WorldWideScience

Sample records for cr mn sn

  1. An ab initio study on the structural, electronic and mechanical properties of quaternary full-Heusler alloys FeMnCrSn and FeMnCrSb

    Science.gov (United States)

    Erkişi, Aytaç

    2018-06-01

    The quaternary full Heusler alloys FeMnCrSn and FeMnCrSb, which have face-centred cubic (FCC) crystal structure and conform to ? space group with 216 space number, have been investigated using Generalised Gradient Approximation (GGA) in the Density Functional Theory (DFT) as implemented in VASP (Vienna Ab initio Simulation Package) software. These alloys are considered in ferromagnetic (FM) order. After the investigation of structural stability of these alloys, their mechanical and thermal properties and also electronic band structures have been examined. The calculated spin-polarised electronic band structures and total electronic density of states (DOS) within GGA approximation show that these alloys can exhibit both metallic and half-metallic characters in different structural phases. The calculated formation enthalpies and the plotted energy-volume graphs show that Type-III phase is most stable structural phase for these materials. Also, FeMnCrSb alloy in Type-I/Type-III phases and FeMnCrSn alloy in Type-III phase show half-metallic behaviour with integer total magnetic moments almost 2 and 1 μB per formula unit, respectively, since there are band gaps observed in spin-down states, whereas they have metallic behaviour in majority bands. Other structural phases of both systems are also metallic. Moreover, the calculated elastic constants and the estimated anisotropy shear factors indicate that these materials are stable mechanically in all of three phases except FeMnCrSn in Type-I phase that does not satisfy Born stability criteria in this phase and have high anisotropic behaviour.

  2. Proximity effects on the spin density waves in X/Cr(001) multilayers (X = Sn, V, and Mn)

    International Nuclear Information System (INIS)

    Amitouche, F.; Bouarab, S.; Tazibt, S.; Vega, A.; Demangeat, C.

    2011-01-01

    We present ab initio density functional calculations of the electronic structure and magnetic properties of X 2 /Cr 36 (001) and X 1 /Cr 37 (001) multilayers, with X = Sn, V and Mn, to investigate the impact of the proximity effects of the X layers on the spin density waves of the Cr slab. We find different magnetic profiles corresponding to the spin density wave and to the layered antiferromagnetic configurations. The nature of the different magnetic solutions is discussed in terms of the different interfacial environments in the proximity of Sn, V or Mn. The magnetic behavior at the interface is discussed in connection with the electronic structure through the density of electronic states projected at the interfacial X and Cr sites. We compare the results with those previously obtained for Fe 3 /X 1 /Cr 37 /X 1 (001) multilayers to analyze the role played by the ferromagnetic iron slab.

  3. Proximity effects on the spin density waves in X/Cr(001) multilayers (X = Sn, V, and Mn)

    Energy Technology Data Exchange (ETDEWEB)

    Amitouche, F. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Bouarab, S., E-mail: bouarab_said@mail.ummto.d [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Tazibt, S. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-Ouzou, B.P. No17 RP, 15000 Tizi-Ouzou (Algeria); Vega, A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, Prado de la Magdalena s/n, E-47011 Valladolid (Spain); Demangeat, C. [Institut de Physique, 3 rue de l' Universite 67000 Strasbourg (France)

    2011-01-03

    We present ab initio density functional calculations of the electronic structure and magnetic properties of X{sub 2}/Cr{sub 36}(001) and X{sub 1}/Cr{sub 37}(001) multilayers, with X = Sn, V and Mn, to investigate the impact of the proximity effects of the X layers on the spin density waves of the Cr slab. We find different magnetic profiles corresponding to the spin density wave and to the layered antiferromagnetic configurations. The nature of the different magnetic solutions is discussed in terms of the different interfacial environments in the proximity of Sn, V or Mn. The magnetic behavior at the interface is discussed in connection with the electronic structure through the density of electronic states projected at the interfacial X and Cr sites. We compare the results with those previously obtained for Fe{sub 3}/X{sub 1}/Cr{sub 37}/X{sub 1}(001) multilayers to analyze the role played by the ferromagnetic iron slab.

  4. Magnetic and magnetocaloric properties of Ni-Mn-Cr-Sn Heusler alloys under the effects of hydrostatic pressure

    Science.gov (United States)

    Pandey, Sudip; Us Saleheen, Ahmad; Quetz, Abdiel; Chen, Jing-Han; Aryal, Anil; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2018-05-01

    The magnetic, thermal, and magnetocaloric properties of Ni45Mn43CrSn11 Heusler alloy have been investigated using differential scanning calorimetry and magnetization with hydrostatic pressure measurements. A shift in the martensitic transition temperature (TM) to higher temperatures was observed with the application of pressure. The application of pressure stabilizes the martensitic state and demonstrated that pressure can be a parameter used to control and tune the martensitic transition temperature (the temperature where the largest magnetocaloric effect is observed). The magnetic entropy change significantly decreases from 33 J/kg K to 16 J/kg K under the application of a hydrostatic pressure of 0.95 GPa. The critical field of the direct metamagnetic transition increases, whereas the initial susceptibility (dM/dH) in the low magnetic field region drastically decreases with increasing pressure. The relevant parameters that affect the magnetocaloric properties are discussed.

  5. Effects of alloying elements on the Snoek-type relaxation in Ti–Nb–X–O alloys (X = Al, Sn, Cr, and Mn)

    International Nuclear Information System (INIS)

    Lu, H.; Li, C.X.; Yin, F.X.; Fang, Q.F.; Umezawa, O.

    2012-01-01

    Highlights: ► The O Snoek-type relaxation in the Ti–Nb–X–O alloys was investigated. ► The dipole shape factor (δλ) and critical temperature T c were deduced from the peak. ► The δλ and T c were analyzed in terms of the d-orbital energy level (Md). ► With decreasing Md, the δλ increases and saturates at last while the T c decreases. ► The Md can be taken as a key parameter in designing high damping β-Ti alloys. - Abstract: The effect of alloying elements on the oxygen Snoek-type relaxation in the Ti–24Nb–X–1.7O alloys (X = 1Al, 2Al, 1Sn, 2Sn, 2Cr, 2Mn) was investigated in order to develop high damping materials based on point defect relaxation process. The relaxation strength of the Ti–Nb–Al–O and Ti–Nb–Sn–O alloys is the highest while that of the Ti–Nb–Mn–O and Ti–Nb–Cr–O alloys is the lowest. The dipole shape factor (δλ) and critical temperature T c , which are intrinsic to the Snoek-type relaxation, were figured out and analyzed in terms of the d-orbital energy level (Md) for each alloy based on the measured damping peak. With the decreasing Md, the δλ increases and saturates at last when the Md decreases to a certain value (about 2.435 eV), while the critical temperature T c decreases linearly. The parameter Md can be taken as a key parameter in designing high damping β-Ti alloys, that is, to design an intermediate value of Md at which the values of both δλ and T c are as high as possible.

  6. Noncollinear antiferromagnetic Mn3Sn films

    Science.gov (United States)

    Markou, A.; Taylor, J. M.; Kalache, A.; Werner, P.; Parkin, S. S. P.; Felser, C.

    2018-05-01

    Noncollinear hexagonal antiferromagnets with almost zero net magnetization were recently shown to demonstrate giant anomalous Hall effect. Here, we present the structural and magnetic properties of noncollinear antiferromagnetic Mn3Sn thin films heteroepitaxially grown on Y:ZrO2 (111) substrates with a Ru underlayer. The Mn3Sn films were crystallized in the hexagonal D 019 structure with c -axis preferred (0001) crystal orientation. The Mn3Sn films are discontinuous, forming large islands of approximately 400 nm in width, but are chemical homogeneous and characterized by near perfect heteroepitaxy. Furthermore, the thin films show weak ferromagnetism with an in-plane uncompensated magnetization of M =34 kA/m and coercivity of μ0Hc=4.0 mT at room temperature. Additionally, the exchange bias effect was studied in Mn3Sn /Py bilayers. Exchange bias fields up to μ0HEB=12.6 mT can be achieved at 5 K. These results show Mn3Sn films to be an attractive material for applications in antiferromagnetic spintronics.

  7. Large adiabatic temperature change in magnetoelastic transition in Ni{sub 50}Mn{sub 35}Cr{sub 2}Sn{sub 13} Heusler alloy of granular nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, H. R.; Sharma, S. K.; Ram, S., E-mail: prakashhr73@gmail.com [Materials Science Centre, Indian Institute of Technology, Kharagpur-721302 (India); Chatterjee, S. [High Magnetic Field Lab, UGC-DAE Consortium of Scientific Research, Kolkata-700098 (India)

    2016-05-06

    The Ni-Mn-Sn alloys are a pioneering series of magnetocaloric materials of a huge heat-energy exchanger in the martensite transition. A small additive of nearly 2 at% Cr effectively tunes the valence electron density of 8.090 electrons per atom and a large change in the entropy ΔS{sub M←A} = 4.428 J/kg-K (ΔS{sub M→A} = 3.695 J/kg-K in the recycle) at the martensite ← austenite phase transition as it is useful for the magnetic refrigeration and other cooling devices. The Cr additive tempers the tetragonality with the aspect ratio c/a = 0.903 of the martensite phase and exhibits an adiabatic temperature change of 10 K. At room temperature, a hysteresis loop exhibits 48.91 emu/g saturation magnetization and 82.1 Oe coercivity.

  8. A Study of Different Doped Metal Cations on the Physicochemical Properties and Catalytic Activities of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) Composite Oxides for Nitric Oxide Reduction by Carbon Monoxide.

    Science.gov (United States)

    Deng, Changshun; Li, Min; Qian, Junning; Hu, Qun; Huang, Meina; Lin, Qingjin; Ruan, Yongshun; Dong, Lihui; Li, Bin; Fan, Minguang

    2016-08-05

    This work is mainly focused on investigating the effects of different doped metal cations on the formation of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) composite oxides and their physicochemical and catalytic properties for NO reduction by CO as a model reaction. The obtained samples were characterized by using N2 physisorption, X-ray diffraction, laser Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction by hydrogen and by oxygen (H2 -TPR and O2 -TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy, and the NO+CO model reaction. The results imply that the introduction of M(x+) into the lattice of CeO2 increases the specific surface area and pore volume, especially for variable valence metal cations, and enhances the catalytic performance to a great extent. In this regard, increases in the oxygen vacancies, reduction properties, and chemisorbed O2 (-) (and/or O(-) ) species of these Ce20 M1 Ox composite oxides (M refers to variable valence metals) play significant roles in this reaction. Among the samples, Ce20 Cr1 Ox exhibited the best catalytic performance, mainly because it has the best reducibility and more chemisorbed oxygen, and significant reasons for these attributes may be closely related to favorable synergistic interactions of the vacancies and near-surface Ce(3+) and Cr(3+) . Finally, a possible reaction mechanism was tentatively proposed to understand the reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Electronic structure and magnetism of Ge(Sn)TM.sub.x./sub.Te.sub.1-x./sub. (TM = V,Cr,Mn): a first principles study

    Czech Academy of Sciences Publication Activity Database

    Liu, Y.; Bose, S. K.; Kudrnovský, Josef

    2016-01-01

    Roč. 6, č. 12 (2016), 1-12, č. článku 125005. ISSN 2158-3226 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68378271 Keywords : SnTe and GeTe * doping with 3d metals * lattice structure * exchange integrals * Curie temperature * first-priciples study Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.568, year: 2016

  10. 51Cr diffusion in Zr-Sn alloys

    International Nuclear Information System (INIS)

    Nicolai, L.I.; Migoni, R.L.; Hojvat de Tendler, Ruth

    1982-01-01

    The 51 Cr volume diffusion in Zr-Sn alloys is measured in polycrystals with big grains by the thin-film method. The Sn content in the alloys ranges from 0.39% at to 6.66 % at. In the beta-phase the analysed temperature range is 982 deg C-1240 deg C. The Sn dehances the 51 Cr diffusion in beta-Zr, the effect being small but well defined. Assuming the formation of Sn-Cr dimers, the linear dehancement coefficient b and the parameters for the variation of b with temperature were calculated. The parameters Q and D o were calculated for the more diluted alloys and, upon application of the Zener theory for D o , a negative contribution to the activation entropy is found. Three experiments at different temperatures were performed in the alpha-phase. 51 Cr diffuses very fast in alpha-Zr-Sn. No definite correlation is found between the 51 Cr diffusivity and the increasing Sn concentration, probably due to the anisotropy of the alfa-phase. (M.E.L.) [es

  11. Swelling of Fe-Mn and Fe-Cr-Mn alloys at high neutron fluence

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1986-06-01

    Swelling data on neutron-irradiated simple Fe-Cr-Mn and Fe-Mn alloys, as well as commercial Fe-Cr-Mn base alloys are now becoming available at exposure levels approaching 50 dpa. The swelling rate decreases from the ∼1%/dpa found at lower exposures, probably due to the extensive formation of ferritic phases. As expected, commercial alloys swell less than the simple alloys

  12. Structural, magnetic and transport properties of Mn3.1Sn0.9 and Mn3.1Sn0.9N compounds

    International Nuclear Information System (INIS)

    Feng, W.J.; Li, D.; Ren, W.J.; Li, Y.B.; Li, W.F.; Li, J.; Zhang, Y.Q.; Zhang, Z.D.

    2007-01-01

    The cubic anti-perovskite Mn 3.1 Sn 0.9 N compound is prepared via nitrogenation of the hexagonal Mn 3.1 Sn 0.9 compound. A magnetic phase diagram of Mn 3.1 Sn 0.9 compound is constructed by analysis of data of its magnetic properties. For Mn 3.1 Sn 0.9 N compound, parasitic ferromagnetism exists in the temperature range of 5-370 K, besides a spin-reorientation at about 280 K. Mn 3.1 Sn 0.9 compound exhibits a metallic conducting behavior, while Mn 3.1 Sn 0.9 N displays a metal-nonmetal transition due to the electron localization caused by the static disorder. The differences of the physical properties between the both compounds, are discussed, in terms of the correlation of the hexagonal DO 19 and the cubic anti-perovskite structures, the reduction of the distances between Mn atoms, and the spin-pairing or charge transfer effect due to the electron donation by N 2p to Mn 3d states after introduction of N atoms into the interstitial sites of Mn 3.1 Sn 0.9 compound

  13. The 52Cr(p, γ)53Mn reaction

    NARCIS (Netherlands)

    Vuister, P.H.

    The 52Cr(p, γ)53Mn reaction was investigated in the energy region Ep = 1.36–2.26 MeV. The resonance energies, the corresponding 53Mn excitation energies and the resonance strengths of 199 resonances, assigned to this reaction, are reported. The excitation energies and gamma-ray branchings of 13

  14. Cr 3d surface and bulk states in Sn1-xCrxTe/Cr crystals

    International Nuclear Information System (INIS)

    Guziewicz, E.; Szamota-Sadowska, K.; Kowalski, B.J.; Grodzicka, E.; Story, T.; Orlowski, B.A.; Johnson, R.L.

    1997-01-01

    We report a new approach to investigate metal-semiconductor interface formation. Photoemission spectroscopy was applied in order to investigate the clean surface of a Sn 0.97 Cr 0.03 Te crystal and to observe its changes under sequential deposition of small amounts of Cr atoms. In order to analyse the Cr 3d contribution to the valence band, the Fano-type resonance tuned to the Cr 3p-3d transmission was used. The experiment was designed to follow the Sn 0.97 Cr 0.03 Te/Cr interface formation process. At the clean Sn 0.97 Cr 0.03 Te surface, the Cr 3d states contribution to the valence band was found to be positioned 0.8 eV below Fermi level. After the Cr deposition processes the contribution shifted to a higher binding energy and another contribution 5.8 eV below the Fermi level also observed. (author)

  15. Study of phase transformations in Fe-Mn-Cr Alloys

    International Nuclear Information System (INIS)

    Schule, W.; Panzarasa, A.; Lang, E.

    1988-01-01

    Nickel free alloys for fusion reactor applications are examined. Phase changes in fifteen, mainly austenitic iron-manganese-chromium-alloys of different compositions were investigated in the temperature range between -196 0 C and 1000 0 C after different thermo-mechanical treatments. A range of different physical measuring techniques was employed to investigate the structural changes occurring during heating and cooling and after cold-work: electrical resistivity techniques, differential thermal analysis, magnetic response, Vickers hardness and XRD measurement. The phase boundary between the α Fe-phase and the γ-phase of the iron manganese alloy is approximately maintained if chromium is added to the two component materials. Consequently all the alloy materials for contents of manganese smaller than about 30% Mn are not stable below 500 0 C. This concerns also the AMCR alloys. However the α Fe-phase is not formed during slow cooling from 1000 0 C to ambient temperature and is only obtained if nucleation sites are provided and after very long anneals. A cubic α Mn-type-phase is found for alloys with 18% Cr and 15% Mn, with 13% Cr and 25% Mn, with 10% Cr and 30% Mn, and with 10% Cr and 40% Mn. For these reasons the γ-phase field of the iron-chromium-manganese alloys is very small below 600 0 C and much narrower than reported in the literature. 95 figs. 22 refs

  16. Magnetic phase change in Mn-doped ZnSnAs2 thin films depending on Mn concentration

    Science.gov (United States)

    Uchitomi, Naotaka; Hidaka, Shiro; Saito, Shin; Asubar, Joel T.; Toyota, Hideyuki

    2018-04-01

    The relationship between Mn concentration and Curie temperature (TC) is studied for Mn-doped ZnSnAs2 ferromagnetic semiconductors, epitaxially grown on InP substrates by molecular beam epitaxy. In the ferromagnetic phase, Mn distributions in a (Zn,Mn,Sn)As2 thin film with 7.2 cation percent (cat. %) Mn are investigated using three-dimensional atom probe tomography. The results indicate an inhomogeneous distribution which spreads to a relatively high Mn concentration of 9.0 at. % (at. %). In the paramagnetic phase, it is found that the paramagnetic to ferromagnetic transition takes place sharply with a TC of 334 K when the Mn doping concentration increases to about 4 cat. % Mn, which corresponds to a magnetic percolation threshold for ferromagnetism in (Zn,Mn,Sn)As2. An effective Curie temperature ⟨TC⟩ is considered to bridge the Curie temperatures obtained experimentally to those calculated theoretically in inhomogeneous magnetic semiconductors. The behavior of magnetism in Mn-doped ZnSnAs2 can be explained by three different phases within the present framework.

  17. Magnetoresistance and phase composition of La-Sn-Mn-O systems

    DEFF Research Database (Denmark)

    Li, Z.W.; Morrish, A.H.; Jiang, Jianzhong

    1999-01-01

    The transport properties of the manganites La1 - xSnxMnO3 + delta with x = 0.1-0.5 and of Fe-doped samples have been comprehensively studied using magnetoresistance measurements, Fe-57 and Sn-119 Mossbauer spectroscopy, and x-ray diffraction. At the Sn concentration x = 0.5, La0.5Sn0.5MnO3 + delta...

  18. The Phase Transformations in Hypoeutectoid Steels Mn-Cr-Ni

    Directory of Open Access Journals (Sweden)

    RoŻniata E.

    2015-04-01

    Full Text Available The results of a microstructure and hardness investigations of the hypoeutectoid steels Mn-Cr-Ni, imitating by its chemical composition toughening steels, are presented in the paper. The analysis of the kinetics of phase transformations of undercooled austenite of steels containing different amounts of alloying elements in their chemical composition, constitutes the aim of investigations.

  19. Magnetic exchange interactions in Mn doped ZnSnAs{sub 2} chalcopyrite

    Energy Technology Data Exchange (ETDEWEB)

    Bouhani-Benziane, H.; Sahnoun, O. [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Sahnoun, M., E-mail: sahnoun_cum@yahoo.fr [Laboratoire de Physique Quantique de la Matière et Modélisation Mathématique (LPQ3M), University of Mascara (Algeria); Department of Chemistry, University of Fribourg (Switzerland); Driz, M. [Laboratoire de Sciences des Matériaux (LSM), University of Sidi Bel Abbes (Algeria); Daul, C. [Department of Chemistry, University of Fribourg (Switzerland)

    2015-12-15

    Accurate ab initio full-potential augmented plane wave (FP-LAPW) electronic calculations within generalized gradient approximation have been performed for Mn doped ZnSnAs{sub 2} chalcopyrites, focusing on their electronic and magnetic properties as a function of the geometry related to low Mn-impurity concentration and the spin magnetic alignment (i.e., ferromagnetic vs antiferromagnetic). As expected, Mn is found to be a source of holes and localized magnetic moments of about 4 µ{sub B} per Mn atom are calculated which are sufficiently large. The defect calculations are firstly performed by replacing a single cation (namely Zn and Sn) with a single Mn atom in the pure chalcopyrite ZnSnAs{sub 2} supercell, and their corresponding formation energies show that the substitution of a Sn atom (rather than Zn) by Mn is strongly favored. Thereafter, a comparison of total energy differences between ferromagnetic (FM) and antiferromagnetic (AFM) are given. Surprisingly, the exchange interaction between a Mn pairs is found to oscillate with the distance between them. Consequently, the AFM alignment is energetically favored in Mn-doped ZnSnAs{sub 2} compounds, except for low impurity concentration associated with lower distances between neighboring Mn impurities, in this case the stabilization of FM increases. Moreover, the ferromagnetic alignment in the Mn-doped ZnSnAs{sub 2} systems behaves half-metallic; the valence band for majority spin orientation is partially filled while there is a gap in the density of states for the minority spin orientation. This semiconducting gap of ~1 eV opened up in the minority channel and is due to the large bonding–antibonding splitting from the p–d hybridization. Our findings suggest that the Mn-doped ZnSnAs{sub 2} chalcopyrites could be a different class of ferromagnetic semiconductors. - Highlights: • ab initio calculations were performed on Mn doped ZnSnAs{sub 2} chalcopyrite. • Substitution of a Sn atom (rather than Zn) by Mn

  20. Duplex Heterogeneous Nucleation Behavior of Precipitates in C-Mn Steel Containing Sn

    Science.gov (United States)

    Sun, Guilin; Tao, Sufen

    2018-04-01

    The two successive heterogeneous nucleation behaviors of FeSn2-MnS-Al2O3 complex precipitates in ultrahigh Sn-bearing steel were investigated. First, Al2O3 was the nucleation site of the MnS at the end of solidification. Then, FeSn2 nucleated heterogeneously on the MnS particles that nucleated on the Al2O3 particles. The formation sequence of the precipitated phase caused the duplex heterogeneous nucleation to occur consecutively at most twice.

  1. First-principles analysis of ferroelectric transition in MnSnO3 and MnTiO3 perovskites

    Science.gov (United States)

    Kang, Sung Gu

    2018-06-01

    The ferroelectric instabilities of an artificially adopted Pnma structure in low tolerance perovskites have been explored (Kang et al., 2017) [4], where an unstable A-site environment was reported to be the major driving source for the low tolerance perovskites to exhibit ferroelectric instability. This study examined the ferroelectric transition of two magnetic perovskite materials, MnSnO3 and MnTiO3, in Pnma phase. Phase transitions to the Pnma phase at elevated pressures were observed. MnSnO3, which has a lower (larger) tolerance factor (B-site cation radius), showed a higher ferroelectric mode amplitude than MnTiO3. The distribution of the bond length of Mn-O and the mean quadratic elongation (QE) of octahedra (SnO6 or TiO6) were investigated for structural analysis. However, MnTiO3 showed a larger spontaneous polarization than MnSnO3 due to high Born effective charges of titanium. This study is useful because it provides a valuable pathway to the design of promising multiferroic materials.

  2. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys

    International Nuclear Information System (INIS)

    Krenke, T.

    2007-01-01

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y alloys with 5 at%≤x(y)≤25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni 50 Mn 25 Sn 25 and Ni 50 Mn 25 Sn 25 do not exhibit a structural transition on lowering of the temperature, whereas alloys with x≤15 at% Tin and y≤16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni 50 Mn 50 order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%≤x≤15 at% and 15 at%≤x≤16 at% for Ni 50 Mn 50-x Sn x and Ni 50 Mn 50-y In y respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni 50 Mn 34 In 16 alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2 1 structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M s up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about 0.12 % appear. Additionally, the alloys Ni 50 Mn 35 Sn 15 , Ni 50 Mn 37 Sn 13 , Ni 50 Mn 34 In 16 , Ni 51.5 Mn 33 In

  3. Hardening of Fe-Cr-Mn steels cold plastic working

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop-Lyashko, V.I.; Nikoporets, N.M.

    1983-01-01

    The dependence is established between the level of proper-- ties obtained after cold plastic working and development of martensite transformations when loading in Fe-Cr-Mn steels containing 0.1-0.5% C, 13% Cr, 8-12% Mn, as well as in a number of complex alloyed steels. It is shown that the highest level of mechanical properties can be obtained after cold plastic working only in steels with definite austenite stability. Cold plastic working can both activize and stabilize austenite relatively to martensite formation during loading. The first thing is found when under the effect of preliminary cold working dislocation splitting takes place, as well as the formation of a small amount of E-phase and martensite. The second thing manifests itself when under the effect of cold working performed above Md (Md<20 deg C) cell dislocation structure is formed and dislocation pinning takes place

  4. Giant magnetoresistance in CrFeMn alloys

    International Nuclear Information System (INIS)

    Xu, W.M.; Zheng, P.; Chen, Z.J.

    1997-01-01

    The electrical resistance and longitudinal magnetoresistance of Cr 75 (Fe x Mn 1-x ) 25 alloys, x=0.64, 0.72, are studied in the temperature range 1.5-270 K in applied field up to 7.5 T. The magnetoresistance is negative and strongly correlated with the spin reorientation. In the temperature range where the antiferromagnetic and ferromagnetic domains coexist, the samples display giant magnetoresistance which follows a H n -law at high field. (orig.)

  5. Phase transitions and thermal expansion in Ni51- x Mn36 + x Sn13 alloys

    Science.gov (United States)

    Kaletina, Yu. V.; Gerasimov, E. G.; Kazantsev, V. A.; Kaletin, A. Yu.

    2017-10-01

    Thermal expansion and structural and magnetic phase transitions in alloys of the Ni-Mn-Sn system have been investigated. The spontaneous martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) alloys is found to be accompanied by high jumps in the temperature dependences of the linear thermal expansion. The relative change in the linear sizes of these alloys at the martensitic transformation is 1.5 × 10-3. There are no anomalies in the magnetic-ordering temperature range in the temperature dependences of the coefficient of linear thermal expansion. The differences in the behavior of linear thermal expansion at the martensitic transformation in Ni51-xMn36 + xSn13 (0 ≤ x ≤ 3) and Ni47Mn40Sn13( x = 4) alloys have been established.

  6. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    Science.gov (United States)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  7. Possible martensitic transformation in Heusler alloy Mn{sub 2}PdSn from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L., E-mail: author.fenglin@tyut.edu.cn [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, X. [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, E.K.; Wang, W.H.; Wu, G.H. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Hu, J.F.; Zhang, W.X. [Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Computational Condensed Matter Physics Laboratory, Department of Physics, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-12-01

    The tetragonal distortion, electronic structure and magnetic property of Mn{sub 2}PdSn have been systematically investigated by first-principles calculations. The results indicate that the total energy of tetragonal martensitic phase is lower than cubic austenitic phase for Mn{sub 2}PdSn. The corresponding c/a ratio and energy difference are 1.23 and 41.62 meV/f.u., respectively. This suggests that there is a great possibility for martensitic transformation to occur in Mn{sub 2}PdSn with temperature decreasing. The electronic structure shows that there are sharp DOS peaks originating from p–d hybridization in the vicinity of Fermi level in the cubic phase. And these peaks disappear or become more flat in the martensitic phase. - Highlights: • The martensitic transformation is prone to occur with temperature decreasing in Mn{sub 2}PdSn. • Electronic structure and magnetic property of Mn{sub 2}PdSn are investigated. • Both the austenitic and martensitic phases of Mn{sub 2}PdSn are ferrimagnetic.

  8. Magnetism of DyMn2 and HoMn2 - 57Fe and 119Sn Moessbauer studies

    International Nuclear Information System (INIS)

    Krop, K.; Haeufler, T.; Hilscher, G.; Steiner, W.

    1995-01-01

    Moessbauer spectra were measured for two Laves phase compounds DyMn 2 and HoMn 2 in which manganese was substituted to 0.5% with 57 Fe and to 0.2% with 119 Sn. At 4.2 K the 57 Fe and 119 Sn spectra of the Dy compound were unambiguously fitted each with two Zeeman patterns (with relative contributions to the spectra 3:1) corresponding to two different Mn sites - magnetic and nonmagnetic. Transferred hyperfine fields at 119 Sn were found to be proportional to the magnetic moment of Dy and its ferromagnetic component, corroborating the magnetic structure found in neutron diffraction (ND) experiment. The same procedure was carried on with the spectra measured for the Ho compound, but the above mentioned proportionality was not found. ((orig.))

  9. Precision casting of Ti-15V-3Cr-3Al-3Sn alloy setting

    OpenAIRE

    Nan Hai; Liu Changkui; Huang Dong

    2008-01-01

    In this research, Ti-15V-3Cr-3Al-3Sn alloy ingots were prepared using ceramic mold and centrifugal casting. The Ti-15V-3Cr-3Al-3Sn setting casting, for aeronautic engine, with 1.5 mm in thickness was manufactured. The alloy melting process, precision casting process, and problems in casting application were discussed. Effects of Hot Isostatic Pressing and heat treatment on the mechanical properties and microstructure of the Ti-15V-3Cr-3Al-3Sn alloy were studied.

  10. Three NiAs-Ni 2In Type Structures in the Mn-Sn System

    Science.gov (United States)

    Elding-Pontén, Margareta; Stenberg, Lars; Larsson, Ann-Kristin; Lidin, Sven; Ståhl, Kenny

    1997-03-01

    TheB8-type structure field of the Mn-Sn system has been investigated. Two high temperature phases (HTP1 and HTP2) and one low temperature phase (Mn3Sn2) were found. They all crystallize with the NiAs structure type with part of the trigonal bipyramidal interstices filled by manganese atoms in an ordered manner. The ordering as well as the manganese content is different for the three phases, giving rise to three different orthorhombic superstructures. Mn3Sn2seems to have the lowest manganese content, since the corresponding basal unit cell is smaller than for HTP1-2. Structural models of the phases are based on selected area electron diffraction, X-ray powder diffraction, and preliminary single crystal X-ray measurements. The ideal cell parameters found are (a=7ahex,b=3ahex,c=chex), (a=5ahex,b=3ahex,c=chex), and (a=2ahex,b=3ahex,c=chex) for HTP1, HTP2, and Mn3Sn2, respectively. The crystal structure of Mn3Sn2has been refined by means of the Rietveld method from X-ray powder diffraction data. Mn3Sn2is orthorhombic,Pnma,a=7.5547(2),b=5.4994(2),c=8.5842(2) Å,Z=4. (Pbnmin the setting above.) The compound is isostructural with Ni3Sn2andγ‧-Co3Sn2(H. Fjellvåg and A. Kjekshus,Acta Chem. Scand.A40, 23-30 (1986)). FinalRp=8.97%,Rwp=11.44%, GOF=2.86, andRBragg=4.11% using 43 parameters and 5701 observations and 330 Bragg reflections.

  11. Peculiarity of component interaction in {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V.V. [Department of Materials Engineering and Applied Physics, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Konyk, M. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Romaka, L., E-mail: romakal@franko.lviv.ua [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Pavlyuk, V. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine); Jan Dlugosz University, Institute of Chemistry, Environmental Protection and Biotechnology, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland); Ehrenberg, H. [Institute for Complex Materials, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden (Germany); Tkachuk, A. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya Str. 6, 79005 Lviv (Ukraine)

    2011-07-14

    Highlights: > {l_brace}Y, Dy{r_brace}-Mn-Sn ternary systems at 770 K are characterized by formation of stannides with general compositions RMn{sub 6}Sn{sub 6} and R{sub 4}Mn{sub 4}Sn{sub 7}. > The crystal structure of YMn{sub 6}Sn{sub 6} was determined by single crystal and powder diffraction methods. > Structural analysis showed that Dy{sub 4}Mn{sub 4}Sn{sub 7} compound is disordered. > Isostructural R{sub 4}Mn{sub 4}Sn{sub 7} compounds were also found with Gd, Tb, Ho, Er, Tm(confirmed), Yb, and Lu. - Abstract: The phase equilibria in the Y-Mn-Sn and Dy-Mn-Sn ternary systems were studied at 770 K by means of X-ray and metallographic analyses in the whole concentration range. Both Y-Mn-Sn and Dy-Mn-Sn systems are characterized by formation of two ternary compounds RMn{sub 6}Sn{sub 6} (MgFe{sub 6}Ge{sub 6}-type, space group P6/mmm) and R{sub 4}Mn{sub 4}Sn{sub 7} (Zr{sub 4}Co{sub 4}Ge{sub 7}-type, space group I4/mmm). The disorder in Dy{sub 4}Mn{sub 4}Sn{sub 7} compound was found by single crystal method. Compounds with the same type of structure were also found with Gd, Tb, Ho, Er, Tm (confirmed), Yb, and Lu and their lattice parameters were determined.

  12. Photoluminescence study of epitaxially grown ZnSnAs2:Mn thin films

    International Nuclear Information System (INIS)

    Mammadov, E; Haneta, M; Toyota, H; Uchitomi, N

    2011-01-01

    The photoluminescence (PL) properties of heavily Mn-doped ZnSnAs 2 layers epitaxially grown on nearly lattice-matched semi-insulating InP substrates are studied. PL spectra are obtained for samples with Mn concentrations of 5, 12 and 24 mol% relative to the combined concentrations of Zn and Sn. A broad emission band centered at ∼ 1 eV is detected for Mn-doped layers at room temperature. The emission is a intense broad asymmetric line at low temperatures. The line is reconstructed by superposition of two bands with peak energies of ∼ 0.99 and 1.07 eV, similar to those reported for InP. These bands are superimposed onto a 1.14 eV band with well-resolved phonon structure for the layer doped with 12 % Mn. Recombination mechanism involving the split-off band of the ZnSnAs 2 is suggested. Temperature dependence of integrated intensities of the PL bands indicates to thermally activated emission with activation energies somewhat different from those found for InP. Mn substitution at cationic sites increases the concentration of holes which may act as recombination centers. Recombination to the holes bound to Mn ions with the ground state located below the top of the valence band has been proposed as a possible PL mechanism.

  13. Effect of adding Cr on magnetic properties and metallic behavior in MnTe film

    International Nuclear Information System (INIS)

    Wang, Z.H.; Geng, D.Y.; Gong, W.J.; Li, J.; Li, Y.B.; Zhang, Z.D.

    2012-01-01

    Mn 1−x Cr x Te films with x = 0, 0.02, and 0.05 was synthesized by pulsed laser deposition and crystallize in hexagonal NiAs-type structure. The spin glass behavior predicted before by Monte Carlo calculation is observed in the MnTe film. This behavior is destroyed by adding Cr in the MnTe film. The temperature dependence of magnetization shows a sharp rise at around 66 K, due to the magneto-elastic coupling. Metallic behavior is observed in the MnTe film in the temperature range 120–220 K, which is ascribed to the magnetic ordering. The metallic behavior disappears with adding Cr, because adding Cr ions destroys the magnetic ordering which is mediated by the sp–d exchange interaction between the Cr ions. - Highlights: ► Mn 1−x Cr x Te films with NiAs-type structure was prepared by pulsed laser deposition. ► The spin glass behavior was observed in MnTe film at low temperature. ► The spin glass behavior was destroyed by adding Cr. ► The temperature dependence of magnetization showed a sharp rise at around 66 K. ► Metallic behavior was observed in MnTe film, which disappeared by adding Cr.

  14. The effect of magnetic ordering on the giant magnetoresistance of Cr-Fe-V and Cr-Fe-Mn

    International Nuclear Information System (INIS)

    Somsen, Ch.; Acet, M.; Nepecks, G.; Wassermann, E.F.

    2000-01-01

    Cr-rich Cr 1-x Fe x alloys with compositions in the vicinity of mixed ferromagnetic and antiferromagnetic exchange (x=0.18) exhibit giant magnetoresistance. In order to understand the influence of the antiferromagnetism of Cr on the giant magnetoresistance one can manipulate the antiferromagnetic exchange either by adding vanadium, which destroys the antiferromagnetism of Cr, or by adding manganese, which enhances it. Cr-Fe-V and Cr-Fe-Mn alloys also have Curie temperatures that lie between low temperatures and room temperature in the concentration region where giant magnetoresistance is observed. Therefore, they are also used as samples to study the magnetoresistance as a function of the strength of FM exchange. We discuss these points in the light of temperature and concentration-dependent magnetoresistance experiments on Cr 0.99-x Fe x V 0.01 , Cr 0.96-x Fe x V 0.04 , Cr 0.90-x Fe x Mn 0.10 and Cr 0.55 Fe x Mn 0.45-x alloys. Results indicate that the most favorable condition for a large magnetoresistance in these alloys occurs at temperatures near the Curie temperature

  15. Coupling between magnetic, dielectric properties and crystal structure in MnT2O4 (T = V, Cr, Mn)

    International Nuclear Information System (INIS)

    Suzuki, T; Adachi, K; Katsufuji, T

    2006-01-01

    We measured the temperature dependence of dielectric constant and striction for spinel MnT 2 O 4 (T = V, Cr, Mn) under magnetic field. We found critical changes of the dielectric constant and striction with ferrimagnetic ordering as well as applied magnetic field in MnV 2 O 4 and Mn 3 O 4 , which have orbital degree of freedom in the T 3+ ion. This result indicates the importance of the orbital degree of freedom for the coupling between dielectric, magnetic properties and crystal structure in these spinel compounds

  16. Nonohmic behavior of SnO2.MnO2-based ceramics

    Directory of Open Access Journals (Sweden)

    Marcelo O. Orlandi

    2003-06-01

    Full Text Available The present paper describes the nonohmic behavior of the SnO2.MnO-based system and analyzes the influence of the sintering time and the Nb2O5 concentration on this system's electrical properties. A nonlinear coefficient of ~7 was obtained for a 0.2 mol%-doped Nb2O5 composition, which is comparable to other values reported in the literature for the ternary SnO2-based systems. A recent barrier formation model proposed in the literature to explain the nonlinear electrical behavior of SnO2-based systems is used to clarify the role of the MnO constituent in the formation of the barrier, taking into account the influence of segregated atoms, precipitated phase and oxygen species in the grain boundary region.

  17. Mixed phase in cubic and hexagonal HoMn2111Cd PAC and 119Sn, 57Fe Moessbauer studies

    International Nuclear Information System (INIS)

    Cottenier, S.; Meersschaut, J.; Demuynck, S.; Swinnen, B.; Rots, M.

    1998-01-01

    Hyperfine parameters on 57 Fe, 119 Sn and 111 Cd substituted into the Mn sublattice were measured by Moessbauer and PAC spectroscopies. From these results it is tentatively concluded that C15 and C14 HoMn 2 are mixed-phase compounds. In C14 HoMn 2 there is no (or small) moment on the 2a site. (orig.)

  18. Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys

    Science.gov (United States)

    Bae, Jae Wung; Moon, Jongun; Jang, Min Ji; Ahn, Dong-Hyun; Joo, Soo-Hyun; Jung, Jaimyun; Yim, Dami; Kim, Hyoung Seop

    2017-09-01

    Herein, the deep drawability and deep drawing behavior of an equiatomic CoCrFeMnNi HEA and its microstructure and texture evolution are first studied for future applications. The CoCrFeMnNi HEA is successfully drawn to a limit drawing ratio (LDR) of 2.14, while the planar anisotropy of the drawn cup specimen is negligible. The moderate combination of strain hardening exponent and strain rate sensitivity and the formation of deformation twins in the edge region play important roles in successful deep drawing. In the meanwhile, the texture evolution of CoCrFeMnNi HEA has similarities with conventional fcc metals.

  19. HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

    OpenAIRE

    M. Mahmoudiniya; Sh. Kheirandish; M. Asadi Asadabad

    2017-01-01

    Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile st...

  20. First-principles study of ZnSnAs2-based dilute magnetic semiconductors

    Science.gov (United States)

    Kizaki, Hidetoshi; Morikawa, Yoshitada

    2018-02-01

    The electronic structure and magnetic properties of chalcopyrite Zn(Sn,TM)As2 and (Zn,TM)SnAs2 have been investigated by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation within the local spin density approximation, where TM denotes a 3d transition metal element. We find that the half-metallic and high-spin ferromagnetic state can be obtained in Zn(Sn,V)As2, Zn(Sn,Cr)As2, Zn(Sn,Mn)As2, (Zn,V)SnAs2, and (Zn,Cr)SnAs2. The calculated result of Zn(Sn,Mn)As2 is in good agreement with the experimentally observed room-temperature ferromagnetism if we can control selective Mn doping at Sn sites. In addition, (Zn,V)SnAs2 and (Zn,Cr)SnAs2 are predicted to exhibit high-Curie-temperature ferromagnetism.

  1. Performing a stellar autopsy using the radio-bright remnant of SN 1996cr

    Science.gov (United States)

    Meunier, C.; Bauer, F. E.; Dwarkadas, V. V.; Koribalski, B.; Emonts, B.; Hunstead, R. W.; Campbell-Wilson, D.; Stockdale, C.; Tingay, S. J.

    2013-05-01

    We present newly reduced archival radio observations of SN 1996cr in the Circinus Galaxy from the Australia Telescope Compact Array and the Molonglo Observatory Synthesis Telescope, and attempt to model its radio light curves using recent hydrodynamical simulations of the interaction between the supernova (SN) ejecta and the circumstellar material (CSM) at X-ray wavelengths. The radio data within the first 1000 d show clear signs of free-free absorption (FFA), which decreases gradually and is minimal above 1.4 GHz after day ˜3000. Constraints on the FFA optical depth provide estimates of the CSM free electron density, which allows insight into the ionization of SN 1996cr's CSM and offers a test on the density distribution adopted by the hydrodynamical simulation. The intrinsic spectral index of the radiation shows evidence for spectral flattening, which is characterized by α = 0.852 ± 0.002 at day 3000 and a decay rate of Δα = -0.014 ± 0.001 yr-1. The striking similarity in the spectral flattening of SN 1987A, SN 1993J and SN 1996cr suggests this may be a relatively common feature of SNe/CSM shocks. We adopt this spectral index variation to model the synchrotron radio emission of the shock, and consider several scalings that relate the parameters of the hydrodynamical simulation to the magnetic field and electron distribution. The simulated light curves match the large-scale features of the observed light curves, but fail to match certain tightly constraining sections. This suggests that simple energy density scalings may not be able to account for the complexities of the true physical processes at work, or alternatively, that the parameters of the simulation require modification in order to accurately represent the surroundings of SN 1996cr.

  2. Structural and magnetic properties of Cr and Mn doped InN

    International Nuclear Information System (INIS)

    Ney, A.; Rajaram, R.; Arenholz, E.; Harris, J.S.; Samant, M.; Farrow, R.F.C.; Parkin, S.S.P.

    2006-01-01

    We present a detailed magnetic characterization of Cr and Mn doped InN films be means of superconducting quantum interference device magnetometry and X-ray magnetic circular dichroism. The InN:Cr films exhibit ferromagnetic behavior up to 300 K in a doping region from 2% to 8% without detectable phase segregation. The easy axis of magnetization is found to be in the film plane. On the contrary, Mn-doped films show signatures of phase segregation and paramagnetic behavior

  3. Segregation and microstructure evolution in chill cast and directionally solidified Ni-Mn-Sn metamagnetic shape memory alloys

    Science.gov (United States)

    Czaja, P.; Wierzbicka-Miernik, A.; Rogal, Ł.

    2018-06-01

    A multiphase solidification behaviour is confirmed for a range of Ni-rich and Ni-deficient Ni-Mn-Sn induction cast and directionally solidified (Bridgman) alloys. The composition variation is primarily linked to the changing Mn/Sn ratio, whereas the content of Ni remains largely stable. The partitioning coefficients for the Ni50Mn37Sn13 and Ni46Mn41.5Sn12.5 Bridgman alloys were obtained according to the Scheil equation based on the composition distribution along the longitudinal cross section of the ingots. Homogenization heat treatment performed for 72 h at 1220 K turned out sufficient for ensuring chemical uniformity on the macro- and microscale. It is owed to a limited segregation length scale due to slow cooling rates adopted for the directional solidification process.

  4. Controlled synthesis of MnSn(OH)6/graphene nanocomposites and their electrochemical properties as capacitive materials

    International Nuclear Information System (INIS)

    Wang Gongkai; Sun Xiang; Lu Fengyuan; Yu Qingkai; Liu Changsheng; Lian Jie

    2012-01-01

    We report the synthesis of novel MnSn(OH) 6 /graphene nanocomposites produced by a co-precipitation method and their potential application for electrochemical energy storage. The hydroxide decorated graphene nanocomposites display better performance over pure MnSn(OH) 6 nanoparticles because the graphene sheets act as conductive bridges improving the ionic and electronic transport. The crystallinity of MnSn(OH) 6 nanoparticles deposited on the surface of graphene sheets also impacts the capacitive properties as electrodes. The maximum capacitance of 31.2 F/g (59.4 F/g based on the mass of MnSn(OH) 6 nanoparticles) was achieved for the sample with a low degree of crystallinity. No significant degradation of capacitance occurred after 500 cycles at a current density of 1.5 A/g in 1 M Na 2 SO 4 aqueous solution, indicating an excellent electrochemical stability. The results serve as an example demonstrating the potential of integrating highly conductive graphene networks into binary metal hydroxide in improving the performance of active electrode materials for electrochemical energy storage applications. - Graphical abstract: Graphite oxide (GO) can be synthesized by oxidizing graphite using Hummers method. Graphene was reduced from GO by thermal exfoliation. In this work, MnSn(OH) 6 /graphene nano-composites were synthesized by a simple co-precipitation method and their electrochemical performances have been explored. Highlights: ► Noval MnSn(OH) 6 /graphene nano-composites were synthesized. ► Microstructure can be tailored by changing the reaction temperature and time. ► Crystallinity of MnSn(OH) 6 nanoparticles impacts capacitive properties as electrode. ► Nano-composites display improved electrochemical performance over MnSn(OH) 6 alone. ► Results serve as an example demonstrating the potential for energy storage.

  5. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  6. Single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides as promising photocatalysts.

    Science.gov (United States)

    Bai, Yujie; Luo, Gaixia; Meng, Lijuan; Zhang, Qinfang; Xu, Ning; Zhang, Haiyang; Wu, Xiuqiang; Kong, Fanjie; Wang, Baolin

    2018-05-30

    Searching for two-dimensional semiconductor materials that are suitable for visible-light photocatalytic water splitting provides a sustainable solution to deal with the future energy crisis and environmental problems. Herein, based on first-principles calculations, single-layer ZnMN2 (M = Si, Ge, Sn) zinc nitrides are proposed as efficient photocatalysts for water splitting. Stability analyses show that the single-layer ZnMN2 zinc nitrides exhibit energetic and dynamical stability. The electronic properties reveal that all of the single-layer ZnMN2 zinc nitrides are semiconductors. Interestingly, single-layer ZnSnN2 is a direct band gap semiconductor with a desirable band gap (1.74 eV), and the optical adsorption spectrum confirms its optical absorption in the visible light region. The hydrogen evolution reaction (HER) calculations show that the catalytic activity for single-layer ZnMN2 (M = Ge, Sn) is better than that of single-layer ZnSiN2. Furthermore, the band gaps and band edge positions for the single-layer ZnMN2 zinc nitrides can be effectively tuned by biaxial strain. Especially, single-layer ZnGeN2 can be effectively tuned to match better with the redox potentials of water and enhance the light absorption in the visible light region at a tensile strain of 5%, which is confirmed by the corresponding optical absorption spectrum. Our results provide guidance for experimental synthesis efforts and future searches for single-layer materials suitable for photocatalytic water splitting.

  7. Magnetic anisotropy in Pb_{1-x-y}Sn_{y}Mn_{x}Te studied by ferromagnetic resonance

    NARCIS (Netherlands)

    Eggenkamp, P.J.T.; Story, T.; Swüste, C.H.W.; Swagten, H.J.M.; Jonge, de W.J.M.

    1993-01-01

    Proceedings of the XXII International School of Semiconducting Compounds, Jaszowiec 1993 We will report on the anisotropy in (Pb)SnMnTe, studied by ferromagnetic resonance. We have found a cubic anisotropy with a = 73 × 10-4 cm-1 for Sn1-xMnxTe and a = 200 × 10-4 cm-1 for Pb0.28-xSn0.72MnxTe. We

  8. Noncollinear magnetism in Mn{sub 2}RhSn Heusler compound

    Energy Technology Data Exchange (ETDEWEB)

    Meshcheriakova, Olga

    2014-09-15

    Heusler compounds is a large class of materials, which exhibits diverse fundamental phenomena, together with the possibility of their specific tailoring for various engineering demands. Present work discusses the magnetic noncollinearity in the family of noncentrosymmetric ferrimagnetic Mn{sub 2}-based Heusler compounds. Based on the obtained experimental and theoretical results, Mn{sub 2}YZ Heusler family is suspected to provide promising candidates for the formation of the skyrmion lattice. The work is focused on Mn{sub 2}RhSn bulk polycrystalline sample, which serves as a prototype. It crystallizes in the tetragonal noncentrosymmetric structure (No. 119, I anti 4m2), which enables the anisotropic Dzyaloshinskii-Moriya (DM) exchange coupling. Additional short-range modulation, induced by the competing nearest and next-nearest interplanes Heisenberg exchange, is suppressed above the 80 K. This allows to develop the long-range modulations in the ideal ferrimagnetic structure within the ab crystallographic planes, and thus, favors to the occurrence of the skyrmion lattice within the temperature range of (80≤T≤ 270) K. The studies of Mn{sub 2}RhSn were expanded to the broad composition range and continued on thin film samples.

  9. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    Science.gov (United States)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  10. Structural, optical and magnetic properties of Cr doped SnO2 nanoparticles stabilized with polyethylene glycol

    International Nuclear Information System (INIS)

    Subramanyam, K.; Sreelekha, N.; Murali, G.; Reddy, D. Amaranatha; Vijayalakshmi, R.P.

    2014-01-01

    Pure and Cr (1, 3, 5 and 7 at%) doped SnO 2 nanoparticles were synthesized in aqueous solution by a simple chemical co-precipitation method using polyethylene glycol (PEG) as a stabilizing agent. The effect of Cr doping on the structural, optical and magnetic properties of SnO 2 nanoparticles was investigated. EDAX spectra confirmed the presence of Sn, O and Cr in near stoichiometry. XRD patterns revealed that particles of all samples were crystallized in single phase rutile type tetragonal crystal structure (P4 2 /mnm) of SnO 2 . The peak positions with Cr concentration shifted to higher 2θ values. Lattice parameters were also decreased with increasing Cr concentration. TEM studies indicated that the particle size is in the range of 8–10 nm. The optical absorption studies indicated that the absorption edge shifted towards lower wavelengths with inclusion of Cr content. FTIR spectrum displays various bands that are due to fundamental overtones of PEG and O–Sn–O entities. Further it revealed that the undoped and as well as Cr doped SnO 2 nanoparticles were capped by PEG. Magnetization measurements at room temperature revealed that all the doped samples were ferromagnetic in nature. Well defined strong room temperature ferromagnetic hysteresis loop was observed for 1% Cr doped SnO 2 nanoparticles

  11. Structural, optical and magnetic properties of Cr doped SnO{sub 2} nanoparticles stabilized with polyethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Subramanyam, K.; Sreelekha, N. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Murali, G. [Department of BIN Fusion Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk (Korea, Republic of); Reddy, D. Amaranatha [Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735 (Korea, Republic of); Vijayalakshmi, R.P., E-mail: vijayaraguru@gmail.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2014-12-01

    Pure and Cr (1, 3, 5 and 7 at%) doped SnO{sub 2} nanoparticles were synthesized in aqueous solution by a simple chemical co-precipitation method using polyethylene glycol (PEG) as a stabilizing agent. The effect of Cr doping on the structural, optical and magnetic properties of SnO{sub 2} nanoparticles was investigated. EDAX spectra confirmed the presence of Sn, O and Cr in near stoichiometry. XRD patterns revealed that particles of all samples were crystallized in single phase rutile type tetragonal crystal structure (P4{sub 2}/mnm) of SnO{sub 2}. The peak positions with Cr concentration shifted to higher 2θ values. Lattice parameters were also decreased with increasing Cr concentration. TEM studies indicated that the particle size is in the range of 8–10 nm. The optical absorption studies indicated that the absorption edge shifted towards lower wavelengths with inclusion of Cr content. FTIR spectrum displays various bands that are due to fundamental overtones of PEG and O–Sn–O entities. Further it revealed that the undoped and as well as Cr doped SnO{sub 2} nanoparticles were capped by PEG. Magnetization measurements at room temperature revealed that all the doped samples were ferromagnetic in nature. Well defined strong room temperature ferromagnetic hysteresis loop was observed for 1% Cr doped SnO{sub 2} nanoparticles.

  12. Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, S.; Shimakura, H. [Niigata University of Pharmacy and Applied Life Sciences, Higashijima, Akiha-ku, Niigata 956-8603 (Japan); Tahara, S. [Faculty of Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213 (Japan); Okada, T. [Niigata College of Technology, Kamishin’eicho, Nishi-ku, Niigata 950-2076 (Japan)

    2015-08-17

    The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquid Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.

  13. Magnetism of DyMn{sub 2} and HoMn{sub 2} - {sup 57}Fe and {sup 119}Sn Moessbauer studies

    Energy Technology Data Exchange (ETDEWEB)

    Krop, K. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Zukrowski, J. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Przewoznik, J. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Marzec, J. [University of Min. and Metall., Krakow (Poland). Dept. of Solid State Phys.; Wiesinger, G. [Institute for Experimental Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Haeufler, T. [Institute for Experimental Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hilscher, G. [Institute for Experimental Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Steiner, W. [Institute for Applied and Technical Physics, Technical University, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria)

    1995-05-01

    Moessbauer spectra were measured for two Laves phase compounds DyMn{sub 2} and HoMn{sub 2} in which manganese was substituted to 0.5% with {sup 57}Fe and to 0.2% with {sup 119}Sn. At 4.2 K the {sup 57}Fe and {sup 119}Sn spectra of the Dy compound were unambiguously fitted each with two Zeeman patterns (with relative contributions to the spectra 3:1) corresponding to two different Mn sites - magnetic and nonmagnetic. Transferred hyperfine fields at {sup 119}Sn were found to be proportional to the magnetic moment of Dy and its ferromagnetic component, corroborating the magnetic structure found in neutron diffraction (ND) experiment. The same procedure was carried on with the spectra measured for the Ho compound, but the above mentioned proportionality was not found. ((orig.)).

  14. Tuning antiferromagnetic exchange interaction for spontaneous exchange bias in MnNiSnSi system

    Science.gov (United States)

    Jia, Liyun; Shen, Jianlei; Li, Mengmeng; Wang, Xi; Ma, Li; Zhen, Congmian; Hou, Denglu; Liu, Enke; Wang, Wenhong; Wu, Guangheng

    2017-12-01

    Based on almost all the data from the literature on spontaneous exchange bias (SEB), it is expected that the system will show SEB if it meets two conditions simultaneously: (i) there are the coexistence and competition of antiferromagnetic (AFM) and ferromagnetic (FM) interactions and (ii) AFM interaction should dominate but not be too strong in this competition. In order to verify this view, a systematic study on SEB has been performed in this work. Mn50Ni40Sn10 with strong FM interaction and without SEB is chosen as the mother composition, and the negative chemical pressure is introduced by the substitution of Sn by Si to enhance AFM interaction. It is found that a long-range FM ordering window is closed, and a long-range AFM ordering window is opened. As a result, SEB is triggered and a continuous tuning of the spontaneous exchange bias field (HSEB) from 0 Oe to 1300 Oe has been realized in a Mn50Ni40Sn10-xSix system by the enhanced AFM interaction.

  15. Room temperature magnetocaloric effect in Ni-Mn-In-Cr ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akkera, Harish Sharma [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India); Singh, Inderdeep [Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand-24667 (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India)

    2017-02-15

    The influence of Cr substitution for In on the martensitic phase transformation and magnetocaloric effect (MCE) has been investigated in Ni-Mn-Cr-In ferromagnetic shape memory alloy (FSMA) thin films fabricated by magnetron sputtering. Temperature dependent magnetization (M-T) measurements demonstrated that the martensitic transformation temperatures (T{sub M}) monotonously increase with the increase of Cr content due to change in valence electron concentration (e/a) and cell volume. From the study of isothermal magnetization curves (M-H), magnetocaloric effect around the martensitic transformation has been investigated in these FSMA thin films. The magnetic entropy change ∆S{sub M} of 7.0 mJ/cm{sup 3}-K was observed in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film at 302 K in an applied field of 2 T. Further, the refrigerant capacity (RC) was also calculated for all the films in an applied field of 2 T. These findings indicate that the Cr doped Ni-Mn-In FSMA thin films are potential candidates for room temperature micro-length-scale magnetic refrigeration applications. - Highlights: • The Cr content leads to an increase in the martensitic transformation temperature. • The ∆S{sub M} =7 mJ/cm{sup 3}-K at 302 K was observed in the Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5}. • The RC =39.2 mJ/K at 2 T was obtained in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film.

  16. Structural and magnetic properties of Mn{sub 50}Fe{sub 50−x}Sn{sub x} (x=10, 15 and 20) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Tanmoy [LCMP, S.N. Bose National Centre for Basic Sciences, Kolkata 700106 (India); Agarwal, Sandeep [Haldia Institute of Technology, Haldia 721657 (India); Mukhopadhyay, P.K., E-mail: pkm@bose.res.in [LCMP, S.N. Bose National Centre for Basic Sciences, Kolkata 700106 (India)

    2016-11-15

    In this work we report measurements and comparisons of the structural, magnetic and transport properties of a series of Mn{sub 50}Fe{sub 50−x}Sn{sub x} alloys (x=10, 15 and 20). We found that while the lower Sn composition sample stabilized in β-Mn-type crystallographic phase, the higher Sn composition alloys contained both β-Mn-type as well as Mn{sub 3}Sn-type hexagonal DO{sub 19} phases. Through d.c. and a.c. magnetic property measurements we have established the existence of a ferromagnetic transition near room temperature followed by a spin reorientation at lower temperature in the Mn{sub 3}Sn-type crystallographic phase of the alloys. Our resistivity study also revealed an interesting behavior with negative temperature coefficient (TCR) in these alloys. - Highlights: • Mn{sub 50}Fe{sub 50-x}Sn{sub x} alloys were studied over a limited concentration range. • Lower Sn alloys behaved similar to ß-Mn alloys both structurally and magnetically. • Higher Sn alloys showed magnetic transitions similar to Mn{sub 3}Sn and Fe{sub 3}Sn. • Resistivity showed bad metallic behavior with negetive temperature coefficient.

  17. Determination of Cr, Cd, Sn, and Pb in Selected Herbal Products Available in Philippine Markets

    Directory of Open Access Journals (Sweden)

    Joan S. De Vera

    2017-12-01

    Full Text Available The growing popularity of herbal products in the Philippines makes it imperative to monitor and ensure safety of consumers from metal contaminants. In this study, trace concentrations of Cr, Cd, Sn, and Pb in herbal products were simultaneously measured using a microwaveassisted digestion as sample pre-treatment and inductively coupled plasma mass spectrometry (ICP-MS for elemental detection. Using the optimized method, recoveries of ERM CD281, the primary cer t i f ied reference material (CRM used, were found to be between 80-89%, and the method detection limits (MDL for Cr, Cd, Sn, and Pb were 0.15, 0.07, 0.3, and 0.14 μg/L, respectively. The linear ranges for Cr and other elements (Cd, Sn, and Pb were 0.01-500 and 0.01-50 μg/L, respectively. All correlation coeff icients were 0.9999 or better. Most of the products tested had measurable trace metal concentrations, which were below the suggested maximum limits in herbal products. However, one product derived from mangosteen exceeded the limit for Cd (0.42 mg/kg. Subsequent analysis of metal content in tea infusions showed that only a small fraction of metals may leach out, suggesting that consumption of tea infusions pose lesser risks. The order of abundance of metals found in herbal products was Cr>Pb>Cd>Sn. The variability of metal concentrations in herbal products underlines the fact that many plant ingredients are susceptible to contamination, and quality control during processing must be improved to minimize the possibility of contamination. The results of this study suggest that vigilant monitoring of herbal products is imperative to avoid exposure to trace metal contamination.

  18. Microstructure Of A SIC/(Ti/V/Cr/Sn/Al) Composite

    Science.gov (United States)

    Lerch, Bradley A.; Hull, David R.; Leonhardt, Todd A.

    1990-01-01

    NASA technical memorandum reports on analysis of composite material made of SiC fibers in matrix of 0.76 Ti/0.15 V/0.03 Cr/0.03 Sn/0.03 Al (parts by weight) alloy. Purposes of study to investigate suitability of some metallographic techniques for use on composite materials in general and to obtain information about macrostructure and microstructure of this specific composite to provide guidance for experimental and theoretical studies of more advanced composites.

  19. Site occupancy, composition and magnetic structure dependencies of martensitic transformation in Mn2Ni1+xSn1-x.

    Science.gov (United States)

    Kundu, Ashis; Ghosh, Subhradip

    2017-11-14

    A delicate balance between various factors such as site occupancy, composition and magnetic ordering seems to affect the stability of the martensitic phase in Mn2Ni1+xSn1-x. Using first-principles DFT calculations, we explore the impacts of each one of these factors on the martensitic stability of this system. Our results on total energies, magnetic moments and electronic structures upon changes in the composition, the magnetic configurations and the site occupancies show that the occupancies at the 4d sites in the Inverse Heusler crystal structure play the most crucial role. The presence of Mn at the 4d sites originally occupied by Sn and its interaction with the Mn atoms at other sites decide the stability of the martensitic phases. This explains the discrepancy between the experiments and earlier DFT calculations regarding phase stability in Mn2NiSn. Our results qualitatively explain the trends observed experimentally with regard to martensitic phase stability and the magnetisations in Ni-excess, Sn-deficient Mn2NiSn system. © 2017 IOP Publishing Ltd.

  20. INFLUENCE OF ANNEALING ON HARDNESS OF Cr-Mn-Ni CAST IRONS

    Directory of Open Access Journals (Sweden)

    V. V. Netrebko

    2015-01-01

    Full Text Available The necessary level of material’s hardness is determined by the exploitation conditions and presence of technological operations during manufacturing of articles. Mechanical edge cutting machining of wear resistant materials is impeded because of their high hardness. It is recommended to apply annealing in order to decrease hardness and improve machinability. The purpose of the work consisted in obtaining of regression dependences of cast iron’s macrohardness on its chemical content after annealing at 730 °С. With the use of mathematical experimental design the regression dependences of cast iron’s macrohardness and structural components’ microhardness on С, Cr, Mn, Ni content have been established. The minimal hardness of 27,6 HRC after annealing at 730 °С is obtained in the cast iron containing: 3,9% С; 11,4% Cr; 0,6% Mn; 0,2% Ni. The maximal hardness of 70,4 HRC is obtained when the content is as follows: 1,1% С; 25,6% Cr; 5,4% Mn; 3,0% Ni. Annealing at 730 °С decreases the cast irons’ hardness containing the minimal amount of Cr, Mn and Ni. Annealing at 730 °С is recommended for cast irons alloyed by Mn and Ni for increasing of hardness.

  1. Tissue distribution, subcellular localization and endocrine disruption patterns induced by Cr and Mn in the crab Ucides cordatus

    International Nuclear Information System (INIS)

    Correa, Jose Dias; Ramos da Silva, Miguel; Bastos da Silva, Antonio Carlos; Araujo de Lima, Silene Maria; Malm, Olaf; Allodi, Silvana

    2005-01-01

    The essential trace elements Cr and Mn are toxic at high concentrations and information about low concentration is insufficient in the literature. In polluted mangroves, the crab Ucides cordatus can represent a useful tool to assess information on the potential impact of trace elements like Cr and Mn on the environment, since this species is comestible and thus, commercially negotiated. Therefore, U. cordatus crabs were exposed in vivo to different concentrations of Cr and Mn solved in seawater and had their tissue distribution and subcellular deposits evaluated. The gill, hepatopancreas and muscle concentrations were determined by atomic absorption spectroscopy and the results showed that Cr and Mn presented the highest values in the gills rather than in the hepatopancreas and muscular tissue. Electron microscopy and analytical X-ray microanalysis revealed Cr precipitates on the gill surface, co-localized with epiphyte bacteria. In addition, since Cr and Mn did not equally accumulate in most of the tissues studied, glycemic rate of animals, which received injections of extracts of eyestalks of the contaminated crabs, were measured in order to evaluate whether the studied concentrations of Cr and Mn could produce any metabolic alteration. The results indicated that extracts of the eyestalks of crabs submitted to Cr and Mn salts and injected into normal crabs markedly influenced crustacean hyperglycemic hormone synthesis and/or release. The results are discussed with respect to sensitivity of the employed methods and the possible significance of the concentrations of Cr and Mn in the organisms

  2. Chemical effect on total mass attenuation coefficients of V, Cr, Mn, Co and Ni

    International Nuclear Information System (INIS)

    Soeguet, Oe.; Colak, S.; Bueyuekkasap, E.; Kuecuekoender, A.

    2002-01-01

    Detailed interpretation of data obtained from X-ray transmission measurements usually depends on the assumption that the contribution of each element is additive. This assumption yields the mixture rule for X-ray attenuation coefficients which is valid if molecular and chemical effects are negligible. Total mass attenuation coefficients of V, Cr, Mn, Co and Ni in various their compounds was measured. Absorption corrections were carried on data for ligands in the compounds. It was found that V, Cr, Mn, Co and Ni had different total mass attenuation coefficients in the different compounds. Results were compared with theoretical values of HUBBELL and SELTZER. (author)

  3. Effect of alloying elements on σ phase formation in Fe-Cr-Mn alloys

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Hosoi, Yuzo; Tanino, Mitsuru; Komatsu, Hazime.

    1989-01-01

    Alloys of Fe-(8∼12%) Cr-(5∼30%) Mn were solution-treated at 1373 K for 3.6 ks, followed by cold-working of 50% reduction. Both solution-treated and 50% cold-worked materials were aged in the temperature range from 773 to 973 K for 3.6 x 10 3 ks. The identification of σ phase formation was made by using X-ray diffraction from the electrolytically extracted residues of the aged specimens. The region of σ phase formation determined by the present work is wider than that on the phase diagram already reported. It is to be noted that Mn promotes markedly the σ phase formation, and that three different types of σ phase formation are observed depending on Mn content: α→γ + α→γ + α + σ in 10% Mn, α→γ + σ in 15 to 20% Mn alloys, α→χ(Chi) →χ + σ + γ in 25 to 30% Mn alloys. An average electron concentration (e/a) in the σ phase was estimated by quantitative analysis of alloying elements using EPMA. The e/a value in the σ phase formed in Fe-(12∼16%) Cr-Mn alloys aged at 873 K for 3.6 x 10 3 ks is about 7.3, which is independent of Mn content. In order to prevent σ phase formation in Fe-12% Cr-15% Mn alloy, the value of Ni * eq of 11 (Ni * eq = Ni + 30(C) + 25(N)) is required. (author)

  4. Large coercivity in nanocrystalline TbMn6Sn6 permanent magnets prepared by mechanical milling

    International Nuclear Information System (INIS)

    Zhang Hongwei; Zhao Tongyun; Zhang Jian; Rong Chuanbing; Zhang Shaoying; Shen Baogen; Li Lu; Zhang Ligang

    2003-01-01

    Isotropic TbMn 6 Sn 6 was prepared by mechanical milling and subsequent annealing. Although the crystalline grain size was a little larger than 15 nm, no remanence enhancement resulting from intergrain exchange coupling was observed. The coercivity μ 0 H c = 0.96 T at 293 K was much larger than that expected from magnetocrystalline anisotropy. The smallest effective anisotropy constant is suggested to be 0.25 MJ m -3 when the coercivity mechanism is controlled by coherent rotation of magnetization in a single-domain grain. The contributions of shape anisotropy and magnetoelastic anisotropy are considered in order to explain the large coercivity in the magnets

  5. High temperature strength and aging behavior of 12%Cr-15%Mn austenitic steels

    International Nuclear Information System (INIS)

    Miyahara, Kazuya; Bae, Dong-Su; Sakai, Hidenori; Hosoi, Yuzo

    1993-01-01

    High Mn-Cr austenitic steels are still considered to be an important high temperature structural material from the point of view of reduced radio-activation. The objective of the present study is to make a fundamental research of mechanical properties and microstructure of 12%Cr-15%Mn austenitic steels. Especially the effects of alloying elements of V and Ti on the mechanical properties and microstructure evolution of high Mn-Cr steels were studied. Precipitation behaviors of carbides, nitrides and σ phase are investigated and their remarkable effects on the high temperature strength are found. The addition of V was very effective for strengthening the materials with the precipitation of fine VN. Ti was also found to be beneficial for the improvement of high temperature strength properties. The results of high temperature strengths of the 12Cr-15Mn austenitic steels were compared with those of the other candidate and/or reference materials, for example, JFMS (modified 9Cr-2Mo ferritic stainless steel) and JPCAs (modified 316 austenitic stainless steels). (author)

  6. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  7. Fluorescence and afterglow of Ca2Sn2Al2O9:Mn2+

    Science.gov (United States)

    Takemoto, Minoru; Iseki, Takahiro

    2018-03-01

    By using a polymerized complex method, we synthesized manganese (Mn)-doped Ca2Sn2Al2O9, which exhibits yellow fluorescence and afterglow at room temperature when excited by UV radiation. The material emits a broad, featureless fluorescence band centered at 564 nm, which we attribute to the presence of Mn2+ ions. The afterglow decay is well fit by a power-law function, rather than an exponential function. In addition, thermoluminescence analyses demonstrate that two different types of electron traps form in this material. Based on experimental results, we conclude that the fluorescence and afterglow both result from thermally assisted tunneling, in which trapped electrons are thermally excited to higher-level traps and subsequently tunnel to recombination centers.

  8. First-principles prediction of shape memory behavior and ferrimagnetism in Mn2NiSn

    International Nuclear Information System (INIS)

    Paul, Souvik; Ghosh, Subhradip

    2011-01-01

    Using first-principles density functional theory, we show that, in Mn 2 NiSn, an energy lowering phase transition from the cubic to tetragonal phase occurs which indicates a martensitic phase transition. This structural phase transition is nearly volume-conserving, implying that this alloy can exhibit shape memory behavior. The magnetic ground state is a ferrimagnetic one with antiparallel Mn spin moments. The calculated moments with different electronic structure methods in the cubic phase compare well with each other but differ from the experimental values by more than 1 μ B . The reason behind this discrepancy is explored by considering antisite disorder in our calculations, which indicates that the site ordering in this alloy can be quite complex.

  9. Mechanism and kinetics of Fe, Cr, Mo and Mn atom interaction with molecular oxygen

    International Nuclear Information System (INIS)

    Akhmadov, U.S.; Zaslonko, I.S.; Smirnov, V.N.

    1988-01-01

    Rate constants of atomic interaction of some transition metals (Fe, Cr, Mo, Mn) with molecular oxygen are measured in shock waves using the resonance atomic-absorption method. A new method for determination of the parameter γ in the modified Lambert-Beer law D=ε(lN)γ is suggested and applied. Bond strength in CrO and MoO molecules is estimated

  10. Low-activation Mn-Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Saida, T.; Hirai, S. [Mitsubishi Heavy Ind. Ltd., Yokohama (Japan); Kusuhashi, M.; Sato, I.; Hatakeyama, T. [The Japan Steel Works Ltd., Chatsu-machi 4, Muroran 051-8505 (Japan)

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels. (orig.) 22 refs.

  11. Low-activation Mn Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Science.gov (United States)

    Onozuka, Masanori; Saida, Tomikane; Hirai, Shouzou; Kusuhashi, Mikio; Sato, Ikuo; Hatakeyama, Tsuyoshi

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels.

  12. Assessment of the concentration of Cr, Mn and Fe in sediment using ...

    African Journals Online (AJOL)

    In the present study, laser-induced breakdown spectroscopy (LIBS) has been applied for the determination of levels of Cr, Mn and Fe in sediment samples and the results have been compared with that of flame-atomic absorption spectroscopy (F-AAS). Fourteen sediment samples were collected from Tinishu Akaki River ...

  13. Chemical shift of Mn and Cr K-edges in X-ray absorption

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation. D Joseph A K Yadav S N Jha D Bhattacharyya. Volume 36 Issue 6 November 2013 pp ...

  14. Kα X-ray satellite spectra of Ti, V, Cr and Mn induced by photons

    Indian Academy of Sciences (India)

    K X-ray emission spectra of Ti, V, Cr and Mn generated by photon excitation have been studied with a crystal spectrometer. The measured energy shifts of K satellite relative to the diagram line are compared with values obtained by electron excitation and with different theoretical estimates. The present experimental ...

  15. The Development of the Low-Cost Titanium Alloy Containing Cr and Mn Alloying Elements

    Science.gov (United States)

    Zhu, Kailiang; Gui, Na; Jiang, Tao; Zhu, Ming; Lu, Xionggang; Zhang, Jieyu; Li, Chonghe

    2014-04-01

    The α + β-type Ti-4.5Al-6.9Cr-2.3Mn alloy has been theoretically designed on the basis of assessment of the Ti-Al-Cr-Mn thermodynamic system and the relationship between the molybdenum equivalent and mechanical properties of titanium alloys. The alloy is successfully prepared by the split water-cooled copper crucible, and its microstructures and mechanical properties at room temperature are investigated using the OM, SEM, and the universal testing machine. The results show that the Ti-4.5Al-6.9Cr-2.3Mn alloy is an α + β-type alloy which is consistent with the expectation, and its fracture strength, yield strength, and elongation reach 1191.3, 928.4 MPa, and 10.7 pct, respectively. Although there is no strong segregation of alloying elements under the condition of as-cast, the segregation of Cr and Mn is obvious at the grain boundary after thermomechanical treatment.

  16. Assessment of the concentration of Cr, Mn and Fe in sediment using ...

    African Journals Online (AJOL)

    Preferred Customer

    determination of levels of Cr, Mn and Fe in sediment samples and the results have ... produced within the plasma emit radiation over a broad spectral range, from UV ... intake [36] and their oxides play important role in the soil for fixing trace ...

  17. HIGH TEMPERATURE TENSILE PROPERTIES OF NEW FE-CR-MN DEVELOPED STEEL

    Directory of Open Access Journals (Sweden)

    M. Mahmoudiniya

    2017-03-01

    Full Text Available Nowadays, Ni-free austenitic stainless steels are being developed rapidly and high price of nickel is one of the most important motivations for this development. At present research a new FeCrMn steel was designed and produced based on Fe-Cr-Mn-C system. Comparative studies on microstructure and high temperature mechanical properties of  new steel and AISI 316 steel were done. The results showed that new FeCrMn developed steel has single austenite phase microstructure, and its tensile strength and toughness were higher than those of 316 steel at 25, 200,350 and 500°C. In contrast with 316 steel, the new FeCrMn steel did not show strain induced transformation and dynamic strain aging phenomena during tensile tests that represented higher austenite stability of new developed steel. Lower density and higher strength of the new steel caused higher specific strength in comparison with the 316 one that can be considered as an important advantage in structural applications but in less corrosive environment

  18. Chemical shift of Mn and Cr K-edges in X-ray absorption ...

    Indian Academy of Sciences (India)

    particularly on Mn and Cr compounds (Ghatikar et al 1977;. Padalia and Nayak 1977; ... conventional X-ray sources and hence may lack reliability. 2. Experimental ..... with the result obtained by Hinge et al (2011) for Cu com- pounds and is ... Chem. 84 2200. Nietubyc R, Sobczak E and Attenkofer K E 2001 J. Alloys Compd.

  19. Effects of pre-deformation on the martensitic transformation and magnetocaloric property in Ni-Mn-Co-Sn ribbons

    International Nuclear Information System (INIS)

    Ma Sheng-Can; Xuan Hai-Cheng; Zhang Cheng-Liang; Wang Liao-Yu; Cao Qing-Qi; Wang Dun-Hui; Du You-Wei

    2010-01-01

    This paper investigates the martensitic transformation and magnetocaloric effect in pre-deformed Ni-Mn-Co-Sn ribbons. The experimental results show that the reverse martensitic transformation temperature T M increases with the increasing pre-pressure, suggesting that pre-deformation is another effective way to adjust T M in ferromagnetic shape memory alloys. Large magnetic entropy changes and refrigerant capacities are obtained in these ribbons as well. It also discusses the origin of the enhanced martensitic transformation temperature and magnetocaloric property in pre-deformed Ni-Mn-Co-Sn ribbons

  20. Designing a New Ni-Mn-Sn Ferromagnetic Shape Memory Alloy with Excellent Performance by Cu Addition

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2018-02-01

    Full Text Available Both magnetic-field-induced reverse martensitic transformation (MFIRMT and a high working temperature are crucial for the application of Ni-Mn-Sn magnetic shape memory alloys. Here, by first-principles calculations, we demonstrate that the substitution of Cu for Sn is effective not only in enhancing the MFIRMT but also in increasing martensitic transformation, which is advantageous for its application. Large magnetization difference (ΔM in Ni-Mn-Sn alloy is achieved by Cu doping, which arises from the enhancement of magnetization of austenite due to the change of Mn-Mn interaction from anti-ferromagnetism to ferromagnetism. This directly leads to the enhancement of MFIRMT. Meanwhile, the martensitic transformation shifts to higher temperature, owing to the energy difference between the austenite L21 structure and the tetragonal martensite L10 structure increases by Cu doping. The results provide the theoretical data and the direction for developing a high temperature magnetic-field-induced shape memory alloy with large ΔM in the Ni-Mn-Sn Heusler alloy system.

  1. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    Science.gov (United States)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  2. Moessbauer study of supertransferred hyperfine field of /sup 119/Sn (Sn/sup 4 +/) in Casub(1-x)Srsub(x)MnO/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Takano, M [Konan Univ., Kobe (Japan). Faculty of Science; Takeda, Y; Shimada, M; Matsuzawa, T; Shinjo, T

    1975-09-01

    Casub(1-x)Srsub(x)Mnsub(0.99)Snsub(0.01)O/sub 3/(0<=x<=1) with (nearly) cubic perovskite structures were prepared and the magnetic hyperfine fields of /sup 119/Sn (Sn/sup 4 +/) were measured by the Moessbauer effect. The hyperfine fields arise from unpaired s electron spin densities transferred from Mn/sup 4 +/ ions (supertransferred hyperfine interaction). The hyperfine field for a tin ion was found to depend linearly upon the numbers of Ca/sup 2 +/ and Sr/sup 2 +/ ions in the neighboring divalent cation sites, with proportional coefficients having opposite signs. To explain experimental results two kinds of spin transfer processes contributing to the hyperfine field oppositely to each other have been considered, and spin transfer via a divalent cation is emphasized particularly. The hyperfine field at 0 K for Sn/sup 4 +/ in CaMnO/sub 3/ is -75 kOe, while +20 kOe for Sn/sup 4 +/ in SrMnO/sub 3/.

  3. Structure, magnetism, and electron-transport properties of Mn2CrGa-based nanomaterials

    Directory of Open Access Journals (Sweden)

    Wenyong Zhang

    2016-05-01

    Full Text Available Mn2CrGa in the disordered cubic structure has been synthesized using rapid quenching and subsequent annealing. The cubic phase transforms to a stable tetragonal phase when a fraction of Cr or Ga is replaced by Pt or Al, respectively. All samples are ferrimagnetic with high Curie temperatures (Tc; Mn2CrGa exhibits the highest Tc of about 813 K. The tetragonal samples have appreciable values of magnetocrystalline anisotropy energy, which leads to an increase in coercivity (Hc that approaches about 10 kOe in the Pt-doped sample. The Hc linearly increases with a decrease of temperature, concomitant with the anisotropy change with temperature. All samples are metallic and show negative magnetoresistance with room-temperature resistivities on the order of 1 mΩcm. The magnetic properties including high Tc and low magnetic moment suggest that these tetragonal materials have potential for spin-transfer-torque-based devices.

  4. Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe2O6

    International Nuclear Information System (INIS)

    Batuk, Dmitry; De Dobbelaere, Christopher; Tsirlin, Alexander A.; Abakumov, Artem M.; Hardy, An; Van Bael, Marlies K.; Greenblatt, Martha; Hadermann, Joke

    2013-01-01

    Graphical abstract: - Highlights: • The substitution of Cr for Mn in BiMnFe 2 O 6 is possible by the solution–gel method. • The BiCr x Mn 1−x Fe 2 O 6 solid solution is obtained for the x values up to 0.3. • Increasing Cr content lowers the temperature of the antiferromagnetic ordering. - Abstract: We report the Cr 3+ for Mn 3+ substitution in the BiMnFe 2 O 6 structure. The BiCr x Mn 1−x Fe 2 O 6 solid solution is obtained by the solution–gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe 2 O 6 structure (for x = 0.3, a = 5.02010(6)Å, b = 7.06594(7)Å, c = 12.6174(1)Å, S.G. Pbcm, R I = 0.036, R P = 0.011) with only a slight decrease in the cell parameters associated with the Cr 3+ for Mn 3+ substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCr x Mn 1−x Fe 2 O 6 (x = 0.2; 0.3) and parent BiMnFe 2 O 6 . Only T N slightly decreases upon Cr doping that indicates a very subtle influence of Cr 3+ cations on the magnetic properties at the available substitution rates

  5. Precise Wavelengths and Energy Levels for the Spectra of Cr I, Mn I, and Mn III, and Branching Fractions for the Spectra of Fe II and Cr II

    Science.gov (United States)

    Nave, Gillian

    I propose to measure wavelengths and energy levels for the spectra of Cr I, Mn I, and Mn III covering the wavelength range 80 nm to 5500 nm, and oscillator strengths for Fe II and Cr II in the region 120 nm to 2500 nm. I shall also produce intensity calibrated atlases and linelists of the iron-neon and chromium-neon hollow cathode lamps that can be compared with astrophysical spectra. The spectra will be obtained from archival data from spectrometers at NIST and Kitt Peak National Observatory and additional experimental observations as necessary from Fourier transform (FT) and grating spectrometers at NIST. The wavelength uncertainty of the strong lines will be better than 1 part in 10^7. The radiometric calibration of the spectra will be improved in order to reduce the uncertainty of measured oscillator strengths in the near UV region and extend the wavelength range of these measurements down to 120 nm. These will complement and support the measurements of lifetimes and branching fractions by J. E. Lawler in the near UV region. An intensive effort by NIST and Imperial College London that was partly funded by previous NASA awards has resulted in comprehensive analyses of the spectra of Fe II, Cr II and Cu II, with similar analyses of Mn II, Ni II, and Sc II underway. The species included in this proposal will complete the analysis of the first two ionization stages of the elements titanium through nickel using the same techniques, and add the spectrum of Mn III - one of the most important doubly-ionized elements. The elements Cr I and Mn I give large numbers of spectral lines in spectra of cool stars and important absorption lines in the interstellar medium. The spectrum of Mn III is important in chemically peculiar stars and can often only be studied in the UV region. Analyses of many stellar spectra depend on comprehensive analyses of iron-group elements and are hampered by incomplete spectroscopic data. As a result of many decades of work by the group at the

  6. Redox Dynamics of Mixed Metal (Mn, Cr, and Fe) Ultrafine Particles

    Energy Technology Data Exchange (ETDEWEB)

    Nico, Peter S.; Kumfer, Benjamin M.; Kennedy, Ian M.; Anastasio, Cort

    2008-08-01

    The impact of particle composition on metal oxidation state, and on changes in oxidation state with simulated atmospheric aging, are investigated experimentally in flame-generated nanoparticles containing Mn, Cr, and Fe. The results demonstrate that the initial fraction of Cr(VI) within the particles decreases with increasing total metal concentration in the flame. In contrast, the initial Mn oxidation state was only partly controlled by metal loading, suggesting the importance of other factors. Two reaction pathways, one reductive and one oxidative, were found to be operating simultaneously during simulated atmospheric aging. The oxidative pathway depended upon the presence of simulated sunlight and O{sub 3}, whereas the reductive pathway occurred in the presence of simulated sunlight alone. The reductive pathway appears to be rapid but transient, allowing the oxidative pathway to dominate with longer aging times, i.e. greater than {approx}8 hours. The presence of Mn within the particles enhanced the importance of the oxidative pathway, leading to more net Cr oxidation during aging implying that Mn can mediate oxidation by removal of electrons from other particulate metals.

  7. Magnetic properties of the CrMnFeCoNi high-entropy alloy

    International Nuclear Information System (INIS)

    Schneeweiss, Oldřich; Friák, Martin; Masaryk University, Brno; Dudová, Marie; Holec, David

    2017-01-01

    In this paper, we present experimental data showing that the equiatomic CrMnFeCoNi high-entropy alloy undergoes two magnetic transformations at temperatures below 100 K while maintaining its fcc structure down to 3 K. The first transition, paramagnetic to spin glass, was detected at 93 K and the second transition of the ferromagnetic type occurred at 38 K. Field-assisted cooling below 38 K resulted in a systematic vertical shift of the hysteresis curves. Strength and direction of the associated magnetization bias was proportional to the strength and direction of the cooling field and shows a linear dependence with a slope of 0.006 ± 0.001 emu T. The local magnetic moments of individual atoms in the CrMnFeCoNi quinary fcc random solid solution were investigated by ab initio (electronic density functional theory) calculations. Results of the numerical analysis suggest that, irrespective of the initial configuration of local magnetic moments, the magnetic moments associated with Cr atoms align antiferromagnetically with respect to a cumulative magnetic moment of their first coordination shell. The ab initio calculations further showed that the magnetic moments of Fe and Mn atoms remain strong (between 1.5 and 2 μ B ), while the local moments of Ni atoms effectively vanish. Finally, these results indicate that interactions of Mn- and/or Fe-located moments with the surrounding magnetic structure account for the observed macroscopic magnetization bias.

  8. Optimized thermoelectric performance of the n-type half-Heusler material TiNiSn by substitution and addition of Mn

    Directory of Open Access Journals (Sweden)

    Enkhtaivan Lkhagvasuren

    2017-04-01

    Full Text Available Alloys based on the half-Heusler compound TiNiSn with the addition of Mn or with a substitution of Ti by Mn are investigated as high-temperature thermoelectric materials. In both materials an intrinsic phase separation is observed, similar to TiNiSn where Ti has been partially substituted by Hf, with increasing Mn concentration the phase separation drastically reduces the lattice thermal conductivity while the power factor is increased. The thermoelectric performance of the n-type conducting alloy can be optimized both by substitution of Ti by Mn as well as the addition of Mn.

  9. Enhanced magnetocaloric effect tuning efficiency in Ni-Mn-Sn alloy ribbons

    Science.gov (United States)

    Quintana-Nedelcos, A.; Sánchez Llamazares, J. L.; Daniel-Perez, G.

    2017-11-01

    The present work was undertaken to investigate the effect of microstructure on the magnetic entropy change of Ni50Mn37Sn13 ribbon alloys. Unchanged sample composition and cell parameter of austenite allowed us to study strictly the correlation between the average grain size and the total magnetic field induced entropy change (ΔST). We found that a size-dependent martensitic transformation tuning results in a wide temperature range tailoring (>40 K) of the magnetic entropy change with a reasonably small variation on the peak value of the total field induced entropy change. The peak values varied from 6.0 J kg-1 K-1 to 7.7 J kg-1 K-1 for applied fields up to 2 T. Different tuning efficiencies obtained by diverse MCE tailoring approaches are compared to highlight the advantages of the herein proposed mechanism.

  10. Observation of giant exchange bias in bulk Mn50Ni42Sn8 Heusler alloy

    Science.gov (United States)

    Sharma, Jyoti; Suresh, K. G.

    2015-02-01

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn50Ni42Sn8 Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (Tf) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  11. Moessbauer study of the magnetic phase transformations in SnMn3N

    International Nuclear Information System (INIS)

    Nagy, D.L.; Zimmer, G.J.; Lohner, T.; Senateur, J.P.

    1975-01-01

    Moessbauer measurements were performed on SnMn 3 N with the aim of verifying the magnetic phase transformations at 175 and 230 K and the Neel transition at 475 K as well as of seeking an explanation for the anomalous peak in magnetic susceptibility about 380 K. Moessbauer spectra were taken at several temperatures between 83 and 475 K and evaluated by a least square fitting program. Abrupt changes in the hyperfine field were found at 175, 230 and 350 K indicating first-order magnetic phase transformations at these temperatures; the 350 K transformation is certainly related to the anomaly in susceptibility. About 475 only a smooth change in the hyperfine field was found suggesting the Neel transition to be of the second order. An attempt is made to explain the relatively high hyperfine field in the cubic antiferromagnetic phase. (A.K.)

  12. Comparison of field swept ferromagnetic resonance methods - A case study using Ni-Mn-Sn films

    Science.gov (United States)

    Modak, R.; Samantaray, B.; Mandal, P.; Srinivasu, V. V.; Srinivasan, A.

    2018-05-01

    Ferromagnetic resonance spectroscopy is used to understand the magnetic behavior of Ni-Mn-Sn Heusler alloy film. Two popular experimental methods available for recording FMR spectra are presented here. In plane angular (φH) variation of magnetic relaxation is used to evaluate the in plane anisotropy (Ku) of the film. The out of plane (θH) variation of FMR spectra has been numerically analyzed to extract the Gilbert damping coefficient, effective magnetization and perpendicular magnetic anisotropy (K1). Magnetic homogeneity of the film had also been evaluated in terms of 2-magnon contribution from FMR linewidth. The advantage and limitations of these two popular FMR techniques are discussed on the basis of the results obtained in this comparative study.

  13. Magnetic properties of the HoMn6-xFe xSn6 compounds

    International Nuclear Information System (INIS)

    Cakir, O.; Dincer, I.; Duman, E.; Krenke, T.; Elmali, A.; Elerman, Y.

    2007-01-01

    Intermetallic compounds of HoMn 6-x Fe x Sn 6 (0 ≤ x ≤ 1.2) were studied by means of field-cooled (FC) and zero-field-cooled (ZFC) magnetization measurements in the temperature range 5 K ≤ T ≤ 600 K. The unit cell parameters decrease with the increasing of Fe content. The compounds with x = 0 and 0.3 behave ferrimagnetically in the whole temperature range and spin reorientation transition is observed at 200 and 185 K, respectively. The x = 0.5 and 0.6 compounds show ferrimagnetic-helimagnetic-ferrimagnetic phase transitions with decreasing temperature while the compounds with x = 0.9 and 1.2 only show helimagnetic-ferrimagnetic phase transitions. Additionally, for the x = 0.6 compound the metamagnetic phase transition from helimagnetism to ferrimagnetism is induced by an applied field 20 kOe

  14. Heavy Metals (Mg, Mn, Ni and Sn contamination in Soil Samples of Ahvaz II Industrial Estate of Iran in 2013

    Directory of Open Access Journals (Sweden)

    Soheil l Sobhanardakani

    2016-04-01

    Full Text Available Background & Aims of the Study: Due to the rapid industrial development in Khuzestan province of Iran during recent years, this study was performed to analyze the variation of metals concentrations (Mg, Mn, Ni, and Sn in soil samples of Ahvaz II Industrial estate during the spring season of 2013. Materials & Methods: In this experimental study, 27 topsoil samples were collected from nine stations. The intensity of the soil contamination was evaluated, using a contamination factor (Cf and geo-accumulation index (I-geo. Results:  The mean soil concentrations (in mg kg-1 (dry weight were in ranged within 870-1144 (Mg, 188-300 (Mn, 93-199 (Ni and 9-15 (Sn. The data indicated that the I-geo value for all metals falls in class ‘1’. Also the Cf value for Mg and Mn falls in class ‘0’, the Cf value for Sn falls in class ‘1’ and the Cf value for Ni falls in the classes of ‘1’ and ‘2’. The result of the Pearson correlation showed that there were significant positive associations between all metals. Conclusions: According to the results which were achieved by a cluster analysis, there were significant positive associations among all metals based on Pearson correlation coefficient, especially between Ni and Sn; also both of them with Mn. Because the Ni originates from oil sources it can be resulted that Mn and Sn originate from oil sources, too. Therefore, industrial activities and exploitation of oil reservoirs are the main cause of pollution in that area. Also, it can be concluded that, with increasing the distance from the source of pollution, the accumulation of contaminants in the soil samples decreased.

  15. Study of electric resistivity in function of temperature in Ni2Mn (Sn1-x Inx) type Heuster alloys

    International Nuclear Information System (INIS)

    Fraga, G.L.F.

    1984-01-01

    The electric resistivity as a function of temperature and concentration was measured in the range 4.2 2 Mn (Sn i-x In x ), with x = 0; 0.02; 0.05; 0.10; 0.15; 0.85; 0.90; 0.95; 0.98 and 1.00. In the lower temperature region (7 n - law. The 0 2 function; the linear term is mostly ascribed to electron-phonon scattering process and the quadratic one to magnetic scattering mechanism. For the ternary alloys Ni 2 MnSn and Ni 2 MnIn the experimental magnetic term BT 2 is well fitted by the Kasuya's magnetic spin-disorder model. (author) [pt

  16. Equilibrium constant and nitrogen activity and the parameters of interaction eN(N), rN(N,Cr), rN(N,Mn) in high nitrogen steels of Fe-Cr-Mn-N type

    International Nuclear Information System (INIS)

    Svyazhin, A.G.; Siwka, J.; Rashev, T.

    1999-01-01

    In the paper a description of a thermodynamic of liquid solutions of Fe-Cr-Mn-N type with using a concept of parameters of an interaction has been presented. A temperature relationship of the equilibrium constant K N(Fe) and values of self interaction parameters e N (N) , r N (N,Cr) , r N (N,Mn) and t N (N,Cr,Cr) has been determined for mean values of temperatures of liquid metal equal 1990 K and 2090 K. By application of a theory of regular solutions those values were recalculated for a temperature 1873 K. (orig.)

  17. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study

    International Nuclear Information System (INIS)

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C.; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-01-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn_6O_4(OH)_4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn_6O_4(OH)_4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn_6O_4(OH)_4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10 μg/L for drinking water. Moreover, an uptake capacity of 7.2 μg/mg at breakthrough concentration of 10 μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)_3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO_2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ("2C) and monodentate ("1V) geometries, at the expense of the present bidentate mononuclear ("2E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn_6O_4(OH)_4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the "2C and "1V configurations, which enhances the safe disposal of spent adsorbents. - Highlights: • Effective Cr(VI) removal from drinking water by Sn_6O_4(OH)_4 • Sn_6O_4(OH)_4 transformation to SnO_2 after Cr(VI) reduction to Cr(III) • Strong Cr(III) sorption onto SnO_2 by formation of inner sphere complexes • Cr(III) sorption

  18. One-pot electrospinning and gas-sensing properties of LaMnO3 perovskite/SnO2 heterojunction nanofibers

    Science.gov (United States)

    Chen, Dongdong; Yi, Jianxin

    2018-03-01

    Using nanostructured composite materials is an effective way to obtain high-performance gas sensors. This work used p-type LaMnO3 perovskite-structured semiconductor as a novel promoter for SnO2 nanofibers and studied the gas-sensing characteristics. Nanofibers of 0-2.5-mol% LaMnO3/SnO2 were synthesized via one-pot electrospinning. Compared with pristine SnO2, LaMnO3/SnO2 composite nanofibers exhibited smaller particle size (10-30 nm) and higher BET surface area. XPS revealed that oxygen surface absorption decreased with increasing LaMnO3 content. 0.3-mol% LaMnO3/SnO2 exhibited significantly enhanced ethanol sensitivity relative to pristine SnO2. A response of 20 was obtained at the optimum temperature of 260 °C for 100-ppm ethanol. Higher LaMnO3 loading led to decrease of the ethanol response. The impact of LaMnO3 loading on the sensing behavior of SnO2 nanofibers was discussed in terms of p-n heterojunction formation and changes in the microstructure and catalytic properties.

  19. Welding of heterogeneous 12Kh2MFSR steels with the Mn-Cr-Si-Ni system

    International Nuclear Information System (INIS)

    Smirnov, A.N.; Belogolov, E.I.

    1978-01-01

    The process of welding pipes of the 12Kh2MFSR pearlitic steels and austenitic steels of the Mn-Cr-Si-Ni system was studied. The filler materials were selected, and the working capacity of welded joints was examined in ageing and cyclic heatings. The microhardness of steels was measured, and the ultimate strength of welded joints was determined. The following has been established: the composite joints of steels of the Mn-Cr-Si-Ni system and 12Kh2MFSR steel are advisable to be welded on a coating layer welded by the EhA395/9 electrodes on the surface of a pipe of the 12Kh2MFSR pearlitic steel; this guarantees the sufficient working capacity of welded joints

  20. STUDY OF COATINGS OBTAINED FROM ALLOY Fe-Mn-C-B-Si-Ni-Cr

    Directory of Open Access Journals (Sweden)

    Mychajło Paszeczko

    2016-09-01

    Full Text Available Tribological behaviour of coatings obtained from eutectic alloy Fe-Mn-C-B-Si-Ni-Cr was studied. The coatings were obtained by the method of gas metal arc welding (GMA with use of powder wire. GMA welding method is widely used for the regeneration of machine parts. Eutectic Fe-Mn-C-B-Si-Ni-Cr alloys can be used to obtain high quality coatings resistant to wear and corrosion. Pin-on-disk dry sliding wear tests at sliding speeds 0.4 m/s and under load 10 MPa were conducted for pin specimens. During friction a typical tribological behavior was observed. The mechanism of wear was mechanical-chemical.

  1. Effects of compositional modifications on the sensitization behavior of Fe-Cr-Mn steels

    International Nuclear Information System (INIS)

    Edgemon, G.L.; Tortorelli, P.F.; Bell, G.E.C.

    1992-01-01

    Fe-Cr-Mn steels may possibly be used in conjuction with aqueous blankets or coolants in a fusion device. Therefore, standard chemical immersion (modified Strauss) tests were conducted to characterize the effects of compositional modifications on the thermal sensitization behavior of these steels. A good correlation among weight losses, intergranular corrosion, and cracking was found. The most effective means of decreasing their susceptibility was through reduction of the carbon concentration of these steels to 0.1%, but the sensitization resistance of Fe-Cr-Mn-0.1 C compositions was still inferior to type 304L and other similar stainless steels. Alloying additions that form stable carbides did not have a very significant influence on the sensitization behavior. (orig.)

  2. On exceeding the solubility limit of Cr+3 dopants in SnO2 nanoparticles based dilute magnetic semiconductors

    Science.gov (United States)

    URS, Kusuma; Bhat, S. V.; Kamble, Vinayak

    2018-04-01

    The paper investigates the magnetic behavior of chromium doped SnO2 Dilute Magnetic Semiconductor (DMS) nanoparticles, through structural, spectroscopic, and magnetic studies. A non-equilibrium solution combustion method is adopted to synthesize 0-5 at. % Cr doped SnO2 nanoparticles. The detailed spectroscopic studies on the system using micro-Raman spectroscopy, x-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy along with the structural analysis confirm the presence of Cr in 3+ oxidation state, which substitutes at Sn4+ site in SnO6 octahedra of the rutile structure. This doping is found to enhance the defects in the system, i.e., oxygen vacancies. All the synthesized SnO2 nanoparticles (with or without dopants) are found to exhibit Room Temperature Ferromagnetism (RTFM). This occurrence of RTFM is attributed to the magnetic exchange interaction through F-centers of oxygen vacancies as well as dopant magnetic impurities and explained through the Bound Magnetic Polaron (BMP) model of DMS systems. Nonetheless, as the doping of Cr is further increased beyond 2%, the solubility limit is achieved. This antiferromagnetic exchange interaction from interstitial Cr dopants dominates over the BMP mechanism and, hence, leads to the decrease in the net magnetic moment drastically.

  3. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Qingfeng [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Lu, Fenggui [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China); Li, Ruifeng [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003 (China); Huang, Jian; Wu, Yixiong [Shanghai Key laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai, 200240 (China)

    2017-02-28

    Highlights: • Equimolar CrMnFeCoNi high entropy alloy coating are prepared by laser cladding. • The cladding layer forms a simple FCC phase solid solution with identical dendritic structure. • The cladding layer exhibits a noble corrosion resistance in both 3.5 wt.% NaCl and 0.5 M sulfuric acid. • Element segregation makes Cr-depleted interdendrites the starting point of corrosion reaction. - Abstract: Equimolar CrMnFeCoNi high entropy alloy (HEA) is one of the most notable single phase multi-component alloys up-to-date with promising mechanical properties at cryogenic temperatures. However, the study on the corrosion behavior of CrMnFeCoNi HEA coating has still been lacking. In this paper, HEA coating with a nominal composition of CrMnFeCoNi is fabricated by laser surface alloying and studied in detail. Microstructure and chemical composition are determined by X-ray diffraction (XRD), optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) are used to investigate the corrosion behavior. The coating forms a simple FCC phase with an identical dendritic structure composed of Fe/Co/Ni-rich dendrites and Mn/Ni-rich interdendrites. Both in 3.5 wt.% NaCl solution and 0.5 M sulfuric acid the coating exhibits nobler corrosion resistance than A36 steel substrate and even lower i{sub corr} than 304 stainless steel (304SS). EIS plots coupled with fitted parameters reveal that a spontaneous protective film is formed and developed during immersion in 0.5 M sulfuric acid. The fitted R{sub t} value reaches its maximum at 24 h during a 48 h’ immersion test, indicating the passive film starts to break down after that. EDS analysis conducted on a corroded surface immersed in 0.5 M H{sub 2}SO{sub 4} reveals that corrosion starts from Cr-depleted interdendrites.

  4. Surface hardening of 30CrMnSiA steel using continuous electron beam

    Science.gov (United States)

    Fu, Yulei; Hu, Jing; Shen, Xianfeng; Wang, Yingying; Zhao, Wansheng

    2017-11-01

    30CrMnSiA high strength low alloy (HSLA) carbon structural steel is typically applied in equipment manufacturing and aerospace industries. In this work, the effects of continuous electron beam treatment on the surface hardening and microstructure modifications of 30CrMnSiA are investigated experimentally via a multi-purpose electron beam machine Pro-beam system. Micro hardness value in the electron beam treated area shows a double to triple increase, from 208 HV0.2 on the base metal to 520 HV0.2 on the irradiated area, while the surface roughness is relatively unchanged. Surface hardening parameters and mechanisms are clarified by investigation of the microstructural modification and the phase transformation both pre and post irradiation. The base metal is composed of ferrite and troostite. After continuous electron beam irradiation, the micro structure of the electron beam hardened area is composed of acicular lower bainite, feathered upper bainite and part of lath martensite. The optimal input energy density for 30CrMnSiA steel in this study is of 2.5 kJ/cm2 to attain the proper hardened depth and peak hardness without the surface quality deterioration. When the input irradiation energy exceeds 2.5 kJ/cm2 the convective mixing of the melted zone will become dominant. In the area with convective mixing, the cooling rate is relatively lower, thus the micro hardness is lower. The surface quality will deteriorate. Chemical composition and surface roughness pre and post electron beam treatment are also compared. The technology discussed give a picture of the potential of electron beam surface treatment for improving service life and reliability of the 30CrMnSiA steel.

  5. Magnetic and magnetoelastic properties of M-substituted cobalt ferrites (M=Mn, Cr, Ga, Ge)

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sang-Hoon [Iowa State Univ., Ames, IA (United States)

    2007-12-15

    Magnetic and magnetoelastic properties of a series of M-substituted cobalt ferrites, CoMxFe2-xO4 (M=Mn, Cr, Ga; x=0.0 to 0.8) and Ge-substituted cobalt ferrites Co1+xGexFe2-2xO4 (x=0.0 to 0.6) have been investigated.

  6. X-ray fluorescence analysis of Fe, Mn, Cr and V in natural silicate crystals

    International Nuclear Information System (INIS)

    Dias, O.L.; Albuquerque, A.R.P.L.; Isotani, S.

    1983-04-01

    Concentrations of Fe, Mn, Cr and V were determined in samples of beryl, topaz, tourmaline and spodumene by measuring the first order K sub(α) fluorescence lines. The intensity of these lines were calibrated by using beryl as the standard matrix. The matrices were prepared in the form of pressed pellets with 4:1 mixture of beryl and boric acid, where transition metal oxides were added. (Author) [pt

  7. X-ray fluorescence analysis of Fe, Mn, Cr and V in natural silicate crystals

    International Nuclear Information System (INIS)

    Dias, O.L.; Albuquerque, A.R.P.L.; Isotani, S.

    1983-01-01

    Concentrations of Fe, Mn, Cr and V were determined in samples of beryl, topaze, tourmaline and spodumene by measuring the first order Kα fluorescence lines. The intensity of these lines were calibrated by using beryl as the standard matrix. The matrices were prepared in the form of pressed pellets with 4:1 mixture of beryl and boric acid, where transition metal oxides were added. (Author) [pt

  8. Preparation of MnO2 electrodes coated by Sb-doped SnO2 and their effect on electrochemical performance for supercapacitor

    International Nuclear Information System (INIS)

    Zhang, Yuqing; Mo, Yan

    2014-01-01

    Highlights: • Sb-doped SnO 2 coated MnO 2 electrodes (SS-MnO 2 electrodes) are prepared. • The capacitive property and stability of SS-MnO 2 electrode is superior to uncoated MnO 2 electrode and SnO 2 coated MnO 2 electrode. • Sb-doped SnO 2 coating enhances electrochemical performance of MnO 2 effectively. • SS-MnO 2 electrodes are desirable to become a novel electrode material for supercapacitor. - Abstract: To enhance the specific capacity and cycling stability of manganese binoxide (MnO 2 ) for supercapacitor, antimony (Sb) doped tin dioxide (SnO 2 ) is coated on MnO 2 through a sol-gel method to prepare MnO 2 electrodes, enhancing the electrochemical performance of MnO 2 electrode in sodium sulfate electrolytes. The structure and composition of SS-MnO 2 electrode are characterized by using scanning electron microscope (SEM), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-Ray diffraction spectroscopy (XRD). The electrochemical performances are evaluated and researched by galvanostatic charge-discharge test, cyclic voltammogram (CV) and electrochemical impedance spectroscopy (EIS). The results show that SS-MnO 2 electrodes hold porous structure, displaying superior cycling stability at large current work condition in charge-discharge tests and good capacity performance at high scanning rate in CV tests. The results of EIS show that SS-MnO 2 electrodes have small internal resistance. Therefore, the electrochemical performances of MnO 2 electrodes are enhanced effectively by Sb-doped SnO 2 coating

  9. Investigation of structural stability and elastic properties of CrH and MnH: A first principles study

    Science.gov (United States)

    Kanagaprabha, S.; Rajeswarapalanichamy, R.; Sudhapriyanga, G.; Murugan, A.; Santhosh, M.; Iyakutti, K.

    2015-06-01

    The structural and mechanical properties of CrH and MnH are investigated using first principles calculation based on density functional theory as implemented in VASP code with generalized gradient approximation. The calculated ground state properties are in good agreement with previous experimental and other theoretical results. A structural phase transition from NaCl to NiAs phase at a pressure of 76 GPa is predicted for both CrH and MnH.

  10. Large anomalous Nernst and spin Nernst effects in the noncollinear antiferromagnets Mn3X (X =Sn ,Ge ,Ga )

    Science.gov (United States)

    Guo, Guang-Yu; Wang, Tzu-Cheng

    2017-12-01

    Noncollinear antiferromagnets have recently been attracting considerable interest partly due to recent surprising discoveries of the anomalous Hall effect (AHE) in them and partly because they have promising applications in antiferromagnetic spintronics. Here we study the anomalous Nernst effect (ANE), a phenomenon having the same origin as the AHE, and also the spin Nernst effect (SNE) as well as AHE and the spin Hall effect (SHE) in noncollinear antiferromagnetic Mn3X (X =Sn , Ge, Ga) within the Berry phase formalism based on ab initio relativistic band structure calculations. For comparison, we also calculate the anomalous Nernst conductivity (ANC) and anomalous Hall conductivity (AHC) of ferromagnetic iron as well as the spin Nernst conductivity (SNC) of platinum metal. Remarkably, the calculated ANC at room temperature (300 K) for all three alloys is huge, being 10-40 times larger than that of iron. Moreover, the calculated SNC for Mn3Sn and Mn3Ga is also larger, being about five times larger than that of platinum. This suggests that these antiferromagnets would be useful materials for thermoelectronic devices and spin caloritronic devices. The calculated ANC of Mn3Sn and iron are in reasonably good agreement with the very recent experiments. The calculated SNC of platinum also agrees with the very recent experiments in both sign and magnitude. The calculated thermoelectric and thermomagnetic properties are analyzed in terms of the band structures as well as the energy-dependent AHC, ANC, SNC, and spin Hall conductivity via the Mott relations.

  11. Enhanced photodegradation activity of methyl orange over Ag2CrO4/SnS2 composites under visible light irradiation

    International Nuclear Information System (INIS)

    Luo, Jin; Zhou, Xiaosong; Ma, Lin; Xu, Xuyao; Wu, Jingxia; Liang, Huiping

    2016-01-01

    Highlights: • Novel visible-light-driven Ag 2 CrO 4 /SnS 2 composites are synthesized. • Ag 2 CrO 4 /SnS 2 exhibits higher photocatalytic activity than pure Ag 2 CrO 4 and SnS 2 . • Ag 2 CrO 4 /SnS 2 exhibits excellent stability for the photodegradation of MO. • The possible photocatalytic mechanism was discussed in detail. - Abstract: Novel Ag 2 CrO 4 /SnS 2 composites were prepared by a simple chemical precipitation method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The visible light photocatalytic tests showed that the Ag 2 CrO 4 /SnS 2 composites enhanced photocatalytic activities for the photodegradation of methyl orange (MO) under visible light irradiation (λ > 420 nm), and the optimum rate constant of Ag 2 CrO 4 /SnS 2 at a weight content of 1.0% Ag 2 CrO 4 for the degradation of MO was 2.2 and 1.5 times larger than that of pure Ag 2 CrO 4 and SnS 2 , respectively. The improved activity could be attributed to high separation efficiency of photogenerated electrons-hole pairs on the interface of Ag 2 CrO 4 and SnS 2 , which arised from the synergistic effect between Ag 2 CrO 4 and SnS 2 . Moreover, the possible photocatalytic mechanism with superoxide radical anions and holes species as the main reactive species in photocatalysis process was proposed on the basis of experimental results.

  12. Experimental and computational study of nitride precipitation in a CrMnN austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Niklas, E-mail: niklas.pettersson@swerea.se [Swerea KIMAB AB, P.O. Box 7047, 164 07 Kista (Sweden); Frisk, Karin [Swerea KIMAB AB, P.O. Box 7047, 164 07 Kista (Sweden); Fluch, Rainer [Böhler Edelstahl Gmbh, Mariazeller Strasse 25, 8605 Kapfenberg (Austria)

    2017-01-27

    The austenitic CrMnN stainless steels are high-strength, tough, and non-magnetic, and are used in oil field applications. The steels have high alloying contents, and precipitation of Cr-nitrides and/or intermetallic phases can occur when cooling through the temperature region 950–700 °C. The nitride precipitates appear in the grain boundaries but can be difficult to observe in the microstructure due to their small size. However, there is an effect of precipitation on corrosion and impact strength and a modelling approach to predict precipitation is valuable for alloy and process development. In the present work precipitation simulations were applied to a CrMnN steel composition, and coupled to experimental investigations after heat treatments at 700 and 800 °C. The early stages, with short heat-treatment times, were studied. The simulations were performed using TC-PRISMA, a software for calculation of multiphase precipitation kinetics, using multicomponent nucleation and growth models. Dedicated thermodynamic and kinetic databases were used for the simulations. The main precipitate was identified by experiments and simulations to be the Cr{sub 2}N nitride, and the precipitation during isothermal heat treatments was investigated. Isothermal precipitation diagrams are simulated, and the influence of precipitation kinetics on toughness is discussed.

  13. Experimental and computational study of nitride precipitation in a CrMnN austenitic stainless steel

    International Nuclear Information System (INIS)

    Pettersson, Niklas; Frisk, Karin; Fluch, Rainer

    2017-01-01

    The austenitic CrMnN stainless steels are high-strength, tough, and non-magnetic, and are used in oil field applications. The steels have high alloying contents, and precipitation of Cr-nitrides and/or intermetallic phases can occur when cooling through the temperature region 950–700 °C. The nitride precipitates appear in the grain boundaries but can be difficult to observe in the microstructure due to their small size. However, there is an effect of precipitation on corrosion and impact strength and a modelling approach to predict precipitation is valuable for alloy and process development. In the present work precipitation simulations were applied to a CrMnN steel composition, and coupled to experimental investigations after heat treatments at 700 and 800 °C. The early stages, with short heat-treatment times, were studied. The simulations were performed using TC-PRISMA, a software for calculation of multiphase precipitation kinetics, using multicomponent nucleation and growth models. Dedicated thermodynamic and kinetic databases were used for the simulations. The main precipitate was identified by experiments and simulations to be the Cr 2 N nitride, and the precipitation during isothermal heat treatments was investigated. Isothermal precipitation diagrams are simulated, and the influence of precipitation kinetics on toughness is discussed.

  14. Influence of manganese, carbon and nitrogen on high-temperature strength of Fe-Cr-Mn austenitic alloys

    International Nuclear Information System (INIS)

    Hosoi, Y.; Okazaki, Y.; Wade, N.; Miyahara, K.

    1990-01-01

    High Mn-Cr-Fe base alloys are candidates for the first wall material of fusion reactors because of rapid decay of radioactivity of the alloys after neutron irradiation compared with that of Ni-Cr-Fe base alloys. Their high temperature properties, however, are not clearly understood at present. In this paper, a study has been made of the effects of Mn, C and N content on the high-temperature tensile strength and creep properties of a 12% CR-Fe base alloy. Mn tends to decrease tensile strength and proof stress at intermediate temperatures. At higher temperatures in the austenite range, however, tensile properties scarcely depend on Mn content. C and N additions improve the tensile properties markedly. The combined addition of 0.2%C and 0.2%N to a 12%Cr-15%Mn-Fe base alloy makes the strength at 873K as high as that of a modified type 316 stainless steel. Combined alloying with C and N also improves the creep strength. Cold working is very useful in increasing the creep strength because of the finely dispersed precipitates in the matrix during creep. From these results, Fe-12%Cr-15%Mn-15%Mn-0.2%c-0.2%N is recommended as one of the most suitable alloys in this system for high temperature usage. (author)

  15. Synthesis and characterization of La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, F.A., E-mail: fernandafabianro@gmail.com [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Pedra, P.P.; Filho, J.L.S. [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Duque, J.G.S.; Meneses, C.T. [Universidade Federal de Sergipe, Campus Prof. Alberto Carvalho, Departamento de Física, 49500-000 Itabaiana, SE (Brazil)

    2015-04-01

    Magnetic and structural properties have been investigated in La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method. The X-ray diffraction measurements allied to Rietveld method confirm the formation of LaCrO{sub 3}, LaFeO{sub 3} and LaMnO{sub 3} nanoparticles with crystal structure orthorhombic (Pbnm), orthorhombic (Pnma) and rhombohedral (R-3c), respectively. We also verified an decreasing in the average crystallite size from 73 to 26 nm, depending of the transition metal. The magnetic measurements reveal an antiferromagnetic behavior for the LaCrO{sub 3} sample with T{sub N}~289 K, and a weak ferromagnetic ordering for the LaMnO{sub 3} sample with T{sub c}~200 K. - Highlights: • La(Cr,Fe,Mn)O{sub 3} nanoparticles were synthesized by coprecipitation method. • XRD results confirm the formation single phase in the compounds studied. • Magnetic property in the La(Fe,Cr,Mn)O{sub 3} nanoparticles dependent on the TM. • La(Cr,Fe)O{sub 3} nanoparticles presented behavior antiferromagnetic and LaMnO{sub 3} ferromagnetic.

  16. V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies

    International Nuclear Information System (INIS)

    Drake, M.J.; Capobianco, C.J.; Newsom, H.E.

    1989-01-01

    The abundances of V, Cr, and Mn inferred for the mantles of the Earth and Moon decrease in that order and are similar, but are distinct from those inferred for the mantles of the Eucrite Parent Body (EPB) and Shergottite Parent Body (SPB). This similarity between Earth and Moon has been used to suggest that the Moon is derived substantially or entirely from Earth mantle material following terrestrial core formation. To test this hypothesis, the authors have determined the partitioning of V, Cr, and Mn between solid iron metal, S-rich metallic liquid, and synthetic basaltic silicate liquid at 1,260 degree C and one bar pressure. The sequence of compatibility in the metallic phases is Cr > V > Mn at high oxygen fugacity and V > Cr > Mn at low oxygen fugacities. Solubilities in liquid metal always exceed solubilities in solid metal. These partition coefficients suggest that the abundances of V, Cr, and Mn do not reflect core formation in the Earth. Rather, they are consistent with the relative volatilities of these elements. The similarity in the depletion patterns of V, Cr, and Mn inferred for the mantles of the Earth and Moon is a necessary, but not sufficient, condition for the Moon to have been derived wholly or in part from the Earth's mantle

  17. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.

    Science.gov (United States)

    Liu, B; Zheng, Y F

    2011-03-01

    Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a

  18. Microplasticity and fracture in a Ti-15V-3Cr-3Al-3Sn alloy

    International Nuclear Information System (INIS)

    Rabeeh, B.M.; Rokhlin, S.I.; Soboyejo, W.O.

    1996-01-01

    Linear Elasticity is generally considered to occur in most standard textbooks by the strengthening of chemical bonds in the regime below the proportional limit in most materials. In some cases, however, a number of researchers have recognized the possible role of localized microplasticity (microplasticity in this paper refers to localized plasticity on a microstructural level at stresses below the so-called bulk yield stress) in the so-called elastic deformation regime. There is, therefore, a need for careful studies of the micromechanisms of microplasticity in the so-called elastic regime. Micromechanisms of microplasticity will be presented in this paper for a metastable β Ti-15V-3Cr-3Al-3Sn (Ti-15-3) alloy deformed in incremental stages to failure under monotonic loading. Micromechanisms of tensile deformation and fracture will be elucidated for a Ti-15-3 plate with single phase β and Widmanstaetten α+β microstructures

  19. Improvement of the electrochemical performance of nanosized {alpha}-MnO{sub 2} used as cathode material for Li-batteries by Sn-doping

    Energy Technology Data Exchange (ETDEWEB)

    Hashem, A.M., E-mail: ahmedh242@yahoo.com [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Abdel-Latif, A.M.; Abuzeid, H.M. [National Research Centre, Inorganic Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Abbas, H.M. [National Research Centre, Physical Chemistry Department, Behoes St., Dokki, Cairo (Egypt); Ehrenberg, H. [Institute for Complex Materials, IFW Dresden, Helmholtzstr. 20, D-01069 Dresden (Germany); Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, D-64287 Darmstadt (Germany); Farag, R.S. [Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo (Egypt); Mauger, A. [Universite Pierre et Marie Curie, Institut de Mineralogie et Physique de la Matiere Condensee (IMPMC), 4 Place Jussieu, 75005 Paris (France); Julien, C.M. [Universite Pierre et Marie Curie, Physicochimie des Electrolytes, Colloides et Sciences Analytiques (PECSA), 4 Place Jussieu, 75005 Paris (France)

    2011-10-06

    Highlights: > Doping MnO{sub 2} with Sn improved properties of {alpha}-MnO{sub 2}. > Thermal stabilization and electrochemical performances were improved. > Doping affected also the morphology feature of {alpha}-MnO{sub 2}. - Abstract: Sn-doped MnO{sub 2} was prepared by hydrothermal reaction between KMnO{sub 4} as oxidant, fumaric acid C{sub 4}H{sub 4}O{sub 4} as reductant and SnCl{sub 2} as doping agent. XRD analysis indicates the cryptomelane {alpha}-MnO{sub 2} crystal structure for pure and doped samples. Thermal stabilization was observed for both oxides as detected from thermogravimetric analysis. SEM and TEM images show changes in the morphology of the materials from spherical-like particles for pristine P-MnO{sub 2} to rod-like structure for Sn-MnO{sub 2}. Electrochemical properties of the electrode materials have been tested in lithium cells. Improvement in capacity retention and cycling ability is observed for doped oxide at the expense of initial capacity. After 35 cycles, the Li//Sn doped MnO{sub 2} cell display lower capacity loss.

  20. Improvement of the electrochemical performance of nanosized α-MnO2 used as cathode material for Li-batteries by Sn-doping

    International Nuclear Information System (INIS)

    Hashem, A.M.; Abdel-Latif, A.M.; Abuzeid, H.M.; Abbas, H.M.; Ehrenberg, H.; Farag, R.S.; Mauger, A.; Julien, C.M.

    2011-01-01

    Highlights: → Doping MnO 2 with Sn improved properties of α-MnO 2 . → Thermal stabilization and electrochemical performances were improved. → Doping affected also the morphology feature of α-MnO 2 . - Abstract: Sn-doped MnO 2 was prepared by hydrothermal reaction between KMnO 4 as oxidant, fumaric acid C 4 H 4 O 4 as reductant and SnCl 2 as doping agent. XRD analysis indicates the cryptomelane α-MnO 2 crystal structure for pure and doped samples. Thermal stabilization was observed for both oxides as detected from thermogravimetric analysis. SEM and TEM images show changes in the morphology of the materials from spherical-like particles for pristine P-MnO 2 to rod-like structure for Sn-MnO 2 . Electrochemical properties of the electrode materials have been tested in lithium cells. Improvement in capacity retention and cycling ability is observed for doped oxide at the expense of initial capacity. After 35 cycles, the Li//Sn doped MnO 2 cell display lower capacity loss.

  1. Pressure Effects on the Magnetic Phase Transition of Mn3SnC1−xNx (x = 0, 0.5)

    International Nuclear Information System (INIS)

    Hu Jing-Yu; Zhao Qing; Wen Yong-Chun; Wang Cong; Yao Yuan; Jin Chang-Qing; Yu Ri-Cheng

    2012-01-01

    The electronic transport properties of Mn 3 SnC and Mn 3 SnC 0.5 N 0.5 were measured under pressures up to 1.8 GPa. At ambient pressure, an abrupt increase of resistance occurs around the temperature of magnetic phase transition in both samples. The transition temperature Tc from paramagnetic to ferrimagnetic state decreases linearly at rates of 12.6 and 6.3K/GPa with pressure for Mn 3 SnC and Mn 3 SnC 0.5 N 0.5 , respectively. This phenomenon could be understood by the Labbe-Jardin tight binding approximation model. (condensed matter: structure, mechanical and thermal properties)

  2. Effect of (Mn,Cr) co-doping on structural, electronic and magnetic properties of zinc oxide by first-principles studies

    Science.gov (United States)

    Aimouch, D. E.; Meskine, S.; Boukortt, A.; Zaoui, A.

    2018-04-01

    In this study, structural, electronic and magnetic properties of Mn doped (ZnO:Mn) and (Mn,Cr) co-doped zinc oxide (ZnO:(Mn,Cr)) have been calculated with the FP-LAPW method by using the LSDA and LSDA+U approximations. Going through three configurations of Mn,Cr co-doped ZnO corresponding to three different distances between manganese and chromium, we have analyzed that ZnO:(Mn,Cr) system is more stable in its preferred configuration2. The lattice constant of undoped ZnO that has been calculated in this study is in a good agreement with the experimental and theoretical values. It was found to be increased by doping with Mn or (Mn,Cr) impurities. The band structure calculations showed the metallic character of Mn doped and Mn,Cr co-doped ZnO. As results, by using LSDA+U (U = 6eV), we show the half-metallic character of ZnO:Mn and ZnO:Mn,Cr. We present the calculated exchange couplings d-d of Mn doped ZnO which is in a good agreement with the former FPLO calculation data and the magnetization step measurement of the experimental work. The magnetic coupling between neighboring Mn impurities in ZnO is found to be antiferromagnetic. In the case of (Mn,Cr) co-doped ZnO, the magnetic coupling between Mn and Cr impurities is found to be antiferromagnetic for configuration1 and 3, and ferromagnetic for configuration2. Thus, the ferromagnetic coupling is weak in ZnO:Mn. Chromium co-doping greatly enhance the ferromagnetism, especially when using configuration2. At last, we present the 2D and 3D spin-density distribution of ZnO:Mn and ZnO:(Mn,Cr) where the ferromagnetic state in ZnO:(Mn,Cr) comes from the strong p-d and d-d interactions between 2p-O, 3d-Mn and 3d-Cr electrons. The results of our calculations suggest that the co-doping ZnO(Mn, Cr) can be among DMS behavior for spintronic applications.

  3. Martensitic transformation and magnetic properties of manganese-rich Ni-Mn-In and Ni-Mn-Sn Heusler alloys; Untersuchung der martensitischen Umwandlung und der magnetischen Eigenschaften Mangan-reicher Ni-Mn-In- und Ni-Mn-Sn-Heusler-Legierungen

    Energy Technology Data Exchange (ETDEWEB)

    Krenke, T.

    2007-06-29

    In the present work, the martensitic transition and the magnetic properties of Manganese rich Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} alloys with 5 at%{<=}x(y){<=}25 at% were investigated. Calorimetry, X-ray and neutron diffraction, magnetization, and strain measurements were performed on polycrystalline samples. It was shown that alloys close to the stoichiometric composition Ni{sub 50}Mn{sub 25}Sn{sub 25} and Ni{sub 50}Mn{sub 25}Sn{sub 25} do not exhibit a structural transition on lowering of the temperature, whereas alloys with x{<=}15 at% Tin and y{<=}16 at% Indium transform martensitically. The structural transition temperatures increase linearly with decreasing Tin or Indium content. The crystal structures of the low temperature martensite are modulated as well as unmodulated. Alloys with compositions close to stoichiometry are dominated by ferromagnetic interactions, whereas those close to the binary composition Ni{sub 50}Mn{sub 50} order antiferromagnetically. Ferromagnetic order and structural instability coexist in a narrow composition range between 13 at%{<=}x{<=}15 at% and 15 at%{<=}x{<=}16 at% for Ni{sub 50}Mn{sub 50-x}Sn{sub x} and Ni{sub 50}Mn{sub 50-y}In{sub y} respectively. As a consequence, interesting magnetoelastic effects are observed. The Ni{sub 50}Mn{sub 34}In{sub 16} alloy shows a magnetic field-induced structural transition, whereby application of an external magnetic field in the martensitic state stabilizes the high temperature L2{sub 1} structure. Evidence for this was given by neutron diffraction experiments in external magnetic fields. Moreover, the structural transition temperatures of this alloy show large magnetic field dependencies. By use of calorimetry, M(T), and strain measurements, changes in M{sub s} up to -11 K/Tesla are observed. Such large values have, until now, not been observed in Heusler alloys. Since during transformation the volume changes reversibly, magnetic field-induced strains of about

  4. Optical and magnetic properties of Sn{sub 1−x}Mn{sub x}O{sub 2} dilute magnetic semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Khatoon, Sarvari [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Coolahan, Kelsey [Department of Physics and Astronomy, Rowan University, 201 Mullica Hill Road, Glassboro, NJ 08028 (United States)

    2014-12-05

    Highlights: • Monophasic Mn-doped SnO{sub 2} nanoparticles by solvothermal method for first time. • High surface area with smaller particle size. • Increase in band gap with increasing Mn concentration. • Sn{sub 1−x}Mn{sub x}O{sub 2} (x = 0.05 and 0.10) revealed the parasitic ferromagnetism. • Sn{sub 0.85}Mn{sub 0.15}O{sub 2} showed paramagnetic behaviour. - Abstract: Sn{sub 1−x}Mn{sub x}O{sub 2} (x = 0.05, 0.10 and 0.15) nanoparticles with tetragonal structure have been successfully synthesized by solvothermal method using oxalate precursor route. The oxalate precursors and its corresponding oxides were characterized by powder X-ray diffraction (PXRD), thermogravimetric (TG), fourier transform infrared (FTIR) and transmission electron microscopic (TEM) studies. PXRD studies showed the highly crystalline and monophasic nature of the solid solutions. The shifting of X-ray reflections towards higher angle is attributed to the incorporation of Mn{sup 2+} ions in SnO{sub 2} host lattice. The average particle size was found to be in the range of 5–11 nm. Reflectance measurements showed blue shift in energy band gap which increases with increasing Mn{sup 2+} concentration. Surface area of these nanoparticles (59–388 m{sup 2}/g) was found to be high which increases with increasing the dopant ion concentration. Mn-doped SnO{sub 2} showed distinct magnetic behaviour with different manganese concentration. Sn{sub 1−x}Mn{sub x}O{sub 2} (x = 0.05 and 0.10) revealed the parasitic ferromagnetism, however on increasing x = 0.15, sample showed paramagnetic behaviour.

  5. Electronic structure, magnetism and thermoelectricity in layered perovskites: Sr2SnMnO6 and Sr2SnFeO6

    Science.gov (United States)

    Khandy, Shakeel Ahmad; Gupta, Dinesh C.

    2017-11-01

    Layered structures especially perovskites have titanic potential for novel device applications and thanks to the multifunctional properties displayed in these materials. We forecast and justify the robust spin-polarized ferromagnetism in half-metallic Sr2SnFeO6 and semiconducting Sr2SnMnO6 perovskite oxides. Different approximation methods have been argued to put forward their physical properties. The intriguingly intricate electronic band structures favor the application of these materials in spintronics. The transport parameters like Seebeck coefficient, electrical and thermal conductivity, have been put together to establish their thermoelectric response. Finally, the layered oxides are found to switch their application as thermoelectric materials and hence, these concepts design the principles of the technologically desired thermoelectric and spin based devices.

  6. Band structure of the quaternary Heusler alloys ScMnFeSn and ScFeCoAl

    Science.gov (United States)

    Shanthi, N.; Teja, Y. N.; Shaji, Shephine M.; Hosamani, Shashikala; Divya, H. S.

    2018-04-01

    In our quest for materials with specific applications, a theoretical study plays an important role in predicting the properties of compounds. Heusler alloys or compounds are the most studied in this context. More recently, a lot of quaternary Heusler compounds are investigated for potential applications in fields like Spintronics. We report here our preliminary study of the alloys ScMnFeSn and ScFeCoAl, using the ab-initio linear muffin-tin orbital method within the atomic sphere approximation (LMTO-ASA). The alloy ScMnFeSn shows perfect half-metallicity, namely, one of the spins shows a metallic behaviour and the other spin shows semi-conducting behaviour. Such materials find application in devices such as the spin-transfer torque random access memory (STT-MRAM). In addition, the alloy ScMnFeSn is found to have an integral magnetic moment of 4 µB, as predicted by the Slater-Pauling rule. The alloy ScFeCoAl does not show half-metallicity.

  7. Magnetic properties of Mn3-xFexSn compounds with tuneable Curie temperature by Fe content for thermomagnetic motors

    Science.gov (United States)

    Felez, Marissol R.; Coelho, Adelino A.; Gama, Sergio

    2017-12-01

    Mn3-xFexSn system (0.00 ≤ x ≤ 3.00 with Δx = 0.25) alloys present the Curie temperature (TC) or transition temperature (TT) tuneable by the Fe content. A piece-wise linear profile for TC,T as a function of x is observed in a two wide temperature ranges, between 155 K up to 759 K and 259 K up to 155 K. Their equations are TC,T = (59 ± 15) + (240 ± 7)·x and TC,T = (257 ± 1) - (206 ± 4)·x, respectively. The alloys are low cost and easy manufacturing, rare earth free, with second order magnetic transition (SOMT), and have good magnetic properties. These features suggest an immediate application of the material in cascade thermomagnetic motors that operate with a large temperature range between hot and cold sources. Furthermore, SOMT Mn-Fe-Sn system materials are also reported with advantages that could make alloys of the Mn3-xFexSn system, (0.88 ≤ x ≤ 1.20), promising candidate for magnetic refrigeration. The typical ferromagnetic behaviour is achieved only by samples with x ≥ 1. The samples with x between 0.00 and 0.75 do not show the saturation magnetization even using fields up to 13 T.

  8. Synthesize and microstructure characterization of Ni43Mn41Co5Sn11 Heusler alloy

    International Nuclear Information System (INIS)

    Elwindari, Nastiti; Manaf, Azwar

    2016-01-01

    The ferromagnetic heusler alloys are promising materials in many technical applications due to their multifunctional properties such as shape memory effect, magnetocaloric effect, giant magnetoresistance, etc. In this work, synthesize and characterization of polycrystalline Ni 43 Mn 41 Co 5 Sn 11 (NMCS) alloy are reported. Alloy preparation was conducted by melting the constitute elements under an innert Argon (Ar) atmosphere in a vacuum mini arc-melting furnace. Homogenization of the microstructure of the as-cast ingot was obtained after annealing process at 750°C for 48 hours. It is shown that the dendrites structure has changed to equaixed grains morphology after homogenization. Microstructure characteristics of material by x-ray diffraction revealed that the alloy has a L 21 -type cubic crystal structure as the main phase at room temperature. In order to induce the shape anisotropy, a forging treatment was applied to show the shape orientation of material. Various enhancements of magnetic properties in a longitudinal direction were observed at various degree of anisotropy. The microstructure changes of as-cast NMCS and effects of homogenization treatments as studied by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) are discussed in details.

  9. Analysis of Co, Cr and Mn Concentrations in Atmospheric Dry Deposition in Hamadan City

    Directory of Open Access Journals (Sweden)

    P. Shokri Ragheb

    2016-07-01

    Full Text Available Introduction & Objective: Heavy metals are major pollutants that can spread in the atmosphere with particulate matter and dust and because of the toxic and carcinogenic effects, their meas-urement and control is very important. Therefore, this study was conducted to assess Co, Cr and Mn concentration in the atmospheric dry deposition collected from Hamadan city in 2014. Materials & Methods: After collection of 12 dust samples from 3 sampling stations and their laboratory preparation, metals concentrations were determined using ICP–OES. All statistical analyses were performed using the SPSS statistical package. Results: The results showed that the minimum and maximum mean concentrations of Co were 0.19 and 0.29 mg/kg for high and low traffic intensity sampling stations, respectively. The min and max mean concentrations of Cr were 0.65and 1.02 mg/kg for high traffic intensity and suburb sampling stations, respectively and the min and max mean concentrations of Mn were 7.23and 8.82 mg/kg for high and low traffic intensity sampling stations , respectively. Also comparing the mean concentrations of assessed metals with WHO permissible limits showed a significant difference (P< 0.05. The mean concentrations of metals were signifi-cantly lower than the maximum permissible limits. Conclusion: Although the mean concentrations of Co, Cr and Mn are lower than the standard levels, lack of continuous monitoring of heavy metals concentrations in the dust and particu-late matters in the air can lead to the entrance of various types of toxic pollutants such as heavy metals into the air and result in adverse health effects. (Sci J Hamadan Univ Med Sci 2016; 23 (2:149-156

  10. Thermodynamics of oxygen solutions in Fe-40% Ni-15% Cr melts containing Mn, Si, Ti, Al

    International Nuclear Information System (INIS)

    Dashevskij, V.Ya.; Makarova, N.N.; Grigorovich, K.V.; Kashin, V.I.; Polikarpova, N.V.

    2000-01-01

    Thermodynamic analysis and experimental studied are performed for oxygen solutions in Fe-40% Ni-15% Cr melts where Mn, Si, Ti, Al are used as reducing agents. It is revealed that in the alloys studied the affinity of reducing agents to oxygen essentially lower than in liquid iron, nickel and Fe-40% Ni alloy. This is explained by the fact that the oxygen activity in melts noticeably decreases due to a high chromium content whereas the activity of reducing elements increases in a rather less degree. The agreement between analytical and experimental results confirms the validity of the calculation technique [ru

  11. Transformation lines in an Fe-Cr-Ni-Mn-Si polycrystalline shape memory alloy

    International Nuclear Information System (INIS)

    Tanaka, Kikuaki; Hayashi, Toshimitsu; Fischer, F.D.; Buchmayr, B.

    1994-01-01

    Transformation lines, the martensite/austenite start and finish conditions in the stress-temperature plane, are determined in an Fe-Cr-Ni-Mn-Si polycrystalline shape memory alloy with two different experimental procedures. The transformation lines are shown to be almost linear with nearly the same slope. The martensitic transformation zone and the reverse transformation zone do not coincide, and the reverse transformation zone is very wide; T Af -T As ∼ 180 K. The strong dependence on the preloading of the transformation lines, especially of the reverse transformation lines, is examined. (orig.)

  12. Hollow Amorphous MnSnO3 Nanohybrid with Nitrogen-Doped Graphene for High-Performance Lithium Storage

    International Nuclear Information System (INIS)

    Liu, Peng; Hao, Qingli; Xia, Xifeng; Lei, Wu; Xia, Hui; Chen, Ziyang; Wang, Xin

    2016-01-01

    Graphical abstract: A novel hybrid of hollow amorphous MnSnO 3 nanoparticles and nitrogen-doped reduced graphene oxide was fabricated. The unique structure and well-combination of both components account for the ultra long-term cyclic life with high reversible capacity of 610 mAh g −1 over 1000 cycles at 400 mA g −1 . - Highlights: • Novel hybrid of MnSnO 3 and nitrogen-doped reduced graphene oxide was fabricated. • The MnSnO 3 nanoparticles possess amorphous and hollow structure in the composite. • The excellent electrochemical performance benefits from unique nanostructure. • The reversible capacity of as-prepared hybrid is 610 mAh g −1 after 1000 cycles. • A long-term life with 97.3% capacity retention over 1000 cycles was obtained. - Abstract: Tin-based metal oxides usually suffer from severe capacity fading resulting from aggregation and considerable volume variation during the charge/discharge process in lithium ion batteries. In this work, a novel nanocomposite (MTO/N-RGO) of hollow amorphous MnSnO 3 (MTO) nanoparticles and nitrogen-doped reduced graphene oxide (N-RGO) has been designed and synthesized by a two-step method. Firstly, the nitrogen-doped graphene nanocomposite (MTO/N-RGO-P) with MnSn(OH) 6 crystal nanoparticles was synthesized by a facile solvothermal method. Subsequently, the MTO/N-RGO nanocomposite was obtained through the post heat treatment of MTO/N-RGO-P. The designed heterostructure and well-combination of the hollow amorphous MTO and N-RGO matrix can accelerate the ionic and electronic transport, and simultaneously accommodate the aggregation and volume variation of MTO nanoparticles during the lithiation–delithiation cycles. The as-prepared hybrid of MTO and N-RGO (MTO/N-RGO) exhibits a high reversible capacity of 707 mAh g −1 after 110 cycles at 200 mA g −1 , superior rate capability, and long-term cyclic life with high capacity of 610 mAh g −1 over 1000 cycles at 400 mA g −1 . Superior capacity retention of

  13. Polymorphism and second harmonic generation in a novel diamond-like semiconductor: Li{sub 2}MnSnS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, Kasey P. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Glaid, Andrew J. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Center for Computational Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Brant, Jacilynn A.; Zhang, Jian-Han [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Srnec, Matthew N. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Center for Computational Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Clark, Daniel J. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902 (United States); Soo Kim, Yong [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902 (United States); Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, 680-749 (Korea, Republic of); Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY 13902 (United States); Daley, Kimberly R.; Moreau, Meghann A. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Madura, Jeffry D. [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States); Center for Computational Sciences, Duquesne University, Pittsburgh, PA 15282 (United States); Aitken, Jennifer A., E-mail: aitkenj@duq.edu [Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282 (United States)

    2015-11-15

    High-temperature, solid-state synthesis in the Li{sub 2}MnSnS{sub 4} system led to the discovery of two new polymorphic compounds that were analyzed using single crystal X-ray diffraction. The α-polymorph crystallizes in Pna2{sub 1} with the lithium cobalt (II) silicate, Li{sub 2}CoSiO{sub 4}, structure type, where Z=4, R1=0.0349 and wR2=0.0514 for all data. The β-polymorph possesses the wurtz-kesterite structure type, crystallizing in Pn with Z=2, R1=0.0423, and wR2=0.0901 for all data. Rietveld refinement of synchrotron X-ray powder diffraction was utilized to quantify the phase fractions of the polymorphs in the reaction products. The α/β-Li{sub 2}MnSnS{sub 4} mixture exhibits an absorption edge of ∼2.6–3.0 eV, a wide region of optical transparency in the mid- to far-IR, and moderate SHG activity over the fundamental range of 1.1–2.1 μm. Calculations using density functional theory indicate that the ground state energies and electronic structures for α- and β-Li{sub 2}MnSnS{sub 4}, as well as the hypothetical polymorph, γ-Li{sub 2}MnSnS{sub 4} with the wurtz-stannite structure type, are highly similar. - Graphical abstract: Two polymorphs, α- and β-Li{sub 2}MnSnS{sub 4}, have been discovered using single crystal X-ray diffraction. Rietveld refinement of synchrotron X-ray powder diffraction data indicates the presence of both polymorphs in the samples that were analyzed. - Highlights: • Li{sub 2}MnSnS{sub 4} exists as two polymorphs crystallizing in the Pna2{sub 1} and Pn space groups. • The α- and β-Li{sub 2}MnSnS{sub 4} mixture exhibits a moderate SHG response over a broad range. • The α- and β-Li{sub 2}MnSnS{sub 4} mixture exhibits an optical absorption edge of ∼2.6–3.0 eV. • Synchrotron powder diffraction data are necessary to distinguish α- and β-Li{sub 2}MnSnS{sub 4.} • Electronic structure calculations show similar total energies for α- and β-Li{sub 2}MnSnS{sub 4}.

  14. Calculation of phase equilibria in Ti-Al-Cr-Mn quaternary system for developing lower cost titanium alloys

    International Nuclear Information System (INIS)

    Lu, X.G.; Li, C.H.; Chen, L.Y.; Qiu, A.T.; Ding, W.Z.

    2011-01-01

    Highlights: → This paper is about the concept of designing the lower cost titanium alloy. → The thermodynamic database of Ti-Al-Cr-Mn system is built up by Calphad method. → The pseudobinary sections with Cr: Mn = 3:1 and Al = 3, 4.5 and 6.0 wt% are calculated. → This may provide the theoretical support for designing the lower cost titanium alloy. - Abstract: The Ti-Al-Cr-Mn system is a potentially useful system for lower cost titanium alloy development; however, there are few reports about the experimental phase diagrams and the thermodynamical assessment for this system. In this study, the previous investigations for the thermodynamic descriptions of the sub-systems in the Ti-Al-Cr-Mn system are reviewed, our previous assessment for the related sub-systems in this quaternary system is summarized, the thermodynamical database of this quaternary system is built up by directly extrapolating from all sub-systems assessed by means of the Calphad method, then the pseudobinary sections with Cr:Mn = 3:1 and Al = 0.0, 3.0, 4.5 and 6.0 wt% are calculated, respectively. These pseudobinary phase diagrams may provide the theoretical support for designing the lower cost titanium alloys with different microstructures (α, α + β, and β titanium alloy).

  15. Mixed phase in cubic and hexagonal HoMn{sub 2} {sup 111}Cd PAC and {sup 119}Sn, {sup 57}Fe Moessbauer studies

    Energy Technology Data Exchange (ETDEWEB)

    Cottenier, S.; Meersschaut, J.; Demuynck, S.; Swinnen, B.; Rots, M. [Leuven Univ. (Belgium). Inst. voor Kern- en Stralingsfysika; Krop, K.; Marzec, J.; Zukrowski, J.; Przewoznik, J.; Japa, E. [Dept. of Solid State Physics, Univ. of Mining and Metallurgy, Krakow (Poland)

    1998-01-01

    Hyperfine parameters on {sup 57}Fe, {sup 119}Sn and {sup 111}Cd substituted into the Mn sublattice were measured by Moessbauer and PAC spectroscopies. From these results it is tentatively concluded that C15 and C14 HoMn{sub 2} are mixed-phase compounds. In C14 HoMn{sub 2} there is no (or small) moment on the 2a site. (orig.) 6 refs.

  16. Influence of Copper on the Hot Ductility of 20CrMnTi Steel

    Science.gov (United States)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% copper (x = 0, 0.34) was investigated. Results show that copper can reduce its hot ductility, but there is no significant copper-segregation at the boundary tested by EPMA. The average copper content at grain boundaries and substrate is 0.352% and 0.318% respectively in steel containing 0.34% copper tensile-tested at 950 °C. The fracture morphology was examined with SEM and many small and shallow dimples were found on the fracture of steel with copper, and fine copper sulfide was found from carbon extraction replicas using TEM. Additionally, adding 0.34% copper caused an increase in the dynamic recrystallization temperature from 950 °C to 1000 °C, which indicates that copper can retard the dynamic recrystallization (DRX) of austenite. The detrimental influence of copper on hot ductility of 20CrMnTi steel is due mainly to the fine copper sulfide in the steel and its retarding the DRX.

  17. Slurry Erosion Behavior of Destabilized and Deep Cryogenically Treated Cr-Mn-Cu White Cast Irons

    Directory of Open Access Journals (Sweden)

    S. Gupta

    2016-12-01

    Full Text Available The effects of destabilization treatment and destabilization followed by cryogenic treatment have been evaluated on the microstructural evolution and sand-water slurry erosion behavior of Cr-Mn-Cu white cast irons. The phase transformations after the destabilization and cryotreatment have been characterized by bulk hardness measurement, optical and scanning electron microscopy, x-ray diffraction analysis. The static corrosion rate has been measured in tap water (with pH=7 and the erosion-corrosion behavior has been studied by slurry pot tester using sand-water slurry. The test results indicate that the cryogenic treatment has a significant effect in minimizing the as-cast retained austenite content and transforming into martensitic and bainitic matrix embedded with ultra-fine M7C3 alloy carbides. In contrast, by conventional destabilization treatment retained austenite in the matrix are not fully eliminated. The slurry erosive wear resistance has been compared with reference to destabilized and cryotreated high chromium iron samples which are commonly employed for such applications. The cryotreated Cr-Mn-Cu irons have exhibited a comparable erosive wear performance to those of high chromium irons. Higher hardness combined with improved corrosion resistance result in better slurry erosion resistance.

  18. Effect of manganese and chromium on microstructure and toughness of Fe-Cr-Mn alloys resulting from solid-solution treatment

    International Nuclear Information System (INIS)

    Okazaki, Yoshimitsu; Miyahara, Kazuya; Wade, Noboru; Hosoi, Yuzo

    1989-01-01

    This study is aimed at making clear the effect of Mn and Cr on the microstructure and toughness of an Fe-Cr-Mn alloy which is considered as one of the candidate alloys for reduced activation materials for the first wall application of the fusion reactor. The microstructures of Fe-12% Cr-(5∼30)% Mn(mass%) alloys after solution treatment at 1373 K for 3.6 ks are markedly varied with Mn contents; α'(martensite) + δ(ferrite) in 5% Mn alloy, α' + δ + ε(martensite) + γ(austenite) in the 10% Mn alloy, α' + ε + γ in 15% Mn alloy, ε + γ in the 20% Mn alloy, and ε + γ +δ in the 25% Mn alloy, and γ + δ in the 30% Mn alloy. It is to be noted that the δ phase increases with increasing Mn content when the Fe-12% Cr alloy contains more than 25% Mn, which suggests that Mn plays the role of a ferrite former. In Fe-15% Mn-Cr alloy, the δ phase is not observed in the range of Cr contents up to 12%, whereas it is markedly increased with the addition of 16% Cr. C, N and Ni are very helpful in forming the γ phase in these alloys as generally known in Fe-Cr-Ni alloys. The toughness evaluated by the Charpy impact test at 273 K and room temperature is very low in the 5% Mn alloy which consists of the α' and δ phases. It is, however, significantly improved by a small amount of the γ phase and increases with increase of γ phase stability. (author)

  19. Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Poletti, Marco Gabriele, E-mail: marcogabriele.poletti@unito.it [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Fiore, Gianluca [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy); Szost, Blanka A. [Strategic and Emerging Technologies Team (TEC-TS), European Space Agency, ESTEC, 1 Keplerlaan, 2201 AZ Noordwijk (Netherlands); Battezzati, Livio [Dipartimento di Chimica, Università di Torino, Via P. Giuria 7, 10125 Torino (Italy)

    2015-01-25

    Highlights: • Composition of refractory high entropy alloys predicted. • Solid solutions found in VNbTaTiZr and AlNbTaTiZr. • Alloys containing Cr and Sn are multi-phased. - Abstract: High entropy alloys, i.e. solid solution phases, are sought in the X-NbTaTiZr equiatomic system where the X element was chosen as Al, Cr, V and Sn by applying recent criteria based on size and electronegativity mismatch of alloy components, number of itinerant and total valence electrons, and the temperature at which the free energy of mixing changes at the alloy composition. The alloys containing V and Al are mostly constituted by solid solutions in good agreement with prediction.

  20. Tuning martensitic transformation, large magnetoresistance and strain in Ni50-xFexMn36Sn14 Heusler alloys

    Science.gov (United States)

    Liao, Pan; Jing, Chao; Zheng, Dong; Li, Zhe; Kang, Baojuan; Deng, Dongmei; Cao, Shixun; Lu, Bo; Zhang, Jincang

    2015-09-01

    We have investigated the martensitic transformation, exchange bias, magnetoresistance (MR) and strain in Ni50-xFexMn36Sn14 (x=1, 2, 3, 4) Heusler alloys. With the increase of Fe content, the austenite phase could be stabilized with L21 structure and hence the martensitic transition shifts to a lower temperature and finally disappears. This behavior can be understood by the weakening of Ni-Mn hybridization to suppress AFM interactions and enhancement of Fe-Fe ferromagnetic exchange interactions. The same reason can account for the slight decrease of exchange bias field (HEB) with the increase of the Fe content from x=1 to 2 and the disappearance of HEB for x=3. We observed MR effect for x=3, and a maximum MR value of -52% was achieved, which can be explained by the change in the electronic structure during martensitic transformation induced by the magnetic field. In addition, a large strain of 0.207% in Ni49Fe1Mn36Sn14 was observed due to the changes of lattice parameters during the martensitic transformation induced by temperature.

  1. Effect of Mn on microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy

    Directory of Open Access Journals (Sweden)

    Zhao Zhihao

    2012-11-01

    Full Text Available In order to improve the performances of the Al-Mg-Si-Cu-Cr-V alloy, various amounts of Mn (0-0.9wt.% were added. The effect of this Mn on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloys in different states, especially after hot extrution and solid solution treatment, was systematically studied using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS, and mechanical tests at room temperature. The results show that 0.2wt.% Mn can both refine the as-cast microstructure of the alloy and strengthen the extrusion+T6 state alloy without damaging the plasticity badly due to the formation of Al15(FeMn3Si2 and Al15Mn3Si2 dispersoids. Compared with the extrusion+T6 state alloy without Mn addition, the ultimate tensile strength and yield strength of the alloy with 0.2wt.% Mn addition are increased from 416.9 MPa to 431.4 MPa, 360.8 MPa to 372 MPa, respectively. The elongation of the extrusion+T6 state alloy does not show obvious change when the Mn addition is less than 0.5wt.%, and for the alloy with 0.2wt.% Mn addition its elongation is still as high as 15.6%. However, when over 0.7wt.% Mn is added to the alloy, some coarse, stable and refractory AlVMn and Al(VMnSi phases form. These coarse phases can reduce the effect of Mn on the inhibition of re-crystallization; and they retain the angular morphology permanently after the subsequent deformation process and heat treatment. This damages the mechanical properties of the alloy.

  2. Effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels

    International Nuclear Information System (INIS)

    Kim, Jae Young; Park, Yong Soo; Kim, Young Sik

    1998-01-01

    This paper dealt with the effect of microstructure on the localized corrosion of Fe-Cr-Mn-N stainless steels. The experimental alloys were made by vacuum induction melting and then hot rolled. The alloys were designed by controlling Cr eq /Ni eq ratio. Two alloys had austenitic phase and one alloy showed (austenite+ferrite) du-plex phase. High nitrogen addition in austenitic alloys stabilized the austenitic structure and then suppressed the formations of ferrite and α martensite, but martensite was formed in the case of large Cr eq /Ni eq ratio and low nitrogen addition. Pitting initiation site was grain boundary in austenitic alloys and was ferrite/austenite phase boundary in duplex alloy in the HCl solution. In sulfuric acids, austenitic alloys showed uniform corrosion, but ferrite phase was preferentially corroded in duplex alloy. The preferential dissolution seems to be related with the distribution of alloying elements between ferrite and austenite. Intergranular corrosion test showed that corrosion rate by immersion Huey test had a linear relation with degree of sensitization by EPR test

  3. Effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tocci, Marialaura, E-mail: m.tocci@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy); Donnini, Riccardo, E-mail: riccardo.donnini@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Angella, Giuliano, E-mail: giuliano.angella@cnr.it [National Research Council of Italy (CNR), Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), Via R. Cozzi 53, 20125 Milan (Italy); Pola, Annalisa, E-mail: annalisa.pola@unibs.it [Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia (Italy)

    2017-01-15

    In the present paper the effect of heat treatment on an AlSi3Mg alloy with and without Cr and Mn addition was investigated. Beside the well-known modification of the morphology of Fe-containing intermetallics, it was found that Cr and Mn allowed the formation of dispersoids in the aluminium matrix after solution heat treatment at 545 °C, as shown by scanning transmission electron microscope observations. These particles were responsible of the enhanced Vickers microhardness of the aluminium matrix in comparison with the base alloy after solution treatment and quenching, according to dispersion hardening mechanism. The presence of these particles was not affected by ageing treatment, which instead allowed the precipitation of β-Mg{sub 2}Si, as shown by the elaboration of differential scanning calorimeter curves. The formation of dispersoids and the study of their effect on mechanical properties can represent an interesting development for applications at high temperatures of casting alloys due to their thermal stability compared to other strengthening phases as β-Mg{sub 2}Si. - Highlights: •Cr and Mn successfully modified the morphology of Fe-containing intermetallics. •Cr- and Mn-dispersoids formed in the aluminium matrix during solution treatment. •Dispersion hardening was detected after solution treatment for Cr-containing alloy. •The dispersion hardening effect was maintained after ageing treatment.

  4. Bouquet-Like Mn2SnO4 Nanocomposite Engineered with Graphene Sheets as an Advanced Lithium-Ion Battery Anode.

    Science.gov (United States)

    Rehman, Wasif Ur; Xu, Youlong; Sun, Xiaofei; Ullah, Inam; Zhang, Yuan; Li, Long

    2018-05-30

    Volume expansion is a major challenge associated with tin oxide (SnO x ), which causes poor cyclability in lithium-ion battery anode. Bare tin dioxide (SnO 2 ), tin dioxide with graphene sheets (SnO 2 @GS), and bouquet-like nanocomposite structure (Mn 2 SnO 4 @GS) are prepared via hydrothermal method followed by annealing. The obtained composite material presents a bouquet structure containing manganese and tin oxide nanoparticle network with graphene sheets. Benefiting from this porous nanostructure, in which graphene sheets provide high electronic pathways to enhance the electronic conductivity, uniformly distributed particles offer accelerated kinetic reaction with lithium ion and reduced volume deviation in the tin dioxide (SnO 2 ) particle during charge-discharge testing. As a consequence, ternary composite Mn 2 SnO 4 @GS showed a high rate performance and outstanding cyclability of anode material for lithium-ion batteries. The electrode achieved a specific capacity of about 1070 mA h g -1 at a current density of 400 mA g -1 after 200 cycles; meanwhile, the electrode still delivered a specific capacity of about 455 mA h g -1 at a high current density of 2500 mA g -1 . Ternary Mn 2 SnO 4 @GS material could facilitate fabrication of unique structure and conductive network as advanced lithium-ion battery.

  5. Forced volume magnetostriction in Mn3.3Sn0.7C compound at room temperature

    International Nuclear Information System (INIS)

    Wen Yongchun; Wang Cong; Sun Ying; Nie Man; Chu Lihua

    2010-01-01

    The negative volume magnetostriction in the external magnetic field for antiperovskite Mn 3.3 Sn 0.7 C compound is discovered. Its magnetic transition temperature from paramagnetism to ferrimagnetism is 348 K. The linear and volume magnetostrictions were investigated by measuring the change in length along the three-dimensional directions of the square samples at room temperature. Volume contraction was observed along all of the three directions throughout the whole magnetization. The value of volume magnetostriction is -44x10 -6 at 1.5 T. The magnetization saturates basically at 1.5 T, however the volume magnetostriction should be higher with further increase in magnetic field.

  6. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study

    Energy Technology Data Exchange (ETDEWEB)

    Pinakidou, Fani; Kaprara, Efthimia [Aristotle University of Thessaloniki, School of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece); Katsikini, Maria; Paloura, Eleni C.; Simeonidis, Konstantinos [Aristotle University of Thessaloniki, School of Physics, Department of Solid State Physics, 54124 Thessaloniki (Greece); Mitrakas, Manassis, E-mail: manasis@eng.auth.gr [Aristotle University of Thessaloniki, School of Chemical Engineering, Analytical Chemistry Laboratory, 54124 Thessaloniki (Greece)

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn{sub 6}O{sub 4}(OH){sub 4}) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn{sub 6}O{sub 4}(OH){sub 4} for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn{sub 6}O{sub 4}(OH){sub 4} can decrease Cr(VI) concentration below the upcoming regulation limit of 10 μg/L for drinking water. Moreover, an uptake capacity of 7.2 μg/mg at breakthrough concentration of 10 μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH){sub 3} precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO{sub 2}, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ({sup 2}C) and monodentate ({sup 1}V) geometries, at the expense of the present bidentate mononuclear ({sup 2}E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn{sub 6}O{sub 4}(OH){sub 4} in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the {sup 2}C and {sup 1}V configurations, which enhances the safe disposal of spent adsorbents. - Highlights: • Effective Cr(VI) removal from drinking water by Sn{sub 6}O{sub 4}(OH){sub 4} • Sn{sub 6}O{sub 4}(OH){sub 4} transformation to SnO{sub 2} after Cr

  7. Synthesis of LiMn2O4 and LiCr0.2Mn1.8O4 powders by modified Pechini process

    Directory of Open Access Journals (Sweden)

    Alexandre Urbano

    2009-03-01

    Full Text Available LiMn2O4 and LiCr0.2Mn1.8O4 powders were synthesized by Pechini process, modified in order to reduce the number of steps and to work at temperatures below or equal to 400oC. Both phases crystallize in the same spinel structure with lattice constants of 8.21 and 8.22 Å respectively. Although the annealing temperature was low, the cristallinity is good and no residual amounts of organic material were detected.

  8. Cross sections for the reactions 54Fe(n,α)51Cr, 54Fe(n,p)54Mn, and 56Fe(n,p)56Mn

    International Nuclear Information System (INIS)

    Paulsen, A.; Widera, R.; Arnotte, F.; Liskien, H.

    1979-01-01

    Ratios of cross sections for the reactions 54 Fe(n,α) 51 Cr, 54 Fe(n,p) 54 Mn, and 56 Fe(n,p) 56 Mn were measured by the activation technique. In the 6- to 10-MeV energy range, quasi-monoenergetic neutrons produced by the D(d,n) source reaction were used, while additional data were obtained between 12 and 17 MeV by use of the T(d,n) source reaction. The cross-section ratios have accuracies between 1.5 and 4.5%. 1 figure, 3 tables

  9. Wear Resistance of Steel 20MnCr5 After Surfacing with Micro-jet Cooling

    Directory of Open Access Journals (Sweden)

    Tarasiuk W.

    2016-09-01

    Full Text Available This paper presents results of experimental research concerning the impact of an innovative method of micro-jet cooling on the padding weld performed with MIG welding. Micro-jet cooling is a novel method patented in 2011. It enables to steer the parameters of weld cooling in a precise manner. In addition, various elements which may e.g. enhance hardness or alter tribological properties can be entered into its top surface, depending on the applied cooling gas. The material under study was steel 20MnCr5, which was subject to the welding process with micro-jet cooling and without cooling. Nitrogen was used as a cooling gas. The main parameter of weld assessment was wear intensity. The tests were conducted in a tribological pin-on-disc type position. The following results exhibit growth at approximately 5% in wear resistance of padding welds with micro-jet cooling.

  10. Evaluation of properties of low activation Mn-Cr steel. 3. Evaluation of corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Takahashi, Heishichiro [Hokkaido Univ., Sapporo, Hokkaido (Japan); Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-05-01

    JAERI and the Japan Steel Works LTD. (JSW) have developed new Mn-Cr steels as low induced activation material. Until now, chemical composition and metallurgical processes were optimized and some steels named VC-series were selected. The properties of the steels have been evaluated and reported elsewhere. In this study, corrosion resistance of VC-series was studied. Corrosion tests for stainless steels were performed to investigate a relationship between corrosion rate and chemical composition or sensitization. Furthermore, corrosion tests under actual environment for the vacuum vessel of the reinforced JT-60 were done for non-magnetic steels. As a result, almost no weight change was observed for uniform and gap corrosion tests, No crack was shown for double U-bend corrosion tests. (author)

  11. Evaluation of properties of low activation Mn-Cr steel. 1. Mechanical properties and weldability

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Fukaya, Kiyoshi; Ishiyama, Shintaro; Eto, Motokuni [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi; Takahashi, Heishichiro; Kikuchi, Mitsuru

    1999-10-01

    In JAERI, JT-60SU (Super Upgrade) program is discussed. In the design optimization activity of JT-60SU, it is required for vacuum vessel material to be highly strong, low activated and nonmagnetic. However, there is no suitable material to fulfill all the requirements. Therefore, JAERI started to develop a new material for vacuum vessel together with The Japan Steel Works LTD. (JSW). Chemical composition and production processes were optimized and a new Mn-Cr steel named VC9 with a non-magnetic single {gamma} phase was selected as a candidate material for vacuum vessel of JT-60SU. In this study, characterization of mechanical properties and weldability of VC9 were studied and the results were compared with those of 316L stainless steel. (author)

  12. Evaluation of properties of low activation Mn-Cr steel (2). Physical properties and aging properties

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Takahashi, Heishichiro [Hokkaido Univ., Sapporo (Japan); Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2000-08-01

    The JT-60SU (Super Upgrade) program is under discussion at JAERI. Its design optimization activity requires the vacuum vessel material to be non-magnetic, very strong and with low induced activation. However, there is no suitable material available to fulfill all the requirements. JAERI started to develop a new material for the vacuum vessel together with the Japan Steel Works LTD. (JSW). Chemical composition and metallurgical processes were optimized and a new steel named VC9, which has the composition of Cr :16wt%, Mn :15.5wt%, C :0.2wt%, N :0.2wt% with nonmagnetic single {gamma} phase, was selected as a candidate material. Here, physical properties and aging properties of VC9 were studied and the results were compared with those of 316L stainless steel. (author)

  13. Cryogenic deformation microstructures of 32Mn-7Cr-1Mo-0.3N austenitic steels

    International Nuclear Information System (INIS)

    Fu Ruidong; Qiu Liang; Wang Tiansheng; Wang Cunyu; Zheng Yangzeng

    2005-01-01

    The cryogenic deformation microstructures of impact and tensile specimens of 32Mn-7Cr-1Mo-0.3N austenitic steel were investigated using light microscopy and transmission electron microscopy. The results show that the deformation microstructures of the impact specimens are mainly composed of stacking faults, network dislocation, slip bands, and a few mechanical twins and ε-martensite. These microstructures cross with each other in a crystal angle. The deformation microstructures of the tensile specimens consist only of massive slip bands, in which a few mechanical twins and ε-martenite are located. Because of the larger plastic deformation the slip band traces become bent. All the deformation microstructures are formed on the {111} planes and along the orientation

  14. First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe

    International Nuclear Information System (INIS)

    Shi, Li Bin; Wang, Yong Ping; Dong, Hai Kuan

    2015-01-01

    Graphical abstract: - Highlights: • Cr, Mn and Fe doped graphene is more active to adsorb HCN molecule than pristine graphene. • The conductivity of Fe and Mn doped graphene hardly changes after adsorption HCN molecule. • The conductivity of Cr doped graphene can be affected significantly due to HCN adsorption. • The Cr, Mn and Fe may destroy the long range order in graphene. • Phonon density of states suggests that Cr doped graphene is stable. - Abstract: The adsorption energy, electronic structure, lattice vibration and magnetic properties of Cr, Mn and Fe doped graphene with and without HCN adsorption are investigated by the first principles based on density functional theory. The physisorption and chemisorption have been identified. In the paper, Cr-NG, Mn-NG and Fe-NG denote HCN adsorption on Cr, Mn and Fe doped graphene with N atom toward the adsorption site. It is found that the adsorption energy is −1.36 eV for Fe-NG, −0.60 eV for Mn-NG and −0.86 eV for Cr-NG. The Cr-NG will convert from half-metallic behavior to semiconductor after adsorbing HCN molecule, which indicates that the conductivity changes significantly. Phonon density of states (PDOS) shows that the long range order in graphene can be destroyed by doping Fe, Mn and Cr. The imaginary frequency mode in PDOS suggests that Fe and Mn doped graphene is unstable, while Cr doped graphene is stable. The electronic properties are sensitive toward adsorbing HCN, indicating that Cr doped graphene is a promising sensor for detecting HCN molecule. This study provides a useful basis for understanding of a wide variety of physical properties on graphene

  15. Sn(II) oxy-hydroxides as potential adsorbents for Cr(VI)-uptake from drinking water: An X-ray absorption study.

    Science.gov (United States)

    Pinakidou, Fani; Kaprara, Efthimia; Katsikini, Maria; Paloura, Eleni C; Simeonidis, Konstantinos; Mitrakas, Manassis

    2016-05-01

    The feasibility of implementing a Sn(II) oxy-hydroxide (Sn6O4(OH)4) for the reduction and adsorption of Cr(VI) in drinking water treatment was investigated using XAFS spectroscopies at the Cr-K-edge. The analysis of the Cr-K-edge XANES and EXAFS spectra verified the effective use of Sn6O4(OH)4 for successful Cr(VI) removal. Adsorption isotherms, as well as dynamic Rapid Small Scale Test (RSSCT) in NSF water matrix showed that Sn6O4(OH)4 can decrease Cr(VI) concentration below the upcoming regulation limit of 10μg/L for drinking water. Moreover, an uptake capacity of 7.2μg/mg at breakthrough concentration of 10μg/L was estimated from the RSSCT, while the residual Cr(VI) concentration ranged at sub-ppb level for a significant period of the experiment. Furthermore, no evidence for the formation of Cr(OH)3 precipitates was found. On the contrary, Cr(III)-oxyanions were chemisorbed onto SnO2, which was formed after Sn(II)-oxidation during Cr(VI)-reduction. Nevertheless, changes in the type of Cr(III)-inner sphere complexes were observed after increasing surface coverage: Cr(III)-oxyanions preferentially sorb in a geometry which combines both bidentate binuclear ((2)C) and monodentate ((1)V) geometries, at the expense of the present bidentate mononuclear ((2)E) contributions. On the other hand, the pH during sorption does not affect the adsorption mechanism of Cr(III)-species. The implementation of Sn6O4(OH)4 in water treatment technology combines the advantage of rapidly reducing a large amount of Cr(VI) due to donation of two electrons by Sn(II) and also the strong chemisorption of Cr(III) in a combination of the (2)C and (1)V configurations, which enhances the safe disposal of spent adsorbents. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pressure dependence of resistivity and magnetic properties in a Mn1.9Cr0.1Sb alloy

    Directory of Open Access Journals (Sweden)

    D. V. Maheswar Repaka

    2017-12-01

    Full Text Available We report magnetic-field and hydrostatic pressure dependent electrical resistivity and magnetic properties of a Mn1.9Cr0.1Sb alloy. Upon cooling, the magnetization of Mn1.9Cr0.1Sb exhibits a first-order ferrimagnetic to antiferromagnetic transition at the exchange inversion temperature, TS = 261 K under a 0.1 T magnetic field. Our experimental results show that TS decreases with increasing magnetic field but increase with increasing hydrostatic pressure. The pressure induced transition is accompanied by a large positive baro-resistance of 30.5% for a hydrostatic pressure change of 0.69 GPa. These results show that the lattice parameters as well as the bond distance between Mn-Mn atoms play a crucial role in the magnetic and electronic transport properties of Mn1.9Cr0.1Sb. This sample also exhibits a large inverse magnetocaloric effect with a magnetic entropy change of ΔSm = +6.75 J/kg.K and negative magnetoresistance (44.5% for a field change of 5 T at TS in ambient pressure which may be useful for magnetic cooling and spintronics applications.

  17. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    NARCIS (Netherlands)

    Stoll, M.; Bakker, J. M.; Steimle, T. C.; Meijer, G.; Peters, A.

    2008-01-01

    We report on the buffer- gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 10(6) cm(-3) at a temperature of 650 mK. Storage times of up to 180 ms have been observed, corresponding to a 20- fold lifetime enhancement with respect to the

  18. Experimental and theoretical study of the electronic and magnetic structures of Mn1-xCr xAu2

    International Nuclear Information System (INIS)

    Hsu, L.-S.; Murakawa, T.; Fujiwara, H.; Sekiyama, A.; Suga, S.; Imada, S.; Yano, M.; Miyamachi, T.; Higashimichi, H.; Yamaguchi, J.; Funabashi, G.; Yabashi, M.; Ishikawa, T.; Higashiya, A.

    2007-01-01

    X-ray photoemission spectra of Mn 1-x Cr x Au 2 (x = 0, 0.05, and 0.13) are presented and compared with theoretical total and partial density of state (DOS) curves. Site- and spin-decomposed partial DOS and magnetism of these materials are also discussed

  19. Determination of Cr, Mn, Si, and Ni in carbon steels by optical emission spectrometry with spark source

    International Nuclear Information System (INIS)

    Garcia Gonzalez, M.A.; Pomares Alfonso, M.; Mora Lopez, L.

    1995-01-01

    Elemental composition of steels determines some important of his characteristic moreover it is necessary to obtain their quality certification. Analytical procedure has performed for determination of Cr, Mn, Si and Ni in carbon steels by optical emission spectrometry with spark source. reproducibility of results is 5-11 %. Exactitude has tested with results that have obtained by internationally recognised methods-

  20. Determination of chemical activities of Fe, Cr, Ni and Mn in stainless steel 316 by Knudsen effusion cell mass spectrometry

    International Nuclear Information System (INIS)

    Venugopal, V.; Kulkarni, S.G.; Subbanna, C.S.; Sood, D.D.

    1995-01-01

    Cold-worked austenitic stainless steel of the type AISI 316 is being used as the cladding and wrapper materials in fast reactor fuel pins. Knowledge of the thermodynamic activities of the steel constituents is necessary to predict the possibility of fuel-cladding, coolant-cladding or fission product-cladding chemical reactions. The thermodynamic activities of Fe, Cr, Ni and Mn for stainless steel 316 were determined by measuring their partial pressures in the temperature range 1293-2120 K, using Knudsen effusion cell mass spectrometry. High purity Ag was used as an internal calibrant. The chemical activities of Fe (a Fe ), Cr (a Cr ), Ni (a Ni ) and Mn (a Mn ) were evaluated using literature data for the vapour pressures of pure metals. log a Fe ±0.18=-1.586+2074/T (T=1293-1872 K)log a Cr ±0.30=-2.350+2612/T (T=1293-2120 K)log a Ni ±0.20=-2.140+1794/T (T=1468-1974 K)log a Mn ±0.23=-2.041-5478/T (T=1302-1894 K) ((orig.))

  1. Inhomogeneous distribution of manganese atoms in ferromagnetic ZnSnAs{sub 2}:Mn thin films on InP revealed by three-dimensional atom probe investigation

    Energy Technology Data Exchange (ETDEWEB)

    Uchitomi, Naotaka, E-mail: uchitomi@nagaokaut.ac.jp; Inoue, Hiroaki; Kato, Takahiro; Toyota, Hideyuki [Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Uchida, Hiroshi [Toshiba Nanoanalysis Corporation, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8522 (Japan)

    2015-05-07

    Atomic-scale Mn distributions in ferromagnetic ZnSnAs{sub 2}:Mn thin films grown on InP substrates have been studied by applying three-dimensional atom probe (3DAP) microscopy. It is found that Mn atoms in cross-sectional 3DAP maps show the presence of inhomogeneities in Mn distribution, which is characteristic patterns of a spinoidal decomposition phase with slightly high and low concentration regions. The high Mn concentration regions are expected to be coherently clustered MnAs in the zinc-blende structure, resulting in the formation of Mn-As random connecting patterns. The origin of room-temperature ferromagnetism in ZnSnAs{sub 2}:Mn on InP can be well explained by the formation of atomic-scale magnetic clustering by spinoidal decomposition without breaking the continuity of the zinc-blende structure, which has been suggested by previous theoretical works. The lattice-matching between magnetic epi-layers and substrates should be one of the most important factors to avoid the formation of secondary hexagonal MnAs phase precipitates in preparing ferromagnetic semiconductor thin films.

  2. Effect of Mn on σ Phase and Toughness of 22%Cr Duplex Stainless Steel by Aging Treatment at 700℃

    Directory of Open Access Journals (Sweden)

    BAI Yu-liang

    2017-05-01

    Full Text Available The effect of different Mn contents on the σ phase and toughness of 22%Cr (mass fraction, the same below low-nickel DSS by means of OM, XRD, SEM, TEM, precipitation kinetics and Charpy impact tests was studied. The results show that the morphology of precipitated phases changes from tiny granulated σ phase in δ/γ phase boundary to σ/γ2 eutectoid structure within δ phase with the addition of Mn from 4.3% to 9.7% and 76 hours aging. The increase of Mn content can decrease Avrami exponent n and increase reaction constant B, and the accelerating of σ-phase precipitation with higher Mn addition is due to the participation of Mn. Increasing Mn content can make initial time and ending time of σ-phase precipitation earlier and expand the interval between the initial time and ending time of σ-phase precipitation, that is, the more Mn addition, the earlier precipitation beginning time of σ-phase and the lower precipitation rate of it. The impact toughness is not sensitive to 1% transformation fraction of δ-ferrite, but it drops rapidly while the transformation fraction of δ-ferrite increases from 1% to 5%. More addition of Mn is good to impact toughness at the early stage of aging treatment, but the impact toughness decreases rapidly by accelerating the transformation fraction of δ-ferrite more than 1% earlier at the middle stage of aging time.

  3. Generalized Synthesis of EAs [E = Fe, Co, Mn, Cr] Nanostructures and Investigating Their Morphology Evolution

    Directory of Open Access Journals (Sweden)

    P. Desai

    2015-01-01

    Full Text Available This paper illustrates a novel route for the synthesis of nanostructured transition metal arsenides including those of FeAs, CoAs, MnAs, and CrAs through a generalized protocol. The key feature of the method is the use of one-step hot-injection and the clever use of a combination of precursors which are low-melting and highly reactive such as metal carbonyls and triphenylarsine in a solventless setup. This method also facilitates the formation of one-dimensional nanostructures as we move across the periodic table from CrAs to CoAs. The chemical basis of this reaction is simple redox chemistry between the transition metals, wherein the transition metal is oxidized from elemental state (E0 to E3+in lieu of reduction of As3+ to As3−. While the thermodynamic analysis reveals that all these conversions are spontaneous, it is the kinetics of the process that influences morphology of the product nanostructures, which varies from extremely small nanoparticles to nanorods. Transition metal pnictides show interesting magnetic properties and these nanostructures can serve as model systems for the exploration of their intricate magnetism as well as their applications and can also function as starting materials for the arsenide based nanosuperconductors.

  4. OPTIMIZATION OF STEEL SATURATION PROCESSES USING CARBIDE-FORMING ELEMENTS IN SYSTEMS BASED ON Cr-Ti-V AND Cr-Ti-Mn

    Directory of Open Access Journals (Sweden)

    A. A. Shmatov

    2007-01-01

    Full Text Available Optimization of saturating mixture compositions has been carried out in two three-component systems, namely: Cr-Ti-V and Cr-Ti-Mn in respect of micro-hardness and wear resistance of carbide coatings obtained by thermo-chemical treatment of high carbon steel. «Composition - properties» diagrams have been plotted using mathematical models. Treatment with optimum compositions of powder media permits to increase wear resistance of steel by factor of 30-70 as compared with untreated steel. 

  5. Study of the structural and magnetic properties and gallium exchange phenomenon in a Mn-Ga alloy doped by Cr during the milling and annealing process

    Energy Technology Data Exchange (ETDEWEB)

    Fariba, Nazari; Mohsen, Hakimi, E-mail: hakimi.m@yazd.ac.ir; Hossein, Mokhtari; Mohsen, Khajeh Aminian

    2015-05-15

    The effect of milling and annealing process on Cr doped Mn{sub 3}Ga nanocrystallite has been investigated. Phase determination analysis shows that Ga turning to get out of Mn-Ga structure and tend to make bonding to Cr and form Cr{sub 3}Ga{sub 4} product during milling process. Annealing of the new phases lead to decomposition of Cr{sub 3}Ga{sub 4} and formation of a new Mn-Ga phase in reverse direction, in the other words diffusion of Ga atoms occurs from Cr{sub 3}Ga{sub 4} to Mn phase and α-Mn and Cr{sub 3}Ga{sub 4} change to Mn{sub 3}Ga{sub 2} and Cr phases. The variation of coersivity, magnetization and magnetic state of different samples was explained according to the crystallite size of the present phases and grain boundary effects. It was also confirmed that formation of Mn-Cr clusters plays an important role in increase of saturation magnetization.

  6. Synthesis and structural stability of Cr-doped Li2MnSiO4/C cathode materials by solid-state method

    Science.gov (United States)

    Cheng, Hong-Mei; Zhao, Shi-Xi; Wu, Xia; Zhao, Jian-Wei; Wei, Lei; Nan, Ce-Wen

    2018-03-01

    The crystal structure of the Li2MnSiO4 cathode material would collapse during the charge and discharge process because of that the Mn-O coordination polyhedron changed from [MnO4] into [MnO6] in the process of Mn+2 to Mn+4, but the Cr element could remain [CrO4] crystal ligand from Cr+2 to Cr+4, so Cr element substitution was used to improve the structural stability of the Li2MnSiO4 cathode material. In this work, Li2Mn1-xCrxSiO4/C nanocomposites were synthesized by solid-state method. XRD, SEM and TEM observations show that the as-prepared Li2Mn1-xCrxSiO4/C materials presents an orthorhombic crystal structure (S.G. Pmn21), the particle size of Li2Mn1-xCrxSiO4/C powder ranges from 50 to 100 nm. The XRD and XPS results indicate that Cr+2 is successfully doped into Li2MnSiO4 lattice and has well compatibility with Li2MnSiO4. The electrochemical results display that Li2Mn92.5%Cr7.5%SiO4/C exhibits significantly enhanced cycle stability and discharge capability. The initial discharge capacity of the Li2Mn92.5%Cr7.5%SiO4/C sample is 255 mAh g-1, and the discharge capacity was still about 60 mAh g-1 after 50 cycles. Furthermore, the XRD patterns, TEM images and Raman analysis reveal that the Cr doping enhances the structural stability of Li2Mn1-xCrxSiO4/C and improves the electrochemical activity of the cathode. Thus, the Li2Mn92.5%Cr7.5%SiO4/C have shown potential applications for lithium ion batteries.

  7. Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe{sub 2}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Batuk, Dmitry, E-mail: Dmitry.batuk@ua.ac.be [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp (Belgium); De Dobbelaere, Christopher [Inorganic and Physical Chemistry Group, Hasselt University, Institute for Materials Research, Agoralaan Building D, B-3590, Diepenbeek (Belgium); Tsirlin, Alexander A. [National Institute of Chemical Physics and Biophysics, 12618, Tallinn (Estonia); Abakumov, Artem M. [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp (Belgium); Hardy, An; Van Bael, Marlies K. [Inorganic and Physical Chemistry Group, Hasselt University, Institute for Materials Research, Agoralaan Building D, B-3590, Diepenbeek (Belgium); IMEC vzw, Division IMOMEC, Agoralaan Building D, B-3590, Diepenbeek (Belgium); Greenblatt, Martha [Department of Chemistry and Chemical Biology, Rutgers, State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey, 08854-8087 (United States); Hadermann, Joke [Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp (Belgium)

    2013-09-01

    Graphical abstract: - Highlights: • The substitution of Cr for Mn in BiMnFe{sub 2}O{sub 6} is possible by the solution–gel method. • The BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} solid solution is obtained for the x values up to 0.3. • Increasing Cr content lowers the temperature of the antiferromagnetic ordering. - Abstract: We report the Cr{sup 3+} for Mn{sup 3+} substitution in the BiMnFe{sub 2}O{sub 6} structure. The BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} solid solution is obtained by the solution–gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe{sub 2}O{sub 6} structure (for x = 0.3, a = 5.02010(6)Å, b = 7.06594(7)Å, c = 12.6174(1)Å, S.G. Pbcm, R{sub I} = 0.036, R{sub P} = 0.011) with only a slight decrease in the cell parameters associated with the Cr{sup 3+} for Mn{sup 3+} substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCr{sub x}Mn{sub 1−x}Fe{sub 2}O{sub 6} (x = 0.2; 0.3) and parent BiMnFe{sub 2}O{sub 6}. Only T{sub N} slightly decreases upon Cr doping that indicates a very subtle influence of Cr{sup 3+} cations on the magnetic properties at the available substitution rates.

  8. The effect of Pd on martensitic transformation and magnetic properties for Ni50Mn38−xPdxSn12Heusler alloys

    Directory of Open Access Journals (Sweden)

    C. Jing

    2016-05-01

    Full Text Available In the past decade, Mn rich Ni-Mn based alloys have attained considerable attention due to their abundant physics and potential application as multifunctional materials. In this paper, polycrystalline Ni50Mn38−xPdxSn12 (x = 0, 2, 4, 6 Heusler alloys have been prepared, and the martensitic phase transformation (MPT together with the shape memory effect and the magnetocaloric effect has been investigated. The experimental result indicates that the MPT evidently shifts to a lower temperature with increase of Pd substitution for Mn atoms, which can be attributed to the weakness of the hybridization between the Ni atom and excess Mn on the Sn site rather than the electron concentration. The physics properties study focused on the sample of Ni50Mn34Pd4Sn12 shows a good two-way shape memory behavior, and the maximum value of strain Δ L/L reaches about 0.13% during the MPT. The small of both entropy change Δ ST and magnetostrain can be ascribed to the inconspicuous influence of magnetic field induced MPT.

  9. Mn-Cr dating of Fe- and Ca-rich olivine from 'quenched' and 'plutonic' angrite meteorites using Secondary Ion Mass Spectrometry

    Science.gov (United States)

    McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter

    2015-05-01

    Angrite meteorites are suitable for Mn-Cr relative dating (53Mn decays to 53Cr with a half life of 3.7 Myr) using Secondary Ion Mass Spectrometry (SIMS) because they contain olivine and kirschsteinite with very high 55Mn/52Cr ratios arising from very low Cr concentrations. Discrepant Mn-Cr and U-Pb time intervals between the extrusive or 'quenched' angrite D'Orbigny and some slowly cooled or 'plutonic' angrites suggests that some have been affected by secondary disturbances, but this seems to have occurred in quenched rather than in slow-cooled plutonic angrites, where such disturbance or delay of isotopic closure might be expected. Using SIMS, we investigate the Mn-Cr systematics of quenched angrites to higher precision than previously achieved by this method and extend our investigation to non-quenched (plutonic or sub-volcanic) angrites. High values of 3.54 (±0.18) × 10-6 and 3.40 (±0.19) × 10-6 (2-sigma) are found for the initial 53Mn/55Mn of the quenched angrites D'Orbigny and Sahara 99555, which are preserved by Cr-poor olivine and kirschsteinite. The previously reported initial 53Mn/55Mn value of D'Orbigny obtained from bulk-rock and mineral separates is slightly lower and was probably controlled by Cr-rich olivine. Results can be interpreted in terms of the diffusivity of Cr in this mineral. Very low Cr concentrations in Ca-rich olivine and kirschsteinite are probably charge balanced by Al; this substitutes for Si and likely diffuses at a very slow rate because Si is the slowest-diffusing cation in olivine. Diffusion in Cr-rich Mg-Fe olivine is probably controlled by cation vacancies because of deficiency in charge-balancing Al and is therefore more prone to disturbance. The higher initial 53Mn/55Mn found by SIMS for extrusive angrites is more likely to reflect closure of Cr in kirschsteinite at the time of crystallisation, simultaneous with closure of U-Pb and Hf-W isotope systematics for these meteorites obtained from pyroxenes. For the younger

  10. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    International Nuclear Information System (INIS)

    Schuon, S.R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life

  11. Kondo effect and spin-glass freezing of the magnetic impurities Cr, Mn, and Fe in superconducting palladium hydride

    International Nuclear Information System (INIS)

    van Dongen, J.C.M.; van Dijk, D.; Mydosh, J.A.

    1981-01-01

    Through low-field ac susceptibility measurements we have determined the depression of the superconducting transition temperature T/sub c/ in palladium hydride (T/sub c/0 = 9.3 K) as a function of impurity concentration x for Cr, Mn, and Fe. For Cr and Fe similar values for the initial T/sub c/ depression were found, i.e., -150 K/at. % Cr and -145 K/at. % Fe. From resistivity experiments we are able to estimate the Kondo temperatures T/sub K/, i.e., T/sub K/approx. =10 K for Cr and T/sub K/approx. =5 K for Fe. Since i.e., T/sub K/approx. =10 K for Cr and T/sub K/approx. =5 K for Fe. Since systems exhibits an enhanced pair breaking as described by the theory of Mueller-Hartmann and Zittartz. In contrast, for Mn the initial T/sub c/ depression is -21 K/at. % and T/sub K/<< T/sub c/0, as can be concluded from our resistivity measurements. This means that Mn in PdH exhibits a temperature-independent pair breaking of the Abrikosov and Gor'kov type. However, at larger Mnx values a shoulder appears in T/sub c/(x). We interpret this enhanced superconductivity, according to the theory of Soukoulis and Grest, as being due to the onset of time correlations and short-range antiferromagnetic ordering between the Mn moments. These interaction effects are a precursor to the spin-glass freezing at a lower temperature T/sub f/. Our results suggest a favorable coexistance of superconductivity with the spin-glass state

  12. Effect of Mn doping on the structural, magnetic, optical and electrical properties of ZrO_2–SnO_2 thin films prepared by sol–gel method

    International Nuclear Information System (INIS)

    Anitha, V.S.; Sujatha Lekshmy, S.; Joy, K.

    2016-01-01

    Manganese doped ZrO_2–SnO_2 (ZrO_2–SnO_2: Mn) nanocomposite thin films were prepared using sol – gel dip coating technique. The structural, morphological, magnetic, optical and electrical properties of the films were studied for undoped and different (15 mol %) manganese doping concentrations. X-ray diffraction pattern (XRD) of films showed the formation of tetragonal phase of SnO_2 and orthorhombic ZrSnO_4. Decrease in crystallinity with increase of Mn concentration was observed for the films. Scanning electron microscopy (SEM) showed the formation of grain growth with an increase in Mn concentration. X-ray photo electron spectroscopy (XPS) confirmed the presence of Zr"4"+, Sn"4"+ and Mn"2"+ ion in ZrO_2–SnO_2: Mn films. Vibrating sample magnetometer (VSM) measurements reveal the presence of magnetic properties in Mn doped nanocomposite thin films. Antiferromagnetic interactions were observed for 5 mol % Mn doping. An average transmittance >80% (UV - Vis region) was observed for all the films. Band gap of the films decreased from 4.78 to 4.41 eV with increase in Mn concentration. Photoluminescence (PL) spectra of the films exhibited emission peaks in visible region of the electromagnetic spectra. Conductivity of the film increased up to 3 mol % Mn doping and then decreased. - Highlights: • ZrO_2–SnO_2: Mn films were deposited onto quartz substrates by Sol –Gel dip coating. • Structural, magnetic, optical and electrical properties of the films were analyzed. • Optical band gap decreased with increase in manganese concentration. • Ferromagnetic behavior was observed for Mn doped films. • These ferromagnetic ZrO_2–SnO_2: Mn films find application in spintronic devices.

  13. Mössbauer study of oxide films of Fe-, Sn-, Cr- doped zirconium alloys during corrosion in autoclave

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. P., E-mail: vpfilippov@mephi.ru; Bateev, A. B.; Lauer, Yu. A. [National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    Mössbauer investigations were used to compare iron atom states in oxide films of binary Zr-Fe, ternary Zr-Fe-Cu and quaternary Zr-Fe-Cr-Sn alloys. Oxide films are received in an autoclave at a temperature of 350–360 °C and at pressure of 16.8 MPa. The corrosion process decomposes the intermetallic precipitates in alloys and forms metallic iron with inclusions of chromium atoms α–Fe(Cr), α–Fe(Cu), α–Fe {sub 2}O{sub 3} and Fe {sub 3}O{sub 4} compounds. Some iron ions are formed in divalent and in trivalent paramagnetic states. The additional doping influences on corrosion kinetics and concentration of iron compounds and phases formed in oxide films. It was shown the correlation between concentration of iron in different chemical states and corrosion resistance of alloys.

  14. First-principle investigations of the magnetic properties and possible martensitic transformation in Ni2MnX (X=Al, Ga, In, Si, Ge and Sn)

    International Nuclear Information System (INIS)

    Wang, Wei; Gao, She-Sheng; Meng, Yang

    2014-01-01

    The magnetic and electronic properties of Ni 2 MnX (X=Al, Ga, In, Si, Ge and Sn) Heusler alloys have been studied by using the first-principle projector augmented wave potential within the generalized gradient approximation. The possible non-modulated martensitic transformation in these six alloys has been investigated. Both austenitic and martensitic Ni 2 MnX (X=Al, Ga, In, Si, Ge and Sn) Heusler alloys are found to be ferromagnets. In martensitic phase, the energies minimum occurs at c/a=0.99 for Ni 2 MnX (X=Al, In, Ge and Sn), and the energy minimum occurs at c/a=1.02 for Ni 2 MnSi. But there is a negligible energy difference ΔE (<6 meV/cell) between the austenitic and martensitic phases for each alloy. Meanwhile, around c/a=1, an anomaly is observed in the E-c/a curve, which is related to a very slightly tetragonal distortion trend in Ni 2 MnX (X=Al, In, Si, Ge and Sn). The energy difference ΔE between the austenitic and martensitic phases for Ni 2 MnGa is as large as 99 meV/cell, so it is more likely to realize martensitic transformation in it. - Highlights: • Both austenitic and martensitic Ni 2 MnX alloys are found to be ferromagnets. • The energy difference between the martensitic and austenitic phases is negligible. • The total moment in martensitic phase is close to corresponding to austenitic phase

  15. The electronic structure and ferromagnetism of TM (TM=V, Cr, and Mn)-doped BN(5, 5) nanotube: A first-principles study

    International Nuclear Information System (INIS)

    He, K.H.; Zheng, G.; Chen, G.; Wan, M.; Ji, G.F.

    2008-01-01

    We study the electronic structure and ferromagnetism of V-, Cr-, and Mn-doped single-wall BN(5, 5) nanotube by using polarized spin calculations within first principles. The optimized structures show that the transition-metal atoms move outwards and the calculated electronic properties demonstrate that the isolated V-, Cr-, and Mn-doped BN(5, 5) nanotubes show half-metallicity. The total ferromagnetic moments are 2μ B , 3.02μ B , and 3.98μ B for V-, Cr-, and Mn-doped BN(5, 5), respectively. The study suggests that such transition-metal (TM)-doped nanotubes may be useful in spintronics and nanomagnets

  16. Flower-, wire-, and sheet-like MnO2-deposited diatomites: Highly efficient absorbents for the removal of Cr(VI).

    Science.gov (United States)

    Du, Yucheng; Wang, Liping; Wang, Jinshu; Zheng, Guangwei; Wu, Junshu; Dai, Hongxing

    2015-03-01

    Flower-, wire-, and sheet-like MnO2-deposited diatomites have been prepared using a hydrothermal method with Mn(Ac)2, KMnO4 and/or MnSO4 as Mn source and diatomite as support. Physical properties of the materials were characterized by means of numerous analytical techniques, and their behaviors in the adsorption of chromium(VI) were evaluated. It is shown that the MnO2-deposited diatomite samples with different morphologies possessed high surface areas and abundant surface hydroxyl groups (especially the wire-like MnO2/diatomite sample). The wire-like MnO2/diatomite sample showed the best performance in the removal of Cr(VI), giving the maximum Cr(VI) adsorption capacity of 101 mg/g. Copyright © 2014. Published by Elsevier B.V.

  17. The effects of small metal additions (Co, Cu, Ga, Mn, Al, Bi, Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy

    Czech Academy of Sciences Publication Activity Database

    Shull, R. D.; Provenzano, V.; Shapiro, A. J.; Fu, A.; Lufaso, M. W.; Karapetrova, J.; Kletetschka, Günther; Mikula, V.

    2006-01-01

    Roč. 99, č. 8 (2006), s. 8-8 ISSN 0021-8979 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetocaloric * (Co, Cu, Ga, Mn, Al, Bi, Sn) additions * Cryogenic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.316, year: 2006

  18. Spin-resolved photoelectron spectroscopy of Mn{sub 6}Cr single-molecule-magnets and of manganese compounds as reference layers

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas; Gryzia, Aaron; Dohmeier, Niklas; Mueller, Norbert; Brechling, Armin; Sacher, Marc; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University (Germany); Hoeke, Veronika; Glaser, Thorsten [Faculty of Chemistry, Bielefeld University (Germany); Fonin, Mikhail; Ruediger, Ulrich [Department of Physics, University of Konstanz (Germany); Neumann, Manfred [Department of Physics, Osnabrueck University (Germany)

    2011-07-01

    The properties of the manganese-based single-molecule-magnet (SMM) Mn{sub 6}Cr are studied. This molecule exhibits a large spin ground state of S{sub T}=21/2. It contains six manganese centres arranged in two bowl-shaped Mn{sub 3}-triplesalen building blocks linked by a hexacyanochromate. The Mn{sub 6}Cr complex can be isolated with different counterions which compensate for its triply positive charge. The spin polarization of photoelectrons emitted from the manganese centres in Mn{sub 6}Cr SMM after resonant excitation with circularly polarized synchrotron radiation has been measured at selected energies corresponding to the prominent Mn L{sub 3}VV and L{sub 3}M{sub 2,3}V Auger peaks. Spin-resolved photoelectron spectra of the reference substances MnO, Mn{sub 2}O{sub 3} and Mn(II)acetate recorded after resonant excitation at the Mn-L{sub 3}-edge around 640eV are presented as well. The spin polarization value obtained from MnO at room temperature in the paramagnetic state is compared to XMCD measurements of Mn(II)-compounds at 5K and a magnetic field of 5T.

  19. Reentrant behavior in Cr doped bilayer manganite LaSr{sub 2}Mn{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, S.N., E-mail: snbhatia@phy.iitb.ac.in; Mohapatra, Niharika

    2017-07-15

    Highlights: • The FM and the AFM states merge into each other thereby creating an inhomogeneous state. • Cr{sup 3+} creates ferromagnetic moments which behave like FM relaxors. • Electric conduction takes via hopping of small polaron and not by variable range hopping of these polarons. - Abstract: We have studied the effect of replacing Mn{sup 3+} by Cr{sup 3+} on the structure, transport and magnetism in the bilayered manganite LaSr{sub 2}Mn{sub 2}O{sub 7}. Although no structural transition was observed in LaSr{sub 2}Mn{sub 2−y}Cr{sub y}O{sub 7} (0.1 ≤ y ≤ 0.6), the electrical transport and the magnetic properties were found to be affected significantly by this substitution. Substitution of Cr{sup 3+} reduces the conductivity by restricting the hopping of small polarons. Magnetization increases with increasing Cr{sup 3+} concentration suggesting that Cr{sup 3+}-ions induce ferromagnetic moments. The ferromagnetic and an antiferromagnetic phase observed above ∼60 K merge into an inhomogeneous phase below this temperature. Thermopower yields an essentially concentration independent charge density nearly equal to its value for chromium free composition inspite of its expected decrease with this substitution suggesting that the small charge density of the insulating AFM phase is supplemented by the free carriers in the FM phase. The inhomogeneous phase shows a relaxor type behavior which contrasts with the spin glass behavior seen in La{sub 0.46}Sr{sub 0.54}Mn{sub 0.98}Cr{sub 0.02}O{sub 3} having an identical AFM magnetic state. The difference is attributed to the non-JT character of Cr-ions which reduce the distortion of the Mn−O octahedra located within the FM domains. With a higher lattice strain in the surrounding AFM matrix the carriers remain confined within the FM domains leading to the relaxor type behavior.

  20. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (Ni, Mn, Pb, Fe, Zn, Cr)

    International Nuclear Information System (INIS)

    Hormozi Nejad, F.; Rastmanesh, F.; Zarasvandi, A.

    2016-01-01

    The highest concentrations were found at soil samples 4 and 12. Comparison of heavy metals concentration with unpolluted soil standard indicated that, concentrations of Cr, Zn, Fe, Ni and Pb is higher than that of unpolluted soil standard. In general, Manganese, Chromium, Zinc and Lead are the most important elements that are found in emissions of steel plants. The soil samples near the steel plant and downwind direction have much higher pollution level. The results showed that Mn, Pb and Zn is related to human activity and Cr have geogenic source and Fe and Ni have both geogenic and anthropogenic source in the study area in the city of Ahwaz.

  1. Shape memory effect of Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals

    International Nuclear Information System (INIS)

    Inagaki, Hirosuke

    1992-01-01

    Factors affecting the shape memory effect in Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals were studied in detail. It was found that the shape memory effect in this alloy was most influenced by the amount of deformation. With increasing amount of deformation, the shape memory effect diminished appreciably. Although the fraction of the initial dimensional change that could be restored was about 45% in the specimen strained by 4%, only 21% of the initial dimensional change was recovered in the specimen strained by 9%. Temperatures of deformation were found to be also an important factor that affected the shape memory effect. The maximum shape memory effect was observed in the specimens strained at temperatures between the M s and M d temperatures. In this alloy, however, specimens strained at temperatures below the M s temperature indicated a relatively large shape memory effect, too. It was further found that the shape memory effect was appreciably intensified by repeated straining and annealing, especially when straining was performed at 500deg C. It was suggested that the shape memory effect in Fe base alloys was strongly influenced by the dislocation substructure present in the starting material. (orig.) [de

  2. Identification of Precipitates in Cr-Mn-N Based Steel After Thermal Exposures

    Directory of Open Access Journals (Sweden)

    Ondruška Michal

    2014-06-01

    Full Text Available The paper deals with the identification of precipitates in the Cr-Mn-N steels after thermal exposure. The purpose of the study is to clarify the M2N precipitation by isothermal annealing at the temperatures of 750 and 900 °C with a holding time of 5, 10, 30 min, 1 hr. and 10 hrs. Microstructure of austenitic steel was characterised by the typical presence of annealing twins. Stepwise etching was observed at the holding time of 5 and 10 minutes, but at the holding time of 30 minutes, secondary particles were precipitated at the grain boundaries. Corrosion tests revealed that holding time significantly affected steel structure. M2N is the dominant precipitate, but the occurrence of σ-phase was occasionally observed especially at the interface of discontinuous precipitation and austenitic matrix. Slight increase of hardness at the grain boundaries was caused due to the precipitation of secondary phases during isothermal holding. The maximum hardness of 294 HV was measured on the sample isothermally annealed at 750 °C and holding for 10 hrs. The research provides theoretical basis for the heat affecting of steels, such as, for example, in welding.

  3. Thermomechanical behavior of Fe-Mn-Si-Cr-Ni shape memory alloys modified with samarium

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad

    2009-01-01

    The deformation and training behavior of Fe-14Mn-3Si-10Cr-5Ni (wt.%) shape memory alloys containing samarium addition has been studied in the iron-based shape memory alloys. It is noticed that thermomechanical treatment (training) has significant influence on proof stress, critical stress and shape memory behavior of the alloys. The improvement in shape memory behavior can be attributed to the decrease in the proof stress and critical stress which facilitates the formation of ε (hcp martensite). It is also observed that alloy 2 containing samarium undergoes less softening as compared to alloy 1 with training which inhibits the formation of α (bcc martensite) and thus enhances the shape memory behavior. The excessive thermomechanical treatment with increase in the training cycle has led to the formation of α (bcc martensite) along with ε (hcp martensite) in the alloy 1 which appeared to have decline in the shape memory effect. This has been demonstrated by the examination of microstructure and identification of α (bcc martensite) martensite in the alloy 1 as compared to alloy 2

  4. The effect of nitrogen on martensite formation in a Cr-Mn-Ni stainless steel

    International Nuclear Information System (INIS)

    Biggs, T.; Knutsen, R.D.

    1995-01-01

    The influence of nitrogen (0 to 0.27 wt%) on martensite formation in an experimental low-nickel stainless-steel alloy (Fe-17Cr-7Mn-4Ni) has been investigated. The alloys containing 0.1 wt% or more nitrogen are fully austenitic at room temperature; those containing less nitrogen consist of a mixture of austenite, martensite and δ-ferrite. The alloys containing less than 0.2 wt% nitrogen are metastable and undergo a transformation from austenite to martensite on deformation. Transmission electron microscopy investigations suggest that, within the nitrogen range considered in this investigation, the addition of nitrogen causes an increase in stacking fault energy which in turn inhibits the nucleation of martensite. As the low-nitrogen alloys (less than 0.2 wt% nitrogen) undergo deformation, ε-martensite (with the [ anti 110] γ and [ anti 12 anti 10] ε zone axes parallel) is observed at the intersection of stacking faults. With increasing strain, the presence of α'-martensite is observed in conjunction with the ε-martensite, and only α'-martensite is observed at very high strains. Both the Nishiyama-Wasserman and Kurdjumov-Sachs orientation relationships are observed between austenite and α'-martensite. The transformation to martensite during deformation causes a significant variation in room-temperature mechanical properties, despite the overall narrow range in composition considered. (orig.)

  5. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2016-01-01

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  6. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik University, Sejong (Korea, Republic of)

    2016-02-15

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  7. Thermopower and magnetocaloric properties in NdSrMnO/CrO3 composites

    Science.gov (United States)

    Ahmed, A. M.; Mohamed, H. F.; Paixão, J. A.; Mohamed, Sara A.

    2018-06-01

    The thermoelectric power (TEP) and magnetocaloric effect (MCE) for (Nd0.6Sr0.4MnO3)1-x/(CrO3)x composites have been measured. The TEP measurements show a negative sign value of the Seebeck coefficient (S), in microvolts. TEP data construe in the low range of temperature by the magnon and phonon drag model, whereas at high temperature by small polaron conduction mechanism. Magnetic measurements exhibit that all composites show a paramagnetic-ferromagnetic transition with decreasing temperature. The Arrott plots of composites reveal the occurrence of a second order phase transition. The maximum value of magnetic entropy change (ΔS) is 2.37 J kg-1 K-1, achieved fore the composite with x = 0.015. Moreover, the maximum value of relative cooling power (RCP) is 122.1 J kg-1, achieved for the composite with x = 0.020. These composites may be appropriate for magnetic application near room temperature.

  8. Magnetic and magnetocaloric properties of martensitic Ni2Mn1.4Sn0.6 Heusler alloy

    International Nuclear Information System (INIS)

    Chernenko, Volodymyr A.; Barandiarán, Jose M.; Rodriguez Fernández, Jesus; Rojas, Daniel P.; Gutiérrez, Jon; Lázpita, Patricia; Orue, Iñaki

    2012-01-01

    The evolutions of magnetic properties at low temperatures and the influence of magnetic field on the temperature dependence of specific heat in martensitic Ni 2 Mn 1.4 Sn 0.6 Heusler alloy are studied. The frequency-dependent blocking temperature and considerable exchange bias below it are measured in the martensitic phase. From the analysis of the specific heat curves under magnetic field, a large inverse magnetocaloric effect manifested as the magnetic field induced rise of isothermal magnetic entropy and/or magnetic field induced adiabatic temperature decrease in the vicinity of the reverse magnetostructural transformation and a significant value of the conventional magnetocaloric effect at the Curie temperature are obtained. The Debye temperature and electronic coefficient equal to Θ D =310±2 K and γ= 16.6±0.3 mJ/K 2 mol, respectively, do not depend on the magnetic field.

  9. Effect of Si, Mn, Sn on Tensile and Corrosion Properties of Mg-4Zn-0.5Ca Alloys for Biodegradable Implant Materials

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dae Hyun; Nam, Ji Hoon; Lee, Byeong Woo; Park, Ji Yong; Shin, Hyun Jung; Park, Ik Min [Pusan National University, Busan (Korea, Republic of)

    2015-03-15

    Effect of elements Si, Mn, Sn on tensile and corrosion properties of Mg-4Zn-0.5Ca alloys were investigated. The results of tensile properties show that the yield strength, ultimate tensile strength and elongation of Mg-4Zn-0.5Ca alloy increased significantly with the addition of 0.6 wt% Mn. This is considered the grain refinement effect due to addition of Mn. However addition of 0.6 wt% Si decreased yield strength, ultimate tensile strength and elongation. The bio-corrosion behavior of Mg-4Zn-0.5Ca-X alloys were investigated using immersion tests and potentiodynamic polarization test in Hank's solution. Immersion test showed that corrosion rate of Mg-4Zn-0.5Ca-0.6Mn alloy was the lowest rate and addition of 1.0 wt% Sn accelerated corrosion rate due to micro-galvanic effect in α-Mg/CaMgSn phases interface. And corrosion potential (E{sub c}orr) of Mg-4Zn-0.5Ca-0.6Mn alloy was the most noble among Mg-4Zn-0.5Ca-X alloys.

  10. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    OpenAIRE

    Stoll, M.; Bakker, J.; Steimle, T.; Meijer, G.; Peters, A.

    2008-01-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106 cm−3 at a temperature of 650 mK. Storage times of up to 180 ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the 3He buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule-3He collision cross sections of 1.6×10−18 and 3.1×10−17 cm2 are extracted for CrH and MnH, respec...

  11. Structural, magnetic and transport studies of Mn0.8Cr0.2CoGe alloy

    Science.gov (United States)

    Das, S. C.; Dutta, P.; Pramanick, S.; Chatterjee, S.

    2018-04-01

    Different physical and functional properties of Mn0.8Cr0.2CoGe alloy has been investigated through structural, magnetic and electrical transport measurements. Substitution of Cr for Mn results significant decrease in both structural and magnetic transition temperature and brings them well below the room temperature. A reasonable amount of conventional magnetocaloric effect (ΔS˜ - 2.22 J/kg-K for magnetic field (H) changing from 0 to 50 kOe) with large relative cooling power (251.7 J/kg for H changing from 0 to 50 kOe) has also been observed around the region of transition. On thermal cycling through the structural transition, noticeable training effect is found to be associated with the resistivity of the alloy.

  12. Evaluation of Surface Mechanical Properties and Grindability of Binary Ti Alloys Containing 5 wt % Al, Cr, Sn, and V

    Directory of Open Access Journals (Sweden)

    Hae-Soon Lim

    2017-11-01

    Full Text Available This study aimed to investigate the relationship between the surface mechanical properties and the grindability of Ti alloys. Binary Ti alloys containing 5 wt % concentrations of Al, Cr, Sn, or V were prepared using a vacuum arc melting furnace, and their surface properties and grindability were compared to those of commercially pure Ti (cp-Ti. Ti alloys containing Al and Sn had microstructures that consisted of only α phase, while Ti alloys containing Cr and V had lamellar microstructures that consisted of α + β phases. The Vickers microhardness of Ti alloys was increased compared to those of cp-Ti by the solid solution strengthening effect. Among Ti alloys, Ti alloy containing Al had the highest Vickers microhardness. At a low SiC wheel speed of 5000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the hardness values of Ti alloys decreased. At a high SiC wheel speed of 10,000 rpm, the grinding rates of Ti alloys showed an increasing tendency as the tensile strength values increased. The Ti alloy containing Al, which showed the lowest tensile strength, had the lowest grinding rate. The grinding ratios of the Ti alloys were higher than those of cp-Ti at both wheel revolution speeds of 5000 and 10,000 rpm. The grinding ratio of the Ti alloy containing Al was significantly increased at 10,000 rpm (p < 0.05.

  13. Layered B-site cation ordering: A key factor in ferrimagnetism of Y{sub 2}MnCrO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Lin [Department of Physics, University of Science and Technology of China, Hefei, Anhui (China); Yang, Lei [Collaborative Innovation Center for Magnetoelectric Industry, China Three Gorges University, Yichang, Hubei (China); Lee, Ming-Hsien; Lin, Tseh-Hsing [Department of Physics, Tamkang University, Taipei, Taiwan (China); Zhang, ZhongFeng; Xie, XiangNan [Department of Physics, University of Science and Technology of China, Hefei, Anhui (China); Zhu, Hong, E-mail: zhuh@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei, Anhui (China)

    2014-07-15

    Highlights: • Rietveld refinement and first-principles calculations are performed for Y{sub 2}MnCrO{sub 6}. • The layered B-site cation ordering is a more reliable structure for Y{sub 2}MnCrO{sub 6}. • Y{sub 2}MnCrO{sub 6} has an insulating ferrimagnetism (0 0 1)-ordered ground state. • The layered ordered pattern plays a key role for the ferrimagnetism in Y{sub 2}MnCrO{sub 6}. - Abstract: We report the Rietveld refinement of powder X-ray diffraction (XRD) pattern and first-principles calculations for the half-Cr{sup 3+} doped YMnO{sub 3} compound. The Rietveld refinement results suggest that the compound has a monoclinic structure with the Mn{sup 3+}/Cr{sup 3+} layers alternately stacking along the [0 0 1] direction. The first-principles calculations show that the structure with layered B-site cation ordering has the lowest total energy; meanwhile, the insulating ferrimagnetic state is more favored compared to the ferromagnetic state, which is in agreement with the reported experimental results. Based upon Goodenough’s model of semi-covalent exchange, we argue that the anisotropic magnetic couplings between the Mn{sup 3+}/Cr{sup 3+} cations ordered in layered pattern play an important role for the ferrimagnetism in the compound.

  14. Pre-concentration of Cr, Mn, Fe and Co of water sea and analysis by plasma emission spectroscopy - DCP

    International Nuclear Information System (INIS)

    Ferreira, E.M.M.

    1985-01-01

    Studies of separation and pre-concentration methods of chromium, manganese, iron and cobalt from seawater, that allow use control methods of 5 1 Cr, 5 4 Mn, 5 5 , 5 9 Fe, 5 8 , 5 9 Co with a better sensibility and the determination of this elements by atomic absorption spectroscopy or plasma emission spectroscopy are described. This methods of seawater analysis will use near the region of Angra I reactor. (author)

  15. Nano-twin mediated plasticity in carbon-containing FeNiCoCrMn high entropy alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Z. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996 (United States); Parish, C.M. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Bei, H., E-mail: beih@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-10-25

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. The effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. The materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (∼70% at 77 K and ∼40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys. - Highlights: • Interstitial atom C was successfully added into FeNiCoCrMn high entropy alloys. • The strain hardening rate and strength are enhanced in the C-containing alloy. • The increased strain-hardening and strength are caused by the nano-twinning.

  16. Loss of 51Cr, 54Mn, 57Co, 59Fe, 65Zn and 134Cs by the mussel Mytilus

    International Nuclear Information System (INIS)

    Dahlgaard, H.

    1981-01-01

    The loss of 51 Cr, 54 Mn, 57 Co, 59 Fe, 65 Zn and 134 Cs from naturally growing mussels (Mytilus edulis) was followed in a temperate estuarine environment -a Danish fjord - by individual whole-body countings on a Ge(Li) detector. The mussels accumulated the radionuclides in the laboratory from food and water and were brought back to their natural environment in small plastic cages. The loss curves for 12 animals from July - August 1979 until November 1979 (20-5 0 C) were resolved in a slow compartment with 140-215 d biological half-life for 57 Co, 54 Mn, 51 Cr and 59 Fe, and 87 d for 65 Zn, and a medium compartment with a biological half-life of 4-7 d for all nuclides. The long-lived compartments of 65 Zn, 57 Co and 54 Mn were followed in four individual animals from August 1979 to August 1980. For 65 Zn a seasonal effect was clearly demonstrated as the biological half-life was prolonged from 87 d during autumn 1979 to 347 d in the cold period (0-5 0 C), whereas it decreased again during the summer of 1980. For 57 Co and 54 Mn the long-term excretion study revealed an extra-slow compartment, as the long half-life in the cold period (approximately 600 d) persisted during the summer of 1980. This is explained by association with the shell. (author)

  17. High-Temperature Ferromagnetism in Cr- and Mn-Implanted Al(sub x)Ga(sub 1-x)N

    National Research Council Canada - National Science Library

    Ryu, Mee-Yi

    2007-01-01

    ... technique remains a challenging problem. Therefore, we have performed a systematic investigation of annealing temperature effects on magnetic, electrical, and optical properties of Cr-, Mn-, and Ni-implanted AlxGa1-xN to produce a good...

  18. Effect of Cr2O3 on the microstructure and non-ohmic properties of (Co, Sb)-doped SnO2 varistors

    International Nuclear Information System (INIS)

    Aguilar M, J. A.; Pech C, M. I.; Hernandez, M. B.; Rodriguez, E.; Garcia O, L.; Glot, A. B.

    2013-01-01

    The effect of Cr 2 O 3 addition on the physical characteristics, microstructure, and current-voltage properties of (Co-Sb)-doped SnO 2 varistors was investigated. SnO 2 -Co 3 O 4 -Sb 2 O 5 ceramics with additions of 0.0, 0.03, 0.05 and 0.07 mol % Cr 2 O 3 were sintered at 1350 C under ambient atmosphere and characterized micro structurally and electrically. The characterization by X-ray diffraction and scanning electron microscopy show that the microstructure remains as a single phase material with multimodal size distribution of SnO 2 grains. The greatest effect of Cr 2 O 3 additions is manifested in the electric breakdown field. Additions of high levels (0.07 and 0.05 %) of this oxide promote and increase of approximately 55% in this parameter compared to the Cr 2 O 3 -free sample. Another physical property is affected: the measured density values decreases as the Cr 2 O 3 content increases. A change in the nonlinearity coefficient value is produced only at the highest Cr 2 O 3 content while at intermediate levels there is not change at all. Consequently, when seeking high nonlinearity coefficients, intermediate levels of Cr 2 O 3 are not recommended. (Author)

  19. A first principle study of phase stability, electronic structure and magnetic properties for Co{sub 2−x}Cr{sub x}MnAl Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Rached, D., E-mail: rachdj@yahoo.fr [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière, (LPQ3M), Université de Mascara, Mascara 29000 (Algeria); Abidri, B.; Rabah, M.; Benkhettou, N. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences exactes, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Omran, S. Bin [Department of Physics and Astronomy, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-04-01

    The structural stabilities, electronic and magnetic properties of Co{sub 2−x}Cr{sub x}MnAl alloys with (x=0,1 and 2) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the generalized gradient approximation (GGA) for the exchange correlation functional. The ground state properties including lattice parameter, bulk modulus for the two considered crystal structures Hg{sub 2}CuTi-Type (X-Type) and Cu{sub 2}MnAl-Type (L2{sub 1}-Type) are calculated. The half-metallicity within ferromagnetic ground state starts to appear in CoCrMnAl and Cr2MnAl. In the objective for the proposition of the new HM-FM in the Full-Heusler alloys, our results classified CoCrMnAl as new HM-FM material with high spin polarization. - Highlights: • Based on DFT calculations, Co2-xCrxMnAl Heusler alloys have been investigated. • The magnetic phase stability was determined from the total energy calculations. • The LMTO calculations have classified CoCrMnAl as new HM-FM material with high spin polarization.

  20. Thermo-mechanical treatment of low-cost alloy Ti-4.5Al-6.9Cr-2.3Mn and microstructure and mechanical characteristics

    Science.gov (United States)

    Chen, Guangyao; Kang, Juyun; Wang, Shusen; Wang, Shihua; Lu, Xionggang; Li, Chonghe

    2018-04-01

    In this study, the thermo-mechanical treatment process for low-cost Ti-4.5Al-6.9Cr-2.3Mn alloy were designed on the basis of assessment of Ti-Al-Cr-Mn thermodynamic system. The microstructure and mechanical properties of Ti-4.5Al-6.9Cr-2.3Mn forging and sheet were investigated by using the OM, SEM and universal tensile testing machine. The results show that both the forging and sheet were consisted of α + β phase, which is consistent with the expectation, and no element Cr and Mn existed in the grain boundaries of the sheet after quenching, and the C14 laves phase was not detected. The average ultimate tensile strength (σ b), 0.2% proof strength (σ 0.2) and elongation (EI) of alloy sheet after quenching can reach 1059 MPa, 1051 MPa and 24.6 Pct., respectively. Moreover, the average ultimate tensile strength of Ti-4.5Al-6.9Cr-2.3Mn forgings can reach 1599 MPa and the average elongation can reach 11.2 Pct., and a more excellent property of Ti-4.5Al-6.9Cr-2.3Mn forging is achieved than that of TC4 forging. It provides a theoretical support for further developing this low-cost alloy.

  1. Martensitic transformation and phase stability of In-doped Ni-Mn-Sn shape memory alloys from first-principles calculations

    International Nuclear Information System (INIS)

    Xiao, H. B.; Yang, C. P.; Wang, R. L.; Luo, X.; Marchenkov, V. V.

    2014-01-01

    The effect of the alloying element Indium (In) on the martensitic transition, magnetic properties, and phase stabilities of Ni 8 Mn 6 Sn 2−x In x shape memory alloys has been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The energy difference between the austenitic and martensitic phases was found to increase with increasing In content, which implies an enhancement of the martensitic phase transition temperature (T M ). Moreover, the formation energy results indicate that In-doping increases the relative stability of Ni 8 Mn 6 Sn 2−x In x both in austenite and martensite. This results from a reduction in density of states near the Fermi level regions caused by Ni-3d–In-5p hybridization when Sn is replaced by In. The equilibrium equation of state results show that the alloys Ni 8 Mn 6 Sn 2−x In x exhibit an energetically degenerated effect for an In content of x = ∼1.5. This implies the coexistence of antiparallel and parallel configurations in the austenite.

  2. Effect of Cr addition on the structural, magnetic and mechanical properties of magnetron sputtered Ni-Mn-In ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akkera, Harish Sharma [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Lab, Department of Physics, Roorkee, Uttarakhand (India); Madanapalle Institute of Technology and Science, Department of Physics, Madanapalle, Chittoor, Andhra Pradesh (India); Kaur, Davinder [Indian Institute of Technology Roorkee, Functional Nanomaterials Research Lab, Department of Physics, Roorkee, Uttarakhand (India)

    2016-12-15

    The effect of Cr substitution for In on the structural, martensitic phase transformation and mechanical properties of Ni-Mn-In ferromagnetic shape memory alloy (FSMA) thin films was systematically investigated. X-ray diffraction results revealed that the Ni-Mn-In-Cr thin films possessed purely austenitic cubic L2{sub 1} structure at lower content of Cr, whereas higher Cr content, the Ni-Mn-In-Cr thin films exhibited martensitic structure at room temperature. The temperature-dependent magnetization (M-T) and resistance (R-T) results confirmed that the monotonous increase in martensitic transformation temperatures (T{sub M}) with the addition of Cr content. Further, the room temperature nanoindentation studies revealed the mechanical properties such as hardness (H), elastic modulus (E), plasticity index (H/E) and resistance to plastic deformation (H{sup 3}/E {sup 2}) of all the samples. The addition of Cr content significantly enhanced the hardness (28.2 ± 2.4 GPa) and resistance to plastic deformation H{sup 3}/E{sup 2} (0.261) of Ni{sub 50.4}Mn{sub 34.96}In{sub 13.56}Cr{sub 1.08} film as compared with pure Ni-Mn-In film. As a result, the appropriate addition of Cr significantly improved the mechanical properties with a decrease in grain size, which could be further attributed to the grain boundary strengthening mechanism. These findings indicate that the Cr-doped Ni-Mn-In FSMA thin films are potential candidates for microelectromechanical systems applications. (orig.)

  3. The influence of the oxygen partial pressure on the quasi-ternary system Cr-Mn-Ti-oxide

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Schulze, H.A.; Naoumidis, A.; Nickel, H.

    1991-05-01

    The passivation layers formed by the oxidizing corrosion of high temperature alloys consist primarily of oxides and mixed oxides of the elements chromium, manganese and titanium. For a reproducible formation and characterization of such oxide layers it is necessary to know the phase equilibria of these oxide systems at temperature and oxygen partial pressure conditions which will be relevant during their application. For the investigation of the quasi-ternary system Cr-Mn-Ti-oxide, oxide powders were prepared and annealed at 1000deg C under different oxygen partial pressures ranging from 0.21 bar to 10 -21 bar. Phase identification and determination of lattice parameter using X-ray diffraction analysis as well as the direct measurement of phase boundaries as a function of oxygen partial pressure using the emf-methode were carried out for these investigations. In the quasi-ternary system Cr-Mn-Ti-oxide the spinels play a decisive role in the oxigen partial pressure range examined. The spinel MnCr 2 O 4 may be regarded as the most significant compound. Part of the chronium can be replaced by trivalent manganese at high oxygen partial pressures and by trivalent titanium at low pressures, and the formation of a solid solution with the spinel Mn 2 TiO 4 is possible in all cases. In this way a coherent single-phase spinel region is observed which extends over the entire oxygen partial pressure range form 0.21 bar to 10 -21 bar examined at 1000deg C. (orig.) [de

  4. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration.

    Science.gov (United States)

    Liu, Jingyong; Fu, Jiewen; Ning, Xun'an; Sun, Shuiyu; Wang, Yujie; Xie, Wuming; Huang, Shaosong; Zhong, Sheng

    2015-09-01

    The effects of different chlorides and operational conditions on the distribution and speciation of six heavy metals (Pb, Zn, Cr, Cu, Mn and Ni) during sludge incineration were investigated using a simulated laboratory tubular-furnace reactor. A thermodynamic equilibrium investigation using the FactSage software was performed to compare the experimental results. The results indicate that the volatility of the target metals was enhanced as the chlorine concentration increased. Inorganic-Cl influenced the volatilization of heavy metals in the order of Pb>Zn>Cr>Cu>Mn>Ni. However, the effects of organic-Cl on the volatility of Mn, Pb and Cu were greater than the effects on Zn, Cr and Ni. With increasing combustion temperature, the presence of organic-Cl (PVC) and inorganic-Cl (NaCl) improved the transfer of Pb and Zn from bottom ash to fly ash or fuse gas. However, the presence of chloride had no obvious influence on Mn, Cu and Ni. Increased retention time could increase the volatilization rate of heavy metals; however, this effect was insignificant. During the incineration process, Pb readily formed PbSiO4 and remained in the bottom ash. Different Pb compounds, primarily the volatile PbCl2, were found in the gas phase after the addition of NaCl; the dominant Pb compounds in the gas phase after the addition of PVC were PbCl2, Pb(ClO4)2 and PbCl2O4. Copyright © 2015. Published by Elsevier B.V.

  5. Low temperature transport anomaly in Cr substituted (La{sub 0.67}Sr{sub 0.33})MnO{sub 3} manganites

    Energy Technology Data Exchange (ETDEWEB)

    Tank, Tejas M., E-mail: tejas.physics2020@gmail.com [Solid State Physics Laboratory, Department of Physics, Barkatullah University, Bhopal-462 026 (India); Shelke, Vilas [Solid State Physics Laboratory, Department of Physics, Barkatullah University, Bhopal-462 026 (India); Das, Sarmistha; Rana, D.S. [Department of Physics, Indian Institute of Scientific Education and Research, Bhopal-462 023 (India); Thaker, C.M. [M.V.M. Science and Home Science College, Rajkot-360 005 (India); Samatham, S.S.; Ganesan, V. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore-452 001 (India); Sanyal, S.P. [Solid State Physics Laboratory, Department of Physics, Barkatullah University, Bhopal-462 026 (India)

    2017-06-15

    Highlights: • The effect of Cr substitution at the Mn-site of La{sub 0.67}Sr{sub 0.33}MnO{sub 3} has been studied. • Electrical and magnetic behaviors correlate with various theoretical models. • First time the low temperature transport anomaly has been explained in terms of e-e scattering phenomenon. • This study shows that FM interaction among Cr{sup 3+} and Mn{sup 3+} is like to the traditional Mn{sup 3+}-O{sup 2−}-Mn{sup 4+} process. - Abstract: The structural, electrical, and magnetic properties of La{sub 0.67}Sr{sub 0.33}Mn{sub 1−x}Cr{sub x}O{sub 3} (0 ≤ x ≤ 0.10) manganites have been studied by substitution of antiferromagnetic trivalent Cr ion at Mn-site. Systematic efforts have been carried out to understand the electrical resistivity behavior in the ferromagnetic metallic and paramagnetic semi-conducting phases of Cr substituted La{sub 0.67}Sr{sub 0.33}Mn{sub 1−x}Cr{sub x}O{sub 3} manganites. Polycrystalline samples show a resistivity minimum at a temperature (T{sub min}) of <40 K in the ferromagnetic metallic phase. T{sub min} shifts to higher temperatures on application of magnetic fields. The appearance of this resistivity minimum was analyzed by fittings the data according to the model that considers e-e scattering caused by enhanced Coulombic interactions. The electrical resistivity data has been best fitted in the metallic and semiconducting regime using various models. Present results suggest that intrinsic magnetic inhomogeneity like Cr{sup 3+} ions in these strongly electron-correlated manganite systems is originating due to the existence of the ferromagnetic interactions.

  6. Stability and magnetic properties of SnSe monolayer doped by transition metal atom (Mn, Fe, and Co): a first-principles study

    Science.gov (United States)

    Tang, Chao; Li, Qinwen; Zhang, Chunxiao; He, Chaoyu; Li, Jin; Ouyang, Tao; Li, Hongxing; Zhong, Jianxin

    2018-06-01

    Two dimensional (2D) tin selenium (SnSe) is an intriguing material with desired thermal and electric properties in nanoelectronics. In this paper, we carry on a density functional theory study on the stability and dilute magnetism of the 3d TM (Mn, Fe, and Co) doped 2D SnSe. Both the adsorption and substitution are in consideration here. We find that all the defects are electrically active and the cation substitutional doping (TM@Sn) is energetically favorable. The TM@Sn prefers to act as accepters and exhibits high-spin state with nonzero magnetic moment. The magnetic moment is mainly contributed by the spin-polarized charge density of the TM impurities. The magnetism is determined by the arrangement of the TM-3d orbitals, which is the result of the crystal field splitting and spin exchange splitting under specific symmetry. The magnetic and electronic properties of the TM@Sn are effectively modulated by external electric field (Eext) and charge doping. The Eext shifts the TM impurities relative to the SnSe host and then modifies the crystal field splitting. In particular, the magnetic moment is sensitive to the Eext in the Fe@Sn because the Eext induces distinct structure transformation. Based on the formation energy, doping electrons is a viable way to modulate the magnetic moment of TM@Sn. Doping electrons shift the 3d states towards low energy level, which induces the occupation of more 3d states and then the reduction of magnetism. These results render SnSe monolayer a promising 2D material for applications in future spintronics.

  7. Surface Hardening of Ti-15V-3Al-3Cr-3Sn Alloy after Cyclic Hydrogenation and Subsequent Solution Treatment

    Directory of Open Access Journals (Sweden)

    Chia-Po Hung

    2014-01-01

    Full Text Available The as-received and preheated (1000°C-30 min. and 500°C-30 min. sheets of Ti-15V-3Al-3Cr-3Sn alloy (Ti-153 were treated according to the predetermined process including a cyclic electrolytic hydrogenation (at 50 mA/cm2 for 1 hr and at 5 mA/cm2 for 10 hrs combining a subsequent solution treatment to see the effects of various operating parameters on the evolution of microstructure and the variations of hardness. The hardening effect deriving from solid-solution strengthening of hydrogen eventually overrode that from precipitation hardening. The maximum hardness elevation was from 236.9 to 491.1 VHN.

  8. Highly corrosive and high strength Cr-Mn series austenite sintered steel, method of manufacturing the same and the usage

    International Nuclear Information System (INIS)

    Arai, Masahiko; Hirano, Tatsumi; Aono, Yasuhisa; Kato, Takahiko; Kondo, Yasuo; Inagaki, Masatoshi

    1998-01-01

    The steel of the present invention comprises a highly corrosive and high strength Cr-Mn series austenite sintered steel containing up to 0.1% of C, up to 1% of Si, up to 0.4% of N, from 9 to 25% of (Mn + Ni) within a range of more than 2% and up to 15% of Mn and from 14 to 20% of Cr, and it has an average crystal grain size of 1μm or less and comprises at least 90 vol% of an austenite phase. In addition, the alloy is incorporated with one or more elements of up to 3% of Mo, 1.0% of Ti, up to 2.0% of Zr and up to 1.0% of Nb in an amount of up to 2.0% in total of Ti, Zr and Nb. When these materials are used under the circumstance where materials are generally deteriorated in grain boundaries, since they are excellent in corrosion resistance and strength, remarkable effects can be attained in the improvement of the safety and the reliability of products. In addition, they are applied not only to a reactor core but also to a water-cooled circumstance and a circumstance where hydrogen exists, thereby capable of exhibiting remarkable effects. (T.M.)

  9. The Effect of Powder Ball Milling on the Microstructure and Mechanical Properties of Sintered Fe-Cr-Mo-Mn-(Cu) Steel

    Science.gov (United States)

    Kulecki, P.; Lichańska, E.

    2017-12-01

    The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.

  10. Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni50Mn37In13

    Directory of Open Access Journals (Sweden)

    Sudip Pandey

    2017-05-01

    Full Text Available The structural, magnetic, and magnetotransport properties of Ni50-xCrxMn37In13 Heusler alloys have been synthesized and investigated by x-ray diffraction (XRD, field and pressure dependent magnetization, and electrical resistivity measurements. The partial substitution of Ni by Cr in Ni50Mn37In13 significantly improves the magnetocaloric effect in the vicinity of the martensitic transition (TM. This system also shows a large negative entropy change at the Curie temperature (TC, making it a candidate material for application in a refrigeration cycle that exploits both positive and negative magnetic entropy changes. The refrigeration capacity (RC values at TM and TC increase significantly by more than 20 % with Cr substitution. The application of hydrostatic pressure increases the temperature stability of the martensitic phase in Ni45Cr5Mn37In13. The influence of Cr substitution on the transport properties of Ni48Cr2Mn37In13 is discussed. An asymmetric magnetoresistance, i.e., a spin-valve-like behavior, has been observed near TM for Ni48Cr2Mn37In13.

  11. Effect of Cr-sources on performance of Li1.05Cr0.04Mn1.96O4 cathode materials prepared by slurry spray drying method

    International Nuclear Information System (INIS)

    Peng, Z.D.; Jiang, Q.L.; Du, K.; Wang, W.G.; Hu, G.R.; Liu, Y.X.

    2010-01-01

    The effect of Cr-sources on the performance of Li 1.05 Cr 0.04 Mn 1.96 O 4 prepared by slurry spray drying method was studied by adopting three different chromic compounds, Cr 2 O 3 , Cr 2 (SO 4 ) 3 and Cr(CH 3 COO) 3 , respectively. The prepared powder materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), laser particle size analyzer and Brunauer-Emmett-Teller (BET) specific surface area test. Electrochemical performances of these cathode materials were investigated by electrochemical impedance spectroscopy (EIS) and charge-discharge tests with Li/LiCr x Mn 2-x O 4 coin-type batteries. The results indicate that porous spherical particles with average particle size of about 24 μm can be obtained by slurry spray drying process. Using Cr(CH 3 COO) 3 as Cr-source resulted in the better mixing properties, which can make the as-prepared CA-Li 1.05 Cr 0.04 Mn 1.96 O 4 having smaller lattice parameter, smaller grain size and better structure stability, and consequently the obtained sample showed low charge transfer impedance and electrochemical polarization, and exhibited good electrochemical performance at elevated temperature.

  12. The effect of a fourth element (Co, Cu, Fe, Pd) on the standard enthalpy of formation of the Heusler compound Ni{sub 2}MnSn

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ming, E-mail: myin1@hawk.iit.edu; Nash, Philip

    2016-05-15

    The standard enthalpies of formation of quaternary Heusler compounds (X, Ni){sub 2}MnSn (X = Co, Cu, Fe, Pd) were investigated experimentally using high temperature direct reaction calorimetry. Lattice parameters of these compounds were determined using X-ray diffraction analysis. Microstructures were identified using scanning electron microscopy and energy dispersive spectroscopy. The effect of an additional X element on the standard enthalpy of formation of the Heusler compound Ni{sub 2}MnSn is discussed. - Highlights: • Enthalpies of formation of (X,Ni){sub 2}YZ (X = Co, Cu, Fe, Pd) were measured by drop calorimeters. • Magnetic contribution to enthalpy of formation plays an important role. • Introducing a fourth element could stabilize an unstable Heusler structure. • Lattice parameters do not necessarily obey the Vegard's law. • It is possible to tailor properties of Heusler compounds with enough background information.

  13. Electrical resistivity at high temperatures of Heusler alloys of the Cu2MnAl sub(1-x) Sn sub (x)

    International Nuclear Information System (INIS)

    Grandi, T.A.

    1978-01-01

    The structural fase L2 1 of the Heusler alloys Cu 2 MnAl sub (1-x) Sn sub(x), with x varying between 0 and 1, was studied. X-ray diffraction, metallography and diferential termoanalysis techniques were employed. For the alloys with x = 0; 0,05; 0,10 and 0,15 the electrical resistivity measurements were performed in the temperature range 300 K [pt

  14. Ethanol and LPG sensing characteristics of SnO2 activated Cr2 O3 ...

    Indian Academy of Sciences (India)

    Administrator

    between neighbouring grains in a material is an important factor, which determines sensitivity of the .... O2 (gas) f O2 (ads),. (3). Figure 4. Temperature dependence of conductance of pure and activated Cr2O3 sensors. Figure 5. Sensing response to ethanol (a–f) and LPG (g) for different dopant concentrations (0⋅5%) at ...

  15. Essential trace (Zn, Cu, Mn and toxic (Cd, Pb, Cr elements in the liver of birds from Eastern Poland

    Directory of Open Access Journals (Sweden)

    Komosa A.

    2012-01-01

    Full Text Available We have focused our study on the concentrations of essential heavy metals (Zn, Cu and Mn and non-essential trace metals (Pb, Cd and Cr in the livers of birds from Eastern Poland. The largest mean amount of Zn - as much as 279 mg/kg dry mass (d.m. - was found in mute swans. However, only in one of the analysed buzzard specimens the concentration of Zn, found to be 664 mg/kg d.m., exceeded the level indicative of poisoning for this element. Birds specializing in catching rodents accumulated Mn in their livers in a very narrow range of concentrations, around 5.0 mg/kg d.m. on average. The range of mean Mn concentrations (around 6.5 mg/kg d.m. was also found to be narrow for piscivorous birds. The highest mean levels of Pb were found in mute swans (2.7 mg/kg d.m., and the highest levels of Cd (2.0 mg/kg d.m. for rooks. Concentrations of total Cr above detection level were found in 22 specimens (53.7%, and concentration values were highest for rooks. Analyses showed that the concentrations of biogenic elements did not exceed the levels indicative of poisoning (except in one specimen. The study demonstrated that lead shots remain a hazard to water ecosystems. Pb, Cd and Cr levels in the livers of omnivorous and piscivorous species indicate the permanent presence of these elements in the environment and may confirm the thesis about the growing role of electronic waste, including metallic e-waste, in the emission of the total amount of contamination with these elements.

  16. Precipitation sensitivity to alloy composition in Fe-Cr-Mn austenitic steels developed for reduced activation for fusion application

    International Nuclear Information System (INIS)

    Maziasz, P.J.; Klueh, R.L.

    1988-01-01

    Special austenitic steels are being designed in which alloying elements like Mo, Nb, and Ni are replaced with Mn, W, V, Ti, and/or Ta to reduce the long-term radioactivity induced by fusion reactor irradiation. However, the new steels still need to have properties otherwise similar to commercial steels like type 316. Precipitation strongly affects strength and radiation-resistance in austenitic steels during irradiation at 400--600/degree/C, and precipitation is also usually quite sensitive to alloy composition. The initial stage of development was to define a base Fe-Cr-Mn-C composition that formed stable austenite after annealing and cold-working, and resisted recovery or excessive formation of coarse carbide and intermetallic phases during elevated temperature annealing. These studies produced a Fe-12Cr-20Mn-0.25C base alloy. The next stage was to add the minor alloying elements W, Ti, V, P, and B for more strength and radiation-resistance. One of the goals was to produce fine MC precipitation behavior similar to the Ti-modified Fe-Cr-Ni prime candidate alloy (PCA). Additions of Ti+V+P+B produced fine MC precipitation along network dislocations and recovery/recrystallization resistance in 20% cold worked material aged at 800/degree/C for 166h, whereas W, Ti, W+Ti, or Ti+P+B additions did not. Addition of W+Ti+V+P+B also produced fine MC, but caused some σ phase formation and more recrystallization as well. 29 refs., 14 figs., 9 tabs

  17. Pressure effects on spin density wave in Cr rich Cr-Al, Si, Mn, Fe and Co alloys

    International Nuclear Information System (INIS)

    Mizuki, Jun-ichiro; Endoh, Yasuo; Ishikawa, Yoshikazu

    1982-01-01

    The effect of pressure on the spin density wave (SDW) state in Cr rich Cr-Al, Si, Nn, Fe and Co alloys has been elucidated by neutron diffraction studies. We found that the change of the SDW wave vector Q, by applying pressure, 1/Q. delta Q/ delta P, is linearly related to the decrease of T sub(N) with increasing pressure 1/T sub(N). delta T sub(N)/ delta P and that all the results from the Cr-Si, Fe and Co alloys fall on a single straight line independent of their concentrations. Their magnetic phase diagrams in a temperature-pressure coordinate system can be related to the alloy phase diagram by employing an empirical rule that applying pressure corresponds to a decrese in the electron to atom ratio. The non transition metal Si impurity has been found to act as an electron donor, while the effect of Al is not interpreted by the two band nesting model. (author)

  18. Spin correlations in the pyrochlore slab compounds Ba2Sn2Ga10-7pZnCr7pO22

    International Nuclear Information System (INIS)

    Bonnet, P; Payen, C; Mutka, H; Danot, M; Fabritchnyi, P; Stewart, J R; Mellergaard, A; Ritter, C

    2004-01-01

    The low-temperature properties of a diluted antiferromagnetic pyrochlore slab of S = 3/2 spins are investigated through a study of the frustrated oxides Ba 2 Sn 2 Ga 10-7p ZnCr 7p O 22 (p>0.85). Powder neutron diffraction and 119 Sn Moessbauer absorption show no evidence of long-range magnetic order above 1.5 K. As in SrCr 9q Ga 12-9q O 19 , diffuse magnetic scattering, indicative of short range spin-spin correlations, is observed at low temperature. The dependence of the low-temperature sub-Curie bulk susceptibility to weak site depletion is the inverse of that observed in SrCr 9q Ga 12-9q O 19

  19. Effects of Cr Substitution on Negative Thermal Expansion and Magnetic Properties of Antiperovskite Ga1-x Cr x N0.83Mn3 Compounds.

    Science.gov (United States)

    Guo, Xinge; Tong, Peng; Lin, Jianchao; Yang, Cheng; Zhang, Kui; Lin, Shuai; Song, Wenhai; Sun, Yuping

    2018-01-01

    Negative thermal expansion (NTE) and magnetic properties were investigated for antiperovskite Ga 1- x Cr x N 0.83 Mn 3 compounds. As x increases, the temperature span (Δ T ) of NTE related with Γ 5g antiferromagnetic (AFM) order is expanded and shifted to lower temperatures. At x = 0.1, NTE happens between 256 and 318 K (Δ T = 62 K) with an average linear coefficient of thermal expansion, α L = -46 ppm/K. The Δ T is expanded to 81 K (151-232 K) in x = 0.2 with α L = -22.6 ppm/K. Finally, NTE is no longer visible for x ≥ 0.3. Ferromagnetic order is introduced by Cr doping and continuously strengthened with increasing x , which may impede the AFM ordering and thus account for the broadening of NTE temperature window. Moreover, our specific heat measurement suggests the electronic density of states at the Fermi level is enhanced upon Cr doping, which favors the FM order rather than the AFM one.

  20. Biosorption of Cd, Cr, Mn, and Pb from aqueous solutions by Bacillus sp strains isolated from industrial waste activate sludge

    OpenAIRE

    Rocío García; Juan Campos; Julio Alfonso Cruz; Ma. Elena Calderón; Ma. Elena Rayna; Germán Buitrón

    2016-01-01

    Los microorganismos tienen capacidad de acumular metales pesados como agentes bioadsorbentes ofreciendo una alternativa para la remoción de metales tóxicos en aguas de efluentes industriales. El objetivo del presente trabajo fue aislar e identificar bacterias tolerantes a los metales pesados (Cd, Cr, Mn y Pb) de lodos activados provenientes de la planta de tratamiento de agua del Municipio de Santa Rosa Jáuregui, Querétaro. Para seleccionar las bacterias que son tolerantes a los metales se ai...

  1. Site occupancy, composition and magnetic structure dependencies of martensitic transformation in Mn2Ni1 + x Sn1-x.

    Science.gov (United States)

    Kundu, Ashis; Ghosh, Subhradip

    2017-11-29

    A delicate balance between various factors such as site occupancy, composition and magnetic ordering seems to affect the stability of the martensitic phase in [Formula: see text] [Formula: see text] [Formula: see text]. Using first-principles DFT calculations, we explore the impacts of each one of these factors on the martensitic stability of this system. Our results on total energies, magnetic moments and electronic structures upon changes in the composition, the magnetic configurations and the site occupancies show that the occupancies at the 4d sites in the inverse Heusler crystal structure play the most crucial role. The presence of Mn at the 4d sites originally occupied by Sn and its interaction with the Mn atoms at other sites decide the stability of the martensitic phases. This explains the discrepancy between the experiments and earlier DFT calculations regarding phase stability in [Formula: see text]NiSn. Our results qualitatively explain the trends observed experimentally with regard to martensitic phase stability and the magnetisations in Ni-excess, Sn-deficient [Formula: see text]NiSn system.

  2. Estimation of the Temperature-Dependent Nitrogen Solubility in Stainless Fe-Cr-Mn-Ni-Si-C Steel Melts During Processing

    Science.gov (United States)

    Wendler, Marco; Hauser, Michael; Sandig, Eckhard Frank; Volkova, Olena

    2018-04-01

    The influence of chemical composition, temperature, and pressure on the nitrogen solubility of various high alloy stainless steel grades, namely Fe-14Cr-(0.17-7.77)Mn-6Ni-0.5Si-0.03C [wt pct], Fe-15Cr-3Mn-4Ni-0.5Si-0.1C [wt pct], and Fe-19Cr-3Mn-4Ni-0.5Si-0.15C [wt pct], was studied in the melt. The temperature-dependent N-solubility was determined using an empirical approach proposed by Wada and Pehlke. The thus calculated N-concentrations overestimate the actual N-solubility of all the studied Fe-Cr-Mn-Ni-Si-C steel melts at a given temperature and pressure. Consequently, the calculation model has to be modified by Si and C because both elements are not recognized in the original equation. The addition of the 1st and 2nd order interaction parameters for Si and C to the model by Wada and Pehlke allows a precise estimation of the temperature-dependent nitrogen solubility in the liquid steel bath, and fits very well with the measured nitrogen concentrations during processing of the steels. Moreover, the N-solubility enhancing effect of Cr- and Mn-additions has been demonstrated.

  3. Effect of Tin, Copper and Boron on the Hot Ductility of 20CrMnTi Steel between 650 °C and 1100 °C

    Science.gov (United States)

    Peng, Hong-bing; Chen, Wei-qing; Chen, Lie; Guo, Dong

    2015-02-01

    The hot ductility of 20CrMnTi steel with x% tin, y% copper and z ppm boron (x = 0, 0.02; y = 0, 0.2; z = 0, 60) was investigated. The results show that tin and copper in 20CrMnTi steel are detrimental to its hot ductility while adding boron can eliminate the adverse effect and enhance hot ductility greatly. Tin is found to segregate to the boundaries tested by EPMA in 20CrMnTi steel containing tin and copper and tin-segregation is suppressed by adding boron, moreover, copper was found not to segregate to boundaries, however, fine copper sulfide was found from carbon extraction replicas using TEM. The adverse effect of tin and copper on the hot ductility was due mainly to tin segregation and fine copper sulfide in the steel. The proeutectoid ferrite film precipitating along the austenite grain boundary causes the ductility trough of the three examined steels. Tin and copper in 20CrMnTi steel can retard the occurrence of dynamic recrystallization (DRX) while boron-addition can compensate for that change. The beneficial effect of boron on 20CrMnTi steel containing tin and copper might be ascribed to the fact that boron segregates to grain boundaries, accelerates onset of DRX, retards austenite/ferrite transformation and promotes intragranular nucleation of ferrite.

  4. Variations of Ni, Cr and Mn Concentration in Soils Formed Along a Toposequence of Ultrabasic Rocks in Western Mashhad

    Directory of Open Access Journals (Sweden)

    S. Akbari

    2016-02-01

    Full Text Available Introduction: Parent materials as one of the main soil formation factors have a great impact on the concentration of heavy metals in the soil. Heavy metals are released to the soil during weathering and pedogenic processes. Ultrabasic rocks are known as the potential natural source of heavy metals, especially Ni, Cr and Mn in the soil. Average concentrations of Ni and Cr in the soils are 84 and 34 mg kg-1, respectively; while, in soil derived from ultrabasic parent material, the concentration of these elements may reach up to 100000 mg kg-1. Binaloud zone in northeastern composed of different geological materials. There is a narrow band of ophiolitic rocks in this zone that located along Mashhad city. The geochemical behavior of ultrabsic rocks and the associated soil have been frequently studied mostly in humid regions. But, there are a few research works done in arid environments. The objective of this study was to investigate the physical and chemical properties and concentrations of Ni, Cr and Mn in soils formed along a toposequence of ultrabasic rocks in western Mashhad. Materials and Methods: The study area is located in the hilly land landscape of Binaloud zone in the Western part of Mashhad. Mean annual precipitation and temperature is 260 mm and 13.7 oC, respectively. Soil temperature and moisture regimes are thermic and aridic boarder on mesic, respectively. Studied soils developed on hornblendite rocks that are ultrabasic rocks with SiO2 less than 45% and contain ferromagnesian minerals. A toposequence was selected and, three soil profiles on shoulder, backslope and footslope geomorphic positions were described acoording to key to soil taxonmy 2014 and the soil horizons were sampled. Air-dried samples were passed through 2 mm sieve and were used for laboratory analysis. Pseudo-total concentrations of Ni, Cr and Mn were extracted by aqua regia digestion procedure. Free iron oxides (Fed and amorphous iron oxides (Feo were extracted by

  5. Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions

    Science.gov (United States)

    Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.

    2018-05-01

    We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.

  6. Effect of disorder on the magnetic and electronic structure of a prospective spin-gapless semiconductor MnCrVAl

    Directory of Open Access Journals (Sweden)

    P. Kharel

    2017-05-01

    Full Text Available Recent discovery of a new class of materials, spin-gapless semiconductors (SGS, has attracted considerable attention in the last few years, primarily due to potential applications in the emerging field of spin-based electronics (spintronics. Here, we investigate structural, electronic, and magnetic properties of one potential SGS compound, MnCrVAl, using various experimental and theoretical techniques. Our calculations show that this material exhibits ≈ 0.5 eV band gap for the majority-spin states, while for the minority-spin it is nearly gapless. The calculated magnetic moment for the completely ordered structure is 2.9 μB/f.u., which is different from our experimentally measured value of almost zero. This discrepancy is explained by the structural disorder. In particular, A2 type disorder, where Mn or Cr atoms exchange their positions with Al atoms, results in induced antiferromagnetic exchange coupling, which, at a certain level of disorder, effectively reduces the total magnetic moment to zero. This is consistent with our x-ray diffraction measurements which indicate the presence of A2 disorder in all of our samples. In addition, we also show that B2 disorder does not result in antiferromagnetic exchange coupling and therefore does not significantly reduce the total magnetic moment.

  7. Validation of FNAA method for testing the elements of Mn, Cr and Mg on the Gajahwong river sediment sample

    International Nuclear Information System (INIS)

    Wisjachudin Faisal; Elin Nuraini

    2010-01-01

    Validation of elements of Mn, Cr and Mg by using FNAA method has been performed. NBS SRM 8704 (Bufallo River Sediment), was used as the standard reference material, with the neutrons generator operating condition at the optimum voltage of 110 kV. Energy and channel number of calibration lines obtained with the standard equation as y = 1.034 x + 151.21. From the analysis of SRM, the results show that only Mg can be analyzed, because Cr and Mn are located at the same peak point (interferences), so that they can not be analyzed. From the analysis for Mg element (SRM), the precision and the accuration obtained are 95.53 % and 94.88%, while the average price of expanded uncertainty for the various locations is 0.233 ± 0.012. Mg content analysis result at various locations along the river Gajahwong ranging from 85.41 – 103.55 ppm. When compared with previous studies showing the elements content of Fe, Al and Si is much higher than Mg content. (author)

  8. Effects of Aging and W Addition on the Microstructure of Fe-Cr-Mn-N Stainless Steels

    International Nuclear Information System (INIS)

    Jeon, Yu Taek; Joo, Uk Hyon; Park, Yong Soo; Kim, Young Sik

    2000-01-01

    The effects of aging treatment on the precipitation behaviors of Fe-Cr-Mn-N stainless steels were studied using a transmission electron microscopy, scanning electron microscopy, optical microscopy and XRD. In the austenitic stainless steel having a single phase. M23C6 carbides were first precipitated in the grain boundary by aging and then grew from grain boundary into grain with aging time. Carbides showed lamellar structures. It was shown from the analysis of spot patterns that carbides had a coherent relation with matrix and their lattice parameter was roughly three times that of austenite. During initial stages of M23C6 carbide precipitation, the iron content was quite high. With increasing aging time, the chromium content was increased. As the tungsten was added to improve the corrosion resistance of the Fe-Cr-Mn-N stainless steels, ferrite phase was formed. This ferrite phase was decomposed to chi(χ) phase and secondary austenite. Chi phase was mainly enriched with tungsten, chromium and tungsten were depleted in the secondary austenite due to the formation of chi phase. M23C6 carbides were also formed in the grain boundary. Nickel stabilized the austenite phase and decreased the ferrite volume fraction. But nickel content was not sufficient to suppress the formation of ferrite, and precipitation behaviors were not changed

  9. Effects of aging treatment and W addition on the microstructure of Fe-Cr-Mn stainless steels

    International Nuclear Information System (INIS)

    Jeoun, Y. T.; Zoo, W. H.; Kim, Y. S.; Park, Y. S.

    1999-01-01

    The effects of aging treatment on the precipitaion behaviors of Fe-Cr-Mn-W stainless steels were studied using a transmission electron microscopy, scanning electron microscopy, optical microscopy and XRD. In the austenitic stainless steel showing a single phase, M 23 C 6 carbides were first precipitated in the grain boundary by aging and then grew from grain boundary into grain with aging time. Carbides showed lamellar structures. It was shown from the analysis of spot patterns that carbides had a coherent relation with matrix and their lattice parameter was roughly three times that of austenite. During initial stages of M 23 C 6 carbide precipitaion, the iron content was quite high. With increasing aging time, the chromium content increased. As the tungsten was added to improve the corrosion resistance of the Fe-Cr-Mn stainless steels, ferrite phase was formed. These ferrite phase was decomposed to chi(χ) phase and secondary austenite. Chi phase was mainly enriched with tungsten, chromium and tungsten were depleted in the secondary austenite due to the formation of chi phase. M 23 C 6 carbides were also formed in the grain boundary. Nickel stabilized the austenite phase and decreased the ferrite volume fraction. But nickel content was not sufficient to suppress the formation of ferrite, and precipitaion behaviors were not changed

  10. Cryogenic buffer-gas loading and magnetic trapping of CrH and MnH molecules

    Science.gov (United States)

    Stoll, Michael; Bakker, Joost M.; Steimle, Timothy C.; Meijer, Gerard; Peters, Achim

    2008-09-01

    We report on the buffer-gas cooling and trapping of CrH and MnH molecules in a magnetic quadrupole trap with densities on the order of 106cm-3 at a temperature of 650mK . Storage times of up to 180ms have been observed, corresponding to a 20-fold lifetime enhancement with respect to the field-free diffusion through the He3 buffer-gas. Using Monte Carlo trajectory simulations, inelastic molecule- He3 collision cross sections of 1.6×10-18 and 3.1×10-17cm2 are extracted for CrH and MnH, respectively. Furthermore, elastic molecule- He3 collision cross sections of 1.4(±0.5)×10-14cm2 are determined for both species. We conclude that the confinement time of these molecules in a magnetic trapping field is limited by inelastic collisions with the helium atoms leading to Zeeman relaxation.

  11. An assessment of the lattice strain in the CrMnFeCoNi high-entropy alloy

    International Nuclear Information System (INIS)

    Owen, L.R.; Pickering, E.J.; Playford, H.Y.; Stone, H.J.; Tucker, M.G.; Jones, N.G.

    2017-01-01

    The formation of single phase solid solutions from combinations of multiple principal elements, with differing atomic radii, has led to the suggestion that the lattices of high-entropy alloys (HEAs) must be severely distorted. To assess this hypothesis, total scattering measurements using neutron radiation have been performed on the CrMnFeCoNi alloy and compared with similar data from five compositionally simpler materials within the same system. The Bragg diffraction patterns from all of the studied materials were similar, consistent with a face-centered cubic structure, and none showed the pronounced dampening that would be expected from a highly distorted lattice. A more detailed evaluation of the local lattice strain was made by considering the first six coordination shells in the pair distribution functions (PDF), obtained from the total scattering data. Across this range, the HEA exhibited the broadest PDF peaks but these widths were not disproportionately larger than those of the simpler alloys. In addition, of all the materials considered, the HEA was at the highest homologous temperature, and hence the thermal vibrations of the atoms would be greatest. Consequently, the level of local lattice strain required to rationalise a given PDF peak width would be reduced. As a result, the data presented in this study do not indicate that the local lattice strain in the equiatomic CrMnFeCoNi HEA is anomalously large.

  12. Optimization of the Deposition Parameters of HVOF FeMnCrSi+Ni+B Thermally Sprayed Coatings

    Directory of Open Access Journals (Sweden)

    Gustavo Bavaresco Sucharski

    2015-06-01

    Full Text Available AbstractHVOF thermal spray process produces coatings with low porosity and low oxide content, as well as high substrate adhesion. Small variations on the parameters of the HVOF process can generate coatings with different characteristics and properties, which also is chemical composition depended of the alloy. FeMnCrSi alloy is a cavitation resistant class of material with a great potential for HVOF deposition use. The main goal of this article is to study the influence of some HVOF parameters deposition, as standoff distance, powder feed rate and carrier gas pressure on three different alloys. FeMnCrSi experimental alloys with some variations in nickel and boron content were studied. Taguchi experimental design with L9 orthogonal array was used in this work. Porosity, oxide content, tensile adhesion strength and microhardness of the coatings were evaluated. The results indicated that all factors have significant influence on these properties. Chemical composition of the alloys was the most important factor, followed by the carrier gas pressure, standoff distance and powder feed rate. The addition of Ni, produces coatings with lower levels of oxide content and porosity. An experiment with improved parameters was conducted, and a great improvement on the coating properties was observed.

  13. Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi

    Science.gov (United States)

    Jo, Min-Gu; Kim, Han-Jin; Kang, Minjung; Madakashira, Phaniraj P.; Park, Eun Soo; Suh, Jin-Yoo; Kim, Dong-Ik; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    The high entropy alloy CrMnFeCoNi has been shown to have promising structural properties. For a new alloy to be used in a structural application it should be weldable. In the present study, friction stir welding (FSW) and laser welding (LW) techniques were used to butt weld thin plates of CrMnFeCoNi. The microstructure, chemical homogeneity and mechanical behavior of the welds were characterized and compared with the base metal. The tensile stress-strain behavior of the welded specimens were reasonable when compared with that of the base metal. FSW refined the grain size in the weld region by a factor of ˜14 when compared with the base metal. High-angle annular dark field transmission electron microscopy in combination with energy dispersive X-ray spectroscopy showed chemical inhomogeneity between dendritic and interdendritic regions in the fusion zone of LW. Large fluctuations in composition (up to 15 at%) did not change the crystal structure in the fusion zone. Hardness measurements were carried out in the weld cross section and discussed in view of the grain size, low angle grain boundaries and twin boundaries in FSW specimens and the dendritic microstructure in LW specimens.

  14. Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

    Science.gov (United States)

    Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.

    2017-10-01

    Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr

  15. Hyperfine interactions studies in perovskite oxides of the type LaMO3 (M = Fe, Cr, Mn and Co)

    International Nuclear Information System (INIS)

    Junqueira, Astrogildo de Carvalho

    2004-01-01

    ABO 3 -type perovskite oxides have ideal cubic structure and usually show distortions to the orthorhombic or rombohedric symmetry. The A and B siteshave 12-fold and 6-fold oxygen coordination, respectively. Distortions of thecubic structure give rise to new electric, structural and magnetic propertieswhich have great technological and scientific interests. Magnetic dipole and electric quadrupole hyperfine interaction measurements were obtained using 111 In -> 111 Cd , 181 Hf -> 181 Ta e 140 La -> 140 Ceradioactive nuclei substituting for the A or B sites via Perturbed Angulargamma-gamma Correlation technique (1-4) . LaMO 3 (M = Fe, Cr, Mn and Co)samples were prepared through the chemical route known as Sol-Gel techniqueand analyzed with x-ray diffraction. Both 111 In and 181 Hf nuclei wereintroduced in to the sample during the chemical procedure and the 140 Lawas obtained by irradiating with neutrons in the IPEN reactor the natural Lapresent in the samples. One of the aims of this work was the analysis of theElectric Field Gradient (EFG) in the A and B sites as function oftemperature, crystal structure or the electronic characteristic of thetransition metal in the B site. The temperature range of the measurements wasabout from 4 K to 1400 K. The experimental EFG showed to be dependent of thesite occupation and the nuclear probe used in the measurements. Spintransition phenomena were also observed in LaCoO 3 samples, which confirmed amodel used to interpret the spin properties in such compound.Crystallographic phase transition effects on the hyperfine parameters inperovskites where M = Fe, Cr and K4n were also analyzed. An additional aim ofthis work was to carry out measurements in the antiferromagnetic region ofthe systems with M = Fe, Cr and Mn using the three radioactive nuclei. Theresults for the magnetic interaction measurements showed a strong influenceof the substitutional sites in the supertransferred magnetic hyperfine fieldfor all the three probe nuclei

  16. Investigation on Aging σ-Phase Precipitation Kinetics and Pitting Corrosion of 22 Pct Cr Economical Duplex Stainless Steel with Mn Addition

    Science.gov (United States)

    Yang, Yinhui; Qian, Hao

    2018-05-01

    The influence of Mn addition on σ-phase precipitation kinetics and pitting corrosion of Fe-22Cr-1.9Ni-2.3Mo-0.2N-xMn low nickel type duplex stainless steel was investigated by medium- and high-temperature aging treatments of 600 °C and 800 °C. The microstructure analysis showed that the fine rod-shaped and coarsening dendritelike σ-phase precipitates formed at 600 °C and 800 °C, respectively, and the precipitate growth with the higher temperature was accelerated due to the partition of Mn, but Mn is not a strong σ-phase forming element like Cr, Mo during aging treatment at these two temperatures. At an early aging time of 800 °C, more precipitated nuclei with more Mn addition promote refinement of σ precipitates in later aging time. The kinetic behavior at 600 °C and 800 °C is related to diffusion-controlled growth of σ phase, and the σ-phase nucleation and growth are enhanced with more Mn addition and higher aging temperature due to a faster Mn diffusion rate. The difference in precipitation morphology for two aging temperatures was attributed to the different nucleation modes caused by kinetics parameter n variation. Increasing the aging temperature from 600 °C to 800 °C increased the susceptibility to pitting with higher Mn addition due to faster σ-phase precipitation kinetics.

  17. Effects of Mn addition on microstructures and mechanical properties of 10Cr ODS ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Jin, Hyun Ju; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic (FM) steels are very attractive for the structural materials of fast fission reactors such as a sodium cooled fast reactor (SFR) owing to their excellent irradiation resistance to a void swelling, but are known to reveal an abrupt loss of their creep and tensile strengths at temperatures above 600 .deg. C. Accordingly, high temperature strength should be considerably improved for an application of the FM steel to the structural materials of SFR. Oxide dispersion strengthened (ODS) FM steels are considered to be promising candidate materials for high- temperature components operating in severe environments such as nuclear fusion and fission systems due to their excellent high temperature strength and radiation resistance stemming from the addition of extremely thermally stable oxide particles dispersed in the ferritic/martensitic matrix.. To develop an advanced ODS steel for core structural materials for next generation nuclear reactor system applications, it is important to optimize its compositions to improve the high temperature strength and radiation resistance. This study investigates effects of Mn addition on microstructures and mechanical properties of 10Cr ODS FM steel. For this, two 10 Cr ODS FM steels were prepared by mechanical alloying (MA), hot isostatic pressing (HIP), and hot rolling process. Tensile tests were carried out at room temperature and 700 .deg. C to evaluate the influences of the Mn element on the mechanical properties. The microstructures were observed using SEM, electron back-scatter diffraction (EBSD) and transmission electron microscopy (TEM) with energy dispersive spectroscopy (EDS). In the present study, the effects of Mn addition on the microstructure and mechanical properties of ODS FM steels were investigated. The ODS FM steels were manufactured by the MA, HIP and hot-rolling processes

  18. Determination of Proton Relaxivities of Mn(II, Cu(II and Cr(III added to Solutions of Serum Proteins

    Directory of Open Access Journals (Sweden)

    Ali Yilmaz

    2009-04-01

    Full Text Available Relaxometric studies are still of scientific interest due to their use in medicine and biology. In this study, proton T1 and T2 relaxivities of Mn(II, Cu(II and Cr(III in water were determined in the presence and absence of various proteins (albumin, α-globulin, γ-globulin, lysozyme, fibrinogen. The 1/T1 and 1/T2 in all solutions are linearly proportional to the concentration of the paramagnetic ions. Mn(II has the great influence to alter relaxations in all protein solutions, while Cu(II and Cr(III have a poor influence on the relaxations. In addition, Mn(II and Cu(II are bound to each protein, but Cr(III is not bound to any protein.

  19. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures

    Science.gov (United States)

    Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook

    2007-10-01

    ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.

  20. Synthesis and electrochemical properties of LiNi0.4Mn1.5Cr0.1O4 and Li4Ti5O12

    CSIR Research Space (South Africa)

    Liu, GQ

    2011-08-01

    Full Text Available Spinel compound LiNi0.4Mn1.5Cr0.1O4 (LNMCO) and Li4Ti5O12 (LTO) were synthesized by the sol-gel method and the solid-state method, respectively. The particle sizes of the products LiNi0.4Mn1.5Cr0.1O4 and Li4Ti5O12 were 0.5 to 2 um and 0.5 to 0.8 um...

  1. Chemical reactions during sintering of Fe-Cr-Mn-Si-Ni-Mo-C-steels with special reference to processing in semi-closed containers

    Directory of Open Access Journals (Sweden)

    Cias A.

    2015-01-01

    Full Text Available Sintering of Cr, Mn and Si bearing steels has recently attracted both experimental and theoretical attention and processing in semiclosed containers has been reproposed. This paper brings together relevant thermodynamic data and considers the kinetics of some relevant chemical reactions. These involve iron and carbon, water vapour, carbon monoxide and dioxide, hydrogen and nitrogen of the sintering atmospheres and the alloying elements Cr, Mn, Mo and Si. The paper concludes by presenting mechanical properties data for three steels sintered in local microatmosphere with nitrogen, hydrogen, nitrogen-5% hydrogen and air as the furnace gas.

  2. The Effect of Si and Mn on Microstructure and Selected Properties of Cr-Ni Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2017-03-01

    Full Text Available Cast stainless steel of the Cr-Ni duplex type is used, among others, for the cast parts of pumps and valves handling various chemically aggressive media. Therefore, the main problem discussed in this article is the problem of abrasion wear resistance in a mixture of SiC and water and resistance to electrochemical corrosion in a 3% NaCl-H2O solution of selected cast steel grades, i.e. typical duplex cast steel, high silicon and manganese duplex cast steel, and Cr-Ni austenitic cast steel (type AISI 316L. The study shows that the best abrasion wear resistance comparable to Ni-Hart cast iron was obtained in the cast duplex steel, where Ni was partially replaced with Mn and N. This cast steel was also characterized by the highest hardness and matrix microhardness among all the tested cast steel grades. The best resistance to electrochemical corrosion in 3% NaCl-H2O solution showed the cast duplex steel with high content of Cr, Mo and N. The addition of Ni plays rather insignificant role in the improvement of corrosion resistance of the materials tested.

  3. Synthesis and structure of a pink pigment in the system Zr02-TiO2-SnO2-Cr2O3

    International Nuclear Information System (INIS)

    Zygadlo, M.

    1979-01-01

    The mechanism has been discussed of the formation of this pigment in the ceramic glazes and the results are communicated of the experiment to synthetize this pigment and to test it by the thermographic, X-ray and electron-microsonde methods. It has been found that the pink pigment is the result of dispersion of Cr 2 O 3 upon the grain areas of Zr0 2 , TiO 2 and SnO 2 : it is not a solid solution of Cr 2 O 3 in these oxides as has been earlier suggested. (author)

  4. Magnetic and transport properties of La0.3Ca0.7Mn0.9T0.1O3 (T = Cr, Fe, and W)

    International Nuclear Information System (INIS)

    Sudyoadsuk, T.; Suryanarayanan, R.; Winotai, P.

    2005-01-01

    We have carried out structural, magnetic and magneto transport measurements of the electron-doped manganite La 0.3 Ca 0.7 MnO 3 substituted with 10% of Cr, Fe and W on the Mn site. The substitution by Cr, Fe and W suppresses the charge order transition present at 260 K in the parent compound. All the samples show a semiconducting behavior. Whereas the parent compound does not show any magneto resistance (MR) even in a field of 14 T, a maximum MR of 6% in 5 T at 25 K is observed for the Cr substituted sample that is attributed to a spin-cluster glass like states induced by Cr. The Fe and W substituted samples showed a MR of 1.5 and 3%, respectively which may be attributed to a smaller number of FM domains/spin-clusters and to an increase in anti-ferromagnetic interaction

  5. Interface Resistance between FeCr Interconnects and La0.85Sr0.15Mn1.1O3

    DEFF Research Database (Denmark)

    Mikkelsen, Lars; Neufeld, Kai; Hendriksen, Peter Vang

    2009-01-01

    The long term oxidation behaviour and the electrical interface resistance between FeCr interconnects and La0,85Sr0,15Mn1,1O3 plates was studied by a DC four-point method in air at 750{degree sign}C for 10000 h. The tested FeCr alloys were: Crofer 22 APU, Sanergy HT, Plansee IT10, Plansee IT11, an....... Low degradation rates of less than 1 mcm2/1000 h were measured on all interfaces. The microstructure analysis showed that a duplex Cr2O3-(Mn,Co,Cr)3O4 oxide scale with a thickness of 3-5 µm had evolved on the alloys....

  6. Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    Science.gov (United States)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL.g-1.h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity.

  7. Thermodynamic modeling of La2O3-SrO-Mn2O3-Cr2O3 for solid oxide fuel cell applications

    DEFF Research Database (Denmark)

    Povoden-Karadeniz, E.; Chen, Ming; Ivas, Toni

    2012-01-01

    The thermodynamic La–Sr–Mn–Cr–O oxide database is obtained as an extension of thermodynamic descriptions of oxide subsystems using the calculation of phase diagrams approach. Concepts of the thermodynamic modeling of solid oxide phases are discussed. Gibbs energy functions of SrCrO4, Sr2.67Cr2O8......, Sr2CrO4, and SrCr2O4 are presented, and thermodynamic model parameters of La–Sr–Mn–Chromite perovskite are given. Experimental solid solubilities and nonstoichiometries in La1xSrxCrO3d and LaMn1xCrxO3d are reproduced by the model. The presented oxide database can be used for applied computational...... thermodynamics of traditional lanthanum manganite cathode with Cr-impurities. It represents the fundament for extensions to higher orders, aiming on thermodynamic calculations in noble symmetric solid oxide fuel cells...

  8. Low temperature stability of 4O martensite in Ni{sub 49.1}Mn{sub 38.9}Sn{sub 12} metamagnetic Heusler alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Czaja, P., E-mail: p.czaja@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., Kraków, 30-059 Poland (Poland); Technische Universität Dresden, Dresden Center for Nanoanalysis (DCN), Dresden, 01062 Germany (Germany); Przewoźnik, J.; Gondek, Ł. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Department of Solid State Physics, Al. Mickiewicza 30, Kraków, 30-059 Poland (Poland); Hawelek, L. [Institute of Non Ferrous Metals, 5 Sowinskiego Str., Gliwice, 44-100 Poland (Poland); Żywczak, A. [AGH University of Science and Technology, Academic Centre of Materials and Nanotechnology, Al. Mickiewicza 30, Kraków, 30-059 Poland (Poland); Zschech, E. [Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Dresden, 01109 Germany (Germany)

    2017-01-01

    The structural transformation sequence in Ni{sub 49.1}Mn{sub 38.9}Sn{sub 12} ribbons is studied using calorimetric, thermomagnetic, resistivity and in-situ XRD measurements. It is confirmed that the ferromagnetic L2{sub 1} austenite phase transforms into 4O martensite at 242 K. The austenite phase persists in the sample to well below the T{sub C} of martensite. Upon further cooling the 4O martensite phase is stable down to the low temperature range, what is ascribed to its limited Ni/Mn and e/a ratios. On heating lattice constants assume lower values resulting from stress relief upon thermal cycling. - Highlights: • Transformation sequence in Ni{sub 49.1}Mn{sub 38.9}Sn{sub 12} ribbons is studied. • ferromagnetic L2{sub 1} austenite phase transforms into 4O martensite at 242 K. • austenite persists to well below the T{sub C} of martensite. • 4O martensite is stable to low temperature range.

  9. Probing the ground state and zero-field cooled exchange bias by magnetoresistance measurement in Mn{sub 50}Ni{sub 41}Sn{sub 9} ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiyun [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); School of Materials Science and Engineering, China University of Mining & Technology, Xuzhou 221116 (China); Tu, Ruikang [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); School of Materials Science and Engineering, Soochow University, Suzhou 215000 (China); Fang, Xiaoting [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Gu, Quanchao [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); School of Materials Science and Engineering, Soochow University, Suzhou 215000 (China); Zhou, Yanying [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Cui, Rongjing [Department of Chemistry, Changshu Institute of Technology, Changshu 215500 (China); Han, Zhida, E-mail: han@cslg.edu.cn [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Zhang, Lei; Fang, Yong [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Qian, Bin, E-mail: njqb@cslg.edu.cn [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Zhang, Chengliang [School of Science, Jiangnan University, Wuxi 214122 (China); Jiang, Xuefan [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China)

    2017-03-15

    Recently, a new type of exchange bias (EB) after zero-field cooling has attracted considerable interest mainly in bulk magnetic competing systems. Here, we use a detailed magnetotransport investigation to probe the ground state and zero-field cooled EB (ZEB) in Mn{sub 50}Ni{sub 41}Sn{sub 9} ribbon. Both ZEB and field cooled EB were detected in magnetoresistance results consistent with magnetic measurement. A pure spin-glass ground state is proposed based on parabolic shape of low-field magnetoresistance combined with AC magnetization, memory effect. The appearance of ZEB is attributed to the field-induced nucleation and growth of ferromagnetic domains in the spin glass matrix forming unidirectional anisotropy at the interface. - Highlights: • Magnetoresistance was first used to probe the ground state and ZEB in Ni-Mn-based alloys. • A pure spin-glass ground state is proposed in Mn{sub 50}Ni{sub 41}Sn{sub 9} ribbon. • Field-induced nucleation and growth of ferromagnetic domains in SG results in ZEB.

  10. Hot Ductility Behaviors in the Weld Heat-Affected Zone of Nitrogen-Alloyed Fe-18Cr-10Mn Austenitic Stainless Steels

    Science.gov (United States)

    Moon, Joonoh; Lee, Tae-Ho; Hong, Hyun-Uk

    2015-04-01

    Hot ductility behaviors in the weld heat-affected zone (HAZ) of nitrogen-alloyed Fe-18Cr-10Mn austenitic stainless steels with different nitrogen contents were evaluated through hot tension tests using Gleeble simulator. The results of Gleeble simulations indicated that hot ductility in the HAZs deteriorated due to the formation of δ-ferrite and intergranular Cr2N particles. In addition, the amount of hot ductility degradation was strongly affected by the fraction of δ-ferrite.

  11. La5M3X (M=Sn, Bi; X=Cl, Br, I): exploring the limit of the Mn5Si3-type hosting lattice

    International Nuclear Information System (INIS)

    Zheng Chong; Mattausch, Hansjuergen; Simon, Arndt

    2002-01-01

    Three new compounds add to the family of the Mn 5 Si 3 type host-guest lattice. These are La 5 Sn 3 X (X=Cl, Br, I) synthesized from stoichiometric mixtures of La, LaX 3 and Sn heated under Ar atmosphere in sealed Ta ampoules at 850-990 deg. C for 13-62 days. La 5 Sn 3 X crystallize in the space group P6 3 /mcm (No. 193) with lattice parameters a=9.603(1) A, 9.637(1) A and 9.673(1) A; c=6.890(1) A, 6.931(1) A and 6.987(1) A, respectively, for X=Cl, Br and I. Computational analysis using both the extended Hueckel and the local density functional methods showed that the Sn and La site acts as electron reservoir, providing electrons to the interstitials as necessary. This gives rise to a metallic behavior. Susceptibility and conductivity measurements confirmed these predictions. The single crystal structure of La 5 Bi 3 Br is also reported

  12. Characteristics of Fe-28Mn-6Si-5Cr shape memory alloy produced by centrifugal casting

    International Nuclear Information System (INIS)

    Otsuka, H.; Maruyama, T.; Kubo, H.

    2000-01-01

    Recent application of ferrous shape memory alloys, particularly Fe-Mn-Si alloys as pipe joints used for a tunnel driving technique in the field of civil engineering, requires efficient production of alloy pipes. Centrifugal casting is one of the efficient manufacturing techniques which can produce suitable sizes of pipes of approximately 4 to 14 inches in outside diameter. The mechanical properties of the centrifugally cast Fe-Mn-Si shape memory alloy were investigated to have 700 MPa in tensile strength and shape recovery of ∝3% of the initial deformation. The shape recovery achieved by the centrifugally cast materials proved to be comparable to that of the rolled materials. The TEM microstructure of the centrifugally cast materials deformed necessarily in the process of shape recovery reveals random distribution of ε (hcp) bands containing many dislocations inside, whereas the structure of the rolled materials shows ε phases containing fewer dislocations. (orig.)

  13. Nickel and Copper-Free Sintered Structural Steels Containing Mn, Cr, Si, and Mo Developed for High Performance Applications

    Directory of Open Access Journals (Sweden)

    Cias A.

    2017-03-01

    Full Text Available In an attempt to study the sinterability of potential high-strength nickel-free sintered structural steels containing Mn, Cr, Si and Mo compacts were prepared based on sponge and water atomised iron powders and on Astaloy prealloyed powders. To these were admixed ferromanganese, ferroslicon, and graphite. The samples were sintered at temperatures 1120 and 1250°C in laboratory tube furnaces in hydrogen, hydrogen-nitrogen atmospheres with dew points better than -60°C or in nitrogen in a semiclosed container in a local microatmosphere. After sintering the samples were slowly cooled or sinterhardened. Generally resultant microstructures were inhomogeneous, consisted of pearlite/ bainite/martensite, but were characterised by an absence of oxide networks. Sintering studies performed over a range of compositions have shown that superior strength, ranging beyond 900 MPa, along with reasonable tensile elongation, can be achieved with these new steels.

  14. Magnetism, structures and stabilities of cluster assembled TM@Si nanotubes (TM = Cr, Mn and Fe): a density functional study.

    Science.gov (United States)

    Dhaka, Kapil; Bandyopadhyay, Debashis

    2016-08-02

    The present study reports transition metal (TM = Cr, Mn and Fe) doped silicon nanotubes with tunable band structures and magnetic properties by careful selection of cluster assemblies as building blocks using the first-principles density functional theory. We found that the transition metal doping and in addition, the hydrogen termination process can stabilize the pure silicon nanoclusters or cluster assemblies and then it could be extended as magnetic nanotubes with finite magnetic moments. Study of the band structures and density of states (DOS) of different empty and TM doped nanotubes (Type 1 to Type 4) show that these nanotubes are useful as metals, semiconductors, semi-metals and half-metals. These designer magnetic materials could be useful in spintronics and magnetic devices of nanoscale order.

  15. Nitrogen effect on the tendency of Cr-Ni-MN steels to delayed fracture under stress and hydrogen effects

    International Nuclear Information System (INIS)

    Suvorova, S.O.; Fillipov, G.A.

    1996-01-01

    Austenitic steels types 03Kh17N16G10AM5, 03Kh6N12G10AM5 and 07Kh13AG20 with various nitrogen contents were studied for their tendency to delayed fracture using mechanical tests, fractography and X ray diffraction analysis. The steel type 07Kh13G20 exhibited the highest strength in the initial state but showed an increase tendency to delayed fracture after hydrogenation. It is underlined that nitrogen additions essentially intensify the tendency of cold worked steels to delayed fracture. This fact should be taken into account when using nitrogen-containing Cr-Ni-Mn steels under severe operational conditions. 4 refs., 2 tabs

  16. The effect of alloying and treatment on martensite transformation during deformation in Fe-Cr-Mn steels with unstable austenite

    International Nuclear Information System (INIS)

    Malinov, L.S.; Konop, V.I.; Sokolov, K.N.

    1977-01-01

    The effect is studied of alloying with chromium (6-10%), silicon (1-2%), molybdenum (1-3%), and copper (2%), the heat treatment conditions, and the deformation conditions, or the martensitic transformation and mechanical properties of Fe-Cr-Mn steels of the transitional class based on 0G8AM2S. It is shown that appropriate alloying and treatment, taking into account the degree of stability of the austenite, can ensure a complex of high mechanical properties of the steels investigated. For instance, the treatment of steel 0Kh10AG8MD2S by the technique: hardening+ 40% deformation at 400 deg C + 10% deformation at room temperature has yielded the following mechanical properties: sigmasub(B)=150 kgf/mm 2 , sigmasub(T)=110 kgf/mm 2 , sigma=18%, psi=32%

  17. Synthesis and characterization of Ruddlesden-Popper (RP) type phase LaSr2MnCrO7

    International Nuclear Information System (INIS)

    Singh, Devinder; Singh, Rajinder

    2010-01-01

    New Ruddlesden-Popper (RP) type phase LaSr 2 MnCrO 7 has been synthesized by ceramic method. Rietveld profile analysis shows that the phase crystallizes with tetragonal unit cell in the space group 14/mmm. The electrical resistivity of the phase has been measured in the temperature range of 10-300 K using Leybold closed cycle helium cryostat. The phase shows insulator-metal (I-M) transition at low temperature, the phenomenon often associated with giant magnetoresistance. 3D variable range hopping governs the electrical conduction in the insulator region above the I-M transition temperature. Magnetic susceptibility of the phase has been measured in the temperature range of 100-300 K. Magnetic studies suggest that the phase is ferromagnetic. (author)

  18. Influence on SME and microstructure in FeMnSiCrNi SMA for strengthening of austenite matrix

    International Nuclear Information System (INIS)

    Gu, N.; Lin, C.; Song, X.; Peng, H.; Yin, F.

    2000-01-01

    Influences of solution- and deformation-strengthening on SME and the microstructures of FeMnSiCrNi SMA were researched. SME and the training effect were both obviously improved when 0.3%C added into the alloy. It was observed that some thermo-induced martensites, distributing disorderly in the matrix, formed in the alloy without carbon, while in the alloy with carbon, more stress-induced martensites, distributing orderly in the matrix, were found, thus resulting in the better SME. As far as the treatment methods were concerned, one time deformation-strengthening could be better than training many times. The ε-martensites in the strengthened alloy appeared larger in amount, short plate in shape and distributed with nearly the same orientation, which is closely related to the better SME. (orig.)

  19. Influence of ausforming on substructures and shape memory behavior in Fe-28Mn-6Si-5Cr alloy

    International Nuclear Information System (INIS)

    Wang, D.; Ji, W.; Han, M.; Jia, D.; Liu, W.

    2000-01-01

    The influence of ausforming (deformation of austenite at temperatures above Md) on shape memory effect (SME) and the substructures in Fe-28Mn-6Si-5Cr (wt.%) alloy were studied, intending to reveal the dominating factor for SME in terms of microstructural characteristics in comparison with the case of thermo-mechanical training. It was found that the SME in the studied alloy could be effectively improved by ausforming at 700 C for 9% tensile strain, in the process of which the oriented stacking faults and dislocations were evolved and regularly distributed in austenite. The improvement of SME by ausforming, as well as thermo-mechanical training, is attributed to the restored substructures in austenite; while there is no closely correspondent relation between SME and the strength of austenite matrix. (orig.)

  20. Production and characterization of stainless steel based Fe-Cr-Ni-Mn-Si(-Co) shape memory alloys

    International Nuclear Information System (INIS)

    Otubo, J.

    1995-01-01

    It is well known that the Fe based alloys can exhibit shape memory effect due to the γ to ε martensitic transformation. The effect may not be as striking as observed in the NiTi alloy but it might become attractive from the practical point of view. In this work, two compositions of Fe-Cr-Ni-Mn-Si(-Co) stainless steel based shape memory alloy, prepared by the VIM technique, will be presented. The results are good with shape recovery of 95% for a pre-strain of 4% after some training cycles. In terms of workability the alloys produced are worse than the usual AISI304. However, adjusting the thermo-mechanical processing, it is perfectly possible to produce wire as thin as 1,20mm in dia. or down. (orig.)

  1. Biosorption of Cd, Cr, Mn, and Pb from aqueous solutions by Bacillus sp strains isolated from industrial waste activate sludge

    Directory of Open Access Journals (Sweden)

    Rocío García

    2016-01-01

    Full Text Available Los microorganismos tienen capacidad de acumular metales pesados como agentes bioadsorbentes ofreciendo una alternativa para la remoción de metales tóxicos en aguas de efluentes industriales. El objetivo del presente trabajo fue aislar e identificar bacterias tolerantes a los metales pesados (Cd, Cr, Mn y Pb de lodos activados provenientes de la planta de tratamiento de agua del Municipio de Santa Rosa Jáuregui, Querétaro. Para seleccionar las bacterias que son tolerantes a los metales se aislaron 37 cepas bacterianas de las cuales se seleccionaron la Cepa-13 y Cepa-16 (C-13 y C-16, que presentaron una máxima capacidad de adsorción para los metales estudiados. En este artículo, el término biosorción describe la remoción de contaminantes y la utilización de biomasas (muerta mediante mecanismos fisicoquímicos como el proceso de adsorción o de intercambio iónico. Para obtener las condiciones de máxima adsorción se aplicó un tratamiento alcalino y uno ácido. La capacidad de adsorción fue menor en medio ácido que el bioadsorbente con tratamiento alcalino. Una segunda etapa del estudio fue la biosorción de metales pesados (Cd, Cr, Mn, y Pb utilizando las biomasas muertas de Bacillus sp (cepa C13 y C16 aisladas de los lodos activados de la primera etapa.

  2. Preparation and electrochemical properties of core-shell carbon coated Mn-Sn complex metal oxide as anode materials for lithium-ion batteries

    Science.gov (United States)

    Zhang, Ruixue; Fang, Guoqing; Liu, Weiwei; Xia, Bingbo; Sun, Hongdan; Zheng, Junwei; Li, Decheng

    2014-02-01

    In this study, we synthesized a carbon coated Mn-Sn metal oxide composite with core-shell structure (MTO@C) via a simple glucose hydrothermal reaction and subsequent carbonization approach. When the MTO@C composite was applied as an anode material for lithium-ion batteries, it maintained a reversible capacity of 409 mA h g-1 after 200 cycles at a current density of 100 mA g-1. The uniformed and continuous carbon layer formed on the MTO nanoparticles, effectively buffered the volumetric change of the active material and increased electronic conductivity, which thus prolonged the cycling performance of the MTO@C electrode.

  3. Systematic study of the elastic properties of Mn3AC antiperovskite with A = Zn, Al, Ga, In, Tl, Ge and Sn

    International Nuclear Information System (INIS)

    Medkour, Y.; Roumili, A.; Maouche, D.; Saoudi, A.; Louail, L.

    2012-01-01

    Highlights: ► Single crystal elastic constants C 11 , C 12 and C 44 were calculated. ► Elastic moduli for polycrystalline aggregate were obtained. ► Increasing the atomic number of A element reduces B, G′, Y and v. ► Mn 3 AlC has a high melting point and light weight. - Abstract: First principle calculations were made to investigate the elastic properties of Mn 3 AC antiperovskites, A = Zn, Al, Ga, In, Tl, Ge and Sn. The estimated equilibrium lattice parameters are in agreement with the experimental ones. From the single crystal elastic constants we have calculated the polycrystalline elastic moduli: the bulk modulus B, shear modulus G, tetragonal shear modulus G′, Young’s modulus Y, Cauchy’s pressure CP, Poisson’s ratio v, elastic anisotropy factor and Pugh’s criterion G/B. Using Debye’s approximation we have deduced the elastic wave velocities and Debye’s temperature.

  4. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Joo, S.-H.; Kato, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Jang, M.J.; Moon, J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Tsai, C.W.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Center for High Entropy Alloys, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of)

    2017-03-24

    The tensile deformation and strain hardening behaviors of an equimolar CoCrFeMnNi high-entropy alloy (HEA) were investigated and compared with low and medium entropy equiatomic alloys (LEA and MEA). The HEA had a lower yield strength than the MEA because the addition of Mn weakens solid solution hardening in the HEA. However, deformation twinning induced the multiple stage strain hardening behavior of the HEA and enhanced strength and elongation. Using tensile-interrupted electron backscatter diffraction analysis, geometrically necessary dislocations were observed as plume-shaped features in grain interior, and a considerable texture was characterized, which is typical of face centered cubic metals. Moreover, the relationship between favorably oriented grains and twinning in the HEA bore a clear resemblance to the same tendency in TWIP steels. The thickness of the twin bundles was less than 100 nm. A high density of stacking defects was found in the nanotwins. Nano twinning and stacking faults were found to contribute to the remarkable mechanical properties. Deformation induced twinning not only demonstrated the dynamic Hall-Petch effect but also changed dislocation cell substructures into microband structures.

  5. Preparation of monolayers of Mn{sub 6}Cr single-molecule-magnets on different substrates and characterization by means of nc-AFM

    Energy Technology Data Exchange (ETDEWEB)

    Gryzia, Aaron; Brechling, Armin; Predatsch, Hans; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University, D-33615 Bielefeld (Germany); Glaser, Thorsten [Faculty of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany)

    2011-07-01

    The preparation of a highly ordered monolayer of Single-Molecule-Magnets (SMM) is one of the main preconditions for a technical application of these molecules. The adsorption of these SMMs on surfaces is associated with difficulties due to the often low chemical stability of these molecules in the vicinity of a surface. The used Mn{sub 6}Cr-complex has a C{sub 3}-symmetry and a spin ground state of S{sub t}=21/2. This complex is a trication and needs therefore counter ions for electrical charge compensation. Tetraphenylborate, lactate and perchlorate came into consideration for this function. Mn{sub 6}Cr-SMMs were prepared on different substrates by a droplet technique in air at room temperature. The samples were characterized by means of an AFM operating in non-contact mode, using tips with cone radii of approx. 2 nm. An island-like growth was observed on SiO{sub 2}- and Si{sub 3}N{sub 4}-substrates, whereas on HOPG and mica the Mn{sub 6}Cr-SMM adsorbates preferred a layer growth. Also an influence of the used counter ions was observed on different substrates. The measured thicknesses of the layers are consistent with the Van der Waals radii of the Mn{sub 6}Cr-SMMs.

  6. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.; Schwingenschlö gl, Udo

    2016-01-01

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns

  7. Magnetization reversal and tunable exchange bias in GdCr{sub 1−x}Mn{sub x}O{sub 3} (x=0−0.50)

    Energy Technology Data Exchange (ETDEWEB)

    Dash, Bibhuti B.; Ravi, S., E-mail: sravi@iitg.ernet.in

    2017-05-01

    Single phase samples of GdCr{sub 1-x}Mn{sub x}O{sub 3} (x=0−0.50) were prepared and their magnetic properties were studied by measuring temperature and field variations of magnetization. The Neel temperature, T{sub N} is found to decrease from T{sub N}=174 K for x=0 to 91 K for x=0.50. The magnetization reversal persists upto 5 at% of Mn substitution with a magnetic compensation temperature, T{sub comp} of 136 K and 139 K for x=0 and 0.05 respectively. However, spin reorientation induced magnetization reversal emerges for x=0.40 and 0.50 samples around 30 K. Tunable positive and negative exchange bias fields in the range of −1.0 kOe to +1.6 kOe have been observed. The origin of magnetization reversal and exchange bias field is explained in terms of antiparallel alignment of canted ferromagnetic component of Cr{sup 3+} ions and the paramagnetic moments of Gd{sup 3+} and Mn{sup 3+} ions under the influence of negative internal field due to antiferromagnetically ordered Cr{sup 3+} ions. - Highlights: • Magnetization reversal and bipolar switching in Mn substituted GdCrO{sub 3} • Tunable exchange bias field in the range of −1.0 kOe to +1.6 kOe. • Low temperature spin reorientation transition is observed.

  8. Permeability and giant magnetoimpedance in Co69Fe4.5X1.5Si10B15 (X=Cr, Mn, Ni) amorphous ribbons

    International Nuclear Information System (INIS)

    Byon, Kwang Seok; Yu, Seong-Cho; Kim, Cheol Gi

    2001-01-01

    The magnetoimpedance (MI) has been measured in the amorphous ribbons of the soft ferromagnetic alloy Co 69 Fe 4.5 X 1.5 Si 10 B 15 (X=Cr, Mn, Ni) as functions of frequency (f). For all of the three samples, at low frequency, f≤5MHz, the MI ratio increases with increasing frequency, but the MI ratio decreases at high frequency, f≥5MHz. The MI profiles are not changed at low frequency regions of f≤1MHz in the amorphous ribbons. The MI ratio at high frequency of f=5MHz becomes 57% in Co 69 Fe 4.5 Cr 1.5 Si 10 B 15 , but the MI ratio becomes 30% in Co 69 Fe 4.5 Mn 1.5 Si 10 B 15 and Co 69 Fe 4.5 Ni 1.5 Si 10 B 15 . The MI ratio at f=10MHz becomes 45% in Co 69 Fe 4.5 Cr 1.5 Si 10 B 15 and the MI ratio becomes 23% in Co 69 Fe 4.5 Mn 1.5 Si 10 B 15 and Co 69 Fe 4.5 Ni 1.5 Si 10 B 15 , respectively. The maximum values of field sensitivity are 2.7(X=Cr), 2.5(X=Mn), 2.2(X=Ni)%/Oe for f=5MHz. [copyright] 2001 American Institute of Physics

  9. Effect of variable thermal conductivity and specific heat capacity on the calculation of the critical metal hydride thickness for Ti1.1CrMn

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2014-01-01

    model is applied to the metal hydride system, with Ti 1.1 CrMn as the absorbing alloy, to predict the weight fraction of absorbed hydrogen and solid bed temperat ure . Dependencies of thermal conductivity and specific heat capacity upon pressure and hydrogen content respectively , are accounted for...

  10. Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der Waals heterostructures

    Science.gov (United States)

    Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo

    2018-05-01

    As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe3/CrSiTe3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe3/CrSiTe3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe3/CrSiTe3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe3/CrSiTe3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.

  11. Neutron investigation of Ru-doped Nd1/2Ca1/2MnO3. Comparison with Cr-doped Nd1/2Ca1/2MnO3

    International Nuclear Information System (INIS)

    Moritomo, Yutaka; Nonobe, Toshihiko; Machida, Akihiko; Ohoyama, Kenji

    2002-01-01

    Lattice and magnetic properties are investigated for 3% Ru- and Cr-doped Nd 1/2 Ca 1/2 MnO 3 . The parent Nd 1/2 Ca 1/2 MnO 3 is a charge-ordered insulator (T CO =250K). With decreasing temperature below ≅210K, these compounds are separated into two perovskite phases, that is, the long-c and short-c phases. The long-c region shows a ferromagnetic transition at T C ≅210K for the Ru-doped compound and ≅130K for the Cr-doped compound, while the short-c region shows antiferromagnetic transition at T N ≅150K for Ru and ≅110K for Cr. We discuss the origin of the enhanced T C for the Ru-doped compound in terms of the effective one-electron bandwidth W of the e g -band. (author)

  12. Influence of silver addition on the microstructure and mechanical properties of squeeze cast Mg-6Al-1Sn-0.3Mn-0.3Ti

    International Nuclear Information System (INIS)

    Acikgoez, Sehzat; Sevik, Hueseyin; Kurnaz, S.Can

    2011-01-01

    Graphical abstract: Highlights: → X-ray diffractometry reveals that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the base alloy. → With addition of silver, Al 81 Mn 19 phase was found. → The mechanical properties of the base alloy are improved with addition of silver. → The fracture surface of base alloy shows relatively deeper and more amount of dimples than that of alloys containing silver. - Abstract: In this study, the effect of silver (0, 0.2, 0.5, and 1 wt.%) on the microstructure and mechanical properties of a magnesium-based alloy (Mg-Al 6 wt.%-Sn 1 wt.%-Mn 0.3 wt.%-Ti 0.3 wt.%) were investigated. The alloys were produced under a controlled atmosphere by a squeeze-casting process. X-ray diffractometry revealed that the main phases are α-Mg, α-Ti, β-Mg 17 Al 12 and Al 8 Mn 5 in the all of alloys. In addition to, Al 81 Mn 19 phase was found with Ag additive. Besides, the amount of β-Mg 17 Al 12 phase was decreased with increasing the amount of Ag. The strength of the base alloy was increased by solid solution mechanism and decreasing the amount of β-Mg 17 Al 12 phase with addition of Ag. Furthermore, existence of Al 81 Mn 19 phase can be acted an important role in the increase on the mechanical properties of the alloys.

  13. Aging precipitation behavior and its influence on mechanical properties of Mn18Cr18N austenitic stainless steel

    Science.gov (United States)

    Qin, Fengming; Li, Yajie; He, Wenwu; Zhao, Xiaodong; Chen, Huiqin

    2017-11-01

    The aging precipitation behavior in Mn18Cr18N austenitic stainless steel was investigated at temperatures from 600 °C to 900 °C. During isothermal aging treatment, the primary precipitate was Cr2N with a = 0.478 nm and c = 0.444 nm, and it preferentially nucleates along initial grain boundaries and gradually grows towards the interior of grains in discontinuous cellular way. Meanwhile, a small amount of granular face-centred cubic M23C6 with a = 1.066 nm also were observed, which mainly form along grain boundaries. The effect of these precipitates on mechanical properties of the alloy was studied. It was found that precipitates result in degeneration of the matrix hardness. Meanwhile, the SEM morphologies of aged tensile sample show that the brittle fracture predominates during deformation, i.e. the fracture mode transforms from intergranular fracture to transgranular fracture with the increasing of aging time. Compared with the solution-treated sample, the strength of the aged tensile samples slightly decreases and plasticity remarkably deteriorates.

  14. Aging behaviour of 25Cr-17Mn high nitrogen duplex stainless steel

    OpenAIRE

    Machado, I. F.; Padilha, A. F.

    2000-01-01

    The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainle...

  15. Effect of step-aging on the fracture toughness of Ti-15V-3Cr-3Sn-3Al alloy

    International Nuclear Information System (INIS)

    Niwa, Naotake

    1993-01-01

    Development and an application of a new high-low step-aging to improve the fracture toughness-strength balance of a Ti-15V-3Cr-3Sn-3Al alloy are studied. The high-low step-aging of aging at higher temperatures followed by aging at lower temperatures produces bi-modal microstructure composed of coarse and fine alpha precipitates in beta matrix. It greatly improves fracture toughness-strength balance compared with aging at a single temperature. Homogeneous distribution of coarse alpha precipitates produced by adding pre-aging at 573K before the high-low step-aging tends to reduce the superiority of the bi-modal microstructure in fracture toughness. The improvement is provided by the formation of microcracks and voids in the coarse alpha precipitates and rugged crack propagation due to the uneven microstructure. The high-low step-aging is applied to a TIG weldment of the alloy to improve the mechanical properties of the weldment. In the TIG weldment, strength of a fusion zone becomes much higher than that of a base metal after aging at a single temperature because of different aging response. In the first high temperature aging of the high low step-aging, coarse alpha particles that strengthen little and suppress strengthening by fine alpha precipitation in low temperature re-aging, precipitate more in fusion zone than in base metal because of the enhancement of aging in fusion zone. Therefore, strengthening of fusion zone in re-aging is less than in the base metal, resulting in comparable strength between the fusion zone and the base metal after re-aging. The bi-modal microstructure produced by the step-aging also improves, the, fracture toughness of the fusion zone of the weldment

  16. Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid

    International Nuclear Information System (INIS)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W.; Shih, H.C.

    2008-01-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al x CrFe 1.5 MnNi 0.5 (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 Ωcm 2 as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 Ωcm 2 ). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H 2 SO 4 solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al 0.3 CrFe 1.5 MnNi 0.5 alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe 1.5 MnNi 0.5 and Al 0.3 CrFe 1.5 MnNi 0.5 alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al x CrFe 1.5 MnNi 0.5 alloys optimized their surface structures and minimized their susceptibility to pitting corrosion

  17. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong-bin [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China); Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Lu, Xiong-gang; Li, Chong-he [State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Shanghai Special Casting Engineering Technology Research Center, Shanghai 201605 (China)

    2016-08-30

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr{sub 2}Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  18. Microstructure and mechanical properties of a novel near-α titanium alloy Ti6.0Al4.5Cr1.5Mn

    International Nuclear Information System (INIS)

    Wang, Hong-bin; Wang, Shu-sen; Gao, Peng-yue; Jiang, Tao; Lu, Xiong-gang; Li, Chong-he

    2016-01-01

    Based on previous Ti-Al-Cr-Mn quaternary system thermodynamic database, a novel near-α titanium alloy Ti-6.0Al-4.5Cr-1.5Mn alloy was designed and successfully prepared by the water-cooled copper crucible. Microscopic observation showed that both as-cast and annealing status consist of α phase, which coincides with the theoretical expectation. The mechanical properties at room temperature were measured and this alloy possesses good mechanical properties, its average yield-strength reaches 1051.5 MPa and tensile-strength is up to 1091.2 MPa while its average elongation is just 8.3%. Compared with the TA15, it has better mechanical strength and worse elongation. In the new alloy Laves phase Cr 2 Ti were detected by XRD pattern and TEM, which may cause the alloy's poor plasticity.

  19. Preparation and characterization of electrically conducting polypyrrole Sn(IV phosphate cation-exchanger and its application as Mn(II ion selective membrane electrode

    Directory of Open Access Journals (Sweden)

    A.A. Khan

    2011-10-01

    Full Text Available Polypyrrole Sn(IV phosphate, an organic–inorganic composite cation-exchanger was synthesized via sol-gel mixing of an organic polymer, polypyrrole, into the matrices of the inorganic precipitate of Sn(IV phosphate. The physico-chemical properties of the material were determined using Atomic Absorption Spectrometry (AAS, CHN elemental analysis (inductively coupled plasma mass spectrometry, ICP-MS, UV–VIS spectrophotometry, FTIR (Fourier Transform Infra-Red, SEM (Scanning Electron Microscopy, TGA–DTA (Thermogravimetric Analysis–Differential Thermal Analysis, and XRD (X-ray diffraction. Ion-exchange behavior was observed to characterize the material. On the basis of distribution studies, the material was found to be highly selective for toxic heavy metal ion Mn2+. Due to its selective nature, the material was used as an electroactive component for the construction of an ion-selective membrane electrode. The proposed electrode shows fairly good discrimination of mercury ion over several other inorganic ions. The analytical utility of this electrode was established by employing it as an indicator electrode in electrometric titrations for Mn(II in water.

  20. Investigations on Ni-Co-Mn-Sn thin films: Effect of substrate temperature and Ar gas pressure on the martensitic transformations and exchange bias properties

    Energy Technology Data Exchange (ETDEWEB)

    Machavarapu, Ramudu, E-mail: macrams2@gmail.com; Jakob, Gerhard [Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55128 Mainz (Germany)

    2015-03-15

    We report the effect of substrate temperature (T{sub S}) and Ar gas pressure (P{sub D}) on the martensitic transformations, magnetic and exchange bias (EB) properties in Heusler type Ni-Co-Mn-Sn epitaxial thin films. Martensitic transformation temperatures and EB fields at 5 K were found to increase with increasing T{sub S}. The observed maximum EB value of 320 Oe after field cooling in the film deposited at 650 {sup ∘}C is high among the values reported for Ni-Mn-Sn thin films which is attributed to the coexistence of ferromagnetic (FM) and antiferromagnetic (AF) phases in the martensitic state. In the case of P{sub D} variation, with increase in P{sub D}, martensitic transformation temperatures were increased and a sharp transformation was observed in the film deposited at 0.06 mbar. Magnetization values at 5 K were higher for increasing P{sub D}. These observations are attributed to the compositional shift. EB effect is also present in these films. Microstructural features observed using atomic force microscopy (AFM) shows a fine twinning and reduced precipitation with increase in P{sub D}, which is also confirmed from the scanning electron microscopy (SEM) images. EB effects in both series were confirmed from the training effect. Target ageing effect has been observed in the films deposited before and after ninety days of time interval. This has been confirmed both on substrate temperature and Ar gas pressure variations.

  1. Determination of Cu, Mn, Ni and Sn in gasoline by electrothermal vaporization inductively coupled plasma mass spectrometry, and emulsion sample introduction

    International Nuclear Information System (INIS)

    Saint'Pierre, Tatiana D.; Dias, Lucia Felicidade; Pozebon, Dirce; Aucelio, Ricardo Q.; Curtius, Adilson J.; Welz, Bernhard

    2002-01-01

    Trace metals in fuels, except in the case of additives, are usually undesirable and normally they occur in very low concentrations in gasoline, requiring sensitive techniques for their determination. Coupling of electrothermal vaporization with inductively coupled plasma mass spectrometry minimizes the problems related to the introduction of organic solvents into the plasma. Furthermore, sample preparation as oil-in-water emulsions reduces problems related to gasoline analysis. In this work, a method for determination of Cu, Mn, Ni and Sn in gasoline is proposed. Samples were prepared by forming a 10-fold diluted emulsion with a surfactant (Triton X-100), after treatment with concentrated HNO 3 . The sample emulsion was pre-concentrated in the graphite tube by repeated pipetting and drying. External calibration was used with aqueous standards in a purified gasoline emulsion. Six samples from different gas stations were analyzed, and the analyte concentrations were found to be in the μg l -1 range or below. The limits of detection were 0.22, 0.02, 0.38 and 0.03 μg l -1 for Cu, Mn, Ni and Sn, respectively. The accuracy of the method was estimated using a recovery test

  2. Room temperature inverse magnetocaloric effect in Pd substituted Ni{sub 50}Mn{sub 37}Sn{sub 13} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Ritwik, E-mail: ritwik.saha@tifr.res.in; Nigam, A.K.

    2014-09-01

    The structural, magnetic and magnetocaloric effects for Ni{sub 50−x}Pd{sub x}Mn{sub 37}Sn{sub 13} Heusler alloys have been investigated around both structural and magnetic transitions. The room temperature X-ray diffraction indicates 10 M modulated martensitic structure with an orthorhombic unit cell for x=0 and 1. However, the superstructure reflections for x=2 alloy imply that the pattern is related to the L2{sub 1} phase. The maximum entropy change occurring at the martensitic transition is found to be 21 J kg{sup −1} K{sup −1} for Ni{sub 50}Mn{sub 37}Sn{sub 13} alloy around room temperature. Despite the smaller change in entropy around room temperature, 3.8 times larger value of refrigerant capacity (184.6 J/kg) is achieved for 2% substitution of Pd, due to occurrence of magnetic entropy change in a broader temperature region.

  3. Elastic and inelastic {alpha}-scattering cross-sections obtained with the 44 MeV fixed energy Saclay cyclotron on separated targets of {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 40}Ca, {sup 46}Ti, {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 112}Sn, {sup 114}Sn, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn and {sup 208}Pb using the Saclay fixed-energy cyclotron; Sections efficaces differentielles elastiques et inelastiques obtenues par diffusion de particules {alpha} de 44 MeV sur des cibles de {sup 24}Mg, {sup 25}Mg, {sup 26}Mg, {sup 40}Ca, {sup 46}Ti, {sup 48}Ti, {sup 50}Ti, {sup 52}Cr, {sup 54}Fe, {sup 56}Fe, {sup 58}Fe, {sup 58}Ni, {sup 60}Ni, {sup 62}Ni, {sup 64}Ni, {sup 63}Cu, {sup 65}Cu, {sup 64}Zn, {sup 112}Sn, {sup 114}Sn, {sup 116}Sn, {sup 118}Sn, {sup 120}Sn, {sup 122}Sn, {sup 124}Sn et {sup 208}Pb au cyclotron a energie fixe de saclay

    Energy Technology Data Exchange (ETDEWEB)

    Bruge, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Departement de physique nucleaire, service de physique nucleaire a moyenne energie

    1967-01-01

    This report contains elastic and inelastic {alpha}-scattering cross-sections obtained with the 44 MeV fixed energy Saclay cyclotron on Mg, Ca, Ti, Cr, Fe, Ni, Co, Zn, Sn and Pb enriched targets. (author) [French] Ce rapport contient les tableaux des sections efficaces differentielles obtenues par diffusion elastique et inelastique des particules {alpha} de 44 MeV, fournies par le cyclotron a energie fixe de Saclay, sur des cibles d'isotopes separes de Mg, Ca, Ti, Cr, Fe, Ni, Co, Zn, Sn et Pb. (auteur)

  4. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (KSC (Ni, Mn, Pb, Fe, Zn, Cr

    Directory of Open Access Journals (Sweden)

    Fatemeh hormozi Nejad

    2017-02-01

    Full Text Available Introduction Soil plays a vital role in human life as the very survival of mankind is tied to the preservation of soil productivity (Kabata- Pendies and Mukherjee, 2007. The purpose of this study is the assessment of heavy metal contamination (Zn, Mn, Pb, Fe, Ni, Cr of the soil around the Khuzestan Steel Complex. Materials and methods For this purpose, 13 surface soil samples (0-10 cm were taken. Also a control sample was taken from an area away from the steel complex. The coordinates of each point were recorded by Global Positioning System (GPS. The samples were transferred to the laboratory and then were air dried at room temperature for 72 hours. Then they were sieved through a 2mm sieve for determining physical and chemical parameters (soil texture, pH, OC, and a 63-micron sieve for measurement of heavy metal concentration. pH was measured using a calibrated pH meter at a 2: 1 mixture (soil: water, and soil texture was determined using a hydrometer. The amount of organic matter was measured using the Valkey black method (Chopin and Alloway, 2007. After preparation of the samples in the laboratory, the samples were analyzed using the ICP-OES method to assess concentration of heavy metals. Measurement of heavy metals concentration was carried out at the Zar azma laboratory in Tehran. To ensure the accuracy of the analysis of soil samples, replicate samples were also sent to the laboratory. In order to assess the heavy metal pollution in the soil samples, different indices including contamination factor (CF, contamination degree (Cd, anthropogenic enrichment percent (An%, and saturation degree of metals (SDM were calculated. Discussion In addition, the mean concentrations of heavy metals in soil samples were compared to the concentration of these metals in Control Sample and unpolluted soil standard. Measurement of soil pH showed that the soil has a tendency to alkalinity. Also, soil texture is sandy loam (Moyes, 2011. The results showed that

  5. Ab initio studies on electronic and magnetic properties of X{sub 2}PtGa (X=Cr, Mn, Fe, Co) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Tufan, E-mail: aparnachakrabarti@gmail.com [Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Chakrabarti, Aparna [Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2017-02-01

    Using first-principles calculations based on density functional theory, we probe the electronic and magnetic properties of X{sub 2}PtGa (X being Cr, Mn, Fe, Co) Heusler alloys. Our calculations predict that all these systems possess inverse Heusler alloy structure in the respective ground states. Application of tetragonal distortion leads to lowering of energy with respect to their cubic phase. The equilibrium volumes of both the phases are nearly the same. These indicate that the materials studied here are prone to undergo martensite transition, as has been recently shown theoretically for Mn{sub 2}PtGa in the literature. Ground state with a tetragonal symmetry is corroborated by the observation of soft tetragonal shear constants in the cubic phase. By comparing the energies of various types of magnetic configurations we predict that Cr{sub 2}PtGa and Mn{sub 2}PtGa possess ferrimagnetic configuration whereas Fe{sub 2}PtGa and Co{sub 2}PtGa possess ferromagnetic configuration in their respective ground states. - Highlights: • We predict stable martensitic phase of X{sub 2}PtGa (X=Cr, Mn, Fe, Co). • Co{sub 2}PtGa possesses least inherent brittleness among all the materials. • Martensite transitions are possible for the investigated materials. • A tetragonal ground state with high spin polarization is predicted for Co{sub 2}PtGa.

  6. Ab initio studies on electronic and magnetic properties of X2PtGa (X=Cr, Mn, Fe, Co) Heusler alloys

    International Nuclear Information System (INIS)

    Roy, Tufan; Chakrabarti, Aparna

    2017-01-01

    Using first-principles calculations based on density functional theory, we probe the electronic and magnetic properties of X 2 PtGa (X being Cr, Mn, Fe, Co) Heusler alloys. Our calculations predict that all these systems possess inverse Heusler alloy structure in the respective ground states. Application of tetragonal distortion leads to lowering of energy with respect to their cubic phase. The equilibrium volumes of both the phases are nearly the same. These indicate that the materials studied here are prone to undergo martensite transition, as has been recently shown theoretically for Mn 2 PtGa in the literature. Ground state with a tetragonal symmetry is corroborated by the observation of soft tetragonal shear constants in the cubic phase. By comparing the energies of various types of magnetic configurations we predict that Cr 2 PtGa and Mn 2 PtGa possess ferrimagnetic configuration whereas Fe 2 PtGa and Co 2 PtGa possess ferromagnetic configuration in their respective ground states. - Highlights: • We predict stable martensitic phase of X 2 PtGa (X=Cr, Mn, Fe, Co). • Co 2 PtGa possesses least inherent brittleness among all the materials. • Martensite transitions are possible for the investigated materials. • A tetragonal ground state with high spin polarization is predicted for Co 2 PtGa.

  7. Magnetostructural transformation and magnetocaloric effect in Mn48‑x V x Ni42Sn10 ferromagnetic shape memory alloys

    Science.gov (United States)

    Hassan, Najam ul; Shah, Ishfaq Ahmad; Khan, Tahira; Liu, Jun; Gong, Yuanyuan; Miao, Xuefei; Xu, Feng

    2018-03-01

    In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48‑x V x Ni42Sn10 (x = 0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0–5 T are 15.2, 18.8, and 24.3 {{J}}\\cdot {kg}}-1\\cdot {{{K}}}-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48‑x V x Ni42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092).

  8. Effects of anodic passivation on the constitution, stability and resistance to corrosion of passive film formed on an Fe-24Mn-4Al-5Cr alloy

    International Nuclear Information System (INIS)

    Zhang, Y.S.; Zhu, X.M.; Liu, M.; Che, R.X.

    2004-01-01

    The effects of anodic aging time and potential on the corrosion resistance, stability and constitution of the passive film formed on an Fe-24Mn-4Al-5Cr alloy in 50% HNO 3 solution were studied by using combined electrochemical measurements and Auger electron spectroscopic (AES)/X-ray photoelectron spectroscopic (XPS) analysis. In the anodic passive region, prolonged anodic aging time or increased passivating potential can induce better protective and stable properties of the passive film and better resistance to corrosion. With increasing aging time from 15 min to 5 h, the time required for the potential decay from the passive to active state increases from about 300 up to above 12,000 s, and the corrosion resistance in 1 mol l -1 Na 2 SO 4 solution of Fe-24Mn-4Al-5Cr alloy, characterized by polarization curves, is superior to that of Fe-13% Cr-0.1% C stainless steel. AES and XPS analyses of the aging passive film show that these improvements of properties are related to modifications of the passive layer with time. The increase of resistance to corrosion is attributed to Al 2 O 3 and Cr 2 O 3 enrichment and oxides of Fe and Mn depletion in the passive film and a thickening of the effective barrier layer of oxides

  9. Observation of magnetization reversal behavior in Sm0.9Gd0.1Cr0.85Mn0.15O3 orthochromites

    Science.gov (United States)

    Panwar, Neeraj; Joby, Jostin P.; Kumar, Surendra; Coondoo, Indrani; Vasundhara, M.; Kumar, Nitu; Palai, Ratnakar; Singhal, Rahul; Katiyar, Ram S.

    2018-05-01

    Impact of co-doping (Gd and Mn) on the magnetic properties has been systematically investigated in SmCrO3 compound. For the synthesized compound Sm0.9Gd0.1Cr0.85Mn0.15O3 (SGCMO), below the Neel transition temperature and under low applied magnetic field, temperature induced magnetization reversal at 105 K (crossover temperature) was noticed in the field cooled magnetization curve. Magnetization reversal attained maximum value of -1.03 emu/g at 17 K where spin reorientation occurred. The magnetization reversal disappeared under higher applied field. From the M-H plots an enhancement in the magnetization was observed due to Gd doping. Magnetocaloric effect at low temperatures measured through the magnetic entropy change was found sixteen times higher for this compound as compared to pristine SmCrO3 and twice to that of SmCr0.85Mn0.15O3 compound. The study reveals the importance of co-doping in tailoring the magnetic properties of rare-earth chromites.

  10. Volume magnetostriction at the AF-FRI metamagnetic transition in the itinerant-electron system Mn2-xTxSb (T=Co, Cr)

    International Nuclear Information System (INIS)

    Bartashevich, M.I.; Goto, T.; Baranov, N.V.; Gaviko, V.S.

    2004-01-01

    Mn 2 Sb is a ferrimagnet, and substitution of Co or Cr for Mn above the critical concentration results in the appearance of a spontaneous first-order magnetic phase transition from ferrimagnetic (FRI) to antiferromagnetic (AF) with decreasing temperature below T t . At T t a first-order field-induced AF-FRI transition is observed at a critical field B c . The spontaneous as well as the field induced AF-FRI transition is accompanied by a significant magnetovolume effect. Magnetization under high pressure up to 12 kbar, magnetostriction of Mn 1.8 Co 0.2 Sb and Mn 1.94 Cr 0.04 Sb as well as thermal expansion of the Mn 1-x Co x Sb system has been measured in order to clarify the origin of the contradictory experimental results on the pressure effect on B c and that on T t , implying opposite changes. The observed differences are explained by the found anomalous change of sign of the magnetovolume effect at the AF-FRI transition with decreasing temperature

  11. Effect of Si and Mn additions on ferrite and austenite phase fractions in 25Cr-7Ni-1.5Mo-3W base super duplex stainless steels

    International Nuclear Information System (INIS)

    Jeong, S.W.; Lee, Z.-H.; Lee, H.M.

    2000-01-01

    The effect of heat treatment and Si and Mn additions on the ferrite and austenite phase fractions of the super duplex stainless steel (SDSS), Fe-25Cr-7Ni-1.5Mo-3W-Si-Mn-0.25N (numbers are all in wt.% unless specified otherwise), was investigated. The thermodynamic calculations of phase equilibria and phase fractions were performed using the Thermo-Calc program. Based on the calculated results, specific compositions of Si and Mn were selected and alloys with these compositions were analysed by Feritscope, X-ray diffractometry and scanning electron microscopy. The calculated phase fractions and experimentally analysed ones were compared and there was a good agreement between calculations and measurements. The optimum heat treatment condition for Fe-25Cr-7Ni-1.5Mo-3W-0.5Si-0.5Mn-0.25N is to hold at 1050 to 1100 C for 2 h in considering the ferrite to austenite ratio of 50:50 and to avoid second phase precipitation such as the σ phase. It was suggested that an excessive addition of more than 0.8Si and 1.0Mn may induce the σ phase precipitation. (orig.)

  12. Dry sliding wear of Al-Fe-Cr-Mn quasicrystalline phase former alloy obtained by spray forming; Estudo do comportamento ao desgaste de liga Al-Fe-Cr-Mn obtida por conformacao por spray

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, S.M.T.; Rios, C.T.; Botta Filho, W.J.; Bolfarini, C.; Kiminami, C.S. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Gargarella, P.; Mendes, M.A.B., E-mail: marcio.andreato@gmail.co [Universidade Federal de Sao Carlos (PPG-CEMUFSCar), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    Samples from different regions of a spray formed billet of Al{sub 92}Fe{sub 3}Cr{sub 2}Mn{sub 3} quasicrystalline phase former alloy were analyzed and their wear behavior has been studied. The microstructures observed depend on the cooling rate imposed to the material. The border of the billet exhibits a very fine structure with presence of quasicrystalline phase and the base showed a fine structure but without presence of quasicrystalline phase. Dry sliding wear tests were made using three loads and samples of these two different regions. The wear surfaces were analyzed by scanning electron microscopy and X-ray diffraction. Similar wear behavior was observed in the border and the base samples at the same load. The wear mechanism verified is the adhesive and the applied load increases the formation of Al{sub 2}O{sub 3}. These particles can take off the surface and act as abrasive, which can explain the large increase in the wear rate for the samples loaded at 30N.(author)

  13. Elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys studied by the combinatorial thin film approach and ab initio calculations.

    Science.gov (United States)

    Reeh, S; Kasprzak, M; Klusmann, C D; Stalf, F; Music, D; Ekholm, M; Abrikosov, I A; Schneider, J M

    2013-06-19

    The elastic properties of fcc Fe-Mn-X (X = Cr, Co, Ni, Cu) alloys with additions of up to 8 at.% X were studied by combinatorial thin film growth and characterization and by ab initio calculations using the disordered local moments (DLM) approach. The lattice parameter and Young's modulus values change only marginally with X. The calculations and experiments are in good agreement. We demonstrate that the elastic properties of transition metal alloyed Fe-Mn can be predicted by the DLM model.

  14. The magnetic Curie temperature and exchange coupling between cations in tetragonal spinel oxide Mn{sub 2.5}M{sub 0.5}O{sub 4} (M = Co, Ni, Mn, Cr, and Mg) films

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, K.; Cheng, C. W.; Chern, G. [Physics Department and SPIN Research Center, National Chung Cheng University, Chia-Yi, Taiwan, 621 (China)

    2012-04-01

    Mn{sub 3}O{sub 4} is a Jahn-Taller tetragonal ferrite that has a relatively low Curie temperature (T{sub c}) of {approx}43 K due to weak coupling between the canting spins. In this study, we fabricated a series of 100-nm-thick Mn{sub 2.5}M{sub 0.5}O{sub 4} (M = Co, Ni, Mn, Cr, and Mg) films via oxygen-plasma-assisted molecular beam epitaxy and measured the structural and magnetic properties of these films. These films show single phase quality, and the c-axis lattice parameter of pure Mn{sub 3}O{sub 4} is 0.944 nm, with a c/a ratio {approx}1.16, consistent with the bulk values. The replacement of Mn by M (M = Co, Ni, Cr, and Mg) changes the lattice parameters, and the c/a ratio varies between 1.16 and 1.06 depending upon the cation distribution of the films. The magnetic Curie temperatures of these films also vary in the range of 25-66 K in that Ni and Co enhance the T{sub c} whereas Mg reduces the T{sub c} (Cr shows no effect on the T{sub c}). These changes to the T{sub c} are related to both the element electronic state and the cation distributions in these compounds. As a non-collinear spin configuration can induce electrical polarization, the present study provides a systematic way to enhance the magnetic transition temperature in tetragonal spinel ferrites.

  15. Decarburization and hardness changes of Fe-C-Cr-Mn-Si steels caused by high temperature oxidation in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Kucera, J; Broz, P [Academy of Sciences, Brno (Czech Republic); Hajduga, M; Glowacki, J [Tech. Univ., Lodz (Poland). Dept. of Mater. Sci.

    1999-07-01

    In the present paper the investigation of carbon diffusion and hardness changes in Fe-C-Cr-Mn-Si steels initiated by surface oxidation are reported. The oxidation anneals were carried out in ambient air. The measurements of carbon concentration and the metallographic investigation have shown that the steels decarburize expressively in the course of the oxidation process. The evaluation of the carbon concentration curves N{sub C}(x, t) yielded diffusion coefficients D{sub C} of carbon in the given steels. The dependence of D{sub C} on the concentration N{sub i} of alloying elements i is expressed by the use of diffusion interaction coefficients {beta}{sub C}{sup i}. The decrease of carbon concentration caused the increase of grain size in subsurface layers and the decrease of hardness HV. The dependence of HV(x, t) on N{sub C}(x, t) is expressed by the general parabolic relationship y(t) = k t{sup m}. (orig.) 24 refs.

  16. The effect of cooling and strain on martensitic transformation in Fe-Ni-Cr-Mn-Si alloy

    International Nuclear Information System (INIS)

    Park, Shin Hwa; Nam, Won Jong; Yoon, Man Son; Kang, Shin Wang; Lee, Dong Hyung

    1991-01-01

    In Fe-Ni-Cr-Mn-Si shape memory alloy, the effect of cooling methods and strain on the martensitic transformation was investigated. After the solution treatment at 900 deg C for 30 minutes, the specimens were air cooled, water cooled and quenched in liquid nitrogen. For air cooled specimens only austenite phase was detected, whereas austenite and ε-martensite phases were detected for specimens water cooled or quenched in liquid nitrogen. The amount of ε-martensite was increased with the cooling rate and strain. But the increasing rate of the amount of ε-martensite was decreased at 5% strain in air cooling and at 3% strain in water cooling, respectively. The occurrence of α-martensite was found at about 5% strain in air cooled specimens. For water cooled specimens it was found at about 3% strain. These strains almost coinceded with the strains at which the increasing rate of the amount of ε-martensite was changed. The occurrence of α-martensite in specimens quenched in liquid nitrogen was found less than 0.5% strain. (Author)

  17. Microstructure and Wear Behavior of CoCrFeMnNbNi High-Entropy Alloy Coating by TIG Cladding

    Directory of Open Access Journals (Sweden)

    Wen-yi Huo

    2015-01-01

    Full Text Available Alloy cladding coatings are widely prepared on the surface of tools and machines. High-entropy alloys are potential replacements of nickel-, iron-, and cobalt-base alloys in machining due to their excellent strength and toughness. In this work, CoCrFeMnNbNi HEA coating was produced on AISI 304 steel by tungsten inert gas cladding. The microstructure and wear behavior of the cladding coating were studied by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, microhardness tester, pin-on-ring wear tester, and 3D confocal laser scanning microscope. The microstructure showed up as a nanoscale lamellar structure matrix which is a face-centered-cubic solid solution and niobium-rich Laves phase. The microhardness of the cladding coating is greater than the structure. The cladding coating has excellent wear resistance under the condition of dry sliding wear, and the microploughing in the worn cladding coating is shallower and finer than the worn structure, which is related to composition changes caused by forming the nanoscale lamellar structure of Laves phase.

  18. Effect of Strain Rate on Hot Ductility Behavior of a High Nitrogen Cr-Mn Austenitic Steel

    Science.gov (United States)

    Wang, Zhenhua; Meng, Qing; Qu, Minggui; Zhou, Zean; Wang, Bo; Fu, Wantang

    2016-03-01

    18Mn18Cr0.6N steel specimens were tensile tested between 1173 K and 1473 K (900 °C and 1200 °C) at 9 strain rates ranging from 0.001 to 10 s-1. The tensile strained microstructures were analyzed through electron backscatter diffraction analysis. The strain rate was found to affect hot ductility by influencing the strain distribution, the extent of dynamic recrystallization and the resulting grain size, and dynamic recovery. The crack nucleation sites were primarily located at grain boundaries and were not influenced by the strain rate. At 1473 K (1200 °C), a higher strain rate was beneficial for grain refinement and preventing hot cracking; however, dynamic recovery appreciably occurred at 0.001 s-1 and induced transgranular crack propagation. At 1373 K (1100 °C), a high extent of dynamic recrystallization and fine new grains at medium strain rates led to good hot ductility. The strain gradient from the interior of the grain to the grain boundary increased with decreasing strain rate at 1173 K and 1273 K (900 °C and 1000 °C), which promoted hot cracking. Grain boundary sliding accompanied grain rotation and did not contribute to hot cracking.

  19. Contribution of deformation mechanisms to strength and ductility in two Cr-Mn grade austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef_saleh@s-petrol.suez.edu.eg [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P. [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Misra, R.D.K. [Center for Structural and Functional Materials and Chemical Engineering Department, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504-4130, USA. (United States); Talonen, J. [Outokumpu Oyj, Box 140, FI-02201 Espoo (Finland)

    2013-01-01

    The role of different deformation mechanisms in controlling mechanical properties were studied in two low-Ni, Cr-Mn austenitic stainless steel grades (Types 201 and 201L) by tensile testing and microstructure examinations. Tensile tests were carried out at two different strain rates, 5 Multiplication-Sign 10{sup -4} and 10{sup -2} s{sup -1}, in the temperature range from -80 Degree-Sign C to 200 Degree-Sign C. It was observed that the flow properties and work hardening rate are affected significantly by temperature and strain rate for the concerned steels through variation of deformation mechanism. Deformation-induced austenite-to-martensite transformation (TRIP effect) is the dominant mechanism at temperatures below room temperature. From 50 Degree-Sign C up to 200 Degree-Sign C, plastic deformation is controlled by mechanical twinning (TWIP effect) and dislocation glide. The electron backscattered diffraction (EBSD) technique and transmission electron microscopy (TEM) were employed to study the plastic deformation accommodation and identify the primary deformation mechanisms operating in the deformed steels.

  20. Distortion control in 20MnCr5 bevel gears after liquid nitriding process to maintain precision dimensions

    Science.gov (United States)

    Mahendiran, M.; Kavitha, M.

    2018-02-01

    Robotic and automotive gears are generally very high precision components with limitations in tolerances. Bevel gears are more widely used and dimensionally very close tolerance components that need stability without any backlash or distortion for smooth and trouble free functions. Nitriding is carried out to enhance wear resistance of the surface. The aim of this paper is to reduce the distortion in liquid nitriding process, though plasma nitriding is preferred for high precision components. Various trials were conducted to optimize the process parameters, considering pre dimensional setting for nominal nitriding layer growth. Surface cleaning, suitable fixtures and stress relieving operations were also done to optimize the process. Micro structural analysis and Vickers hardness testing were carried out for analyzing the phase changes, variation in surface hardness and case depth. CNC gear testing machine was used for determining the distortion level. The presence of white layer was found for about 10-15μm in the case depth of 250± 3.5μm showing an average surface hardness of 670 HV. Hence the economical liquid nitriding process was successfully used for producing high hardness and wear resistant coating over 20MnCr5 material with less distortion and reduced secondary grinding process for dimensional control.

  1. Formation process of lamella structures by deformation in an Fe-Mn-Si-Cr-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Kikuchi, T.; Kajiwara, S.; Tomota, Y.

    1995-01-01

    For Fe-Mn-Si-Cr-Ni shape memory alloys, it was previously found by HREM study that the formation of the nanometric lamella structures consisting of f.c.c. and h.c.p. phase is very important to exhibit good shape memory effect. In the present work, the formation process of such lamella structures has been studied in detail. The results are as follows. The transformation is initiated by random formation of extremely thin martensite plates with 1-2 nm width and then these plates are clustered and some of them coalesce to form thicker martensite plates with increasing deformation. The clustered regions are 400-600 nm wide and will correspond to the above mentioned lamella structures. These clustered regions are considered also to correspond to the thinnest martensite plate observable with optical microscope. In the optical microscopic scale, the thin martenite plates with the smallest width are formed rather uniformly in an austenite grain, and with further increasing deformation, they are clustered and coalesce into thicker plates with 3-8 μm width. (orig.)

  2. Magnetic and transport properties of Cu1.05Cr0.89 Mg0.05O2 and Cu0.96Cr0.95 Mg0.05Mn0.04O2 films

    International Nuclear Information System (INIS)

    Xu Qingyu; Schmidt, Heidemarie; Zhou Shengqiang; Potzger, Kay; Helm, Manfred; Hochmuth, Holger; Lorenz, Michael; Meinecke, Christoph; Grundmann, Marius

    2008-01-01

    We prepared conductive, polycrystalline or amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 films on a-plane sapphire substrates by pulsed laser deposition under different O 2 partial pressure and substrate temperature. Hall measurements were performed to study the majority carrier type in these films. Polycrystalline Cu 1.05 Cr 0.89 Mg 0.05 O 2 is n-type conducting at 290 K, while in amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 the type of majority charge carriers changes from electrons to holes at around 270 K. Interestingly, the structure has little influence on the magnetic properties of the films. A clear antiferromagnetic to paramagnetic transition was observed in both polycrystalline and amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 films at 25 K. Similar electrical properties to Cu 1.05 Cr 0.89 Mg 0.05 O 2 film were observed for Cu 0.96 Cr 0.95 Mg 0.05 Mn 0.04 O 2 in dependence on the structure, while only paramagnetic without antiferromagnetic ordering was observed down to 5 K. Large negative magnetoresistance of 27% at 20 K was observed at 6 T in amorphous Cu 1.05 Cr 0.89 Mg 0.05 O 2 film

  3. Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures

    Science.gov (United States)

    Arslan Hafeez, Muhammad; Farooq, Ameeq

    2018-01-01

    The aim of the research was to investigate the variation in microstructural, mechanical and tribological characteristics of 30CrMnSiNi2A ultra-high strength steel as a function of tempering temperatures. Steel was quenched at 880 °C and tempered at five different tempering temperatures ranging from 250 °C to 650 °C. Optical microscopy and pin on disc tribometer was used to evaluate the microstructural and wear properties. Results show that characteristics of 30CrMnSiNi2A are highly sensitive to tempering temperatures. Lathe and plate shaped martensite obtained by quenching transform first into ε-carbide, second cementite, third coarsened and spheroidized cementite and finally into recovered ferrite and austenite. Hardness, tensile and yield strengths decreased while elongation increased with tempering temperatures. On the other hand, wear rate first markedly decreased and then increased. Optimum amalgamation of characteristics was achieved at 350 °C.

  4. Effects of Alloyed Carbon on the General Corrosion and the Pitting Corrosion Behavior of FeCrMnN Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Heon-Young; Lee, Tae-Ho; Kim, Sung-Joon [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2011-10-15

    The effects of alloyed carbon on the pitting corrosion, the general corrosion, and the passivity behavior of Fe{sub 1}8Cr{sub 1}0Mn{sub 0}.4Nx{sub C} (x=0 ⁓ 0.38 wt%) alloys were investigated by various electrochemical methods and XPS analysis. The alloyed carbon increased the general corrosion resistance of the FeCrMnN matrix. Carbon enhanced the corrosion potential, reduced the metal dissolution rate, and accelerated the hydrogen evolution reaction rate in various acidic solutions. In addition, carbon promoted the pitting corrosion resistance of the matrix in a chloride solution. The alloyed carbon in the matrix increased the chromium content in the passive film, and thus the passive film became more protective.

  5. Effect of deep cryogenic treatment on the microstructure and wear performance of Cr-Mn-Cu white cast iron grinding media

    Science.gov (United States)

    Vidyarthi, M. K.; Ghose, A. K.; Chakrabarty, I.

    2013-12-01

    The phase transformation and grinding wear behavior of Cr-Mn-Cu white cast irons subjected to destabilization treatment followed by air cooling or deep cryogenic treatment were studied as a part of the development program of substitute alloys for existing costly wear resistant alloys. The microstructural evolution during heat treatment and the consequent improvement in grinding wear performance were evaluated with optical and scanning electron microscopy, X-ray diffraction analysis, bulk hardness, impact toughness and corrosion rate measurements, laboratory ball mill grinding wear test etc. The deep cryogenic treatment has a significant effect in minimizing the retained austenite content and converts it to martensite embedded with fine M7C3 alloy carbides. The cumulative wear losses in cryotreated alloys are lesser than those with conventionally destabilized alloys followed by air cooling both in wet and dry grinding conditions. The cryotreated Cr-Mn-Cu irons exhibit comparable wear performance to high chromium irons.

  6. Excellent mechanical properties and resistance to cavitation erosion for an ultra-low carbon CrMnN stainless steel through quenching and partitioning treatment

    Science.gov (United States)

    Zhou, Ze-an; Fu, Wan-tang; Zhu, Zhe; Li, Bin; Shi, Zhong-ping; Sun, Shu-hua

    2018-05-01

    The retained austenite content (RAC), the mechanical properties, and the resistance to cavitation erosion (CE) of the 00Cr13Mn8MoN steel after quenching and partitioning (Q&P) processing were investigated. The results show that the Q&P process affected the RAC, which reached the maximum value after partitioning at 400°C for 10 min. The tensile strength of the steel slightly decreased with increasing partitioning temperature and time. However, the elongation and product of strength and elongation first increased and then decreased. The sample partitioned at 400°C for 10 min exhibited the optimal property: a strength-ductility of 23.8 GPa·%. The resistance to CE for the 00Cr13Mn8MoN steel treated by the Q&P process was improved due to work hardening, spalling, and cavitation-induced martensitic transformation of the retained austenite.

  7. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico

    International Nuclear Information System (INIS)

    Zarazua, G.; Avila P, P.; Tejeda, S.; Valdivia B, M.; Macedo M, G.; Zepeda G, C.

    2013-01-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  8. Electrochemical evaluation of adsorption and oxidation of the carbon monoxide towards ordered intermetallic phases Pt-M (M=Mn, Pb, Sb e Sn); Avaliacao eletroquimica da adsorcao e oxidacao do monoxido de carbono sobre fases intermetalicas ordenadas Pt-M (M=Mn, Pb, Sb e Sn)

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, A L; Miguel-Junior, E; Silva, R I.V. da; Angelo, A C.D. [UNESP, Bauru, SP (Brazil). Depto. de Quimica. Lab. de Eletrocatalise

    2004-07-01

    This paper presents the experimental results obtained from the electrochemical evaluation of Pt ordered intermetallic phases (PtMn, PtPb, PtSb, PtSn) as electrode materials towards the CO oxidation reaction. The intermetallics showed a higher performance than pure Pt in the same experimental conditions. PtSn has presented the highest performance among the evaluated materials. There was not observed a clear relationship between the electrocatalytic activity of the materials and their ability in producing oxygen species at lower anodic potentials, suggesting that surface electronic density and structural characteristics of the electrode surfaces must be the properties to be investigated in order to explain the obtained results. (author)

  9. The kinetics of phase transformations of undercooled austenite of the 38MnCrNi6-4-4 hypoeutectoid steel

    OpenAIRE

    R. Dąbrowski; R. Dziurka; E. Rożniata

    2012-01-01

    Purpose: Present work corresponds to the research on the kinetic of phase transformation of undercooled austenite of 38MnCrNi6-4-4 hypoeutctoid steel. The kinetic of phase transformation of under cooled austenite of investigated alloy was presented on CCT diagram (continuous cooling transformation). Also the methodology of a dilatometric samples preparation and the method of the critical points determination were described.Design/methodology/approach: The austenitising temperature was defined...

  10. CORRELATION OF THE FERMI ENERGY OF Ni, Cr, Mn WITH THE ELECTROCATALYTIC ACTIVITY OF THE TRIPLE ALLOYS ON THE BASE OF THESE METALS

    Directory of Open Access Journals (Sweden)

    A. D. Andreyanov

    2016-04-01

    Full Text Available It was established the dependence of the electrocatalytic activity of alloys Ni-Cr-Mn at the variable contents of copper with values of Fermy energy of their components. Electrocatalytic activity of alloys was estimated by density of the current, determined by the method of suspended half-element. For Fermi energy calculation of various metals Sommerfeld model, in which distribution of electrons by speed is described by Fermi-Dirac statistic was used.

  11. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling.

    Science.gov (United States)

    Klimova, Margarita; Stepanov, Nikita; Shaysultanov, Dmitry; Chernichenko, Ruslan; Yurchenko, Nikita; Sanin, Vladimir; Zherebtsov, Sergey

    2017-12-29

    The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.

  12. Correlation between electronic and magnetic properties in the IV–VI group diluted magnetic semiconductor SnMnTe

    NARCIS (Netherlands)

    Eltink, S.J.E.A.; Swagten, H.J.M.; Stoffels, N.M.J.; Jonge, de W.J.M.

    1990-01-01

    The diluted magnetic semiconductor Sn1-xMnxTe exhibits a critical carrier density above which ferromagnetic interactions are dominant. On the basis of preliminary experiments on the low temperature magnetic phases no clear evidence for re-entrant behavior can be submitted.

  13. Survey of trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) in retail samples of flavoured and bottled waters.

    Science.gov (United States)

    Barroso, M F; Ramos, S; Oliva-Teles, M T; Delerue-Matos, C; Sales, M G F; Oliveira, M B P P

    2009-01-01

    Concentrations of eleven trace elements (Al, As, Cd, Cr, Co, Hg, Mn, Ni, Pb, Se, and Si) were measured in 39 (natural and flavoured) water samples. Determinations were performed using graphite furnace electrothermetry for almost all elements (Al, As, Cd, Cr, Co, Mn, Ni, Pb, and Si). For Se determination hydride generation was used, and cold vapour generation for Hg. These techniques were coupled to atomic absorption spectrophotometry. The trace element content of still or sparkling natural waters changed from brand to brand. Significant differences between natural still and natural sparkling waters (p element was compared with the presence of flavours, preservatives, acidifying agents, fruit juice and/or sweeteners, according to the labelled composition. It was shown that flavoured waters generally increase the trace element content. The addition of preservatives and acidifying regulators had a significant influence on Mn, Co, As and Si contents (p < 0.05). Fruit juice can also be correlated to the increase of Co and As. Sweeteners did not provide any significant difference in Mn, Co, Se and Si content.

  14. Magnetic properties near the ferromagnetic-paramagnetic transformation in the austenite phase of Ni43Mn44X2Sn11 (X = Fe and Co) Heusler alloys

    Science.gov (United States)

    Nan, W. Z.; Thanh, T. D.; You, T. S.; Piao, H. G.; Yu, S. C.

    2018-03-01

    In this work, we present a detail study on the magnetic properties in the austenitic phase (A phase) Ni43Mn44X2Sn11 alloy with X = Fe and Co, which were prepared by an arc-melting method in an argon atmosphere. The M(T) curves of two samples exhibits a single magnetic phase transition at the Curie temperature of the ferromagnetic (FM) austenitic phase with TCA = 298 K and 334k for (X = Fe and Co) respectively. Based on the Landau theory and M(H) data measured at different temperatures, we found that the FM-PM phase transitions around TCA in both samples were the second-order phase transition. Under an applied field change of 30 kOe, around TCA , the magnetic entropy changes were found to be 0.66 J Kg-1 K-1 and 1.62 J Kg-1 K-1 for (X = Fe and Co) respectively.

  15. Observation of giant exchange bias in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti; Suresh, K. G., E-mail: suresh@iitb.ac.in [Magnetic Materials Laboratory, Department of Physics, Indian institute of Technology Bombay, Mumbai, Maharashtra 400076 (India)

    2015-02-16

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (T{sub f}) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  16. Formation of stable and metastable phases in reciprocal systems PbSe + MI2 = MSe + PbI2 (M = Hg, Mn, Sn)

    International Nuclear Information System (INIS)

    Odin, I.N.; Grin'ko, V.V.; Kozlovskij, V.F.; Safronov, E.V.; Gapanovich, M.V.

    2004-01-01

    Using data of differential thermal, X-ray phase and microstructural analyses, phase diagrams of reciprocal systems PbSe + MI 2 = MSe + PbI 2 (M=Hg (1), Mn (2), Sn (3)) were constructed. It was ascertained that the HgSe-PbI 2 diagonal in system 1 is stable. Transformations leading to crystallization of metastable ternary compound formed in the system PbSe-PbI 2 and metastable polytypes of lead iodide in systems 1 and 2 in the range of temperatures from 620 to 685 K were studied. New intermediate metastable phases in systems 1, 2 and 3 were prepared by melt quenching. Crystal lattice parameters of the phases crystallizing in the CdCl 2 structural type were defined [ru

  17. Microstructure and Mechanical Properties of the As-Cast and As-Homogenized Mg-Zn-Sn-Mn-Ca Alloy Fabricated by Semicontinuous Casting.

    Science.gov (United States)

    Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan

    2018-04-29

    In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing.

  18. Microstructure and Mechanical Properties of the As-Cast and As-Homogenized Mg-Zn-Sn-Mn-Ca Alloy Fabricated by Semicontinuous Casting

    Science.gov (United States)

    Lu, Xing; Zhao, Guoqun; Zhou, Jixue; Zhang, Cunsheng; Yu, Junquan

    2018-01-01

    In this paper, a new type of low-cost Mg-3.36Zn-1.06Sn-0.33Mn-0.27Ca (wt %) alloy ingot with a diameter of 130 mm and a length of 4800 mm was fabricated by semicontinuous casting. The microstructure and mechanical properties at different areas of the ingot were investigated. The microstructure and mechanical properties of the alloy under different one-step and two-step homogenization conditions were studied. For the as-cast alloy, the average grain size and the second phase size decrease from the center to the surface of the ingot, while the area fraction of the second phase increases gradually. At one-half of the radius of the ingot, the alloy presents the optimum comprehensive mechanical properties along the axial direction, which is attributed to the combined effect of relatively small grain size, low second-phase fraction, and uniform microstructure. For the as-homogenized alloy, the optimum two-step homogenization process parameters were determined as 340 °C × 10 h + 520 °C × 16 h. After the optimum homogenization, the proper size and morphology of CaMgSn phase are conducive to improve the microstructure uniformity and the mechanical properties of the alloy. Besides, the yield strength of the alloy is reduced by 20.7% and the elongation is increased by 56.3%, which is more favorable for the subsequent hot deformation processing. PMID:29710818

  19. Local strains, calorimetry, and magnetoresistance in adaptive martensite transition in multiple nanostrips of Ni39+x Mn50Sn11-x (x ⩽ 2) alloys.

    Science.gov (United States)

    Prasanna, A A; Ram, Shanker

    2013-02-01

    Ni 39+ x Mn 50 Sn 11- x ( x = 0.5, 1.0, 1.5 and 2) alloys comprise multiple martensite nanostrips of nanocrystallites when cast in small discs, for example, ∼15 mm diameter and 8 mm width. A single martensite phase with a L 1 0 tetragonal crystal structure at room temperature can be formed at a critical Sn content of 9.0 at.% ( x = 2), whereas an austenite cubic L 2 1 phase turns up at smaller x ⩽ 1.5. The decrease in the Sn content from x = 2 to 0.5 also results in a gradual increase in the crystallite size from 11 to 17 nm. Scanning electron microscopy images reveal arrays of regularly displaced multiple martensite strips ( x ≽ 1.5) with an average thickness of 20 nm. As forced oscillators, these strips carry over the local strains, magnetic dipoles, and thermions simultaneously in a martensite-austenite (or reverse) phase transition. A net residual enthalpy change Δ H M↔A = -0.12 J g -1 arises in the process that lacks reversibility between the cooling and heating cycles. A large magnetoresistance of (-)26% at 10 T is observed together with a large entropy change of 11.8 mJ g -1 K -1 , nearly twice the value ever reported in such alloys, in the isothermal magnetization at 311 K. The Δ H M↔A irreversibility accounts for a thermal hysteresis in the electrical resistivity. Strain induced in the martensite strips leads them to have a higher electrical resistivity than that of the higher-temperature austenite phase. A model considering time-dependent enthalpy relaxation explains the irreversibility features.

  20. Local strains, calorimetry, and magnetoresistance in adaptive martensite transition in multiple nanostrips of Ni39+xMn50Sn11−x(x ⩽ 2) alloys

    Science.gov (United States)

    Prasanna, A A; Ram, Shanker

    2013-01-01

    Ni39+xMn50Sn11−x (x = 0.5, 1.0, 1.5 and 2) alloys comprise multiple martensite nanostrips of nanocrystallites when cast in small discs, for example, ∼15 mm diameter and 8 mm width. A single martensite phase with a L10 tetragonal crystal structure at room temperature can be formed at a critical Sn content of 9.0 at.% (x = 2), whereas an austenite cubic L21 phase turns up at smaller x ⩽ 1.5. The decrease in the Sn content from x = 2 to 0.5 also results in a gradual increase in the crystallite size from 11 to 17 nm. Scanning electron microscopy images reveal arrays of regularly displaced multiple martensite strips (x ≽ 1.5) with an average thickness of 20 nm. As forced oscillators, these strips carry over the local strains, magnetic dipoles, and thermions simultaneously in a martensite–austenite (or reverse) phase transition. A net residual enthalpy change ΔHM↔A = −0.12 J g−1 arises in the process that lacks reversibility between the cooling and heating cycles. A large magnetoresistance of (–)26% at 10 T is observed together with a large entropy change of 11.8 mJ g−1 K−1, nearly twice the value ever reported in such alloys, in the isothermal magnetization at 311 K. The ΔHM↔A irreversibility accounts for a thermal hysteresis in the electrical resistivity. Strain induced in the martensite strips leads them to have a higher electrical resistivity than that of the higher-temperature austenite phase. A model considering time-dependent enthalpy relaxation explains the irreversibility features. PMID:27877562

  1. Local strains, calorimetry, and magnetoresistance in adaptive martensite transition in multiple nanostrips of Ni39+xMn50Sn11−x(x ≤ 2 alloys

    Directory of Open Access Journals (Sweden)

    A A Prasanna and Shanker Ram

    2013-01-01

    Full Text Available Ni39+xMn50Sn11−x (x = 0.5, 1.0, 1.5 and 2 alloys comprise multiple martensite nanostrips of nanocrystallites when cast in small discs, for example, ~15 mm diameter and 8 mm width. A single martensite phase with a L10 tetragonal crystal structure at room temperature can be formed at a critical Sn content of 9.0 at.% (x = 2, whereas an austenite cubic L21 phase turns up at smaller x ≤ 1.5. The decrease in the Sn content from x = 2 to 0.5 also results in a gradual increase in the crystallite size from 11 to 17 nm. Scanning electron microscopy images reveal arrays of regularly displaced multiple martensite strips (x ≥ 1.5 with an average thickness of 20 nm. As forced oscillators, these strips carry over the local strains, magnetic dipoles, and thermions simultaneously in a martensite–austenite (or reverse phase transition. A net residual enthalpy change ΔHM↔A = −0.12 J g−1 arises in the process that lacks reversibility between the cooling and heating cycles. A large magnetoresistance of (–26% at 10 T is observed together with a large entropy change of 11.8 mJ g−1 K−1, nearly twice the value ever reported in such alloys, in the isothermal magnetization at 311 K. The ΔHM↔A irreversibility accounts for a thermal hysteresis in the electrical resistivity. Strain induced in the martensite strips leads them to have a higher electrical resistivity than that of the higher-temperature austenite phase. A model considering time-dependent enthalpy relaxation explains the irreversibility features.

  2. Beta- and gamma-decay studies of neutron-rich chromium, manganese, cobalt and nickel isotopes including the new isotopes 60Cr and 60gMn

    International Nuclear Information System (INIS)

    Bosch, U.; Schmidt-Ott, W.D.; Runte, E.; Tidemand-Petersson, P.; Koschel, P.; Meissner, F.; Kirchner, R.; Klepper, O.; Roeckl, E.; Rykaczewski, K.; Schardt, D.

    1987-10-01

    A 36 mg/cm 2 thick nat W target was irradiated with 11.5 MeV/u 76 Ge of 15 to 20 particle + nA beam intensity. On-line mass-separated samples of projectile-like neutron-rich products from multi-nucleon transfer-reactions were investigated in the region of mass 58-69 by β- and γ-ray spectroscopy. The new isotope 60 Cr was identified with a half-life of 0.57(6) s and for the 60 Mn ground-state a half-life value of 51(6) s was obtained. Decay schemes were constructed for 58 Cr, 58 Mn (t 1/2 = 3 s), 65,66,67 Co and 69 Ni. One new γ-ray was found in the decay of 59 Cr. The Q β -value of 66 Co was measured yielding 9.7(5) MeV. The comparison of the measured new β-half-life of 60 Cr with the most recent predictions gave again an enhancement of the experimental value. (orig.)

  3. Investigation on the parameter optimization and performance of laser cladding a gradient composite coating by a mixed powder of Co50 and Ni/WC on 20CrMnTi low carbon alloy steel

    Science.gov (United States)

    Shi, Yan; Li, Yunfeng; Liu, Jia; Yuan, Zhenyu

    2018-02-01

    In this study, a gradient composite coating was manufactured on 20CrMnTi alloy steel by laser cladding. The laser power, cladding scan velocity and powder flow rate were selected as influencing factors of the orthogonal cladding experiments. The influencing factors were optimized by the comprehensive analysis of Taguchi OA and TOPSIS method. The high significant parameters and the predicted results were confirmed by the ANOVA method. The macromorphology and microstructures are characterized by using laser microscope, SEM, XRD and microhardness tester. Comparison tests of wear resistance of gradient composite coating, 20CrMnTi cemented quenching sample and the 20CrMnTi sample were conducted on the friction-wear tester. The results show that the phases are γ-Co solid solution, Co3B, M23C6 and etc. The interlayers and wear-resisting layer also contain new hard phases as WC, W2C. The microhardness of the gradient coating was increased to 3 times as compared with that of the 20CrMnTi substrate. The wear resistance of the gradient composite coating and 20CrMnTi cemented quenching sample was enhanced to 36.4 and 15.9 times as compared with that of the 20CrMnTi.

  4. The effect of tempering on mechanical properties of 50Mn18Cr4WN retaining ring material

    International Nuclear Information System (INIS)

    Sun, M.C.; Guo, C.H.; Zheng, Z.Z.; Ma, Z.M.

    1990-01-01

    50Mn18Cr4WN is a retaining ring steel. It is strengthened by solution heat treatment and cold working. The process produces high macro residual stress. The retaining ring must be tempered for stress-relief. When the ring is sleeved, it is heated too. If the retaining ring is tempered, are the mechanical properties of the retaining ring damaged? The problem is described in the article. The tempering of testing pieces was carried out at several temperatures: 350degC, 400degC, 450degC, 500degC and 650degC. The tempering time was 3h. The yield point, tensile strength, elongation and reduction of area were determined by means of the tensile test. In the results, for temperatures between 350degC and 450degC, the yield point, tensile strength, elongation and reduction of area did not change notably. A stress corrosion cracking test was also carried out in a 3%Ni 4 NO 3 , 36%Ca(NO 3 ) 2 aqueous solution. K 1scc values after tempering at 450degC and without tempering were measured. The results showed that the K 1scc after tempering at 450degC decreased notably. Micrographs show that carbo-nitride precipitated. The precipitated carbo-nitride particles increased in size at the grain boundaries. The precipitated carbonitride particles increased in number at slip lines. It is clear that the precipitated particles lead to the increase of micro-cells and the micro-cells aggravated the stress corrosion cracking process. (orig.)

  5. New aspects of magnetocaloric effect in NiMn{sub 0.89}Cr{sub 0.11}Ge

    Energy Technology Data Exchange (ETDEWEB)

    Jaworska-Gołąb, T., E-mail: teresa.jaworska-golab@uj.edu.pl [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Baran, S. [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Duraj, R. [Institute of Physics, Cracow University of Technology, Podchorążych 1, 30-084 Kraków (Poland); Marzec, M. [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Dyakonov, V. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warszawa (Poland); A.A. Galkin Donetsk Physico-Technical Institute, 83-114 Donetsk (Ukraine); Sivachenko, A. [A.A. Galkin Donetsk Physico-Technical Institute, 83-114 Donetsk (Ukraine); Tyvanchuk, Yu. [Chemistry Department, Ivan Franko National University of Lviv, 79-005 Lviv (Ukraine); Szymczak, H. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warszawa (Poland); Szytuła, A. [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland)

    2015-07-01

    Investigations of structural and magnetic phase transitions in the NiMn{sub 0.89}Cr{sub 0.11}Ge half-Heusler alloy were carried out by DSC, XRD (80–400 K), magnetic susceptibility and magnetization (1.9–400 K, magnetic field up to 9.0 T, pressure up to 5.25 kbar) measurements. At high temperatures the sample is a single phase crystallizing in the hexagonal crystal structure (Ni{sub 2}In-type, space group P6{sub 3}/mmc) while below 260 K, down to 100 K, some amount of the hexagonal phase coexists with the orthorhombic (TiNiSi-type, space group Pnma) one. Strong magnetostructural coupling is observed. Magnetic data indicate that with increasing temperature magnetic properties of the sample change from antiferro- to ferro- and then to paramagnetic ones. The latter magnetic phase transition is associated with the crystal structure change and results in large magnetic entropy change equal to −51 J/kg K at μ{sub 0}H= 9.0 T near 260 K. Application of external pressure shifts T{sub C} towards lower temperatures. - Highlights: • # Pnma below 210 K, # P6{sub 3}/mmc above 260 K, for 210 K

  6. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering.

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-11-30

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al 15 (Fe,Cr)₃Si₂ or α-Al 15 (Fe,Mn)₃Si₂ phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  7. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Science.gov (United States)

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  8. Study of the analytic quality in the determinations of Cr, Fe, Mn, Cu, Zn, Pb and Hg through conventional and nuclear analytical techniques in mosses of the MATV

    International Nuclear Information System (INIS)

    Caballero S, B.

    2013-01-01

    To evaluate the environmental risks of air pollution and to facilitate the decision-making for control, is necessary to have the capacity to generate data with analytical quality. A comparison between nuclear (Neutron activation analysis and total reflection X-ray fluorescence spectrometry) and no nuclear analytical techniques (atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry) for simultaneous determination of metal content (Cr, Cu, Fe, Hg, Mn, Pb and Zn) in mosses from Metropolitan Area of the Toluca Valley (MATV) was performed. Epiphytic mosses (Fabriona ciliaris and Leskea angustata) were sampled in two campaigns, 16 sites (urban, transition and natural) and were prepared for each technique. The biological certified reference materials were used for the quality control and to evaluate accuracy, precision, linearity, detection and quantification limits. Results show that nuclear analytical techniques and no nuclear applied in chemical analysis of Cr, Cu, Fe, Hg, Mn, Pb and Zn in moss from MATV are comparable and therefore all of these can potentially be used for this purpose. However, if its considered both, the performance parameters and economic/operational characteristics is widely recommended inductively coupled plasma optical emission spectrometry, conventional analytical technique, which showed the highest analytical grade quality. Also were observed spatial and temporal variations in the concentrations of Cr, Cu, Fe, Hg, Mn, Pb and Zn in mosses from MATV and was discussed its potential origin. The urban sites had the highest concentration of anthropogenic elements as Cr, Cu, Fe, Hg, Pb and Zn because are strongly impacted by roads with high vehicle traffic. (Author)

  9. Lattice parameter values and phase transitions for the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, E. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Quintero, M., E-mail: mquinter@ula.v [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Morocoima, M.; Quintero, E.; Grima, P.; Tovar, R.; Bocaranda, P. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E.; Contreras, J.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Mora, A.E.; Briceno, J.M.; Avila Godoy, R.; Fernandez, J.L. [Laboratorio de Analisis Quimico y Estructural de Materiales, Departamento de Fisica, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Henao, J.A.; Macias, M.A. [Grupo de Investigacion en Quimica Estructural (GIQUE), Facultad de Ciencias, Escuela de Quimica, Universidad Industrial de Santander, Apartado aereo 678, Bucaramanga (Colombia)

    2009-11-03

    X-ray powder diffraction measurements and differential thermal analysis (DTA) were made on polycrystalline samples of the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloy systems. The diffraction patterns were used to show the equilibrium conditions and to derive lattice parameter values. For Cu{sub 2}Cd{sub 0.8}Fe{sub 0.2}SnSe{sub 4} as well as for Cu{sub 2}Cd{sub 0.2}Fe{sub 0.8}SnSe{sub 4} the crystal structures were refined using the Rietveld method. It was found that the internal distortion parameter sigma decreases as Cd is replaced by either Mn and/or Fe. For the Cu{sub 2}Cd{sub 1-z}Mn{sub z}SnSe{sub 4} and Cu{sub 2}Cd{sub 1-z}Fe{sub z}SnSe{sub 4} alloy systems, only two single solid phase fields, the tetragonal stannite alpha(I4-bar2m) and the wurtz-stannite delta (Pmn2{sub 1}) structures were found to occur in the diagram. In addition to the tetragonal stannite alpha phase extra X-ray diffraction lines due to MnSe and/or FeSe{sub 2} were observed for as grown samples in the range 0.7 < z < 1.0. However, it was found that the amount of the extra phase decreased for the compressed samples.

  10. Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changqin [Department of Physics, Shanghai University, Shanghai 200444 (China); Li, Zhe [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Zhang, Yuanlei [Department of Physics, Shanghai University, Shanghai 200444 (China); Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Liu, Yang; Sun, Junkun; Huang, Yinsheng; Kang, Baojuan [Department of Physics, Shanghai University, Shanghai 200444 (China); Xu, Kun [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Deng, Dongmei [Department of Physics, Shanghai University, Shanghai 200444 (China); Jing, Chao, E-mail: cjing@staff.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China)

    2017-03-01

    In this paper, we have systematically prepared a serials of polycrystalline Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} alloys (x=0, 1, 3, 5, 6, 8, 10 and 12) and investigated the influence of the Cu doping on martensitic transition (MT) as well as magnetic properties. Experimental results indicate that the MT temperature and the martensite Curie temperature (T{sub c}{sup M}) shift to high temperature with increasing the substitution of Cu (from Mn rich alloy to Ni rich alloy), while the austenite Curie temperature (T{sub c}{sup A}) is almost unchanged. It was found that the structures undergo L2{sub 1} and 4O with the increasing of Cu concentration near room temperature. Therefore, the magnetostructural transition can be tuned by appropriate Cu doping in these alloys. Moreover, we mainly studied the multiple functional properties for inverse magnetocaloric effect and shape memory characteristics associated with the martensitic transition. A large positive isothermal entropy change of Mn{sub 48}Ni{sub 42}Sn{sub 10} was obtained, and the maximum transition entropy change achieves about 48 J/kg K as x=8. In addition, a considerable temperature-induced spontaneous strain with the value of 0.16% was obtained for Mn{sub 48}Ni{sub 42}Sn{sub 10} alloys.

  11. ⁵³Mn-⁵³Cr and ²⁶Al-²⁶Mg ages of a feldspathic lithology in polymict ureilites

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, Cyrena Anne [Planetary Science Institute. Tucson, AZ (United States); Hutcheon, Ian D. [Glenn T. Seaborg Institute. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kita, Noriko T. [Dept. of Geoscience. Univ. of Wisconsin, Madison, WI (United States); Huss, Gary R. [NASA Marshall Space Flight Center (MSFC), Huntsville, AL (United States); Cohen, Barbara Anne [Hawaii Institute of Geophysics and Planetology. Univ. of Hawaii, Honolulu, HI (United States); Keil, Klaus

    2010-07-01

    We report 53Mn–53Cr and 26Al–26Mg isotopic data, obtained by in-situ SIMS analysis, for feldspathic clasts in polymict ureilites DaG 319 and DaG 165. The analyzed clasts belong to the “albitic lithology,” the most abundant population of indigenous feldspathic materials in polymict ureilites, and are highly fractionated igneous assemblages of albitic plagioclase, Fe-rich pyroxenes, phosphates, ilmenite, silica, and Fe(Mn, K, P, Ti)-enriched glass. Glass in DaG 165 clast 19 has extremely high and variable 55Mn/52Cr ratios (500–58,000) and shows correlated 53Cr excesses up to ~ 1500‰, clearly indicating the presence of live 53Mn at the time of formation. The slope of the well-correlated isochron defined by glass and pyroxenes from this clast corresponds to (53Mn/55Mn) = (2.84 ± 0.10) × 10-6 (2σ). Data for less 55Mn/52Cr-enriched glasses from DaG 319 clast B1, as well as phosphates from several other clasts, are consistent with this isochron. The 53Mn/55Mn ratio obtained from the isochron implies that these clasts are 0.70 ± 0.18 Ma younger than the D'Orbigny angrite, corresponding to the absolute age of 4563.72 ± 0.22 Ma. Plagioclase in DaG 319 clast B1 has a fairly constant 27Al/24Mg ratio of ~ 900 and shows resolvable 26Mg excesses of ~ 2‰. The slope of the isochron defined by pyroxene and plagioclase in this clast is (3.0 ± 1.1) × 10-7 (2σ), corresponding to a time difference of 5.4 (-0.3/+0.5) Ma after CAI (assuming the canonical initial 26Al/27Al ratio of 5 × 10-5) and an age 0.5 (-0.3/+0.5) Ma younger than D'Orbigny. Its absolute age (relative to D'Orbigny) is 4563.9 (+ 0.4/-0.5) Ma, in agreement with the 53Mn–53Cr age from clast 19. These data provide the first

  12. Sharp Lines Due to Cr3+ and Mn2+ Impurities in Insulators: Going Beyond the Usual Tanabe−Sugano Approach

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; García-Fernández, P.; Barriuso, M. T.

    2014-01-01

    energies of MF6 complexes through the ten Coulomb and exchange integrals consistent with the cubic symmetry and not considered in the usual Tanabe-Sugano approach. It is shown that E((6)A1 → (4)A1) depends on exchange integrals K(3z(2) - r(2), xy) and K(x(2) - y(2), xy), while E((2)E → (4)A2) depends on K......This work is aimed at understanding the different behavior of optical sharp lines (corresponding to 10Dq-independent transitions) of Mn(2+) and Cr(3+) in normal and inverted perovskites that cannot be explained within the usual Tanabe-Sugano approach. In particular, we want to clarify why...... on passing from KMgF3:M to LiBaF3:M (M = Mn(2+), Cr(3+)) the energy, E((6)A1 → (4)A1), for Mn(2+) decreases by Δ = 1100 cm(-1), while Δ difference in these model systems is clarified by writing the transition...

  13. Effects of thermo-mechanical treatment and microalloying with Cr, Nb and Ti on phase transformation in C-Mn steel strips produced by compact strip production process

    International Nuclear Information System (INIS)

    Zhu, Y.Z.; Liang, D.M.; Li, J.C.; Xu, J.P.; Xue, Z.L.

    2011-01-01

    Highlights: → The order of solid solution of carbides influences phase transformation of C-Mn steel in cooling. → Evidences of early stage of solid solution of carbides were provides in the paper. → Transitional state evidences such as carbon enriched regions were observed in this study. - Abstract: The C-Mn steel strips microalloyed with Cr, Nb, Ti was produced by compact strip production process and then heat-treated under different conditions. Optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and transmission electron microscopy were used to investigate phase transformations in the steel after different treatments. It was revealed that the phase transformations upon quenching were greatly affected by the austenization temperature and time. When the steel was annealed at 950 deg. C, carbides of Cr, Mn and Fe were dissolved dramatically, while carbides of Nb and Ti are relatively stable at this temperature. When the temperature increases to 1100 deg. C, the carbides of Nb were dissolved rapidly, while the carbides of Ti still show somewhat stable (partial dissolution). Annealing time influences both the amount and the shapes of carbides in the steel, which leads to different phase transformations in the following air cooling processes. Grain growth in the steel in annealing process strongly depends on the dissolution of carbides on grain boundaries. Additionally, a subsequent rolling after annealing treatment at 950 deg. C lead to obvious precipitation of carbides of Ti and Nb in the steel.

  14. Single-ion anisotropy and exchange interactions in the cyano-bridged trimers MnIII2MIII(CN)6 (MIII = Co, Cr, Fe) species incorporating [Mn(5-Brsalen)]+ units: an inelastic neutron scattering and magnetic susceptibility study

    DEFF Research Database (Denmark)

    Tregenna-Piggott, Philip L W; Sheptyakov, Denis; Keller, Lukas

    2009-01-01

    expectations based on the unquenched orbital angular momentum of the [Fe(CN)(6)](3-) anion, giving rise to an M(s) approximately +/-9/2 ground state, isolated by approximately 11.5 cm(-1) from the higher-lying levels. The reported INS and magnetic data should now serve as a benchmark against which theoretical...... interactions that define the low-lying states of the Mn-M(III)-Mn trimeric units. Despite the presence of an antiferromagnetic intertrimer interaction, the experimental evidence supports the classification of both the Cr(III) and Fe(III) compounds as single-molecule magnets. The value of 17(2) cm(-1...

  15. The Microstructural Evolution and Special Flow Behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr During Isothermal Compression at a Low Strain Rate

    Science.gov (United States)

    Sun, J. Z.; Li, M. Q.; Li, H.

    2017-09-01

    The microstructural evolution and special flow behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr during isothermal compression at a strain rate of 0.0001 s-1 were investigated. The dislocation climbs in elongated α grains resulted in the formation of low-angle boundaries that transform into high-angle boundaries with greater deformation, and the elongated α grains subsequently separated into homogenous globular α grains with the penetration of the β phase. The simultaneous occurrence of discontinuous dynamic recrystallization and continuous dynamic recrystallization in the primary β grains resulted in a trimode grain distribution. The β grains surrounded by dislocations presented an equilateral-hexagonal morphology, which suggests that grain boundary sliding through dislocation climbs was the main deformation mechanism. The true stress-strain curves for 1073 and 1113 K abnormally intersect at a strain of 0.35, related to the α → β phase transformation and distinct growth of the β grain size.

  16. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    Science.gov (United States)

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  17. Optical microscope study of the γ(FCC)ε(HC) martensitic transformation of a Fe-16%Mn-9%Cr-5%Si-4%Ni shape memory alloy

    International Nuclear Information System (INIS)

    Bergeon, N.; Guenin, G.

    1995-01-01

    The γ(FCC) ε(HC) transformation is studied by light optical microscopy and scanning electron microscopy in a polycrystalline Fe-Mn-Si-Cr-Ni shape memory alloy. Thermal and stress-induced martensites are both studied to point out differences. A color etching method permitted to clearly observe morphological evolutions during the transformation and its reversion. Deformations of a golden microgrid deposed on austenitic samples are observed by SEM during the transformation. This technic has led to point out microscopic differences concerning the two kinds of martensite. SEM results are used to explain light optical microscopy observations. (orig.)

  18. Qualitative analysis of As, Ba, Cd, Cr, Zn, Fe, Mn, K, Hg, Pb y Cu, as constituents of Amatitlan Lake sediment by XRF

    International Nuclear Information System (INIS)

    Beltran, P.A.E.; Morales, E.A.

    1987-10-01

    Samples of fifteen sampling points were analyzed. Molybdenum X-ray tube with secondary excitation assembly, SiLi detector and deconvolution software AXIL were employed; self-standardization method based upon incoherent ratio was used for quantitative analysis of some elements. Ca, P, S, Ti, Mn, Fe, Cr, Zn, Cu, Ni, Ga, As, Pb, Ge, Sr and Pb, were found. As, Pb and Cu concentrations lower than 109 mg/lt, 119 mg/lt, and 500mg/lt, respectively, were measured. Hg was not detected. (author)

  19. Determination of the potential and coherent scattering cross-sections of the elements Si, Ca, Cr, Mn, Co, Zn, Zr, Sb and Ta

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Hamouda, I.

    1976-01-01

    The potential scattering cross-sections for slow neutrons have been measured for Si, Ca, Cr, Mn, Co, Zn, Zr, Sb and Ta in order to determine the nuclear potential radius and to investigate the prediction of nuclear optical model. The coherent scattering cross-sections for these elements have been measured from the obtained values of the Bragg cut-offs observed in the behaviour of the total cross-sections at cold neutron energies. The measurements were based on the total neutron cross-sections resulting from transmission experiments performed with the neutron chopper at ET-RR-1 reactor

  20. Synthesis, spectroscopic studies and antimicrobial activity of chelates 2-(acetyloxy)-benzoic acid with transition metals (CR+3, MN+2, NI+2 AND CU+2)

    International Nuclear Information System (INIS)

    Khan, B.; Mateen, B.; Ahmed, F.; Ahmed, F.

    2007-01-01

    2-(acetyloxy)-Benzoic acid chelates with Cr+3, Mn+2, Ni+2 and Cu+2 were synthesized and characterized by the melting point, solubility, Fourier Transform Infrared (FT-IR) Spectroscopy, Atomic Absorption Spectroscopy (AAS), X-Ray Diffraction (XRD) method and evaluated by antimicrobial activity. The functional group present in the chelates was determined by Fourier Transform Infrared Spectroscopy, by X-Ray Diffraction analysis crystal data of chelates, their inter-atomic and inter-planer spacing was also determined. The amount of metal in the chelates was estimated by Atomic Absorption Spectroscopy and their Antimicrobial Activity was studied against Pseudomonas aeruginosa, Escherisha coli and Staphylococcus aureus. (author)

  1. Effect of irradiation on corrosion of low-activation austenite Cr-Mn steel in technological liquid mediums of nuclear power plant

    International Nuclear Information System (INIS)

    Demina, E.V.; Prusakova, M.D.; Vinogradova, N.A.; Orlova, G.D.; Nechaev, A.F.; Doil'nitsyn, V.A.

    2008-01-01

    Effect of γ-radiation on corrosion rate in cold-worked and annealed low-activation austenite 12Cr-20Mn steel has been studied. Corrosion tests were carried out in water solutions which simulate the coolant medium in the primary coolant circuit of WWER power reactor and in the circuit of multiple forced circulation of RBMK-1000 reactor as well as an aquatic environment in cooling pond for spent fuel. The worst radiation effect was observed in the cooling pond environment where the value of corrosion rate is increased by tens or hundreds times

  2. Optimization and development of the instrumental parameters for a method of multielemental analysis through atomic spectroscopy emission, for the determination of My, Fe Mn and Cr

    International Nuclear Information System (INIS)

    Lanzoni Vindas, E.

    1998-01-01

    This study optimized the instrumental parameters of a method of multielemental (sequential) analysis, through atomic emission, for the determination of My, Fe,Mn and Cr. It used the factorial design at two levels and the method of Simplex optimization, that permitted the determination of the four cations under the same instrumental conditions. The author studied an analytic system, in which the conditions were not lineal between instrumental answers and the concentration, having to make adjustment of the calibration curves in homocedastic and heterocedastic conditions. (S. Grainger)

  3. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    Science.gov (United States)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  4. Evaluation of the heavy metals Cr, Mn, Fe, Cu, Zn and Pb in water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma River, Mexico; Evaluacion de los metales pesados Cr, Mn, Fe, Cu, Zn y Pb en sombrerillo de agua (Hydrocotyle ranunculoides) del curso alto del Rio Lerma, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Zarazua, G.; Avila P, P.; Tejeda, S. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Valdivia B, M.; Macedo M, G. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Zepeda G, C., E-mail: graciela.zarazua@inin.gob.mx [Universidad Autonoma del Estado de Mexico, Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca, Estado de Mexico (Mexico)

    2013-07-01

    The Lerma river is one of the most polluted water bodies in Mexico, it presents low biodiversity and lets grow up aquatic plants resistant to the pollution. The aim of this work was to evaluate the concentration and bioaccumulation factors of Cr, Mn, Fe, Cu, Zn and Pb in aerial and submerged structures of water penny wort (Hydrocotyle ranunculoides) from the upper course of the Lerma river. Inductively coupled plasma-optical emission spectrometry was used to determine the concentration of heavy metals in water and H. ranunculoides. Results show that the bioaccumulation factors of Fe and Zn were higher than those of Cu, Mn, Cr and Pb; with the exception of Zn, bioaccumulation factors were higher in the submerged structures of the plant, which shows low mobility of analyzed metals. As a result of this study H. ranunculoides can be considered as good indicator of metal pollution in water bodies. (Author)

  5. Effect of alloying elements on the shape memory properties of ductile Cu-Al-Mn alloys

    International Nuclear Information System (INIS)

    Sutou, Y.; Kainuma, R.; Ishida, K.

    1999-01-01

    The effect of alloying elements on the M s temperature, ductility and the shape memory properties of Cu-Al-Mn ductile shape memory (SM) alloys was investigated by differential scanning calorimetry, cold-rolling and tensile test techniques. It was found that the addition of Au, Si and Zn to the Cu 73 -Al 17 -Mn 10 alloy stabilized the martensite (6M) phase increasing the M s temperature, while the addition of Ag, Co, Cr, Fe, Ni, Sn and Ti decreased the stability of the martensite phase, decreasing the M s temperature. The SM properties were improved by the addition of Co, Ni, Cr and Ti. (orig.)

  6. Probing the magnetic moments of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets—A cross comparison of XMCD and spin-resolved electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas, E-mail: helmstedt.andreas@gmail.com [Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Dohmeier, Niklas; Müller, Norbert; Gryzia, Aaron; Brechling, Armin; Heinzmann, Ulrich [Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten [Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld (Germany); Leicht, Philipp; Fonin, Mikhail [Fachbereich Physik, Universität Konstanz, Universitätsstr. 10, 78457 Konstanz (Germany); Tietze, Thomas [Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart (Germany); Joly, Loïc [Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, CNRS-Université de Strasbourg, BP 43, 23 rue du Loess, F-67034 Strasbourg Cedex 2 (France); Kuepper, Karsten [Institut für Festkörperphysik, Universität Ulm, 89069 Ulm (Germany)

    2015-01-15

    Highlights: • [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets are investigated. • XMCD and spin-resolved electron spectroscopy (SPES) results are compared. • A simple sum rule evaluation is performed for comparison. • Differences between SPES and XMCD results are discussed. • Influences of the magnetic field on the Mn L edge absorption are observed. - Abstract: Single-molecule magnets (SMM) of the [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} structural type prepared on Si and gold-coated glass substrates have been investigated by spin-resolved electron spectroscopy (SPES) and X-ray magnetic circular dichroism (XMCD) at the Mn L{sub 3,2} edge and in addition by XMCD at the Cr L{sub 3,2} edge using synchrotron radiation. Differences between the two methods are discussed. Despite its severe limitations for 3d transition metals, a spin sum rule evaluation is nevertheless performed for the Mn{sup III} centres in the [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} SMM to provide a simple means of comparing XMCD and spin-resolved electron spectroscopy results.

  7. Transient Liquid Phase Bonding of Cu-Cr-Zr-Ti Alloy Using Ni and Mn Coatings: Microstructural Evolution and Mechanical Properties

    Science.gov (United States)

    Venkateswaran, T.; Ravi, K. R.; Sivakumar, D.; Pant, Bhanu; Janaki Ram, G. D.

    2017-08-01

    High-strength copper alloys are used extensively in the regenerative cooling parts of aerospace structures. Transient liquid phase (TLP) bonding of a Cu-Cr-Zr-Ti alloy was attempted in the present study using thin layers of elemental Ni and Mn coatings applied by electroplating. One of the base metals was given a Ni coating of 4 µm followed by a Mn coating of 15 µm, while the other base metal was given only the Ni coating (4 µm). The bonding cycle consisted of the following: TLP stage—heating to 1030 °C and holding for 15 min; homogenization stage—furnace cooling to 880 °C and holding for 2 h followed by argon quenching to room temperature. Detailed microscopy and electron probe microanalysis analysis of the brazed joints were carried out. The braze metal was found to undergo isothermal solidification within the 15 min of holding time at 1030 °C. At the end of TLP stage, the braze metal showed a composition of Cu-17Ni-9Mn (wt.%) at the center of the joint with a steep gradient in Ni and Mn concentrations from the center of the braze metal to the base metal interfaces. After holding for 2 h at 880 °C (homogenization stage), the compositional gradients were found to flatten significantly and the braze metal was found to develop a homogeneous composition of Cu-11Ni-7Mn (wt.%) at the center of the joint. In lap-shear tests, failures were always found to occur in the base metal away from the brazed region. The copper alloy base metal was found to undergo significant grain coarsening due to high-temperature exposure during brazing and, consequently, suffer considerable reduction in yield strength.

  8. Study on the application of magnesium oxide adsorptive compound to preconcentrate trace elements (As, Cu, Co, Cr, Hg, Mn, Sb and Zn) in high salt water and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Giang, Nguyen; Tam, Nguyen Thanh; Phuong Mai, Truong Thi; Ho Tran The Huu [Center for Analytical Techniques, Nuclear Research Institute, Dalat (Viet Nam)

    2007-12-15

    The project presents preconcentration neutron activation analysis techniques for determination of trace metals (As, Co, Cr Cu, Hg, Mn, Sb and Zn) in high salt water by adsorption of trace metals on magnesium oxide. Precipitate is collected on 0.45 {mu}m membrane filters and irradiated in pneumatic rabit system and Lazy Susan facility at flux 5.10{sup 12} n/cm{sup 2}.sec for As, Cu, Mn and 2.10{sup 12} n/cm{sup 2}.sec for Hg, Sb, Cr, Co and Zn. The radioactivities of {sup 76}As, {sup 60}Co, {sup 64}Cu, {sup 51}Cr, {sup 203}Hg, {sup 56}Mn, {sup 124}Sb and {sup 65}Zn were measured. {sup 76}As, {sup 60}Co, {sup 64}Cu, {sup 51}Cr, {sup 203}Hg, {sup 56}Mn, {sup 124}Sb and {sup 65}Zn radio traces were used to establish optimum conditions and to evaluate the chemical yield. Detection limits of this method are 0.019, 0.006, 0.044, 0.058, 0.021, 0.027, 0.012 and 0.094 {mu}g of As, Co, Cr, Cu, Hg, Mn, Sb and Zn respectively. (author)

  9. Synthesis, electrochemical investigation and structural analysis of doped Li[Ni0.6Mn0.2Co0.2-xMx]O2 (x = 0, 0.05; M = Al, Fe, Sn) cathode materials

    Science.gov (United States)

    Eilers-Rethwisch, Matthias; Winter, Martin; Schappacher, Falko Mark

    2018-05-01

    Layered Ni-rich Li[Ni0.6Mn0.2Co0.2-xMx]O2 cathode materials (x = 0, 0.05; M = Al, Fe, Sn) are synthesized via a co-precipitation synthesis route and the effect of dopants on the structure and electrochemical performance is investigated. All synthesized materials show a well-defined layered structure of the hexagonal α-NaFeO2 phase investigated by X-ray diffraction (XRD). Undoped LiNi0.6Mn0.2Co0.2O2 exhibits a discharge capacity of 170 mAh g-1 in Li-metal 2032 coin-type cells. Doped materials reach lower capacities between 145 mAh g-1 for Al and 160 mAh g-1 for Sn. However, all doped materials prolong the cycle life by up to 20%. Changes of the lattice parameter before and after delithiation yield information about structural stability. A smaller repulsion of the transition metal layer during delithiation in the Sn-doped material leads to a smaller expansion of the unit cell, which results in enhanced structural stability of the material. The improved structural stability of Sn-doped NMC cathode active material is proven by thermal investigations with the help of Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA).

  10. Synthesize and microstructure characterization of Ni{sub 43}Mn{sub 41}Co{sub 5}Sn{sub 11} Heusler alloy

    Energy Technology Data Exchange (ETDEWEB)

    Elwindari, Nastiti; Manaf, Azwar, E-mail: azwar@ui.ac.id [Physics Department, Faculty of Science, Universitas Indonesia, Depok 16424 (Indonesia)

    2016-06-17

    The ferromagnetic heusler alloys are promising materials in many technical applications due to their multifunctional properties such as shape memory effect, magnetocaloric effect, giant magnetoresistance, etc. In this work, synthesize and characterization of polycrystalline Ni{sub 43}Mn{sub 41}Co{sub 5}Sn{sub 11} (NMCS) alloy are reported. Alloy preparation was conducted by melting the constitute elements under an innert Argon (Ar) atmosphere in a vacuum mini arc-melting furnace. Homogenization of the microstructure of the as-cast ingot was obtained after annealing process at 750°C for 48 hours. It is shown that the dendrites structure has changed to equaixed grains morphology after homogenization. Microstructure characteristics of material by x-ray diffraction revealed that the alloy has a L{sub 21}-type cubic crystal structure as the main phase at room temperature. In order to induce the shape anisotropy, a forging treatment was applied to show the shape orientation of material. Various enhancements of magnetic properties in a longitudinal direction were observed at various degree of anisotropy. The microstructure changes of as-cast NMCS and effects of homogenization treatments as studied by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) are discussed in details.

  11. Magnetically tunable photocurrent in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/BaSnO{sub 3} heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Bingcheng; Hu, Junbiao [Department of Applied Physics, Northwestern Polytechnical University, Xi' an (China); Wang, Jing [Department of Applied Physics, Northwestern Polytechnical University, Xi' an (China); Department of Physics, Pennsylvania State University, University Park, PA (United States)

    2017-12-15

    Artificially constructed oxide heterointerfaces have attracted much attention. Herein, the novel all-perovskite p-n heterojunction composed of a colossal magnetoresistive manganite La{sub 0.7}Sr{sub 0.3} MnO{sub 3} (LSMO) and an n-type transparent semiconducting BaSnO{sub 3} (BSO) is designed via optimizing the growth condition. This LSMO/BSO p-n junction exhibits good rectification with a forward-to-reverse ratio of 275 at 1 V, high photo detection capability with a photo-to-dark current of 581.9 at -0.5 V, high ultraviolet light sensitivity with a UV (360 nm)-to-visible (532 nm) ratio of ∝2.4 x 10{sup 3}, and a significantly magneto-tunable photocurrent with a variation ratio of ∝1.25 % under 532 nm illumination and 0.5 T magnetic field. As a result, combining synergistically the functionality of diode and magnetically tunable photo detector, the LSMO/BSO p-n junction is a promising candidate for advanced magneto-optoelectronic devices. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Investigation of transferred hyperfine interactions from 129I and 119Sn by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sanchez, J.-P.

    1976-01-01

    The hyperfine parameters at 129 I have been measured in the series of compounds CrI 3 , CsCrI 3 , MI 2 (M=V, Cr, Mn, Fe, Co, Ni, Cd) and NR 4 FeI 4 (R=ethyl, butyl). They have been interpreted in terms of the charge and spin densities in the ligand valence orbitals. Information about the spin polarization mechanisms as well as about the local magnetic and crystallographic structural arrangements have been furthermore deduced. The 119 Sn hyperfine data in the series of RESn 3 intermetallics have provided information about the magnetic structure and the spin polarization mechanisms [fr

  13. High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, Cameron L.; Park, Sulgiye; Rittman, Dylan R.; Zinkle, Steven J.; Bei, Hongbin; Lang, Maik; Ewing, Rodney C.; Mao, Wendy L.

    2017-05-25

    High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

  14. Molecular beam epitaxy growth of [CrGe/MnGe/FeGe] superlattices: Toward artificial B20 skyrmion materials with tunable interactions

    Science.gov (United States)

    Ahmed, Adam S.; Esser, Bryan D.; Rowland, James; McComb, David W.; Kawakami, Roland K.

    2017-06-01

    Skyrmions are localized magnetic spin textures whose stability has been shown theoretically to depend on material parameters including bulk Dresselhaus spin orbit coupling (SOC), interfacial Rashba SOC, and magnetic anisotropy. Here, we establish the growth of a new class of artificial skyrmion materials, namely B20 superlattices, where these parameters could be systematically tuned. Specifically, we report the successful growth of B20 superlattices comprised of single crystal thin films of FeGe, MnGe, and CrGe on Si(1 1 1) substrates. Thin films and superlattices are grown by molecular beam epitaxy and are characterized through a combination of reflection high energy electron diffraction, X-ray diffraction, and cross-sectional scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy (XEDS) distinguishes layers by elemental mapping and indicates good interface quality with relatively low levels of intermixing in the [CrGe/MnGe/FeGe] superlattice. This demonstration of epitaxial, single-crystalline B20 superlattices is a significant advance toward tunable skyrmion systems for fundamental scientific studies and applications in magnetic storage and logic.

  15. Mobility and bioavailability of Cd, Co, Cr, Cu, Mn and Zn in surface runoff sediments in the urban catchment area of Guwahati, India

    Science.gov (United States)

    Devi, Upama; Bhattacharyya, Krishna G.

    2018-03-01

    The sediments in stormwater runoff are recognised as the major sink of the heavy metals and affect the soil quality in the catchment. The runoff sediments are also important in the management of contaminant transport to receiving water bodies. In the present work, stormwater during several major rain events was collected from nine principal locations of Guwahati, India. The solid phase was separated from the liquid phase and was investigated for the total contents of Cd, Co, Cr, Cu, Mn and Zn as well as their distribution among the prominent chemical phases. Sequential extraction procedure was used for the chemical fractionation of the metals that contains five steps. The total metal concentration showed the trend, Cd < Co < Cu < Cr < Zn < Mn. The relative distribution of the metals showed that Cd was available mostly in the exchangeable and the carbonate bound fractions, which were the most mobile and high-risk fractions. Co with medium mobility was also found to be in the high-risk category. On the other hand, the mobilities of Cu and Zn were relatively low and these were, therefore, the least bioavailable metals in the runoff sediments falling in medium-risk category.

  16. Health Risk Assessment of Fe, Mn, Cu, Cr in Drinking Water in some Wells and Springs of Shush and Andimeshk, Khuzestan Province, Southern Iran

    Directory of Open Access Journals (Sweden)

    Mohamad Sakizadeh

    2016-02-01

    Full Text Available Background: In the current study,the hazard quotient, the hazard index (HI and spatial variations of Fe,Mn,Cu and Cr in drinking water sources of Andimesk-Shush, Khuzestan Province, Southern Iranaquifer were assessed. Methods: We compared theconcentrations of aforementioned heavy metals in wells and springs inAndimeshk and Shush regions. The non-carcinogenic risk assessment of heavy metals was implemented usingUnited States Environmental Protection Agency (USEPA index.The spatial maps in the area were developed by geostatistical methods. Results: Mean concentrations of heavy metals in groundwater sources of the study area in decreasing order was as follows: Cu >Mn> Fe> Cr. Except for iron,mean heavy metal concentrations were higher than the standard levels. Manganese concentration in 41.5% of the samples exceeded the permissible limits. Copper was higher than the safety limit in 74% of the samples, and chromium in 54% of the cases. The spatial pattern of heavy metals concentrations indicated higher concentrations in the southern parts of the region. The mean hazard quotients of most samples for the four heavy metals were lower than one, indicating that there was no immediate threat due to the exposure to these heavy metals. The calculated accumulated hazards of these heavy metals produced different results, with hazard indices of higher than one. Conclusion: The accumulated hazard indicesfor the evaluated metals were higher than one, indicating that chronic ingestion of these waters threatens the health of local consumers on the long run.

  17. High-pressure studies on electronic and mechanical properties of FeBO3 (B = Ti, Mn, Cr) ceramics - a first-principles study

    Science.gov (United States)

    Kishore, N.; Nagarajan, V.; Chandiramouli, R.

    2018-04-01

    Using the density functional theory (DFT) method, the electronic and mechanical properties of perovskites FeBO3 (B = Ti, Mn, Cr) nanostructures were studied in the pressure range of 0-100 GPa. The band structure studies show the change in the band structure upon substitution of different B cation in FeBO3 perovskite structure. The density of states spectrum gives the perception of change in the electronic properties of FeBO3 with the substitution of B cation. The bulk, shear and Young's moduli were calculated and an increase in the moduli is noticed. Moreover, the hardness increases under high pressure. The high-pressure studies of FeBO3 perovskite nanostructures are explored at atomistic level. The findings show that ductility and hardness of FeBO3 get increased upon an increase in the applied pressure. The substitution of Ti, Mn and Cr on FeBO3 shows a significant change in the electronic and mechanical properties.

  18. Feasibility of using in situ fusion for the determination of Co, Cr and Mn in Portland cement by direct solid sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Intima, Danielle Polidorio; de Oliveira, Elisabeth; Oliveira, Pedro Vitoriano

    2009-01-01

    In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 μg of sample. The in situ fusion was accomplished using 10 μL of a flux mixture 4.0% m/v Na 2 CO 3 + 4.0% m/v ZnO + 0.1% m/v Triton (registered) X-100 added over the cement sample and heated at 800 deg. C for 20 s. The resulting mould was completely dissolved with 10 μL of 0.1% m/v HNO 3 . Limits of detection were 0.11 μg g - 1 for Co, 1.1 μg g - 1 for Cr and 1.9 μg g - 1 for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student's t-test, p < 0.05). In general, the relative standard deviation was lower than 12% (n = 5).

  19. Chemical vapor deposition and electric characterization of perovskite oxides LaMO3 (M=Co, Fe, Cr and Mn) thin films

    International Nuclear Information System (INIS)

    Ngamou, Patrick Herve Tchoua; Bahlawane, Naoufal

    2009-01-01

    Oxides with a perovskite structure are important functional materials often used for the development of modern devices. In view of extending their applicability, it is necessary to efficiently control their growth as thin films using technologically relevant synthesis methods. Pulsed spray evaporation CVD was used to grow several perovskite-type oxides on planar silicon substrates at temperatures ranging from 500 to 700 deg. C. The optimization of the process control parameters allows the attainment of the perovskite structure as a single phase. The electrical characterization using the temperature-dependent conductivity and thermopower indicates the p-type conduction of the grown films and shows a decreasing concentration of the charge carrier, mobility and band gap energy in the sequence LaCoO 3 >LaMnO 3 >LaCrO 3 >LaFeO 3 . The investigation of the electric properties of the obtained perovskite thin films shows the versatility of CVD as a method for the development of innovative devices. - Graphical abstract: We report a single step deposition of perovskite thin films LaMO 3 (M: Co, Mn, Cr, Fe) using pulsed spray evaporation chemical vapor deposition. Electrical and thermopower properties, similar to these of bulk materials, could promote the development of modern thermoelectric devices based on thin films technology.

  20. Effect of Cr{sub 2}O{sub 3} on the microstructure and non-ohmic properties of (Co, Sb)-doped SnO{sub 2} varistors

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar M, J. A. [Centro de Investigac ion en Materiales Avanzados, S. C., Alianza Norte No. 202, Parque de Investigacion e Innovacion Tecnologica, Nueva Carretera Aeropuerto Km. 10 Apodaca 66600, Nuevo Leon (Mexico); Pech C, M. I. [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Carretera Saltillo-Monterrey Km. 13, Saltillo 25900, Coahuila (Mexico); Hernandez, M. B.; Rodriguez, E.; Garcia O, L. [Universidad Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica, San Nicolas de los Garza, Nuevo Leon (Mexico); Glot, A. B., E-mail: josue.aguilar@cimav.edu.mx [Universidad Tecnologica de la Mixteca, Division de Estudios de Posgrado, Carretera Acatlima Km. 2.5, Huajuapan de Leon 69000, Oaxaca (Mexico)

    2013-10-01

    The effect of Cr{sub 2}O{sub 3} addition on the physical characteristics, microstructure, and current-voltage properties of (Co-Sb)-doped SnO{sub 2} varistors was investigated. SnO{sub 2}-Co{sub 3}O{sub 4}-Sb{sub 2}O{sub 5} ceramics with additions of 0.0, 0.03, 0.05 and 0.07 mol % Cr{sub 2}O{sub 3} were sintered at 1350 C under ambient atmosphere and characterized micro structurally and electrically. The characterization by X-ray diffraction and scanning electron microscopy show that the microstructure remains as a single phase material with multimodal size distribution of SnO{sub 2} grains. The greatest effect of Cr{sub 2}O{sub 3} additions is manifested in the electric breakdown field. Additions of high levels (0.07 and 0.05 %) of this oxide promote and increase of approximately 55% in this parameter compared to the Cr{sub 2}O{sub 3}-free sample. Another physical property is affected: the measured density values decreases as the Cr{sub 2}O{sub 3} content increases. A change in the nonlinearity coefficient value is produced only at the highest Cr{sub 2}O{sub 3} content while at intermediate levels there is not change at all. Consequently, when seeking high nonlinearity coefficients, intermediate levels of Cr{sub 2}O{sub 3} are not recommended. (Author)

  1. Reaction of hydrogen with the Laves phase (C14) TiCr{sub 1.78-x}Mn{sub x} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Agresti, F. [Universita di Padova, Dipartimento di Ingegneria Meccanica, Settore Materiali and CNISM, via Marzolo 9, 35131 Padova (Italy); Lo Russo, S. [Universita di Padova, Dipartimento di Fisica and CNISM, via Marzolo 8, 35131 Padova (Italy); Maddalena, A.; Principi, G. [Universita di Padova, Dipartimento di Ingegneria Meccanica, Settore Materiali and CNISM, via Marzolo 9, 35131 Padova (Italy); Mazzolai, G. [Universita di Perugia, Dipartimento di Fisica, Via A. Pascoli 5, 06100 Perugia (Italy); Universita Telematica e-Campus, Via Isimbardi 10, Novedrate (Colombia) (Italy); Coluzzi, B.; Biscarini, A. [Universita di Perugia, Dipartimento di Fisica, Via A. Pascoli 5, 06100 Perugia (Italy); Mazzolai, F.M., E-mail: fabio.mazzolai@fisica.unipg.it [Universita di Perugia, Dipartimento di Fisica, Via A. Pascoli 5, 06100 Perugia (Italy); Tuissi, A. [Istituto per l' Energia e le Interfasi, CNR-IENI, C.so Promessi Sposi, 29, Lecco (Italy)

    2009-09-15

    The lattice constants a and c of the as cast hexagonal (C14) Laves phase TiCr{sub 1.78-x}Mn{sub x} (x = 0, 0.4, 0.6 and 0.8) have been measured by X-ray diffraction at room temperature as a function of the Mn content. It has been found that a decreases with increasing x while c remains almost unchanged. Being this alloy interesting as material for solid state hydrogen storage, pressure-composition isotherms have been traced on desorption mode for the H{sub 2} gas pressure and temperature varying from 10 to 0.01 MPa and from 209 to 307 K, respectively. From the temperature dependence of the plateau pressure the molar quantities {Delta}H-bar{sub H{sub 2}} and {Delta}S-bar{sub H{sub 2}} associated with the hydride decomposition have been determined as a function of the Mn content. With increasing x, both {Delta}H-bar{sub H{sub 2}} and {Delta}S-bar{sub H{sub 2}} progressively decrease, and the desorption pressure initially decreases (for x {<=} 0.4) then slightly increases. At the same time, the pseudo-plateaus become flatter.

  2. Neutron powder diffraction investigation on the crystal and magnetic structure of (Ho{sub 0.50+x}Ca{sub 0.50-x})(Mn{sub 1-x}Cr{sub x})O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, A; Ferretti, M [SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Castellano, C [Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Universita degli Studi di Milano, Via C Venezian 21, 20133 Milano (Italy); Cimberle, M R; Masini, R [IMEM-CNR, Via Dodecaneso 33, 16146 Genova (Italy); Ritter, C, E-mail: alberto.martinelli@spin.cnr.it [Institute Laue-Langevin, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France)

    2011-10-19

    The crystal and magnetic structure of (Ho{sub 0.50+x}Ca{sub 0.50-x})(Mn{sub 1-x}Cr{sub x})O{sub 3} (x = 0.00, 0.01, 0.02, 0.03) has been investigated between 5 and 300 K by means of neutron powder diffraction followed by Rietveld refinement and dc magnetic measurements. During cooling an orthorhombic to monoclinic phase transition occurs on account of the charge and orbital ordering taking place in the Mn sub-lattice; at low temperature phase separation takes place and the main monoclinic phase coexists with a secondary orthorhombic phase, whose amount slightly increases with the increase of Cr content. Cr{sup 3+} is not involved in orbital ordering or superexchange interactions. The charge and magnetic ordering are decoupled: the Mn moments order according to a CE-type structure in all samples. (paper)

  3. Exposure of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets to soft X-rays: The effect of the counterions on radiation stability

    Energy Technology Data Exchange (ETDEWEB)

    Helmstedt, Andreas, E-mail: andreas.helmstedt@uni-bielefeld.de [Fakultaet fuer Physik, Universitaet Bielefeld, Universitaetsstrasse 25, D-33615 Bielefeld (Germany); Sacher, Marc D.; Gryzia, Aaron; Harder, Alexander; Brechling, Armin; Mueller, Norbert; Heinzmann, Ulrich [Fakultaet fuer Physik, Universitaet Bielefeld, Universitaetsstrasse 25, D-33615 Bielefeld (Germany); Hoeke, Veronika; Krickemeyer, Erich; Glaser, Thorsten [Fakultaet fuer Chemie, Universitaet Bielefeld, Universitaetsstrasse 25, D-33615 Bielefeld (Germany); Bouvron, Samuel; Fonin, Mikhail [Fachbereich Physik, Universitaet Konstanz, Universitaetsstrasse 10, D-78457 Konstanz (Germany)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnets adsorbed on gold are investigated. Black-Right-Pointing-Pointer The oxidation state of the Mn{sup III} constituents changes under X-ray exposure. Black-Right-Pointing-Pointer The change is monitored by Mn-L{sub 3}-edge XAS. Black-Right-Pointing-Pointer Choice of anions strongly influences radiation stability of the SMM. Black-Right-Pointing-Pointer No influence of the sample morphology on radiation stability could be observed. - Abstract: X-ray absorption spectroscopy studies of the [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} single-molecule magnet deposited as a microcrystalline layer on gold substrates are presented. The oxidation state of the manganese centers changes from Mn{sup III} to Mn{sup II} due to irradiation with soft X-rays. The influence of the charge-neutralizing anions on the stability of [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} against soft X-ray exposure is investigated for the different anions tetraphenylborate (BPh{sub 4}{sup -}), lactate (C{sub 3}H{sub 5}O{sub 3}{sup -}) and perchlorate (ClO{sub 4}{sup -}). The exposure dependence of the radiation-induced reduction process is compared for [Mn{sup III}{sub 6}Cr{sup III}]{sup 3+} with the three different anions.

  4. Study of the analytic quality in the determinations of Cr, Fe, Mn, Cu, Zn, Pb and Hg through conventional and nuclear analytical techniques in mosses of the MATV; Estudio de la calidad analitica en las determinaciones de Cr, Fe, Mn, Cu, Zn, Pb y Hg a traves de tecnicas analiticas nucleares y convencionales en musgos de la ZMVT

    Energy Technology Data Exchange (ETDEWEB)

    Caballero S, B.

    2013-07-01

    To evaluate the environmental risks of air pollution and to facilitate the decision-making for control, is necessary to have the capacity to generate data with analytical quality. A comparison between nuclear (Neutron activation analysis and total reflection X-ray fluorescence spectrometry) and no nuclear analytical techniques (atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry) for simultaneous determination of metal content (Cr, Cu, Fe, Hg, Mn, Pb and Zn) in mosses from Metropolitan Area of the Toluca Valley (MATV) was performed. Epiphytic mosses (Fabriona ciliaris and Leskea angustata) were sampled in two campaigns, 16 sites (urban, transition and natural) and were prepared for each technique. The biological certified reference materials were used for the quality control and to evaluate accuracy, precision, linearity, detection and quantification limits. Results show that nuclear analytical techniques and no nuclear applied in chemical analysis of Cr, Cu, Fe, Hg, Mn, Pb and Zn in moss from MATV are comparable and therefore all of these can potentially be used for this purpose. However, if its considered both, the performance parameters and economic/operational characteristics is widely recommended inductively coupled plasma optical emission spectrometry, conventional analytical technique, which showed the highest analytical grade quality. Also were observed spatial and temporal variations in the concentrations of Cr, Cu, Fe, Hg, Mn, Pb and Zn in mosses from MATV and was discussed its potential origin. The urban sites had the highest concentration of anthropogenic elements as Cr, Cu, Fe, Hg, Pb and Zn because are strongly impacted by roads with high vehicle traffic. (Author)

  5. Magnetization of correlated electron systems. MnSi thin films, CrB2 single crystals and two-dimensional electron systems in MgZnO/ZnO

    International Nuclear Information System (INIS)

    Brasse, Matthias

    2014-01-01

    Torque magnetometry at low temperature is performed to investigate the magnetic properties of MnSi thin films, of a CrB 2 single crystal and of a two-dimensional electron system (2DESs) formed at the interface of MgZnO/ZnO. The magnetic anisotropy and phase diagram of MnSi as well as information on the electronic structure of CrB 2 are obtained. The MgZnO/ZnO 2DESs exhibits the de Haas-van Alphen effect and non-equilibrium currents which are analyzed in order to determine ground state properties and excited states, respectively.

  6. Monte Carlo and Ab-initio calculation of TM (Ti, V, Cr, Mn, Fe, Co, Ni) doped MgH{sub 2} hydride: GGA and SIC approximation

    Energy Technology Data Exchange (ETDEWEB)

    Salmani, E., E-mail: elmehdisalmani@gmail.com [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Laghrissi, A.; Lamouri, R. [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Benchafia, E. [Department of Materials Science and Engineering, New Jersey Institute of Technology, Newark, NJ 07102 (United States); Ez-Zahraouy, H. [LMPHE (URAC12), Faculty of Sciences, Mohammed V University in Rabat (Morocco); Benyoussef, A. [Institute for Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2017-02-15

    MgH{sub 2}: TM (TM: V, Cr, Mn, Fe, Co, Ni) based dilute magnetic semiconductors (DMS) are investigated using first principle calculations. Our results show that the ferromagnetic state is stable when TM introduces magnetic moments as well as intrinsic carriers in TM: Co, V, Cr, Ti; Mg{sub 0.95}TM{sub 0.05}H{sub 2}. Some of the DMS Ferro magnets under study exhibit a half-metallic behavior, which make them suitable for spintronic applications. The double exchange is shown to be the underlying mechanism responsible for the magnetism of such materials. The exchange interactions obtained from first principle calculations and used in a classical Ising model by a Monte Carlo approach resulted in ferromagnetic states with Curie temperatures within the ambient conditions. - Highlights: • The half-metallic aspect was proven to take place for Ti, Cr, Co and Ni. • The TM impurities are shown to introduce the magnetic moment that makes MgH{sub 2} good candidates for spintronic applications.

  7. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    Science.gov (United States)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  8. Thermonuclear Cr-46(p,gamma)Mn-47 rate in type-I x-ray bursts

    Czech Academy of Sciences Publication Activity Database

    He, J. J.; Parikh, A.; Xu, Yi; Zhang, Y. H.; Zhou, X. H.; Xu, H. S.

    2017-01-01

    Roč. 96, č. 4 (2017), č. článku 045801. ISSN 2469-9985 Institutional support: RVO:61389005 Keywords : atomic mass evaluation * Mn-47 Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 3.820, year: 2016

  9. High temperature superconductivity in Zn and Mn substituted (Tl,Cr)Sr2CaCu2O7

    International Nuclear Information System (INIS)

    Lo, S.V.; Abd Shukor, R.

    1999-01-01

    Samples with nominal starting composition (TICr 0 .15)Sr 2 (Ca 1-x M x )Cu 2 O 7 (TI-1212) for x=0 - 0.7 with M= Zn and Mn have been prepared and investigated by powder X-ray diffraction (XRD) and electrical resistance measurements. All sample showed a mixed phase of 1212 and 1201. Dominant 1212-phase was observed for x=0.0-0.5 and x=0.0-0.4, for Zn and Mn series, respectively. The superconducting transition temperature was suppressed when Zn and Mn are substituted at the Ca site. For the Zn series the normal state behavior is metallic throughout the doping range. For the Mn series the normal state behavior is metallic for 0.1≤x≥0.3 and semiconducting like x>0.3. The suppression of T c and formation of the TI-1212 phase are discussed in terms of the ionic radius and valence state of the substituted elements. (author)

  10. Transition Metal Complexes of Cr, Mo, W and Mn Containing η1(S)-2,5-Dimethylthiophene, Benzothiophene and Dibenzothiophene Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Michael [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    The UV photolysis of hexanes solutions containing the complexes M(CO)6 (M=Cr, Mo, W) or CpMn(CO)3 (Cp=η5-C5H5) and excess thiophene (T*) (T*=2,5-dimethylthiophene (2,5-Me2T), benzothiophene (BT), and dibenzothiophene (DBT)) produces the η1(S)-T* complexes (CO)5M(η1(S)-T*) 1-8 or Cp(CO)2Mn1(S)-T*)9-11, respectively. However, when T*=DBT, and M=Mo, a mixture of two products result which includes the η1(S)-DBT complex (CO)5Mo(η1(S)-DBT) 4a and the unexpected π-complex (CO)3Mo(η{sup 6}-DBT) 4b as detected by 1H NMR. The liability of the η1(S)-T* ligands is illustrated by the rapid displacement of DBT in the complex (CO)5W(η1(S)-DBT) (1) by THF, and also in the complexes (CO)5Cr1(S)-DBT) (5) and CpMn(CO)21(S)-DBT) (9) by CO (1 atm) at room temperature. Complexes 1-11 have been characterized spectroscopically (1H NMR, IR) and when possible isolated as analytically pure solids (elemental analysis, EIMS). Single crystal, X-ray structural determinations are reported for (Cη)5W(η1(S)-DBT) and Cp(CO)2Mn1(S)-DBT).

  11. Investigation of multifunctional properties of Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} (x = 0–6) Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jyoti; Suresh, K.G., E-mail: suresh@phy.iitb.ac.in

    2015-01-25

    Highlights: • Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} Heusler alloys exhibit multifunctional properties. • Co doping results decrease in martensitic transition temperature and increase in T{sub C}{sup A}. • Ferromagnetic coupling increases with increase in Co concentration. • Large positive ΔS{sub M} of 10.5 J/kg K and large RCP of 125 J/kg was obtained for x = 1. • Large exchange bias field of 833 Oe was observed for Mn{sub 50}Ni{sub 39}Co{sub 1}Sn{sub 10} alloy. - Abstract: A series of Co doped Mn{sub 50}Ni{sub 40−x}Co{sub x}Sn{sub 10} (x = 0, 1, 2, 2.5, 3, 4 and 6) Heusler alloys has been investigated for their structural, magnetic, magnetocaloric and exchange bias properties. The martensitic transition temperatures are found to decrease with the increase in Co concentration due to the decrease in valence electron concentration (e/a ratio). The Curie temperature of austenite phase increases significantly with increasing Co concentration. A large positive magnetic entropy change (ΔS{sub M}) of 8.6 and 10.5 J/kg K, for a magnetic field change of 50 kOe is observed for x = 0 and 1 alloys, and ΔS{sub M} values decreases for higher Co concentrations. The relative cooling power shows a monotonic increase with the increase in Co concentration. Large exchange bias fields of 920 Oe and 833 Oe have been observed in the alloys with compositions x = 0 and 1, after field cooling in presence of 10 kOe. The unidirectional anisotropy arising at the interface between the frustrated and ferromagnetic phases is responsible for the large exchange bias observed in these alloys. With increase in Co, the magnetically frustrated phase diminishes in strength, giving rise to a decrease in the exchange bias effect for larger Co concentration. The exchange bias fields observed for compositions x = 0 and 1, in the present case are larger than that reported for Co doped Ni–Mn–Z (Z = Sn, Sb, and Ga) alloys. Temperature and cooling field dependence of the exchange bias

  12. The effect of heat treatments on Ni43Mn42Co4Sn11 meta-magnetic shape memory alloys for magnetic refrigeration

    International Nuclear Information System (INIS)

    Bruno, Nickolaus M.; Yegin, Cengiz; Karaman, Ibrahim; Chen, Jing-Han; Ross, Joseph H.; Liu, Jian; Li, Jianguo

    2014-01-01

    The inverse magnetocaloric effect (MCE) in bulk polycrystalline and melt-spun ribbons of the Ni 43 Mn 42 Co 4 Sn 11 meta-magnetic shape memory alloy (MSMA) is investigated. The influence of several material properties on the MCE and relative cooling power (RCP) are discussed and the property combinations for optimum MCE and RCP identified for a given thermodynamic framework. These include a small slope of magnetic field vs. martensitic transformation temperature phase diagram, a narrow transformation range, low transformation thermal hysteresis and a large change in magnetization on martensitic transformation, which results in low levels of applied magnetic fields desired for repeated MCE on field cycling. The thermo-magnetic responses of the samples were measured before and after heat treatments. The heat-treated ribbons produced the most favorable MCE by exhibiting the highest magnetization change and smallest elastic energy storage through the transformation. This was attributed to the specific microstructural features, including grain size to thickness ratio and degree of L2 1 ordering. In addition, issues in the literature in determining RCP for MSMAs are discussed, and a new method to find RCP is proposed and implemented. Completely reversible magnetic-field-induced martensitic transformation cycles were used to investigate hysteresis losses relative to actual refrigeration cycles, whereby the RCP was calculated using the defined thermodynamic framework and indirectly measured entropy changes. The annealed ribbons exhibited the high RCP level of 242 J kg −1 under the applied field of 7 T compared with a theoretical maximum of 343 J kg −1 . Similar values of RCP in other MSMAs can be achievable if microstructural elastic energy storage and hysteresis loss are minimized during the transformation with the help of annealing treatments

  13. Structural and microstructural comparative analysis on metallic alloys of composition Cu{sub y%}-Ni{sub x%}-Me (Me = Sn, Cr, Al, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, I.M.; Okazaki, A.K.; Silveira, C.R. da; Carvalhal, M.A.; Monteiro, W.A.; Carrio, J.A.G. [Physics Department, CCH, Presbyterian Mackenzie University, Materials Science and Technology Centre, Sao Paulo, SP (Brazil); Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: jgcarrio@mackenzie.br

    2010-07-01

    This work presents a comparative study of microstructural and electrical properties of polycrystalline material Cu-Ni alloys synthesized by conventional and powder metallurgy. A sample of Cu{sub 99,33%} Ni{sub 0,23%} Pt{sub 0,43%} was produced in electric furnace with voltaic arc and various samples containing Al, Sn and Cr as third element were produced by powder metallurgy. The microstructure of the samples was studied by optical microscopy, Vickers micro hardness and x rays powder diffraction. Their electrical conductivity was measured with a milliohmeter Agilent (HP) 4338B. Refinements of the crystalline structure of the samples were performed by the Rietveld method, using the refinement program GSAS. The refinement results and Fourier differences calculations indicate that the copper matrix structure presents not significant distortions by the used amounts of the other metal atoms. The refinement of non structural parameters allowed the micro-structural characterization. The dependence of the micro-structure with thermal and mechanical treatments is studied. (author)

  14. Current-voltage characteristics of SnO2-Co3O4-Cr2O3-Sb2O5 ceramics

    International Nuclear Information System (INIS)

    Aguilar-Martinez, J A; Glot, A B; Gaponov, A V; Hernandez, M B; Guerrero-Paz, J

    2009-01-01

    The effect of mechanical treatment in a planetary mill on the microstructure and electrical properties of tin dioxide based varistor ceramics in the system SnO 2 -Co 3 O 4 -Cr 2 O 3 -Sb 2 O 5 sintered in the range 1150-1450 0 C was studied. The mechanical treatment leads to an increase in shrinkage, decrease in porosity, decrease in sample diameter, change in colour of the sintered samples from grey to black and enhancement of nonlinearity. For the sample sintered at 1350 0 C the mechanical treatment enhances the nonlinearity coefficient from 11 to 31 and decreases the electric field E 1 (at 10 -3 A cm -2 ) from 3500 to 2800 V cm -1 . The observed changes in physical properties are explained in terms of an additional size reduction of oxide particles and a better mixing of oxide powder followed by the formation of potential barriers at the grain boundaries throughout the whole sample. In spite of the low porosity, the low-field electrical conductivity of mechanically treated ceramics is significantly increased with the growth of relative humidity. A higher humidity sensitivity is found for mechanically treated ceramics with higher barrier height and higher nonlinearity coefficient.

  15. Welding and corrosion resistance of the new nitrogen alloyed steel X2 CrNiMnMoN241764

    International Nuclear Information System (INIS)

    Arit, N.; Henser, H.; GroB, V.

    1994-01-01

    Remanit 4565 S is a new developed nitrogen alloyed austenitic stainless steel. Characteristic features are: improved strength and toughness, delayed precipitation of carbides and intermetallic phases, improved corrosion resistance. Welding fabrication is possible without the risk of pore formation. TIG-welded joints are as resistant as the base metal, using filler metal SG-NiCr 20 Mo 15 (Thermanit Nimo C) respectively SG-NiCr 28 Mo(Thermanit 30/40 E) according to the area of application. (Author) 8 refs

  16. Reaction of tin(iv) phthalocyanine dichloride with decamethylmetallocenes (M = CrII and CoII). Strong magnetic coupling of spins in (Cp*2Co+){SnIVCl2(Pc˙3-)}˙-·2C6H4Cl2.

    Science.gov (United States)

    Konarev, Dmitri V; Troyanov, Sergey I; Shestakov, Alexander F; Yudanova, Evgeniya I; Otsuka, Akihiro; Yamochi, Hideki; Kitagawa, Hiroshi; Lyubovskaya, Rimma N

    2018-01-23

    The reaction of tin(iv) phthalocyanine dichloride {Sn IV Cl 2 (Pc 2- )} with decamethylmetallocenes (Cp* 2 M, M = Co, Cr) has been studied. Decamethylcobaltocene reduces Sn IV Cl 2 (Pc 2- ) to form the (Cp* 2 Co + ){Sn IV Cl 2 (Pc˙ 3- )}˙ - ·2C 6 H 4 Cl 2 (1) complex. The negative charge of {Sn IV Cl 2 (Pc˙ 3- )}˙ - is delocalized over the Pc macrocycle providing the alternation of the C-N(imine) bonds, the appearance of new bands in the NIR range and a strong blue shift of both the Soret and Q-bands in the spectrum of 1. The magnetic moment of 1 is equal to 1.68μ B at 300 K, indicating the contribution of one S = 1/2 spin of the Pc˙ 3- macrocycles. These macrocycles form closely packed double stacks in 1 with effective π-π interactions providing strong antiferromagnetic coupling of spins at a Weiss temperature of -80 K. Decamethylchromocene initially also reduces Sn IV Cl 2 (Pc 2- ) to form the [(Cp* 2 Cr + ){Sn VI Cl 2 (Pc˙ 3- )}˙ - complex but further reaction between the ions is observed. This reaction is accompanied by the substitution of one Cp* ligand of Cp* 2 Cr by chloride anions originating from {Sn IV Cl 2 (Pc˙ 3- )}˙ - to form the complex {(Cp*CrCl 2 )(Sn IV (μ-Cl)(Pc 2- ))}·C 6 H 4 Cl 2 (2) in which the (Cp*CrCl 2 ) and {Sn IV (Pc 2- )} species are bonded through the μ-bridged Cl - anion. According to the DFT calculations, this reaction proceeds via an intermediate [(Cp* 2 CrCl)(SnClPc)] complex.

  17. Spin-polarized electron gas in Co2MSi/SrTiO3(M= Ti, V, Cr, Mn, and Fe) heterostructures

    KAUST Repository

    Nazir, S.

    2016-06-08

    Spin-polarized density functional theory is used to study the TiO2 terminated interfaces between the magnetic Heusler alloys Co2Si (M = Ti, V, Cr, Mn, and Fe) and the non-polar band insulator SrTiO3. The structural relaxation at the interface turns out to depend systematically on the lattice mis- match. Charge transfer from the Heusler alloys (mainly the M 3d orbitals) to the Ti dxy orbitals of the TiO2 interface layer is found to gradually grow from M = Ti to Fe, resulting in an electron gas with increasing density of spin-polarized charge carriers. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  18. Effect of cooling conditions on the magnetic properties of bainite transformation in an Fe-2%Mn-0.5%Cr alloy

    International Nuclear Information System (INIS)

    Ocak, S.; Akturk, S.; Talas, S.; Aktas, H.

    2008-01-01

    The effect of cooling conditions on the magnetic properties of bainitic reaction in Fe-2%Mn-0.5%Cr alloy have been investigated using Moessbauer spectroscopy. Results showed that the bainite phase is magnetically ordered and the amount of magnetic bainite increases by decrease in grain size or increase in cooling rate. It is also shown that the retained austenite has paramagnetic behavior. The morphology of the alloy has been analyzed by using scanning electron microscopy (SEM) in heat-treated specimens at different cooling rates. In addition, the bainite start (B s ) and finish (B f ) temperatures and reverse transformation start (A s ) and finish (A f ) temperatures have been investigated by using differential scanning calorimetry (DSC) system for different heat treatment conditions

  19. Cr(III,Mn(II,Fe(III,Co(II,Ni(II,Cu(II and Zn(II Complexes with Diisobutyldithiocarbamato Ligand

    Directory of Open Access Journals (Sweden)

    Mohammad Tarique

    2011-01-01

    Full Text Available The synthesis of sulphur and nitrogen containing dithiocarbamato ligand derived from diisobutylamine as well as its coordination compounds with 3d series transition metals is presented. These synthesized compounds were characterized on the basis of elemental analysis, conductometric measurements and IR spectral studies. The analytical data showed the stoichiometry 1:2 and 1:3 for the compounds of the types ML2 {M=Mn(II, Co(II, Ni(II, Cu(II and Zn(II} and M'L3{M'=Cr(III and Fe(III} respectively. The conductometric measurements proved the non-electrolytic behaviour of all the compounds. The bidentate nature of dithiocarbamato moiety was confirmed on the basis of IR spectral data.

  20. Study of the experimental parameters for the determination of Ca, Cr, Cu, Fe, Mn and Ni on nuclear grade UO2 by X-ray fluorescence technique

    International Nuclear Information System (INIS)

    Salvador, V.L.R.

    1982-01-01

    An analytical method for the simultaneous determinations of low concentrations of Ca, Cr, Cu, Fe, Mn and Ni on the nuclear grade UO 2 by X-ray fluorescence technique, without the use of chemical treatment, is described. The optimization of the experimental conditions was established on the X-ray fluorescence spectrometer and a low limit of detection (4 - 7 μg/gU) was achieved which satisfies the requirement in the nuclear fuel specification. The samples were prepared in the form of double layer pressed pellets using boric acid as a binding agent. The characteristic first order K sub(α) line intensity of each minor component was measured and the values of its concentrations were deduced using respective standard calibrations curves. The precision, accuracy and acceptability of the method were determined for all elements. The values of the precision are in the range of 2 - 10% and the accuracy are lower than 7%. (Author) [pt

  1. Microstructure and Mechanical Properties of Fe-18Mn-18Cr-0.5N Austenitic Nonmagnetic Stainless Steel in Asymmetric Hot Rolling

    Science.gov (United States)

    Song, Y. L.; Li, C. S.; Ma, B.; Han, Y. H.

    2017-05-01

    Asymmetric hot rolling (ASHR) with a mismatch speed ratio of 1.15 in a single pass was applied to Fe-18Mn-18Cr-0.5N steel and was compared with symmetric hot rolling (SHR). The results indicated that a through-thickness microstructure gradient was formed in the plate due to the shear strain (0.36) introduced by ASHR. A fine-grained layer with the average size of 3 μm was achieved at the top surface of ASHR plate, while numerous elongated grains with a few recrystallized grains were presented at the center layer. The texture was distributed randomly at the top surface of ASHR plate, and a weaker intensity of typical hot-rolled texture in austenitic steel was obtained at the center layer of ASHR plate compared to SHR plate. An excellent combination of microhardness, strength and ductility was obtained in the ASHR plate, which was attributed to gradient microstructure induced by ASHR.

  2. Electron-beam welding of 21-6-9 (Cr--Ni--Mn) stainless steel: effect of machine parameters on weldability

    International Nuclear Information System (INIS)

    Casey, H.

    1975-04-01

    The high-manganese, nitrogen-strengthened 21-6-9 (Cr--Ni--Mn) austenitic stainless steel has a weldability rating similar to that of more common austenitic stainless steels in terms of cracking, porosity, etc. However, weld pool disruption problems may occur with this alloy that can be related to instability within the molten weld pool. Selection of machine parameters is critical to achieving weld pool quiescence as this report confirms from recent tests. Test samples came from heats of air-melted, vacuum-arc remelted, and electroslag remelted material. Low- and high-voltage machine parameters are discussed, and effects of parameter variation on weld pool behavior are given. Data relate weld pool behavior to weld fusion-zone geometry. Various weld parameters are recommended for the 21-6-9 alloy, regardless of its source or chemistry. (auth)

  3. Powder metallurgy and mechanical alloying effects on the formation of thermally induced martensite in an FeMnSiCrNi SMA

    Directory of Open Access Journals (Sweden)

    Pricop Bogdan

    2015-01-01

    Full Text Available By ingot metallurgy (IM, melting, alloying and casting, powder metallurgy (PM, using as-blended elemental powders and mechanical alloying (MA of 50 % of particle volume, three types of FeMnSiCrNi shape memory alloy (SMA specimens were fabricated, respectively. After specimen thickness reduction by hot rolling, solution treatments were applied, at 973 and 1273 K, to thermally induce martensite. The resulting specimens were analysed by X-ray diffraction (XRD and scanning electron microscopy (SEM, in order to reveal the presence of ε (hexagonal close-packed, hcp and α’ (body centred cubic, bcc thermally induced martensites. The reversion of thermally induced martensites, to γ (face centred cubic, fcc austenite, during heating, was confirmed by dynamic mechanical analysis (DMA, which emphasized marked increases of storage modulus and obvious internal friction maxima on DMA thermograms. The results proved that the increase of porosity degree, after PM processing, increased internal friction, while MA enhanced crystallinity degree.

  4. Diffusion-induced quadrupole relaxation of 27Al nuclei in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at high temperatures

    International Nuclear Information System (INIS)

    Bottyan, L.; Beke, D.L.; Tompa, K.

    1983-01-01

    The temperature dependence of the laboratory frame spin-lattice relaxation time of 27 Al nuclei is measured in 5N Al and in dilute Al-Ti, Al-Cr, Al-Mn, and Al-Cu alloys at 5.7 and 9.7 MHz resonance frequencies. The relaxation in pure aluminium is found to be purely due to the conduction electrons. An excess T 1 -relaxation contribution is detected in all Al-3d alloys investigated above 670 K. The excess relaxation rate is proportional to the impurity content and the temperature dependence of the excess contribution is of Arrhenius-type with an activation energy of (1.3 +- 0.3) eV for all of the investigated alloys. The relaxation contribution is found to be quadrupolar in origin and is caused by the relative diffusional jumps of solute atoms and Al atoms relatively far from the impurity. (author)

  5. On the phase evolution of AlCoCrCuFeMnSix high entropy alloys prepared by mechanical alloying and arc melting route

    Science.gov (United States)

    Kumar, Anil; Chopkar, Manoj

    2018-05-01

    Effect of Si addition on phase formation of AlCoCrCuFeMnSix (x=0, 0.3, 0.6 and 0.9) high entropy alloy have been investigated in this work. The alloys are prepared by mechanical alloying and vacuum arc melting technique. The X-ray diffraction results reveals the formation of mixture of face centered and body centered cubic solid solution phases in milled powders. The addition of Si favours body centered cubic structure formation during milling process. Whereas, after melting the milled powders, body centered phases formed during milling is partial transformed into sigma phases. XRD results were also correlated with the SEM elemental mapping of as casted samples. Addition of Si favours σ phase formation in the as cast samples.

  6. Measurement of (n,2n) cross-sections for Sc, Mn, Cr and In between 12 and 19 MeV with activation technique

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, S.; Win, Than; Matsuyama, S. [Tohoku Univ., Sendai (Japan). Faculty of Engineering; Odano, N.

    1997-03-01

    Activation cross-sections for scandium, manganese, chromium and indium have been measured in the neutron energies from 12 to 19 MeV. Source neutrons were produced via the T(d,n){sup 4}He reaction by bombarding a 3.2-MeV deuteron beam from the Dynamitron accelerator of Fast Neutron Laboratory at Tohoku University. Ten packages of high or ultra-high purity metal foils for chromium and indium, alloy foils for manganese, and oxide powder for scandium were set around the neutron source at 5 cm from the target in the angular range from 0 to 140 deg covering the incident neutron energies from 19 to 12 MeV at the center position of each package. Activation rates of the samples were obtained by the gamma-ray measurements using a high purity germanium detector. Neutron flux at each sample was determined using the activation rates of two niobium foils locating both sides of that sample; the reference reaction was {sup 93}Nb(n,2n){sup 92m}Nb of which cross-section data was taken from the 1991 NEANDC/INDC standard files. The source neutrons distributions have been measured in detail by the time-of-flight technique. The measured cross-sections are the following important dosimetry or activation reactions: {sup 45}Sc(n,2n){sup 44m}Sc, {sup 55}Mn(n,2n){sup 54}Mn, {sup 52}Cr(n,2n){sup 51}Cr, and {sup 115}In(n,2n){sup 114m}In. These cross-sections are compared with available activation file, dosimetry files and previous experimental data. (author)

  7. Associations between standardized school performance tests and mixtures of Pb, Zn, Cd, Ni, Mn, Cu, Cr, Co, and V in community soils of New Orleans

    International Nuclear Information System (INIS)

    Zahran, Sammy; Mielke, Howard W.; Weiler, Stephan; Hempel, Lynn; Berry, Kenneth J.; Gonzales, Christopher R.

    2012-01-01

    In New Orleans a strong inverse association was previously identified between community soil lead and 4th grade school performance. This study extends the association to zinc, cadmium, nickel, manganese, copper, chromium, cobalt, and vanadium in community soil and their comparative effects on 4th grade school performance. Adjusting for poverty, food security, racial composition, and teacher-student ratios, regression results show that soil metals variously reduce and compress student scores. Soil metals account for 22%–24% while food insecurity accounts for 29%–37% of variation in school performance. The impact on grade point averages were Ni > Co > Mn > Cu ∼Cr ∼ Cd > Zn > Pb, but metals are mixtures in soils. The quantities of soil metal mixtures vary widely across the city with the largest totals in the inner city and smallest totals in the outer city. School grade point averages are lowest where the soil metal mixtures and food insecurity are highest. - Highlights: ► Mixtures of metals vary; largest totals in the inner city and lowest in the outer city. ► An inverse association between soil Pb and 4th grade school performance is known. ► Assuming the same exposure pathway, multiple metals are compared to performance. ► Soil metals account for 22%–24% of variation in school test performance. ► Soil metal plus food insecurity accounts for 54% of explained variance. - Controlling for potential confounding variables, the accumulation of metals (Pb, Zn, Cd, Ni, Mn, Cu, Cr, and Co) in neighborhood soils is significantly negatively associated with 4th grade school performance on standardized tests in New Orleans.

  8. Effects of air melting on Fe/0.3/3Cr/0.5Mo/2Mn and Fe/0.3C/3Cr/0.5Mo/2Ni structural alloy steels

    International Nuclear Information System (INIS)

    Steinberg, B.

    1979-06-01

    Changing production methods of a steel from vacuum melting to air melting can cause an increase in secondary particles, such as oxides and nitrides, which may have detrimental effects on the mechanical properties and microstructure of the alloy. In the present study a base alloy of Fe/0.3C/3Cr/0.5Mo with either 2Mn or 2Ni added was produced by air melting and its mechanical properties and microstructure were compared to an identical vacuum melted steel. Significant differences in mechanical behavior, morphology, and volume fraction of undissolved inclusions have been observed as a function of composition following air melting. For the alloy containing manganese, all properties remained very close to vacuum melted values but the 2Ni alloy displayed a marked loss in Charpy impact toughness and plane strain fracture toughness. This loss is attributed to an increase in volume fraction of secondary particles in the nickel alloy, as opposed to both the Mn alloy and vacuum melted alloys, as well as to substaintially increased incidence of linear coalescence of voids. Microstructural features are discussed

  9. R and D of low activated Fe-Mn-Cr high strength non-magnetic steel, (I). Screening test for constituent optimization and fundamental characterization test

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, Shintaro; Fukaya, Kiyoshi; Eto, Motokuni; Kikuchi, Mituru [Japan Atomic Energy Research Inst., Tokyo (Japan); Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Tuyoshi [Japan Steel Works Ltd., Tokyo (Japan); Takahashi, Heishitiro [Center for Advanced Research of Energy Technology, Hokkaido Univ., Sapporo (Japan)

    2000-02-01

    It is very important to develop low activated/non-magnetic materials as large scale structural materials for fusion reactors. In the structural design of JT-60SU, low activated/non-magnetic materials with high specific strength and low decay heat characterizations are required. In the present paper, a new low activated/non-magnetic material (15.5 Mn-16Cr-0.2N-0.3Si-0.2C (wt%)) based on the conventional high manganese steel with lower Ni, CO, C, N and Mn contents for the purpose of lower activation and decay heat was developed and the mass production conditions of the material were optimized. Fundamental material characterization tests of the new material developed in present study were carried out, and the following conclusions are derived ; (1) Lower activation characterizations with the new materials in the order of 1/10 of that of SUS316L steel, (2) Higher strength of the material in the order of 2{approx}3 of SUS316L steel and (3) Lower decay heat with higher thermal conductivity with comparison of SUS316L steel. (author)

  10. Comparative toxicity of VO3-, CrO42-, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ to lettuce seedlings

    International Nuclear Information System (INIS)

    Berry, W.L.

    1978-01-01

    Lettuce seeds imbibed, germinated, and grown in a 0.1-strength modified Hoagland culture solution were subjected to a series of increasing concentrations of individual heavy metals up to and exceeding lethal levels. After an exposure of 5 days, seedlings were harvested, examined, and measured to determine toxic effects. A log--log plot of root length (yield) vs. heavy metal concentration was made for each metal to produce a dose response curve. The curves showed a growth plateau at low concentrations of the respective metals which was equivalent to the growth of the control. All metals inhibited root growth and caused lethal toxicity in the sub- and low-milliequivalent range. When concentrations of the tested metals exceeded their thresholds of acute toxicity, root growth was inhibited. In the zone of inhibition, between the acute toxic threshold and complete inhibition, the log--log dose response curves were approximately linear or were a series of linear steps. The threshold toxicity and the response slope were characteristic for each metal. Seedling lettuce showed a monophasic response to VO 3 - , Cu 2+ , and Zn 2+ ; a biphasic response to CrO 4 2 -, Mn 2+ , Ni 2+ , and Cd 2+ ; and a quadraphasic response to Co 2+ . The acute toxicity threshold on an equivalent basis increased according to the following sequence: Cd 2+ much less than VO 3 - 2+ 2+ 2+ 4 2- 2+ much less than Mn 2+ . On this basis, Cd 2+ is the most toxic of the trace elements tested

  11. Determination of Cr, Mn, Fe, Co, Ni, Cu, Zn and As in the Rimac River waters by x-ray fluorescence in total reflection; Determinacion de Cr, Mn, Fe, Co, Ni, Cu, Zn y As en aguas del Rio Rimac por fluorescencia de rayos-x en reflexion total

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado, W [Universidad Nacional Federico Villarreal, Lima (Peru). Facultad de Ciencias Naturales y Matematicas, EP Quimica; Olivera, P [Instituto Peruano de Energia Nuclear, Lima (Peru). Departamento de Quimica

    2002-07-01

    Samples from thirteen stations of the Rimac River has been analyzed. Samples were performed during one-year-period (september 1998-august 1999), with a frequency of one sample per month. The X-ray fluorescence analysis in total reflection technique has been used in order to determine the Cr, Mn, Fe, Co, Ni, Cu, Zn and As elements on its dissolved phase. The results obtained show: relation of the presence of mining stations with the metal concentration level, specially in the Zn and Fe; As is present in concentrations above those of permissible maximum levels in some of the sampled stations; moreover, Ni and Cr, toxic elements, are found in very low concentrations. On the other hand, it has been proved that the analysis method used is useful as a monitoring tool of superficial water-quality due to its low detection limits and because of the fastness the analysis are made.

  12. The Synergy Effect of Ni-M (M = Mo, Fe, Co, Mn or Cr Bicomponent Catalysts on Partial Methanation Coupling with Water Gas Shift under Low H2/CO Conditions

    Directory of Open Access Journals (Sweden)

    Xinxin Dong

    2017-02-01

    Full Text Available Ni-M (M = Mo, Fe, Co, Mn or Cr bicomponent catalysts were prepared through the co-impregnation method for upgrading low H2/CO ratio biomass gas into urban gas through partial methanation coupling with water gas shift (WGS. The catalysts were characterized by N2 isothermal adsorption, X-ray diffraction (XRD, H2 temperature programmed reduction (H2-TPR, H2 temperature programmed desorption (H2-TPD, scanning electron microscopy (SEM and thermogravimetry (TG. The catalytic performances demonstrated that Mn and Cr were superior to the other three elements due to the increased fraction of reducible NiO particles, promoted dispersion of Ni nanoparticles and enhanced H2 chemisorption ability. The comparative study on Mn and Cr showed that Mn was more suitable due to its smaller carbon deposition rate and wider adaptability to various H2/CO and H2O/CO conditions, indicating its better synergy effect with Ni. A nearly 100 h, the lifetime test and start/stop cycle test further implied that 15Ni-3Mn was stable for industrial application.

  13. Highly (002) textured large grain bcc Cr{sub 80}Mn{sub 20} seed layer on Cr{sub 50}Ti{sub 50} amorphous layer for FePt-C granular film

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Seong-Jae, E-mail: jsjigst@ecei.tohoku.ac.jp; Saito, Shin [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Hinata, Shintaro [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Japan Society for the Promotion of Science Research Fellow (PD), 5-3-1, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Takahashi, Migaku [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2015-05-07

    Effect of bcc Cr{sub 80}Mn{sub 20} seed layer and Cr{sub 50}Ti{sub 50} amorphous texture inducing layer on the heteroepitaxy system in FePt-C granular film was studied by introducing a new concept of the layered structure. The concept suggested that the large grain seed layer in which the crystallographic texture was initially formed on an amorphous layer in the layered structure can reduce the angular distribution of (002) c-axis crystal orientation in the FePt-C granular film owing to heteroepitaxial growth. Structure analysis by X-ray diffraction revealed that (1) when the substrate heating temperature was elevated from 300 °C to 500 °C, grain size in the seed layer increased from 9.8 nm to 11.6 nm, and then decreased with further increasing the substrate temperature. The reduction of the grain size over 500 °C corresponds to the crystallization of the amorphous texture inducing layer, (2) when the grain size increased from 9.8 nm to 11.6 nm, the angular distribution of the (002) orientation in the seed layer dramatically decreased from 13.7° to 4.1°. It was shown that the large grain seed layer increased the perpendicular hysteresis in FePt-C granular film.

  14. First-Principles Study on the Structural Stability and Segregation Behavior of γ-Fe/Cr2N Interface with Alloying Additives M (M = Mn, V, Ti, Mo, and Ni

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2016-07-01

    Full Text Available This study investigated the structural stability and electrochemical properties of alloying additives M (M = Mn, V, Ti, Mo, or Ni at the γ-Fe(111/Cr2N(0001 interface by the first-principles method. Results indicated that V and Ti were easily segregated at the γ-Fe(111/Cr2N(0001 interface and enhanced interfacial adhesive strength. By contrast, Ni and Mo were difficult to segregate at the γ-Fe(111/Cr2N(0001 interface. Moreover, the results of the work function demonstrated that alloying additives Mn reduced local electrochemical corrosion behavior of the γ-Fe(111/Cr2N(0001 interface by cutting down Volta potential difference (VPD between clean γ-Fe(111 and Cr2N(0001, while alloying additives V, Ti, Mo, and Ni at the γ-Fe(111/Cr2N(0001 interface magnified VPD between clean γ-Fe(111 and Cr2N(0001, which were low-potential sites that usually serve as local attack initiation points.

  15. Effects of Cr Substitution on Negative Thermal Expansion and Magnetic Properties of Antiperovskite Ga1−xCrxN0.83Mn3 Compounds

    Science.gov (United States)

    Guo, Xinge; Tong, Peng; Lin, Jianchao; Yang, Cheng; Zhang, Kui; Lin, Shuai; Song, Wenhai; Sun, Yuping

    2018-01-01

    Negative thermal expansion (NTE) and magnetic properties were investigated for antiperovskite Ga1−xCrxN0.83Mn3 compounds. As x increases, the temperature span (ΔT) of NTE related with Γ5g antiferromagnetic (AFM) order is expanded and shifted to lower temperatures. At x = 0.1, NTE happens between 256 and 318 K (ΔT = 62 K) with an average linear coefficient of thermal expansion, αL = −46 ppm/K. The ΔT is expanded to 81 K (151–232 K) in x = 0.2 with αL = −22.6 ppm/K. Finally, NTE is no longer visible for x ≥ 0.3. Ferromagnetic order is introduced by Cr doping and continuously strengthened with increasing x, which may impede the AFM ordering and thus account for the broadening of NTE temperature window. Moreover, our specific heat measurement suggests the electronic density of states at the Fermi level is enhanced upon Cr doping, which favors the FM order rather than the AFM one. PMID:29619367

  16. Effects of Aging and W Addition on the Corrosion Resistance and Mechanical Properties of Fe-Cr-Mn-N Stainless Steels

    International Nuclear Information System (INIS)

    Jeon, Yu Taek; Joo, Uk Hyon; Park, Yong Soo; Kim, Young Sik

    2000-01-01

    The characteristics of the mechanical properties and sensitization behaviors in Fe-Cr-Mn stainless steels by W addition and aging treatment were studied. Yield strength, tensile strength, elongation and impact energy decreased, and hardness increased slightly by aging treatment. W-containing alloys showed especially a larger degree of brittle characteristics due to the hard chi(χ) phase formed from the decomposition of ferrite. Carbides precipitated in grain boundary had a bad effect on impact energy rather than on strength and hardness. Ni addition suppressed the formation of ferrite and resulted in some improvement of mechanical properties. Anodic polarization tests showed that the corrosion resistance of aged alloys decreased by the formation of carbides and secondary austenite. It was observed that W addition made no improvement of the pitting potential and passive current density of aged alloys in the HCI solution. But Ni and W decreased critical current density in the sulfuric acid and made easier formation of passive film, contributing to corrosion resistance. From the results of EPR (Electrochemical Potentiokinetic Reactivation). DOS (Degree of Sensitization) increased with aging time and carbides and ferrite were preferentially attacked. It was observed that Ni delayed the sensitization. It can be concluded from the previous results that the selective dissolution of ferrite is due to the ferrite decomposition to chi (χ) phase and secondary austenite. In the secondary austenite. Cr and W which are known to improve the corrosion resistance were depleted. Therefore, it seems that ferrite phase became sensitive to corrosion

  17. Enhancing pitting corrosion resistance of Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} high-entropy alloys by anodic treatment in sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.P.; Chen, Y.Y.; Hsu, C.Y.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Shih, H.C. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Institute of Materials Science and Nanotechnology, Chinese Culture University, Taipei 111, Taiwan (China)], E-mail: hcshih@mx.nthu.edu.tw

    2008-12-01

    High-entropy alloys are a newly developed family of multi-component alloys that comprise various major alloying elements. Each element in the alloy system is present in between 5 and 35 at.%. The crystal structures and physical properties of high-entropy alloys differ completely from those of conventional alloys. The electrochemical impedance spectra (EIS) of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} (x = 0, 0.3, 0.5) alloys, obtained in 0.1 M HCl solution, clearly revealed that the corrosion resistance values were determined to increase from 21 to 34 {omega}cm{sup 2} as the aluminum content increased from 0 to 0.5 mol, and were markedly lower than that of 304 stainless steel (243 {omega}cm{sup 2}). At passive potential, the corresponding current declined with the anodizing time accounting, causing passivity by the growth of the multi-component anodized film in H{sub 2}SO{sub 4} solution. X-ray photoelectron spectroscopy (XPS) analyses revealed that the surface of anodized Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloy formed aluminum and chromium oxide film which was the main passivating compound on the alloy. This anodic treatment increased the corrosion resistance in the EIS measurements of the CrFe{sub 1.5}MnNi{sub 0.5} and Al{sub 0.3}CrFe{sub 1.5}MnNi{sub 0.5} alloys by two orders of magnitude. Accordingly, the anodic treatment of the Al{sub x}CrFe{sub 1.5}MnNi{sub 0.5} alloys optimized their surface structures and minimized their susceptibility to pitting corrosion.

  18. Comparative study of creep behaviour in three Cr Ni 15/15 steel stabilized with Ti and with different contents in W, Mn, Mo and Bor

    International Nuclear Information System (INIS)

    Solano, R.R.; Rivas, M. de las; Schirra, M.; Seith, B.

    1975-01-01

    The main difference between the three steels which are tested at temperature range from 650 0 C to 750 0 C is due to the hardening elements pf the matrix and the Boron content: 1. 12R72HV (X10NiCrMoTiB 1515) 2% Mn 1,5% Mo 80 ppmB 2. Vaccutherm (X12CrNiWTi 1613) 3% W 2,5 ppmB 3. RGT 21 (X12CrNiWTi 1613) 3% W 50 ppm B. The investigations of all casts are carried out in two different heat treatments which are suitable for the conditions required for the operation of the reactor. Cond. I: 1150 0 C 30 min, water quenced; 800 0 32 hour, air; 10% cold work. Cond. II: 1150 0 C 30 min, water quenched; 10% cold work. In connection with creep test the condition I irrespective of 3 steels show no remarkable difference. The observation at 750 0 C test temperature and also at condition II above 650 0 C on Boron-free Vaccutherm cast shows an unfavourable behaviour. There is no significant difference in the stress dependence of secondary creep rate and also absolute creep rate. A definite superiority is to be found for 12R72HV when considering the values for time-yield-limit-ratio and ductility compared to the W-steels. The test results shows different fracture behaviour. Transcrystalline fracture is found on cast 12R72HV, whereas RGT 21 and Vaccutherm show transition from transcrystalline to intercrystalline fracture, depending on the rupture time and test temperature. The long term rupture specimens show intercrystalline fracture. (author)

  19. Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Mayukh K., E-mail: mayukh.ray@saha.ac.in; Bagani, K.; Banerjee, S., E-mail: sangam.banerjee@saha.ac.in

    2014-07-05

    Highlights: • Excess Ni causes an increase in the martensite transition temperature. • The system Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} exhibit multifunctional properties. • The RCP and EB increases continuously with excess Ni concentration in the system. • Antiferromagnetic interaction increases with excess Ni concentration. - Abstract: The martensitic transition, exchange bias (EB) and inverse magnetocaloric effect (IMCE) of bulk Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} (x = 0, 0.06, 0.12, 0.18) Heusler alloy is investigated in this paper. Substitution of Mn by Ni causes an increase in the martensite transition temperature (T{sub M}), decrease in Curie temperature of austenite phase (T{sub C}{sup A}) and also a decrease in the saturation magnetic moment (M{sub sat}). While the decrease in T{sub C}{sup A} and M{sub sat} is explained by the dilution of the magnetic subsystems and on the other hand the increase in T{sub M} is due to the increase of valence electron concentration per atom (e/a). All the alloys shows EB effect below a certain temperature (T{sup ∗}) and EB field (H{sub EB}) value is almost thrice in magnitude for x = 0.18 sample compared to x = 0 sample at 5 K. In these alloys, Ni/Mn atoms at regular site couples antiferromagnetically (AFM) with the excess Ni atoms at Mn or Sn sites and this AFM coupling plays the key role in the observation of EB. For the IMCE, the change in magnetic entropy (ΔS{sub M}) initially increased with excess Ni concentration upto x = 0.12 but then a drastic fall in ΔS{sub M} value is observed for the sample x = 0.18 but the relative cooling power (RCP) value is increased continuously with the excess Ni concentration.

  20. Microstructure and Wear Resistance of TiC Composite Coating in situ Synthesized on 35CrMnSi Steel by Argon Arc Cladding%35CrMnSi 表面氩弧熔覆原位自生 TiC 复合涂层的组织及耐磨性

    Institute of Scientific and Technical Information of China (English)

    丁天; 孟君晟; 乔盛楠; 吕东亮; 宋永平; 李阳

    2014-01-01

    Objective To improve the wear resistance of cutting tooth and to prolong its service life. Methods The TiC enhanced nickel-based composite coating was prepared on the surface of 35CrMnSi steel by argon arc cladding technique. The microstructure of the coating was analyzed by OM, SEM and XRD. Microhardness and wear resistance at room temperature of the composite coat-ing were examined by means of microhardness testing and impact abrasion resistance testing, respectively. Results The compact microstructure was obtained in the composite coating, and good metallurgical bonding could be obtained between the 35CrMnSi steel and cladding coating, with the main phases of TiC, γ-Ni and M23 C6 . The majority of TiC was blocky. The TiC particles was about 1 ~ 2 μm in size and the particles were dispersed in the coatings. The hardness and wear resistance of the coating were related with the (Ti+C) content. The highest hardness of 20% (Ti+C) coating was 1190HV. The relative wear resistance of the composite coating was 7. 5 times higher than that of 35CrMnSi steel. Conclusion The cladding coating reinforced by TiC particle showed ap-parently improved surface hardness as compared to 35CrMnSi steel. The wear mechanism of the composite coating under impact loading at room temperature was micro-cutting wear. The wear resistance of coating was greatly increased by argon arc cladding.%目的:提高截齿的耐磨性,延长其使用寿命。方法利用氩弧熔覆技术在35CrMnSi 钢表面制备 TiC 增强镍基复合涂层,分析涂层的显微组织和物相组成,测试涂层在室温下的显微硬度和耐磨性,并分析磨损机制。结果氩弧熔覆涂层的显微组织致密均匀,涂层与基体呈冶金结合,主要由 TiC,γ-Ni, M23 C6等物相组成。 TiC 颗粒呈块状,尺寸为1~2μm,弥散分布在涂层中。涂层硬度和耐磨性与(Ti+C)含量有关,熔覆粉末中(Ti+C)质量分数为20%时,涂层最高硬度可达1190HV,耐磨性达到基体的7.5倍

  1. Competing exchange interactions and their relevance for the magnetisation process in RMn6-xCrxSn6 powders (R=Y, Gd, Tb, Dy, Ho, Er)

    International Nuclear Information System (INIS)

    Brabers, J.H.V.J.; Zhou, G.F.; Colpa, J.H.P.; Buschow, K.H.J.; De Boer, F.R.

    1994-01-01

    The free-powder magnetisation of RMn 6-x Cr x Sn 6 compounds has been measured for compounds with R=Y, Gd, Tb, Dy, Ho, Er in fields up to 38 T, and interpreted in terms of a simple model, which is also outlined in this paper. From the measurements, estimates for the R-3d mean-field coupling constant (n RT ) could be derived for the cases where R=Gd, Tb, Dy, Ho, Er. In turn, the n RT values can be related to the microscopic spin-coupling constant (J RT ). In the case of YMn 6 Sn 6 the high-field measurement presents evidence for a very weak antiferromagnetic coupling between the Mn layers. Furthermore, values for the Mn moments (μ Mn ) were also derived from the magnetisation measurements. The estimated μ Mn values are of the order of 2.0 μ B . ((orig.))

  2. Apatite/Melt Partitioning Experiments Reveal Redox Sensitivity to Cr, V, Mn, Ni, Eu, W, Th, and U

    Science.gov (United States)

    Righter, K.; Yang, S.; Humayun, M.

    2016-01-01

    Apatite is a common mineral in terrestrial, planetary, and asteroidal materials. It is commonly used for geochronology (U-Pb), sensing volatiles (H, F, Cl, S), and can concentrate rare earth elements (REE) during magmatic fractionation and in general. Some recent studies have shown that some kinds of phosphate may fractionate Hf and W and that Mn may be redox sensitive. Experimental studies have focused on REE and other lithophile elements and at simplified or not specified oxygen fugacities. There is a dearth of partitioning data for chalcophile, siderophile and other elements between apatite and melt. Here we carry out several experiments at variable fO2 to study the partitioning of a broad range of trace elements. We compare to existing data and then focus on several elements that exhibit redox dependent partitioning behavior.

  3. Enhanced temperature stability and quality factor with Hf substitution for Sn and MnO2 doping of (Ba0.97Ca0.03(Ti0.96Sn0.04O3 lead-free piezoelectric ceramics with high Curie temperature

    Directory of Open Access Journals (Sweden)

    Cheng-Che Tsai

    2016-12-01

    Full Text Available In this work, the process of two-stage modifications for (Ba0.97Ca0.03(Ti0.96Sn0.04-xHfxO3 (BCTS4-100xH100x ceramics was studied. The trade-off composition was obtained by Hf substitution for Sn and MnO2 doping (two-stage modification which improves the temperature stability and piezoelectric properties. The phase structure ratio, microstructure, and dielectric, piezoelectric, ferroelectric, and temperature stability properties were systematically investigated. Results showed that BCTS4-100xH100x piezoelectric ceramics with x=0.035 had a relatively high Curie temperature (TC of about 112 °C, a piezoelectric charge constant (d33 of 313 pC/N, an electromechanical coupling factor (kp of 0.49, a mechanical quality factor (Qm of 122, and a remnant polarization (Pr of 19μC/cm2. In addition, the temperature stability of the resonant frequency (fr, kp, and aging d33 could be tuned via Hf content. Good piezoelectric temperature stability (up to 110 °C was found with x =0.035. BCTS0.5H3.5 + a mol% Mn (BCTSH + a Mn piezoelectric ceramics with a = 2 had a high TC of about 123 °C, kp ∼ 0.39, d33 ∼ 230 pC/N, Qm ∼ 341, and high temperature stability due to the produced oxygen vacancies. This mechanism can be depicted using the complex impedance analysis associated with a valence compensation model on electric properties. Two-stage modification for lead-free (Ba0.97Ca0.03(Ti0.96Sn0.04O3 ceramics suitably adjusts the compositions for applications in piezoelectric motors and actuators.

  4. Tuning magneto-structural properties of Ni{sub 44}Co{sub 6}Mn{sub 39}Sn{sub 11} Heusler alloy ribbons by Fe-doping

    Energy Technology Data Exchange (ETDEWEB)

    Wójcik, Anna, E-mail: a.wojcik@imim.pl [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Maziarz, Wojciech; Szczerba, Maciej J. [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Sikora, Marcin [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków (Poland); Dutkiewicz, Jan [Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Kraków (Poland); Cesari, Eduard [Departament de Física, Universitat de les Illes Balears, Ctra. De Valldemossa, km 7.5, E-07122 Palma de Mallorca (Spain)

    2016-07-15

    Graphical abstract: - Highlights: • Fe substitution for Ni in Ni{sub 44}Co{sub 6}Mn{sub 39}Sn{sub 11} causes a drastic decrease of M{sub T} temperature. • The type of structure changes with increasing of iron (12M → 10M + L2{sub 1} → L2{sub 1}). • Content of Fe above 1 at.% has a negative influence on magneto-structural properties. - Abstract: Microstructure, martensitic transformation behavior and magnetic properties of Ni{sub 44−x}Fe{sub x}Co{sub 6}Mn{sub 39}Sn{sub 11} (x = 0, 1, 2 at.%) melt spun ribbons have been investigated. The influence of iron addition has been thoroughly studied by means of electron microscopy, X-ray diffraction and vibrating sample magnetometry. The results show that addition of 1 at.% of iron into quaternary Ni–Co–Mn–Sn Heusler alloy drastically decreases the martensitic transformation temperature by more than 100 K. Higher concentration of iron leads to complete suppression of martensitic transition. The structure of samples change from fully martensite (12 M) through mixed austenite-martensite (L2{sub 1} + 10 M) to fully austenite (L2{sub 1}) with increase of iron content. Addition of 1 at.% of iron leads to enhance magnetization of both austenitic and martensitic phases and also a small increase of Curie temperature occurs. The largest change of magnetic entropy under 15 kOe measured 2.9 and 0.65 J kg{sup −1} K{sup −1} for alloys where x = 0 and 1, respectively.

  5. Effect of Cr substitution on magnetic and magnetic entropy change of La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} (0.05≤x≤0.15) rhombohedral nanocrystalline near room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bellouz, R., E-mail: bellouzridha@yahoo.fr [Laboratoire de Physico-chimie des Matériaux, Département de Physique, Faculté des Sciences de Monastir,Université de Monastir, 5019 (Tunisia); Oumezzine, M. [Laboratoire de Physico-chimie des Matériaux, Département de Physique, Faculté des Sciences de Monastir,Université de Monastir, 5019 (Tunisia); Hlil, E.K. [Institut Néel, National Centre for Scientific Research, Université Joseph Fourier, B.P. 166, 38042 Grenoble (France); Dhahri, E. [Laboratoire de Physique appliqué, Département de physique, Faculté des Sciences de Sfax, 3018 (Tunisia)

    2015-02-01

    We have studied the effect of Cr substitution on magnetic and magnetocaloric properties in nanocrystalline La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} (x=0.05, 0.1 and 0.15). The materials were prepared using the Pechini sol–gel method. All the studied samples were crystallized into a single phase rhombohedral structure with R−3C space group. Magnetic measurements indicate that the ferromagnetic double exchange interaction is weakened with increasing Cr concentration, resulting in a shift in T{sub C} from 338 K to 278 K as x varied between 0.05 and 0.15. Detailed analyzes in the vicinity of the ferromagnetic (FM)–paramagnetic (PM) phase-transition temperature prove the samples undergoing a second-order phase transition. The magnetocaloric effect is calculated from the measurement of initial isothermal magnetization versus magnetic field at various temperatures. The maximum magnetic entropy change |ΔS{sub M}{sup max}| is found to decrease with increasing of Cr content from 4.04 J/Kg K for x=0.05–0.78 J/KgK for x=0.15 upon 5 T applied field change. The relative cooling power (RCP) of La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} series is nearly 54% of pure Gd, which will be an interesting system for application in room temperature refrigeration. - Highlights: • Nanocrystalline materials La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} were obtained. • The Cr substitution decreases the T{sub C} from 338 K for x=0.05–278 K for x=0.15. • The relative cooling power of La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} is nearly 54% of pure Gd. • Arrott plot analyses was applied to study the order of the magnetic transition. • La{sub 0.65}Eu{sub 0.05}Sr{sub 0.3}Mn{sub 1−x}Cr{sub x}O{sub 3} samples show second order PM–FM transition at T=T{sub C}.

  6. Magnetic and Moessbauer study of Mg{sub 0.9}Mn{sub 0.1}Cr{sub x}Fe{sub 2-x}O{sub 4} ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Elzain, M., E-mail: elzain@squ.edu.om; Widatallah, H.; Gismelseed, A.; Bouziane, K.; Yousif, A.; Al Rawas, A.; Al-Omari, I.; Sellai, A. [Sultan Qaboos University, Department of Physics, College of Science (Oman)

    2006-02-15

    The ferrites Mg{sub 0.9}Mn{sub 0.1}Cr{sub x}Fe{sub 2-x}O{sub 4} (0x0.9) were prepared using the conventional double sintering method. The XRD showed that the samples maintain a single spinel cubic phase. The Moessbauer measurements were carried out at room and liquid nitrogen temperatures. From the area ratios of the A and B sites, it was found that the Fe cation population of the A and B sites decreases in proportion to Cr concentration. The contact hyperfine fields at the A and B sites were found to decrease with increasing Cr contents. This was found to be in approximate agreement with the results of magnetization measurement. The distributions of Mg and Mn cations versus Cr concentration were also determined using the Moessbauer and magnetization results. The Curie temperatures were determined and found to agree with the reported values. As the Cr contents increases the relative magnetization, was found to increase at low temperatures and decreases at higher temperatures.

  7. Phase Transition Behavior of LiCr0.35Mn0.65O2 under High Pressure by Electrical Conductivity Measurement

    International Nuclear Information System (INIS)

    Xiao-Yan, Cui; Ting-Jing, Hu; Yong-Hao, Han; Chun-Xiao, Gao; Gang, Peng; Cai-Long, Liu; Bao-Jia, Wu; Yue, Wang; Bao, Liu; Wan-Bin, Ren; Yan, Li; Ning-Ning, Su; Guang-Tian, Zou; Fei, Du; Gang, Chen

    2010-01-01

    The electrical conductivity of powdered LiCr 0.35 Mn 0.65 O 2 is measured under high pressure up to 26.22 GPa in the temperature range 300–413 K by using a diamond anvil cell. It is found that both conductivity and activation enthalpy change discontinuously at 5.36 GPa and 21.66 GPa. In the pressure range 1.10–5.36 GPa, pressure increases the activation enthalpy and reduces the carrier scattering, which finally leads to the conductivity increase. In the pressure ranges 6.32–21.66 GPa and 22.60–26.22 GPa, the activation enthalpy decreases with pressure increasing, which has a positive contribution to electrical conductivity increase. Two pressure-induced structural phase transitions are found by in-situ x-ray diffraction under high pressure, which results in the discontinuous changes of conductivity and activation enthalpy. (condensed matter: structure, mechanical and thermal properties)

  8. Effect of bainitic transformation during BQ&P process on the mechanical properties in an ultrahigh strength Mn-Si-Cr-C steel

    Energy Technology Data Exchange (ETDEWEB)

    Gui, Xiaolu [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044, People’ Republic of China (China); Gao, Guhui, E-mail: gaogh@bjtu.edu.cn [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044, People’ Republic of China (China); Guo, Haoran; Zhao, Feifan; Tan, Zhunli [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044, People’ Republic of China (China); Bai, Bingzhe [Beijing Jiaotong University, School of Mechanical, Electronic and Control Engineering, Material Science & Engineering Research Center, Beijing 100044, People’ Republic of China (China); Tsinghua University, Key Laboratory of Advanced Material, School of Material Science & Engineering, Beijing 100084, People’ Republic of China (China)

    2017-01-27

    A medium carbon Mn-Si-Cr alloyed steel was treated by a novel bainite-based quenching and partitioning (BQ&P) process: after full austenization, the steel was firstly austempered at 300 °C, 320 °C, 340 °C, 360 °C and 380 °C for 30 min, and then quenched to 120 °C, followed by partitioning at 360 °C for 45 min. The multiphase microstructures containing carbide-free bainite (CFB, bainitic ferrite lath plus filmy retained austenite), martensite and retained austenite were characterized by optical microscope, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and dilatometer analysis. An optimum combination of strength and ductility was achieved in the BQ&P steel when the bainitic austempering temperature is 360 °C (ultimate tensile strength: 1495 MPa; uniform elongation and total elongation: 26.2% and 31.8%; the reduction of area: 47.9%). Besides the transformation-induced plasticity effect of the retained austenite and the composite effect of the multiphase after BQ&P treatment, the formation of carbide free bainite also plays a significant role on the enhanced mechanical properties. The carbide-free bainite could improve the damage resistance of the multiphase due to the additional strain-hardening capacity within the local plasticity deformation zone near the tip of micro-cracks. In this case, the fraction and distribution of CFB should be controlled properly and the macrosegregation should be avoided.

  9. Prediction and analysis of the structure of hydrated Mn2+, V2+, Ti3 and Cr3 ions by means of the MD simulation methods

    International Nuclear Information System (INIS)

    Iglesias, Y.J.

    2002-01-01

    Classical Molecular dynamics (MD) and hybrid Quantum/Molecular Mechanics-Molecular Dynamics (QM/MM-MD) simulations have been performed to investigate structural properties of Mn(II), V(II), Cr(III) and Ti(III) cations in aqueous solution. The first hydration sphere in QM/MM-MD simulations is treated quantum mechanically, while the rest of the system is described by classical analytical two- and three-body potentials. The results obtained for the first hydration shell from this method are in agreement with experimental data, showing 100 % of 6 fold coordination around the ion in all cases. The results prove that non/additive contributions are mandatory for an accurate description of ion hydration. Within the QM/MM method, the inclusion of a perturbation field describing the remaining system was shown to be an accurate tool for evaluating the first shell structure, and thus to be a good alternative for systems, where the construction of a three-body correction function is difficult or too time-consuming. (author)

  10. An Experimental Investigation into the Optimal Processing Conditions for the CO2 Laser Cladding of 20 MnCr5 Steel Using Taguchi Method and ANN

    Science.gov (United States)

    Mondal, Subrata; Bandyopadhyay, Asish.; Pal, Pradip Kumar

    2010-10-01

    This paper presents the prediction and evaluation of laser clad profile formed by means of CO2 laser applying Taguchi method and the artificial neural network (ANN). Laser cladding is one of the surface modifying technologies in which the desired surface characteristics of any component can be achieved such as good corrosion resistance, wear resistance and hardness etc. Laser is used as a heat source to melt the anti-corrosive powder of Inconel-625 (Super Alloy) to give a coating on 20 MnCr5 substrate. The parametric study of this technique is also attempted here. The data obtained from experiments have been used to develop the linear regression equation and then to develop the neural network model. Moreover, the data obtained from regression equations have also been used as supporting data to train the neural network. The artificial neural network (ANN) is used to establish the relationship between the input/output parameters of the process. The established ANN model is then indirectly integrated with the optimization technique. It has been seen that the developed neural network model shows a good degree of approximation with experimental data. In order to obtain the combination of process parameters such as laser power, scan speed and powder feed rate for which the output parameters become optimum, the experimental data have been used to develop the response surfaces.

  11. Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Maier-Kiener, Verena [Montanuniversitat Leoben, Leoben (Austria); Schuh, Benjamin [Austrian Academy of Sciences, Leoben (Austria); George, Easo P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Clemens, Helmut [Montanuniversitat Leoben, Leoben (Austria); Hohenwarter, Anton [Austrian Academy of Sciences, Leoben (Austria)

    2017-07-27

    A CrMnFeCoNi high-entropy alloy was investigated by nanoindentation from room temperature to 400 °C in the nanocrystalline state and cast plus homogenized coarse-grained state. In the latter case a < 100 >-orientated grain was selected by electron back scatter diffraction for nanoindentation. It was found that hardness decreases more strongly with increasing temperature than Young’s modulus, especially for the coarse-grained state. The modulus of the nanocrystalline state was slightly higher than that of the coarse-grained one. For the coarse-grained sample a strong thermally activated deformation behavior was found up to 100–150 °C, followed by a diminishing thermally activated contribution at higher testing temperatures. For the nanocrystalline state, different temperature dependent deformation mechanisms are proposed. At low temperatures, the governing processes appear to be similar to those in the coarse-grained sample, but with increasing temperature, dislocation-grain boundary interactions likely become more dominant. Finally, at 400 °C, decomposition of the nanocrystalline alloy causes a further reduction in thermal activation. Furthermore, this is rationalized by a reduction of the deformation controlling internal length scale by precipitate formation in conjunction with a diffusional contribution.

  12. Binary and tertiary reaction cross-sections of V, Cr, Mn, Fe, Ni, Cu, Zr, Nb, Mo, Ta, W, Pt and their isotopes

    International Nuclear Information System (INIS)

    Garg, S.B.

    1982-01-01

    Neutron induced binary and tertiary reaction cross-sections have been evaluated for V, Cr, Mn, Fe, Ni, Cu, Zr, Nb, Mo, Ta, W, Pt and their isotopes in the 'energy range 0.5 MeV to 20 MeV using the nuclear statistical empirical model. The reactions considered are (n,n'), (n,2n), (n,3n), (n,p), (n,d), (n,t), (n, 3 He), (n,α), (n,np), (n,nd), (n,nt), (n,n 3 He), (n,nα), (n,pn), (n,2p), (n,ν), (n,αp), (n,dn) and (n,pα). Most of the above mentioned elements are used as structural materials in nuclear reactors and the measured cross-section data for the above listed reactions are seldom available for the radiation damage and safety analysis. With a view to providing these data, this nuclear model based evaluation has been undertaken. The associated uncertainties in the cross-sections and their fission averages have also been evaluated. (author)

  13. Succulent species differ substantially in their tolerance and phytoextraction potential when grown in the presence of Cd, Cr, Cu, Mn, Ni, Pb, and Zn.

    Science.gov (United States)

    Zhang, Chengjun; Sale, Peter W G; Clark, Gary J; Liu, Wuxing; Doronila, Augustine I; Kolev, Spas D; Tang, Caixian

    2015-12-01

    Plants for the phytoextraction of heavy metals should have the ability to accumulate high concentrations of such metals and exhibit multiple tolerance traits to cope with adverse conditions such as coexistence of multiple heavy metals, high salinity, and drought which are the characteristics of many contaminated soils. This study compared 14 succulent species for their phytoextraction potential of Cd, Cr, Cu, Mn, Ni, Pb, and Zn. There were species variations in metal tolerance and accumulation. Among the 14 succulent species, an Australian native halophyte Carpobrotus rossii exhibited the highest relative growth rate (20.6-26.6 mg plant(-1) day(-1)) and highest tolerance index (78-93%), whilst Sedum "Autumn Joy" had the lowest relative growth rate (8.3-13.6 mg plant(-1) day(-1)), and Crassula multicava showed the lowest tolerance indices (phytoextraction of these heavy metals than other species. These findings suggest that Carpobrotus rossii is a promising candidate for phytoextraction of multiple heavy metals, and the aquatic or semiterrestrial Crassula helmsii is suitable for phytoextraction of Cd and Zn from polluted waters or wetlands.

  14. Preparation, structural, optical, electrical, and magnetic characterisation of orthorhombic GdCr{sub 0.3}Mn{sub 0.7}O{sub 3} multiferroic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Deepa; Bamzai, K.K. [Jammu Univ. (India). Crystal Growth and Materials Research Laboratory

    2017-04-01

    In this article, chromium-doped gadolinium manganate (GdCr{sub 0.3}Mn{sub 0.7}O{sub 3}) nanoparticles has been prepared by wet-chemical route in order to investigate their structural, optical, electrical, and room temperature magnetic properties. Microstructural and compositional analyses have been carried out by X-ray diffraction and scanning electron microscopy (SEM). Synthesised material is found to be in orthorhombic crystal structure with Pbnm space group. The spherical morphology of the nanoparticles has been examined from the SEM images. Functional groups have been identified using Fourier transform infrared spectroscopy. Dielectric constant, dielectric loss, AC conductivity (σ{sub ac}), and activation energy in the range of 1 kHz-1 MHz from room temperature to high temperature (400 C) have been investigated. The frequency dependence of AC conductivity obeys the universal power law. The value of activation energy depends on increase in frequency. Room temperature magnetic behaviour suggests the material to be paramagnetic in nature.

  15. The causes of relaxation- and hot cracking in the heat-affected zone of 22 NiMoCr 37 and 20 MnMoNi 55

    International Nuclear Information System (INIS)

    Schellhammer, W.

    1977-01-01

    Non-destructive and metallographic investigations with a view to relaxation cracking and hot cracking were carried out in 53 component-specific welds with wall thicknesses of 40 to 360 mm and 21 experimental welds with wall thicknesses of 140 to 275 mm of high-temperature, fine-grained structural steel 22 NiMoCr 37 as well as in 27 component-specific welds of high-strength, fine-grained structural steel 20 MnMoNi 55. Non-destructive tests and conventional metallographic analyses by means of transverse structure micrography were unable to give a sufficiently accurate picture of the two types of cracks in the micro- and millimeter range, a 'volumetric' method was employed (tangential structure micrography with stepwise abrasion) which permitted semi-automatic and fast evaluation. The experimental results showed the selective influence of several elements and led to the development of a method to evaluate the cumulative effect of the chemical elements on relaxation cracking and hot cracking by addition of the selective influence. The method gives quantitative data on material optimisation with regard to the reduction of brittle and crack-prone states and confirms the findings of welding simulation tests. (orig./IHOE) 891 IHOE/orig.- 892 HIS [de

  16. First-principles calculations of electronic, magnetic and optical properties of HoN doped with TM (Ti, V, Cr, Mn, Co and Ni)

    Science.gov (United States)

    Rouchdi, M.; Salmani, E.; Dehmani, M.; Ez-Zahraouy, H.; Hassanain, N.; Benyoussef, A.; Mzerd, A.

    2018-02-01

    Using the first-principles calculations within the Korringa-Kohn-Rostoker (KKR) method combined with the coherent potential approximation (CPA), the structural, optical and magnetic properties of rare-earth nitride Ho0.95TM0.05N doped with transition metal (TM) atoms (Ti, V, Cr, Mn, Co and Ni) are investigated as a function the generalized gradient approximation and self-interaction correction (GGA-SIC) approximation. The optical properties are studied in detail by using ab-initio calculations. Using GGA-SIC we have showed that the bandgap value is in good agreement with the experimental value. Using GGA-SIC approximation for HoN, we have obtained a bandgap of 0.9 eV. Some of the dilute magnetic semiconductors (DMS) like Ho0.95TM0.05N under study exhibit a half-metallic behavior, which makes them suitable for spintronic applications. Moreover, the optical absorption spectra confirm the ferromagnetic stability based on the charge state of magnetic impurities.

  17. Microscopic residual stress evolution during deformation process of an Fe---Mn---Si---Cr shape memory alloy investigated using white X-ray microbeam diffraction

    International Nuclear Information System (INIS)

    Kwon, E.P.; Sato, S.; Fujieda, S.; Shinoda, K.; Kajiwara, K.; Sato, M.; Suzuki, S.

    2013-01-01

    Microscopic residual stress evolution in different austenite (γ) grains during shape memory process in an Fe---Mn---Si---Cr alloy was investigated using the white X-ray microbeam diffraction technique. The use of high-energy white X-ray microbeam with small beam size allowed us to measure the microscopic residual stress in coarse γ grains with specific orientation. After tensile deformation large compressive residual stress was evolved in γ grains due to the formation of stress-induced ε martensite, but upon recovery heating it almost disappeared as a result of reverse transformation of martensite. The magnitude of compressive residual stress was higher in grains with orientations close to 〈144〉 and 〈233〉 orientations than in a grain with near 〈001〉 orientation. Analysis of the microstructure of each grain using electron backscattering diffraction suggested that the difference in the magnitude of compressive residual stress could be attributed to different martensitic transformation characteristics in the grains

  18. Vibrational localized motions of hydrogen in the storage compound Ti0.8 Zr0.2 CrMnH3 studied by slow neutron inelastic scattering

    International Nuclear Information System (INIS)

    Mestnik Filho, J.; Vinhas, L.A.

    1988-08-01

    The vibrational localized motions of hydrogen in the storage compound Ti 0.8 Zr 0.2 CrMnH 3 have been studied by slow neutron scattering, utilizing a berilium-filter-time-of-flight spectrometer. An energy distribution, consisting of therre peaks 50 MeV wide (FWHM), corresponding to the energy transfer of 85, 115 and 141 MeV has been observed and was attributed to hydrogen localized vibrations in three types of interstices which differs in composition of Ti and Zr atoms. From the analysis of the observed peaks intensities, it was concluded that the lowest measured hydrogen vibrational frequency is correlated with interstices that are rich in zirconium atoms whereas the highest frequency is due o interstices rich in titanium atoms. Therefore the larger radius of the the Zr atoms leads to the formation of interstices with larger intersticial hole sizes, which, in turn, makes possible the absorption of hydrogen in this compound, in contrast to an isostructural compound which contains only atoms with smaller radii, like Ti, in place of the atomic group Ti 0.8 Zr 0.2 . (author) [pt

  19. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Science.gov (United States)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  20. Hydrogen diffusion in the storage compound Ti sub(0.8) Zr sub(0.2)CrMnH3 studied by neutron scattering

    International Nuclear Information System (INIS)

    Pugliesi, R.

    1983-01-01

    The hydrogen diffusion in the storage material Ti sub(0.8) Zr sub(0.2)CrMnH 3 has been studied in the temperature range of 260 to 360K, by means of the quasi-elastic neutron scattering technique. The experimental measurements have been performed using a high resolution backscattering spectrometer. The half widths at half maximum of the quasi-elastic line have been determined for momentum transfers in the range 0.24 to 1.85 A -1 . The data, corrected for multiple scattering effect, have been analysed in term of simple diffusion and jump diffusion models. From the diffusion coefficients determined at different temperatures, the following Arrhenius equation was obtained: D= (3+-1) x 10 -8 m 2 /s exp [-(220+-20 meV/kT] yielding a diffusion coefficient at room temperature of 6.0 x 10 -12 m 2 /s. This comparatively fast hydrogen diffusion is not the rate determining step in the absorption and desorption kinetics. The results at large momentum transfers show evidence for the existence of more than one component in the quasi-elastic spectra. This fact has been explained considering the diffusion governed by the existence of energetically different interstitial sites and by blocking effects due to the high hydrogen concentration. (Author) [pt

  1. Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, Fatma, E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria); Département de Physique, Faculté des Sciences, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria)

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe–Al–X systems, in order to improve mainly Fe–Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems. - Highlights: • A review of state of the art on binary Fe–Al alloys was presented. • Structural and microstructural properties of MA ternary Fe–Al–X alloys were summerized. • MA process is a powerful tool for producing metallic alloys at the nanometer scale.

  2. Influence of annealing temperature on the electrochemical and surface properties of the 5-V spinel cathode material LiCr0.2Ni0.4Mn1.4O4 synthesized by a sol–gel technique

    DEFF Research Database (Denmark)

    Younesi, Reza; Malmgren, Sara; Edström, Kristina

    2014-01-01

    LiCr0.2Ni0.4Mn1.4O4 was synthesized by a sol–gel technique in which tartaric acid was used as oxide precursor. The synthesized powder was annealed at five different temperatures from 600 to 1,000 °C and tested as a 5-V cathode material in Li-ion batteries. The study shows that annealing at higher...

  3. Photoionization study of Ne-like K9+, Ca10+, Sc11+, Ti12+, V13+, Cr14+, Mn15+, and Fe16+ ions using the screening constant by unit nuclear charge method

    International Nuclear Information System (INIS)

    Goyal, Arun; Khatri, Indu; Sow, Malick; Sakho, Ibrahima; Aggarwal, Sunny; Singh, A.K.; Mohan, Man

    2016-01-01

    Photoionization of the 2s 2 2p 6 ( 1 S 0 ) ground state of the Ne-like (Z=19–29) ions is presented in this paper. Resonance energies and total natural width of the 2s2p 6 np 1 P series of the Ne-like K 9+ , Ca 10+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , Mn 15+ , and Fe 16+ are reported. All the calculations are made using the Screening constant by unit nuclear charge (SCUNC) formalism. New data for Ne-like K 9+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , and Mn 15+ ions are tabulated. Good agreements are found with available literature data. - Highlights: • Photoionization of ground state of the Ne-like (Z=19–29) presented. • good agreements with scarce literature data. • New data for Ne-like K 9+ , Sc 11+ , Ti 12+ , V 13+ , Cr 14+ , and Mn 15+ ions. • Useful guidelines for application in laboratory, astrophysics, and plasma physics.

  4. Theoretical investigation of electronic, magnetic and optical properties of ZnSe doped TM and co-doped with MnTM (TM: Fe, Cr, Co): AB-initio study

    Energy Technology Data Exchange (ETDEWEB)

    Behloul, M. [LMPHE (URAC 12), Departement of Physique, B.P. 1014, Faculty of Science, University Mohammed V, Rabat (Morocco); Salmani, E., E-mail: elmehdisalmani@gmail.com [LMPHE (URAC 12), Departement of Physique, B.P. 1014, Faculty of Science, University Mohammed V, Rabat (Morocco); Ez-Zahraouy, H. [LMPHE (URAC 12), Departement of Physique, B.P. 1014, Faculty of Science, University Mohammed V, Rabat (Morocco); Benyoussef, A. [LMPHE (URAC 12), Departement of Physique, B.P. 1014, Faculty of Science, University Mohammed V, Rabat (Morocco); The Institute for Nanomaterials and Nanotechnology, MAScIR (Moroccan Fondation for Advanced Science, Innovation and Research), Rabat (Morocco)

    2016-12-01

    Based upon the first principal spin density functional calculation, the electronic, magnetic and optical properties of ZnTMSe and ZnMnTMSe where TM=Fe, Cr, Co are studied using the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) method within the local density (LDA)and the self-interaction-corrected(SIC) approximation. The purpose of this study is to determine the effect of different type of dopant and concentration on ferromagnetic and half metallic behavior of ZnSe. Therefore the magnetic disorder local moment (DLM) and the ferromagnetic state are investigated for different concentrations of Mn, Fe, Cr and Co; also the advantages of co-doped ZnSe with TM elements, behavior at room temperature are discussed. The electronic structure and optical properties are studied employing the local density (LDA) and the self-interaction-corrected (SIC) approximation. Moreover, the X-ray spectra modeling are in good agreement with the electronic and magnetic properties results. - Highlights: • The magnetic properties of ZnSe codoped with MnY(Y: Fe, Cr, Co) has been investigated. • The half-metallic appears in ZnSe codoped with impurities at low concentration. • The advantages of codoped ZnSe with impurities at room temperature are discussed.

  5. Competition of the Peierls relief and structural defects in damping the domain walls in [Mn left brace (R/S)-pn right brace]2[Mn left brace(R/S)-pn right brace2(H2O)][Cr(CN)6]2 ferrimagnet

    International Nuclear Information System (INIS)

    Talantsev, A.D.; Kollak, O.V.; Kirman, M.V.; Morgunov, R.B.

    2015-01-01

    The [ [Mn left brace (R/S)-pn right brace] 2 [Mn left brace(R/S)-pn right brace 2 (H 2 O)][Cr(CN) 6 ] 2 molecular ferrimagnet exhibits an inverse sequence of changes in the domain wall motion regimes with increasing temperature in alternative magnetic field of 0.04-1400 Hz frequency. Initiation of the relaxation regime on the background of creep indicates that there are two different systems of the domain walls damping. The threshold amplitude of the alternative magnetic field corresponds to the Peierls relief contribution to the domain wall dynamics as well as the defect contribution usually considered.

  6. Emerging Trends in Applied Mathematics: Dedicated to the Memory of Sir Asutosh Mookerjee and Contributions of S.N. Bose, M.N. Saha and N.R. Sen

    CERN Document Server

    Basu, Uma; De, Soumen

    2015-01-01

    The book is based on research presentations at the international conference, “Emerging Trends in Applied Mathematics: In the Memory of Sir Asutosh Mookerjee, S.N. Bose, M.N. Saha, and N.R. Sen”, held at the Department of Applied Mathematics, University of Calcutta, during 12–14 February 2014. It focuses on various emerging and challenging topics in the field of applied mathematics and theoretical physics. The book will be a valuable resource for postgraduate students at higher levels and researchers in applied mathematics and theoretical physics. Researchers presented a wide variety of themes in applied mathematics and theoretical physics—such as emergent periodicity in a field of chaos; Ricci flow equation and Poincare conjecture; Bose–Einstein condensation; geometry of local scale invariance and turbulence; statistical mechanics of human resource allocation: mathematical modelling of job-matching in labour markets; contact problem in elasticity; the Saha equation; computational fluid dynamics with...

  7. Symmetry breaking and electrical conductivity of La0.7Sr0.3Cr0.4Mn0.6O3-δ perovskite as SOFC anode material

    International Nuclear Information System (INIS)

    Reyes-Rojas, A.; Alvarado-Flores, J.; Esparza-Ponce, H.; Esneider-Alcala, M.; Espitia-Cabrera, I.; Torres-Moye, E.

    2011-01-01

    Research highlights: → Perovskite-type La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ -NiO nucleation kinetics. Symmetry-breaking by introducing Ni 2+ cations at 1050 deg. C. Phase transition from high temperature aristotype R3-bar c to hettotype I4/mmm. At low Ni concentration ρ resistivity decreases when increasing the temperature. For Ni concentration higher than 25% ρ resistivity increases. - Abstract: This work is focused on nanocrystalline solid oxide fuel cell synthesis and characterization (SOFC) anodes of La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ (perovskite-type) with Nickel. Perovskite-type oxide chemical reactivity, nucleation kinetics and phase composition related with La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ -NiO to La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 O 3-δ -Ni transformation have been analyzed. SOFC anode powders were obtained by sol-gel synthesis, using polyvinyl alcohol as an organic precursor to get a porous cermet electrode after sintering at 1365 deg. C and oxide reduction by hydrogen at 800 deg. C/1050 deg. C for 8 h in a horizontal tubular reactor furnace under 10% H 2 /N 2 atmosphere. Composite powders were compressed into 10-mm diameter discs with 25-75 wt% Ni. Electrical and structural characterization by four-point probe method for conductivity, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and Rietveld method were carried out. Symmetry-breaking by phase transition from high temperature aristotype R3-bar c to hettotype I4/mmm has been identified and confirmed by XRD and Rietveld method which can be produced by introducing Ni 2+ cations in the perovskite solid solution. Rietveld analysis suggests that Ni contents are directly proportional to La 0.7 Sr 0.3 Cr 0.4 Mn 0.6 NiO 3.95 tetragonal structure cell volume and inversely proportional to Ni cubic structure cell volume after reduction at 1050 deg. C. Kinetic analysis indicated that the Johnson-Mehl-Avrami equation is able to provide a good fit to phase

  8. Qualitative aspects of biomonitoring: Sphagnum auriculatum response vs. aerosol metal concentrations (Pb, Ca, Cr, Cu, Fe, Mn, Ni and Zn) in the Porto urban atmosphere

    International Nuclear Information System (INIS)

    Teresa, M.; Vasconcelos, S.D.; Tavares Laquipai, H.M.F.

    2000-01-01

    Bags of S. auriculatum and a low-volume aerosol sampler provided with 0.8 μm pore size filters were exposed, in parallel, to the atmosphere of Porto, at different sampling points and in different periods of time, between 1991 and 1997. The levels of lead in the moss (weekly samples) and in the filters (daily samples) were determined by atomic absorption spectrophotometry and the results were compared. Living S. auriculatum exposed in bags to the Porto atmosphere died in several weeks (about a month), but continued to sorb metals from the atmosphere for about another month. In dry weather periods (relative humidity ≤ 76%) the rate of lead uptake by moss was approximately constant and proportional to the levels of the metal in atmospheric aerosols. A converting factor [CF=parallel-Pb-parallel moss (μg/g.day)/ parallel-Pb-parallel air (μg/m 3 )] allowed conversion of the lead levels in S. auriculatum to those in the atmospheric aerosols. Because the moss fixed lead from gas, aerosol and particulate matter, the rate of sorption depends markedly on the distance to the lead sources (mainly traffic) and on surrounding obstacles which retain particles. Therefore, specific calibration by mechanic monitoring, at each sampling point is required in a first stage of biomonitoring, when moss bag samplers are used to provide quantitative information about lead levels in the atmosphere. The mean Pb levels were ≤ 0.5 μg/m 3 and approximately constants at each sample point up to January 1996. After that date it decreased about 50%, in consequence of the reduction of the Pb concentration in leaded gasoline. In wet weather periods, higher but irregular rate of lead uptake was observed. In contrast, the lead levels in atmospheric aerosols decreased when the humidity increased due to wet deposition. Therefore, no proportionality between lead levels in the moss and in air were found. For about two months, in 1994, during a dry weather period, the levels of Ca, Cr, Cu, Fe, Mn, Ni

  9. Effects of the thermal and magnetic paths on first order martensite transition of disordered Ni45Mn44Sn9In2 Heusler alloy exhibiting a giant magnetocaloric effect and magnetoresistance near room temperature

    Science.gov (United States)

    Chabri, T.; Ghosh, A.; Nair, Sunil; Awasthi, A. M.; Venimadhav, A.; Nath, T. K.

    2018-05-01

    The existence of a first order martensite transition in off-stoichiometric Ni45Mn44Sn9In2 ferromagnetic shape memory Heusler alloy has been clearly observed by thermal, magnetic, and magneto-transport measurements. Field and thermal path dependence of the change in large magnetic entropy and negative magnetoresistance are observed, which originate due to the sharp change in magnetization driven by metamagnetic transition from the weakly magnetic martensite phase to the ferromagnetic austenite phase in the vicinity of the martensite transition. The noticeable shift in the martensite transition with the application of a magnetic field is the most significant feature of the present study. This shift is due to the interplay of the austenite and martensite phase fraction in the alloy. The different aspects of the first order martensite transition, e.g. broadening of the martensite transition and the field induced arrest of the austenite phase are mainly related to the dynamics of coexisting phases in the vicinity of the martensite transition. The alloy also shows a second order ferromagnetic  →  paramagnetic transition near the Curie temperature of the austenite phase. A noticeably large change in magnetic entropy (ΔS M   =  24 J kg‑1 K‑1 at 298 K) and magnetoresistance (=  ‑33% at 295 K) has been observed for the change in 5 and 8 T magnetic fields, respectively. The change in adiabatic temperature for the change in a magnetic field of 5 T is found to be  ‑3.8 K at 299 K. The low cost of the ingredients and the large change in magnetic entropy very near to the room temperature makes Ni45Mn44Sn9In2 alloy a promising magnetic refrigerant for real technological application.

  10. H{sub 2x}Mn{sub x}Sn{sub 3-x}S{sub 6}(x=0.11-0.25): a novel reusable sorbent for highly specific Mercury capture under extreme pH conditions

    Energy Technology Data Exchange (ETDEWEB)

    Manos, Manolis J; Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University, Evanston, IL (United States); Petkov, Valeri G [Department of Physics, Central Michigan University, Mt. Pleasant, MI (United States)

    2009-04-09

    The H{sub 2x}Mn{sub x}Sn{sub 3-x}S{sub 6} (x = 0.11-0.25) is a new solid acid with a layered hydrogen metal sulfide (LHMS). It derives from K{sub 2x}Mn{sub x}Sn{sub 3-x}S{sub 6}(x=0.5-0.95) (KMS-1) upon treating it with highly acidic solutions. We demonstrate that LHMS-1 has enormous affinity for the very soft metal ions such as Hg{sup 2+} and Ag{sup +} which occurs via a rapid ion exchange process. The tremendous affinity of LHMS-1 for Hg{sup 2+} is reflected in very high distribution coefficient K{sub d}{sup Hg} values (>10{sup 6} mL g{sup -1}). The large affinity and selectivity of LHMS-1 for Hg{sup 2+} persists in a very wide pH range (from less than zero to nine) and even in the presence of highly concentrated HCl and HNO{sub 3} acids. LHMS-1 is significantly more selective for Hg{sup 2+} and Ag{sup +} than for the less soft cations Pb{sup 2+} and Cd{sup 2+}. The Hg{sup 2+} ions are immobilized in octahedral sites between the sulfide layers of the materials via Hg-S bonds as suggested by pair distribution function (PDF) analysis. LHMS-1 could decrease trace concentrations of Hg{sup 2+} (e.g. <100 ppb) to well below the acceptable limits for the drinking water in less than two min. Hg-laden LHMS-1 shows a remarkable hydrothermal stability and resistance in 6 M HCl solutions. LHMS-1 could be regenerated by treating Hg-loaded samples with 12 M HCl and re-used without loss of its initial exchange capacity. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Effect of NiAl underlayer and spacer on magnetoresistance of current-perpendicular-to-plane spin valves using Co2Mn(Ga0.5Sn0.5) Heusler alloy

    International Nuclear Information System (INIS)

    Hase, N.; Nakatani, T.M.; Kasai, S.; Takahashi, Y.K.; Furubayashi, T.; Hono, K.

    2012-01-01

    We investigated the effect of a NiAl underlayer and spacer on magnetoresistive (MR) properties in current-perpendicular-to-plane spin valves (CPP-SVs) using Co 2 Mn(Ga 0.5 Sn 0.5 ) (CMGS) Heusler alloy ferromagnetic layers. The usage of a NiAl underlayer allowed a high temperature annealing for the L2 1 ordering of the bottom CMGS layer, giving rise to a MR ratio of 10.2% at room temperature. We found that the usage of a NiAl spacer layer also improved the tolerance of the multilayer structure against thermal delamination, which allowed annealing to induce the L2 1 structure in both the bottom and top CMGS layers. However, the short spin diffusion length of NiAl resulted in a lower MR ratio compared to that obtained using a Ag spacer. Transmission electron microscopy of the multilayer structure of CPP-SVs showed that the atomically flat layered structure was maintained after the annealing. - Highlights: → CPP spin valves using Co 2 Mn(Ga 0.5 Sn 0.5 ) ferromagnetic layers with a new underlayer material. → NiAl underlayer and spacer improve the thermal tolerance of the spin valve structure. → NiAl underlayer improves MR ratio compared to Ag because of higher annealing temperature. → NiAl spacer degrades MR ratios compared to Ag because of short spin diffusion length. → Potential of heat resistant underlayer and spacer layer for CPP-SV using Heusler alloy.

  12. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, Mark C., E-mail: biesingr@uwo.ca [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia); Payne, Brad P. [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Grosvenor, Andrew P. [Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9 (Canada); Lau, Leo W.M. [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, Andrea R.; Smart, Roger St.C. [ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2011-01-15

    Chemical state X-ray photoelectron spectroscopic analysis of first row transition metals and their oxides and hydroxides is challenging due to the complexity of their 2p spectra resulting from peak asymmetries, complex multiplet splitting, shake-up and plasmon loss structure, and uncertain, overlapping binding energies. Our previous paper [M.C. Biesinger et al., Appl. Surf. Sci. 257 (2010) 887-898.] in which we examined Sc, Ti, V, Cu and Zn species, has shown that all the values of the spectral fitting parameters for each specific species, i.e. binding energy (eV), full wide at half maximum (FWHM) value (eV) for each pass energy, spin-orbit splitting values and asymmetric peak shape fitting parameters, are not all normally provided in the literature and data bases, and are necessary for reproducible, quantitative chemical state analysis. A more consistent, practical and effective approach to curve fitting was developed based on a combination of (1) standard spectra from quality reference samples, (2) a survey of appropriate literature databases and/or a compilation of literature references and (3) specific literature references where fitting procedures are available. This paper extends this approach to the chemical states of Cr, Mn, Fe, Co and Ni metals, and various oxides and hydroxides where intense, complex multiplet splitting in many of the chemical states of these elements poses unique difficulties for chemical state analysis. The curve fitting procedures proposed use the same criteria as proposed previously but with the additional complexity of fitting of multiplet split spectra which has been done based on spectra of numerous reference materials and theoretical XPS modeling of these transition metal species. Binding energies, FWHM values, asymmetric peak shape fitting parameters, multiplet peak separation and peak area percentages are presented. The procedures developed can be utilized to remove uncertainties in the analysis of surface states in nano

  13. TXRF and XRF techniques for the determination of K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in some plant species and their infusion

    Energy Technology Data Exchange (ETDEWEB)

    Khuder, A [Atomic Energy Commission, Damascus (Syrian Arab Republic). Dept. of Chemistry

    2009-02-15

    The content of K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, and Sr elements in some medicinal plants, including: A. herba-alba, T. officinale, M. officinalis, T. syeriacus, T. vulgaris, A. officinalis, R. officinalis, M. piperita, M. aquatica, Zea mays, G. glabra, A. vulgare, U. urens, C. aronica, H. officinalis, M. aurea, C. cyminum, was determined using TXRF technique. Concentrations of Pb upper the detection limits of TXRF method was determined only in A. herba-alba leaves with a mean value of 3.6 ppm. The accuracy and the precision of TXRF method were verified using Apple leaves, Peach leaves, and Hay Powder Standard Reference Materials (SRM) for the analysis of plant samples. The previously mentioned elements were accurately determined by TXRF, except Br. Errors obtained by Br determination may be obtained by the partial losses of element content during evaporation of sample on quartz carrier proposed for TXRF measurements. TXRF results for Ca, Mn, and Sr elements agreed well with these obtained by XRF method with standard relative error (SR) better than 10 %, while, these obtained for rest elements, except Br, were with SR ranging between 11 %-20 %. Br was not included in the determination of elements by TXRF. Transfer of K, Ca, Mn, Fe, Cu, Zn, Br, Rb, and Sr from A. herba-alba, A. vulgare, Zea mays, M. aquatica, M. piperita, C. cyminum, G. glabra, M. officinalis, and R. officinalis plant materials to infusions at different temperatures were studied using XRF method. Data analyses were verified by Peach and Apple leaves of Standard Reference Materials. Potassium represented the dominant element in all studied plants, particularly, in roots of U. dioica plant with concentrations in the range of 59.3 g/Kg-90.8 g/Kg. Independently of brewing 5 temperature, potassium with a high ratio was transferred from plants to infusions. K transfer ratio was in a range from 57.2 % for A. vulgare leaves at 25 .C to 91 % for G. glabra at 55 .C. Although, Fe content in dry plant

  14. TXRF and XRF techniques for the determination of K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in some plant species and their infusion

    International Nuclear Information System (INIS)

    Khuder, A.

    2009-02-01

    The content of K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, and Sr elements in some medicinal plants, including: A. herba-alba, T. officinale, M. officinalis, T. syeriacus, T. vulgaris, A. officinalis, R. officinalis, M. piperita, M. aquatica, Zea mays, G. glabra, A. vulgare, U. urens, C. aronica, H. officinalis, M. aurea, C. cyminum, was determined using TXRF technique. Concentrations of Pb upper the detection limits of TXRF method was determined only in A. herba-alba leaves with a mean value of 3.6 ppm. The accuracy and the precision of TXRF method were verified using Apple leaves, Peach leaves, and Hay Powder Standard Reference Materials (SRM) for the analysis of plant samples. The previously mentioned elements were accurately determined by TXRF, except Br. Errors obtained by Br determination may be obtained by the partial losses of element content during evaporation of sample on quartz carrier proposed for TXRF measurements. TXRF results for Ca, Mn, and Sr elements agreed well with these obtained by XRF method with standard relative error (SR) better than 10 %, while, these obtained for rest elements, except Br, were with SR ranging between 11 %-20 %. Br was not included in the determination of elements by TXRF. Transfer of K, Ca, Mn, Fe, Cu, Zn, Br, Rb, and Sr from A. herba-alba, A. vulgare, Zea mays, M. aquatica, M. piperita, C. cyminum, G. glabra, M. officinalis, and R. officinalis plant materials to infusions at different temperatures were studied using XRF method. Data analyses were verified by Peach and Apple leaves of Standard Reference Materials. Potassium represented the dominant element in all studied plants, particularly, in roots of U. dioica plant with concentrations in the range of 59.3 g/Kg-90.8 g/Kg. Independently of brewing 5 temperature, potassium with a high ratio was transferred from plants to infusions. K transfer ratio was in a range from 57.2 % for A. vulgare leaves at 25 .C to 91 % for G. glabra at 55 .C. Although, Fe content in dry plant

  15. Magneto-structural transformations in Ni{sub 50}Mn{sub 37.5}Sn{sub 12.5−x}In{sub x} Heusler powders

    Energy Technology Data Exchange (ETDEWEB)

    Maziarz, Wojciech; Wójcik, Anna; Czaja, Paweł [Instituite of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str, 30-059 Kraków (Poland); Żywczak, Antoni [AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059 Kraków (Poland); Jan Dutkiewicz [Instituite of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str, 30-059 Kraków (Poland); Hawełek, Łukasz [Institute of Non-Ferrous Metals, ul. Sowinskiego 5, 44-100 Gliwice (Poland); Cesari, Eduard [Department de Física, Universitat de les Illes Balears, Ctra. de Valldemossa, km 7.5, Palma de Mallorca E-07122 (Spain)

    2016-08-15

    The effect of ball milling and subsequently annealing of melt spun ribbons on magneto-structural transformations in Ni{sub 50}Mn{sub 37.5}Sn{sub 12.5−x}In{sub x} (x=0, 2, 4, 6) ribbons is presented. Short time vibration milling allows to obtain chemically homogenous powders of angular particle shapes and size within 10–50 μm. Milling does not change the characteristic temperatures of martensitic transformation in comparison to the melt spun ribbons. The effect of In substitution for Sn on martensitic transformation has a complex mechanism, associated with electron density change. Substitution of Sn by In in both milled and annealed powders leads to decrease of Curie temperature of austenite and increase of martensitic transformation temperature, stabilizing martensitic phase. The coexistence of magnetic transformation of austenite and martensitic transformation at low magnetic field was observed. The intermartensitic transformation of 4O martensite to L1{sub 0} martensite was observed during cooling at low magnetic field and this was confirmed by TEM microstructure observations. The annealing process of as-milled powders leads to the change of their martensitic structure due to relaxation of internal stresses associated with anisotropic columnar grain microstructure formed during melt spinning process. The level of stresses introduced during milling of ribbons has no significant influence on martensitic transformation. The annealing process of as milled powders leads to enhancement of their magnetic properties, decrease of Curie temperature of austenite, and marginal change of temperature of martenisitic transformation. - Highlights: • Vibration milling of ribbons allows to obtain angular powders of size 10–50 μm. • Vibration milling improves chemical homogeneity of alloys. • Indium addition changes the magneto-structural transformations in Ni–Mn–Sn–In alloys. • Complex character of magneto-structural transformations is visible. • Multistep

  16. Synthesis, characterization, and magnetic properties of the new boride solid solutions M{sub 0.5}Ru{sub 6.5}B{sub 3} (M = Cr, Mn, Co, Ni)

    Energy Technology Data Exchange (ETDEWEB)

    Misse, Patrick R.N.; Fokwa, Boniface P.T. [Institute of Inorganic Chemistry, RWTH Aachen University (Germany)

    2010-05-15

    Powder samples and single crystals of the borides M{sub 0.5}Ru{sub 6.5}B{sub 3} (M = Cr, Mn, Co, Ni) were synthesized by arc-melting the elements in a water-cooled copper crucible under argon. The new phases were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX-Analyses. They crystallize in the hexagonal Th{sub 7}Fe{sub 3} structure type (space group P6{sub 3}mc, no. 186, Z = 2) and a pronounced site preferential M/Ru substitution is observed. Magnetic properties of the compounds were investigated and Pauli paramagnetism was observed in all cases. However, a strong temperature dependency is subsequently observed in Mn{sub 0.5}Ru{sub 6.5}B{sub 3} below 250 K, but no hint of magnetic ordering was found. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Synthesis, Characterization and Thermal Decomposition Studies of Cr(III, Mn(II and Fe(III Complexes of N, N '-Bis[1,3-benzodioxol-5-ylmethylene]butane-1,4-diamine

    Directory of Open Access Journals (Sweden)

    Prasad M. Alex

    2009-01-01

    Full Text Available A bidentate Schiff base ligand namely, N,N'-bis-1,3-benzodioxol-5-ylmethylene]butane-1,4-diamine was synthesised by condensing piperonal (3,4-dioxymethylenebenzaldehyde with butane-1,4-diamine. Cr(III, Mn(II, Fe(III complexes of this chelating ligand were synthesised using acetates, chlorides, bromides, nitrates and perchlorates of these metals. The ligand and the complexes were characterised by elemental analysis, 1H NMR, UV-Vis and IR spectra, conductance and magnetic susceptibility measurements and thermogravimetric analysis. The thermograms of three complexes were analysed and the kinetic parameters for the different stages of decompositions were determined.

  18. Absolute measurement of the cross sections of neutron radiative capture for 23Na, Cr, 55Mn, Fe, Ni, 103Rh, Ta, 197Au and 238U in the 10-600keV energy range

    International Nuclear Information System (INIS)

    Le Rigoleur, Claude; Arnaud, Andre; Taste, Jean.

    1976-10-01

    The total energy weighting technique has been applied to measuring absolute neutron capture cross sections for 23 Na, Cr, 55 Mn, Fe, Ni, 103 Rh, Ta, 197 Au, 238 U in the 10-600keV energy range. A non hydrogeneous liquid scintillator was used to detect the gamma from the cascade. The neutron flux was measured with a 10 B INa(Tl) detector or a 6 Li glass scintillator of well known efficiency. The fast time-of-flight technique was used with on line digital computer data processing [fr

  19. Abnormal Grain Growth in the Heat Affected Zone of Friction Stir Welded Joint of 32Mn-7Cr-1Mo-0.3N Steel during Post-Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Yijun Li

    2018-04-01

    Full Text Available The abnormal grain growth in the heat affected zone of the friction stir welded joint of 32Mn-7Cr-1Mo-0.3N steel after post-weld heat treatment was confirmed by physical simulation experiments. The microstructural stability of the heat affected zone can be weakened by the welding thermal cycle. It was speculated to be due to the variation of the non-equilibrium segregation state of solute atoms at the grain boundaries. In addition, the pressure stress in the welding process can promote abnormal grain growth in the post-weld heat treatment.

  20. Fatigue damage evolution of cold-worked austenitic nickel-free high-nitrogen steel X13CrMnMoN18-14-3 (1.4452)

    Energy Technology Data Exchange (ETDEWEB)

    Tikhovskiy, I.; Weiss, S.; Fischer, A. [Univ. of Duisburg-Essen, Materials Science and Engineering II, Duisburg (Germany)

    2004-07-01

    Due to the fact that the risk of Ni-allergies becomes more and more important for modern therapies, the necessity of Ni-free implant materials becomes increasingly important. Beside Co- and Ti-base alloys Ni-free high-nitrogen steels may offer an attractive alternative. The present work presents the austenitic high-nitrogen and nickel-free steel X13CrMnMoN18-14-3, (Material No.: 1.4452) after 20% cold-working. In addition this material was deformed under axial cyclic total strain controlled fatigue tests at room temperature. The development of dislocation structure due to different loading amplitudes was compared to none cyclically deformed material. The good mechanical und fatigue properties of these austenitic high-nitrogen steels as well as the better tribological, chemical and biological properties compared to CrNiMo-steels qualify these steels as a promising alternative in medical applications. (orig.)

  1. Influence of Mn site doping on electrical resistivity of polycrystalline La1-yAyMn1-xBxO3 (A=Ba, Sr; B=Cu, Cr, Co Manganites

    Directory of Open Access Journals (Sweden)

    Paunović N.

    2008-01-01

    Full Text Available We have the measured electrical resistivity of La1-yBayMn1-xCuxO3 (0.17≤y≤0.30; 0.04≤x≤0.10, La1-ySryMn1-xCrxO3 and La1-ySryMn1-xCoxO3 (0.270≤y≤0.294; 0.02≤x≤0.10 polycrystalline samples in the 25-325 K temperature range. The increase of Mn site doping concentration leads to an increase of the electrical resistivity of the samples and the appearance of a “double-peak” structure in the electrical resistivity versus temperature graphs. The first peak represents the insulator-metal transition in vicinity of the paramagnetic-ferromagnetic transition (TC. We have found that the intensity of the second peak increases with an increase of concentration of Mn substituents, due to the hole scattering by the random potential of the Mn site impurities.

  2. Systematic study of hyperfine fields in Rh2 Y Z type Heusler alloys with 119 Sn impurity using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ramos, S.M.M.

    1985-01-01

    The magnetic hyperfine fields in the Heusler alloys Rh 2 Mn .98 Ge Sn 02 , Rh 2 Mn Ge .98 Sn .02 , Rh 2 Mn Pb .98 Sn .02 and Rh 2 Mn Sn has been studied by 119 Sn Moessbauer spectroscopy at 293 K, 77 K, 4.2 K and 293 K with applied external magnetic field. The results show that when one compare the magnetic hyperfine fields systematic with the Heusler alloys X 2 Mn Z (X = Co, Ni, Cu, Pd, and Z = s p metal), this systematic is similar to the Co alloys, although can not explained by the currents models for the Heusler alloys. (author)

  3. SN Refsdal

    DEFF Research Database (Denmark)

    Kelly, P. L.; Brammer, G.; Selsing, J.

    2016-01-01

    (SNe), and we find strong evidence for a broad H-alpha P-Cygni profile in the HST grism spectrum at the redshift (z = 1.49) of the spiral host galaxy. SNe IIn, powered by circumstellar interaction, could provide a good match to the light curve of SN Refsdal, but the spectrum of a SN IIn would not show...... in the rest frame, provide additional evidence that supports the SN 1987A-like classification. In comparison with other examples of SN 1987A-like SNe, SN Refsdal has a blue B-V color and a high luminosity for the assumed range of potential magnifications. If SN Refsdal can be modeled as a scaled version of SN...

  4. DFT study on the crystal, electronic and magnetic structures of tantalum based double perovskite oxides Ba2MTaO6 (M = Cr, Mn, Fe) via GGA and GGA + U

    Science.gov (United States)

    Saad, H.-E.; Musa, M.; Elhag, Ahmed

    2018-06-01

    In this paper, we study the crystal, electronic and magnetic structures of three tantalum based double perovskite oxides Ba2MTaO6 (M = Cr, Mn, Fe). All calculations were performed using the full-potential linear augmented plane-wave (PF-LAPW) method based on the first-principles density functional theory (DFT). For the exchange correlation potential, the generalized gradient approximation (GGA) and GGA plus on-site Coulomb parameter (GGA + U) were employed. The structural optimization reveals that the three compounds are stable in cubic structure (space group Fm-3m; tilt system a0a0a0). The band structure, density of states (DOS), charge density and spin magnetic moments were calculated and analyzed in details. By analysis the band structure and DOS, Ba2MTaO6 exhibits an insulating behavior (M = Cr, Fe) and a half-metallic (HM) nature (M = Mn). GGA + U method yields quite accurate results for the band-gap (Eg) as compared with GGA. We found that all three compounds have stable ferromagnetic (FM) ground state within GGA and GGA + U calculations. The M3+ (3d) ions contribute the majority in the total spin magnetic-moments, while, the empty T5+ (5d) ions carry very small induced magnetic moment via the M (3d)-O (2p)-Ta (5d) hybridization.

  5. Study on the behavior of the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and 137Cs in an estuarine ecosystem using Mytilus galloprovincialis as a bioindicator species: the case of Thermaikos gulf, Greece

    International Nuclear Information System (INIS)

    Catsiki, Vassiliki-Angelique; Florou, H.

    2006-01-01

    Mussels are worldwide recognized as pollution bioindicators and used in Mussel Watch programs, because they accumulate pollutants in their tissues at elevated levels in relation to pollutant biological availability in the marine environment. The present study deals with the use of Mytilus galloprovincialis as a local bioindicator of heavy metal and 137 Cs contamination in an estuarine ecosystem (Thermaikos gulf, Greece in Eastern Mediterranean). M. galloprovincialis samples were collected monthly from two aquaculture farms during the period April to October 2000. Analyses for the heavy metals Cu, Cr, Ni, Zn, Fe, Mn and 137 Cs showed that the concentrations measured were low and similar to those from other non-polluted Mediterranean areas. In terms of the two sampling stations, there were no statistically significant differences between them. On the contrary, the seasonal evolution of either heavy metals or 137 Cs levels presented high variation. The levels were found to increase during the cold period of the year, especially for Cu, Zn, Mn and Cr which are essential for life. Stable metals were positively inter-related and moreover, metals more involved in biochemical activities seem to present more correlations than others with less significant role in the metabolism of the organisms

  6. High-Pressure Phase Relations and Crystal Structures of Postspinel Phases in MgV2O4, FeV2O4, and MnCr2O4: Crystal Chemistry of AB2O4 Postspinel Compounds.

    Science.gov (United States)

    Ishii, Takayuki; Sakai, Tsubasa; Kojitani, Hiroshi; Mori, Daisuke; Inaguma, Yoshiyuki; Matsushita, Yoshitaka; Yamaura, Kazunari; Akaogi, Masaki

    2018-06-04

    We have investigated high-pressure, high-temperature phase transitions of spinel (Sp)-type MgV 2 O 4 , FeV 2 O 4 , and MnCr 2 O 4 . At 1200-1800 °C, MgV 2 O 4 Sp decomposes at 4-7 GPa into a phase assemblage of MgO periclase + corundum (Cor)-type V 2 O 3 , and they react at 10-15 GPa to form a phase with a calcium titanite (CT)-type structure. FeV 2 O 4 Sp transforms to CT-type FeV 2 O 4 at 12 GPa via decomposition phases of FeO wüstite + Cor-type V 2 O 3 . MnCr 2 O 4 Sp directly transforms to the calcium ferrite (CF)-structured phase at 10 GPa and 1000-1400 °C. Rietveld refinements of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 confirm that both the CT- and CF-type structures have frameworks formed by double chains of edge-shared B 3+ O 6 octahedra (B 3+ = V 3+ and Cr 3+ ) running parallel to one of orthorhombic cell axes. A relatively large A 2+ cation (A 2+ = Mg 2+ , Fe 2+ , and Mn 2+ ) occupies a tunnel-shaped space formed by corner-sharing of four double chains. Effective coordination numbers calculated from eight neighboring oxygen-A 2+ cation distances of CT-type MgV 2 O 4 and FeV 2 O 4 and CF-type MnCr 2 O 4 are 5.50, 5.16, and 7.52, respectively. This implies that the CT- and CF-type structures practically have trigonal prism (six-coordinated) and bicapped trigonal prism (eight-coordinated) sites for the A 2+ cations, respectively. A relationship between cation sizes of VIII A 2+ and VI B 3+ and crystal structures (CF- and CT-types) of A 2+ B 2 3+ O 4 is discussed using the above new data and available previous data of the postspinel phases. We found that CF-type A 2+ B 2 3+ O 4 crystallize in wide ionic radius ranges of 0.9-1.4 Å for VIII A 2+ and 0.55-1.1 Å for VI B 3+ , whereas CT-type phases crystallize in very narrow ionic radius ranges of ∼0.9 Å for VIII A 2+ and 0.6-0.65 Å for VI B 3+ . This would be attributed to the fact that the tunnel space of CT-type structure is geometrically less flexible due to the smaller coordination

  7. Estudo de metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn na Bacia do Tarumã-Açu Manaus (AM Heavy metal (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn study in the Tarumã-Açu Basin Manaus (AM

    Directory of Open Access Journals (Sweden)

    Genilson Pereira Santana

    2007-01-01

    Full Text Available Os resíduos gerados em domicílios incluem diversos produtos, como pesticidas, produtos farmacêuticos, detergentes, óleos de cozinha, metais pesados contidos em baterias e outros utensílios. Esses resíduos são lançados continuamente em aterro sanitário ou lixões em cidades como Manaus. O chorume produzido nesses aterros, quando não tratados, contamina recursos hídricos superficiais e subterrâneos. Neste estudo foi feita uma avaliação das conseqüências da liberação do chorume no sistema hídrico da bacia do Tarumã-Açu. Amostras de água e sedimento foram coletadas nos igarapés Matrinxã, Acará, Bolívia, bacia do Tarumã-Açu e dentro do aterro sanitário (Manaus - Amazonas - Brasil em março 2001. As amostras de água foram filtradas em filtro Milipore (0,45 mm de poro e, em seguida, tratadas com HNO3 concentrado. As amostras de sedimento foram peneiradas em malha de 0,053 mm e digeridas com HCl:HNO3 (1:3 a 150ºC. As concentrações de alguns metais pesados (Co, Cu, Fe, Cr, Ni, Mn, Pb e Zn foram determinadas nas amostras de água e sedimento por espectrometria de absorção atômica de chama. Os resultados revelaram que a concentração dos metais pesados é muito acima dos permitidos pela resolução 357/2005 do CONAMA em praticamente todos os locais amostrados, mostrando que o Aterro Sanitário é um dos principais responsáveis pelo impacto ambiental observado nos corpos hídricos estudados. As análises dos componentes principais (PCA e hierárquica de cluster (HCA, revelam que os pontos de coleta localizados dentro do aterro sanitário apresentam características diferentes dos outros locais amostrados. Além disso, o HCA e PCA mostraram que existe uma similaridade entre os pontos de coleta localizados fora do aterro o que permite afirmar que o chorume do aterro se dissolve por todo corpo hídrico estudado.Domestic sewage involves several products, such as pesticides, pharmaceutics products, detergents, soybean oil

  8. Performance of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ perovskite-structure anode material at lanthanum gallate electrolyte for IT-SOFC running on ethanol fuel

    Science.gov (United States)

    Huang, Bo; Wang, S. R.; Liu, R. Z.; Ye, X. F.; Nie, H. W.; Sun, X. F.; Wen, T. L.

    Perovskite-structure La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCM) powders were prepared using a simple combustion process. Thermal analysis was carried out on the perovskite precursor to investigate the oxide-phase formation. The structural phase of the powders was determined by X-ray diffraction. These results showed that the decomposition of the precursors occurs in a two-step reaction and temperatures higher than 1100 °C are required for these decomposition reactions. For the electrochemical characterization, LSCM anode materials and (Pr 0.7Ca 0.3) 0.9MnO 3 (PCM) cathode materials were screen-printed on two sides of dense La 0.8Sr 0.2Ga 0.8Mg 0.2O 3 (LSGM) electrolyte layers prepared by tape casting with a thickness of about 600 μm, respectively. The morphology of the screen-printed La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ perovskite thick films (65 μm) was investigated by field emission scanning electron microscope and showed a porous microstructure. In addition, fuel cell tests were carried out using humidified hydrogen or ethanol stream as fuel and oxygen as oxidant. The performance of the conventional electrolyte-supported cell LSCM/LSGM/PCM while operating on humidified hydrogen was modest with a maximum power density of 165, 99 and 62 mW cm -2 at 850, 800 and 750 °C, respectively, the corresponding values for the cell while operating on ethanol stream was 160, 101 and 58 mW cm -2, respectively. Cell stability tests indicate no significant degradation in performance has been observed after 60 h of cell testing when LSCM anode was exposed to ethanol steam at 750 °C, suggesting that carbon deposition was limited during cell operation.

  9. Arsenic and Mn levels in Isaza (Gymnogobius isaza) during the mass mortality event in Lake Biwa, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Sawako Horai; Hayase, Daisuke; Eguchi, Akifumi; Itai, Takaaki; Nomiyama, Kei; Isobe, Tomohiko; Agusa, Tetsuro [Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Ishikawa, Toshiyuki [Department of Environmental Education, Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, Shiga 520-0862 (Japan); Kumagai, Michio [Lake Biwa Environmental Research Institute, 5-34 Yanagasaki, Otsu, Shiga 520-0022 (Japan); Tanabe, Shinsuke, E-mail: shinsuke@agr.ehime-u.ac.jp [Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)

    2011-10-15

    The present study measured the concentrations of 25 elements (Li, Mg, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb and Bi) in the whole body of Isaza which is an endemic fish species to Lake Biwa, Japan, and compared the values in the specimens from the mass mortality Isaza (MMI) and normal fresh Isaza (NFI). The mean levels of Mn and total As (T-As) were relatively higher in MMI than in NFI. In the T-As, highly toxic inorganic As was detected in MMI. Moreover we found Mn and As concentrations in surface sediment were extremely high and temporally increased. From all these results, we could infer that the dissolution of Mn and As from surface sediment of Lake Biwa might have been one of the cause for the mass mortality of Isaza. - Highlights: > Mn and As levels were significantly higher in MMI than in NFI. > The number of chemical species of As detected from MMI was less than that from NFI. > Mn and As levels were highest in surface sediment, and sharply decreased with depth. > Mn and As levels in surface sediment temporally increased. - As and Mn levels in dead Isaza caused by mass mortality.

  10. Experimental absorption and desorption study on a combination of 60Co, 51Cr, 137Cs, 54Mn and 22Na in the carp (Cyprinus carpio L.)

    International Nuclear Information System (INIS)

    Fritsh, A.F.; Baudin, J.P.

    1984-03-01

    The study of radionuclide behavior in water shows that about 25% of the 60 Co et 98% of the 54 Mn are found in particle form, while 96% of the 137 Cs and 87% of the 22 Na remain in solution. The soluble fraction generally remains cationic except for 60 Co, of which over one-fourth becames anionic. The uptake kinetics in the carp vary widely according to the radionuclide. The process is linear for 54 Mn, and tends to decrease in time for 137 Cs, while an equilibrium state tends to avise with 60 Co and 22 Na. The fresh weight concentration factors calculated after 65 days of experimentation were 150, 12, 3 and 120, respectively. Contaminated carp placed in non-radioactive water for 57 days lost between 45% and 65% of the 60 Co, 137 Cs and 54 Mn uptake. These elimination rates correspond to biological half-lives of 70-120 days for radioactive cobalt and cesium, and longer than 120 days for 54 Mn. The process was much more rapid with 22 Na, 95% of which was eliminated in 57 days: this corresponds to two biological half lives of 3 and 15 days. When the fish were deprived of food the process was appreciably slower, but in different proportions for each radionuclide; the effect was more significant for 137 Cs and 60 Co than for 54 Mn and 22 Na. The fecal excretion of radionuclides also diminished: smaller quantities of 60 Co and 54 Mn were eliminated under these conditions than when food was administered. Fecal excretion of 22 Na was practically nil in both cases [fr

  11. Evolution of secondary phases in 0.17C-16Cr-11Mn-0.43N austenitic stainless steel at 800 and 850°C: Thermodynamic modeling of phase equilibria and experimental kinetic studies

    Directory of Open Access Journals (Sweden)

    Čička R.

    2012-01-01

    Full Text Available The precipitation of secondary phases was investigated in the 0.17C-16Cr-11Mn-0.43N austenitic stainless steel during annealing at 800 and 850°C for times between 5 min and 100 h. Light microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, and differential thermal analysis were used in experiments. Thermodynamic calculations were done by the ThermoCalc database software package. Cr2N and M23C6 were considered to be stable phases at the annealing temperatures. Cells consisting of alternating Cr2N and austenite lamellae were observed in the steel microstructure after sufficiently long annealing. The metastable chi phase was also found in all the annealed samples. After 100 h of annealing the equilibrium sigma started to precipitate. The thermodynamically predicted M6C was not confirmed experimentally in any of the annealed samples. DTA analysis showed the initial precipitation stage was followed by the phase dissolution. For the investigated steel the computational thermodynamics can be used only for qualitative interpretation of the experimental results as the measured endothermal peaks were found to be shifted of about 50 ÷ 70°C related to the computed results.

  12. Preliminary results of fission induced by (1068 MeV) pi in Cu, Sn, Au and Bi using CR-39 detectors

    CERN Document Server

    Khan, H A; Shahzad, M I; Manzoor, S; Farooq, M A; Sher, G; Khan, E U; Peterson, R J

    1999-01-01

    Fission probabilities in pion induced reactions exhibit characteristic variations with respect to pion energies and target fissility values. At incident energies well above the pion-nucleon resonances, the statistical model seems to give good description of the observed data. We have used negative pions of energy 1068 MeV, in order to study fission induced in four target materials with fissility values [(Z-1)2/A] ranging from 12 to 32. All targets were arranged in a single stack in such a way that each target coated on a CR-39 detector was sandwiched by another uncoated CR-39 detector plate. The stack was irradiated at the AGS of Brookhaven National Laboratory (USA). This set-up ensures solid angle coverage of almost 4 pi degrees, so that for each fission event one of the fission fragments is expected to be trapped by the forward detector and one by the detector covering backward hemisphere. The effect of pion momentum transfer to the struck nucleus was observed in the form of asymmetry between events counted...

  13. Structural, magnetic and magnetocaloric properties of La{sub 0.7}Ca{sub 0.2}Sr{sub 0.1}Mn{sub 1−x}Cr{sub x}O{sub 3} compounds with x = 0, 0.05 and 0.1

    Energy Technology Data Exchange (ETDEWEB)

    Dhahri, Ah., E-mail: dhahri.ahmad@outlook.fr [Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, BP 1171, Université de Sfax, 3000 (Tunisia); Jemmali, M. [Laboratoire des Sciences des Matériaux et de l’Environnement, Faculté des Sciences de Sfax, BP 1171, Université de Sfax, 3000 (Tunisia); Taibi, K. [Département SDM, FGMGP/USTHB, 16311 (Algeria); Dhahri, E. [Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, BP 1171, Université de Sfax, 3000 (Tunisia); Hlil, E.K. [Institut Néel, CNRS et Université J. Fourier, BP 166, 38042 Grenoble (France)

    2015-01-05

    Highlights: • The samples crystallize in the rhombohedral structure with the R3{sup ¯}c space group. • Enhancement of T{sub C} for the rhombohedral samples. • The relative cooling power increases with Cr-doping. • All samples exhibit a large magnetocaloric effect. • High values of the magnetoresistance in all samples. - Abstract: Structural, magnetic and magnetocaloric properties of La{sub 0.7}Sr{sub 0.1}Ca{sub 0.2}Mn{sub 1−x}Cr{sub x}O{sub 3} compounds with x = 0, 0.05 and 0.1 have been investigated to shed light on Cr-doping influence. X-ray diffraction studies show that all samples crystallize in the rhombohedral symmetry with R3{sup ¯}c space group. Rietveld refinement structure shows that the insertion of Cr in Mn network modifies the structural parameters such as the volume, Mn–O–Mn angles and the Mn–O bond length. The substitution of Mn by Cr decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth and increases the electron–phonon coupling. The investigation of magnetic and magnetocaloric properties reveals that the samples exhibit a paramagnetic(PM)–ferromagnetic (FM) transition with decreasing Curie temperature (T{sub C}) from 294 K to 255 K when Cr doping level increases. The magnetic entropy change (ΔS{sub M}{sup max}) also decreases from 6.20 J kg{sup −1} K{sup −1} for x = 0 to3.80 J kg{sup −1} K{sup −1} for x = 0.1, while the relative cooling power (RCP) increases from 234.5 to 240 J kg{sup −1}, respectively, under a magnetic field of 5 T. These outcomes suggest that Mn-site Cr doping inhibits the enhancement of the magnetocaloric effect in some perovskite manganites. This is explained by the weakening of the ferromagnetic double-exchange interaction between Mn{sup 3+} and Mn{sup 4+} ions.

  14. Effects of partial Mn-substitution on magnetic and magnetocaloric properties in Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}X{sub 0.05}O{sub 3} (Cr, Ni, Co and Fe) manganites

    Energy Technology Data Exchange (ETDEWEB)

    Selmi, A. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia); M’nassri, R., E-mail: rafik_mnassri@yahoo.fr [Higher Institute of Applied Sciences and Technology of Kasserine, Kairouan University, B.P. 471, 1200 Kasserine (Tunisia); Cheikhrouhou-Koubaa, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia); Chniba Boudjada, N. [Institut NEEL, B.P. 166, 38042 Grenoble Cedex 9 (France); Cheikhrouhou, A. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia)

    2015-01-15

    Highlights: • Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}X{sub 0.05}O{sub 3}(X = Cr, Ni, Co and Fe) ceramics were prepared by solid state method. • The manganite phases crystallize in an orthorhombic (Pnma) structure. • The samples exhibit a second order paramagnetic (PM)–ferromagnetic (FM) phase transition at the Curie temperature T{sub C}. • Maximum RCP equal to 405 J/kg observed for Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}Cr{sub 0.05}O{sub 3}. • Second order phase transition is confirmed by Arrott plots and universal curves of entropy change. • The experimental ΔS{sub M} are well predicted by the phenomenological universal curve. - Abstract: Structural, magnetic and magnetocaloric properties of Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.95}X{sub 0.05}O{sub 3}(X = Cr, Ni, Co and Fe) ceramics have been investigated by X-ray diffraction (XRD) and magnetic measurements. Powder samples have been elaborated using the solid state reaction method at high temperature. The Rietveld analysis of the powder X-ray diffraction shows that the samples crystallize in the orthorhombic structure with Pnma space group. Magnetic measurements show that all our materials exhibit a paramagnetic–ferromagnetic transition with decreasing temperature. The Arrott plots of ours materials reveal the occurrence of a second-order phase transition. The maximum values of magnetic entropy change |ΔS{sub M}{sup max}| are 2.92, 2.96, 3.1, and 2.38 J kg{sup −1} K{sup −1} and the relative cooling power (RCP) values are 405.8, 378.2, 352.2 and 337.4 J kg{sup −1} for a magnetic-field change from 0 to 5 T for Cr, Ni, Co and Fe respectively. The large RCP found in our substituted samples will be interesting for magnetic refrigeration over a wide temperature range ∼130 K around its paramagnetic to ferromagnetic transition temperature. With the scaling laws of ΔS{sub M}, the experimental ΔS{sub M} collapse onto a universal curve for several ceramics, where an average curve is obtained. With the

  15. Electronic structure origin of conductivity and oxygen reduction activity changes in low-level Cr-substituted (La,Sr)MnO.sub.3./sub.

    Czech Academy of Sciences Publication Activity Database

    Tsekouras, G.; Boudoire, F.; Pal, B.; Vondráček, Martin; Prince, K. C.; Sarma, D.D.; Braun, A.

    2015-01-01

    Roč. 143, č. 11 (2015), s. 114705 ISSN 0021-9606 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011029 Institutional support: RVO:68378271 Keywords : X-ray-absorption * thin-films * spectroscopy * photoemission * La 1-x Sr x MnO 3 * oxide * manganite * cathodes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.894, year: 2015

  16. First-principle study of structural, electronic and magnetic properties of (FeC)n (n = 1-8) and (FeC)8TM (TM = V, Cr, Mn and Co) clusters.

    Science.gov (United States)

    Li, Cheng-Gang; Zhang, Jie; Zhang, Wu-Qin; Tang, Ya-Nan; Ren, Bao-Zeng; Hu, Yan-Fei

    2017-12-13

    The structural, electronic and magnetic properties of the (FeC) n (n = 1-8) clusters are studied using the unbiased CALYPSO structure search method and density functional theory. A combination of the PBE functional and 6-311 + G* basis set is used for determining global minima on potential energy surfaces of (FeC) n clusters. Relatively stabilities are analyzed via computing their binding energies, second order difference and HOMO-LUMO gaps. In addition, the origin of magnetic properties, spin density and density of states are discussed in detail, respectively. At last, based on the same computational method, the structures, magnetic properties and density of states are systemically investigated for the 3d (V, Cr, Mn and Co) atom doped (FeC) 8 cluster.

  17. Temperature-programmed reaction of CO2 reduction in the presence of hydrogen over Fe/Al2O3, Re/Al2O3 and Cr-Mn-O/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Mirzabekova, S.R.; Mamedov, A.B.; Krylov, O.V.

    1996-01-01

    Regularities in CO 2 reduction have been studied using the systems Fe/Al 2 O 3 , Re/Al 2 O 3 and Cr-Mn-O/Al 2 O 3 under conditions of thermally programmed reaction by way of example. A sharp increase in the reduction rate in the course of CO 2 interaction with reduced Fe/Al 2 O 3 and Re/Al 2 O 3 , as well as with carbon fragments with addition in CO 2 flow of 1-2%H 2 , has been revealed. The assumption is made on intermediate formation of a formate in the process and on initiating effect of hydrogen on CO 2 reduction by the catalyst. Refs. 26, figs. 10

  18. Studies of Mn0.5Cr0.5Fe2O4 ferrite by neutron diffraction at different temperatures in the range 768K ≥ T ≥ 13K

    International Nuclear Information System (INIS)

    Zakaria, A.K.M.; Ahmed, F.U.; Azad, A.K.; Yunus, S.M.; Asgar, M.A.; Paranjpe, S.K.; Das, A.

    2002-01-01

    Neutron diffraction studies of a polycrystalline manganese-chromium- ferrite with composition Mn 0.5 Cr 0.5 Fe 2 O 4 have been performed at a number of temperatures in the range 768K ≥ T ≥ 13K. The cation distributions, oxygen position parameter (u) and lattice constant (a o ) have been determined from the analysis of the higher angle neutron diffraction data. The temperature response of the lattice constant has also been investigated and a slight anomalous expansion has been found around the magnetic transition temperature. Sublattice as well as net ferrimagnetic moments of the specimen have been found out from the analysis of the neutron diffraction data at different temperatures. A randomly canted ordering of spins has been observed in the B sublattice, while the A sublattice moments appear to exhibit collinear Neel type ordering at all temperatures. (author)

  19. Density functional study of the stability and magnetic behaviour of Au{sub n}TM{sup +} clusters (TM=Au,Sc,Ti,V,Cr,Mn,Fe; 1{<=}n{<=}9)

    Energy Technology Data Exchange (ETDEWEB)

    Torres, M.B. [Dpto. de Matematicas y Computacion, Univ. de Burgos, Avda. de Cantabria s/n, 09006-Burgos (Spain); Fernandez, E.M.; Balbas, L.C. [Dpto. de Fisica Teorica, Univ. de Valladolid, Prado de la Magdalena s/n, 47011-Valladolid (Spain)

    2005-03-01

    We study the element- and size-dependent electron stability of Au{sub n}TM{sup +} clusters (TM=Sc,Ti,V,Cr,Mn,Fe,Au; 1{<=}n{<=}9) by means of first-principles density functional calculations. The interplay between the cluster atomic arrangements and their electronic and magnetic structure is investigated for the few lower energy isomeric-states in dependence of the TM-atom and its environment in the cluster. We explain the experimental magic-numbers, observed recently, as well as the trend of the impurity local magnetic moment in dependence with the size of the cluster and the position of the impurity in the host. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Experimental studies on the dynamic tensile behavior of Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-Si alloy with Widmanstatten microstructure at elevated temperatures

    International Nuclear Information System (INIS)

    Gong Xuhui; Wang Yu; Xia Yuanming; Ge Peng; Zhao Yongqing

    2009-01-01

    The tensile behavior of a newly developed Ti-6Al-2Sn-2Zr-3Mo-1Cr-2Nb-Si alloy, referred as TC21, is investigated at temperatures ranging from 298 to 1023 K and under constant strain rate loadings ranging from 0.001 to 1270 s -1 . The results show that temperature and strain rate have significant effects on the tensile behavior of the material. At low strain rates of 0.001 and 0.05 s -1 , a discontinuity is found in the yield stress-temperature curve. And the discontinuity temperature increases with increasing strain rate. The analysis of temperature and strain rate dependence of unstable strain indicates a high-velocity-ductility phenomenon at elevated temperatures. Scanning electron microscope (SEM) analysis shows that the material is broken in a mixture manner of ductile fracture and intergranular fracture under low strain rates at room temperature, while the fracture manner changes to totally ductile fracture under other testing conditions. The width and depth of ductile dimples increase with increasing temperature. No adiabatic shear band is found in the tensile deformation of the material.

  1. Current-voltage characteristics of SnO{sub 2}-Co{sub 3}O{sub 4}-Cr{sub 2}O{sub 3}-Sb{sub 2}O{sub 5} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Martinez, J A [Centro de Investigacion en Materiales Avanzados, S.C. (CIMAV), Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica (PIIT), Nueva Carretera Aeropuerto km. 10, Apodaca, Nuevo Leon, CP 66600 (Mexico); Glot, A B [Posgrado, Universidad Tecnologica de la Mixteca, Carretera Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca, CP 69000 (Mexico); Gaponov, A V [Department of Radioelectronics, Dniepropetrovsk National University, Dniepropetrovsk 49050 (Ukraine); Hernandez, M B [Instituto de Mineria, Universidad Tecnologica de la Mixteca, Carretera Acatlima Km. 2.5, Huajuapan de Leon, Oaxaca, CP 69000 (Mexico); Guerrero-Paz, J, E-mail: josue.aguilar@cimav.edu.m [Particulate Materials Lab, Universidad Autonoma del Estado de Hidalgo, Pachuca, CP 42184 (Mexico)

    2009-10-21

    The effect of mechanical treatment in a planetary mill on the microstructure and electrical properties of tin dioxide based varistor ceramics in the system SnO{sub 2}-Co{sub 3}O{sub 4}-Cr{sub 2}O{sub 3}-Sb{sub 2}O{sub 5} sintered in the range 1150-1450 {sup 0}C was studied. The mechanical treatment leads to an increase in shrinkage, decrease in porosity, decrease in sample diameter, change in colour of the sintered samples from grey to black and enhancement of nonlinearity. For the sample sintered at 1350 {sup 0}C the mechanical treatment enhances the nonlinearity coefficient from 11 to 31 and decreases the electric field E{sub 1} (at 10{sup -3} A cm{sup -2}) from 3500 to 2800 V cm{sup -1}. The observed changes in physical properties are explained in terms of an additional size reduction of oxide particles and a better mixing of oxide powder followed by the formation of potential barriers at the grain boundaries throughout the whole sample. In spite of the low porosity, the low-field electrical conductivity of mechanically treated ceramics is significantly increased with the growth of relative humidity. A higher humidity sensitivity is found for mechanically treated ceramics with higher barrier height and higher nonlinearity coefficient.

  2. The Pr sub 0 sub . sub 5 Ca sub 0 sub . sub 5 Mn sub 1 sub - sub x Cr sub x O sub 3 series (0 <= x <= 0.5): evidence of steps in the magnetic and transport properties for a narrow composition range

    CERN Document Server

    Pi, L; Yaicle, C; Martin, C; Maignan, A; Raveau, B

    2003-01-01

    The Pr sub 0 sub . sub 5 Ca sub 0 sub . sub 5 Mn sub 1 sub - sub x Cr sub x O sub 3 series has been investigated up to x = 0.5. For low doping content (x 0.04-0.06, is completely different from the low-x side.

  3. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    Science.gov (United States)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  4. Uptake of 51Cr-SRBC in low- and high-responder mouse strains (C57BL/10ScSn/A/J mouse strains)

    International Nuclear Information System (INIS)

    Rihova, B.; Vetvicka, V.

    1984-01-01

    51 Cr-SRBC (sheep red blood cells) antigen clearance was studied in two strains of mice differing in the capacity to react with IgG antibody formation. In the B10 strain which is a poor IgG anti SRBC producer, before immunization 80.3% of the injected radioactivity was taken up by the liver, whereas after primary stimulation the uptake was only 31.1%. This value further decreases to 22.8% after secondary stimulation. The well IgG antibody producing A/J strain accumulated less antigen in the liver before immunization than the poorly responding strain (69.8%). On the 10th day after primary immunization a higher uptake of the radioactivity in the liver was shown than in the poor responder strain (53.8%) and this difference was even more pronounced after the secondary stimulation (49.6%). Interaction between peritoneal macrophages of the B10 and A/J strains before and after immunization with SRBC antigen was assessed from the formation of rosettes. Before immunization the low-responder strain B10 exhibited a three times higher level of rosette-forming macrophages (RFM), i.e. 6.1% than the high-responder strain A/J (2.0%). However, after immunization the RFM level in the A/J strain increased sevenfold (13.5%) whereas that in the low-responder strain B10 remained unaffected. These results suggested a role of macrophage population in the control of IgG antibody response. (author)

  5. La5Zn2Sn

    Directory of Open Access Journals (Sweden)

    Igor Oshchapovsky

    2011-11-01

    Full Text Available A single crystal of pentalanthanum dizinc stannide, La5Zn2Sn, was obtained from the elements in a resistance furnace. It belongs to the Mo5SiB2 structure type, which is a ternary ordered variant of the Cr5B3 structure type. The space is filled by bicapped tetragonal antiprisms from lanthanum atoms around tin atoms sharing their vertices. Zinc atoms fill voids between these bicapped tetragonal antiprisms. All four atoms in the asymmetric unit reside on special positions with the following site symmetries: La1 (..m; La2 (4/m..; Zn (m.2m; Sn (422.

  6. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui; Zhou, Hang; Li, Yong-Feng; Wu, Tao; Yao, Bin; Qin, Jie-Ming; Wan, Yu-Chun; Jiang, Da-Yong; Liang, Qing-Cheng; Liu, Lei

    2013-01-01

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  7. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui

    2013-07-17

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  8. Preparation of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.5}Mn{sub 0.5}O{sub 3-{delta}} fine powders by carbonate coprecipitation for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Bu; Cho, Pyeong-Seok; Cho, Yoon Ho; Lee, Dokyol; Lee, Jong-Heun [Department of Materials Science and Engineering, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713 (Korea)

    2010-01-01

    A range of La{sub 0.75}Sr{sub 0.25}Cr{sub 0.5}Mn{sub 0.5}O{sub 3-{delta}} (LSCM) powders is prepared by the carbonate coprecipitation method for use as anodes in solid oxide fuel cells. The supersaturation ratio (R = [(NH{sub 4}){sub 2}CO{sub 3}]/([La{sup 3+}] + [Sr{sup 2+}] + [Cr{sup 3+}] + [Mn{sup 2+}])) during the coprecipitation determines the relative compositions of La, Sr, Cr, and Mn. The composition of the precursor approaches the stoichiometric one at the supersaturation range of 4 {<=} R {<=} 12.5, whereas Sr and Mn components are deficient at R < 4 and excessive at R = 25. The fine and phase-pure LSCM powders are prepared by heat treatment at very low temperature (1000 C) at R = 7.5 and 12.5. By contrast, the solid-state reaction requires a higher heat-treatment temperature (1400 C). The catalytic activity of the LSCM electrodes is enhanced by using carbonate-derived powders to manipulate the electrode microstructures. (author)

  9. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  10. Evolution with time of 12 metals (V, Cr, Mn, Co, Cu, Zn, Ag, Cd, Ba, Pb, Bi and U) and of lead isotopes in the snows of Coats Land (Antarctica) since the 1830's

    International Nuclear Information System (INIS)

    Planchon, F.

    2001-01-01

    This work shows that it is now possible to get reliable data on the occurrence of numerous heavy metals at ultra low levels in Antarctic snow, by combining ultra clean field sampling and laboratory sub-sampling procedures and the use of ultra sensitive analytical techniques such as ICP-SFMS and TIMS. It has allowed us to determine concentrations of twelve metals (V, Cr, Mn, Co, Cu, Zn, Ag, Cd, Ba, Pb, Bi et U) and lead isotopic composition in the ultra clean series of snow samples collected at Coats Land, in the Atlantic sector of Antarctica. This work presents a 150 years record of metal inputs from natural and anthropogenic sources to Antarctica from the 1830's to the early 1990's. Lead atmospheric pollution begins as early as the end of the 19. century, peaks during the 1970's-1980's and then falls sharply during recent decades. Evolution in lead isotopic abundance shows that Pb inputs to Antarctica reflect a complex blend of contributions originating from the Southern part of South America and Australia. For Cr, Cu, Zn, Ag, Bi and U, concentrations in the snow show significant increases from 1950 to 1980. These enhancements which cannot be explained by variations in natural inputs, illustrate that atmospheric pollution for heavy metals linked with anthropogenic activities in the Southern Hemisphere countries such as for example ferrous and non-ferrous metal mining and smelting is really global. Study of the time period 1920-1990, has allowed us to detail short-term (intra and inter annual) heavy metals concentration's changes. The large short-term variability, observed in Coats Land snow, shows the complex patterns of metal inputs to Antarctica, associated for instance to changes in long-range transport processes from mid-latitude to polar zone and to variability in the different natural sources, such local volcanic activity, sea-salt spray or crustal dust inputs. (author)

  11. First-Principles Study on Cathode Properties of Li2MTiO4 (M = V, Cr, Mn, Fe, Co, and Ni) with Oxygen Deficiency for Li-Ion Batteries

    Science.gov (United States)

    Hamaguchi, Motoyuki; Momida, Hiroyoshi; Oguchi, Tamio

    2018-04-01

    We study the cathode properties of Li2MTiO4 (M = V, Cr, Mn, Fe, Co, and Ni) for Li-ion batteries by performing first-principles calculations. Formation energies and voltages for Li2-xMTiO4 (0 ≤ x ≤ 2) models with rock-salt-based structures considering several Li concentrations (2 - x) are calculated. Two dominant charge/discharge reaction mechanisms associated with redox reactions of M and O are found mainly in the ranges of lower and higher x, respectively. In the higher-x region, the O redox reactions can destabilize atomic structures, because the electron removal from O-p states produces high peaks at the fermi level in the density of states. The structural stability of O using the models with O deficiency is calculated, and the result shows that O can dissociate much more easily than Li in the higher-x region. The critical Li concentration at which the vacancy formation energy of O becomes lower than that of Li is estimated, and the critical x value decreases with increasing number of 3d electrons as M changes from V to Ni. The calculated voltages of Li2MTiO4 with O deficiency are lower than those without O deficiency, showing that the O dissociation degrades battery performances. Our systematic study for the series of M predicts that Li2CrTiO4 may be the best cathode material considering its cathode properties of high voltage and stability against O dissociation.

  12. An anti CuO{sub 2}-type metal hydride square net structure in Ln{sub 2}M{sub 2}As{sub 2}H{sub x} (Ln = La or Sm, M = Ti, V, Cr, or Mn)

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, Hiroshi; Park, SangWon; Hosono, Hideo [Tokyo Institute of Technology, Yokohama (Japan). Materials Research Center for Element Strategy; Hiraka, Haruhiro; Ikeda, Kazutaka; Otomo, Toshiya [High-Energy Accelerator Research Organization (KEK), Tsukuba (Japan). Inst. of Materials Structure Science

    2015-03-02

    Using a high pressure technique and the strong donating nature of H{sup -}, a new series of tetragonal La{sub 2}Fe{sub 2}Se{sub 2}O{sub 3}-type layered mixed-anion arsenides, Ln{sub 2}M{sub 2}As{sub 2}H{sub x}, was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x∼3). In these compounds, an unusual M{sub 2}H square net, which has anti CuO{sub 2} square net structures accompanying two As{sup 3-} ions, is sandwiched by (LaH){sub 2} fluorite layers. Notably, strong metal-metal bonding with a distance of 2.80 Aa was confirmed in La{sub 2}Ti{sub 2}As{sub 2}H{sub 2.3}, which has metallic properties. In fact, these compounds are situated near the boundary between salt-like ionic hydrides and transition-metal hydrides with metallic characters.

  13. An anti CuO{sub 2}-type metal hydride square net structure in Ln{sub 2}M{sub 2}As{sub 2}H{sub x} (Ln = La or Sm, M = Ti, V, Cr, or Mn)

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, Hiroshi; Park, SangWon; Hosono, Hideo [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Hiraka, Haruhiro; Ikeda, Kazutaka; Otomo, Toshiya [Institute of Materials Structure Science, High-Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2015-03-02

    Using a high pressure technique and the strong donating nature of H{sup -}, a new series of tetragonal La{sub 2}Fe{sub 2}Se{sub 2}O{sub 3}-type layered mixed-anion arsenides, Ln{sub 2}M{sub 2}As{sub 2}H{sub x}, was synthesized (Ln=La or Sm, M=Ti, V, Cr, or Mn; x∼3). In these compounds, an unusual M{sub 2}H square net, which has anti CuO{sub 2} square net structures accompanying two As{sup 3-} ions, is sandwiched by (LaH){sub 2} fluorite layers. Notably, strong metal-metal bonding with a distance of 2.80 Aa was confirmed in La{sub 2}Ti{sub 2}As{sub 2}H{sub 2.3}, which has metallic properties. In fact, these compounds are situated near the boundary between salt-like ionic hydrides and transition-metal hydrides with metallic characters. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Study of vibrational and rapid local motions of hydrogen in the storage compound Ti0.8 Zr0.2 CrMnH3 by slow neutron scattering

    International Nuclear Information System (INIS)

    Mestnik Filho, J.

    1987-01-01

    The vibrational and the rapid local motions of hydrogen in the storage compound Ti 0,8 Zr 0,2 CrMnH 3 have been studied by slow neutron scattering with the beryllium-filter-time-of-flight spectrometer. The form of the density of states of the normal modes of vibrations in host metal does no appear to change on hydrogenation, but a shift of 25% towards lower frequencies has been observed. Debye temperatures for the metal and corresponding hydride have been estimated to be respectively (522 +- 15)K and (311 +- 10)K. An energy distribution consisting of three peeks ∼ 50mev (FWHM) wide corresponding to the energy transfer of 85, 115 and 141mev has been observed and were attributed to hydrogen local vibrations in three types of interstices wich differs in composition of Ti and Zr atoms. In the quasielastic scattering, a broadening of 15μev has been detected for the momentum transfer Q = 2,1(angstrom) -1 and for temperature T= 125 0 C. The broadening has been attributed to rapid local motions of hydrogen in a dumb-bell of lenght equal to the jump lenght for diffusion, l approx. 3(angstrom). (author) [pt

  15. Study of the properties of flux cored wire of Fe-C-Si-Mn-Cr-Mo-Ni-V-Co system for the strengthening of nodes and parts of equipment used in the mineral mining

    Science.gov (United States)

    Gusev, A. I.; Kozyrev, N. A.; Usoltsev, A. A.; Kryukov, R. E.; Osetkovsky, I. V.

    2017-09-01

    The effect of the introduction of vanadium and cobalt into the charge of the powder surfacing wire of Fe-C-Si-Mn-Cr-Mo-Ni system is studied. In the laboratory conditions, the samples of flux cored wires were produced. The surfacing made by the prepared wire was produced under the flux AN-26C, on the plates of steel St3 in 6 layers with the help of ASAW-1250 welding tractor. Reduction of carbon content in the deposited layer to 0.19-0.2% with simultaneous change in the content of chromium, nickel, molybdenum and other elements present in it contributes to the enlargement of the martensite needles and the increase in the size of the former austenite grain. The obtained dependences of hardness of the deposited layer and its wear resistance on the mass fraction of elements, included in the composition of powder wires of the proposed system, can be used to predict the hardness of the welded layer and its wear resistance under different operating conditions for mining equipment and coal mining equipment.

  16. Microstructure and mechanical performance of depositing CuSi3 Cu alloy onto 30CrMnSi steel plate by the novel consumable and non-consumable electrodes indirect arc welding

    International Nuclear Information System (INIS)

    Wang, Jun; Cao, Jian; Feng, Jicai

    2010-01-01

    A novel consumable and non-consumable electrodes indirect arc welding (CNC-IAW) with low heat input was successfully applied in depositing CuSi 3 Cu alloy onto 30CrMnSi steel plate. The indirect arc was generated between the consumable and non-consumable welding torch. The microstructure of the deposited weld was analyzed by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and optical microscopy (OM). The results showed that the dilution ratio of the bead-on-plate weld was controlled no higher than 5% and the deleterious iron picking up was effectively restrained. The deposited metal mainly consisted of ε-Cu solid solution and a small amount of Fe 2 Si phase. In the interfacial zone between the deposited metal and base metal, the thickness of the zone changed from thick to thin and the microstructure changed from complex to simple from the middle to both sides. In the middle of the interfacial zone, the microstructure presented three sub-layers consisting of Fe 3 Si (L)/Fe 3 Si (S) + ε-Cu/α-Fe. In the both sides of the interfacial zone, the microstructure presented single α-Fe layer. The formation mechanism of the interfacial zone could be successfully explained by the formation of the Fe liquid-solid phase zone adjacent to the Fe base metal and the interfusion between Fe and Si. The average compressive shear strength reached 321 MPa and its fracture morphology mainly belonged to ductile fracture.

  17. Study of Sn100-xMnx amorphous system by 119Sn Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Drago, V.

    1986-01-01

    Thin films of Sn 100-x Mn x amorphous alloys with large range of concentrations were procedure by vapor condensation technique on substrates at temperatures near to liquid helium. The magnetic and paramagnetic hyperfine spectra, and the ordering temperatures were measured by 119 Sn Moessbauer effect. The electrical resistivity was used for characterizing the amorphous state. All the measurements were done 'in situ'. A magnetic phase diagram is proposed. (M.C.K.) [pt

  18. Peculiarities of component interaction in {Gd, Er}-V-Sn Ternary systems at 870 K and crystal structure of RV6Sn6 stannides

    International Nuclear Information System (INIS)

    Romaka, L.; Stadnyk, Yu.; Romaka, V.V.; Demchenko, P.; Stadnyshyn, M.; Konyk, M.

    2011-01-01

    Highlights: → {Gd, Er}-V-Sn ternary systems at 870 K are characterized by formation of stannides with general compositions RV 6 Sn 6 . → Isostructural RV 6 Sn 6 compounds were also found with Y, Dy, Ho, Tm, and Lu. → The crystal structure of RV 6 Sn 6 compounds was determined by powder diffraction method. → Structural analysis showed that RV 6 Sn 6 compounds (R = Gd, Dy-Tm, Lu) are disordered; YV 6 Sn 6 is characterized by structure ordering. - Abstract: The phase equilibria in the Gd-V-Sn and Er-V-Sn ternary systems were studied at 870 K by means of X-ray and metallographic analyses in the whole concentration range. Both Gd-V-Sn and Er-V-Sn systems are characterized by formation of one ternary compound at investigated temperature, with stoichiometry RV 6 Sn 6 (SmMn 6 Sn 6 -type, space group P6/mmm, a = 0.55322(3) nm, c = 0.91949(7) nm for Gd, a = 0.55191(2) nm, c = 0.91869(8) nm for Er). Solubility of the third component in the binary compounds was not observed. Compounds with the SmMn 6 Sn 6 -type were also found with Dy, Ho, Tm, and Lu, while YV 6 Sn 6 compound crystallizes in HfFe 6 Ge 6 structure type. All investigated compounds are the first ternary stannides with rare earth elements and vanadium.

  19. Zwitterion-functionalized polymer microspheres as a sorbent for solid phase extraction of trace levels of V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) prior to their determination by ICP-MS.

    Science.gov (United States)

    Jia, Xiaoyu; Gong, Dirong; Zhao, Junyi; Ren, Hongyun; Wang, Jiani; Zhang, Xian

    2018-03-19

    This paper describes the preparation of zwitterion-functionalized polymer microspheres (ZPMs) and their application to simultaneous enrichment of V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) from environmental water samples. The ZPMs were prepared by emulsion copolymerization of ethyl methacrylate, 2-diethylaminoethyl methacrylate and triethylene glycol dimethyl acrylate followed by modification with 1,3-propanesultone. The components were analyzed by elemental analyses as well as Fourier transform infrared spectroscopy, and the structures were characterized by scanning electron microscopy and transmission electron microscopy. The ZPMs were packed into a mini-column for on-line solid-phase extraction (SPE) of the above metal ions. Following extraction with 40 mM NH 4 NO 3 and 0.5 M HNO 3 solution, the ions were quantified by ICP-MS. Under the optimized conditions, the enrichment factors (from a 40 mL sample) are up to 60 for the ions V(V), As(III), Sb(III) and Hg(II), and 55 for Cr(III) and Sn(IV). The detection limits are 1.2, 3.4, 1.0, 3.7, 2.1 and 1.6 ng L -1 for V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II), respectively, and the relative standard deviations (RSDs) are below 5.2%. The feasibility and accuracy of the method were validated by successfully analyzing six certified reference materials as well as lake, well and river waters. Graphical abstract Zwitterion-functionalized polymer microspheres (ZPMs) were prepared and packed into a mini-column for on-line solid-phase extraction (SPE) via pump 1. Then V(V), Cr(III), As(III), Sn(IV), Sb(III) and Hg(II) ions in environmental waters were eluted and submitted to ICP-MS via pump 2.

  20. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn2GaC

    International Nuclear Information System (INIS)

    Thore, A.; Dahlqvist, M.; Alling, B.; Rosén, J.

    2014-01-01

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn 2 GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants, the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn 2 GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M 2 AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.

  1. Impregnación de la perovskita La0.8Sr0.2Cr0.5Mn0.5O3-δ como ánodo en celdas SOFC

    Directory of Open Access Journals (Sweden)

    José Juan Alvarado Flores

    2015-09-01

    Full Text Available Se han sintetizado a través del método sol-gel, y caracterizado por varias técnicas, nuevos compósitos tipo perovskita de La0,8Sr0,2Cr0,5Mn0,5O3-δ (LSCM, utilizando cobre (XCu; X = 25, 35 y 45% como aditivo formador del cermet LSCM + Cu para utilizarse como ánodos alternativos en celdas de combustible de óxido sólido de temperatura intermedia (IT-SOFC. Se confirma por difracción de rayos X (XRD la formación de fase de los cermets LSCM-Cu. La conductividad eléctrica obtenida desde temperatura ambiente hasta 800 °C indica la presencia de 2 tipos de comportamiento tanto semiconductor como metálico. Cuando la concentración de Cu fue del 25 y del 35%, el comportamiento que dominó fue del tipo semiconductor. La determinación de los coeficientes de expansión térmica (TEC mostró una dependencia lineal inversamente proporcional a la concentración de Cu. Nuestros resultados de conductividad eléctrica, análisis morfológico y TEC sugieren que los ánodos con 25 y 35% de Cu tienen la mayor posibilidad para aplicarse en las celdas tipo SOFC-IT.

  2. A bottom-up building process of nanostructured La0.75Sr0.25Cr0.5Mn0.5O3-δ electrodes for symmetrical-solid oxide fuel cell: Synthesis, characterization and electrocatalytic testing

    Science.gov (United States)

    Chanquía, Corina M.; Montenegro-Hernández, Alejandra; Troiani, Horacio E.; Caneiro, Alberto

    2014-01-01

    Pure-phase La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) nanocrystallites have been successfully synthesized by the combustion method, employing glycine as fuel and complexing agent, and ammonium nitrate as combustion trigger. A detailed morphological and structural characterization is performed, by using of X-ray diffraction, N2 physisorption and electron microscopy. The LSCM material consists in interconnected nanocrystallites (∼30 nm) forming a sponge-like structure with meso and macropores, being its specific surface area around 10 m2 g-1. Crystalline structural analyses show that the LSCM nanopowder has trigonal/rhombohedral symmetry in the R-3c space group. By employing the spin coating technique and quick-stuck thermal treatments of the ink-electrolyte, electrodes with different crystallite size (95, 160 and 325 nm) are built onto both sides of the La0.8Sr0.2Ga0.8Mg0.2O3-δ-disk electrolyte. To test the influence of the electrode crystallite size on the electrocatalytic behavior of the symmetrical cells, electrochemical impedance spectroscopy measurements at 800 °C were performed. When the electrode crystallite size becomes smaller, the area specific resistance decreases from 3.6 to 1.31 Ω cm2 under 0.2O2-0.8Ar atmosphere, possibly due to the enlarging of the triple-phase boundary, while this value increases from 7.04 to 13.78 Ω cm2 under 0.17H2-0.03H2O-0.8Ar atmosphere, probably due to thermodynamic instability of the LSCM nanocrystallites.

  3. Gaseous Phase and Electrochemical Hydrogen Storage Properties of Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu for Nickel Metal Hydride Battery Applications

    Directory of Open Access Journals (Sweden)

    Jean Nei

    2016-07-01

    Full Text Available Structural, gaseous phase hydrogen storage, and electrochemical properties of a series of the Ti50Zr1Ni44X5 (X = Ni, Cr, Mn, Fe, Co, or Cu metal hydride alloys were studied. X-ray diffraction (XRD and scanning electron microscopy (SEM revealed the multi-phase nature of all alloys, which were composed of a stoichiometric TiNi matrix, a hyperstoichiometric TiNi minor phase, and a Ti2Ni secondary phase. Improvement in synergetic effects between the main TiNi and secondary Ti2Ni phases, determined by the amount of distorted lattice region in TiNi near Ti2Ni, was accomplished by the substitution of an element with a higher work function, which consequently causes a dramatic increase in gaseous phase hydrogen storage capacity compared to the Ti50Zr1Ni49 base alloy. Capacity performance is further enhanced in the electrochemical environment, especially in the cases of the Ti50Zr1Ni49 base alloy and Ti50Zr1Ni44Co5 alloy. Although the TiNi-based alloys in the current study show poorer high-rate performances compared to the commonly used AB5, AB2, and A2B7 alloys, they have adequate capacity performances and also excel in terms of cost and cycle stability. Among the alloys investigated, the Ti50Zr1Ni44Fe5 alloy demonstrated the best balance among capacity (394 mAh·g−1, high-rate performance, activation, and cycle stability and is recommended for follow-up full-cell testing and as the base composition for future formula optimization. A review of previous research works regarding the TiNi metal hydride alloys is also included.

  4. Electronic structure of homoleptic transition metal hydrides: TiH4, VH4, CrH4, MnH4, FeH4, CoH4, and NiH4

    International Nuclear Information System (INIS)

    Hood, D.M.; Pitzer, R.M.; Schaefer III, H.F.

    1979-01-01

    Ab initio molecular electronic structure theory has been applied to the family of transition metal tetrahydrides TiH 4 through NiH 4 . For the TiH 4 molecule a wide range of contracted Gaussian basis sets has been tested at the self-consistent-field (SCF) level of theory. The largest basis, labeled M(14s 11p 6d/10s 8p 3d), H(5s 1p/3s 1p), was used for all members of the series and should yield wave functions approaching true Hartree-Fock quality. Predicted SCF dissociation energies (relative to M+4H) and M--H bond distances are TiH 4 132 kcal, 1.70 A; VH 4 86 kcal, 1.64 A; CrH 4 65 kcal, 1.59 A; MnH 4 -- 36 kcal, 1.58 A; FeH 4 0 kcal, 1.58 A; CoH 4 27 kcal, 1.61 A; and NiH 4 18 kcal, 1.75 A. It should be noted immediately that each of these SCF dissociation energies will be increased by electron correlation effects by perhaps as much as 90 kcal. For all of these molecules except TiH 4 excited states have also been studied. One of the most interesting trends seen for these excited states is the shortening of the M--H bond as electrons are transferred from the antibonding 4t 2 orbital to the nonbonding 1e orbitals

  5. Influência da refusão por plasma na microestrutura de um revestimento Fe-Mn-Cr-Si depositado por aspersão térmica arco elétrico sobre aço inoxidável ASTM A743-CA6NM Influence of plasma remelting on the microstructure of Fe-Mn-Cr-Si arc thermal spray coating deposited on ASTM A743-CA6NM stainless steel

    Directory of Open Access Journals (Sweden)

    Anderson Geraldo Marenda Pukasiewicz

    2012-03-01

    Full Text Available ASTM A743-CA6NM é um aço inoxidável martensítico muito utilizado na fabricação de turbinas hidráulicas devido a sua elevada tenacidade, entretanto apresenta restrições com relação à regiões recuperadas por soldagem. Diferentes técnicas de deposição tem sido aplicadas com o intuito de reduzir ou eliminar a tensão residual. A deposição de revestimentos resistentes a cavitação é outra forma importante de aumentar a vida útil destes componentes. O objetivo deste trabalho é avaliar a influência do tipo e intensidade de corrente de refusão por plasma na microestrutura, composição química e microdureza de um revestimento Fe-Mn-Cr-Si resistente a cavitação depositado por aspersão térmica arco elétrico sobre aço ASTMA743-CA6NM. Observou-se que a adoção de menores valores de corrente média, assim como a utilização de corrente pulsada reduziram a formação de ferrita δ e a espessura final da ZTA, possibilitando a formação do revestimento com menores alterações na microestrutura do metal base. Verificou-se que a microestrutura e microdureza dos revestimentos refundidos não se mostraram muito sensível a variações na diluição do metal base. A utilização de corrente contínua promoveu um alinhamento da estrutura dendrítica no sentido da movimentação da tocha, entretanto este comportamento não foi observado em revestimentos refundidos com corrente pulsada.ASTM A743-CA6NM martensitic stainless steel have been used in hydraulic turbines manufacturing, but show some restrictions in welded recovered areas. Different techniques have been applied in order to reduce or eliminate residual stress, with life increase. The deposition of cavitation resistant coatings is another important way to increase the service life of these components. The objective of this study is evaluate the influence of type and intensity of plasma remelting current on the microstructure, chemical composition and microhardness of the Fe-Cr-Mn

  6. Beta-decay studies near 100Sn

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Karny, M.; Batist, L.; Banu, A.; Becker, F.; Blazhev, A.; Burkard, K.; Bruchle, W.; Doring, J.; Faestermann, T.; Gorska, M.; Grawe, H.; Janas, Z.; Jungclaus, A.; Kavatsyuk, M.; Kavatsyuk, O.; Kirchner, R.; La Commara, M.; Mandal, S.; Mazzocchi, C.; Miernik, K.; Mukha, I.; Muralithar, S.; Plettner, C.; Plochocki, A.; Roeckl, E.; Romoli, M.; Schadel, M.; Schmidt, K.; Schwengner, R.; Zylicz, J.

    2005-01-01

    The β-decay of 102 Sn was studied by using high-resolution germanium detectors as well as a Total Absorption Spectrometer (TAS). A decay scheme has been constructed based on the γ-γ coincidence data. The total experimental Gamow-Teller strength B GT exp of 102 Sn was deduced from the TAS data to be 4.2(9). A search for β-delayed γ-rays of 100 Sn decay remained unsuccessful. However, a Gamow-Teller hindrance factor h = 2.2(3), and a cross-section of about 3nb for the production of 100 Sn in fusion-evaporation reaction between 58 Ni beam and 50 Cr target have been estimated from the data on heavier tin isotopes. The estimated hindrance factor is similar to the values derived for lower shell nuclei

  7. Hyperfine field distributions in disordered Mn2CoSn and Mn2NiSn ...

    Indian Academy of Sciences (India)

    Unknown

    Jha S, Seyoum H M, Demarco M, Julian G M, Stubbs D A,. Blue J W, Silva M T X and Vasquez A 1983 Hyperfine Inter- act. 15/16 685. Ritcey S P and Dunlap R A 1984 J. Appl. Phys. 55 2051. Surikov V V, Zhordochkin V N and Astakhova T Yu 1990. Hyperfine Interact. 59 469. Webster P J and Ziebeck K R A 1973 J. Phys.

  8. Effect of small quantity of chromium on the electrical, magnetic and magnetocaloric properties of Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.98}Cr{sub 0.02}O{sub 3} manganite

    Energy Technology Data Exchange (ETDEWEB)

    Bettaibi, A.; Rahmouni, H. [Universite de Gabes, Laboratoire de Physique des Materiaux et des Nanomateriaux appliquee a l' Environnement, Faculte des Sciences de Gabes cite Erriadh, Gabes (Tunisia); M' nassri, R. [Kairouan University, Higher Institute of Applied Sciences and Technology of Kasserine, Kasserine (Tunisia); Universite de Monastir, Laboratoire de Physico-Chimie des Materiaux, Departement de Physique, Faculte des Sciences de Monastir, Monastir (Tunisia); Selmi, A.; Cheikhrouhou, A. [Sfax University, Laboratory of Physics of Materials, Faculty of Sciences of Sfax, Sfax (Tunisia); Khirouni, K. [Kairouan University, Higher Institute of Applied Sciences and Technology of Kasserine, Kasserine (Tunisia); Chniba Boudjada, N. [Institut NEEL, Grenoble Cedex 09 (France)

    2016-03-15

    Structural, electrical and thermomagnetic properties of Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.98}Cr{sub 0.02}O{sub 3} were investigated. Sample was prepared by solid-state reaction method. X-ray diffraction revealed that the sample crystallizes in the orthorhombic system with Pnma space group. Electrical conductivity and complex impedance studies of Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.98}Cr{sub 0.02}O{sub 3} system are analyzed. The investigated compound exhibits a semiconductor behavior in the whole explored temperature range. From 100 to 206 K, the increase in DC conductance is more than two decade. At higher temperatures, the conductance varies slowly and a saturation region appears. The conduction mechanism is found to be governed by small polaron hopping process which is explained by the short range thermally activated energy. Conductance spectrum is well described by Jonsher law, and the temperature dependence of the frequency exponent confirms that conduction mechanism is governed by hopping process of the localized carriers. Using complex impedance analysis, the compound is modeled by an electrical equivalent circuit. Also, such analysis confirms the contribution of grain boundary to the transport properties. The substitution of Mn by 2 % Cr destroyed the charge order state observed in the parent compound and induced a ferromagnetic phase at low temperatures. For a magnetic field change of 5 T, the material shows a maximum magnetic entropy change ∇S {sup max} = 2.69 J kg{sup -1} K{sup -1} with a full width at half maximum δ {sub TFWHM} = 145 K, and a relative cooling power RCP = 389 J kg{sup -1}. Pr{sub 0.7}Ca{sub 0.3}Mn{sub 0.98}Cr{sub 0.02}O{sub 3} material demonstrates potential proprieties to be used in electronic and thermal devices and as magnetic refrigerant. (orig.)

  9. Směsné oxidy připravené tepelným rozkladem Co-Mn-Al hydrotalcitů a jejich katalytické vlastnosti

    Czech Academy of Sciences Publication Activity Database

    Kovanda, F.; Rojka, T.; Jirátová, Květa; Obalová, L.; Grygar, Tomáš

    2005-01-01

    Roč. 1, - (2005), s. 81 ISSN 1336-7242. [Zjazd chemických spoločností /57./. 04.09.2005-08.09.2005, Tatranské Matliare] R&D Projects: GA ČR(CZ) GA104/04/2116; GA ČR(CZ) GA106/05/0366 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrotalcites * layered - double hydroxides * Co-Mn-Al mixed oxides Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Crystal structure, Raman scattering and magnetic properties of CuCr2-xZrxSe4 and CuCr2-xSnxSe4 selenospinels

    Science.gov (United States)

    Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.

    2018-06-01

    Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.

  11. Amorphous magnetism in Mnx Sn1-x alloys

    International Nuclear Information System (INIS)

    Drago, V.; Saitovitch, E.M.B.; Abd-Elmeguid, M.M.

    1988-01-01

    Systematic low temperature in situ 119 Sn Moessbauer effect (ME) studies in vapor quenched amorphous Mn x Sn 1-x (0.09≤ x ≤0,95) alloys between 150 and 4.2 K, are presented. Its is shown that the magnetic behavior of the system is correctly displayed by the transferred magnetic hyperfine (hf) interactions, at the 119 Sn site. A complete magnetic phase diagram is proposed, and the effect of an external magnetic field (up to about 3T) on the spin correlations in the spin-glass state is also discussed. (author) [pt

  12. Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Wongyu; Jeong, Daeho; Sung, Hyokyung; Kim, Sangshik, E-mail: sang@gnu.ac.kr

    2017-02-15

    Tensile and high cycle fatigue behaviors of high-Mn austenitic steels, including 25Mn, 25Mn0.2Al, 25Mn0.5Cu, 24Mn4Cr, 22Mn3Cr and 16Mn2Al specimens, were investigated at 298 and 110 K. Depending on the alloying elements, tensile ductility of high-Mn steels either increased or decreased with decreasing temperature from 298 to 110 K. Reasonable correlation between the tendency for martensitic tranformation, the critical twinning stress and the percent change in tensile elongation suggested that tensile deformation of high-Mn steels was strongly influenced by SFE determining TRIP and TWIP effects. Tensile strength was the most important parameter in determining the resistance to high cycle fatigue of high-Mn steels with an exceptional work hardening capability at room and cryogenic temperatures. The fatigue crack nucleation mechanism in high-Mn steels did not vary with decreasing tempertature, except Cr-added specimens with grain boundary cracking at 298 K and slip band cracking at 110 K. The EBSD (electron backscatter diffraction) analyses suggested that the deformation mechanism under fatigue loading was significantly different from tensile deformation which could be affected by TRIP and TWIP effects. - Highlights: •The resistances to HCF of various high-Mn steels were measured. •The variables affecting tensile and HCF behaviors of high-Mn steels were assessed. •The relationship between tensile and the HCF behaviors of high-Mn steels was established.

  13. Magnetotransport in La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/CuCr{sub 2}O{sub 4}/Fe{sub 3}O{sub 4} magnetic junctions

    Energy Technology Data Exchange (ETDEWEB)

    Iwata-Harms, Jodi M.; Suzuki, Yuri [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); Department of Applied Physics and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Chopdekar, Rajesh V. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States); School of Applied and Engineering Physics, Cornell Unive