stainless steel 316 L(N) used in the nuclear power stations. During this thesis a data base was setting up, it regroups several tests of fatigue, creep, creep-fatigue, and relaxation. Its particularity is to contain several creep tests (27 tests), achieved at various temperatures (550 to 650 C) and using three different geometries. The relevance of the C * parameter to describe the creep crack propagation was analysed by a means of systematic study of elasto-viscoplastic stress singularities under several conditions (different stress triaxiality). It has been shown that, besides the C * parameter, a second non singular term, denoted here as Q * , is necessary to describe the local variables in the vicinity of the crack tip. Values of this constraint parameter are always negative. Consequently, application of typical creep crack growth laws linking the creep crack growth rate to the C * parameter (da/dt - C * ), will be conservative for industrial applications. Furthermore, we showed that for ferritic steels, crack incubation period is important, therefore a correlation of Ti - C * type has been kept to predict crack initiation time Ti. For the austenitic stainless steel, the relevant stage is the one of the crack propagation, so that a master curve (da/dt - C * ), using a new data analysis method, was established. Finally, the propagation of cracks has been simulated numerically using the node release technique, allowing to validate analytical expressions utilised for the experimental

  8. Crack resistance of austenitic pipes with circumferential through-wall cracks

    International Nuclear Information System (INIS)

    Foerster, K.; Grueter, L.; Setz, W.; Bhandari, S.; Debaene, J.P.; Faidy, C.; Schwalbe, K.H.

    1993-01-01

    For monotonously increasing load the correct evaluation of the crack resistance properties of a structure is essential for safety analyses. Considerable attention has been given to the through-wall case, since this is generally believed to be the controlling case with regard to complete pipe failure. The maximum load conditions for circumferential crack growth in pipes under displacement-controlled loadings has been determined. The need for crack resistance curves, measured on circumferentially through-wall cracked straight pipes of austenitic stainless steel 316L under bending, is emphasized by the limitation in the data range on small specimens and by the differences in the procedures. To answer open questions and to improve calculational methods a joint fracture mechanics program is being performed by Electricite de France, Novatome and Siemens-Interatom. The working program contains experimental and theoretical investigations on the applicability of small-specimen data to real structures. 10 refs., 10 figs., 4 tabs

  9. The effect of ultraviolet light on arrested human diploid cell populations

    International Nuclear Information System (INIS)

    Kantor, G.J.; Warner, C.; Hull, D.R.

    1977-01-01

    The results of the experiments to determine an effect of UV (254 nm) on human diploid fibroblasts (HDF) arrested with respect to division by using 0.5% fetal calf serum in the culture medium are reported. A fraction of cells from irradiated arrested populations, maintained in the arrested state post-irradiation, was lost from the populations. The extent of cell loss was fluence-dependent and cell strain specific. A Xeroderma pigmentosum cell strain was more sensitive to UV than were normal HDF. No difference in sensitivity were observed when arrested populations established from normal HDF populations of various in vitro ages were used. The length of the pre-irradiation arrested period affected the sensitivity of normal HDF, which appeared more resistant at longer arrested periods, but not the sensitivity of arrested Xeroderma populations. These results suggest that DNA repair processes play a role in maintaining irradiated cells in the arrested state. The suggestion is made that the lethal event caused by UV is an effect on transcription leading to an inhibition of required protein synthesis. (author)

  10. Cardiac arrest due to lymphocytic colitis: a case report

    Directory of Open Access Journals (Sweden)

    Groth Kristian A

    2012-03-01

    Full Text Available Abstract Introduction We present a case of cardiac arrest due to hypokalemia caused by lymphocytic colitis. Case presentation A 69-year-old Caucasian man presented four months prior to a cardiac arrest with watery diarrhea and was diagnosed with lymphocytic colitis. Our patient experienced a witnessed cardiac arrest at his general practitioner's surgery. Two physicians and the emergency medical services resuscitated our patient for one hour and four minutes before arriving at our university hospital. Our patient was defibrillated 16 times due to the recurrence of ventricular tachyarrhythmias. An arterial blood sample revealed a potassium level of 2.0 mmol/L (reference range: 3.5 to 4.6 mmol/L and pH 6.86 (reference range: pH 7.37 to 7.45. As the potassium level was corrected, the propensity for ventricular tachyarrhythmias ceased. Our patient recovered from his cardiac arrest without any neurological deficit. Further tests and examinations revealed no other reason for the cardiac arrest. Conclusion Diarrhea can cause life-threatening situations due to the excretion of potassium, ultimately causing cardiac arrest due to hypokalemia. Physicians treating patients with severe diarrhea should consider monitoring their electrolyte levels.

  11. Mental health court outcomes: a comparison of re-arrest and re-arrest severity between mental health court and traditional court participants.

    Science.gov (United States)

    Moore, Marlee E; Hiday, Virginia Aldigé

    2006-12-01

    Mental health courts have been proliferating across the country since their establishment in the late 1990's. Although numerous advocates have proclaimed their merit, only few empirical studies have evaluated their outcomes. This paper evaluates the effect of one mental health court on criminal justice outcomes by examining arrests and offense severity from one year before to one year after entry into the court, and by comparing mental health court participants to comparable traditional criminal court defendants on these measures. Multivariate models support the prediction that mental health courts reduce the number of new arrests and the severity of such re-arrests among mentally ill offenders. Similar analysis of mental health court completers and non-completers supports the prediction that a "full dose" of mental health treatment and court monitoring produce even fewer re-arrests.

  12. Dental Calculus Arrest of Dental Caries

    OpenAIRE

    Keyes, Paul H.; Rams, Thomas E.

    2016-01-01

    Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human t...

  13. Naphthalimides Induce G2 Arrest Through the ATM-Activated Chk2-Executed Pathway in HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Hong Zhu

    2009-11-01

    Full Text Available Naphthalimides, particularly amonafide and 2-(2-dimethylamino-6-thia-2-aza-benzo[def]chrysene-1,3-diones (R16, have been identified to possess anticancer activities and to induce G2-M arrest through inhibiting topoisomerase II accompanied by Chk1 degradation. The current study was designed to precisely dissect the signaling pathway(s responsible for the naphthalimide-induced cell cycle arrest in human colon carcinoma HCT116 cells. Using phosphorylated histone H3 and mitotic protein monoclonal 2 as mitosis markers, we first specified the G2 arrest elicited by the R16 and amonafide. Then, R16 and amonafide were revealed to induce phosphorylation of the DNA damage sensor ataxia telangiectasia-mutated (ATM responding to DNA double-strand breaks (DSBs. Inhibition of ATM by both the pharmacological inhibitor caffeine and the specific small interference RNA (siRNA rescued the G2 arrest elicited by R16, indicating its ATM-dependent characteristic. Furthermore, depletion of Chk2, but not Chk1 with their corresponding siRNA, statistically significantly reversed the R16- and amonafide-triggered G2 arrest. Moreover, the naphthalimides phosphorylated Chk2 in an ATM-dependent manner but induced Chk1 degradation. These data indicate that R16 and amonafide preferentially used Chk2 as evidenced by the differential ATM-executed phosphorylation of Chk1 and Chk2. Thus, a clear signaling pathway can be established, in which ATM relays the DNA DSBs signaling triggered by the naphthalimides to the checkpoint kinases, predominantly to Chk2,which finally elicits G2 arrest. The mechanistic elucidation not only favors the development of the naphthalimides as anticancer agents but also provides an alternative strategy of Chk2 inhibition to potentiate the anticancer activities of these agents.

  14. Analysis of the G1 arrest position of senescent WI38 cells by quinacrine dihydrochloride nuclear fluorescence: evidence for a late G1 arrest

    International Nuclear Information System (INIS)

    Gorman, S.D.; Cristofalo, V.J.

    1986-01-01

    Senescence of the human diploid fibroblast-like cell line, W138, is characterized by a loss of proliferative activity and an arrest of cells with a 2C DNA content (G1 or G0). To examine the specific region within G1 in which senescent cells arrest, senescent cells were stained with quinacrine dihydrochloride (QDH) and their nuclear fluorescence was compared with that of young cultures arrested in early and late G1 by serum deprivation and hydroxyurea exposure, respectively. Release of these G1-arrested young cultures from their blocking conditions and timing the kinetics of their entry into the S phase by autoradiographic detection of [ 3 H]thymidine incorporation revealed that serum-deprived cells entered the S phase within 15-18h, whereas hydroxyurea-exposed cells entered the S phase within 1.5h, thus confirming their relative G1-arrest positions. QDH-stained, serum-deprived and hydroxyurea-exposed young cells exhibited relative nuclear fluorescence intensities of 51.7 and 23.9, respectively. Senescent cells exhibited a relative nuclear fluorescence intensity of 17.4, closely resembling the fluorescence of young cultures arrested in late G1 by hydroxyurea exposure. These data support the concept that senescent cells are arrested from further progression in the cell cycle in late G1

  15. Prediction of Crack Growth Aqueous Environments.

    Science.gov (United States)

    1983-06-01

    ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK AREA & WORK UNIT NUMBERS SRI International 333 Ravenswood Avenue Menlo Park, CA 94025 II...34no crack" has at least a vestigial rupture, associated with cyclic loading of the oxide film at the crack tip. The curve labeled "crack" was obtained...be an effect of crack opening. For the data set labeled "crack", the vestigial crack, although short, is very tight and the impedance is large. Under

  16. Gender and Relational-Distance Effects in Arrests for Domestic Violence

    Science.gov (United States)

    Lally, William; DeMaris, Alfred

    2012-01-01

    This study tests two hypotheses regarding factors affecting arrest of the perpetrator in domestic violence incidents. Black's relational-distance thesis is that the probability of arrest increases with increasing relational distance between perpetrator and victim. Klinger's leniency principle suggests that the probability of arrest is lower for…

  17. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    Science.gov (United States)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  18. Role of hydrogen in stress corrosion cracking

    International Nuclear Information System (INIS)

    Mehta, M.L.

    1981-01-01

    Electrochemical basis for differentiation between hydrogen embrittlement and active path corrosion or anodic dissolution crack growth mechanisms is examined. The consequences of recently demonstrated acidification in crack tip region irrespective of electrochemical conditions at the bulk surface of the sample are that the hydrogen can evolve within the crack and may be involved in the cracking process. There are basically three aspects of hydrogen involvement in stress corrosion cracking. In dissolution models crack propagation is assumed to be caused by anodic dissolution on the crack tip sustained by cathodic reduction of hydrogen from electrolyte within the crack. In hydrogen induced structural transformation models it is postulated that hydrogen is absorbed locally at the crack tip producing structural changes which facilitate crack propagation. In hydrogen embrittlement models hydrogen is absorbed by stressed metal from proton reduction from the electrolyte within the crack and there is interaction between lattice and hydrogen resulting in embrittlement of material at crack tip facilitating crack propagation. In the present paper, the role of hydrogen in stress corrosion crack growth in high strength steels, austenitic stainless steels, titanium alloys and high strength aluminium alloys is discussed. (author)

  19. Team-focused Cardiopulmonary Resuscitation: Prehospital Principles Adapted for Emergency Department Cardiac Arrest Resuscitation.

    Science.gov (United States)

    Johnson, Blake; Runyon, Michael; Weekes, Anthony; Pearson, David

    2018-01-01

    Out-of-hospital cardiac arrest has high rates of morbidity and mortality, and a growing body of evidence is redefining our approach to the resuscitation of these high-risk patients. Team-focused cardiopulmonary resuscitation (TFCPR), most commonly deployed and described by prehospital care providers, is a focused approach to cardiac arrest care that emphasizes early defibrillation and high-quality, minimally interrupted chest compressions while de-emphasizing endotracheal intubation and intravenous drug administration. TFCPR is associated with statistically significant increases in survival to hospital admission, survival to hospital discharge, and survival with good neurologic outcome; however, the adoption of similar streamlined resuscitation approaches by emergency physicians has not been widely reported. In the absence of a deliberately streamlined approach, such as TFCPR, other advanced therapies and procedures that have not shown similar survival benefit may be prioritized at the expense of simpler evidence-based interventions. This review examines the current literature on cardiac arrest resuscitation. The recent prehospital success of TFCPR is highlighted, including the associated improvements in multiple patient-centered outcomes. The adaptability of TFCPR to the emergency department (ED) setting is also discussed in detail. Finally, we discuss advanced interventions frequently performed during ED cardiac arrest resuscitation that may interfere with early defibrillation and effective high-quality chest compressions. TFCPR has been associated with improved patient outcomes in the prehospital setting. The data are less compelling for other commonly used advanced resuscitation tools and procedures. Emergency physicians should consider incorporating the TFCPR approach into ED cardiac arrest resuscitation to optimize delivery of those interventions most associated with improved outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. SSRI Facilitated Crack Dancing

    Directory of Open Access Journals (Sweden)

    Ravi Doobay

    2017-01-01

    Full Text Available Choreoathetoid movement secondary to cocaine use is a well-documented phenomenon better known as “crack dancing.” It consists of uncontrolled writhing movements secondary to excess dopamine from cocaine use. We present a 32-year-old male who had been using cocaine for many years and was recently started on paroxetine, a selective serotonin reuptake inhibitor (SSRI for worsening depression four weeks before presentation. He had been doing cocaine every 2 weeks for the last three years and had never “crack danced” before this episode. The authors have conducted a thorough literature review and cited studies that suggest “crack dancing” is associated with excess dopamine. There has never been a documented case report of an SSRI being linked with “crack dancing.” The authors propose that the excess dopaminergic effect of the SSRI lowered the dopamine threshold for “crack dancing.” There is a communication with the Raphe Nucleus and the Substantia Nigra, which explains how the SSRI increases dopamine levels. This is the first documented case of an SSRI facilitating the “crack dance.”

  1. Maturation arrest of human oocytes at germinal vesicle stage

    Directory of Open Access Journals (Sweden)

    Zhi Qin Chen

    2010-01-01

    Full Text Available Maturation arrest of human oocytes may occur at various stages of the cell cycle. A total failure of human oocytes to complete meiosis is rarely observed during assisted conception cycles. We describe here a case of infertile couples for whom all oocytes repeatedly failed to mature at germinal vesicle (GV stage during in vitro fertilization/Intra cytoplasmic sperm injection (IVF/ICSI. The patient underwent controlled ovarian stimulation followed by oocyte retrieval and IVF/ICSI. The oocytes were stripped off cumulus cells prior to the ICSI procedure and their maturity status was defined. The oocyte maturation was repeatedly arrested at the GV. Oocyte maturation arrest may be the cause of infertility in this couple. The recognition of oocyte maturation arrest as a specific medical condition may contribute to the characterization of the currently known as "oocyte factor." The cellular and genetic mechanisms causing oocyte maturation arrest should be the subject for further investigation.

  2. Mechanics of quasi-static crack growth

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1978-10-01

    Results on the mechanics of quasi-static crack growth are reviewed. These include recent studies on the geometry and stability of crack paths in elastic-brittle solids, and on the thermodynamics of Griffith cracking, including environmental effects. The relation of crack growth criteria to non-elastic rheological models is considered and paradoxes with energy balance approaches, based on singular crack models, are discussed for visco-elastic, diffuso-elastic, and elastic-plastic materials. Also, recent approaches to prediction of stable crack growth in ductile, elastic-plastic solids are discussed.

  3. Evaluation of options for life cycle management of feeder cracking at the Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    Gendron, T.S.; Slade, J.P.

    2003-01-01

    The CANDU industry has a predictive capability for most Heat Transport System (HTS) degradation issues that allows utilities to apply cost-effective maintenance programs. The standard approach for maintenance programs is focussed inspection and planned replacement. Some examples of degradation issues with deterministic failure rates are feeder thinning, and pressure tube elongation and deuterium ingress. However, the cracking observed in Point Lepreau Generating Station (PLGS) outlet feeder first bends is one notable exception to this behaviour. A predictive capability for feeder cracking does not currently exist for several reasons. First, the mechanism of feeder cracking, stress corrosion cracking (SCC), has to some degree a random nature. Second, although a probable environment causing cracking has been identified, the precise stress and environmental conditions for feeder crack initiation and propagation have not been defined. Finally, the very low incidence of feeder cracking observed to-date (four, all at PLGS) precludes a probabilistic or statistical prediction of failure rate. Generally, utilities select a Life Cycle Management Plan that ensures safe operation and has the lowest Net Present Value cost. In preparing a Feeder Life Cycle Management Plan, New Brunswick Power (NBP) has recognized that the Net Present Value cost is very sensitive to failure rate. Since the failure rate for feeder cracking is not well defined, the following three scenarios were considered to bound the probability of future failures at PLGS. (author)

  4. Nonlinear crack mechanics

    International Nuclear Information System (INIS)

    Khoroshun, L.P.

    1995-01-01

    The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

  5. Effects of Aqueous Solutions on the Slow Crack Growth of Soda-Lime-Silicate Glass

    Science.gov (United States)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth (SCG) parameters of soda-lime-silicate were measured in distilled and saltwater of various concentrations in order to determine if the presence of salt and the contaminate formation of a weak sodium film affects stress corrosion susceptibility. Past research indicates that solvents affect the rate of crack growth; however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the SCG parameters A and n at high concentrations; however, for typical engineering purposes, the effect can be ignored.

  6. Stress corrosion cracking behaviour of Alloy 600 in high temperature water

    International Nuclear Information System (INIS)

    Webb, G.L.; Burke, M.G.

    1995-01-01

    The stress corrosion cracking (SCC) susceptibility of Alloy 600 in deaerated water at 360 deg. C, as measured with statistically-loaded U-bend specimens, is dependent upon microstructure and whether the material was cold-worked and annealed (CWA) or hot-worked and annealed (HWA). All cracking was intergranular, and materials lacking grain boundary carbides were most susceptible to SCC initiation. CWA tubing materials are more susceptible to SCC initiation than HWA ring-rolled forging materials with similar microstructures, as determined by light optical metallography (LOM). In CWA tubing materials one crack dominated and grew to a large size that was observable by visual inspection. HWA materials with a low hot-working finishing temperature (below 925 deg. C) and final anneals at temperatures ranging from 1010 deg. C to 1065 deg. C developed both large cracks, similar to those found in CWA materials, and also small intergranular microcracks, which are detectable only by destructive metallographic examination. HWA materials with a high hot-working finishing temperature (above 980 deg. C) and high-temperature final anneal (above 1040 deg. C), with grain boundaries that are fully decorated, developed only microcracks, which were observed in all specimens examined. These materials developed no large, visually detectable cracks, even after more than 300 weeks exposure. A low-temperature thermal treatment (610 deg. C for 7h), which reduced or eliminates SCC in Alloy 600, did not eliminate microcrack formation in the high temperature processed HWA materials. Detailed microstructural characterization using conventional metallographic and analytical electron microscopy (AEM) techniques was performed on selected materials to identify the factors responsible for the observed differences in cracking behaviour. 11 refs, 12 figs, 3 tabs

  7. Comparative Analysis of Crack Propagation in Roots with Hand and Rotary Instrumentation of the Root Canal -An Ex-vivo Study.

    Science.gov (United States)

    Kumari, Manju Raj; Krishnaswamy, Manjunath Mysore

    2016-07-01

    Success of any endodontic treatment depends on strict adherence to 'endodontic triad'. Preparation of root canal system is recognized as being one of the most important stages in root canal treatment. At times, we inevitably end up damaging root dentin which becomes a Gateway for infections like perforation, zipping, dentinal cracks and minute intricate fractures or even vertical root fractures, thereby resulting in failure of treatment. Several factors may be responsible for the formation of dentinal cracks like high concentration of sodium hypochlorite, compaction methods and various canal shaping methods. To compare and evaluate the effects of root canal preparation techniques and instrumentation length on the development of apical root cracks. Seventy extracted premolars with straight roots were mounted on resin blocks with simulated periodontal ligaments, exposing 1-2 mm of the apex followed by sectioning of 1mm of root tip for better visualization under stereomicroscope. The teeth were divided into seven groups of 10 teeth each - a control group and six experimental groups. Subgroup A & B were instrumented with: Stainless Steel hand files (SS) up to Root Canal Length (RCL) & (RCL -1 mm) respectively; sub group C & D were instrumented using ProTaper Universal (PTU) up to RCL and (RCL -1mm) respectively; subgroup E & F were instrumented using ProTaper Next (PTN) up to RCL & (RCL -1 mm) respectively. Stereomicroscopic images of the instrumentation sequence were compared for each tooth. The data was analyzed statistically using descriptive analysis by 'Phi' and 'Cramers' test to find out statistical significance between the groups. The level of significance was set at phand file group showed most cracks followed by ProTaper Universal & ProTaper Next though statistically not significant. Samples instrumented up to 1mm short of working length (RCL-1mm) showed lesser number of cracks. All groups showed cracks formation, the stainless steel group being the highest

  8. Comparison of finite element J-integral evaluations for the blunt crack model and the sharp crack model

    International Nuclear Information System (INIS)

    Pan, Y.C.; Kennedy, J.M.

    1983-01-01

    In assessing the safety of a liquid metal fast breeder reactor (LMFBR), a major concern is that of hot sodium coming into contact with either unprotected concrete or steel-lined concrete equipment cells and containment structures. An aspect of this is the potential of concrete cracking which would significantly influence the safety assessment. Concrete cracking in finite element analysis can be modeled as a blunt crack in which the crack is assumed to be uniformly distributed throughout the area of the element. A blunt crack model based on the energy release rate and the effective strength concepts which was insensitive to the element size was presented by Bazant and Cedolin. Some difficulties were encountered in incorporating their approach into a general purpose finite element code. An approach based on the J-integral to circumvent some of the difficulties was proposed by Pan, Marchertas, and Kennedy. Alternatively, cracking can also be modeled as a sharp crack where the crack surface is treated as the boundary of the finite element mesh. The sharp crack model is adopted by most researchers and its J-integral has been well established. It is desirable to establish the correlation between the J-integrals, or the energy release rates, for the blunt crack model and the sharp crack model so that data obtained from one model can be used on the other

  9. Tensile cracks in creeping solids

    International Nuclear Information System (INIS)

    Riedel, H.; Rice, J.R.

    1979-02-01

    The loading parameter determining the stress and strain fields near a crack tip, and thereby the growth of the crack, under creep conditions is discussed. Relevant loading parameters considered are the stress intensity factor K/sub I/, the path-independent integral C*, and the net section stress sigma/sub net/. The material behavior is modelled as elastic-nonlinear viscous where the nonlinear term describes power law creep. At the time t = 0 load is applied to the cracked specimen, and in the first instant the stress distribution is elastic. Subsequently, creep deformation relaxes the initial stress concentration at the crack tip, and creep strains develop rapidly near the crack tip. These processes may be analytically described by self-similar solutions for short times t. Small scale yielding may be defined. In creep problems, this means that elastic strains dominate almost everywhere except in a small creep zone which grows around the crack tip. If crack growth ensues while the creep zone is still small compared with the crack length and the specimen size, the stress intensity factor governs crack growth behavior. If the calculated creep zone becomes larger than the specimen size, the stresses become finally time-independent and the elastic strain rates can be neglected. In this case, the stress field is the same as in the fully-plastic limit of power law hardening plasticity. The loading parameter which determines the near tip fields uniquely is then the path-independent integral C*.K/sub I/ and C* characterize opposite limiting cases. The case applied in a given situation is decided by comparing the creep zone size with the specimen size and the crack length. Besides several methods of estimating the creep zone size, a convenient expression for a characteristic time is derived, which characterizes the transition from small scale yielding to extensive creep of the whole specimen

  10. Quenching cracks - formation and possible causes

    International Nuclear Information System (INIS)

    Macherauch, E.; Mueller, H.; Voehringer, O.

    1976-01-01

    The most important principles controlling the martensitic hardening of steels containing carbon are presented, and their effects on the cracks formed by tempering are discussed. Micro-crack formation, influenced by any increase in the carbon content, is dependent on the variations of martensitic morphology; this factor is of decisive importance. Apart from micro residual stresses, macro residual stresses become increasingly involved in the crack development. This is dependent on the given content of carbon and increase in the dimensions of the samples. Based on the empirical values gained from experience about cracks formed by tempering and using a schematic diagram, the constructive influences on the propensity to cracks formed by tempering, with regard to materials and processing, are evaluated. Also the effects of thermic, mechanical and chemical after-treatments upon the propensity to tempering cracks are discussed. In conclusion, the problem of the formation of cracks in hardened parts, i.e. the elongation of the cracks under static stress, is treated briefly. (orig.) [de

  11. Natural zeolite bitumen cracking

    Energy Technology Data Exchange (ETDEWEB)

    Kuznicki, S.M.; McCaffrey, W.C.; Bian, J.; Wangen, E.; Koenig, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-07-01

    A study was conducted to demonstrate how low cost heavy oil upgrading in the field could reduce the need for diluents while lowering the cost for pipelining. Low cost field upgrading could also contribute to lowering contaminant levels. The performance of visbreaking processes could be improved by using disposable cracking agents. In turn, the economics of field upgrading of in-situ derived bitumen would be improved. However, in order to be viable, such agents would have to be far less expensive than current commercial cracking catalysts. A platy natural zeolite was selected for modification and testing due to its unique chemical and morphological properties. A catalyst-bearing oil sand was then heat-treated for 1 hour at 400 degrees C in a sealed microreactor. Under these mild cracking conditions, the catalyst-bearing oil sand produced extractable products of much lower viscosity. The products also contained considerably more gas oil and middle distillates than raw oil sand processed under the same conditions as thermal cracking alone. According to model cracking studies using hexadecane, these modified mineral zeolites may be more active cracking agents than undiluted premium commercial FCC catalyst. These materials hold promise for partial upgrading schemes to reduce solvent requirements in the field. tabs., figs.

  12. Environmentally assisted cracking of LWR materials

    International Nuclear Information System (INIS)

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1995-12-01

    Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289 degree C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 degree C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections

  13. In-reactor fatigue crack propagation

    International Nuclear Information System (INIS)

    Ermi, A.M.; Mervyn, D.A.; Straalsund, J.L.

    1979-08-01

    An in-reactor fatigue experiment is being designed to determine the effect of dynamic irradiation on the fatigue crack propagation (FCP) behavior of candidate fusion first wall materials. This investigation has been prompted by studies which show gross differences in crack growth characteristics of creep rupture specimens testing by postirradiation versus dynamic in-reactor methods. The experiment utilizes miniature center-cracked-tension specimens developed specifically for in-reactor studies. In the test, a chain of eight specimens, precracked to various initial crack lengths, is stressed during irradiation to determine crack growth rate as a function of stress intensity. Load levels were chosen which result in small crack growth rates encompassing a regime of the crack growth curve not previously investigated during irradiation studies of FCP. The test will be conducted on 20% cold worked 316 stainless steel at a temperature of 425 0 C, in a sodium environment, and at a frequency of 1 cycle/min. Irradiation will occur in the Oak Ridge Research Reactor, resulting in a He/dpa ratio similar to that expected at the first wall in a fusion reactor. Detailed design of the experiment is presented, along with crack growth data obtained from prototypic testing of the experimental apparatus. These results are compared to data obtained under similar conditions generated by conventional test methods

  14. The effect of crack branching on the residual lifetime of machine components containing stress corrosion cracks

    International Nuclear Information System (INIS)

    Magdowski, R.M.; Uggowitzer, P.J.; Speidel, M.O.

    1985-01-01

    A comparison is presented of theoretical, numerical and experimental investigations concerning the effect of crack branching on the reduction of stress intensity at the tip of single cracks. The results indicate that the division of a single crack into n branches reduces the stress intensity at the branch tips by a factor of about 1/√n. This permits branched cracks to grow to larger depths before becoming critical. The implication is that longer residual lifetimes and longer operating times between inspections can be calculated for machine components with growing branched stress corrosion cracks. (author)

  15. Fatigue of graphite/epoxy buffer strip panels with center cracks

    Science.gov (United States)

    Bigelow, C. A.

    1985-01-01

    The effects of fatigue loading on the behavior of graphite/epoxy panels with either S-Glass or Kevlar-49 buffer strips is studied. Buffer strip panels are fatigued and tested in tension to measure their residual strength with crack-like damage. Panels are made with 45/0/-45/90 sub 2s layup with either S-Glass or Kevlar-49 buffer strip material. The buffer strips are parallel to the loading direction and made by replacing narrow strips of the 0-degree graphite plies with strips of either 0-degree S-Glass/epoxy or Kevlar-49/epoxy on a one-for-one basis. The panels are subjected to a fatigue loading spectrum MINITWIST, the shortened version of the standardized load program for the wing lower surface of a transport aircraft. Two levels of maximum strain are used in the spectrum with three durations of the fatigue spectrum. One group of panels is preloaded prior to the application of the fatigue cycling. The preload consists of statistically loading the spectrum in tension until the crack-tip damage zone reaches the ajacent buffer strips. After fatigue loading, all specimens are statistically loaded in tension to failure to determine their residual strengths.

  16. A study on the fracture toughness of heavy section steel plates and forgings for nuclear pressure vessels produced in Japan, (4)

    International Nuclear Information System (INIS)

    Sakai, Yuzuru; Ogura, Nobukazu; Takahashi, Isao; Miya, Kenzo; Ando, Yoshio.

    1985-01-01

    As another parameter for evaluating the toughness of structural materials, there is crack arrest toughness. This is a parameter showing the resistance of materials to stop the cracks rapidly propagating in brittle state within the materials, unlike static and dynamic fracture toughness related to the occurrence of breaking. As the conventional method of determining the crack arrest toughness, the relatively large testing method such as double tensile test and ESSO test have been known, but the establishment of a smaller convenient testing method is desired. In this study, the evaluation of the crack arrest toughness of the very thick steel materials produced in Japan was carried out by the testing method using small test pieces. In order to make test pieces small, tapered type DCB test and the three-point bending test using DWTT test pieces were examined as well as the testing method recommended by ASTM. The test materials were A 533B, Cl. 1 and A 508, Cl. 3. The test pieces, the various testing methods and the experimental results are reported. The temperature dependence of the crack arrest toughness was shown. (Kako, I.)

  17. Buckling Analysis of Edge Cracked Sandwich Plate

    Directory of Open Access Journals (Sweden)

    Rasha Mohammed Hussein

    2016-07-01

    Full Text Available This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.

  18. Pittsburgh Police Arrest Data

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Arrest data contains information on people taken into custody by City of Pittsburgh police officers. More serious crimes such as felony offenses are more likely to...

  19. Fatigue test results of flat plate specimens with surface cracks and evaluation of crack growth in structural components

    International Nuclear Information System (INIS)

    Shibata, Katsuyuki; Yokoyama, Norio; Ohba, Toshihiro; Kawamura, Takaichi; Miyazono, Shohachiro

    1982-12-01

    Part-through surface cracks are most frequently observed in the inspection of structural components, and it is one of the important subjects in the assessment of safety to evaluate appropriately the growth of such cracks during the service life of structural components. Due to the complexity of the stress at the front free surface, the crack growth at the surface shows a different behavior from the other part. Besides, an effect of interaction is caused in the growth of multiple surface cracks. These effects should be included in the growth analysis of surface part-through cracks. Authors have carried out a series of fatigue tests on some kinds of pipes with multiple cracks in the inner surface, and subsequently the fatigue test of flat plate specimens, made of Type 304L stainless steel, with a single or double surface cracks was carried out to study the basic characteristics in the growth of multiple surface cracks. Based on the results of the flat plate test. the correction factors for the front free surface (Cs) and interaction (Ci) of surface cracks were derived quantitatively by the following empirical expressions; Cs = 0.824. Ci = (0.227(a/b) 2 (sec(PI X/2) - 1) + 1)sup(1/m). Using these two correction factors, a procedure to predict the growth of surface cracks was developed by applying the crack growth formula to both the thickness and surface directions. Besides, the crack growth predictions based on the procedure of ASME Code Sex. XI, and the above procedure without the correction of the free surface and interactions on the crack growth behaviors were compared with the test results of flat plate specimens. The crack growth behavior predicted by the procedure described in this report showed the best agreement with the test results in respects of the crack growth life and the change in the crack shape. The criteria of the ASME Code did not agree with the test results. (author)

  20. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C. [Stuttgart Univ. (Germany). Materials Testing Inst.

    2013-07-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  1. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    Utz, S.; Soppa, E.; Silcher, H.; Kohler, C.

    2013-01-01

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  2. Dynamic ductile fracture of a central crack

    Science.gov (United States)

    Tsai, Y. M.

    1976-01-01

    A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.

  3. Fatigue crack propagation behavior under creep conditions

    International Nuclear Information System (INIS)

    Ohji, Kiyotsugu; Kubo, Shiro

    1991-01-01

    The crack propagation behavior of the SUS 304 stainless steel under creep-fatigue conditions was reviewed. Cracks propagated either in purely time-dependent mode or in purely cycle-dependent mode, depending on loading conditions. The time-dependent crack propagation rate was correlated with modified J-integral J * and the cycle-dependent crack propagation rate was correlated with J-integral range ΔJ f . Threshold was observed in the cycle-dependent crack propagation, and below this threshold the time-dependent crack propagation appeared. The crack propagation rates were uniquely characterized by taking the effective values of J * and ΔJ f , when crack closure was observed. Change in crack propagation mode occurred reversibly and was predicted by the competitive damage model. The threshold disappeared and the cycle-dependent crack propagation continued in a subthreshold region under variable amplitude conditions, where the threshold was interposed between the maximum and minimum ΔJ f . (orig.)

  4. Cracking in Drying Colloidal Films

    Science.gov (United States)

    Singh, Karnail B.; Tirumkudulu, Mahesh S.

    2007-05-01

    It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.

  5. The geometry of empty space is the key to arresting dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lawlor, Aonghus; De Gregorio, Paolo; Dawson, K A [Department of Chemistry, University College Dublin, Irish Centre for Colloid Science and Biomaterials, Belfield, Dublin 4 (Ireland)

    2004-10-27

    We present the concept of dynamically available volume as a suitable order parameter for dynamical arrest. We show that dynamical arrest can be understood as a de-percolation transition of a vacancy network or available space. Beyond the arrest transition we find that droplets of available space are disconnected and the dynamics is frozen. This connection of the dynamics to the underlying geometrical structure of empty space provides us with a rich framework for studying the arrest transition.

  6. Recent advances in modelling creep crack growth

    International Nuclear Information System (INIS)

    Riedel, H.

    1988-08-01

    At the time of the previous International Conference on Fracture, the C* integral had long been recognized as a promising load parameter for correlating crack growth rates in creep-ductile materials. The measured crack growth rates as a function of C* and of the temperature could be understood on the basis of micromechanical models. The distinction between C*-controlled and K I -controlled creep crack growth had been clarified and first attempts had been made to describe creep crack growth in the transient regime between elastic behavior and steady-state creep. This paper describes the progress in describing transient crack growth including the effect of primary creep. The effect of crack-tip geometry changes by blunting and by crack growth on the crack-tip fields and on the validity of C* is analyzed by idealizing the growing-crack geometry by a sharp notch and using recent solutions for the notch-tip fields. A few new three-dimensional calculations of C* are cited and important theoretical points are emphasized regarding the three-dimensional fields at crack tips. Finally, creep crack growth is described by continuum-damage models for which similarity solutions can be obtained. Crack growth under small-scale creep conditions turns out to be difficult to understand. Slightly different models yield very different crack growth rates. (orig.) With 4 figs

  7. Effects of off-centered cracks and restraint of induced bending caused by pressure on the crack-opening-area analysis of pipes

    International Nuclear Information System (INIS)

    Rahman, S.; Wilkowski, G.M.; Bonora, N.

    1996-01-01

    Current models for the crack-opening-area analysis of pipes with circumferential through-wall cracks are based on various idealizations or assumptions which are often necessary to simplify the mathematical formulation and numerical calculation. This paper focuses on the validity of two such assumptions that involve off-centered cracks and the restraint of induced bending caused by pressure, and quantifies their effects on the crack-opening area analysis of pipes. Finite element and/or simple estimation methods were employed to compute the center-crack-opening displacement and crack-opening shape for a through-wall-cracked pipe, considering off-centered cracks and the restraint of induced bending caused by pressure. The results of the analyses show that, for both cases, the crack-opening area can be reduced significantly. For pipes with off-centered cracks, the crack-opening area can be evaluated from analyses of symmetrically centered cracks and assuming elliptical profile. For pipes with complete restraint of the induced bending caused by pressure, the reduction in crack-opening area depends on the crack size. When the crack size is small, the restraint effects can be ignored. However, when the crack size is large, the restrained crack opening can be significantly smaller than the unrestrained crack opening, depending on the length of pipe involved; hence, it may be important for the crack-opening-area and leak-rate analyses. (orig.)

  8. Transient Central Diabetes Insipidus and Marked Hypernatremia following Cardiorespiratory Arrest

    Directory of Open Access Journals (Sweden)

    Sahar H. Koubar

    2017-01-01

    Full Text Available Central Diabetes Insipidus is often an overlooked complication of cardiopulmonary arrest and anoxic brain injury. We report a case of transient Central Diabetes Insipidus (CDI following cardiopulmonary arrest. It developed 4 days after the arrest resulting in polyuria and marked hypernatremia of 199 mM. The latter was exacerbated by replacing the hypotonic urine by isotonic saline.

  9. Impact of a novel, resource appropriate resuscitation curriculum on Nicaraguan resident physician’s management of cardiac arrest

    Directory of Open Access Journals (Sweden)

    Breena R. Taira

    2016-06-01

    Full Text Available Purpose: Project Strengthening Emergency Medicine, Investing in Learners in Latin America (SEMILLA created a novel, language and resource appropriate course for the resuscitation of cardiac arrest for Nicaraguan resident physicians. We hypothesized that participation in the Project SEMILLA resuscitation program would significantly improve the physician’s management of simulated code scenarios. Methods: Thirteen Nicaraguan resident physicians were evaluated while managing simulated cardiac arrest scenarios before, immediately, and at 6 months after participating in the Project SEMILLA resuscitation program. This project was completed in 2014 in Leon, Nicaragua. The Cardiac Arrest Simulation Test (CASTest, a validated scoring system, was used to evaluate performance on a standardized simulated cardiac arrest scenario. Mixed effect logistic regression models were constructed to assess outcomes. Results: On the pre-course simulation exam, only 7.7% of subjects passed the test. Immediately post-course, the subjects achieved a 30.8% pass rate and at 6 months after the course, the pass rate was 46.2%. Compared with pre-test scores, the odds of passing the CASTest at 6 months after the course were 21.7 times higher (95% CI 4.2 to 112.8, P<0.001. Statistically significant improvement was also seen on the number of critical items completed (OR=3.75, 95% CI 2.71-5.19, total items completed (OR=4.55, 95% CI 3.4-6.11, and number of “excellent” scores on a Likert scale (OR=2.66, 95% CI 1.85-3.81. Conclusions: Nicaraguan resident physicians demonstrate improved ability to manage simulated cardiac arrest scenarios after participation in the Project SEMILLA resuscitation course and retain these skills.

  10. Evaluation of the cracking by stress corrosion in nuclear reactor environments type BWR

    International Nuclear Information System (INIS)

    Arganis J, C. R.

    2010-01-01

    The stress corrosion cracking susceptibility was studied in sensitized, solution annealed 304 steel, and in 304-L welded with a heat treatment that simulated the radiation induced segregation, by the slow strain rate test technique, in a similar environment of a boiling water reactor (BWR), 288 C, 8 MPa, low conductivity and a electrochemical corrosion potential near 200 mV. vs. standard hydrogen electrode (She). The electrochemical noise technique was used for the detection of the initiation and propagation of the cracking. The steels were characterized by metallographic studies with optical and scanning electronic microscopy and by the electrochemical potentiodynamic reactivation of single loop and double loop. In all the cases, the steels present delta ferrite. The slow strain rate tests showed that the 304 steel in the solution annealed condition is susceptible to transgranular stress corrosion cracking (TGSCC), such as in a normalized condition showed granulated. In the sensitized condition the steel showed intergranular stress corrosion cracking, followed by a transition to TGSCC. The electrochemical noise time series showed that is possible associated different time sequences to different modes of cracking and that is possible detect sequentially cracking events, it is means, one after other, supported by the fractographic studies by scanning electron microscopy. The parameter that can distinguish between the different modes of cracking is the re passivation rate, obtained by the current decay rate -n- in the current transients. This is due that the re passivation rate is a function of the microstructure and the sensitization. Other statistic parameters like the localized index, Kurtosis, Skew, produce results that are related with mixed corrosion. (Author)

  11. Crack growth by micropore coalescence at high temperatures

    International Nuclear Information System (INIS)

    Beere, W.

    1981-01-01

    At high temperatures in the creep regime the stress distribution around a crack is different from the low temperature elastically generated distribution. The stress distribution ahead of the crack is calculated for a crack preceded by an array of growing cavities. The cavities maintain a displacement wedge ahead of the crack. When the displacement wedge is less than one-tenth the crack length the driving force for crack growth is similar to an all elastically loaded crack. When the deforming wedge exceeds the crack length the net section stress controls crack growth. An expression is derived for a crack growing by the growth and coalescence of cavities situated in the crack plane. It is predicted that at high temperatures above a critical stress intensity, the crack propagates in a brittle fashion. (author)

  12. Remote detection of stress corrosion cracking: Surface composition and crack detection

    Science.gov (United States)

    Lissenden, Cliff J.; Jovanovic, Igor; Motta, Arthur T.; Xiao, Xuan; Le Berre, Samuel; Fobar, David; Cho, Hwanjeong; Choi, Sungho

    2018-04-01

    Chloride induced stress corrosion cracking (SCC) of austenitic stainless steel is a potential issue in long term dry storage of spent nuclear fuel canisters. In order for SCC to occur there must be a corrosive environment, a susceptible material, and a driving force. Because it is likely that the material in the heat affected zone (HAZ) of welded stainless steel structures has been sensitized as a result of chromium depletion at the grain boundaries and a thermal residual stress driving force is likely present if solution annealing is not performed, two issues are critical. Is the environment corrosive, i.e., are chlorides present in solution on the surface? And then, are there cracks that could propagate? Remote detection of chlorides on the surface can be accomplished by laser induced breakdown spectroscopy (LIBS), while cracks can be detected by shear horizontal guided waves generated by electromagnetic acoustic transducers (EMATs). Both are noncontact methods that are amenable to robotic delivery systems and harsh environments. The sensitivity to chlorine on stainless steel of a LIBS system that employs optical fiber for pulse delivery is demonstrated. Likewise, the ability of the EMAT system to detect cracks of a prescribed size and orientation is shown. These results show the potential for remote detection of Cl and cracks in dry storage spent fuel canisters.

  13. Post-resuscitation care for survivors of cardiac arrest

    Directory of Open Access Journals (Sweden)

    Ashvarya Mangla

    2014-01-01

    Full Text Available Cardiac arrest can occur following a myriad of clinical conditions. With advancement of medical science and improvements in Emergency Medical Services systems, the rate of return of spontaneous circulation for patients who suffer an out-of-hospital cardiac arrest (OHCA continues to increase. Managing these patients is challenging and requires a structured approach including stabilization of cardiopulmonary status, early consideration of neuroprotective strategies, identifying and managing the etiology of arrest and initiating treatment to prevent recurrence. This requires a closely coordinated multidisciplinary team effort. In this article, we will review the initial management of survivors of OHCA, highlighting advances and ongoing controversies.

  14. 21 CFR 137.190 - Cracked wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...

  15. Dynamic Crack Branching - A Photoelastic Evaluation,

    Science.gov (United States)

    1982-05-01

    0.41 mPai and a 0.18 MPa, and predicted a theoretical kinking angle of 84°whichagreed well with experimentally measured angle. After crack kinking...Consistent crack branching’at KIb = 2.04 MPaI -i- and r = 1.3 mm verified this crack branching criterion. The crack branching angle predicted by--.’ DD

  16. Cracking of open traffic rigid pavement

    Directory of Open Access Journals (Sweden)

    Niken Chatarina

    2017-01-01

    Full Text Available The research is done by observing the growth of real structure cracking in Natar, Lampung, Indonesia compared to C. Niken’s et al research and literature study. The rigid pavement was done with open traffic system. There are two main crack types on Natar rigid pavement: cracks cross the road, and cracks spreads on rigid pavement surface. The observation of cracks was analyzed by analyzing material, casting, curing, loading and shrinkage mechanism. The relationship between these analysis and shrinkage mechanism was studied in concrete micro structure. Open traffic make hydration process occur under vibration; therefore, fresh concrete was compressed and tensioned alternately since beginning. High temperature together with compression, cement dissociation, the growth of Ca2+ at very early age leads abnormal swelling. No prevention from outside water movement leads hydration process occur with limited water which caused spreads fine cracks. Limited water improves shrinkage and plastic phase becomes shorter; therefore, rigid pavement can’t accommodate the abnormal swelling and shrinking alternately and creates the spread of cracks. Discontinuing casting the concrete makes both mix under different condition, the first is shrink and the second is swell and creates weak line on the border; so, the cracks appear as cracks across the road.

  17. Lateral rigidity of cracked concrete structures

    International Nuclear Information System (INIS)

    Castellani, A.; Chesi, C.

    1979-01-01

    Numerical results are discussed on the lateral rigidity of reinforced concrete structures with a given crack distribution. They have been favourably checked with experimental results for cylindrical shells under the effect of a thermal gradient producing vertical cracking or vertical plus horizontal cracking. The main effects characterizing the concrete behaviour are: (1) The shear transfer across a crack; (2) The shear transfer degradation after cyclic loading; (3) The tension stiffening provided by the concrete between crack and crack, in the normal stress transfer; (4) The temperature effect on the elastic moduli of concrete, when cracks are of thermal origin. Only the 1st effect is discussed on an experimental basis. Two broad cathegories of reinforced concrete structures have been investigated in this respect: shear walls of buildings and cylindrical containment structures. The main conclusions so far reached are: (1) Vertical cracks are unlikely to decrease the lateral rigidity to less than 80% of the original one, and to less than 90% when they do not involve the entire thickness of the wall; (2) The appearence of horizontal cracks can reduce the lateral rigidity by some 30% or more; (3) A noticeable but not yet evaluated influence is shown by cyclic loading. (orig.)

  18. Semi-empirical crack tip analysis

    Science.gov (United States)

    Chudnovsky, A.; Ben Ouezdon, M.

    1988-01-01

    Experimentally observed crack opening displacements are employed as the solution of the multiple crack interaction problem. Then the near and far fields are reconstructed analytically by means of the double layer potential technqiue. Evaluation of the effective stress intensity factor resulting from the interaction of the main crack and its surrounding crazes in addition to the remotely applied load is presented as an illustrative example. It is shown that crazing (as well as microcracking) may constitute an alternative mechanism to Dugdale-Berenblatt models responsible for the cancellation of the singularity at the crack tip.

  19. Prediction of pure water stress corrosion cracking (PWSCC) in nickel base alloys using crack growth rate models

    International Nuclear Information System (INIS)

    Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

    1995-01-01

    The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip

  20. Communication between members of the cardiac arrest team--a postal survey.

    Science.gov (United States)

    Pittman, J; Turner, B; Gabbott, D A

    2001-05-01

    Effective communication enhances team building and is perceived to improve the quality of team performance. A recent publication from the Resuscitation Council (UK) has highlighted this fact and recommended that cardiac arrest team members make contact daily. We wished to identify how often members of this team communicate prior to a cardiopulmonary arrest. A questionnaire on cardiac arrest team composition, leadership, communication and debriefing was distributed nationally to Resuscitation Training Officers (RTOs) and their responses analysed. One hundred and thirty (55%) RTOs replied. Physicians and anaesthetists were the most prominent members of the team. The Medical Senior House Officer is usually nominated as the team leader. Eighty-seven centres (67%) have no communication between team members prior to attending a cardiopulmonary arrest. In 33%, communication occurs but is either informal or fortuitous. The RTOs felt that communication is important to enhance team dynamics and optimise task allocation. Only 7% achieve a formal debrief following a cardiac arrest. Communication between members of the cardiac arrest team before and after a cardiac arrest is poor. Training and development of these skills may improve performance and should be prioritised. Team leadership does not necessarily reflect experience or training.

  1. Effects of off-centered crack and restraint of induced bending due to pressure on the crack-opening-area analysis of pipes

    International Nuclear Information System (INIS)

    Rahman, S.; Ghadiali, N.; Wilkowski, G.; Bonora, N.

    1995-01-01

    Estimation of leak rate is an important element in developing leak-before-break (LBB) methodology for piping integrity and safety analysis of nuclear power plants. Here, current models for the crack-opening-area analysis of pipes with circumferential through-wall cracks are based on various idealizations or assumption which are often necessary to simplify the mathematical formulation and numerical calculation. This paper focuses on the validity of two such assumptions involving off-centered cracks and restraint of induced bending due to pressure and quantifies their effects on the crack-opening analysis of pipes. Both finite element and/or simple estimation methods were employed to compute the center-crack-opening displacement and crack-opening shape for a through-wall-cracked pipe considering off-centered cracks and restrain of induced bending due to pressure. The results of analyses show that for both cases the crack-opening area can be reduced significantly. For pipes with off-centered cracks, the crack-opening area can be evaluated from analyses of symmetrically centered cracks and assuming elliptical profile. For pipes with complete restraint of induced bending due to pressure, the reduction of crack-opening area depends on the crack size. When the crack size is small, the restraint effects can be ignored. However, when the crack size is larger, the restrained crack-opening can be significantly smaller than the unrestrained crack-opening depending on the length of pipe involved, and hence, may be important for the crack-opening-area and leak-rate analyses

  2. Propagation of stress corrosion cracks in alpha-brasses

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, Dennis Vinton [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1981-01-01

    Transgranular and intergranular stress corrosion cracks were investigated in alpha-brasses in a tarnishing ammoniacal solution. Surface observation indicated that the transgranular cracks propagated discontinuously by the sudden appearance of a fine crack extending several microns ahead of the previous crack tip, often associated with the detection of a discrete acoustic emission (AE). By periodically increasing the deflection, crack front markings were produced on the resulting fracture surfaces, showing that the discontinuous propagation of the crack trace was representative of the subsurface cracking. The intergranular crack trace appeared to propagate continuously at a relatively blunt crack tip and was not associated with discrete AE. Under load pulsing tests with a time between pulses, Δt greater than or equal to 3 s, the transgranular fracture surfaces always exhibited crack front markings which corresponded with the applied pulses. The spacing between crack front markings, Δx, decreased linearly with Δt. With Δt less than or equal to 1.5 s, the crack front markings were in a one-to-one correspondence with applied pulses only at relatively long crack lengths. In this case, Δx = Δx* which approached a limiting value of 1 μm. No crack front markings were observed on intergranular fracture surfaces produced during these tests. It is concluded that transgranular cracking occurs by discontinuous mechanical fracture of an embrittled region around the crack tip, while intergranular cracking results from a different mechanism with cracking occurring via the film-rupture mechanism.

  3. Crack tip stress and strain

    International Nuclear Information System (INIS)

    Francois, D.

    1975-01-01

    The study of potential energy variations in a loaded elastic solid containing a crack leads to determination of the crack driving force G. Generalization of this concept to cases other than linear elasticity leads to definition of the integral J. In a linear solid, the crack tip stress field is characterized by a single parameter: the stress-intensity factor K. When the crack tip plastic zone size is confined to the elastic singularity J=G, it is possible to establish relationship between these parameters and plastic strain (and in particular the crack tip opening displacement delta). The stress increases because of the triaxiality effect. This overload rises with increasing strain hardening. When the plastic zone size expands, using certain hypotheses, delta can be calculated. The plastic strain intensity is exclusively dependent on parameter J [fr

  4. Evaluation of the probability of crack initiation and crack instability for a pipe with a semi-elliptical crack

    International Nuclear Information System (INIS)

    Le Delliou, P.; Hornet, P.

    2001-01-01

    This paper presents some work conducted at EDF R and D Division to evaluate the probability that a semi-elliptical crack in a pipe not only initiates but also propagates when submitted to mechanical loading such as bending and pressure combined or not with a thermal shock. The first part is related to the description of the mechanical model: the simplified methods included in the French RSE-M Code used to evaluate the J-integral as well as the principle of the determination of the crack propagation. Then, the way this deterministic approach is combined to a reliability code is described. Finally, an example is shown: the initiation and the instability of a semi-elliptical crack in a pipe submitted to combined pressure and bending moment. (author)

  5. The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties

    Science.gov (United States)

    Pindra, Nadjime; Lazarus, Véronique; Leblond, Jean-Baptiste

    One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.

  6. Cocaine (Coke, Crack) Facts

    Science.gov (United States)

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... 69 KB) "My life was built around getting cocaine and getting high." ©istock.com/ Marjot Stacey is ...

  7. CRACK2 - Modelling calcium carbonate deposition from bicarbonate solution in cracks in concrete

    International Nuclear Information System (INIS)

    Brodersen, K.

    2003-03-01

    The numerical CRACK2 model simulates precipitation of calcite from calcium bicarbonate solution (e.g. groundwater) passing through cracks in concrete or other cementitious materials. A summary of experimental work is followed by a detailed description of the model. Hydroxyl ions are transported by diffusion in pore systems in columns of cementitious materials. The hydroxyl is precipitating calcite from a flow of bicarbonate solution in a crack connecting the ends of a row of such columns. The cementitious material is simulated as calcium hydroxide mixed with inert material but with sodium hydroxide dissolved in the pore solution. Diffusive migration of cesium as radioactive isotope is also considered. Electrical interaction of the migrating ions is taken into account. Example calculations demonstrate effects of parameter variations on distribution of precipitated calcite in the crack and on the composition of the outflowing solution, which can be compared directly with experimental results. Leaching behavior of sodium can be used to tune the model to experimental observations. The calcite is mostly precipitated on top of the original crack surface and may under certain circumstances fill the crack. The produced thin layers of low porosity calcite act as a diffusion barrier limiting contact between cement and solution. Pore closure mechanisms in such layers are discussed. Implications for safety assessment of radioactive waste disposal are shortly mentioned. The model is also relevant for conventional uses of concrete. (au)

  8. Noncontact fatigue crack evaluation using thermoelastic

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Min; An, Yun Kyu; Sohn, Hoon [KAIST, Daejeon (Korea, Republic of)

    2012-12-15

    This paper proposes a noncontact thermography technique for fatigue crack evaluation under a cyclic tensile loading. The proposed technique identifies and localizes an invisible fatigue crack without scanning, thus making it possible to instantaneously evaluate an incipient fatigue crack. Based on a thermoelastic theory, a new fatigue crack evaluation algorithm is proposed for the fatigue crack tip localization. The performance of the proposed algorithm is experimentally validated. To achieve this, the cyclic tensile loading is applied to a dog bone shape aluminum specimen using a universal testing machine, and the corresponding thermal responses induced by thermoelastic effects are captured by an infrared camera. The test results confirm that the fatigue crack is well identified and localized by comparing with its microscopic images.

  9. Assessment of cracking in dissimilar metal welds

    International Nuclear Information System (INIS)

    Jenssen, Anders; Norrgaard, K.; Lagerstroem, J.; Embring, G.; Tice, D.R.

    2001-08-01

    During the refueling in 2000, indications were observed by non-destructive testing at four locations in the reactor pressure vessel (RPV) nozzle to safe end weld in Ringhals 4. All indications were confined to the outlet nozzle (hotleg) oriented at 25 deg, a nozzle with documented repair welding. Six boat samples were removed from the four locations, and the samples were subsequently subjected to a metallographic examination. The objectives were to establish the fracture morphology, and if possible the root cause for cracking. The examination revealed that cracks were present at all four boat sample locations and that they all were confined to the weld metal, alloy 182. Cracking extended in the axial direction of the safe-end. There was no evidence of any cracks extending into the RPV-steel, or the stainless steel safe-end. All cracking was interdendritic and significantly branched. Among others, these observations strongly suggested crack propagation mainly was caused by interdendritic stress corrosion cracking. In addition, crack type defects and isolated areas on the fracture surfaces suggested the presence of hot cracking, which would have been formed during fabrication. The reason for crack initiation could not be established based on the boat samples examined. However, increased stress levels due to repair welding, cold work from grinding, and defects produced during fabrication, e. g. hot cracks, may alone or in combination have contributed to crack initiation

  10. Seismic behaviour of un-cracked and cracked thin pipes

    International Nuclear Information System (INIS)

    Blay, N.; Brunet, G.; Gantenbein, F.; Aguilar, J.

    1995-01-01

    In order to evaluate the seismic behaviour of un-cracked and cracked thin pipes, subjected to high acceleration levels, seismic tests and calculations have been performed on straight thin pipes made of 316L stainless steel, loaded in pure bending by a permanent static and dynamic loading. The seismic tests were carried out on the AZALEE shaking table of the CEA laboratory TAMARIS. The influence of the elasto-plastic model with isotropic or kinematic hardening are studied. 5 refs., 7 figs., 2 tabs

  11. Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply

    Science.gov (United States)

    VanDerMeer, Frans P.; Davila, Carlos G.

    2013-01-01

    This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks

  12. Dislocation model of a subsurface crack

    International Nuclear Information System (INIS)

    Yang, F.; Li, J.C.

    1997-01-01

    A dislocation model of a subsurface crack parallel to the surface is presented. For tensile loading, the results agree with those of previous workers except that we studied the crack very close to the surface and found that K II (mode II stress intensity factor) approaches K I (mode I stress intensity factor) to within about 22% (K II =0.78K I ). (Note that K II is zero when the crack is far away from the surface). Using bending theory for such situations, it is found that both stress intensity factors are inversely proportional to the 3/2 power of the distance between the subsurface crack and the free surface. For shear loading, the crack faces overlap each other for the free traction condition. This indicates the failure of the model. However, there was no overlap for tensile loading even though the stresses in front of the crack oscillate somewhat when the crack is very close to the surface. copyright 1997 American Institute of Physics

  13. Current Pharmacological Advances in the Treatment of Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Andry Papastylianou

    2012-01-01

    Full Text Available Cardiac arrest is defined as the sudden cessation of spontaneous ventilation and circulation. Within 15 seconds of cardiac arrest, the patient loses consciousness, electroencephalogram becomes flat after 30 seconds, pupils dilate fully after 60 seconds, and cerebral damage takes place within 90–300 seconds. It is essential to act immediately as irreversible damage can occur in a short time. Cardiopulmonary resuscitation (CPR is an attempt to restore spontaneous circulation through a broad range of interventions which are early defibrillation, high-quality and uninterrupted chest compressions, advanced airway interventions, and pharmacological interventions. Drugs should be considered only after initial shocks have been delivered (when indicated and chest compressions and ventilation have been started. During cardiopulmonary resuscitation, no specific drug therapy has been shown to improve survival to hospital discharge after cardiac arrest, and only few drugs have a proven benefit for short-term survival. This paper reviews current pharmacological treatment of cardiac arrest. There are three groups of drugs relevant to the management of cardiac arrest: vasopressors, antiarrhythmics, and other drugs such as sodium bicarbonate, calcium, magnesium, atropine, fibrinolytic drugs, and corticosteroids.

  14. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    2013-01-01

    Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stresses as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses...... for propagation and the angle of intersection of the crack front with the free edge....

  15. Crack closure, a literature study

    Science.gov (United States)

    Holmgren, M.

    1993-08-01

    In this report crack closure is treated. The state of the art is reviewed. Different empirical formulas for determining the crack closure are compared with each other, and their benefits are discussed. Experimental techniques for determining the crack closure stress are discussed, and some results from fatigue tests are also reported. Experimental data from the literature are reported.

  16. Major life events as potential triggers of sudden cardiac arrest.

    Science.gov (United States)

    Wicks, April F; Lumley, Thomas; Lemaitre, Rozenn N; Sotoodehnia, Nona; Rea, Thomas D; McKnight, Barbara; Strogatz, David S; Bovbjerg, Viktor E; Siscovick, David S

    2012-05-01

    We investigated the risk of sudden cardiac arrest in association with the recent loss of, or separation from, a family member or friend. Our case-crossover study included 490 apparently healthy married residents of King County, Washington, who suffered sudden cardiac arrest between 1988 and 2005. We compared exposure to spouse-reported family/friend events occurring ≤ 1 month before sudden cardiac arrest with events occurring in the previous 5 months. We evaluated potential effect modification by habitual vigorous physical activity. Recent family/friend events were associated with a higher risk of sudden cardiac arrest (odds ratio [OR] = 1.6; 95% confidence interval [CI] = 1.1-2.4). ORs for cases with and without habitual vigorous physical activity were 1.1 (0.6-2.2) and 2.0 (1.2-3.1), respectively (interaction P = 0.02). These results suggest family/friend events may trigger sudden cardiac arrest and raise the hypothesis that habitual vigorous physical activity may lower susceptibility to these potential triggers.

  17. Finite element simulation for creep crack growth

    International Nuclear Information System (INIS)

    Miyazaki, Noriyuki; Sasaki, Toru; Nakagaki, Michihiko; Brust, F.W.

    1992-01-01

    A finite element method was applied to a generation phase simulation of creep crack growth. Experimental data on creep crack growth in a 1Cr-1Mo-1/4V steel compact tension specimen were numerically simulated using a node-release technique and the variations of various fracture mechanics parameters such as CTOA, J, C * and T * during creep crack growth were calculated. The path-dependencies of the integral parameters J, C * and T * were also obtained to examine whether or not they could characterize the stress field near the tip of a crack propagating under creep condition. The following conclusions were obtained from the present analysis. (1) The J integral shows strong path-dependency during creep crack growth, so that it is does not characterize creep crack growth. (2) The C * integral shows path-dependency to some extent during creep crack growth even in the case of Norton type steady state creep law. Strictly speaking, we cannot use it as a fracture mechanics parameter characterizing creep crack growth. It is, however, useful from the practical viewpoint because it correlates well the rate of creep crack growth. (3) The T * integral shows good path-independency during creep crack growth. Therefore, it is a candidate for a fracture mechanics parameter characterizing creep crack growth. (author)

  18. Ventilation and gas exchange management after cardiac arrest.

    Science.gov (United States)

    Sutherasan, Yuda; Raimondo, Pasquale; Pelosi, Paolo

    2015-12-01

    For several decades, physicians had integrated several interventions aiming to improve the outcomes in post-cardiac arrest patients. However, the mortality rate after cardiac arrest is still as high as 50%. Post-cardiac arrest syndrome is associated with high morbidity and mortality due to not only poor neurological outcome and cardiovascular failure but also respiratory dysfunction. To minimize ventilator-associated lung injury, protective mechanical ventilation by using low tidal volume ventilation and driving pressure may decrease pulmonary complications and improve survival. Low level of positive end-expiratory pressure (PEEP) can be initiated and titrated with careful cardiac output and respiratory mechanics monitoring. Furthermore, optimizing gas exchange by avoiding hypoxia and hyperoxia as well as maintaining normocarbia may improve neurological and survival outcome. Early multidisciplinary cardiac rehabilitation intervention is recommended. Minimally invasive monitoring techniques, that is, echocardiography, transpulmonary thermodilution method measuring extravascular lung water, as well as transcranial Doppler ultrasound, might be useful to improve appropriate management of post-cardiac arrest patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Probabilistic fracture mechanics of nuclear structural components. Consideration of transition from embedded crack to surface crack

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Kanto, Yasuhiro

    1998-01-01

    This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas are first derived for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of PFM round-robin problems set by JSME-RC111 committee, i.e. 'aged RPV under normal and upset operating conditions' is solved, employing the interpolation formulas. (author)

  20. Crack Propagation by Finite Element Method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos H. Ricardo

    2018-01-01

    Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed

  1. Cooling the crisis: Therapeutic hypothermia after sickle cardiac arrest

    NARCIS (Netherlands)

    Metske, Hennie A.; Postema, Pieter G.; Biemond, Bart J.; Bouman, Catherine S. C.

    2012-01-01

    Objective: The management of patients with sickle-cell disease and cardiac arrest presents special challenges. Mild therapeutic hypothermia may improve survival and neurologic outcome after cardiac arrest, however, it may also precipitate sickling in patients with sickle-cell disease. Rigorous

  2. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  3. Fatigue-crack propagation behavior of steels in vacuum, and implications for ASME Section 11 crack growth analyses

    International Nuclear Information System (INIS)

    James, L.A.

    1985-08-01

    Section XI of the ASME Boiler and Pressure Vessel Code provides rules for the analysis of structures for which cracks or crack-like flaws have been discovered during inservice inspection. The Code provides rules for the analysis of both surface flaws as well as flaws that are embedded within the wall of the pressure vessel. In the case of surface flaws, the Code provides fatigue crack growth rate relationships for typical nuclear pressure vessel steels (e.g., ASTM A508-2 and A533-B) cycled in water environments typical of those in light-water reactors (LWR). However, for the case of embedded cracks, the Code provides crack growth relationships based on results from specimens that were cycled in an elevated temperature air environment. Although these latter relationships are often referred to as applying to ''inert'' environments, the results of this paper will show that an elevated temperature air environment is anything but inert, and that use of such relationships can result in overly pessimistic estimates of fatigue-crack growth lifetimes of embedded cracks. The reason, of course, is that embedded cracks grow in an environment that is probably much closer to a vacuum than an air environment

  4. The neighborhood context of racial and ethnic disparities in arrest.

    Science.gov (United States)

    Kirk, David S

    2008-02-01

    This study assesses the role of social context in explaining racial and ethnic disparities in arrest, with afocus on how distinct neighborhood contexts in which different racial and ethnic groups reside explain variations in criminal outcomes. To do so, I utilize a multilevel, longitudinal research design, combining individual-level data with contextual data from the Project on Human Development in Chicago Neighborhoods (PHDCN). Findings reveal that black youths face multiple layers of disadvantage relative to other racial and ethnic groups, and these layers work to create differences in arrest. At the family level, results show that disadvantages in the form of unstable family structures explain much of the disparities in arrest across race and ethnicity. At the neighborhood level, black youths tend to reside in areas with both significantly higher levels of concentrated poverty than other youths as well as lower levels of collective efficacy than white youths. Variations in neighborhood tolerance of deviance across groups explain little of the arrest disparities, yet tolerance of deviance does influence the frequency with which a crime ultimately ends in an arrest. Even after accounting for relevant demographic, family, and neighborhood-level predictors, substantial residual arrest differences remain between black youths and youths of other racial and ethnic groups.

  5. Out-of-hospital cardiac arrest: the prospect of E-CPR in the Maastricht region.

    Science.gov (United States)

    Sharma, A S; Pijls, R W M; Weerwind, P W; Delnoij, T S R; de Jong, W C; Gorgels, A P M; Maessen, J G

    2016-02-01

    The current outcome of out-of-hospital cardiac arrest (OHCA) patients in the Maastricht region was analysed with the prospect of implementing extracorporeal cardiopulmonary resuscitation (E-CPR). A retrospective analysis of adult patients who were resuscitated for OHCA during a 24-month period was performed. 195 patients (age 66 [57-75] years, 82 % male) were resuscitated for OHCA by the emergency medical services and survived to admission at the emergency department. Survival to hospital discharge was 46.2 %. Notable differences between non-survivors and survivors were observed and included: age (70 [58-79] years) vs. (63 [55-72] years, p = 0.01), chronic heart failure (18 vs. 7 %, p = 0.02), shockable rhythm (67 vs. 99 %, p < 0.01), and return of spontaneous circulation (ROSC) at departure from the site of the arrest (46 vs. 99 %, p < 0.01) and on arrival to the emergency department (43 vs. 98 %, p < 0.01), respectively. Acute coronary syndrome was diagnosed in 32 % of non-survivors vs. 59 % among survivors, p < 0.01. Therapeutic hypothermia was provided in non-survivors (20 %) vs. survivors (43 %), p < 0.01. Percutaneous coronary intervention (PCI) was performed in 14 % of non-survivors while 52 % of survivors received PCI (p < 0.01). No statistical significance was observed in terms of gender, witnessed arrest, bystander CPR, or automated external defibrillator deployed among the cohort. At hospital discharge, moderately severe neurological disability was present in six survivors. These observations are compatible with the notion that a shockable rhythm, ROSC, and post-arrest care improve survival outcome. Potentially, initiating E-CPR in the resuscitation phase in patients with a shockable rhythm and no ROSC might serve as a bridge to definite treatment and improve survival outcome.

  6. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    Science.gov (United States)

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Probabilistic fracture mechanics of nuclear structural components: consideration of transition from embedded crack to surface crack

    International Nuclear Information System (INIS)

    Yagawa, G.; Yoshimura, S.

    1999-01-01

    This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas of three-dimensional stress intensity factors are presented for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of the PFM round-robin problems set by JSME-RC111 committee (i.e. aged RPV under normal and upset operating conditions) is solved, employing the interpolation formulas. (orig.)

  8. Efficacy of silver diamine fluoride for Arresting Caries Treatment.

    NARCIS (Netherlands)

    Yee, R.T.F.; Holmgren, C.J.; Mulder, J.; Lama, D.; Walker, D.; Palenstein Helderman, W.H. van

    2009-01-01

    Arresting Caries Treatment (ACT) has been proposed to manage untreated dental caries in children. This prospective randomized clinical trial investigated the caries-arresting effectiveness of a single spot application of: (1) 38% silver diamine fluoride (SDF) with tannic acid as a reducing agent;

  9. Compressive failure with interacting cracks

    International Nuclear Information System (INIS)

    Yang Guoping; Liu Xila

    1993-01-01

    The failure processes in concrete and other brittle materials are just the results of the propagation, coalescence and interaction of many preexisting microcracks or voids. To understand the real behaviour of the brittle materials, it is necessary to bridge the gap from the relatively matured one crack behaviour to the stochastically distributed imperfections, that is, to concern the crack propagation and interaction of microscopic mechanism with macroscopic parameters of brittle materials. Brittle failure in compression has been studied theoretically by Horii and Nemat-Nasser (1986), in which a closed solution was obtained for a preexisting flaw or some special regular flaws. Zaitsev and Wittmann (1981) published a paper on crack propagation in compression, which is so-called numerical concrete, but they did not take account of the interaction among the microcracks. As for the modelling of the influence of crack interaction on fracture parameters, many studies have also been reported. Up till now, some researcher are working on crack interaction considering the ratios of SIFs with and without consideration of the interaction influences, there exist amplifying or shielding effects of crack interaction which are depending on the relative positions of these microcracks. The present paper attempts to simulate the whole failure process of brittle specimen in compression, which includes the complicated coupling effects between the interaction and propagation of randomly distributed or other typical microcrack configurations step by step. The lengths, orientations and positions of microcracks are all taken as random variables. The crack interaction among many preexisting random microcracks is evaluated with the help of a simple interaction matrix (Yang and Liu, 1991). For the subcritically stable propagation of microcracks in mixed mode fracture, fairly known maximum hoop stress criterion is adopted to compute branching lengths and directions at each tip of the crack

  10. Monte Carlo simulation taking account of surface crack effect for stress corrosion cracking in a stainless steel SUS 304

    International Nuclear Information System (INIS)

    Tohgo, Keiichiro; Suzuki, Hiromitsu; Shimamura, Yoshinobu; Nakayama, Guen; Hirano, Takashi

    2008-01-01

    Stress corrosion cracking (SCC) in structural metal materials occurs by initiation and coalescence of micro cracks, subcritical crack propagation and multiple large crack formation or final failure under the combination of materials, stress and corrosive environment. In this paper, a Monte Carlo simulation for the process of SCC has been proposed based on the stochastic properties of micro crack initiation and fracture mechanics concept for crack coalescence and propagation. The emphasis in the model is put on the influence of semi-elliptical surface cracks. Numerical simulations are carried out based on CBB (creviced bent beam) test results of a sensitized stainless steel SUS 304 and the influence of micro crack initiation rate and coalescence condition on the simulation results is discussed. The numerical examples indicate the applicability of the present model to a prediction of the SCC behavior in real structures. (author)

  11. Hydride effect on crack instability of Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Che-Chung, E-mail: cctseng@iner.gov.tw [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Sun, Ming-Hung [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Chao, Ching-Kong [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China)

    2014-04-01

    Highlights: • Radial hydrides near the crack tip had a significant effect on crack propagation. • For radial hydrides off the crack line vertically, the effect on crack propagation was notably reduced. • The longer hydride platelet resulted in a remarkable effect on crack propagation. • A long split in the radial hydride precipitate would enhance crack propagation. • The presence of circumferential hydride among radial hydrides may play an important role in crack propagation. - Abstract: A methodology was proposed to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation; both stress intensity factor K{sub I} and J integral were applied to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, number of hydrides, and the presence of circumferential hydride, etc. According to our study, the effective distance between a radial hydride and the assumed cladding surface crack for the enhancement of crack propagation proved to be no greater than 0.06 mm. For a hydride not on the crack line, it would induce a relatively minor effect on crack propagation if the vertical distance was beyond 0.05 mm. However, a longer hydride precipitate as well as double radial hydrides could have a remarkable effect on crack propagation. A combined effect of radial and circumferential hydrides was also discussed.

  12. Mixed-mode crack tip loading and crack deflection in 1D quasicrystals

    Science.gov (United States)

    Wang, Zhibin; Scheel, Johannes; Ricoeur, Andreas

    2016-12-01

    Quasicrystals (QC) are a new class of materials besides crystals and amorphous solids and have aroused much attention of researchers since they were discovered. This paper presents a generalized fracture theory including the J-integral and crack closure integrals, relations between J1, J2 and the stress intensity factors as well as the implementation of the near-tip stress and displacement solutions of 1D QC. Different crack deflection criteria, i.e. the J-integral and maximum circumferential stress criteria, are investigated for mixed-mode loading conditions accounting for phonon-phason coupling. One focus is on the influence of phason stress intensity factors on crack deflection angles.

  13. Creep crack extension by grain-boundary cavitation

    International Nuclear Information System (INIS)

    Bassani, J.L.

    1981-01-01

    Recent work by Riedel and coworkers has led to various descriptions of stationary and moving crack tip fields under creep conditions. For stationary and growing cracks, several flow mechanisms (e.g., elastic, time-independent plastic, primary creep, and secondary creep) can dictate the analytical form of the crack tip field. In this paper, relationship between overall loading and crack velocities are modelled based upon grain-boundary cavity growth and coalescence within the zone of concentrated strain in the crack tip field. Coupled diffusion and creep growth of the cavities is considered. Overall crack extension is taken to be intermittent on a size scale equivalent to the size of a grain. Numerical results are presented for a center-cracked panel of 304 stainless steel. (author)

  14. Aluminum alloy weldability. Identification of weld solidification cracking mechanisms through novel experimental technique and model development

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, Nicolas

    2008-07-01

    The objective of the present thesis is to make advancements in understanding solidification crack formation in aluminum welds, by investigating in particular the aluminum 6060/4043 system. Alloy 6060 is typical of a family of Al-Mg-Si extrusion alloys, which are considered weldable only when using an appropriate filler alloy such as 4043 (Al-5Si). The effect of 4043 filler dilution (i.e. weld metal silicon content) on cracking sensitivity and solidification path of Alloy 6060 welds are investigated. Afterwards, cracking models are developed to propose mechanisms for solidification crack initiation and growth. Cracking Sensitivity. Building upon the concept that silicon improves weldability and that weldability can be defined by a critical strain rate, strain rate-composition combinations required for solidification crack formation in the Al- 6060/4043 system were determined using the newly developed Controlled Tensile Weldability (CTW) test utilizing local strain extensometer measurements. Results, presented in a critical strain rate - dilution map, show a crack - no crack boundary which reveals that higher local strain rates require higher 4043 filler dilution to avoid solidification cracking when arc welding Alloy 6060. Using the established crack - no crack boundary as a line of reference, additional parameters were examined and their influence on cracking characterized. These parameter influences have included studies of weld travel speed, weld pool contaminants (Fe, O, and H), and grain refiner additions (TiAl{sub 3} + Boron). Each parameter has been independently varied and its effect on cracking susceptibility quantified in terms of strain rate - composition combinations. Solidification Path. Solidification path of the Al-6060/4043 system was characterized using thermal analysis and phase identification. Increasing 4043 filler dilution from 0 to 16% in Alloy 6060 arc welds resulted in little effect on thermal arrests and microstructure, no effect on

  15. The law on the streets: Evaluating the impact of Mexico's drug decriminalization reform on drug possession arrests in Tijuana, Mexico.

    Science.gov (United States)

    Arredondo, J; Gaines, T; Manian, S; Vilalta, C; Bañuelos, A; Strathdee, S A; Beletsky, L

    2018-04-01

    In 2009, Mexican Federal Government enacted "narcomenudeo" reforms decriminalizing possession of small amounts of drugs, delegating prosecution of retail drug sales to the state courts, and mandating treatment diversion for habitual drug users. There has been insufficient effort to formally assess the decriminalization policy's population-level impact, despite mounting interest in analagous reforms across the globe. Using a dataset of municipal police incident reports, we examined patterns of drug possession, and violent and non-violent crime arrests between January 2009 and December 2014. A hierarchical panel data analysis with random effects was conducted to assess the impact of narcomenudeo's drug decriminalization provision. The reforms had no significant impact on the number of drug possession or violent crime arrests, after controlling for other variables (e.g. time trends, electoral cycles, and precinct-level socioeconomic factors). Time periods directly preceding local elections were observed to be statistically associated with elevated arrest volume. Analysis of police statistics parallel prior findings that Mexico's reform decriminalizing small amounts of drugs does not appear to have significantly shifted drug law enforcement in Tijuana. More research is required to fully understand the policy transformation process for drug decriminalization and other structural interventions in Mexico and similar regional and international efforts. Observed relationship between policing and political cycles echo associations in other settings whereby law-and-order activities increase during mayoral electoral campaigns. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cardiac arrest following ventilator fire: A rare cause

    Directory of Open Access Journals (Sweden)

    K Nazeer Ahmed

    2012-01-01

    Full Text Available Operating room fires are rare events, but when occur they result in serious and sometimes fatal consequences. Anaesthesia ventilator fire leading to cardiac arrest is a rare incident and has not been reported. We report a near catastrophic ventilator fire leading to cardiac arrest in a patient undergoing subtotal thyroidectomy. In the present case sparks due to friction or electrical short circuit within the ventilator might have acted as source of ignition leading to fire and explosion in the oxygen rich environment. The patient was successfully resuscitated and revived with uneventful recovery and no adverse sequelae. The cardiac arrest was possibly due to severe hypoxia resulting from inhalation of smoke containing high concentrations of carbon monoxide and other noxious gases.

  17. Burst Pressure Prediction of Multiple Cracks in Pipelines

    International Nuclear Information System (INIS)

    Razak, N A; Alang, N A; Murad, M A

    2013-01-01

    Available industrial code such as ASME B1G, modified ASME B1G and DNV RP-F101 to assess pipeline defects appear more conservative for multiple crack like- defects than single crack-like defects. Thus, this paper presents burst pressure prediction of pipe with multiple cracks like defects. A finite element model was developed and the burst pressure prediction was compared with the available code. The model was used to investigate the effect of the distance between the cracks and the crack length. The coalescence diagram was also developed to evaluate the burst pressure of the multiple cracks. It was found as the distance between crack increases, the interaction effect comes to fade away and multiple cracks behave like two independent single cracks

  18. Fatigue crack layer propagation in silicon-iron

    Science.gov (United States)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  19. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

    Science.gov (United States)

    Bilčík, Juraj; Sonnenschein, Róbert; Gažovičová, Natália

    2017-09-01

    This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs) vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.

  20. Near-IR imaging of cracks in teeth

    Science.gov (United States)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  1. On multiple crack detection in beam structures

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Shapour; Kargozarfard, Mohammad [Shahid Chamran University, Ahvaz (Iran, Islamic Republic of)

    2013-01-15

    This study presents an inverse procedure to identify multiple cracks in beams using an evolutionary algorithm. By considering the crack detection procedure as an optimization problem, an objective function can be constructed based on the change of the eigenfrequencies and some strain energy parameters. Each crack is modeled by a rotational spring. The changes in natural frequencies due to the presence of the cracks are related to a damage index vector. Then, the bees algorithm, a swarm-based evolutionary optimization technique, is used to optimize the objective function and find the damage index vector, whose positive components show the number and position of the cracks. A second objective function is also optimized to find the crack depths. Several experimental studies on cracked cantilever beams are conducted to ensure the integrity of the proposed method. The results show that the number of cracks as well as their sizes and locations can be predicted well through this method.

  2. A unified model of hydride cracking based on elasto-plastic energy release rate over a finite crack extension

    International Nuclear Information System (INIS)

    Zheng, X.J.; Metzger, D.R.; Sauve, R.G.

    1995-01-01

    A fracture criterion based on energy balance is proposed for elasto-plastic cracking at hydrides in zirconium, assuming a finite length of crack advance. The proposed elasto-plastic energy release rate is applied to the crack initiation at hydrides in smooth and notched surfaces, as well as the subsequent delayed hydride cracking (DHC) considering limited crack-tip plasticity. For a smooth or notched surface of an elastic body, the fracture parameter is related to the stress intensity factor for the initiated crack. For DHC, a unique curve relates the non-dimensionalized elasto-plastic energy release rate with the length of crack extension relative to the plastic zone size. This fracture criterion explains experimental observations concerning DHC in a qualitative manner. Quantitative comparison with experiments is made for fracture toughness and DHC tests on specimens containing certain hydride structures; very good agreement is obtained. ((orig.))

  3. Crack Propagation by Finite Element Method

    OpenAIRE

    H. Ricardo, Luiz Carlos

    2017-01-01

    Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...

  4. The relationship between X-ray residual stress near the crack and crack opening/closing behavior controlling fatigue crack propagation in Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Torii, Tashiyuki; Toi, Norihiko; Nakano, Kohji; Honda, Kazuo

    1998-01-01

    Using the X-ray method of stress measurement for Ti-6Al-4V alloys, the residual stress near the crack was measured for annealed (AN) and solution treated and aged (STA) titanium alloys, under the condition that the measured X-ray stress was in satisfactory agreement with the applied stress under tension. The residual stress measured in the wake of the propagating fatigue crack, σ r , was compressive, resulting in a smaller crack opening displacement, COD, than theorized. The measured σ r and COD-values let us understand the fatigue crack propagation rate da/dN in terms of the effective stress intensity factor K eff . As a result, the da/dN under the same K eff -value was smaller in the AN specimen with zigzag crack growth than in the STA specimen with straight crack growth, although the da/dN-K eff relationship under various stress amplitudes was represented by a straight line in a log-log scale separately for the AN and STA specimens. (author)

  5. Perioperative cardiac arrest: an evolutionary analysis of the intra-operative cardiac arrest incidence in tertiary centers in Brazil

    Directory of Open Access Journals (Sweden)

    Matheus Fachini Vane

    2016-03-01

    Full Text Available Background: Great changes in medicine have taken place over the last 25 years worldwide. These changes in technologies, patient risks, patient profile, and laws regulating the medicine have impacted the incidence of cardiac arrest. It has been postulated that the incidence of intraoperative cardiac arrest has decreased over the years, especially in developed countries. The authors hypothesized that, as in the rest of the world, the incidence of intraoperative cardiac arrest is decreasing in Brazil, a developing country. Objectives: The aim of this study was to search the literature to evaluate the publications that relate the incidence of intraoperative cardiac arrest in Brazil and analyze the trend in the incidence of intraoperative cardiac arrest. Contents: There were 4 articles that met our inclusion criteria, resulting in 204,072 patients undergoing regional or general anesthesia in two tertiary and academic hospitals, totalizing 627 cases of intraoperative cardiac arrest. The mean intraoperative cardiac arrest incidence for the 25 years period was 30.72:10,000 anesthesias. There was a decrease from 39:10,000 anesthesias to 13:10,000 anesthesias in the analyzed period, with the related lethality from 48.3% to 30.8%. Also, the main causes of anesthesia-related cause of mortality changed from machine malfunction and drug overdose to hypovolemia and respiratory causes. Conclusions: There was a clear reduction in the incidence of intraoperative cardiac arrest in the last 25 years in Brazil. This reduction is seen worldwide and might be a result of multiple factors, including new laws regulating the medicine in Brazil, incorporation of technologies, better human development level of the country, and better patient care. Resumo: Justificativa: Nos últimos 25 anos ocorreram grandes mudanças na medicina em todo o mundo. Essas mudanças de tecnologias, riscos do paciente, perfil do paciente e leis que regulam medicamentos tiveram impacto na incid

  6. Facts and views on the role of anionic impurities, crack tip chemistry and oxide films in environmentally assisted cracking

    International Nuclear Information System (INIS)

    Aaltonen, P.; Bojinov, M.; Helin, M.

    2002-01-01

    The aim of this literature study has been to evaluate the level of understanding of the role of anionic impurities in environmentally assisted cracking (EAC) of iron- and nickel-based alloys in the coolant conditions of a boiling water reactor (BWR) - type nuclear power plant, mainly under normal water chemistry (NWC). The study has been motivated by a need to find the most relevant experimental approaches that can be applied when looking for correlations between crack growth rate and measurable electrochemical and chemical parameters. Special crack tip chemistry conditions are established, when trace amounts are present in the BWR coolant and become enriched within a crack. Anions may influence both the conductivity and the pH of the coolant within the crack. In addition, they may influence the composition, structure and properties of the oxide films formed on crack walls either directly via adsorption or incorporation or indirectly via the effect of changes in pH within the crack. Based on the proposed mechanisms for EAC, oxide films formed on crack wall surfaces are likely to play a key role in determing the crack growth rate of structural materials. The prediction of the influence of anionic impurities is thus likely to be facilitated by means of understanding their effect on the films on crack walls. One of the most promising approaches to experimentally clarify this influence is based on investigating the electrochemical behaviour of oxide films Fe- and Ni-based materials in high-temperature conditions simulating the special chemistry within a stress corrosion crack. Results from such studies should be compared and combined with ex situ analytical results obtained using modern electron microscopic techniques. In addition to crack growth, currently available electro-chemical techniques should also be applied to find out whether crack initiation can be explained and modelled on the basis of the electrochemical behaviour of oxide films. (orig.)

  7. Ceramic inlays and partial ceramic crowns: influence of remaining cusp wall thickness on the marginal integrity and enamel crack formation in vitro.

    Science.gov (United States)

    Krifka, Stephanie; Anthofer, Thomas; Fritzsch, Marcus; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne

    2009-01-01

    No information is currently available about what the critical cavity wall thickness is and its influence upon 1) the marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and 2) the crack formation of dental tissues. This in vitro study of CI and PCC tested the effects of different remaining cusp wall thicknesses on marginal integrity and enamel crack formation. CI (n = 25) and PCC (n = 26) preparations were performed in extracted human molars. Functional cusps of CI and PCC were adjusted to a 2.5 mm thickness; for PCC, the functional cusps were reduced to a thickness of 2.0 mm. Non-functional cusps were adjusted to wall thicknesses of 1) 1.0 mm and 2) 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were fabricated and adhesively luted to the cavities with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading (TCML: 5000 x 5 degrees C-55 degrees C; 30 seconds/cycle; 500000 x 72.5N, 1.6Hz). Marginal integrity was assessed by evaluating a) dye penetration (fuchsin) on multiple sections after TCML and by using b) quantitative margin analysis in the scanning electron microscope (SEM) before and after TCML. Ceramic- and tooth-luting agent interfaces (LA) were evaluated separately. Enamel cracks were documented under a reflective light microscope. The data were statistically analyzed with the Mann Whitney U-test (alpha = 0.05) and the Error Rates Method (ERM). Crack formation was analyzed with the Chi-Square-test (alpha = 0.05) and ERM. In general, the remaining cusp wall thickness, interface, cavity design and TCML had no statistically significant influence on marginal integrity for both CI and PCC (ERM). Single pairwise comparisons showed that the CI and PCC of Group 2 had a tendency towards less microleakage along the dentin/LA interface than Group 1. Cavity design and location had no statistically significant influence on crack formation, but the specimens with 1.0 mm of remaining wall

  8. The detectability of cracks using sonic IR

    Science.gov (United States)

    Morbidini, Marco; Cawley, Peter

    2009-05-01

    This paper proposes a methodology to study the detectability of fatigue cracks in metals using sonic IR (also known as thermosonics). The method relies on the validation of simple finite-element thermal models of the cracks and specimens in which the thermal loads have been defined by means of a priori measurement of the additional damping introduced in the specimens by each crack. This estimate of crack damping is used in conjunction with a local measurement of the vibration strain during ultrasonic excitation to retrieve the power released at the crack; these functions are then input to the thermal model of the specimens to find the resulting temperature rises (sonic IR signals). The method was validated on mild steel beams with two-dimensional cracks obtained in the low-cycle fatigue regime as well as nickel-based superalloy beams with three-dimensional "thumbnail" cracks generated in the high-cycle fatigue regime. The equivalent 40kHz strain necessary to obtain a desired temperature rise was calculated for cracks in the nickel superalloy set, and the detectability of cracks as a function of length in the range of 1-5mm was discussed.

  9. The crack growth mechanism in asphaltic mixes

    NARCIS (Netherlands)

    Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.

    1995-01-01

    The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive

  10. Crack turning in integrally stiffened aircraft structures

    Science.gov (United States)

    Pettit, Richard Glen

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture

  11. Causes of Early-Age Thermal Cracking of Concrete Foundation Slabs and their Reinforcement to Control the Cracking

    Directory of Open Access Journals (Sweden)

    Bilčík Juraj

    2017-09-01

    Full Text Available This paper focuses on the causes and consequences of early-age cracking of mass concrete foundation slabs due to restrained volume changes. Considering the importance of water leaking through cracks in terms of the serviceability, durability and environmental impact of watertight concrete structures, emphasis is placed on the effect of temperature loads on foundation slabs. Foundation slabs are usually restrained to some degree externally or internally. To evaluate the effect of external restraints on foundation slabs, friction and interaction models are introduced. The reinforcement of concrete cannot prevent the initiation of cracking, but when cracking has occurred, it may act to reduce the spacing and width of cracks. According to EN 1992-1-1, results of calculating crack widths with local variations included in National Annexes (NAs vary considerably. A comparison of the required reinforcement areas according to different NAs is presented.

  12. Fatigue crack growth behaviour of semi-elliptical surface cracks for an API 5L X65 gas pipeline under tension

    Science.gov (United States)

    Shaari, M. S.; Akramin, M. R. M.; Ariffin, A. K.; Abdullah, S.; Kikuchi, M.

    2018-02-01

    The paper is presenting the fatigue crack growth (FCG) behavior of semi-elliptical surface cracks for API X65 gas pipeline using S-version FEM. A method known as global-local overlay technique was used in this study to predict the fatigue behavior that involve of two separate meshes each specifically for global (geometry) and local (crack). The pre-post program was used to model the global geometry (coarser mesh) known as FAST including the material and boundary conditions. Hence, the local crack (finer mesh) will be defined the exact location and the mesh control accordingly. The local mesh was overlaid along with the global before the numerical computation taken place to solve the engineering problem. The stress intensity factors were computed using the virtual crack closure-integral method (VCCM). The most important results is the behavior of the fatigue crack growth, which contains the crack depth (a), crack length (c) and stress intensity factors (SIF). The correlation between the fatigue crack growth and the SIF shows a good growth for the crack depth (a) and dissimilar for the crack length (c) where stunned behavior was resulted. The S-version FEM will benefiting the user due to the overlay technique where it will shorten the computation process.

  13. Al-Qaeda arrest casts shadow over the LHC

    CERN Multimedia

    Dacey, James

    2010-01-01

    "Cern remains on course for the imminent switch-on of the Large Hadron Collider (LHC) despite the media frenzy following the recent arrest of a physicist who had been working at the facility. The researcher in question is a 32-year-old man of Algerian descent who is expected to face trail in France - the country in which he was arrested" (0.5 page)

  14. Fatigue crack propagation in aluminum-lithium alloys

    Science.gov (United States)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  15. Numerical Study of Corrosion Crack Opening

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle; Frandsen, Henrik Lund; Svensson, Staffan

    2008-01-01

    is proportional. More recently, the constant of proportionality, the so-called crack-corrosion index, has been studied further with respect to its dependence on the diameter of the reinforcement and the concrete cover. In the present paper the above-mentioned work is presented and extended with more realistic 3D......-models of the cracked concrete beam. The crack-corrosion index is evaluated for a variation of different parameters, i.e. bar diameter, concrete cover, crack length and type of corrosion product. This paper is an extended version of a paper by Thoft-Christensen et al. (2005) presented at the IFIP WG 7.5 Conference...... for the corrosion crack opening. Experiments and theoretical analysis by a numerical method, FEM, support that the relation between the reduction of the reinforcement bar diameter due to corrosion and the corresponding increase in crack width for a given time interval, measured on the surface of a concrete specimen...

  16. Community involvement in out of hospital cardiac arrest

    Science.gov (United States)

    Shams, Ali; Raad, Mohamad; Chams, Nour; Chams, Sana; Bachir, Rana; El Sayed, Mazen J.

    2016-01-01

    Abstract Out of hospital cardiac arrest (OHCA) is a leading cause of death worldwide. Developing countries including Lebanon report low survival rates and poor neurologic outcomes in affected victims. Community involvement through early recognition and bystander cardiopulmonary resuscitation (CPR) can improve OHCA survival. This study assesses knowledge and attitude of university students in Lebanon and identifies potential barriers and facilitators to learning and performing CPR. A cross-sectional survey was administered to university students. The questionnaire included questions regarding the following data elements: demographics, knowledge, and awareness about sudden cardiac arrest, CPR, automated external defibrillator (AED) use, prior CPR and AED training, ability to perform CPR or use AED, barriers to performing/learning CPR/AED, and preferred location for attending CPR/AED courses. Descriptive analysis followed by multivariate analysis was carried out to identify predictors and barriers to learning and performing CPR. A total of 948 students completed the survey. Participants’ mean age was 20.1 (±2.1) years with 53.1% women. Less than half of participants (42.9%) were able to identify all the presenting signs of cardiac arrest. Only 33.7% of participants felt able to perform CPR when witnessing a cardiac arrest. Fewer participants (20.3%) reported receiving previous CPR training. Several perceived barriers to learning and performing CPR were also reported. Significant predictors of willingness to perform CPR when faced with a cardiac arrest were: earning higher income, previous CPR training and feeling confident in one's ability to apply an AED, or perform CPR. Lacking enough expertise in performing CPR was a significant barrier to willingness to perform CPR. University students in Lebanon are familiar with the symptoms of cardiac arrest, however, they are not well trained in CPR and lack confidence to perform it. The attitude towards the importance of

  17. G2 phase arrest of cell cycle induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu Guangwei; Gong Shouliang

    2002-01-01

    The exposure of mammalian cells to X rays results in the prolongation of the cell cycle, including the delay or the arrest in G 1 , S and G 2 phase. The major function of G 1 arrest may be to eliminate the cells containing DNA damage and only occurs in the cells with wild type p53 function whereas G 2 arrest following ionizing radiation has been shown to be important in protecting the cells from death and occurs in all cells regardless of p53 status. So the study on G 2 phase arrest of the cell cycle induced by ionizing radiation has currently become a focus at radiobiological fields

  18. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2017-06-15

    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  19. A comparison of Probability Of Detection (POD) data determined using different statistical methods

    Science.gov (United States)

    Fahr, A.; Forsyth, D.; Bullock, M.

    1993-12-01

    Different statistical methods have been suggested for determining probability of detection (POD) data for nondestructive inspection (NDI) techniques. A comparative assessment of various methods of determining POD was conducted using results of three NDI methods obtained by inspecting actual aircraft engine compressor disks which contained service induced cracks. The study found that the POD and 95 percent confidence curves as a function of crack size as well as the 90/95 percent crack length vary depending on the statistical method used and the type of data. The distribution function as well as the parameter estimation procedure used for determining POD and the confidence bound must be included when referencing information such as the 90/95 percent crack length. The POD curves and confidence bounds determined using the range interval method are very dependent on information that is not from the inspection data. The maximum likelihood estimators (MLE) method does not require such information and the POD results are more reasonable. The log-logistic function appears to model POD of hit/miss data relatively well and is easy to implement. The log-normal distribution using MLE provides more realistic POD results and is the preferred method. Although it is more complicated and slower to calculate, it can be implemented on a common spreadsheet program.

  20. A numerical study of non-linear crack tip parameters

    Directory of Open Access Journals (Sweden)

    F.V. Antunes

    2015-07-01

    Full Text Available Crack closure concept has been widely used to explain different issues of fatigue crack propagation. However, different authors have questioned the relevance of crack closure and have proposed alternative concepts. The main objective here is to check the effectiveness of crack closure concept by linking the contact of crack flanks with non-linear crack tip parameters. Accordingly, 3D-FE numerical models with and without contact were developed for a wide range of loading scenarios and the crack tip parameters usually linked to fatigue crack growth, namely range of cyclic plastic strain, crack tip opening displacement, size of reversed plastic zone and total plastic dissipation per cycle, were investigated. It was demonstrated that: i LEFM concepts are applicable to the problem under study; ii the crack closure phenomenon has a great influence on crack tip parameters decreasing their values; iii the Keff concept is able to explain the variations of crack tip parameters produced by the contact of crack flanks; iv the analysis of remote compliance is the best numerical parameter to quantify the crack opening level; v without contact there is no effect of stress ratio on crack tip parameters. Therefore it is proved that the crack closure concept is valid.

  1. Effect of CT Specimen Thickness on the Mechanical Characteristics at the Crack Tip of Stress Corrosion Cracking in Ni-based Alloys

    Science.gov (United States)

    Yinghao, Cui; He, Xue; Lingyan, Zhao

    2017-12-01

    It’s important to obtain accurate stress corrosion crack(SCC) growth rate for quantitative life prediction of components in nuclear power plants. However, the engineering practice shows that the crack tip constraint effect has a great influence on the mechanical properties and crack growth rate of SCC at crack tip. To study the influence of the specimen thickness on the crack tip mechanical properties of SCC, the stress, strain and C integral at creep crack tip are analyzed under different specimens thickness. Results show that the cracked specimen is less likely to crack due to effect of crack tip constraint. When the thickness ratio B/W is larger than 0.1, the crack tip constraint is almost ineffective. Value of C integral is the largest when B/W is 0.25. Then specimen thickness has little effect on the value of C integral. The effect of specimen thickness on the value of C integral is less significant at higher thickness ratio.

  2. Structural health monitoring methods for the evaluation of prestressing forces and pre-release cracks

    Directory of Open Access Journals (Sweden)

    Hiba Abdel-Jaber

    2016-08-01

    Full Text Available Prestressed concrete bridges currently account for 45% of bridges built in the last five years in the United States. This has resulted in an increase in the number of deficient bridges composed of prestressed concrete, which requires a better understanding of the on-site performance of this building material. The use of new materials, such as high performance concrete, in conjunction with prestressing provides additional motivation for the creation of structural health monitoring (SHM methods for prestressed concrete. This paper identifies two parameters relevant to prestressed concrete, along with methods for their evaluation. The parameters evaluated are the prestressing force value at transfer and the width of pre-release cracks, both of which are indicators of structural performance. Improper transfer of the prestressing force can result in tensile stresses in the concrete that exceed capacity and result in cracks and/or excessive deflections. Pre-release cracks occur in the concrete prior to transfer of the prestressing force and are mainly caused by autogenous shrinkage and thermal gradients. Closure of the cracks is expected by virtue of prestressing force transfer. However, the extent of crack closure is important in order to guarantee durability and structural integrity. This paper presents an integral overview of two novel methods for the statistical evaluation of the two monitored parameters: prestressing forces and the width of pre-release cracks. Validation of the methods is performed through application to two structures, both of which are components of Streicker Bridge on the Princeton University campus. Uncertainties are evaluated and thresholds for unusual behavior are set through the application.

  3. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    Science.gov (United States)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.

  4. On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading

    Directory of Open Access Journals (Sweden)

    Hadi Haeri

    Full Text Available The pre-existing cracks in the brittle substances seem to be the main cause of their failure under various loading conditions. In this study, a simultaneous analytical, experimental and numerical analysis of crack propagation, cracks coalescence and failure process of brittle materials has been performed. Brazilian disc tests are being carried out to evaluate the cracks propagation paths in rock-like Brazilian disc specimens containing single and double cracks (using rock-like specimens which are specially prepared from Portland Pozzolana Cement (PPC, fine sands and water in a rock mechanics laboratory. The failure load of the pre-cracked disc specimens are measured showing the decreasing effects of the cracks and their orientation on the final failure load. The same specimens are numerically simulated by a higher order indirect boundary element method known as displacement discontinuity method. These numerical results are compared with the existing analytical and experimental results proving the accuracy and validity of the proposed numerical method. The numerical and experimental results obtained from the tested specimens are in good agreement and demonstrate the accuracy and effectiveness of the proposed approach.

  5. Cell cycle age dependence for radiation-induced G2 arrest: evidence for time-dependent repair

    International Nuclear Information System (INIS)

    Rowley, R.

    1985-01-01

    Exponentially growing eucaryotic cells, irradiated in interphase, are delayed in progression to mitosis chiefly by arrest in G 2 . The sensitivity of Chinese hamster ovary cells to G 2 arrest induction by X rays increases through the cell cycle, up to the X-ray transition point (TP) in G 2 . This age response can be explained by cell cycle age-dependent changes in susceptibility of the target(s) for G 2 arrest and/or by changes in capability for postirradiation recovery from G 2 arrest damage. Discrimination between sensitivity changes and repair phenomena is possible only if the level of G 2 arrest-causing damage sustained by a cell at the time of irradiation and the level ultimately expressed as arrest can be determined. The ability of caffeine to ameliorate radiation-induced G 2 arrest, while inhibiting repair of G 2 arrest-causing damage makes such an analysis possible. In the presence of caffeine, progression of irradiated cells was relatively unperturbed, but on caffeine removal, G 2 arrest was expressed. The duration of G 2 arrest was independent of the length of the prior caffeine exposure. This finding indicates that the target for G 2 arrest induction is present throughout the cell cycle and that the level of G 2 arrest damage incurred is initially constant for all cell cycle phases. The data are consistent with the existence of a time-dependent recovery mechanism to explain the age dependence for radiation induction of G 2 arrest

  6. Evaluation Model for Restraint Effect of Pressure Induced Bending on the Plastic Crack Opening of Circumferential Through-Wall-Crack

    International Nuclear Information System (INIS)

    Kim, Jin-Weon

    2006-01-01

    Most of the pipe crack evaluation procedures, including leak-before-break (LBB) analysis, assume that the cracked pipe subjected to remote bending or internal pressure is free to rotate. In this case, the pressure induced bending (PIB) enhances crack opening of a through-wall-crack (TWC) in a pipe. In a real piping system, however, the PIB will be restrained because the ends of the pipe are constrained by the rest of the piping system. Hence, the amount of restraint affects the crack opening of a TWC in a pipe, and the restraint effect on crack opening directly affects the results of LBB evaluation. Therefore, it is necessary to investigate the restraint effect of PIB on crack opening displacement (COD) to quantify the uncertainties in current analysis procedures and to ensure the application of LBB concepts to nuclear piping systems. Recently, several researches were conducted to investigate the restraint effect of PIB on COD, and they proposed a simplified model to evaluate COD under restrained conditions. However, these results are quite limited because the restraint effect was evaluated only in terms of linear-elastic crack opening. In practice, the TWC in a pipe behaves plastically under normal operating loads, and the current LBB analysis methodologies require elastic-plastic crack opening evaluation. Therefore, this study evaluates the restraint effect of PIB on the plastic crack opening of a TWC in a pipe using finite element analysis under various influencing parameters. Based on these results, a closed-from model to be able to estimate the restraint effect of PIB on plastic crack opening is proposed

  7. The effectiveness of silver diamine fluoride in arresting caries.

    Science.gov (United States)

    Richards, Derek

    2017-10-27

    Data sourcesPubMed, Embase, Scopus, China National Knowledge Infrastructure (CNKI), Ichushi-web, Biblioteca Virtual en Salud Espana (BVSE) and Biblioteca Virtual em Saude (BVS) databases. There were no limits on language or publication dates.Study selectionTwo reviewers selected prospective clinical studies investigating SDF treatment for caries prevention in children.Data extraction and synthesisData was abstracted independently by two reviewers and risk of bias assessed. Meta-analysis was performed on studies in which the caries-arresting rate using 38% SDF solution on primary teeth could be obtained or calculated.ResultsNineteen studies were included; 16 were conducted in the primary dentition and three in permanent dentition. Fourteen studies used 38% SDF, three 30% SDF, and two 10% SDF. Eight studies using 38% SDF contributed to a meta-analysis and the overall proportion of arrested caries was 81% (95% CI; 68-89%). Percentage reductions were also calculated for 6,12,18,24 and >30 months. Arrested carious lesions stained black but no other adverse effects were reported.ConclusionsSDF commonly used at a high concentration (38%, 44,800ppm fluoride) is effective in arresting caries among children. There is no consensus on its number and frequency of application to arrest caries. Further studies are necessary to develop evidence-based guidelines on its use in children.

  8. Fracture mechanics of piezoelectric solids with interface cracks

    CERN Document Server

    Govorukha, Volodymyr; Loboda, Volodymyr; Lapusta, Yuri

    2017-01-01

    This book provides a comprehensive study of cracks situated at the interface of two piezoelectric materials. It discusses different electric boundary conditions along the crack faces, in particular the cases of electrically permeable, impermeable, partially permeable, and conducting cracks. The book also elaborates on a new technique for the determination of electromechanical fields at the tips of interface cracks in finite sized piezoceramic bodies of arbitrary shape under different load types. It solves scientific problems of solid mechanics in connection with the investigation of electromechanical fields in piezoceramic bodies with interface cracks, and develops calculation models and solution methods for plane fracture mechanical problems for piecewise homogeneous piezoceramic bodies with cracks at the interfaces. It discusses the “open” crack model, which leads to a physically unrealistic oscillating singularity at the crack tips, and the contact zone model for in-plane straight interface cracks betw...

  9. Cracked rocks with positive and negative Poisson's ratio: real-crack properties extracted from pressure dependence of elastic-wave velocities

    Science.gov (United States)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena

    2017-04-01

    We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.

  10. Effect of adrenaline on survival in out-of-hospital cardiac arrest: A randomised double-blind placebo-controlled trial.

    Science.gov (United States)

    Jacobs, Ian G; Finn, Judith C; Jelinek, George A; Oxer, Harry F; Thompson, Peter L

    2011-09-01

    There is little evidence from clinical trials that the use of adrenaline (epinephrine) in treating cardiac arrest improves survival, despite adrenaline being considered standard of care for many decades. The aim of our study was to determine the effect of adrenaline on patient survival to hospital discharge in out of hospital cardiac arrest. We conducted a double blind randomised placebo-controlled trial of adrenaline in out-of-hospital cardiac arrest. Identical study vials containing either adrenaline 1:1000 or placebo (sodium chloride 0.9%) were prepared. Patients were randomly allocated to receive 1 ml aliquots of the trial drug according to current advanced life support guidelines. Outcomes assessed included survival to hospital discharge (primary outcome), pre-hospital return of spontaneous circulation (ROSC) and neurological outcome (Cerebral Performance Category Score - CPC). A total of 4103 cardiac arrests were screened during the study period of which 601 underwent randomisation. Documentation was available for a total of 534 patients: 262 in the placebo group and 272 in the adrenaline group. Groups were well matched for baseline characteristics including age, gender and receiving bystander CPR. ROSC occurred in 22 (8.4%) of patients receiving placebo and 64 (23.5%) who received adrenaline (OR=3.4; 95% CI 2.0-5.6). Survival to hospital discharge occurred in 5 (1.9%) and 11 (4.0%) patients receiving placebo or adrenaline respectively (OR=2.2; 95% CI 0.7-6.3). All but two patients (both in the adrenaline group) had a CPC score of 1-2. Patients receiving adrenaline during cardiac arrest had no statistically significant improvement in the primary outcome of survival to hospital discharge although there was a significantly improved likelihood of achieving ROSC. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Fatigue cracks in Eurofer 97 steel: Part II. Comparison of small and long fatigue crack growth

    Czech Academy of Sciences Publication Activity Database

    Kruml, Tomáš; Hutař, Pavel; Náhlík, Luboš; Seitl, Stanislav; Polák, Jaroslav

    2011-01-01

    Roč. 412, 1 (2011), s. 7-12 ISSN 0022-3115 R&D Projects: GA ČR GA106/09/1954; GA ČR GA101/09/0867 Institutional research plan: CEZ:AV0Z20410507 Keywords : ferritic-martensitic steel * long crack growth * small crack growth * crack closure Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.052, year: 2011

  12. 29 CFR 1915.159 - Personal fall arrest systems (PFAS).

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Personal fall arrest systems (PFAS). 1915.159 Section 1915... Protective Equipment (PPE) § 1915.159 Personal fall arrest systems (PFAS). The criteria of this section apply to PFAS and their use. Effective January 1, 1998, body belts and non-locking snaphooks are not...

  13. Factors controlling nitrate cracking of mild steel

    International Nuclear Information System (INIS)

    Donovan, J.A.

    1977-01-01

    Nitrite and hydroxide ions inhibit the growth of nitrate stress corrosion cracks in mild steel. Crack growth measurements showed that sufficient concentrations of nitrite and hydroxide ions can prevent crack growth; however, insufficient concentrations of these ions did not influence the Stage II growth rate or the threshold stress intensity, but extended the initiation time. Stage III growth was discontinuous. Oxide formed in the grain boundaries ahead of the crack tip and oxide dissolution (Stage II) and fracture (Stage III) are the proposed mechanisms of nitrate stress corrosion crack growth

  14. Crack initiation and propagation paths in small diameter FSW 6082-T6 aluminium tubes under fatigue loading

    Directory of Open Access Journals (Sweden)

    Roberto Tovo

    2016-03-01

    Full Text Available This paper reports results of fatigue tests of friction stir welded (FSW aluminium tubes. Relatively small 38 mm diameter tubes were used and hence an automated FSW process using a retracting tool was designed for this project, as the wall thickness of the aluminium tube was similar to the diameter of the FSW tool. This is a more complex joint geometry to weld than the more usual larger diameter tube reported in the literature. S-N fatigue testing was performed using load ratios of R = 0.1 and R = -1. Crack path analysis was performed using both low magnification stereo microscopy and scanning electron microscopy, in order to identify crack initiation sites and to determine the direction of crack propagation. Work is still in progress to follow the crack path through the various microstructural zones associated with the weld. A simple statistical analysis was used to characterize the most typical crack initiation site. This work forms part of a wider project directed at determining multiaxial fatigue design rules for small diameter 6082-T6 aluminium tubes that could be of use in the ground vehicle industry.

  15. Early Recognition of Foreign Body Aspiration as the Cause of Cardiac Arrest

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif

    2016-01-01

    Full Text Available Foreign body aspiration (FBA is uncommon in the adult population but can be a life-threatening condition. Clinical manifestations vary according to the degree of airway obstruction, and, in some cases, making the correct diagnosis requires a high level of clinical suspicion combined with a detailed history and exam. Sudden cardiac arrest after FBA may occur secondary to asphyxiation. We present a 48-year-old male with no history of cardiac disease brought to the emergency department after an out-of-hospital cardiac arrest (OHCA. The patient was resuscitated after 15 minutes of cardiac arrest. He was initially managed with therapeutic hypothermia (TH. Subsequent history suggested FBA as a possible etiology of the cardiac arrest, and fiberoptic bronchoscopy demonstrated a piece of meat and bone lodged in the left main stem bronchus. The foreign body was removed with the bronchoscope and the patient clinically improved with full neurological recovery. Therapeutic hypothermia following cardiac arrest due to asphyxia has been reported to have high mortality and poor neurological outcomes. This case highlights the importance of early identification of FBA causing cardiac arrest, and we report a positive neurological outcome for postresuscitation therapeutic hypothermia following cardiac arrest due to asphyxia.

  16. Influence of fatigue crack wake length and state of stress on crack closure

    Science.gov (United States)

    Telesman, Jack; Fisher, Douglas M.

    1988-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  17. Path stability of a crack with an eigenstrain

    International Nuclear Information System (INIS)

    Beom, Hyeon Gyu; Kim, Yu Hwan; Cho, Chong Du; Kim, Chang Boo

    2006-01-01

    A slightly curved crack with an eigenstrain is considered. Solutions for a slightly curved crack in a linear isotropic material under asymptotic loading as well as for a slightly curved crack in a linear isotropic material with a concentrated force are obtained from perturbation analyses, which are accurate to the first order of the parameter representing the non-straightness. Stress intensity factors for a slightly curved crack with an eigenstrain are obtained from the perturbation solutions by using a body force analogy. Particular attention is given to the crack path stability under mode I loading. A new parameter of crack path stability is proposed for a crack with an eigenstrain. The path stability of a crack with steady state growth in a transforming material and a ferroelectric material is examined

  18. Processing and impact properties of steel based laminated composites

    International Nuclear Information System (INIS)

    Carreno, F.; Pozuelo, M.; Chao, J.; Ruano, O. A.

    2001-01-01

    A seven layers steel based laminated composite (four ultra-high carbon steel, UHCS, layers and three mild steel, MS layers) has been processed by rolling bonding and its microstructure and impact properties have been studied. Suitable parameters of temperature and thickness reduction were selected to obtain a finer microstructure relative to the original materials components. This finer microstructure induces improved mechanical properties. Charpy impact tests values in both crack arrester and crack divider orientations improve the values of the UHCS constituent materials. Furthermore, the crack arrester orientation value exceed that of the MS material. The delamination, which is controlled by interface bonding, plays a key role defecting the crack, absorbing energy and imposing the nucleation of new cracks in the next materials layers. (Author) 10 refs

  19. Ultrasound data for laboratory calibration of an analytical model to calculate crack depth on asphalt pavements

    Directory of Open Access Journals (Sweden)

    Miguel A. Franesqui

    2017-08-01

    Full Text Available This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA. The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled “Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves” (Franesqui et al., 2017 [1].

  20. Ultrasound data for laboratory calibration of an analytical model to calculate crack depth on asphalt pavements.

    Science.gov (United States)

    Franesqui, Miguel A; Yepes, Jorge; García-González, Cándida

    2017-08-01

    This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA). The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled "Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves" (Franesqui et al., 2017) [1].

  1. Out-of-Hospital Cardiac Arrest in Denmark

    DEFF Research Database (Denmark)

    Wissenberg Jørgensen, Mads

    challenges, due to the victim’s physical location, which brings an inherent risk of delay (or altogether absence) of recognition and treatment of cardiac arrest. A low frequency of bystander cardiopulmonary resuscitation and low 30-day survival after out-of-hospital cardiac arrest were identified nearly ten...... years ago in Denmark. These findings led to several national initiatives to strengthen bystander resuscitation attempts and advance care. Despite these nationwide efforts, it was unknown prior to this project whether these efforts resulted in changes in resuscitation attempts by bystanders and changes...

  2. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))

    2010-12-15

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  3. Stress corrosion cracking of copper canisters

    International Nuclear Information System (INIS)

    King, Fraser; Newman, Roger

    2010-12-01

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  4. Distinguishing oil and water layers in a cracked porous medium using pulsed neutron logging data based on Hudson's crack theory

    Science.gov (United States)

    Zhang, Xueang; Yang, Zhichao; Tang, Bin; Wang, Renbo; Wei, Xiong

    2018-05-01

    During geophysical surveys, water layers may interfere with the detection of oil layers. In order to distinguish between oil and water layers in porous cracked media, research on the properties of the cracks, the oil and water layers, and their relation to pulsed neutron logging characteristics is essential. Using Hudson's crack theory, we simulated oil and water layers in a cracked porous medium with different crack parameters corresponding to the well log responses. We found that, in a cracked medium with medium-angle (40°-50°) cracks, the thermal neutron count peak value is higher and more sensitive than those in low-angle and high-angle crack environments; in addition, the thermal neutron density distribution shows more minimum values than in other cases. Further, the thermal neutron count and the rate of change for the oil layer are greater than those of the water layer, and the time spectrum count peak value for the water layer in middle-high-angle (40°-70°) cracked environments is higher than that of the oil layer. The thermal neutron density distribution sensitivity is higher in the water layer with a range of small crack angles (0°-30°) than in the oil layer with the same range of angles. In comparing the thermal neutron density distribution, thermal neutron count peak, thermal neutron density distribution sensitivity, and time spectrum maximum in the oil and water layers, we find that neutrons in medium-angle (40°-50°) cracked reservoirs are more sensitive to deceleration and absorption than those in water layers; neutrons in approximately horizontal (0°-30°) cracked water layers are more sensitive to deceleration than those in reservoirs. These results can guide future work in the cracked media neutron logging field.

  5. Tube structural integrity evaluation of Palo Verde Unit 1 steam generators for axial upper-bundle cracking

    International Nuclear Information System (INIS)

    Woodman, B.W.; Begley, J.A.; Brown, S.D.; Sweeney, K.; Radspinner, M.; Melton, M.

    1995-01-01

    The analysis of the issue of upper bundle axial ODSCC as it apples to steam generator tube structural integrity in Unit 1 at the Palo Verde Nuclear generating Station is presented in this study. Based on past inspection results for Units 2 and 3 at Palo Verde, the detection of secondary side stress corrosion cracks in the upper bundle region of Unit 1 may occur at some future date. The following discussion provides a description and analysis of the probability of axial ODSCC in Unit 1 leading to the exceedance of Regulatory Guide 1.121 structural limits. The probabilities of structural limit exceedance are estimated as function of run time using a conservative approach. The chosen approach models the historical development of cracks, crack growth, detection of cracks and subsequent removal from service and the initiation and growth of new cracks during a given cycle of operation. Past performance of all Palo Verde Units as well as the historical performance of other steam generators was considered in the development of cracking statistics for application to Unit 1. Data in the literature and Unit 2 pulled tube examination results were used to construct probability of detection curves for the detection of axial IGSCC/IGA using an MRPC (multi-frequency rotating panake coil) eddy current probe. Crack growth rates were estimated from Unit 2 eddy current inspection data combined with pulled tube examination results and data in the literature. A Monte-Carlo probabilistic model is developed to provide an overall assessment of the risk of Regulatory Guide exceedance during plant operation

  6. Dental Calculus Arrest of Dental Caries.

    Science.gov (United States)

    Keyes, Paul H; Rams, Thomas E

    An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. These observations further document the potential protective effects of dental calculus mineralization against dental caries.

  7. Dental Calculus Arrest of Dental Caries

    Science.gov (United States)

    Keyes, Paul H.; Rams, Thomas E.

    2016-01-01

    Background An inverse relationship between dental calculus mineralization and dental caries demineralization on teeth has been noted in some studies. Dental calculus may even form superficial layers over existing dental caries and arrest their progression, but this phenomenon has been only rarely documented and infrequently considered in the field of Cariology. To further assess the occurrence of dental calculus arrest of dental caries, this study evaluated a large number of extracted human teeth for the presence and location of dental caries, dental calculus, and dental plaque biofilms. Materials and methods A total of 1,200 teeth were preserved in 10% buffered formal saline, and viewed while moist by a single experienced examiner using a research stereomicroscope at 15-25× magnification. Representative teeth were sectioned and photographed, and their dental plaque biofilms subjected to gram-stain examination with light microscopy at 100× magnification. Results Dental calculus was observed on 1,140 (95%) of the extracted human teeth, and no dental carious lesions were found underlying dental calculus-covered surfaces on 1,139 of these teeth. However, dental calculus arrest of dental caries was found on one (0.54%) of 187 evaluated teeth that presented with unrestored proximal enamel caries. On the distal surface of a maxillary premolar tooth, dental calculus mineralization filled the outer surface cavitation of an incipient dental caries lesion. The dental calculus-covered carious lesion extended only slightly into enamel, and exhibited a brown pigmentation characteristic of inactive or arrested dental caries. In contrast, the tooth's mesial surface, without a superficial layer of dental calculus, had a large carious lesion going through enamel and deep into dentin. Conclusions These observations further document the potential protective effects of dental calculus mineralization against dental caries. PMID:27446993

  8. Crack Monitoring of Operational Wind Turbine Foundations.

    Science.gov (United States)

    Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim

    2017-08-21

    The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.

  9. Fatigue crack behaviour in mine excavator

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Y.; Grondin, G.Y.; Elwi, A.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2006-05-15

    Fatigue cracking in excavation equipment represents a significant operating cost for oil sands operators. It is caused by high impact loads, the high frequency of load cycles, and large component sizes found in oil sands processing facilities. Monitoring and repair strategies for fatigue cracks are typically based on vendor specifications and the experience of maintenance personnel. This paper provided details of an optimized crack management program applied to a BE 395B shovel boom. The proposed crack management tool uses a chart to predict the remaining life of a corner crack in the shovel boom. Predictions are based on limited field measurements of operating loads as well as on data obtained from fatigue testing of boom material, and a finite element analysis of the shovel boom. Field and laboratory data are used along with fracture mechanics and finite element modelling to predict crack life. It was concluded that the tool will allow inspectors and planners to schedule repairs based on safe service life. The tool is applicable for any components subjected to fatigue loading. 3 refs., 21 tabs., 64 figs.

  10. Out-of-hospital cardiac arrest

    DEFF Research Database (Denmark)

    Sondergaard, Kathrine B; Hansen, Steen Moller; Pallisgaard, Jannik L

    2018-01-01

    AIMS: Despite wide dissemination of automated external defibrillators (AEDs), bystander defibrillation rates remain low. We aimed to investigate how route distance to the nearest accessible AED was associated with probability of bystander defibrillation in public and residential locations. METHODS......: We used data from the nationwide Danish Cardiac Arrest Registry and the Danish AED Network to identify out-of-hospital cardiac arrests and route distances to nearest accessible registered AED during 2008-2013. The association between route distance and bystander defibrillation was described using...... in public locations, the probability of bystander defibrillation at 0, 100 and 200meters from the nearest AED was 35.7% (95% confidence interval 28.0%-43.5%), 21.3% (95% confidence interval 17.4%-25.2%), and 13.7% (95% confidence interval 10.1%-16.8%), respectively. The corresponding numbers for cardiac...

  11. Statistical investigation of the crack initiation lives of piping structural welded joint in low cycle fatigue test of 240 degree C

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Gao Qing; Cai Lixun

    1999-01-01

    A statistical investigation into the fitting of four possible fatigue assumed distributions (three parameter Weibull, two parameter Weibull, lognormal and extreme maximum value distributions) for the crack initiation lives of piping structural welded joint in low cycle fatigue test of 240 degree C is performed by linear regression and least squares methods. The results reveal that the three parameters Weibull distribution may give misleading results in fatigue reliability analysis because the shape parameter is often less than 1. This means that the failure rate decreases with fatigue cycling which is contrary to the general understanding of the behaviour of welded joint. Reliability analyses may also affected by the slightly nonconservative evaluations in tail regions of this distribution. The other three distributions are slightly poor in the total fit effects, but they can be safety assumed in reliability analyses due to the non-conservative evaluations in tail regions mostly and the consistency with the fatigue physics of the structural behaviour of welded joint in the range of engineering practice. In addition, the extreme maximum value distribution is in good consists with the general physical understanding of the structural behaviour of welded joint

  12. Enhancement of J estimation for typical nuclear pipes with a circumferential surface crack under tensile load

    International Nuclear Information System (INIS)

    Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin; Chang, Yoon Suk; Jhung, Myung Jo; Choi, Young Hwan

    2010-01-01

    This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H 1 values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading

  13. Enhancement of J estimation for typical nuclear pipes with a circumferential surface crack under tensile load

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Doo Ho; Woo, Seung Wan; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of); Chang, Yoon Suk [Kyung Hee University, Yongin (Korea, Republic of); Jhung, Myung Jo; Choi, Young Hwan [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2010-03-15

    This paper is to report enhancement of engineering J estimation for semi-elliptical surface cracks under tensile load. Firstly, limitation of the sole solution suggested by Zahoor is shown for reliable structural integrity assessment of thin-walled nuclear pipes. An improved solution is then developed based on extensive 3D FE analyses employing deformation plasticity theory for typical nuclear piping materials. It takes over the structure of the existing solution but provides new tabulated plastic influence functions to cover a wide range of pipe geometry and crack shape. Furthermore, to facilitate easy prediction of the plastic influence function, an alternative simple equation is also developed by using a statistical response surface method. The proposed H{sub 1} values can be used for elastic-plastic fracture analyses of thin-walled pipes with a circumferential surface crack subjected to tensile loading

  14. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    International Nuclear Information System (INIS)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-01-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment

  15. Crack opening area estimates in pressurized through-wall cracked elbows under bending

    Energy Technology Data Exchange (ETDEWEB)

    Franco, C.; Gilles, P.; Pignol, M.

    1997-04-01

    One of the most important aspects in the leak-before-break approach is the estimation of the crack opening area corresponding to potential through-wall cracks at critical locations during plant operation. In order to provide a reasonable lower bound to the leak area under such loading conditions, numerous experimental and numerical programs have been developed in USA, U.K. and FRG and widely discussed in literature. This paper aims to extend these investigations on a class of pipe elbows characteristic of PWR main coolant piping. The paper is divided in three main parts. First, a new simplified estimation scheme for leakage area is described, based on the reference stress method. This approach mainly developed in U.K. and more recently in France provides a convenient way to account for the non-linear behavior of the material. Second, the method is carried out for circumferential through-wall cracks located in PWR elbows subjected to internal pressure. Finite element crack area results are presented and comparisons are made with our predictions. Finally, in the third part, the discussion is extended to elbows under combined pressure and in plane bending moment.

  16. Influence of crack length on crack depth measurement by an alternating current potential drop technique

    International Nuclear Information System (INIS)

    Raja, Manoj K; Mahadevan, S; Rao, B P C; Behera, S P; Jayakumar, T; Raj, Baldev

    2010-01-01

    An alternating current potential drop (ACPD) technique is used for sizing depth of surface cracks in metallic components. Crack depth estimations are prone to large deviations when ACPD measurements are made on very shallow and finite length cracks, especially in low conducting materials such as austenitic stainless steel (SS). Detailed studies have been carried out to investigate the influence of crack length and aspect ratio (length to depth) on depth estimation by performing measurements on electric discharge machined notches with the aspect ratio in the range of 1 to 40 in SS plates. In notches with finite length, an additional path for current to flow through the surface along the length is available causing the notch depths to be underestimated. The experimentally observed deviation in notch depth estimates is explained from a simple mathematical approach using the equivalent resistive circuit model based on the additional path available for the current to flow. A scheme is proposed to accurately measure the depth of cracks with finite lengths in SS components

  17. Cell cycle arrest in the jewel wasp Nasonia vitripennis in larval diapause.

    Science.gov (United States)

    Shimizu, Yuta; Mukai, Ayumu; Goto, Shin G

    2018-04-01

    Insects enter diapause to synchronise their life cycle with biotic and abiotic environmental conditions favourable for their development, reproduction, and survival. One of the most noticeable characteristics of diapause is the blockage of ontogeny. Although this blockage should occur with the cessation of cellular proliferation, i.e. cell cycle arrest, it was confirmed only in a few insect species and information on the molecular pathways involved in cell cycle arrest is limited. In the present study, we investigated developmental and cell cycle arrest in diapause larvae of the jewel wasp Nasonia vitripennis. Developmental and cell cycle arrest occur in the early fourth instar larval stage of N. vitripennis under short days. By entering diapause, the S fraction of the cell cycle disappears and approximately 80% and 20% of cells arrest their cell cycle in the G0/G1 and G2 phases, respectively. We further investigated expression of cell cycle regulatory genes and some housekeeping genes to dissect molecular mechanisms underlying the cell cycle arrest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Forecasting oil price movements with crack spread futures

    International Nuclear Information System (INIS)

    Murat, Atilim; Tokat, Ekin

    2009-01-01

    In oil markets, the crack spread refers to the crude-product price relationship. Refiners are major participants in oil markets and they are primarily exposed to the crack spread. In other words, refiner activity is substantially driven by the objective of protecting the crack spread. Moreover, oil consumers are active participants in the oil hedging market and they are frequently exposed to the crack spread. From another perspective, hedge funds are heavily using crack spread to speculate in oil markets. Based on the high volume of crack spread futures trading in oil markets, the question we want to raise is whether the crack spread futures can be a good predictor of oil price movements. We investigated first whether there is a causal relationship between the crack spread futures and the spot oil markets in a vector error correction framework. We found the causal impact of crack spread futures on spot oil market both in the long- and the short-run after April 2003 where we detected a structural break in the model. To examine the forecasting performance, we use the random walk model (RWM) as a benchmark, and we also evaluate the forecasting power of crack spread futures against the crude oil futures. The results showed that (a) both the crack spread futures and the crude oil futures outperformed the RWM; and (b) the crack spread futures are almost as good as the crude oil futures in predicting the movements in spot oil markets. (author)

  19. Experimental study of the crack depth ratio threshold to analyze the slow crack growth by creep of high density polyethylene pipes

    International Nuclear Information System (INIS)

    Laiarinandrasana, Lucien; Devilliers, Clémence; Lucatelli, Jean Marc; Gaudichet-Maurin, Emmanuelle; Brossard, Jean Michel

    2014-01-01

    To assess the durability of drinking water connection pipes subjected to oxidation and slow crack growth, a comprehensive database was constructed on a novel specimen geometry: the pre-cracked NOL ring. 135 tests were carried out consisting of initial crack depth ratio ranging from 0.08 to 0.6; single or double longitudinal cracks: tensile with steady strain rate and creep loading. A threshold value of the crack depth ratio of 0.2, induced by the oxidation was determined by analyzing several mechanical parameters. This threshold value was shown to be independent on the strain rate effects, single or double crack configuration and the kind of loading: tensile or creep. Creep test results with crack depth ratio larger than 0.2 were then utilized to establish a failure assessment diagram. A methodology allowing the prediction of residual lifetime of in-service pipes was proposed, using this diagram. - Highlights: • Experimental data on pre-cracked rings featuring a longitudinally cracked HDPE pipe. • Crack depth ratio threshold for slow crack growth study consecutive to oxidation. • Investigation of the effects of the single/double notch(es) and of the strain rate. • Original results obtained from tests performed with tensile and creep loadings. • Correlation between creep initiation time and C* with DENT and ring specimens

  20. A crack opening stress equation for fatigue crack growth

    Science.gov (United States)

    Newman, J. C., Jr.

    1984-01-01

    A general crack opening stress equation is presented which may be used to correlate crack growth rate data for various materials and thicknesses, under constant amplitude loading, once the proper constraint factor has been determined. The constraint factor, alpha, is a constraint on tensile yielding; the material yields when the stress is equal to the product of alpha and sigma. Delta-K (LEFM) is plotted against rate for 2024-T3 aluminum alloy specimens 2.3 mm thick at various stress ratios. Delta-K sub eff was plotted against rate for the same data with alpha = 1.8; the rates correlate well within a factor of two.

  1. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  2. T-stresses for internally cracked components

    International Nuclear Information System (INIS)

    Fett, T.

    1997-12-01

    The failure of cracked components is governed by the stresses in the vicinity of the crack tip. The singular stress contribution is characterised by the stress intensity factor K, the first regular stress term is represented by the so-called T-stress. T-stress solutions for components containing an internal crack were computed by application of the Bundary Collocation Method (BCM). The results are compiled in form of tables or approximative relations. In addition a Green's function of T-stresses is proposed for internal cracks which enables to compute T-stress terms for any given stress distribution in the uncracked body. (orig.) [de

  3. Influence of different cusp coverage methods for the extension of ceramic inlays on marginal integrity and enamel crack formation in vitro.

    Science.gov (United States)

    Krifka, Stephanie; Stangl, Martin; Wiesbauer, Sarah; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne

    2009-09-01

    No information is available to date about cusp design of thin (1.0 mm) non-functional cusps and its influence upon (1) marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and (2) crack formation of dental tissues. The aim of this in vitro study was to investigate the effect of cusp coverage of thin non-functional cusps on marginal integrity and enamel crack formation. CI and PCC preparations were performed on extracted human molars. Non-functional cusps were adjusted to 1.0-mm wall thickness and 1.0-mm wall thickness with horizontal reduction of about 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were adhesively luted with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading. Marginal integrity was assessed by evaluating dye penetration after thermal cycling and mechanical loading. Enamel cracks were documented under a reflective-light microscope. The data were statistically analysed with the Mann-Whitney U test, the Fishers exact test (alpha = 0.05) and the error rates method. PCC with horizontal reduction of non-functional cusps showed statistically significant less microleakage than PCC without such a cusp coverage. Preparation designs with horizontal reduction of non-functional cusps showed a tendency to less enamel crack formation than preparation designs without cusp coverage. Thin non-functional cusp walls of adhesively bonded restorations should be completely covered or reduced to avoid enamel cracks and marginal deficiency.

  4. Linear Cracking in Bridge Decks

    Science.gov (United States)

    2018-03-01

    Concrete cracking in bridge decks remains an important issue relative to deck durability. Cracks can allow increased penetration of chlorides, which can result in premature corrosion of the reinforcing steel and subsequent spalling of the concrete de...

  5. Experimental data base for assessment of irradiation induced ageing effects in pre-irradiated RPV materials of German PWR

    Energy Technology Data Exchange (ETDEWEB)

    Hein, H.; Gundermann, A.; Keim, E.; Schnabel, H. [AREVA NP GmbH (Germany); Ganswind, J. [VGB PowerTech e.V (Germany)

    2011-07-01

    The 5 year research program CARISMA which ended in 2008 has produced a data base to characterize the fracture toughness of pre-irradiated original RPV (Reactor Pressure Vessel) materials being representative for all four German PWR construction lines of former Siemens/KWU company. For this purpose tensile, Charpy-V impact, crack initiation and crack arrest tests have been performed for three base materials and four weld metals irradiated to neutron fluences beyond the designed EoL range. RPV steels with optimized chemical composition and with high copper as well as high nickel content were examined in this study. The RTNDT concept and the Master Curve approach were applied for the assessment of the generated data in order to compare both approaches. A further objective was to clarify in which extent crack arrest curves can be generated for irradiated materials and how crack arrest can be integrated into the Master Curve approach. By the ongoing follow-up project CARINA the experimental data base will be extended by additional representative materials irradiated under different conditions and with respect to the accumulated neutron fluences and specific impact parameters such as neutron flux and manufacturing effects. The irradiation data cover also the long term irradiation behavior of the RPV steels concerned. Moreover, most of the irradiated materials were and will be used for microstructural examinations to get a deeper insight in the irradiation embrittlement mechanisms and their causal relationship to the material property changes. By evaluation of the data base the applicability of the Master Curve approach for both crack initiation and arrest was confirmed to a large extent. Moreover, within both research programs progress was made in the development of crack arrest test techniques and in specific issues of RPV integrity assessment. (authors)

  6. Condition Assessment of Metal Oxide Surge Arrester Based on Multi-Layer SVM Classifier

    Directory of Open Access Journals (Sweden)

    M Khodsuz

    2015-12-01

    Full Text Available This paper introduces the indicators for surge arrester condition assessment based on the leakage current analysis. Maximum amplitude of fundamental harmonic of the resistive leakage current, maximum amplitude of third harmonic of the resistive leakage current and maximum amplitude of fundamental harmonic of the capacitive leakage current were used as indicators for surge arrester condition monitoring. Also, the effects of operating voltage fluctuation, third harmonic of voltage, overvoltage and surge arrester aging on these indicators were studied. Then, obtained data are applied to the multi-layer support vector machine for recognizing of surge arrester conditions. Obtained results show that introduced indicators have the high ability for evaluation of surge arrester conditions.

  7. Fatigue crack growth behavior in equine cortical bone

    Science.gov (United States)

    Shelton, Debbie Renee

    2001-07-01

    Objectives for this research were to experimentally determine crack growth rates, da/dN, as a function of alternating stress intensity factor, DeltaK, for specimens from lateral and dorsal regions of equine third metacarpal cortical bone tissue, and to determine if the results were described by the Paris law. In one set of experiments, specimens were oriented for crack propagation in the circumferential direction with the crack plane transverse to the long axis of the bone. In the second set of experiments, specimens were oriented for radial crack growth with the crack plane parallel to the long axis of the bone. Results of fatigue tests from the latter specimens were used to evaluate the hypothesis that crack growth rates differ regionally. The final experiments were designed to determine if crack resistance was dependent on region, proportion of hooped osteons (those with circumferentially oriented collagen fibers in the outer lamellae) or number of osteons penetrated by the crack, and to address the hypothesis that hooped osteons resist invasion by cracks better than other osteonal types. The transverse crack growth data for dorsal specimens were described by the Paris law with an exponent of 10.4 and suggested a threshold stress intensity factor, DeltaKth, of 2.0 MPa·m1/2 and fracture toughness of 4.38 MPa·m 1/2. Similar results were not obtained for lateral specimens because the crack always deviated from the intended path and ran parallel to the loading direction. Crack growth for the dorsal and lateral specimens in the radial orientation was described by the Paris law with exponents of 8.7 and 10.2, respectively, and there were no regional differences in the apparent DeltaK th (0.5 MPa·m1/2) or fracture toughness (1.2 MPa·m 1/2). Crack resistance was not associated with cortical region, proportion of hooped osteons or the number of osteons penetrated by the crack. The extent to which cracks penetrate osteons was influenced by whether the collagen fiber

  8. Cardiac arrest during anesthesia at a University Hospital in Nigeria ...

    African Journals Online (AJOL)

    Background: We assessed the incidence and outcomes of cardiac arrest during anesthesia in the operating room at our university hospital. A previous study on intraoperative cardiac arrests covered a period from 1994-1998 and since then; anesthetic personnel, equipment, and workload have increased remarkably.

  9. Statistical analysis of fatigue strain-life data for carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Keisler, J.; Chopra, O.K.

    1995-03-01

    The existing fatigue strain vs life (S-N) data, foreign and domestic, for carbon and low-alloy steels used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. A statistical model has been developed for estimating the effects of the various test conditions on fatigue life. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by applying design margins for size, geometry, and surface finish to crack initiation curves estimated from the model

  10. Analysis of stress corrosion data by means of the statistic of extreme values

    International Nuclear Information System (INIS)

    Imarisio, G.; Lanza, F.

    1978-01-01

    The possibility of examining stress corosion by means of extreme statistic was proposed. A series of test in boiling MgCl 2 of samples made on AISI 304 have been performed. Evolution of cracks dimension and time of life of samples was followed. It has been shown that the dimensions of the maximum cracks on the sample corroded for different times can be organized following the extreme values statistic. Also the life time of sample can be treated in the same way. A confirmation has been obtained using data taken from literature. Possible uses of predictions obtained with this type of analysis have been underlined. An extension of the toward less corrosive media and samples of several volumes is suggested to check the validity of the method

  11. Steel weldability. Underbead cold cracking

    International Nuclear Information System (INIS)

    Marquet, F.; Defourny, J.; Bragard, A.

    1977-01-01

    The problem of underbead cold cracking has been studied by the implant technique. This approach allows to take into account in a quantitative manner the different factors acting on the cold cracking phenomenon: structure under the weld bead, level of restraint, hydrogen content in the molten metal. The influence of the metallurgical factors depending from the chemical composition of the steel has been examined. It appeared that carbon equivalent is an important factor to explain cold cracking sensitivity but that it is not sufficient to characterize the steel. The results have shown that vanadium may have a deleterious effect on the resistance to cold cracking when the hydrogen content is high and that small silicon additions are beneficient. The influence of the diffusible hydrogen content has been checked and the important action of pre- and postheating has been shown. These treatments allow the hydrogen to escape from the weld before the metal has been damaged. Some inclusions (sulphides) may also decrease the influence of hydrogen. A method based on the implant tests has been proposed which allows to choose and to control safe welding conditions regarding cold cracking

  12. Fatigue cracking in road pavement

    Science.gov (United States)

    Mackiewicz, P.

    2018-05-01

    The article presents the problem of modelling fatigue phenomena occurring in the road pavement. The example of two selected pavements shows the changes occurring under the influence of the load in different places of the pavement layers. Attention is paid to various values of longitudinal and transverse strains generated at the moment of passing the wheel on the pavement. It was found that the key element in the crack propagation analysis is the method of transferring the load to the pavement by the tire and the strain distribution in the pavement. During the passage of the wheel in the lower layers of the pavement, a complex stress state arises. Then vertical, horizontal and tangent stresses with various values appear. The numerical analyses carried out with the use of finite element methods allowed to assess the strain and stress changes occurring in the process of cracking road pavement. It has been shown that low-thickness pavements are susceptible to fatigue cracks arising "bottom to top", while pavements thicker are susceptible to "top to bottom" cracks. The analysis of the type of stress allowed to determine the cracking mechanism.

  13. Crack initiation under generalized plane strain conditions

    International Nuclear Information System (INIS)

    Shum, D.K.M.; Merkle, J.G.

    1991-01-01

    A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab

  14. Peridynamic model for fatigue cracking.

    Energy Technology Data Exchange (ETDEWEB)

    Silling, Stewart Andrew; Abe Askari (Boeing)

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  15. Dynamical principles of cell-cycle arrest: Reversible, irreversible, and mixed strategies

    Science.gov (United States)

    Pfeuty, Benjamin

    2012-08-01

    Living cells often alternate between proliferating and nonproliferating states as part of individual or collective strategies to adapt to complex and changing environments. To this aim, they have evolved a biochemical regulatory network enabling them to switch between cell-division cycles (i.e., oscillatory state) and cell-cycle arrests (i.e., steady state) in response to extracellular cues. This can be achieved by means of a variety of bifurcation mechanisms that potentially give rise to qualitatively distinct cell-cycle arrest properties. In this paper, we study the dynamics of a minimal biochemical network model in which a cell-division oscillator and a differentiation switch mutually antagonize. We identify the existence of three biologically plausible bifurcation scenarios organized around a codimension-four swallowtail-homoclinic singularity. As a result, the model exhibits a broad repertoire of cell-cycle arrest properties in terms of reversibility of these arrests, tunability of interdivision time, and ability to track time-varying signals. This dynamic versatility would explain the diversity of cell-cycle arrest strategies developed in different living species and functional contexts.

  16. Online Bridge Crack Monitoring with Smart Film

    Directory of Open Access Journals (Sweden)

    Benniu Zhang

    2013-01-01

    Full Text Available Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.

  17. Analysis of steady-state ductile crack growth

    DEFF Research Database (Denmark)

    Niordson, Christian

    1999-01-01

    The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which...... the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....

  18. Fluid structural response of axially cracked cylinders

    International Nuclear Information System (INIS)

    Garnich, M.R.; Simonen, F.A.

    1985-03-01

    The fluid structural (FS) response of a cylindrical pressure vessel to a suddenly occurring longitudinal through-wall crack is predicted. The effects of vessel internals and depressurization of the compressed water on dynamic crack opening displacements are investigated. A three dimensional (3D) structural finite element model is used as a basis for the development of a two dimensional (2D) FS model. A slice of the vessel taken at the crack midspan and normal to the cylinder axis is modeled. Crack opening displacements are compared between the 2D and 3D models, between the different assumptions about fluid depressurization, and between the static and dynamic solutions. The results show that effects of dynamic amplification associated with the sudden opening of the crack in the cylinder are largely offset by the local depressurization of the fluid adjacent to the crack

  19. Application of the cracked pipe element to creep crack growth prediction

    Energy Technology Data Exchange (ETDEWEB)

    Brochard, J.; Charras, T.

    1997-04-01

    The modification of a computer code for leak before break analysis is very briefly described. The CASTEM2000 code was developed for ductile fracture assessment of piping systems with postulated circumferential through-wall cracks under static or dynamic loading. The modification extends the capabilities of the cracked pipe element to the determination of fracture parameters under creep conditions (C*, {phi}c and {Delta}c). The model has the advantage of evaluating significant secondary effects, such as those from thermal loading.

  20. AE analysis of delamination crack propagation in carbon fiber-reinforced polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Jae; Arakawa, Kazuo [Kyushu University, kasuga (Japan); Chen, Dingding [National University of Defense Technology, Changsha (China); Han, Seung Wook; Choi, Nak Sam [Hanyang University, Seoul (Korea, Republic of)

    2015-01-15

    Delamination fracture behavior was investigated using acoustic emission (AE) analysis on carbon fiber-reinforced polymer (CFRP) samples manufactured using vacuum-assisted resin transfer molding (VARTM). CFRP plate was fabricated using unidirectional carbon fiber fabric with a lay-up of six plies [+30/-30]6 , and a Teflon film was inserted as a starter crack. Test pieces were sectioned from the inlet and vent of the mold, and packed between two rectangular epoxy plates to load using a universal testing machine. The AE signals were monitored during tensile loading using two sensors. The average tensile load of the inlet specimens was slightly larger than that of the vent specimens; however, the data exhibited significant scattering due to non-uniform resin distribution, and there was no statistically significant different between the strength of the samples sectioned from the inlet or outlet of the mold. Each of the specimens exhibited similar AE characteristics, regardless of whether they were from the inlet or vent of the mold. Four kinds of damage mechanism were observed: micro-cracking, fiber-resin matrix debonding, fiber pull-out, and fiber failure; and three stages of the crack propagation process were identified.

  1. Acquisition of Inertia by a Moving Crack

    Science.gov (United States)

    Goldman, Tamar; Livne, Ariel; Fineberg, Jay

    2010-03-01

    We experimentally investigate the dynamics of “simple” tensile cracks. Within an effectively infinite medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66, 2484 (1991)PRLTAO0031-900710.1103/PhysRevLett.66.2484].

  2. Time-dependent crack growth in steam generator tube leakage

    International Nuclear Information System (INIS)

    Chung, H.D.; Lee, J.H.; Park, Y.W.; Choi, Y.H.

    2006-01-01

    In general, cracks found in steam generator tubes have semi-elliptical shapes and it is assumed to be rectangular shape for conservatism after crack penetration. Hence, the leak and crack growth behavior has not been clearly understood after the elliptical crack penetrates the tube wall. Several experimental results performed by Argonne Nation Laboratory exhibited time-dependent crack growth behavior of rectangular flaws as well as trapezoidal flaws under constant pressure. The crack growth faster than expected was observed in both cases, which is likely attributed to time-dependent crack growth accompanied by fatigue sources such as the interaction between active jet and crack. The stress intensity factor, K 1 , is necessary for the prediction of the observed fatigue crack growth behavior. However, no K 1 solution is available for a trapezoidal flaw. The objective of this study is to develop the stress intensity factor which can be used for the fatigue analysis of a trapezoidal crack. To simplify the analysis, the crack is assumed to be a symmetric trapezoidal shape. A new K 1 formula for axial trapezoidal through-wall cracks was proposed based on the FEM results. (author)

  3. Mitigation of stress corrosion cracking in boiling water reactors

    International Nuclear Information System (INIS)

    Hanneman, R.E.; Cowan, R.L. II

    1980-01-01

    Intergranular stress corrosion cracking (IGSCC) has occurred in a statistically small number of weld heat affected zones (HAZ) of 304 SS piping in BWR's. A range of mitigating actions have been developed and qualified that provide viable engineering solutions to the unique aspects of (1) operating plants, (2) plants under various stages of construction, and (3) future plants. This paper describes the technical development of each mitigating concept, relates it to the fundamental causal factors for IGSCC, and discusses its applicability to operating, in-construction and new BWR's. 31 refs

  4. Fatigue crack growth in fiber reinforced plastics

    Science.gov (United States)

    Mandell, J. F.

    1979-01-01

    Fatigue crack growth in fiber composites occurs by such complex modes as to frustrate efforts at developing comprehensive theories and models. Under certain loading conditions and with certain types of reinforcement, simpler modes of fatigue crack growth are observed. These modes are more amenable to modeling efforts, and the fatigue crack growth rate can be predicted in some cases. Thus, a formula for prediction of ligamented mode fatigue crack growth rate is available.

  5. Snow fracture: From micro-cracking to global failure

    Science.gov (United States)

    Capelli, Achille; Reiweger, Ingrid; Schweizer, Jürg

    2017-04-01

    Slab avalanches are caused by a crack forming and propagating in a weak layer within the snow cover, which eventually causes the detachment of the overlying cohesive slab. The gradual damage process leading to the nucleation of the initial failure is still not entirely understood. Therefore, we studied the damage process preceding snow failure by analyzing the acoustic emissions (AE) generated by bond failure or micro-cracking. The AE allow studying the ongoing progressive failure in a non-destructive way. We performed fully load-controlled failure experiments on snow samples presenting a weak layer and recorded the generated AE. The size and frequency of the generated AE increased before failure revealing an acceleration of the damage process with increased size and frequency of damage and/or microscopic cracks. The AE energy was power-law distributed and the exponent (b-value) decreased approaching failure. The waiting time followed an exponential distribution with increasing exponential coefficient λ before failure. The decrease of the b-value and the increase of λ correspond to a change in the event distribution statistics indicating a transition from homogeneously distributed uncorrelated damage producing mostly small AE to localized damage, which cause larger correlated events which leads to brittle failure. We observed brittle failure for the fast experiment and a more ductile behavior for the slow experiments. This rate dependence was reflected also in the AE signature. In the slow experiments the b value and λ were almost constant, and the energy rate increase was moderate indicating that the damage process was in a stable state - suggesting the damage and healing processes to be balanced. On a shorter time scale, however, the AE parameters varied indicating that the damage process was not steady but consisted of a sum of small bursts. We assume that the bursts may have been generated by cascades of correlated micro-cracks caused by localization of

  6. Juvenile Arrest and Collateral Educational Damage in the Transition to Adulthood

    Science.gov (United States)

    Kirk, David S.; Sampson, Robert J.

    2014-01-01

    Official sanctioning of students by the criminal justice system is a long-hypothesized source of educational disadvantage, but its explanatory status remains unresolved. Few studies of the educational consequences of a criminal record account for alternative explanations such as low self-control, lack of parental supervision, deviant peers, and neighborhood disadvantage. Moreover, virtually no research on the effect of a criminal record has examined the “black box” of mediating mechanisms or the consequence of arrest for postsecondary educational attainment. Analyzing longitudinal data with multiple and independent assessments of theoretically relevant domains, this paper estimates the direct effect of arrest on later high school dropout and college enrollment for adolescents with otherwise equivalent neighborhood, school, family, peer, and individual characteristics as well as similar frequency of criminal offending. We present evidence that arrest has a substantively large and robust impact on dropping out of high school among Chicago public school students. We also find a significant gap in four-year college enrollment between arrested and otherwise similar youth without a criminal record. We assess intervening mechanisms hypothesized to explain the process by which arrest disrupts the schooling process, and, in turn, produces collateral educational damage. The results imply that institutional responses and disruptions in students’ educational trajectories, rather than social psychological factors, are responsible for the arrest-education link. PMID:25309003

  7. Continuum damage mechanics analysis of crack tip zone

    International Nuclear Information System (INIS)

    Yinchu, L.; Jianping, Z.

    1989-01-01

    The crack tip field and its intensity factor play an important role in fracture mechanics. Generally, the damage such as microcracks, microvoids etc. will initiate and grow in materials as the cracked body is subjected to external loadings, especially in the crack tip zone. The damage evolution will load to the crack tip damage field and the change of the stress, strain and displacement fields of cracks tip zone. In this paper, on the basis of continuum damage mechanics, the authors have derived the equations which the crack tip field and its intensity factor must satisfy in a loading process, calculated the angle distribution curves of stress, strain and displacement fields in a crack tip zone and have compared them with the corresponding curves of HRR field and linear elastic field in undamaged materials. The equations of crack tip field intensity factors have been solved and its solutions give the variation of the field intensity factors with the loading parameter

  8. Effects of plastic anisotropy on crack-tip behaviour

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Tvergaard, Viggo; Kuroda, Mitsutoshi

    2002-01-01

    For a crack in a homogeneous material the effect of plastic anisotropy on crack-tip blunting and on the near-tip stress and strain fields is analyzed numerically. The full finite strain analyses are carried out for plane strain under small scale yielding conditions, with purely symmetric mode I...... loading remote from the crack-tip. In cases where the principal axes of the anisotropy are inclined to t