WorldWideScience

Sample records for covalently bonded disordered

  1. Covalent versus ionic bonding in alkalimetal fluoride oligomers

    NARCIS (Netherlands)

    Bickelhaupt, F.M.; Sola, M.; Fonseca Guerra, C.

    2007-01-01

    The most polar bond in chemistry is that between a fluorine and an alkalimetal atom. Inspired by our recent finding that other polar bonds (C - M and H - M) have important covalent contributions (i.e., stabilization due to bond overlap), we herein address the question if covalency is also essential

  2. Covalent bonding in heavy metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S.; Nelin, Connie J.; Hrovat, Dave A.; Ilton, Eugene S.

    2017-04-07

    Novel theoretical methods were used to quantify the magnitude and the energetic contributions of 4f/5f-O2p and 5d/6d-O2p interactions to covalent bonding in lanthanide and actinide oxides. Although many analyses have neglected the involvement of the frontier d orbitals, the present study shows that f and d covalency are of comparable importance. Two trends are identified. As is expected, the covalent mixing is larger when the nominal oxidation state is higher. More subtly, the importance of the nf covalent mixing decreases sharply relative to (n+1)d as the nf occupation increases. Atomic properties of the metal cations that drive these trends are identified.

  3. Evidence of significant covalent bonding in Au(CN)(2)(-).

    Science.gov (United States)

    Wang, Xue-Bin; Wang, Yi-Lei; Yang, Jie; Xing, Xiao-Peng; Li, Jun; Wang, Lai-Sheng

    2009-11-18

    The Au(CN)(2)(-) ion is the most stable Au compound known for centuries, yet a detailed understanding of its chemical bonding is still lacking. Here we report direct experimental evidence of significant covalent bonding character in the Au-C bonds in Au(CN)(2)(-) using photoelectron spectroscopy and comparisons with its lighter congeners, Ag(CN)(2)(-) and Cu(CN)(2)(-). Vibrational progressions in the Au-C stretching mode were observed for all detachment transitions for Au(CN)(2)(-), in contrast to the atomic-like transitions for Cu(CN)(2)(-), revealing the Au-C covalent bonding character. In addition, rich electronic structural information was obtained for Au(CN)(2)(-) by employing 118 nm detachment photons. Density functional theory and high-level ab initio calculations were carried out to understand the photoelectron spectra and obtain insight into the nature of the chemical bonding in the M(CN)(2)(-) complexes. Significant covalent character in the Au-C bonding due to the strong relativistic effects was revealed in Au(CN)(2)(-), consistent with its high stability.

  4. Covalently bonded disordered thin-film materials. Materials Research Society symposium proceedings Volume 498

    International Nuclear Information System (INIS)

    Siegal, M.P.; Milne, W.I.; Jaskie, J.E.

    1998-01-01

    The current and potential impact of covalently bonded disordered thin films is enormous. These materials are amorphous-to-nanocrystalline structures made from light atomic weight elements from the first row of the periodic table. Examples include amorphous tetrahedral diamond-like carbon, boron nitride, carbon nitride, boron carbide, and boron-carbon-nitride. These materials are under development for use as novel low-power, high-visibility elements in flat-panel display technologies, cold-cathode sources for microsensors and vacuum microelectronics, encapsulants for both environmental protection and microelectronics, optical coatings for laser windows, and ultra-hard tribological coatings. researchers from 17 countries and a broad range of academic institutions, national laboratories and industrial organizations come together in this volume to report on the status of key areas and recent discoveries. More specifically, the volume is organized into five sections. The first four highlight ongoing work primarily in the area of amorphous/nanocrystalline (disordered) carbon thin films; theoretical and experimental structural characterization; electrical and optical characterizations; growth methods; and cold-cathode electron emission results. The fifth section describes the growth, characterization and application of boron- and carbon-nitride thin films

  5. Binding matter with antimatter: the covalent positron bond.

    Science.gov (United States)

    Charry, Jorge Alfonso; Varella, Marcio T Do N; Reyes, Andrés

    2018-05-16

    We report sufficient theoretical evidence of the energy stability of the e⁺H₂²⁻ molecule, formed by two H⁻ anions and one positron. Analysis of the electronic and positronic densities of the latter compound undoubtedly points out the formation of a positronic covalent bond between the otherwise repelling hydride anions. The lower limit for the bonding energy of the e⁺H₂²⁻ molecule is 74 kJ/mol (0.77 eV), accounting for the zero-point vibrational correction. The formation of a non electronic covalent bond is fundamentally distinct from positron attachment to stable molecules, as the latter process is characterized by a positron affinity, analogous to the electron affinity. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. 共价键的离子化%Ionization of Covalent Bond

    Institute of Scientific and Technical Information of China (English)

    王稼国; 荆西平

    2017-01-01

    本文用化学键理论分析和推导了共价键离子化的几种方式,包括金属和非金属单质中共价键的诱导离子化、化合物中共价键的降温和自诱导离子化以及含氢化合物和金属化合物的诱导离子化.从能量角度分析了离子化趋势的规律性,并且讨论了共价键的离子化的一些重要应用.%Several ionization patterns of covalent bond,including induced-ionization of covalent bond in metals and nonmetals,induced-ionization of covalent bond in hydrogen compounds and metal compounds,lowering temperature and self-induced ionization of compound,and so on,were dedueed and analyzed by using chemical bond theory.The trend of ionization was also analyzed on energy changing and several important applications of the ionization of covalent bond were discussed.

  7. Hydrogels Based on Dynamic Covalent and Non Covalent Bonds: A Chemistry Perspective

    Directory of Open Access Journals (Sweden)

    Francesco Picchioni

    2018-03-01

    Full Text Available Hydrogels based on reversible covalent bonds represent an attractive topic for research at both academic and industrial level. While the concept of reversible covalent bonds dates back a few decades, novel developments continue to appear in the general research area of gels and especially hydrogels. The reversible character of the bonds, when translated at the general level of the polymeric network, allows reversible interaction with substrates as well as responsiveness to variety of external stimuli (e.g., self-healing. These represent crucial characteristics in applications such as drug delivery and, more generally, in the biomedical world. Furthermore, the several possible choices that can be made in terms of reversible interactions generate an almost endless number of possibilities in terms of final product structure and properties. In the present work, we aim at reviewing the latest developments in this field (i.e., the last five years by focusing on the chemistry of the systems at hand. As such, this should allow molecular designers to develop a toolbox for the synthesis of new systems with tailored properties for a given application.

  8. Application of the Covalent Bond Classification Method for the Teaching of Inorganic Chemistry

    Science.gov (United States)

    Green, Malcolm L. H.; Parkin, Gerard

    2014-01-01

    The Covalent Bond Classification (CBC) method provides a means to classify covalent molecules according to the number and types of bonds that surround an atom of interest. This approach is based on an elementary molecular orbital analysis of the bonding involving the central atom (M), with the various interactions being classified according to the…

  9. Covalent bond force profile and cleavage in a single polymer chain

    Science.gov (United States)

    Garnier, Lionel; Gauthier-Manuel, Bernard; van der Vegte, Eric W.; Snijders, Jaap; Hadziioannou, Georges

    2000-08-01

    We present here the measurement of the single-polymer entropic elasticity and the single covalent bond force profile, probed with two types of atomic force microscopes (AFM) on a synthetic polymer molecule: polymethacrylic acid in water. The conventional AFM allowed us to distinguish two types of interactions present in this system when doing force spectroscopic measurements: the first interaction is associated with adsorption sites of the polymer chains onto a bare gold surface, the second interaction is directly correlated to the rupture process of a single covalent bond. All these bridging interactions allowed us to stretch the single polymer chain and to determine the various factors playing a role in the elasticity of these molecules. To obtain a closer insight into the bond rupture process, we moved to a force sensor stable in position when measuring attractive forces. By optimizing the polymer length so as to fulfill the elastic stability conditions, we were able for the first time to map out the entire force profile associated with the cleavage of a single covalent bond. Experimental data coupled with molecular quantum mechanical calculations strongly suggest that the breaking bond is located at one end of the polymer chain.

  10. Preventing disulfide bond formation weakens non-covalent forces among lysozyme aggregates.

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Ravi

    Full Text Available Nonnative disulfide bonds have been observed among protein aggregates in several diseases like amyotrophic lateral sclerosis, cataract and so on. The molecular mechanism by which formation of such bonds promotes protein aggregation is poorly understood. Here in this work we employ previously well characterized aggregation of hen eggwhite lysozyme (HEWL at alkaline pH to dissect the molecular role of nonnative disulfide bonds on growth of HEWL aggregates. We employed time-resolved fluorescence anisotropy, atomic force microscopy and single-molecule force spectroscopy to quantify the size, morphology and non-covalent interaction forces among the aggregates, respectively. These measurements were performed under conditions when disulfide bond formation was allowed (control and alternatively when it was prevented by alkylation of free thiols using iodoacetamide. Blocking disulfide bond formation affected growth but not growth kinetics of aggregates which were ∼50% reduced in volume, flatter in vertical dimension and non-fibrillar in comparison to control. Interestingly, single-molecule force spectroscopy data revealed that preventing disulfide bond formation weakened the non-covalent interaction forces among monomers in the aggregate by at least ten fold, thereby stalling their growth and yielding smaller aggregates in comparison to control. We conclude that while constrained protein chain dynamics in correctly disulfide bonded amyloidogenic proteins may protect them from venturing into partial folded conformations that can trigger entry into aggregation pathways, aberrant disulfide bonds in non-amyloidogenic proteins (like HEWL on the other hand, may strengthen non-covalent intermolecular forces among monomers and promote their aggregation.

  11. Dislocations in materials with mixed covalent and metallic bonding

    International Nuclear Information System (INIS)

    Nguyen-Manh, D.; Cawkwell, M.J.; Groeger, R.; Mrovec, M.; Porizek, R.; Pettifor, D.G.; Vitek, V.

    2005-01-01

    Environment-dependent bond-order potentials have been developed for L1 0 TiAl, bcc Mo and fcc Ir. They comprise both the angular character of bonding and the screening effect of nearly free electrons. These potentials have been employed in atomistic studies of screw dislocations that revealed the non-planar character of their cores. It is argued that both covalent as well as metallic character of bonding govern these structures, which in turn control the mechanical behaviour

  12. From covalent bonding to coalescence of metallic nanorods

    Directory of Open Access Journals (Sweden)

    Lee Soohwan

    2011-01-01

    Full Text Available Abstract Growth of metallic nanorods by physical vapor deposition is a common practice, and the origin of their dimensions is a characteristic length scale that depends on the three-dimensional Ehrlich-Schwoebel (3D ES barrier. For most metals, the 3D ES barrier is large so the characteristic length scale is on the order of 200 nm. Using density functional theory-based ab initio calculations, this paper reports that the 3D ES barrier of Al is small, making it infeasible to grow Al nanorods. By analyzing electron density distributions, this paper shows that the small barrier is the result of covalent bonding in Al. Beyond the infeasibility of growing Al nanorods by physical vapor deposition, the results of this paper suggest a new mechanism of controlling the 3D ES barrier and thereby nanorod growth. The modification of local degree of covalent bonding, for example, via the introduction of surfactants, can increase the 3D ES barrier and promote nanorod growth, or decrease the 3D ES barrier and promote thin film growth.

  13. Covalent bonds and their crucial effects on pseudogap formation in α-Al(Mn,Re)Si icosahedral quasicrystalline approximant

    International Nuclear Information System (INIS)

    Kirihara, K.; Nagata, T.; Kimura, K.; Kato, K.; Takata, M.; Nishibori, E.; Sakata, M.

    2003-01-01

    X-ray charge densities of Al-based icosahedral quasicrystalline approximant crystals α-AlReSi, α-AlMnSi, and Al 12 Re were observed by a combination of the maximum entropy method with the Rietveld method. We successfully obtained the clear images of interatomic covalent bonds between Al and transition metals (Mn, Re) and those in the Al (or Si) icosahedron in Mackay icosahedral clusters of both α-AlReSi and α-AlMnSi approximant crystals. The bonding nature of the three kinds of glue atom sites connecting Mackay icosahedral clusters was also clarified. This covalent bonding nature should strongly relate with the enhancement of the electron density-of-states pseudogap near the Fermi level. In addition, the interatomic covalent bonds of α-AlReSi are stronger than those of α-AlMnSi. This fact leads to the low effective carrier density of α-AlReSi in comparison with that of α-AlMnSi. Unlike the covalent bonding nature of an icosahedron in α-AlReSi and α-AlMnSi crystals, the Al icosahedron with an Re center atom exhibits no Al-Al interatomic covalent bonds in the Al 12 Re crystal. The tendency for metallic-covalent bonding conversion in the Al icosahedron, which is related to the atom site occupancy of the icosahedral cluster center, is also strongly supported

  14. Fast and accurate covalent bond predictions using perturbation theory in chemical space

    Science.gov (United States)

    Chang, Kuang-Yu; von Lilienfeld, Anatole

    I will discuss the predictive accuracy of perturbation theory based estimates of changes in covalent bonding due to linear alchemical interpolations among systems of different chemical composition. We have investigated single, double, and triple bonds occurring in small sets of iso-valence-electronic molecular species with elements drawn from second to fourth rows in the p-block of the periodic table. Numerical evidence suggests that first order estimates of covalent bonding potentials can achieve chemical accuracy (within 1 kcal/mol) if the alchemical interpolation is vertical (fixed geometry) among chemical elements from third and fourth row of the periodic table. When applied to nonbonded systems of molecular dimers or solids such as III-V semiconductors, alanates, alkali halides, and transition metals, similar observations hold, enabling rapid predictions of van der Waals energies, defect energies, band-structures, crystal structures, and lattice constants.

  15. Disorder phenomena in covalent semiconductors

    International Nuclear Information System (INIS)

    Popescu, M.A.

    1975-01-01

    The structure of the amorphous semiconductors has been investigated by means of X-ray diffraction and by computer simulation of random network models. Amorphous germanium contains mainly five and six-membered rings of atoms. In glassy state, the ternary compounds A 2 B 4 C 2 5 , such as CdGeAs 2 contain only even rings of atoms (six-membered and eight-membered rings). In the memory glasses of the type A 2 B 4 C 2 5 , such as GeAs 2 Te 7 , the valency state of every element is that from the crystal and important van der Waals forces are effective in the network. No Ge-Ge, Ge-As and As-As bonds are formed. The high pressure forms of the germanium have been simulated by computer. The force constants of the covalent bonds in Ge III and Ge IV differ from those in Ge I. The bond bending force constant decreases rapidly when the density of the crystal increases, a fact which has been imparted to a reduction of the sp 3 hybridization. The compressibility curve of the Ge I has been explained. The effect of the radial and uniaxial deformation on the non-crystalline networks has been studied. The compressibility of the amorphous germanium is by 1.5 per cent greater than that of crystalline germanium. The Poisson coefficient for a-Ge network is 0.233. The structure of the As 2 S 3 glass doped with different amounts of germanium (up to 40 at. per cent) and silver (up to 12 at. per cent) has been investigated. The As 2 S 3 Gesub(x) compositions are constituted from a disordered packing of structural units whose chemical composition and relative proportion in the glass essentially depends on the germanium content. (author)

  16. Covalent bond orders and atomic valences from correlated wavefunctions

    Science.gov (United States)

    Ángyán, János G.; Rosta, Edina; Surján, Péter R.

    1999-01-01

    A comparison is made between two alternative definitions for covalent bond orders: one derived from the exchange part of the two-particle density matrix and the other expressed as the correlation of fluctuations (covariance) of the number of electrons between the atomic centers. Although these definitions lead to identical formulae for mono-determinantal SCF wavefunctions, they predict different bond orders for correlated wavefunctions. It is shown that, in this case, the fluctuation-based definition leads to slightly lower values of the bond order than does the exchange-based definition, provided one uses an appropriate space-partitioning technique like that of Bader's topological theory of atoms in a molecule; however, use of Mulliken partitioning in this context leads to unphysical behaviour. The example of H 2 is discussed in detail.

  17. Molecular-dynamics simulation of crystalline 18-crown-6: thermal shortening of covalent bonds

    NARCIS (Netherlands)

    van Eerden, J.; Harkema, Sybolt; Feil, D.

    1990-01-01

    Molecular-dynamics simulations of crystalline 18-crown-6 have been performed in a study of the apparent thermal shortening of covalent bonds observed in crystal structures. At 100 K, a shortening of 0.006 _+ 0.001 A for C----C and C----O bonds was obtained. This result was found to be independent of

  18. Formation of Me–O–Si covalent bonds at the interface between polysilazane and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: adodji@gmail.com [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium); Fourdrinier, Lionel; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, 5000 Namur (Belgium)

    2014-11-30

    Highlights: • Natural metal-oxides, hydroxides are detected on the top surface of steel substrates we tested. • Polysilazane reacts with hydroxide functional groups on steel substrates to form Cr–O–Si and Fe–O–Si covalent bonds. • Covalent bonding between steel and polysilazane at the interface was probed using spectroscopic techniques. - Abstract: In earlier works, we demonstrated the potential of polysilazane (PSZ) coatings for a use as insulating layers in Cu(In,Ga)Se{sub 2} (CIGS) solar cells prepared on steels substrates and showed a good adhesion between PSZ coatings and both AISI316 and AISI430 steels. In the present paper, spectroscopic techniques are used to elucidate the reason of such adhesion. X-ray Photoelectron Spectroscopy (XPS) was used to investigate surfaces for the two steel substrates and showed the presence of metal oxides and metal hydroxides at the top surface. XPS has been also used to probe interfaces between substrates and PSZ, and metallosiloxane (Me–O–Si) covalent bonds have been detected. These results were confirmed by Infra-Red Reflection Absorption Spectroscopy (IRRAS) analyses since vibrations related to Cr–O–Si and Fe–O–Si compounds were detected. Thus, the good adhesion between steel substrates and PSZ coatings was explained by covalent bonding through chemical reactions between PSZ precursors and hydroxide functional groups present on top surface of the two types of steel. Based on these results, an adhesion mechanism between steel substrates and PSZ coatings is proposed.

  19. Covalent Bonding of Chlorogenic Acid Induces Structural Modifications on Sunflower Proteins

    NARCIS (Netherlands)

    Karefyllakis, D.; Salakou, Stavroula; Bitter, J.H.; Goot, van der A.J.; Nikiforidis, K.

    2018-01-01

    Proteins and phenols coexist in the confined space of plant cells leading to reactions between them, which result in new covalently bonded complex molecules. This kind of reactions has been widely observed during storage and processing of plant materials. However, the nature of the new complex

  20. A Cost-Effective Physical Modeling Exercise to Develop Students' Understanding of Covalent Bonding

    Science.gov (United States)

    Turner, Kristy L.

    2016-01-01

    Chemical bonding is one of the basic concepts in chemistry, and the topic of covalent bonding forms an important core of knowledge for the high school chemistry student. For many teachers it is a challenging concept to teach, not least because it relies mainly on traditional instruction and written work. Similarly, many students find the topic…

  1. Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon-gold covalent bond.

    Science.gov (United States)

    Laurentius, Lars; Stoyanov, Stanislav R; Gusarov, Sergey; Kovalenko, Andriy; Du, Rongbing; Lopinski, Gregory P; McDermott, Mark T

    2011-05-24

    Tailoring the surface chemistry of metallic nanoparticles is generally a key step for their use in a wide range of applications. There are few examples of organic films covalently bound to metal nanoparticles. We demonstrate here that aryl films are formed on gold nanoparticles from the spontaneous reduction of diazonium salts. The structure and the bonding of the film is probed with surface-enhanced Raman scattering (SERS). Extinction spectroscopy and SERS show that a nitrobenzene film forms on gold nanoparticles from the corresponding diazonium salt. Comparison of the SERS spectrum with spectra computed from density functional theory models reveals a band characteristic of a Au-C stretch. The observation of this stretch is direct evidence of a covalent bond. A similar band is observed in high-resolution electron energy loss spectra of nitrobenzene layers on planar gold. The bonding of these types of films through a covalent interaction on gold is consistent with their enhanced stability observed in other studies. These findings provide motivation for the use of diazonium-derived films on gold and other metals in applications where high stability and/or strong adsorbate-substrate coupling are required.

  2. ESI-MS study on non-covalent bond complex of rhFKBP12 and new neurogrowth promoter

    Institute of Scientific and Technical Information of China (English)

    WANG; Hongxia; (王红霞); ZHANG; Xuemin; (张学敏); YANG; Songcheng; (杨松成); XIAO; Junhai; (肖军海); NIE; Aihua; (聂爱华); ZHAO; Liqin; (赵丽琴); LI; Song; (李松)

    2003-01-01

    An ESI-MS method for studying the non-covalent bond complex of rhFKBP12 with its nonimmunosuppressive ligands was developed. The method was used to screen out three compounds capable of binding to rhFKBP12 non-covalently from 52 compounds. By competing binding experiment, the binding site and the relative binding strength of these three compounds 000107, 000308 and A2B12 with rhFKBP12 were measured. All of them have the same binding site as FK506 does. X-ray crystalline diffraction experiment of non-covalent bond complex of 000107, 000308 with rhFKBP12 by Tsinghua University showed the same results. Among them 000308 has good effect on stimulating neurite to grow in chicken sensory neuronal cultures.

  3. Role of direct covalent bonding in enhanced heat dissipation property of flexible graphene oxide–carbon nanotube hybrid film

    International Nuclear Information System (INIS)

    Hwang, Yongseon; Kim, Myeongjin; Kim, Jooheon

    2013-01-01

    The thermal conductivity of graphene oxide/multiwalled carbon nanotube (GO/MWCNT) hybrid films with and without covalent bonding is examined in this study. To fabricate chemically bonded GO/MWCNT hybrid films, chlorinated GO and amino-functionalized MWCNTs are bonded covalently. The mixtures of surface modified GO and MWCNT were filtered and then subjected to hot pressing to fabricate stacked films. Examination of these chemically bonded hybrid films reveal that chlorine-doped GO exhibits enhanced electrical properties because it creates hole charge carriers by attracting the electrons in GO towards chlorine. Enhanced electrical conductivity and low sheet resistance are observed also with increasing MWCNT loadings. On comparing the through-plane thermal properties, the chemically bonded hybrid films were found to exhibit higher thermal conductivity than do the physically bonded hybrid films because of the synergetic interaction of functional groups in GO and MWCNTs in the former films. However, excess addition of MWCNTs to the films leads to an increasing phonon scattering density and a decreased thermal conductivity. - Highlights: • Graphene oxide/carbon nanotube (GO/CNT) films are bonded covalently. • GO/CNT hybrid films are prepared through filtering and hot-pressing method. • Chemically bonded hybrid films exhibit enhanced electrical and thermal properties. • Enhanced thermal conductivity is explained according to increasing CNT contents

  4. Ultrafast cooling by covalently bonded graphene-carbon nanotube hybrid immersed in water

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens Honore; Koumoutsakos, Petros

    2016-01-01

    , we demonstrate, through transient heat-dissipation simulations, that a covalently bonded graphene-carbon nanotube (G-CNT) hybrid immersed in water is a promising solution for the ultrafast cooling of such high-temperature and high heat-flux surfaces. The G-CNT hybrid offers a unique platform...

  5. Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.

    Science.gov (United States)

    Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M

    2010-02-02

    Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.

  6. H-shaped supra-amphiphiles based on a dynamic covalent bond.

    Science.gov (United States)

    Wang, Guangtong; Wang, Chao; Wang, Zhiqiang; Zhang, Xi

    2012-10-16

    The imine bond, a kind of dynamic covalent bond, is used to bind two bolaform amphiphiles together with spacers, yielding H-shaped supra-amphiphiles. Micellar aggregates formed by the self-assembly of the H-shaped supra-amphiphiles are observed. When pH is tuned down from basic to slightly acidic, the benzoic imine bond can be hydrolyzed, leading to the dissociation of H-shaped supra-amphiphiles. Moreover, H-shaped supra-amphiphiles have a lower critical micelle concentration than their building blocks, which is very helpful in enhancing the stability of the benzoic imine bond being hydrolyzed by acid. The surface tension isotherms of the H-shaped supra-amphiphiles with different spacers indicate their twisty conformation at a gas-water interface. The study of H-shaped supra-amphiphiles can enrich the family of amphiphiles, and moreover, the pH-responsiveness may make them apply to controlled or targetable drug delivery in a biological environment.

  7. Electron population uncertainty and atomic covalency

    International Nuclear Information System (INIS)

    Chesnut, D.B.

    2006-01-01

    The atoms-in-molecules (AIM) index of atomic covalency is directly related to the AIM atomic population uncertainty. The covalent bond order, delocalization index, and, therefore, the atomic covalency are maximal when electron pairs are equally shared by the atoms involved. When polarization effects are present, these measures of covalent bond character decrease. We present atomic covalences for the single- and double-heavy atom hydrides of elements of the first and second low rows of the periodic table to illustrate these effects. Some usual behavior is seen in hydrogen-bridged species due in some cases to stronger than expected multicenter bonds and in other cases to many atoms contributing to the covalency index

  8. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding.

    Science.gov (United States)

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua

    2013-12-14

    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  9. Covalent Bonding of Pyrrolobenzodiazepines (PBDs) to Terminal Guanine Residues within Duplex and Hairpin DNA Fragments

    Science.gov (United States)

    Mantaj, Julia; Jackson, Paul J. M.; Karu, Kersti; Rahman, Khondaker M.; Thurston, David E.

    2016-01-01

    Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks. PMID:27055050

  10. Dynamic covalent gels assembled from small molecules:from discrete gelators to dynamic covalent polymers

    Institute of Scientific and Technical Information of China (English)

    Jian-Yong Zhang; Li-Hua Zeng; Juan Feng

    2017-01-01

    Dynamic covalent chemistry has emerged recently to be a powerful tool to construct functional materials.This article reviews the progress in the research and development of dynamic covalent chemistry in gels assembled from small molecules.First dynamic covalent reactions used in gels are reviewed to understand the dynamic covalent bonding.Afterwards the catalogues of dynamic covalent gels are reviewed according to the nature of gelators and the interactions between gelators.Dynamic covalent bonding can be involved to form low molecular weight gelators.Low molecular weight molecules with multiple functional groups react to form dynamic covalent cross-linked polymers and act as gelators.Two catalogues of gels show different properties arising from their different structures.This review aims to illustrate the structure-property relationships of these dynamic covalent gels.

  11. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography.

    Science.gov (United States)

    Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2017-01-06

    Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Oriented growth of magnetite along the carbon nanotubes via covalently bonded method in a simple solvothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Yingqing; Zhao Rui; Meng Fanbing; Lei Yajie; Zhong Jiachun; Yang Xulin [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu Xiaobo, E-mail: liuxb@uestc.edu.cn [Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronic, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2011-06-15

    Highlights: > Novel CNTs/magnetite hybrid materials were prepared via covalently bonded method. > Stable interaction between nitriles and iron ion promoted the oriented growth of magnetite. > The hybrid material exhibited higher magnetism and electromagnetic properties - Abstract: A new type of CNTs/magnetite hybrid material was prepared via covalently bonded method in a simple solvothermal system using FeCl{sub 3} as iron source, ethylene glycol as the reducing agent, and 4-aminophenoxyphthalonitrile-grafted CNTs as templates. The magnetite nanoparticles, with the diameters of 70-80 nm, were self-assembled along the CNTs. The FTIR, UV-vis and DSC revealed that a stable covalent bond between nitriles group and iron ion promoted the oriented growth of magnetite nanoparticles along the CNTs, resulting in good dispersibility and solution storage stability. The magnetic properties measurements indicated that a higher saturated magnetization (70.7 emu g{sup -1}) existed in the CNTs/magnetite hybrid material, which further enhanced the electromagnetic properties. The magnetic loss was caused mainly by natural resonance, which is in good agreement with the Kittel equation results. The novel electromagnetic hybrid material is believed to have potential applications in the microwave absorbing performances.

  13. Oriented growth of magnetite along the carbon nanotubes via covalently bonded method in a simple solvothermal system

    International Nuclear Information System (INIS)

    Zhan Yingqing; Zhao Rui; Meng Fanbing; Lei Yajie; Zhong Jiachun; Yang Xulin; Liu Xiaobo

    2011-01-01

    Highlights: → Novel CNTs/magnetite hybrid materials were prepared via covalently bonded method. → Stable interaction between nitriles and iron ion promoted the oriented growth of magnetite. → The hybrid material exhibited higher magnetism and electromagnetic properties - Abstract: A new type of CNTs/magnetite hybrid material was prepared via covalently bonded method in a simple solvothermal system using FeCl 3 as iron source, ethylene glycol as the reducing agent, and 4-aminophenoxyphthalonitrile-grafted CNTs as templates. The magnetite nanoparticles, with the diameters of 70-80 nm, were self-assembled along the CNTs. The FTIR, UV-vis and DSC revealed that a stable covalent bond between nitriles group and iron ion promoted the oriented growth of magnetite nanoparticles along the CNTs, resulting in good dispersibility and solution storage stability. The magnetic properties measurements indicated that a higher saturated magnetization (70.7 emu g -1 ) existed in the CNTs/magnetite hybrid material, which further enhanced the electromagnetic properties. The magnetic loss was caused mainly by natural resonance, which is in good agreement with the Kittel equation results. The novel electromagnetic hybrid material is believed to have potential applications in the microwave absorbing performances.

  14. Are Orbital-Resolved Shared-Electron Distribution Indices and Cioslowski Covalent Bond Orders Useful for Molecules?

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert; Kohout, M.

    2015-01-01

    Roč. 113, 13-14 (2015), s. 1682-1689 ISSN 0026-8976 Institutional support: RVO:67985858 Keywords : domain averaged fermi holes * shared electron-distribution indices * Cioslowski covalent bond orders Subject RIV: CC - Organic Chemistry Impact factor: 1.837, year: 2015

  15. Improved Procedure for Preparation of Covalently Bonded Cellulose Tris-phenylcarbamate Chiral Stationary Phases

    Institute of Scientific and Technical Information of China (English)

    秦峰; 陈小明; 刘月启; 邹汉法; 王俊德

    2005-01-01

    The classical method for preparation of covalently boned cellulose derivative chiral stationary phases (CSP) with diisocyanate as spacer was improved. Diisocyanate was firstly allowed to react with 3-aminopropyltriethoxysilane, and the resulting product was then applied as the spacer reagent to immobilize cellulose derivatives onto silica gel. Influences of the amount and the length of the spacer on the optical resolution ability of the CSP were investigated. Comparing improved procedure to classical diisocyanate method, the cross-linking between the glucose units of the cellulose derivatives was avoided to the most extent. With the improved procedure, regio-nonselective ways could be adooted to prepare covalently bonded CSP, which showed an advantage for the rapid preparation.

  16. Disorder-induced quantum bond percolation

    International Nuclear Information System (INIS)

    Nishino, Shinya; Katsuno, Shuji; Goda, Masaki

    2009-01-01

    We investigate the effects of off-diagonal disorder on localization properties in quantum bond percolation networks on cubic lattices, motivated by the finding that the off-diagonal disorder does not always enhance the quantum localization of wavefunctions. We numerically construct a diagram of the 'percolation threshold', distinguishing extended states from localized states as a function of two degrees of disorder, by using the level statistics and finite-size scaling. The percolation threshold increases in a characteristic way on increasing the disorder in the connected bonds, while it gradually decreases on increasing the disorder in the disconnected bonds. Furthermore, the exchange of connected and disconnected bonds induced by the disorder causes a dramatic change of the percolation threshold.

  17. Structure, stability and electrochromic properties of polyaniline film covalently bonded to indium tin oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenzhi, E-mail: zhangwz@xatu.edu.cn [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Ju, Wenxing; Wu, Xinming; Wang, Yan; Wang, Qiguan; Zhou, Hongwei; Wang, Sumin [Key Laboratory for Photoelectric Functional Materials and Devices of Shaanxi Province, School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, School of Chemistry and Environmental Engineering, Jianghan University, Wuhan 430056 (China)

    2016-03-30

    Graphical abstract: A chemical bonding approach was proposed to prepare the PANI film covalently bonded to ITO substrate and the film exhibited high electrochemical activities and stability compared with that obtained by conventional film-forming approach. - Highlights: • The PANI film covalently bonded to ITO substrate was prepared using ABPA as modifier. • The oxidative potentials of the obtained PANI film were decreased. • The obtained PANI film exhibits high electrochemical activities and stability. - Abstract: Indium tin oxide (ITO) substrate was modified with 4-aminobenzylphosphonic acid (ABPA), and then the polyaniline (PANI) film covalently bonded to ITO substrate was prepared by the chemical oxidation polymerization. X-ray photoelectron spectroscopy (XPS), attenuated total reflection infrared (ATR-IR) spectroscopy, and atomic force microscopy (AFM) measurements demonstrated that chemical binding was formed between PANI and ABPA-modified ITO surface, and the maximum thickness of PANI layer is about 30 nm. The adhesive strength of PANI film on ITO substrate was tested by sonication. It was found that the film formed on the modified ITO exhibited a much better stability than that on bare one. Cyclic voltammetry (CV) and UV–vis spectroscopy measurements indicated that the oxidative potentials of PANI film on ABPA-modified ITO substrate were decreased and the film exhibited high electrochemical activities. Moreover, the optical contrast increased from 0.58 for PANI film (without ultrasound) to 1.06 for PANI film (after ultrasound for 60 min), which had an over 83% enhancement. The coloration time was 20.8 s, while the bleaching time was 19.5 s. The increase of electrochromic switching time was due to the lower ion diffusion coefficient of the large cation of (C{sub 4}H{sub 9}){sub 4}N{sup +} under the positive and negative potentials as comparison with the small Li{sup +} ion.

  18. Self-healing polymer gels based on dynamic covalent bonds%基于动态共价键的可自愈合聚合物凝胶

    Institute of Scientific and Technical Information of China (English)

    张云飞; 邓国华

    2012-01-01

    简要介绍了动态共价键既具有普通共价键的高强度和稳定性,又能像分子间作用力(如氢键)那样可逆地断裂和重组的特点,以及基于动态共价键构筑智能凝胶材料的优势。综述了多种动态共价键,如芳香基苯并呋喃酮二聚体(diarylbibenzo furanone,DABBF)、三硫酯(trithiocarbonate,TTC)、芳基硼酸酯、酰腙键(acylhydrazone bond)、双硫键(disulfide bond)等的结构及其动态化学,以及应用它们合成聚合物凝胶的方法、凝胶的自愈合机理和性能。提出了发现和采用多种动态共价键构筑可自愈合聚合物凝胶的趋势,为此须解决多种动态共价键的相容性、凝胶自愈合机理与性能的光谱表征等问题,并加强应用研究。%Dynamic covalent bonds have high mechanical strength and stability like ordinary covalent bonds and can reversibly break and rebuild like intermolecular forces(such as hydrogen bonding).The properties of dynamic covalent bonds are introduced.The advantages of building smart gels based on dynamic covalent bonds are described.Specifically,the structure and dynamic chemistry of diarylbibenzo furanone(DABBF),trithiocarbonate(TTC),phenylboronic aciddiol ester bond,acylhydrazone bond and disulfide bond are reviewed.The methods of utilizing those dynamic covalent bonds to construct dynamic gels with self-healing properties,including the healing mechanisms,are presented.Combining two or more covalent bonds to construct dynamic gels with more complex responsiveness are proposed.Problems,such as compatibility of the dynamic covalent bonds,spectroscopic methods for characterizing self-healing mechanisms and capabilities,and application-oriented systems need to be further investigated.

  19. Molecular single-bond covalent radii for elements 1-118.

    Science.gov (United States)

    Pyykkö, Pekka; Atsumi, Michiko

    2009-01-01

    A self-consistent system of additive covalent radii, R(AB)=r(A) + r(B), is set up for the entire periodic table, Groups 1-18, Z=1-118. The primary bond lengths, R, are taken from experimental or theoretical data corresponding to chosen group valencies. All r(E) values are obtained from the same fit. Both E-E, E-H, and E-CH(3) data are incorporated for most elements, E. Many E-E' data inside the same group are included. For the late main groups, the system is close to that of Pauling. For other elements it is close to the methyl-based one of Suresh and Koga [J. Phys. Chem. A 2001, 105, 5940] and its predecessors. For the diatomic alkalis MM' and halides XX', separate fits give a very high accuracy. These primary data are then absorbed with the rest. The most notable exclusion are the transition-metal halides and chalcogenides which are regarded as partial multiple bonds. Other anomalies include H(2) and F(2). The standard deviation for the 410 included data points is 2.8 pm.

  20. A simple approach for immobilization of gold nanoparticles on graphene oxide sheets by covalent bonding

    NARCIS (Netherlands)

    Pham, Tuan Anh; Choi, Byung Choon; Lim, Kwon Taek; Jeong, Yeon Tae

    2011-01-01

    Amino - functionalized gold nanoparticles with a diameter of around 5 nm were immobilized onto the surface of graphene oxide sheets (GOS) by covalent bonding through a simple amidation reaction. Pristine graphite was firstly oxidized and exfoliated to obtain GOS, which further were acylated with

  1. Preparation and fluorescent recognition properties for fluoride of a nanostructured covalently bonded europium hybrid material

    Institute of Scientific and Technical Information of China (English)

    余旭东; 李景印; 李亚娟; 耿丽君; 甄小丽; 于涛

    2015-01-01

    A novel covalently bonded Eu3+-based silica hybrid material was designed and its spectrophotometric anion sensing prop-erty was studied. The fluorescent receptor (europium complex) was covalently grafted to the silica matrix via a sol-gel approach. FTIR, UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescent spectra were characterized, and the results revealed that the hybrid material with nanosphere structure displayed excellent photophysical property. In addition, the selective anion sensing property of the hybrid material was studied by UV-vis and fluorescence spectra. The results showed that the hybrid material exhibited a smart response with fluoride anions.

  2. Covalent bonding of chloroanilines to humic constituents: Pathways, kinetics, and stability

    International Nuclear Information System (INIS)

    Kong, Deyang; Xia, Qing; Liu, Guoqiang; Huang, Qingguo; Lu, Junhe

    2013-01-01

    Covalent coupling to natural humic constituents comprises an important transformation pathway for anilinic pollutants in the environment. We systematically investigated the reactions of chlorine substituted anilines with catechol and syringic acid in horseradish peroxidase (HRP) catalyzed systems. It was demonstrated that although nucleophilic addition was the mechanism of covalent bonding to both catechol and syringic acid, chloroanilines coupled to the 2 humic constituents via slightly different pathways. 1,4-addition and 1,2-addition are involved to catechol and syringic acid, respectively. 1,4-addition showed empirical 2nd order kinetics and this pathway seemed to be more permanent than 1,2-addition. Stability experiments demonstrated that cross-coupling products with syringic acid could be easily released in acidic conditions. However, cross-coupling with catechol was relatively stable at similar conditions. Thus, the environmental behavior and bioavailability of the coupling products should be carefully assessed. -- Highlights: •Chloroanilines covalently coupled to humic constituents in HRP catalyzed processes, which facilitated their transformation. •MS technique was employed to analyze the coupling products and therefore elucidate the reaction pathways. •Chloroanilines couple to catechol and syringic acid via 1,4- and 1,2-nucleophilic addition pathways, respectively. •Cross-coupling products formed via 1,4-nucleophilic addition pathway were more stable than those via 1,2-addition pathway. -- Bound residues of chloroanilines formed via 1,2- and 1,4-nucleophilic addition pathways showed different stability

  3. Unsynchronized resonance of covalent bonds in the superconducting state

    International Nuclear Information System (INIS)

    Costa, Marconi B.S.; Bastos, Cristiano C.; Pavao, Antonio C.

    2012-01-01

    Daft calculations performed on different cluster models of cuprates (LaBa 2 Cu 3 O 6.7 , La 1.85 Sr 0.15 CuO 4 , YBa 2 Cu 3 O 7 , TlBa 2 Ca 2 Cu 3 O 8.78 , HgBa 2 Ca 2 Cu 3 O 8.27 ), metallic systems (Nb 3 Ge, MgB 2 ) and the pnictide LaO 0.92 F 0.08 FeAs made evident the occurrence of un synchronized resonance of covalent bonds in the superconducting state, as predicted by Paling's resonating valence bond Rb) theory. For cuprates, the un synchronized resonance involves electron transfer between Cu atoms accompanied by a decrease in the charge of the La, Sr, Y and Ca atoms. For MgB 2 , electron transfer occurs in the Mg layer, while the B layer behaves as charge reservoir. For Nb 3 Ge, unsynchronized resonance occurs among the Ge atoms, which should be responsible for charge transfer. For LaO 0.92 F 0.08 FeAs, the results suggest that both La-O and Fe-As layers are involved in the mechanism of superconductivity. The identification of unsynchronized resonances in these systems provides evidence which supports RVB as a suitable theory for high-temperature superconductivity (high-TC). (author)

  4. Layer-by-Layer Self-Assembled Graphene Multilayer Films via Covalent Bonds for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2015-05-01

    Full Text Available To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO using p-phenylenediamine (PPD as a covalent cross-linking agent. The assembly process was confirmed to be repeatable and the structure was stable. With the π-π conjugated structure and a large number of spaces in the framework, the graphene multi‐ layer films exhibited excellent electrochemical perform‐ ance. The uniform ultrathin electrode exhibited a capacitance of 41.71 μF/cm2 at a discharge current of 0.1 μA/cm2, and displayed excellent stability of 88.9 % after 1000 charge-discharge cycles.

  5. Molecular assembly of materials with covalent bonding: Path to robust structures

    International Nuclear Information System (INIS)

    Puniredd, Sreenivasa Reddy; Zhang Fengxiang; Srinivasan, M.P.

    2006-01-01

    Ultrathin films were fabricated using synthesized polyimide (HPI) with hydroxyl pendant groups in a layer-by-layer fashion on amine-terminated substrates of silicon, quartz and gold. The interlayer linkages were established by using terephthaloyl chloride as a bridging agent to form ester groups between HPI layers. Furthermore, when working on the nanometer scale in liquid solvents, necessity of a solvent rinse after each deposition step and the presence of residual solvent are problematic. To avoid the problems related to residual solvent we have fabricated an ultrathin film of oligoimide on amine-modified substrates of silicon and quartz through alternate layer-by-layer (LBL) assembly of pyromellitic dianhydride (PMDA) and diaminodiphenylether (DDE), with inter-layer links established by covalent bonds. The assembly was formed in supercritical carbon dioxide (SCCO 2 ), and in solution (N,N-dimethylacetamide, DMAc), and the imidization reaction was performed by thermal and chemical methods, in benzene and in the supercritical medium. We have compared these films with those assembled in a conventional solvent medium. The comparison is further extended to carrying out the imidization reaction by various methods. The films show excellent stability and strength, which can be attributed to the covalent interlayer linkage

  6. An effective hierarchical model for the biomolecular covalent bond: an approach integrating artificial chemistry and an actual terrestrial life system.

    Science.gov (United States)

    Oohashi, Tsutomu; Ueno, Osamu; Maekawa, Tadao; Kawai, Norie; Nishina, Emi; Honda, Manabu

    2009-01-01

    Under the AChem paradigm and the programmed self-decomposition (PSD) model, we propose a hierarchical model for the biomolecular covalent bond (HBCB model). This model assumes that terrestrial organisms arrange their biomolecules in a hierarchical structure according to the energy strength of their covalent bonds. It also assumes that they have evolutionarily selected the PSD mechanism of turning biological polymers (BPs) into biological monomers (BMs) as an efficient biomolecular recycling strategy We have examined the validity and effectiveness of the HBCB model by coordinating two complementary approaches: biological experiments using existent terrestrial life, and simulation experiments using an AChem system. Biological experiments have shown that terrestrial life possesses a PSD mechanism as an endergonic, genetically regulated process and that hydrolysis, which decomposes a BP into BMs, is one of the main processes of such a mechanism. In simulation experiments, we compared different virtual self-decomposition processes. The virtual species in which the self-decomposition process mainly involved covalent bond cleavage from a BP to BMs showed evolutionary superiority over other species in which the self-decomposition process involved cleavage from BP to classes lower than BM. These converging findings strongly support the existence of PSD and the validity and effectiveness of the HBCB model.

  7. A Comprehensive Analysis in Terms of Molecule-Intrinsic, Quasi-Atomic Orbitals. III. The Covalent Bonding Structure of Urea.

    Science.gov (United States)

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2015-10-15

    The analysis of molecular electron density matrices in terms of quasi-atomic orbitals, which was developed in previous investigations, is quantitatively exemplified by a detailed application to the urea molecule. The analysis is found to identify strong and weak covalent bonding interactions as well as intramolecular charge transfers. It yields a qualitative as well as quantitative ab initio description of the bonding structure of this molecule, which raises questions regarding some traditional rationalizations.

  8. Chemistry of Covalent Organic Frameworks.

    Science.gov (United States)

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    Linking organic molecules by covalent bonds into extended solids typically generates amorphous, disordered materials. The ability to develop strategies for obtaining crystals of such solids is of interest because it opens the way for precise control of the geometry and functionality of the extended structure, and the stereochemical orientation of its constituents. Covalent organic frameworks (COFs) are a new class of porous covalent organic structures whose backbone is composed entirely of light elements (B, C, N, O, Si) that represent a successful demonstration of how crystalline materials of covalent solids can be achieved. COFs are made by combination of organic building units covalently linked into extended structures to make crystalline materials. The attainment of crystals is done by several techniques in which a balance is struck between the thermodynamic reversibility of the linking reactions and their kinetics. This success has led to the expansion of COF materials to include organic units linked by these strong covalent bonds: B-O, C-N, B-N, and B-O-Si. Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COFs, and this advantage has facilitated their characterization using powder X-ray diffraction (PXRD) techniques. It has also allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture. In practice, the modeled PXRD pattern for a given expected COF is compared with the experimental one, and depending on the quality of the match, this is used as a starting point for solving and then refining the crystal structure of the target COF. These characteristics make COFs an attractive class of new porous materials. Accordingly, they have been used as gas storage materials for energy applications, solid supports for catalysis, and optoelectronic devices. A large and

  9. A strategy to synthesize graphene-incorporated lignin polymer composite materials with uniform graphene dispersion and covalently bonded interface engineering

    Science.gov (United States)

    Wang, Mei; Duong, Le Dai; Ma, Yifei; Sun, Yan; Hong, Sung Yong; Kim, Ye Chan; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    Graphene-incorporated polymer composites have been demonstrated to have excellent mechanical and electrical properties. In the field of graphene-incorporated composite material synthesis, there are two main obstacles: Non-uniform dispersion of graphene filler in the matrix and weak interface bonding between the graphene filler and polymer matrix. To overcome these problems, we develop an in-situ polymerization strategy to synthesize uniformly dispersed and covalently bonded graphene/lignin composites. Graphene oxide (GO) was chemically modified by 4,4'-methylene diphenyl diisocyanate (MDI) to introduce isocyanate groups and form the urethane bonds with lignin macromonomers. Subsequential polycondensation reactions of lignin groups with caprolactone and sebacoyl chloride bring about a covalent network of modified GO and lignin-based polymers. The flexible and robust lignin polycaprolactone polycondensate/modified GO (Lig-GOm) composite membranes are achieved after vacuum filtration, which have tunable hydrophilicity and electrical resistance according to the contents of GOm. This research transforms lignin from an abundant biomass into film-state composite materials, paving a new way for the utilization of biomass wastes.

  10. 共价键长的变化规律及计算%Variation Rule of Covalent Bond Length and Its Calculation Method

    Institute of Scientific and Technical Information of China (English)

    徐永群; 陈年友

    2001-01-01

    研究了共价键长的变化规律,提出了两个影响键长的参数,即配位体的半径与中心原子半径之比Rratio和由中心原子组成的基团的拓扑指数F2,用BP神经网络法逼近了50个、预测了11个简单无机分子中非含氢原子键的键长,其计算误差基本上在2pm以内。%The variation rule of covalent bond lengths is investigated.Two parameters which influence covalent bond lengths are presented: the radius ratio of the ligand to the centre atom and the topological index of the group of centre atom.With BP neural networks, 50 bond lengths have been approached and other 11 bond lengths have been forecasted. Errors of calculated bond lengths is almost within 2pm.

  11. Structural modification of covalent-bonded networks: on some methodological resolutions for binary chalcogenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, M; Shpotyuk, Ya; Shpotyuk, O

    2011-01-01

    New methodology to estimate efficiency of externally-induced structural modification in chalcogenide glasses is developed. This approach is grounded on the assumption that externally-induced structural modification is fully associated with destruction-polymerization transformations, which reveal themselves as local misbalances in covalent bond distribution, normal atomic coordination and intrinsic electrical fields. The input of each of these components into the total value of structural modification efficiency was probed for quasibinary (As 2 S 3 ) 100-x (Sb 2 S 3 ) x ChG.

  12. Characteristics of enzyme hydrolyzing natural covalent bond between RNA and protein VPg of encephalomyocarditis virus

    International Nuclear Information System (INIS)

    Drygin, Yu.F.; Siyanova, E.Yu.

    1986-01-01

    The isolation and a preliminary characterization of the enzyme specifically hydrolyzing the phosphodiester bond between protein VPg and the RNA of encephalomyocarditis virus was the goal of the present investigation. The enzyme was isolated from a salt extract of Krebs II mouse ascites carcinoma cells by ion-exchange and affinity chromatography. It was found that the enzyme actually specifically cleaves the covalent bond between the RNA and protein, however, the isolation procedure does not free the enzyme from impurities which partially inhibit it. The enzyme cleaves the RNA-protein VPg complex of polio virus at a high rate, it is completely inactivated at 55 0 C, and is partially inhibited by EDTA

  13. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    WANG FangFang; WANG Yi; WANG BingQiang; WANG YinFeng; MA Fang; Li ZhiRu

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer (TTF·~+-TTF·~+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·~+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π/π bonding with a telescope shape.The covalent π/π bonding has the bonding energy of about-21 kcal·mol~(-1) and is concealed by the Coulombic repulsion between two TTF·~+ cations.This intermolecular covalent attraction also influences the structure of the TTF·~+ subunit,I.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  14. A covalent attraction between two molecular cation TTF·~+

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The optimized structure of the tetrathiafulvalence radical-cation dimer(TTF·+-TTF·+) with all-real frequencies is obtained at MP2/6-311G level,which exhibits the attraction between two molecular cation TTF·+.The new attraction interaction is a 20-center-2-electron intermolecular covalent π /π bonding with a telescope shape.The covalent π /π bonding has the bonding energy of about -21 kcal·mol-1 and is concealed by the Coulombic repulsion between two TTF·+ cations.This intermolecular covalent attraction also influences the structure of the TTF·+ subunit,i.e.,its molecular plane is bent by an angle θ=5.6°.This work provides new knowledge on intermolecular interaction.

  15. In situ metalation of free base phthalocyanine covalently bonded to silicon surfaces

    Directory of Open Access Journals (Sweden)

    Fabio Lupo

    2014-11-01

    Full Text Available Free 4-undecenoxyphthalocyanine molecules were covalently bonded to Si(100 and porous silicon through thermic hydrosilylation of the terminal double bonds of the undecenyl chains. The success of the anchoring strategy on both surfaces was demonstrated by the combination of X-ray photoelectron spectroscopy with control experiments performed adopting the commercially available 2,3,9,10,16,17,23,24-octakis(octyloxy-29H,31H-phthalocyanine, which is not suited for silicon anchoring. Moreover, the study of the shape of the XPS N 1s band gave relevant information on the interactions occurring between the anchored molecules and the substrates. The spectra suggest that the phthalocyanine ring interacts significantly with the flat Si surface, whilst ring–surface interactions are less relevant on porous Si. The surface-bonded molecules were then metalated in situ with Co by using wet chemistry. The efficiency of the metalation process was evaluated by XPS measurements and, in particular, on porous silicon, the complexation of cobalt was confirmed by the disappearance in the FTIR spectra of the band at 3290 cm−1 due to –NH stretches. Finally, XPS results revealed that the different surface–phthalocyanine interactions observed for flat and porous substrates affect the efficiency of the in situ metalation process.

  16. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    Science.gov (United States)

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  17. Structural modification of covalent-bonded networks: on some methodological resolutions for binary chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, M; Shpotyuk, Ya; Shpotyuk, O, E-mail: shpotyukmy@yahoo.com [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 212, Stryjska str., Lviv, 79031 (Ukraine)

    2011-04-01

    New methodology to estimate efficiency of externally-induced structural modification in chalcogenide glasses is developed. This approach is grounded on the assumption that externally-induced structural modification is fully associated with destruction-polymerization transformations, which reveal themselves as local misbalances in covalent bond distribution, normal atomic coordination and intrinsic electrical fields. The input of each of these components into the total value of structural modification efficiency was probed for quasibinary (As{sub 2}S{sub 3}){sub 100-x}(Sb{sub 2}S{sub 3}){sub x} ChG.

  18. Electrochromic Behaviors of Water-Soluble Polyaniline with Covalently Bonded Acetyl Ferrocene

    Science.gov (United States)

    Xiong, Shanxin; Wang, Ru; Li, Shuaishuai; Wu, Bohua; Chu, Jia; Wang, Xiaoqin; Zhang, Runlan; Gong, Ming

    2018-04-01

    A novel ferrocene-containing hybrid electrochromic material was synthesized via copolymerization of aniline with p-phenylenediamine functionalized acetyl ferrocene in the presence of poly (styrene sulfonate) dopant in an aqueous medium, and neat polyaniline (PANI) was prepared for comparison. The polymerization characteristics and the structure of the copolymer were systematically studied by Fourier-transform infrared, meanwhile, their electrochromic properties and electrochemical behaviors were tested by UV-vis spectra, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). It was found that the strong covalent bond and large conjugated system between PANI and ferrocene enhance the electron transfer rate and electron delocalization in the ferrocene-polyaniline (Fc-PANI) hybrid. In particular, the electrochromic device with Fc-PANI as the active layer shows significant enhancement in optical contrast over the PANI-based device.

  19. Synthesis, characterization, and near-infrared luminescent properties of the ternary thulium complex covalently bonded to mesoporous MCM-41

    International Nuclear Information System (INIS)

    Feng Jing; Song Shuyan; Xing Yan; Zhang Hongjie; Li Zhefeng; Sun Lining; Guo Xianmin; Fan Weiqiang

    2009-01-01

    The crystal structure of a ternary Tm(DBM) 3 phen complex (DBM=dibenzoylmethane; phen=1, 10-phenanthroline) and the synthesis of hybrid mesoporous material in which the complex covalently bonded to mesoporous MCM-41 are reported. Crystal data: Tm(DBM) 3 phen C 59 H 47 N 2 O 7 Tm, monoclinic, P21/c, a=19.3216(12) A, b=10.6691(7) A, c=23.0165(15) A, α=90 deg., β=91.6330(10) deg., γ=90 deg., V=4742.8(5) A 3 , Z=4. The properties of the Tm(DBM) 3 phen complex and the corresponding hybrid mesoporous material [Tm(DBM) 3 phen-MCM-41] have been studied. The results reveal that the Tm(DBM) 3 phen complex is successfully covalently bonded to MCM-41. Both Tm(DBM) 3 phen complex and Tm(DBM) 3 phen-MCM-41 display typical near-infrared (NIR) luminescence upon excitation at the maximum absorption of the ligands, which contributes to the efficient energy transfer from the ligands to the Tm 3+ ion, an antenna effect. The full width at half maximum (FWHM) centered at 1474 nm in the emission spectrum of Tm(DBM) 3 phen-MCM-41 is 110 nm, which is the potential candidate of broadening amplification band from C band (1530-1560 nm) to S + band (1450-1480 nm) in optical area. - Graphical abstract: The crystal structure of Tm(DBM) 3 phen complex (DBM=dibenzoylmethane; phen=1, 10-phenanthroline). The complex is successfully covalently bonded to MCM-41 (Tm(DBM) 3 phen-MCM-41). After ligand-mediated excitation, the emission spectrum of Tm(DBM) 3 phen-MCM-41 shows the bands 802 and 1474 nm. The FWHM of the 1474-nm band for Tm(DBM) 3 phen-MCM-41 is 110 nm, such a broad spectrum enables a wide gain bandwidth for optical amplification

  20. Dynamic Covalent Self-Assembly of Mono-, Bi- and Trimacro-cycles from Hydrogen Bonded Preorganized Templates

    Institute of Scientific and Technical Information of China (English)

    LIN Jianbin; WU Jing; JIANG Xikui; LI Zhanting

    2009-01-01

    This paper describes the dynamic covalent assembly of three mono-, bi- and trimacrocycles by utilizing hydro-gen bonding-driven zigzag anthranilamides as "leading" components. The monomacrocycle, a tetraamino molecule, was prepared from the [24+2] coupling reaction of a "'U"-shaped dialdehyde and a porphyrin diamine, followed by the reduction of the macrocyclic tetraimine by NaBH3CN, while the bi-and trimacrocycles were obtained through two six-component coupling reactions with rigid tri- and tetraamino-appended oligomers as templates.

  1. The effective fragment molecular orbital method for fragments connected by covalent bonds.

    Directory of Open Access Journals (Sweden)

    Casper Steinmann

    Full Text Available We extend the effective fragment molecular orbital method (EFMO into treating fragments connected by covalent bonds. The accuracy of EFMO is compared to FMO and conventional ab initio electronic structure methods for polypeptides including proteins. Errors in energy for RHF and MP2 are within 2 kcal/mol for neutral polypeptides and 6 kcal/mol for charged polypeptides similar to FMO but obtained two to five times faster. For proteins, the errors are also within a few kcal/mol of the FMO results. We developed both the RHF and MP2 gradient for EFMO. Compared to ab initio, the EFMO optimized structures had an RMSD of 0.40 and 0.44 Å for RHF and MP2, respectively.

  2. Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens H.; Koumoutsakos, Petros

    2015-01-01

    The remarkable thermal properties of graphene and carbon nanotubes (CNTs) have been the subject of intensive investigations for the thermal management of integrated circuits. However, the small contact area of CNTs and the large anisotropic heat conduction of graphene have hindered...... their applications as effective thermal interface materials (TIMs). Here, a covalently bonded graphene–CNT (G-CNT) hybrid is presented that multiplies the axial heat transfer capability of individual CNTs through their parallel arrangement, while at the same time it provides a large contact area for efficient heat...... extraction. Through computer simulations, it is demonstrated that the G-CNT outperforms few-layer graphene by more than 2 orders of magnitude for the c-axis heat transfer, while its thermal resistance is 3 orders of magnitude lower than the state-of-the-art TIMs. We show that heat can be removed from the G...

  3. Covalent bonding and band-gap formation in ternary transition-metal di-aluminides: Al4MnCo and related compounds

    International Nuclear Information System (INIS)

    Krajci, M.; Hafner, J.

    2002-01-01

    In this paper we extend our previous study of the electronic structure of and bonding mechanism in transition-metal (TM) di-aluminides to ternary systems. We have studied the character of the bonding in Al 4 MnCo and related TM di-aluminides in the C11 b (MoSi 2 ) and C54 (TiSi 2 ) crystal structures. A peculiar feature of the electronic structure of these TM di-aluminides is the existence of a semiconducting gap at the Fermi level. In our previous work we predicted a gap in Al 2 TM compounds where the TM atoms have eight valence electrons. Here we demonstrate that the semiconducting gap does not disappear if the TM sites are occupied by two different TMs, provided that the electron-per-atom ratio is conserved. Such a replacement substantially increases the class of possibly semiconducting TM di-aluminides. Substitution for 3d TMs of 4d or 5d TMs enhances the width of the gap. From the analysis of the charge density distribution and the crystal orbital overlap population, we conclude that the bonding between atoms has dominantly covalent character. This is confirmed not only by the enhanced charge density halfway between atoms, but also by the clear bonding-antibonding splitting of the electronic states. If the gaps between split states that correspond to all bonding configurations in the crystal have a common overlap at the Fermi level, the intermetallic compound becomes a semiconductor. However, the results of the total-energy calculations suggest that the existence of a band gap does not necessarily imply a stable structure. Strong covalent bonds can exist also in Al-TM structures where no band gap is observed. (author)

  4. Functionalized Cobalt Triarylcorrole Covalently Bonded with Graphene Oxide: A Selective Catalyst for the Two- or Four-Electron Reduction of Oxygen.

    Science.gov (United States)

    Tang, Jijun; Ou, Zhongping; Guo, Rui; Fang, Yuanyuan; Huang, Dong; Zhang, Jing; Zhang, Jiaoxia; Guo, Song; McFarland, Frederick M; Kadish, Karl M

    2017-08-07

    A cobalt triphenylcorrole (CorCo) was covalently bonded to graphene oxide (GO), and the resulting product, represented as GO-CorCo, was characterized by UV-vis, FT-IR, and micro-Raman spectroscopy as well as by HRTEM, TGA, XRD, XPS, and AFM. The electrocatalytic activity of GO-CorCo toward the oxygen reduction reaction (ORR) was then examined in air-saturated 0.1 M KOH and 0.5 M H 2 SO 4 solutions by cyclic voltammetry and linear sweep voltammetry using a rotating disk electrode and/or a rotating ring-disk electrode. An overall 4-electron reduction of O 2 is obtained in alkaline media while under acidic conditions a 2-electron process is seen. The ORR results thus indicate that covalently bonded GO-CoCor can be used as a selective catalyst for either the 2- or 4-electron reduction of oxygen, the prevailing reaction depending upon the acidity of the solution.

  5. Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Henry; Guehne, Robin; Bertmer, Marko; Weber, Sebastian; Wenderoth, Patrick; Hansen, Thomas Christian; Haase, Jürgen; Kohlmann, Holger (Leipzig); (Saarland-MED); (ILL)

    2017-01-18

    Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3–x and BaSnD4/3–x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge–D) = 1.521(9) Å and d(Sn–D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2–x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si–D) = 1.641(5) Å.

  6. Extending density functional embedding theory for covalently bonded systems.

    Science.gov (United States)

    Yu, Kuang; Carter, Emily A

    2017-12-19

    Quantum embedding theory aims to provide an efficient solution to obtain accurate electronic energies for systems too large for full-scale, high-level quantum calculations. It adopts a hierarchical approach that divides the total system into a small embedded region and a larger environment, using different levels of theory to describe each part. Previously, we developed a density-based quantum embedding theory called density functional embedding theory (DFET), which achieved considerable success in metals and semiconductors. In this work, we extend DFET into a density-matrix-based nonlocal form, enabling DFET to study the stronger quantum couplings between covalently bonded subsystems. We name this theory density-matrix functional embedding theory (DMFET), and we demonstrate its performance in several test examples that resemble various real applications in both chemistry and biochemistry. DMFET gives excellent results in all cases tested thus far, including predicting isomerization energies, proton transfer energies, and highest occupied molecular orbital-lowest unoccupied molecular orbital gaps for local chromophores. Here, we show that DMFET systematically improves the quality of the results compared with the widely used state-of-the-art methods, such as the simple capped cluster model or the widely used ONIOM method.

  7. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks.

    Science.gov (United States)

    Wu, Jinrong; Cai, Li-Heng; Weitz, David A

    2017-10-01

    Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid "dry" elastomer that is very tough with fracture energy 13500 Jm -2 comparable to that of natural rubber. Moreover, the elastomer can self-heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self-healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self-healing polymers of practical usage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Adaptive polymeric nanomaterials utilizing reversible covalent and hydrogen bonding

    Science.gov (United States)

    Neikirk, Colin

    Adaptive materials based on stimuli responsive and reversible bonding moieties are a rapidly developing area of materials research. Advances in supramolecular chemistry are now being adapted to novel molecular architectures including supramolecular polymers to allow small, reversible changes in molecular and nanoscale structure to affect large changes in macroscale properties. Meanwhile, dynamic covalent chemistry provides a complementary approach that will also play a role in the development of smart adaptive materials. In this thesis, we present several advances to the field of adaptive materials and also provide relevant insight to the areas of polymer nanocomposites and polymer nanoparticles. First, we have utilized the innate molecular recognition and binding capabilities of the quadruple hydrogen bonding group ureidopyrimidinone (UPy) to prepare supramolecular polymer nanocomposites based on supramolecular poly(caprolactone) which show improved mechanical properties, but also an increase in particle aggregation with nanoparticle UPy functionalization. We also present further insight into the relative effects of filler-filler, filler-matrix, and matrix-matrix interactions using a UPy side-chain functional poly(butyl acrylate). These nanocomposites have markedly different behavior depending on the amount of UPy sidechain functionality. Meanwhile, our investigations of reversible photo-response showed that coumarin functionality in polymer nanoparticles not only facilitates light mediated aggregation/dissociation behavior, but also provides a substantial overall reduction in particle size and improvement in nanoparticle stability for particles prepared by Flash NanoPrecipitation. Finally, we have combined these stimuli responsive motifs as a starting point for the development of multiresponsive adaptive materials. The synthesis of a library of multifunctional materials has provided a strong base for future research in this area, although our initial

  9. Two supramolecular complexes based on polyoxometalates and Co-EDTA units via covalent connection or non-covalent interaction

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chunlin; Xiao, Hanxi [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China); Cai, Qing [Chemistry Department, City University of New York, New York, NY 10016 (United States); Tang, Jianting; Cai, Tiejun [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China); Deng, Qian, E-mail: dengqian10502@163.com [Key Laboratory of Theoretical Organic Chemistry and Functional Molecule for Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201 (China)

    2016-11-15

    Two new 3D network organic-inorganic hybrid supramolecular complexes ([Na{sub 6}(CoEDTA){sub 2}(H{sub 2}O){sub 13}]·(H{sub 2}SiW{sub 12}O{sub 40})·xH{sub 2}O)n (1) and [CoH{sub 4}EDTA(H{sub 2}O)]{sub 2}(SiW{sub 12}O{sub 40})·15H{sub 2}O (2) (H{sub 4}EDTA=Ethylenediamine tetraacetic acid) have been successfully synthesized by solution method, and characterized by infrared spectrum (IR), thermogravimetric-differential thermal analysis (TG-DTA), cyclic voltammetry (CV) and single{sup −}crystal X-ray diffraction (XRD). Both of the complexes are the supramolecules, but with different liking mode, they are two representative models of supramolecule. complex (1) is a 3D infinite network supramolecular coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through coordinate-covalent bonds. While complex (2) is normal supramolecule, which linked by non-covalent interactions, such as H-bonding interaction, electrostatic interaction and van der waals force. Both of complex (1) and (2) exhibit good catalytic activities for catalytic oxidation of methanol, when the initial concentration of methanol is 3.0 g m{sup −3}, flow rate is 10 mL min{sup −1}, and the quality of catalyst is 0.2 g, for complex (1) and complex (2) the maximum elimination rates of methanol are 85% (150 °C) and 92% (120 °C), respectively. - Graphical abstract: Two new organic-inorganic hybrid supramolecular complexes based on Co-EDTA, and Keggin polyanions have been successfully synthesized with different pH value by solution method. They are attributed to two representative models of supramolecule. Complex(1) is an infinite coordination polymer with a rare multi-metal sturcture of sodium-cobalt-containing, which is mainly linked through covalent bonds. Complex (2) is a normal supramolecule, which linked by non-covalent interactions of H-bonding interaction, electrostatic interaction and van der waals force. - Highlights: • Two supramolecules

  10. In-situ determination of amine/epoxy and carboxylic/epoxy exothermic heat of reaction on surface of modified carbon nanotubes and structural verification of covalent bond formation

    Science.gov (United States)

    Neves, Juliana C.; de Castro, Vinícius G.; Assis, Ana L. S.; Veiga, Amanda G.; Rocco, Maria Luiza M.; Silva, Glaura G.

    2018-04-01

    An effective nanofiller-matrix interaction is considered crucial to produce enhanced nanocomposites. Nevertheless, there is lack of experiments focused in the direct measurement of possible filler-matrix covalent linkage, which was the main goal of this work for a carbon nanotube (CNT)/epoxy system. CNT were functionalized with oxygenated (ox) functions and further with triethylenetetramine (TETA). An in-situ determination methodology of epoxy-CNTs heat of reaction was developed by Differential Scanning Calorimetry (DSC). Values of -(8.7 ± 0.4) and -(6.0 ± 0.6) J/g were observed for epoxy with CNT-ox and CNT-TETA, respectively. These results confirm the occurrence of covalent bonds for both functionalized CNTs, a very important information due to the literature generally disregard this possibility for oxygenated functions. The higher value obtained for CNT-ox can be attributed to a not complete amidation and to steric impediments in the CNT-TETA structure. The modified CNTs produced by DSC experiments were then characterized by X-Ray Photoelectron Spectroscopy, Transmission Electron Microscopy and Thermogravimetry, which confirmed the covalent linkage. This characterization methodology can be used to verify the occurrence of covalent bonds in various nanocomposites with a quantitative evaluation, providing data for better understanding of the role of CNT functional groups and for tailoring its interface with polymers.

  11. Intriguing structures and magic sizes of heavy noble metal nanoclusters around size 55 governed by relativistic effect and covalent bonding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. J.; Xue, X. L.; Jia, Yu [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Guo, Z. X. [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Department of Chemistry and London Centre for Nanotechnology, University College London, London WC1H (United Kingdom); Li, S. F., E-mail: sflizzu@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001 (China); ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Zhenyu, E-mail: zhangzy@ustc.edu.cn [ICQD, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Gao, Y. F., E-mail: ygao7@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-11-07

    Nanoclusters usually display exotic physical and chemical properties due to their intriguing geometric structures in contrast to their bulk counterparts. By means of first-principles calculations within density functional theory, we find that heavy noble metal Pt{sub N} nanoclusters around the size N = 55 begin to prefer an open configuration, rather than previously reported close-packed icosahedron or core-shell structures. Particularly, for Pt{sub N}, the widely supposed icosahedronal magic cluster is changed to a three-atomic-layered structure with D{sub 6h} symmetry, which can be well addressed by our recently established generalized Wulff construction principle (GWCP). However, the magic number of Pt{sub N} clusters around 55 is shifted to a new odd number of 57. The high symmetric three-layered Pt{sub 57} motif is mainly stabilized by the enhanced covalent bonding contributed by both spin-orbital coupling effect and the open d orbital (5d{sup 9}6s{sup 1}) of Pt, which result in a delicate balance between the enhanced Pt–Pt covalent bonding of the interlayers and negligible d dangling bonds on the cluster edges. These findings about Pt{sub N} clusters are also applicable to Ir{sub N} clusters, but qualitatively different from their earlier neighboring element Os and their later neighboring element Au. The magic numbers for Os and Au are even, being 56 and 58, respectively. The findings of the new odd magic number 57 are the important supplementary of the recently established GWCP.

  12. On-surface synthesis of covalent coordination polymers on micrometer scale

    Institute of Scientific and Technical Information of China (English)

    Mathieu Koudia; Elena Nardi; Olivier Siri; Mathieu Abel

    2017-01-01

    On-surface synthesis under ultrahigh vacuum provides a promising strategy to control matter at the atomic level,with important implications for the design of new two-dimensional materials having remarkable electronic,magnetic,or catalytic properties.This strategy must address the problem of limited extension of the domains due to the irreversible nature of covalent bonds,which prevents the ripening of defects.We show here that extended materials can be produced by a controlled co-deposition process.In particular,co-deposition of quinoid zwitterion molecules with iron atoms on a Ag(111) surface held at 570 K allows the formation of micrometer-sized domains based on covalent coordination bonds.This work opens up the construction of micrometer-scale single-layer covalent coordination materials under vacuum conditions.

  13. Water-soluble light-emitting nanoparticles prepared by non-covalent bond self-assembly of a hydroxyl group functionalized oligo(p-phenyleneethynylene) with different water-soluble polymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Water-soluble light-emitting nanoparticles were prepared from hydroxyl group functionalized oligos(p-phenyleneethynylene) (OHOPEL) and water-soluble polymers(PEG,PAA,and PG) by non-covalent bond self-assembly.Their structure and optoelectronic properties were investigated through dynamic light scattering(DLS) ,UV and PL spectroscopy.The optical properties of OHOPEL-based water-soluble nanoparticles exhibited the same properties as that found in OHOPEL films,indicating the existence of interchain-aggregation of OHOPELs in the nanoparticles.OHOPEL-based nanoparticles prepared from conjugated oligomers show smaller size and lower dispersity than nanoparticles from conjugated polymers,which means that the structures of water-soluble nanoparticles are linked to the conjugated length.Furthermore,the OHOPEL/PG and OHOPEL/PAA systems produced smaller particles and lower polydispersity than the OHOPEL/PEG system,indicating that there may exist influence of the strength of non-covalent bonds on the size and degree of dispersity of the nanoparticles.

  14. Assessment of covalent bond formation between coupling agents and wood by FTIR spectroscopy and pull strength tests

    DEFF Research Database (Denmark)

    Rasmussen, Jonas Stensgaard; Barsberg, Søren Talbro; Venås, Thomas Mark

    2014-01-01

    In the focus was the question whether metal alkoxide coupling agents – titanium, silane, and zirconium – form covalent bonds to wood and how they improve coating adhesion. In a previous work, a downshift of the lignin infrared (IR) band ∼1600 cm-1 was shown to be consistent with the formation...... of ether linkages between lignin and titanium coupling agent. In the present work, changes were found in the attenuated total reflectance-Fourier transform IR (ATR-FTIR) spectra of lignin and wood mixed with silane, and titanium coupling agents, and to a lesser extent for a zirconium coupling agent...

  15. Atomic Covalent Functionalization of Graphene

    Science.gov (United States)

    Johns, James E.; Hersam, Mark C.

    2012-01-01

    Conspectus Although graphene’s physical structure is a single atom thick, two-dimensional, hexagonal crystal of sp2 bonded carbon, this simple description belies the myriad interesting and complex physical properties attributed to this fascinating material. Because of its unusual electronic structure and superlative properties, graphene serves as a leading candidate for many next generation technologies including high frequency electronics, broadband photodetectors, biological and gas sensors, and transparent conductive coatings. Despite this promise, researchers could apply graphene more routinely in real-world technologies if they could chemically adjust graphene’s electronic properties. For example, the covalent modification of graphene to create a band gap comparable to silicon (~1 eV) would enable its use in digital electronics, and larger band gaps would provide new opportunities for graphene-based photonics. Towards this end, researchers have focused considerable effort on the chemical functionalization of graphene. Due to its high thermodynamic stability and chemical inertness, new methods and techniques are required to create covalent bonds without promoting undesirable side reactions or irreversible damage to the underlying carbon lattice. In this Account, we review and discuss recent theoretical and experimental work studying covalent modifications to graphene using gas phase atomic radicals. Atomic radicals have sufficient energy to overcome the kinetic and thermodynamic barriers associated with covalent reactions on the basal plane of graphene but lack the energy required to break the C-C sigma bonds that would destroy the carbon lattice. Furthermore, because they are atomic species, radicals substantially reduce the likelihood of unwanted side reactions that confound other covalent chemistries. Overall, these methods based on atomic radicals show promise for the homogeneous functionalization of graphene and the production of new classes of two

  16. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.

    Science.gov (United States)

    James, Andrew M; Laconsay, Croix J; Galbraith, John Morrison

    2017-07-13

    Bond dissociation energies and resonance energies for H n A-BH m molecules (A, B = H, C, N, O, F, Cl, Li, and Na) have been determined in order to re-evaluate the concept of electronegativity in the context of modern valence bond theory. Following Pauling's original scheme and using the rigorous definition of the covalent-ionic resonance energy provided by the breathing orbital valence bond method, we have derived a charge-shift corrected electronegativity scale for H, C, N, O, F, Cl, Li, and Na. Atomic charge shift character is defined using a similar approach resulting in values of 0.42, 1.06, 1.43, 1.62, 1.64, 1.44, 0.46, and 0.34 for H, C, N, O, F, Cl, Li, and Na, respectively. The charge-shift corrected electronegativity values presented herein follow the same general trends as Pauling's original values with the exception of Li having a smaller value than Na (1.57 and 1.91 for Li and Na respectively). The resonance energy is then broken down into components derived from the atomic charge shift character and polarization effects. It is then shown that most of the resonance energy in the charge-shift bonds H-F, H 3 C-F, and Li-CH 3 and borderline charge-shift H-OH is associated with polarity rather than the intrinsic atomic charge-shift character of the bonding species. This suggests a rebranding of these bonds as "polar charge-shift" rather than simply "charge-shift". Lastly, using a similar breakdown method, it is shown that the small effect the substituents -CH 3 , -NH 2 , -OH, and -F have on the resonance energy (<10%) is mostly due to changes in the charge-shift character of the bonding atom.

  17. Immobilization of collagen peptide on dialdehyde bacterial cellulose nanofibers via covalent bonds for tissue engineering and regeneration

    Directory of Open Access Journals (Sweden)

    Wen XX

    2015-07-01

    Full Text Available Xiaoxiao Wen,1 Yudong Zheng,1 Jian Wu,2 Lu-Ning Wang,1 Zhenya Yuan,1 Jiang Peng,3 Haoye Meng3 1School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, People’s Republic of China; 2Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Soochow, People’s Republic of China; 3Institute of Orthopedics, Chinese PLA General Hospital, Beijing, People’s Republic of China Abstract: Bacterial cellulose (BC is an alternative nanostructured biomaterial to be utilized for a wide range of biomedical applications. Because of its low bioactivity, which restricted its practical application, collagen and collagen hydrolysate were usually composited into BC. It is necessary to develop a new method to generate covalent bonds between collagen and cellulose to improve the immobilization of collagen on BC. This study describes a facile dialdehyde BC/collagen peptide nanocomposite. BC was oxidized into dialdehyde bacterial cellulose (DBC by regioselective oxidation, and then composited with collagen peptide (Col-p via covalent bonds to form Schiff’s base type compounds, which was demonstrated by the results of microstructures, contact angle, Col-p content, and peptide-binding ratio. The peptide-binding ratio was further affected by the degree of oxidation, pH value, and zeta potential. In vitro desorption measurement of Col-p suggested a controlled release mechanism of the nanocomposite. Cell tests indicated that the prepared DBC/Col-p composite was bioactive and suitable for cell adhesion and attachment. This work demonstrates that the DBC/Col-p composite is a promising material for tissue engineering and regeneration. Keywords: bacterial cellulose, dialdehyde cellulose, collagen peptide, composite materials, cytoactivity 

  18. Collapsed tetragonal phase as a strongly covalent and fully nonmagnetic state: Persistent magnetism with interlayer As-As bond formation in Rh-doped Ca0 .8Sr0 .2Fe2As2

    Science.gov (United States)

    Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.

    2018-02-01

    A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.

  19. Molecular electrostatic potential analysis of non-covalent complexes

    Indian Academy of Sciences (India)

    Chemical Sciences and Technology Division and Academy of Scientific & Innovative Research (AcSIR), ... workers proposed the electrostatic-covalent model of hydrogen bonding. ..... tain degree of electron donation and acceptance occurs.

  20. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy.

    Science.gov (United States)

    Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo

    2014-11-01

    Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

  1. Design of a covalently bonded glycosphingolipid microarray

    DEFF Research Database (Denmark)

    Arigi, Emma; Blixt, Klas Ola; Buschard, Karsten

    2012-01-01

    , the major classes of plant and fungal GSLs. In this work, a prototype "universal" GSL-based covalent microarray has been designed, and preliminary evaluation of its potential utility in assaying protein-GSL binding interactions investigated. An essential step in development involved the enzymatic release...... of the fatty acyl moiety of the ceramide aglycone of selected mammalian GSLs with sphingolipid N-deacylase (SCDase). Derivatization of the free amino group of a typical lyso-GSL, lyso-G(M1), with a prototype linker assembled from succinimidyl-[(N-maleimidopropionamido)-diethyleneglycol] ester and 2...

  2. σ-Hole Interactions of Covalently-Bonded Nitrogen, Phosphorus and Arsenic: A Survey of Crystal Structures

    Directory of Open Access Journals (Sweden)

    Peter Politzer

    2014-02-01

    Full Text Available Covalently-bonded atoms of Groups IV–VII tend to have anisotropic charge distributions, the electronic densities being less on the extensions of the bonds (σ-holes than in the intervening regions. These σ-holes often give rise to positive electrostatic potentials through which the atom can interact attractively and highly directionally with negative sites (e.g., lone pairs, π electrons and anions, forming noncovalent complexes. For Group VII this is called “halogen bonding” and has been widely studied both computationally and experimentally. For Groups IV–VI, it is only since 2007 that positive σ-holes have been recognized as explaining many noncovalent interactions that have in some instances long been known experimentally. There is considerable experimental evidence for such interactions involving groups IV and VI, particularly in the form of surveys of crystal structures. However we have found less extensive evidence for Group V. Accordingly we have now conducted a survey of the Cambridge Structural Database for crystalline close contacts of trivalent nitrogen, phosphorus and arsenic with six different types of electronegative atoms in neighboring molecules. We have found numerous close contacts that fit the criteria for σ-hole interactions. Some of these are discussed in detail; in two instances, computed molecular electrostatic potentials are presented.

  3. Films of covalently bonded gold nanoparticles synthesized by a sol–gel process

    International Nuclear Information System (INIS)

    Dell’Erba, Ignacio E.; Hoppe, Cristina E.; Williams, Roberto J. J.

    2012-01-01

    Gold nanoparticles (NPs) with a size close to 1.5 nm, coated with organic ligands bearing Si(OEt) 3 groups, were synthesized and used to obtain self-standing films by a sol–gel process catalyzed by formic acid. Using FESEM images, FTIR, and UV–visible spectra, it was observed that very small gold NPs self-assembled by Si–O–Si covalent bonds forming crosslinked clusters with sizes up to about 50 nm in which NPs preserve their individuality. The possibility of fixing very small gold NPs in a crosslinked film opens a variety of potential applications based on the specific properties of small-size particles. As an example, we illustrated the way in which one can take advantage of the low melting temperature of these NPs to generate tiny gold crystals partially embedded at the surface, a process that might be used for the development of catalysts or sensors. Besides, the shift and change in the intensity of the plasmon band produced by heating to 100 °C may be employed to develop an irreversible sensor of undesirable temperature excursions during the life-time of a specific product.

  4. Covalent bonding and J-J mixing effects on the EPR parameters of Er3+ions in GaN crystal

    Institute of Scientific and Technical Information of China (English)

    柴瑞鹏; 李隆; 梁良; 庞庆

    2016-01-01

    The EPR parameters of trivalent Er3+ ions doped in hexagonal GaN crystal have been studied by diagonalizing the 364×364 complete energy matrices. The results indicate that the resonance ground states may be derived from the Kramers doubletΓ6. The EPR g-factors may be ascribed to the stronger covalent bonding and nephelauxetic effects compared with other rare-earth doped complexes, as a result of the mismatch of ionic radii of the impurity Er3+ion and the replaced Ga3+ion apart from the intrinsic covalency of host GaN. Furthermore, the J–J mixing effects on the EPR parameters from the high-lying manifolds have been evaluated. It is found that the dominant J–J mixing contribution is from the manifold 2K15/2, which accounts for about 2.5%. The next important J–J contribution arises from the crystal–field mixture between the ground state 4I15/2 and the first excited state 4I13/2, and is usually less than 0.2%. The contributions from the rest states may be ignored.

  5. Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries

    Institute of Scientific and Technical Information of China (English)

    Qing Zhao; Jianbin Wang; Chengcheng Chen; Ting Ma; Jun Chen

    2017-01-01

    Nanostructured organic tetralithium salts of 2,5-dihydroxyterephthalic acid (Li4C8H2O6) supported on graphene were prepared via a facile recrystallization method.The optimized composite with 75 wt.% Li4C8H2O6 was evaluated as an anode with redox couples of Li4C8H2OdLi6C8H2O6 and as a cathode with redox couples of Li4C8H2O6/Li2C8H2O6 for Li-ion batteries,exhibiting a high-rate capability (10 C) and long cycling life (1,000 cycles).Moreover,in an all-organic symmetric Li-ion battery,this dual-function electrode retained capacities of 191 and 121 mA.h·g-1 after 100 and 500 cycles,respectively.Density functional theory calculations indicated the presence of covalent bonds between Li4C8H2O6 and graphene,which affected both the morphology and electronic structure of the composite.The special nanostructures,high electronic conductivity of graphene,and covalent-bond interaction between Li4C8H2O6 and graphene contributed to the superior electrochemical properties.Our results indicate that the combination of organic salt molecules with graphene is useful for obtaining high-performance organic batteries.

  6. The Synthesis, Structures and Chemical Properties of Macrocyclic Ligands Covalently Bonded into Layered Arrays

    International Nuclear Information System (INIS)

    Clearfield, Abraham

    2003-01-01

    OAK-B135 The immobilization of crown ethers tends to limit the leveling effect of solvents making the macrocycles more selective. In addition immobilization has the added advantage of relative ease of recovery of the otherwise soluble crown. We have affixed CH2PO3H2 groups to azacrown ethers. The resultant phosphorylated macrocycles may spontaneously aggregate into crystalline supramolecular linear arrays or contacted with cations produce layered or linear polymers. In the linear polymers the metal and phosphonic acids covalently bond into a central stem with the macrocyclic rings protruding from the stem as leaves on a twig. Two types of layered compounds were obtained with group 4 metals. Monoaza-crown ethers form a bilayer where the M4+ plus phosphonic acid groups build the layer and the rings fill the interlayer space. 1, 10-diazadiphosphonic acids cross-link the metal phosphonate layers forming a three-dimensional array of crown ethers. In order to improve diffusion into these 3-D arrays they are spaced by inclusion of phosphate or phosphate groups. Two series of azamacrocylic crown ethers were prepared containing rings with 20 to 32 atoms. These larger rings can complex two cations per ring. Methylene phosphonic acid groups have been bonded to the aza ring atoms to increase the complexing ability of these ligands. Our approach is to carry out acid-base titrations in the absence and presence of cations to determine the pKa values of the protons, both those bonded to aza groups and those associated with the phosphonic acid groups. From the differences in the titration curves obtained with and without the cations present we obtain the stoichiometry of complex formation and the complex stability constants. Some of the applications we are targeting include phase transfer catalysis, separation of cations and the separation of radioisotopes for diagnostic and cancer therapeutic purposes

  7. COVALENTLY ATTACHED MULTILAYER ULTRA-THIN FILMS FROM DIAZORESIN AND CALIXARENES

    Institute of Scientific and Technical Information of China (English)

    Zhao-hui Yang; Wei-xiao Cao

    2003-01-01

    A kind of photosensitive ultra-thin film was fabricated from diazoresin (DR) and various calixarenes by using the self-assembly technique. Under UV irradiation both the ionic- and hydrogen bonds between the layers of the film will convert into covalent bonds. As a result, the stability of the film toward polar solvents increases dramatically.

  8. Covalent Functionalization of Carbon Nanotube by Tetrasubtituted Amino Manganese Phthalocyanine

    Institute of Scientific and Technical Information of China (English)

    Zheng Long YANG; Hong Zheng CHEN; Lei CAO; Han Yin LI; Mang WANG

    2004-01-01

    The multiwall carbon nanotube (MWCNT) bonded to 2, 9, 16, 23-tetraamino manganese phthalocyanine (TAMnPc) was obtained by covalent functionalization, and its chemical structure was characterized by TEM. The photoconductivity of single-layered photoreceptors, where MWCNT bonded by TAMnPc (MWCNT-b-TAMnPc) served as the charge generation material (CGM), was also studied.

  9. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    Energy Technology Data Exchange (ETDEWEB)

    Liriano, Melissa L.; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Sykes, E. Charles H., E-mail: charles.sykes@tufts.edu [Department of Chemistry, Tufts University, Medford, Massachusetts 02155 (United States); Carrasco, Javier [CIC Energigune, Albert Einstein 48, 01510 Miñano, Álava (Spain); Michaelides, Angelos [Thomas Young Centre, London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

    2016-03-07

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule’s intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our

  10. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    International Nuclear Information System (INIS)

    Liriano, Melissa L.; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Sykes, E. Charles H.; Carrasco, Javier; Michaelides, Angelos

    2016-01-01

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule’s intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our

  11. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon X irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 degrees C/15 min) given prior to radiation does not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 degrees C. The DNA-protein crosslinks produced by 50-Gy X ray alone are removed after 2 hr at 37 degrees C. However, if hyperthermia (43 degrees C/15 min) is given prior to 100-Gy X ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding. These data suggest that the synergistic action on hyperthermia with radiation is more related to the rate of removal and the type of chemical bonding involved in the covalent DNA-protein crosslinks rather than the amount of DNA-protein crosslinks

  12. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Directory of Open Access Journals (Sweden)

    Finkelstein Alexei V

    2007-07-01

    Full Text Available Abstract Background The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation. Results A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place. Conclusion The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N in conventional pairwise Van der Waals interactions.

  13. Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding.

    Science.gov (United States)

    Zhu, Min; Cojocaru-Mirédin, Oana; Mio, Antonio M; Keutgen, Jens; Küpers, Michael; Yu, Yuan; Cho, Ju-Young; Dronskowski, Richard; Wuttig, Matthias

    2018-05-01

    Laser-assisted field evaporation is studied in a large number of compounds, including amorphous and crystalline phase change materials employing atom probe tomography. This study reveals significant differences in field evaporation between amorphous and crystalline phase change materials. High probabilities for multiple events with more than a single ion detected per laser pulse are only found for crystalline phase change materials. The specifics of this unusual field evaporation are unlike any other mechanism shown previously to lead to high probabilities of multiple events. On the contrary, amorphous phase change materials as well as other covalently bonded compounds and metals possess much lower probabilities for multiple events. Hence, laser-assisted field evaporation in amorphous and crystalline phase change materials reveals striking differences in bond rupture. This is indicative for pronounced differences in bonding. These findings imply that the bonding mechanism in crystalline phase change materials differs substantially from conventional bonding mechanisms such as metallic, ionic, and covalent bonding. Instead, the data reported here confirm a recently developed conjecture, namely that metavalent bonding is a novel bonding mechanism besides those mentioned previously. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A study on poly (N-vinyl-2-pyrrolidone covalently bonded NiTi surface for inhibiting protein adsorption

    Directory of Open Access Journals (Sweden)

    Hongyan Yu

    2016-12-01

    Full Text Available Near equiatomic NiTi alloys have been extensively applied as biomaterials owing to its unique shape memory effect, superelasticity and biocompatibility. It has been demonstrated that surfaces capable of preventing plasma protein adsorption could reduce the reactivity of biomaterials with human blood. This motivated a lot of researches on the surface modification of NiTi alloy. In the present work, following heat and alkaline treatment and silanization by trichlorovinylsilane (TCVS, coating of poly (N-vinyl-2-pyrrolidone (PVP was produced on the NiTi alloy by gamma ray induced chemical bonding. The structures and properties of modified NiTi were characterized and in vitro biocompatibility of plasma protein adsorption was investigated. The results indicated that heat treatment at 823 K for 1 h could result in the formation of a protective TiO2 layer with “Ni-free” zone on NiTi surface. It was found that PVP was covalently bonded on NiTi surface to create a hydrophilic layer for inhibiting protein adsorption on the surface. The present work offers a green approach to introduce a bioorganic surface on metal and other polymeric or inorganic substrates by gamma irradiation.

  15. Visualized Bond Scission in Mechanically Activated Polymers

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Yu-lan Chen

    2017-01-01

    Visualization and quantitative evaluation of covalent bond scission in polymeric materials are critical in understanding their failure mechanisms and improving the toughness and reliability of the materials.Mechano-responsive polymers with the ability of molecular-level transduction of force into chromism and luminescence have evoked major interest and experienced significant progress.In the current review,we highlight the recent achievements in covalent mechanochromic and mechanoluminescent polymers,leading to a bridge between macroscopic mechanical properties and microscopic bond scission events.After a general introduction concerning polymer mechanochemistry,various examples that illustrate the strategies of design and incorporation of functional and weak covalent bonds in polymers were presented,the mechanisms underlying the optical phenomenon were introduced and their potential applications as stress sensors were discussed.This review concludes with a comment on the opportunities and challenges of the field.

  16. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    Science.gov (United States)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  17. The chemical bond in inorganic chemistry the bond valence model

    CERN Document Server

    Brown, I David

    2016-01-01

    The bond valence model is a version of the ionic model in which the chemical constraints are expressed in terms of localized chemical bonds formed by the valence charge of the atoms. Theorems derived from the properties of the electrostatic flux predict the rules obeyed by both ionic and covalent bonds. They make quantitative predictions of coordination number, crystal structure, bond lengths and bond angles. Bond stability depends on the matching of the bonding strengths of the atoms, while the conflicting requirements of chemistry and space lead to the structural instabilities responsible for the unusual physical properties displayed by some materials. The model has applications in many fields ranging from mineralogy to molecular biology.

  18. Effect of covalently bonded polysiloxane multilayers on the electrochemical behavior of graphite electrode in lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Qinmin; Jiang, Yinghua [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2008-03-15

    Polysiloxane multilayers were covalently bonded to the surface of natural graphite particles via diazonium chemistry and silylation reaction. The as-prepared graphite exhibited excellent discharge-charge behavior as negative electrode materials in lithium ion batteries. The improvement in the electrochemical performance of the graphite electrodes was attributed to the formation of a stable and flexible passive film on their surfaces. It was also revealed that the chemical compositions of the multilayers exerted influence on the electrochemical behavior of the graphite electrodes. The result of this study presents a new strategy to the formation of elastic and strong passive film on the graphite electrode via molecular design. Owing to the diversity of polysilxoane multilayers, this method also enables researchers to control the surface chemistries of carbonaceous materials with flexibility. (author)

  19. Parental bonding in men with alcohol disorders: a relationship with conduct disorder.

    Science.gov (United States)

    Joyce, P R; Sellman, D; Wells, E; Frampton, C M; Bushnell, J A; Oakley-Browne, M; Hornblow, A R

    1994-09-01

    Men from a clinical treatment setting suffering from alcohol dependence, and randomly selected men from the community diagnosed as having alcohol abuse and/or dependence, completed the Parental Bonding Instrument. The men from the alcohol treatment setting perceived both parents as having been uncaring and overprotective. In the general population sample, an uncaring and overprotective parental style was strongly associated with childhood conduct disorder, but not with alcohol disorder symptoms. This discrepancy in perceived parenting highlights the difficulties in extrapolating findings about aetiological factors for alcohol disorders from clinical samples. It also suggests that childhood conduct disorder and adult antisocial behaviour could influence which men with alcohol disorders receive inpatient treatment.

  20. Childhood adversities, bonding, and personality in social anxiety disorder with alcohol use disorder.

    Science.gov (United States)

    Rambau, Stefanie; Forstner, Andreas J; Wegener, Ingo; Mücke, Martin; Wissussek, Christine T S; Staufenbiel, Sabine M; Geiser, Franziska; Schumacher, Johannes; Conrad, Rupert

    2018-04-01

    Social anxiety disorder (SAD) is frequently associated with alcohol use disorders (abuse/dependence). However, there has been little research on the characteristics of this subgroup so far. In the current study we investigated individuals with SAD and comorbid alcohol use disorder (AUD) with regard to socialization experiences and personality. The sample comprised 410 individuals diagnosed with SAD by the Structured Clinical Interview of DSM-IV. 108 participants with comorbid AUD were compared to 302 participants without comorbid AUD concerning traumatic experiences during childhood and adolescence (Adverse Childhood Experiences Questionnaire; ACE), parental bonding (Parental Bonding Instrument; PBI), and personality (Temperament and Character Inventory; TCI). MANCOVA with covariates sex and depression displayed that individuals with SAD plus AUD reported significantly more traumatic events during childhood and adolescence, lower levels of maternal care, as well as lower cooperativeness. Our results highlight that adverse childhood experiences and unfavourable maternal bonding characterize individuals suffering from SAD plus AUD. These experiences might be reflected in a personality-based tendency to distance themselves from others, which corresponds to low scores on the character dimension cooperativeness. A deeper understanding of personality and specific socialization experiences is necessary to develop new treatment options in this clinically challenging subgroup. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Structure and chemical bond characteristics of LaB6

    International Nuclear Information System (INIS)

    Bai Lina; Ma Ning; Liu Fengli

    2009-01-01

    The structure and chemical bond characteristics of LaB 6 have been achieved by means of the density functional theory using the state-of-the-art full-potential linearized augmented plane wave (FPLAPW) method, which are implemented within the EXCITING code. The results show our optimized lattice constant a (4.158 A), parameter z (0.1981) and bulk modulus B (170.4 GPa) are in good agreement with the corresponding experimental data. Electron localization function (ELF) shows the La-La bond mainly is ionic bond, La-B bond is between ionic and covalent bond while the covalent bond between the nearest neighbor B atoms (B2 and B3) is a little stronger than that between the nearer neighbor B atoms (B1 and B4).

  2. Ionic ASi{sub 2}N{sub 3} (A=Li, Na, K and Rb) stabilized by the covalent Si–N bonding: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Huijun [College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Ren, Jiadong, E-mail: jdren@ysu.edu.cn [College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Wu, Lailei [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhang, Jingwu, E-mail: zjw@ysu.edu.cn [Key Laboratory of Metastable Materials Science and Technology, College of Material Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2017-01-15

    The structural, elastic and electronic properties of LiSi{sub 2}N{sub 3} and its substitutions by Na, K and Rb were investigated through first-principles computations. The expansion of lattice parameters of ASi{sub 2}N{sub 3} from Li, Na, K to Rb is found to be determined by the bond angle of Si–N1–Si, which suggests a possible way to improve the lithium ionic conductivity by substitutions. ASi{sub 2}N{sub 3} (A=Li, Na, K and Rb) shows the similar elastic behaviors, while the electronic band gap gradually decreases from 5.1 to 3.4 eV from LiSi{sub 2}N{sub 3} to RbSi{sub 2}N{sub 3}. Interestingly, the analysis of electronic structure, crystal orbital Hamiltonian populations and Bader charges shows that the covalence of Si–N bonding is critical for the stability of ASi{sub 2}N{sub 3} phase. Among ASi{sub 2}N{sub 3} phases, there is a relatively high ionicity in NaSi{sub 2}N{sub 3}; the Si–N bond strength in [Si{sub 2}N{sub 3}]{sup −} net for KSi{sub 2}N{sub 3} and RbSi{sub 2}N{sub 3} is comparable to LiSi{sub 2}N{sub 3}, but stronger than NaSi{sub 2}N{sub 3}. - Graphic abstract: Universal trend of structural and electronic properties in alkaline metal silicon nitrides, ASi{sub 2}N{sub 3}, A=Li, Na, K and Rb. - Highlights: • Trend in structure, electronic and mechanical properties of ASi{sub 2}N{sub 3} (A=Li-Rb) were predicted. • Lattice expansion of ASi{sub 2}N{sub 3} induced by the bond angle of Si–N1–Si was found. • Calculated band gap decreases from 5.1 to 3.4 eV from LiSi{sub 2}N{sub 3} to RbSi{sub 2}N{sub 3}. • Covalent Si–N bonding is critical for the stability of ASi{sub 2}N{sub 3}.

  3. Electrocatalytic reduction of H2O2 by Pt nanoparticles covalently bonded to thiolated carbon nanostructures

    International Nuclear Information System (INIS)

    You, Jung-Min; Kim, Daekun; Jeon, Seungwon

    2012-01-01

    Highlights: ► Novel thiolated carbon nanostructures – platinum nanoparticles [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] have been synthesized, and [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] denotes as t-GO-pt and t-MWCNT-Pt in manuscript, respectively. ► The modified electrode denoted as PDDA/t-GO-pt/GCE was used for the electrochemical determination of H 2 O 2 for the first time. ► The results show that PDDA/t-GO-pt nanoparticles have the promising potential as the basic unit of the electrochemical biosensors for the detection of H 2 O 2 . ► The proposed H 2 O 2 biosensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s. - Abstract: Glassy carbon electrodes were coated with thiolated carbon nanostructures – multi-walled carbon nanotubes and graphene oxide. The subsequent covalent addition of platinum nanoparticles and coating with poly(diallydimethylammonium chloride) resulted in biosensors that detected hydrogen peroxide through its electrocatalytic reduction. The sensors were easily and quickly prepared and showed improved sensitivity to the electrocatalytic reduction of H 2 O 2 . The Pt nanoparticles covalently bonded to the thiolated carbon nanostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Cyclic voltammetry and amperometry were used to characterize the biosensors’ performances. The sensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s, thus demonstrating their potential for use in H 2 O 2 analysis.

  4. Preparation of catalytically active, covalent α-polylysine-enzyme conjugates via UV/vis-quantifiable bis-aryl hydrazone bond formation.

    Science.gov (United States)

    Grotzky, Andrea; Manaka, Yuichi; Kojima, Taisuke; Walde, Peter

    2011-01-10

    Covalent UV/vis-quantifiable bis-aryl hydrazone bond formation was investigated for the preparation of conjugates between α-poly-d-lysine (PDL) and either α-chymotrypsin (α-CT) or horseradish peroxidase (HRP). PDL and the enzymes were first modified via free amino groups with the linking reagents succinimidyl 6-hydrazinonicotinate acetone hydrazone (S-HyNic, at pH 7.6) and succinimidyl 4-formylbenzoate (S-4FB, at pH 7.2), respectively. The modified PDL and enzymes were then conjugated at pH 4.7, whereby polymer chains carrying several enzymes were obtained. Kinetics of the bis-aryl hydrazone bond formation was investigated spectrophotometrically at 354 nm. Retention of the enzymatic activity after conjugate formation was confirmed by using the substrates N-succinimidyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide (for α-CT) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS, for HRP). Thus, not only a mild and efficient preparation and convenient quantification of a conjugate between the polycationic α-polylysine and enzymes could be shown, but also the complete preservation of the enzymatic activity.

  5. Electronic basis of hardness and phase transformations (covalent crystals)

    International Nuclear Information System (INIS)

    Gilman, J J

    2008-01-01

    Several electronic parameters measure the stabilities of covalent crystals, including minimum energy band-gap densities, inverse polarizabilities, plasma frequencies, transverse vibrational frequencies and elastic shear moduli. Convenient is the band-gap density (energy/volume; called the 'bond modulus'). For a given bonding type, the indentation hardness is proportional to the bond modulus. Examples are the group IV elements, III-V compounds; and II-VI compounds. The motion of dislocation kinks requires the excitation of bonding electrons into anti-bonding states. The bond modulus measures this together with the work done by the applied stress when a kink moves. In addition to hardness, the bond modulus measures the compressive strain (pressure) needed to transform an ambient structure into a more dense structure. Activation of such transformations also requires the excitation of bonding electrons into anti-bonding states together with the work done by the compressive stress

  6. Valence electron structure and bonding features of RuB2 and OSB2: The empirical electron theory calculations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The valence electron structure (VES) of RuB2 and OsB2 were calculated by the empirical electron theory (EET) of solids and molecules and compared with the results derived from the first-principles calculations. The distributions of covalent electrons in different bonds indicate that B-B and B-Me have remarkably covalent bonding characters. Lattice electrons cruising around Me-Me layers are found to have great influences on electronic conductivity and high temperature plasticity. The ultra-high values of elastic constant Cn in the two compounds originate from close-packed covalent bonding along the c axis. Uneven bond strengths and distributions of covalent bonds, especially for B-Afe bonds, yield significant anisotropy. Low ratios of lattice electrons to covalent electrons suggest the intrinsic embrittlement in crystals. The fact that the calculated cohesive energies well agree with experimental results demonstrates the good suitability of the EET calculations in estimating cohesive energy for transition-metal borides.

  7. Molecular characterization of covalent complexes between tissue transglutaminase and gliadin peptides

    DEFF Research Database (Denmark)

    Fleckenstein, Burkhard; Qiao, Shuo-Wang; Larsen, Martin Røssel

    2004-01-01

    recognized by intestinal T cells from patients. Incubation of TG2 with gliadin peptides also results in the formation of covalent TG2-peptide complexes. Here we report the characterization of complexes between TG2 and two immunodominant gliadin peptides. Two types of covalent complexes were found......; the peptides are either linked via a thioester bond to the active site cysteine of TG2 or via isopeptide bonds to particular lysine residues of the enzyme. We quantified the number of gliadin peptides bound to TG2 under different conditions. After 30 min of incubation of TG2 at 1 microm with an equimolar ratio...... of peptides to TG2, approximately equal amounts of peptides were bound by thioester and isopeptide linkage. At higher peptide to TG2 ratios, more than one peptide was linked to TG2, and isopeptide bond formation dominated. The lysine residues in TG2 that act as acyl acceptors were identified by matrix...

  8. Chemical Bond Parameters in Sr3MRhO6 (M=Rare earth)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chemical bond parameters, that is, bond covalency, bond valence, macroscopic linear susceptibility, and oxidation states of elements in Sr3MRhO6 (M=Sm, Eu, Tb, Dy, Ho, Er, Yb) have been calculated. The results indicate that the bond covalency of M-O decreases sharply with the decrease of ionic radius of M3+ from Sm to Yb, while no obvious trend has been found for Rh-O and Sr-O bonds. The global instability index indicates that the crystal structures of Sr3MrhO6 (M = Sm, Eu, Tb, Dy, Ho) have strained bonds.

  9. Review: peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds.

    Science.gov (United States)

    Hashimoto, Tadashi; Suzuki, Yoshihisa; Suzuki, Kyoko; Nakashima, Toshihide; Tanihara, Masao; Ide, Chizuka

    2005-06-01

    We have developed a nerve regeneration material consisting of alginate gel crosslinked with covalent bonds. in the first part of this study, we attempted to analyze nerve regeneration through alginate gel in the early stages within 2 weeks. in the second part, we tried to regenerate cat peripheral nerve by using alginate tubular or non-tubular nerve regeneration devices, and compared their efficacies. Four days after surgery, regenerating axons grew without Schwann cell investment through the partially degraded alginate gel, being in direct contact with the alginate without a basal lamina covering. One to 2 weeks after surgery, regenerating axons were surrounded by common Schwann cells, forming small bundles, with some axons at the periphery being partly in direct contact with alginate. At the distal stump, numerous Schwann cells had migrated into the alginate 8-14 days after surgery. Remarkable restorations of the 50-mm gap in cat sciatic nerve were obtained after a long term by using tubular or non-tubular nerve regeneration material consisting mainly of alginate gel. However, there was no significant difference between both groups at electrophysiological and morphological evaluation. Although, nowadays, nerve regeneration materials being marketed mostly have a tubular structure, our results suggest that the tubular structure is not indispensable for peripheral nerve regeneration.

  10. Nitrogen-tuned bonding mechanism of Li and Ti adatom embedded graphene

    International Nuclear Information System (INIS)

    Lee, Sangho; Chung, Yong-Chae

    2013-01-01

    The effects of nitrogen defects on the bonding mechanism and resultant binding energy between the metal and graphene layer were investigated using density functional theory (DFT) calculations. For the graphitic N-doped graphene, Li adatom exhibited ionic bonding character, while Ti adatom showed features of covalent bonding similar to that of pristine graphene. However, in the cases of pyridinic and pyrrolic structures, partially covalent bonding characteristic occurred around N atoms in the process of binding with metals, and this particular bond formation enhanced the bond strength of metal on the graphene layer as much as it exceeded the cohesive energy of the metal bulk. Thus, Li and Ti metals are expected to be dispersed with atomic accuracy on the pyridinic and pyrrolic N-doped graphene layers. These results demonstrate that the bonding mechanism of metal–graphene complex can change according to the type of N defect, and this also affects the binding results. - Graphical abstract: Display Omitted - Highlights: • Nitrogen defects changed the bonding mechanism between metal and graphene. • Bonding character and binding results were investigated using DFT calculations. • Covalent bonding character occurred around pyridinic and pyrrolic N-doped graphene. • Pyridinic and pyrrolic N atoms are effective for metal dispersion on the graphene

  11. Anisotropic Covalency Contributions to Superexchange Pathways in Type One Copper Active Sites

    Science.gov (United States)

    2015-01-01

    Type one (T1) Cu sites deliver electrons to catalytic Cu active sites: the mononuclear type two (T2) Cu site in nitrite reductases (NiRs) and the trinuclear Cu cluster in the multicopper oxidases (MCOs). The T1 Cu and the remote catalytic sites are connected via a Cys-His intramolecular electron-transfer (ET) bridge, which contains two potential ET pathways: P1 through the protein backbone and P2 through the H-bond between the Cys and the His. The high covalency of the T1 Cu–S(Cys) bond is shown here to activate the T1 Cu site for hole superexchange via occupied valence orbitals of the bridge. This covalency-activated electronic coupling (HDA) facilitates long-range ET through both pathways. These pathways can be selectively activated depending on the geometric and electronic structure of the T1 Cu site and thus the anisotropic covalency of the T1 Cu–S(Cys) bond. In NiRs, blue (π-type) T1 sites utilize P1 and green (σ-type) T1 sites utilize P2, with P2 being more efficient. Comparing the MCOs to NiRs, the second-sphere environment changes the conformation of the Cys-His pathway, which selectively activates HDA for superexchange by blue π sites for efficient turnover in catalysis. These studies show that a given protein bridge, here Cys-His, provides different superexchange pathways and electronic couplings depending on the anisotropic covalencies of the donor and acceptor metal sites. PMID:25310460

  12. The Covalent Binding of Photosensitive Dyes to Monocrystalline Silicon Surface and Their Spectral Response

    Institute of Scientific and Technical Information of China (English)

    郭志新; 郝纪祥; 张祖训; 曹子祥

    1993-01-01

    A chemical method is proposed to bond photo-sensitive dyes directly to the surface of polished monocrystalline silicon. A methincyanine dye and a trimethincyanine dye have been bonded covalently onto silicon surface through Si—N bond, which are characterized by XPS technique and laser Raman spectra. Photovoltaic effect has been observed with the In/dye/n-Si sandwich devices composed of the dye-bonded n-Si wafers. Significant spectral response shows the characteristic absorptance maxima of the bonded dyes.

  13. Atomic bonding of precipitate and phase transformation of Al-Cu-Mg alloy

    International Nuclear Information System (INIS)

    Gao Yingjun; Hou Xianhua; Mo Qifeng; Wei Chengyang; Qin Xiaobing

    2007-01-01

    Atomic bonding of the GPB zone and S'' phase of Al-Cu-Mg alloys in early aging stage are calculated using the empirical electron theory (EET) in solid. The results show that not only the covalence bond-network is very strong in GPB zone, but the whole covalence bond energy of S'' phase is also very large, and all the primary bond-net framework of these precipitates can consolidate the matrix of alloy. Phase transformation from GPB zone to S'' phase is explained reasonably based on atomic bonding and total binding capacity of Al and Cu atoms in these precipitates

  14. Theoretical Insights into Monometallofullerene Th@C76: Strong Covalent Interaction between Thorium and the Carbon Cage.

    Science.gov (United States)

    Zhao, Pei; Zhao, Xiang; Ehara, Masahiro

    2018-03-19

    Th@C 76 has been studied by density functional theory combined with statistical mechanics calculations. The results reveal that Th@ T d (19151)-C 76 satisfying the isolated pentagon rule possesses the lowest energy. Nevertheless, considering the enthalpy-entropy interplay, Th@ C 1 (17418)-C 76 with one pair of adjacent pentagons is thermodynamically favorable at elevated temperatures, which is reported for the first time. The bonding critical points in both isomers were analyzed to disclose covalent interactions between the inner Th and cages. In addition, the Wiberg bond orders of M-C bonding in different endohedral metallofullerenes (EMFs) were investigated to prove stronger covalent interactions of Th-C in Th-based EMFs.

  15. Gender differences in the associations between childhood trauma and parental bonding in panic disorder.

    Science.gov (United States)

    Seganfredo, Ana Carolina Gaspar; Torres, Mariana; Salum, Giovanni Abrahão; Blaya, Carolina; Acosta, Jandira; Eizirik, Cláudio; Manfro, Gisele Gus

    2009-12-01

    The aim of this study is to evaluate the association between childhood trauma and the quality of parental bonding in panic disorder compared to non-clinical controls. 123 patients and 123 paired controls were evaluated with the Mini International Neuropsychiatric Interview, the Childhood Trauma Questionnaire and the Parental Bonding Instrument. The Parental Bonding Instrument and the Childhood Trauma Questionnaire were highly correlated. Panic disorder patients presented higher rates of emotional abuse (OR = 2.54, p = 0.001), mother overprotection (OR = 1.98, p = 0.024) and father overprotection (OR = 1.84, p = 0.041) as compared to controls. Among men with panic disorder, only mother overprotection remained independently associated with panic disorder (OR = 3.28, p = 0.032). On the other hand, higher father overprotection (OR = 2.2, p = 0.017) and less father warmth (OR = 0.48, p = 0.039) were independently associated with panic disorder among female patients. Higher rates of different types of trauma, especially emotional abuse, are described in panic disorder patients as compared to controls. The differences regarding gender and parental bonding could be explained in the light of the psychodynamic theory.

  16. Conformational analysis of a covalently cross-linked Watson-Crick base pair model.

    Science.gov (United States)

    Jensen, Erik A; Allen, Benjamin D; Kishi, Yoshito; O'Leary, Daniel J

    2008-11-15

    Low-temperature NMR experiments and molecular modeling have been used to characterize the conformational behavior of a covalently cross-linked DNA base pair model. The data suggest that Watson-Crick or reverse Watson-Crick hydrogen bonding geometries have similar energies and can interconvert at low temperatures. This low-temperature process involves rotation about the crosslink CH(2)C(5') (psi) carbon-carbon bond, which is energetically preferred over the alternate CH(2)N(3) (phi) carbon-nitrogen bond rotation.

  17. The chemical bond as an emergent phenomenon.

    Science.gov (United States)

    Golden, Jon C; Ho, Vinh; Lubchenko, Vassiliy

    2017-05-07

    We first argue that the covalent bond and the various closed-shell interactions can be thought of as symmetry broken versions of one and the same interaction, viz., the multi-center bond. We use specially chosen molecular units to show that the symmetry breaking is controlled by density and electronegativity variation. We show that the bond order changes with bond deformation but in a step-like fashion, regions of near constancy separated by electronic localization transitions. These will often cause displacive transitions as well so that the bond strength, order, and length are established self-consistently. We further argue on the inherent relation of the covalent, closed-shell, and multi-center interactions with ionic and metallic bonding. All of these interactions can be viewed as distinct sectors on a phase diagram with density and electronegativity variation as control variables; the ionic and covalent/secondary sectors are associated with on-site and bond-order charge density wave, respectively, the metallic sector with an electronic fluid. While displaying a contiguity at low densities, the metallic and ionic interactions represent distinct phases separated by discontinuous transitions at sufficiently high densities. Multi-center interactions emerge as a hybrid of the metallic and ionic bond that results from spatial coexistence of delocalized and localized electrons. In the present description, the issue of the stability of a compound is that of the mutual miscibility of electronic fluids with distinct degrees of electron localization, supra-atomic ordering in complex inorganic compounds coming about naturally. The notions of electronic localization advanced hereby suggest a high throughput, automated procedure for screening candidate compounds and structures with regard to stability, without the need for computationally costly geometric optimization.

  18. Comparative TEM study of bonded silicon/silicon interfaces fabricated by hydrophilic, hydrophobic and UHV wafer bonding

    International Nuclear Information System (INIS)

    Reznicek, A.; Scholz, R.; Senz, S.; Goesele, U.

    2003-01-01

    Wafers of Czochralski-grown silicon were bonded hydrophilically, hydrophobically and in ultrahigh vacuum (UHV) at room temperature. Wafers bonded hydrophilically adhere together by hydrogen bonds, those bonded hydrophobically by van der Waals forces and UHV-bonded ones by covalent bonds. Annealing the pre-bonded hydrophilic and hydrophobic wafer pairs in argon for 2 h at different temperatures increases the initially low bonding energy. UHV-bonded wafer pairs were also annealed to compare the results. Transmission electron microscopy (TEM) investigations show nano-voids at the interface. The void density depends on the initial bonding strength. During annealing the shape, coverage and density of the voids change significantly

  19. Immobilization of β-glucosidase onto mesoporous silica support: Physical adsorption and covalent binding of enzyme

    Directory of Open Access Journals (Sweden)

    Ivetić Darjana Ž.

    2014-01-01

    Full Text Available This paper investigates β-glucosidase immobilization onto mesoporous silica support by physical adsorption and covalent binding. The immobilization was carried out onto micro-size silica aggregates with the average pore size of 29 nm. During physical adsorption the highest yield of immobilized β-glucosidase was obtained at initial protein concentration of 0.9 mg ml-1. Addition of NaCl increased 1.7-fold, while Triton X-100 addition decreased 6-fold yield of adsorption in comparison to the one obtained without any addition. Covalently bonded β-glucosidase, via glutaraldehyde previously bonded to silanized silica, had higher yield of immobilized enzyme as well as higher activity and substrate affinity in comparison to the one physically adsorbed. Covalent binding did not considerably changed pH and temperature stability of obtained biocatalyst in range of values that are commonly used in reactions in comparison to unbounded enzyme. Furthermore, covalent binding provided biocatalyst which retained over 70% of its activity after 10 cycles of reuse. [Projekat Ministarstva nauke Republike Srbije, br. III 45021

  20. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    Energy Technology Data Exchange (ETDEWEB)

    Held, Jeanette, E-mail: jeanette.netzel@uni-bayreuth.de; Smaalen, Sander van [University of Bayreuth, D-95440 Bayreuth (Germany)

    2014-04-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  1. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    International Nuclear Information System (INIS)

    Held, Jeanette; Smaalen, Sander van

    2014-01-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  2. Uranium(III)-carbon multiple bonding supported by arene δ-bonding in mixed-valence hexauranium nanometre-scale rings.

    Science.gov (United States)

    Wooles, Ashley J; Mills, David P; Tuna, Floriana; McInnes, Eric J L; Law, Gareth T W; Fuller, Adam J; Kremer, Felipe; Ridgway, Mark; Lewis, William; Gagliardi, Laura; Vlaisavljevich, Bess; Liddle, Stephen T

    2018-05-29

    Despite the fact that non-aqueous uranium chemistry is over 60 years old, most polarised-covalent uranium-element multiple bonds involve formal uranium oxidation states IV, V, and VI. The paucity of uranium(III) congeners is because, in common with metal-ligand multiple bonding generally, such linkages involve strongly donating, charge-loaded ligands that bind best to electron-poor metals and inherently promote disproportionation of uranium(III). Here, we report the synthesis of hexauranium-methanediide nanometre-scale rings. Combined experimental and computational studies suggest overall the presence of formal uranium(III) and (IV) ions, though electron delocalisation in this Kramers system cannot be definitively ruled out, and the resulting polarised-covalent U = C bonds are supported by iodide and δ-bonded arene bridges. The arenes provide reservoirs that accommodate charge, thus avoiding inter-electronic repulsion that would destabilise these low oxidation state metal-ligand multiple bonds. Using arenes as electronic buffers could constitute a general synthetic strategy by which to stabilise otherwise inherently unstable metal-ligand linkages.

  3. Sol-gel approach to the novel organic-inorganic hybrid composite films with ternary europium complex covalently bonded with silica matrix

    International Nuclear Information System (INIS)

    Dong Dewen; Yang Yongsheng; Jiang Bingzheng

    2006-01-01

    Novel organic-inorganic hybrid composite films with ternary lanthanide complex covalently bonded with silica matrix were prepared in situ via co-ordination of N-(3-propyltriethoxysilane)-4-carboxyphthalimide (TAT) and 1,10-phenanthroline (Phen) with europium ion (Eu 3+ ) during a sol-gel approach and characterized by the means of spectrofluorimeter, phosphorimeter and infrared spectrophotometer (FTIR). The resulting transparent films showed improved photophysical properties, i.e. increased luminescence intensity and longer luminescence lifetime, compared with the corresponding binary composite films without Phen. All the results revealed that the intense luminescence of the composite film was attributed to the efficient energy transfer from ligands, especially Phen, to chelated Eu 3+ and the reduced non-radiation through the rigid silica matrix and 'site isolation'

  4. Melting and related precursor cooperative phenomena in chemically bonded assemblies

    International Nuclear Information System (INIS)

    March, N.H.

    2004-09-01

    A number of experimental studies of condensed matter assemblies with different types of chemical bonding will provide the focus of this work. Condensed compounds X(CH 3 ) 4 , with X = C,Si or Ge, are the first of such assemblies; two phase boundaries in the pressure temperature plane being studied: melting and a solid phase boundary heralding orientational disordering of molecules still however on a lattice. Secondly, directionally bonded d-electron transition metals such as Ni, Pd and Nb will be treated. Here, melting is the main focus, but the precursor transition is now the separation of a high-temperature ductile solid from a lower temperature mechanically brittle phase. A dislocation-mediated model of these transitions is discussed, leading into the third area of covalently bonded solids graphite and silicon. Here topological defect models again provide the focus; both dislocations and rotation-dislocations now being invoked. Some qualitative suggestions are made to interpret the melting curve of graphite subjected to high pressure. (author)

  5. Electronic structure and interatomic bonding in Al10V

    International Nuclear Information System (INIS)

    Jahnatek, M; Krajci, M; Hafner, J

    2003-01-01

    On the basis of ab initio calculations we analysed the electron density distribution in the elementary cell of the compound Al 10 V. We found covalent bonding between certain atoms. The Al-V bonds of enhanced covalency are linked into -Al-V-Al-V- chains that extend over the whole crystal. The chains intersect at each V site and together form a Kagome network of corner-sharing tetrahedra. The large voids of this network are filled by Z 16 Friauf polyhedra consisting of Al atoms only. The skeleton of the Friauf polyhedron has the form of a truncated tetrahedron and consists of 12 strongly bonded Al atoms. These Al-Al bonds also have covalent character. The bonding is dominated by sp 2 hybridization. The centre of the Friauf polyhedron may be empty or occupied by an Al atom. The thermodynamic stability of the phase is investigated. The Al 21 V 2 phase with occupied voids is at low temperatures less stable than Al 10 V. The Al 10 V structure can be considered as a special case of the Al 18 Cr 2 Mg 3 structural class. We have found the same picture of bonding as we report here for Al 10 V for several other aluminium-rich alloys belonging to the Al 18 Cr 2 Mg 3 structural class also

  6. On the calculation and interpretation of covalency in the intensity parameters of 4f–4f transitions in Eu{sup 3+} complexes based on the chemical bond overlap polarizability

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Renaldo T., E-mail: renaldotmjr@gmail.com; Carneiro Neto, Albano N.; Longo, Ricardo L.; Malta, Oscar L.

    2016-02-15

    The concepts of chemical bond overlap polarizability (α{sub OP}) and of specific ionic valence (υ) were used to characterize the Eu{sup 3+}–ligating atom bonds in complexes. The underlying chemical bond properties, namely, bond distance, overlap integral, force constant, and the energy excitation, were successfully calculated for the Eu{sup 3+}–ligating atom diatomic-like species under the influence of the molecular environment. The quantities α{sub OP} and υ were used to reshape and reinterpret the expressions of the forced electric dipole (FED) and the dynamic coupling (DC) mechanisms responsible for the intensity parameters of 4f–4f transitions. These parameters were calculated with this new approach for a series of Eu{sup 3+} complexes: [EuL{sub 3}L′] with L=AIND, BIND, TTA, BTFA, FOD, ABSe, ABSeCl, DPM and L′=(H{sub 2}O){sub 2}, NO{sub 3}, DPbpy, DBSO, TPPO, Phen, for which the experimental intensity parameters and some E{sub 00} (={sup 5}D{sub 0}→{sup 7}F{sub 0}) energies are available. Comparisons between the theoretical and experimental results suggest that this new methodology is reliable and an important step toward an approach to calculate the 4f–4f intensities free of adjustable parameters, which has been accomplished for complexes without aquo ligand. - Highlights: • New methodology to calculate intensity parameters of f–f transitions. • Inclusion of overlap polarizability (covalency) on dynamic coupling mechanism. • Analytical calculation of the charge factors in the ligand field Hamiltonian. • Step towards a parameter-free computational method for f–f intensities. • Interpretation and quantification of the intensity parameters in terms of covalency.

  7. Covalent lanthanide(III) macrocyclic complexes: the bonding nature and optical properties of a promising single antenna molecule.

    Science.gov (United States)

    Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro

    2014-12-21

    The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.

  8. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds.

    Science.gov (United States)

    Alkorta, Ibon; Legon, Anthony C

    2017-10-23

    It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol -1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  9. Alpha-cyclodextrins reversibly capped with disulfide bonds

    Czech Academy of Sciences Publication Activity Database

    Kumprecht, Lukáš; Buděšínský, Miloš; Bouř, Petr; Kraus, Tomáš

    2010-01-01

    Roč. 34, č. 10 (2010), s. 2254-2260 ISSN 1144-0546 R&D Projects: GA AV ČR IAA400550810 Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclodextrins * disulfide bond * dynamic covalent bond Subject RIV: CC - Organic Chemistry Impact factor: 2.631, year: 2010

  10. The yeast cell fusion protein Prm1p requires covalent dimerization to promote membrane fusion.

    Directory of Open Access Journals (Sweden)

    Alex Engel

    2010-05-01

    Full Text Available Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion.

  11. Noble gas bond and the behaviour of XeO3 under pressure.

    Science.gov (United States)

    Hou, Chunju; Wang, Xianlong; Botana, Jorge; Miao, Maosheng

    2017-10-18

    Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO 3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO 3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.

  12. Structure and Chemical Bond of Thermoelectric Ce-Co-Sb Skutterudites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The correlations among composition,structure,chemical bond and thermoelectric property of skutterudites CoSb3 and CeCo5Fe3Sb12 have been studied by using density function and discrete variation (DFT-DVM) method.Three models for this study were proposed and calculated by which the "rattling" pattern was described.Model 1 is with Ce in the center,model 2 is with Ce away the center and near to Sb,and model 3 is also with Ce away the center but near to Fe.The calculated results show that in model 3,the ionic bond is the strongest,but the covalent bond is the weakest.Due to the different changes between ionic and covalent bond,there is less difference in the stability among the models 1,2 and 3.Therefore,these different models can exist at the same time,or can translate from one to another more easily.In other words,the "rattling" pattern has taken place.Unfilled model of CoSb3,without Ce and Fe,is called model 4.The covalent bond of Co-Sb or Fe-Sb in models 1,2 and 3 is weaker than that of Co-Sb in model 4,as some electrical cloud of Sb takes part in the covalent bond of Ce-Sb in the filled models.The result is consistent with the experimental result that the thermal conductivity of CeCo5Fe3Sb12 is lower than that of CoSb3,and the thermoelectric property of CeCo5Fe3Sb12 is superior to that of CoSb3.

  13. Description of Non-Covalent Interactions in SCC-DFTB Methods

    Czech Academy of Sciences Publication Activity Database

    Miriyala, Vijay Madhav; Řezáč, Jan

    2017-01-01

    Roč. 38, č. 10 (2017), s. 688-697 ISSN 0192-8651 R&D Projects: GA ČR(CZ) GJ16-11321Y Institutional support: RVO:61388963 Keywords : density functional tight binding * DFTB3 * non- covalent interactions * dispersion correction * hydrogen bonding correction Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.229, year: 2016

  14. Targeting of [[sup 111]In]biocytin to cultured ovarian adenocarcinoma cells using covalent monoclonal antibody -streptavidin conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, K.; Marks, A. (Toronto Univ., ON (Canada). Banting and Best Dept. of Medical Research); Baumal, R. (Hospital for Sick Children, Toronto, ON (Canada). Dept. of Pathology)

    1992-11-01

    Three monoclonal antibodies (mAb) directed against the human ovarian adenocarcinoma cell line HEY, were substituted with maleimide and covalently bonded to thiolated streptavidin. The conjugates were separated from unreacted reagents by successive affinity chromatography on protein A-Sepharose and iminobiotin columns. Purified conjugates consisted of an immunoglobulin (Ig) monomer bound to a streptavidin tetramer through a covalent bond between the Ig molecule and one of the streptavidin subunits. The conjugates were able to specifically target [[sup 111]In]biocytin to HEY cells in vitro in the presence of human serum and ascitic fluid from ovarian cancer patients. (Author).

  15. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  16. Covalent DNA-protein crosslinking occurs after hyperthermia and radiation

    International Nuclear Information System (INIS)

    Cress, A.E.; Bowden, G.T.

    1983-01-01

    Covalent DNA-protein crosslinks occur in exponentially growing mouse leukemia cells (L1210) after exposure to ionizing radiation. The amount of DNA-protein crosslinks as measured by a filter binding assay is dose dependent upon x irradiation. Although hyperthermia and radiation in combination are synergistic with respect to cell lethality, the combination does not result in an increase of DNA-protein crosslinks when assayed immediately following treatments. Hyperthermia (43 0 C/15 min) given prior to radiation dose not alter the radiation dose dependency of the amount of initial crosslinking. In addition, the amount of DNA-protein crosslinking produced by heat plus radiation is independent of the length of heating the cells at 43 0 C. The DNA-protein crosslinks produced y 50-Gy x ray alone are removed after 2 hr at 37 0 C. However, if hyperthermia (43 0 C/15 min) is given prior to 100-Gy x ray, the removal of DNA-protein crosslinks is delayed until 4.0 hr after radiation. Phospho-serine and phospho-threonine bonds are not produced with either radiation or the combination of hyperthermia plus radiation as judged by the resistance of the bonds to guanidine hydrochloride. However, hyperthermia plus radiation causes an increase in phosphate to nitrogen type bonding. These results show that radiation alone causes covalent DNA-protein crosslinks. Hyperthermia in combination with radiation does not increase the total amount of the crosslinks but delays the removal of the crosslinks and alters the distribution of the types of chemical bonding

  17. Merging constitutional and motional covalent dynamics in reversible imine formation and exchange processes.

    Science.gov (United States)

    Kovaříček, Petr; Lehn, Jean-Marie

    2012-06-06

    The formation and exchange processes of imines of salicylaldehyde, pyridine-2-carboxaldehyde, and benzaldehyde have been studied, showing that the former has features of particular interest for dynamic covalent chemistry, displaying high efficiency and fast rates. The monoimines formed with aliphatic α,ω-diamines display an internal exchange process of self-transimination type, inducing a local motion of either "stepping-in-place" or "single-step" type by bond interchange, whose rate decreases rapidly with the distance of the terminal amino groups. Control of the speed of the process over a wide range may be achieved by substituents, solvent composition, and temperature. These monoimines also undergo intermolecular exchange, thus merging motional and constitutional covalent behavior within the same molecule. With polyamines, the monoimines formed execute internal motions that have been characterized by extensive one-dimensional, two-dimensional, and EXSY proton NMR studies. In particular, with linear polyamines, nondirectional displacement occurs by shifting of the aldehyde residue along the polyamine chain serving as molecular track. Imines thus behave as simple prototypes of systems displaying relative motions of molecular moieties, a subject of high current interest in the investigation of synthetic and biological molecular motors. The motional processes described are of dynamic covalent nature and take place without change in molecular constitution. They thus represent a category of dynamic covalent motions, resulting from reversible covalent bond formation and dissociation. They extend dynamic covalent chemistry into the area of molecular motions. A major further step will be to achieve control of directionality. The results reported here for imines open wide perspectives, together with other chemical groups, for the implementation of such features in multifunctional molecules toward the design of molecular devices presenting a complex combination of

  18. EPR-spin probe studies of model polymers: separation of covalent cross-linking effects from hydrogen bonding effects in swelled Argonne Premium Coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Spears, D.R.; Sady, W.; Tucker, D.; Kispert, L.D. (University of Alabama, Tuscaloosa, AL (United States). Chemistry Dept.)

    The swelling behaviour of 2-12% cross-linked polystyrene-divinylbenzene (PSDVB) copolymers was examined by an EPR-spin probe technique. It was observed that the mechanism of spin probe inclusion was the intercalation into the matrix rather than diffusion into the pores. The disruption of van der Waals forces between adjacent aromatic rings appeared to be the primary mechanism for pyridine swelling of PSDVB. By comparing the data to results from coal swelling studies it was also inferred that the extent of hydrogen bonding in coal will have a much greater impact on its swelling properties than its covalently cross-linked character. 24 refs., 6 figs.

  19. Isolation and characterization of a uranium(VI)-nitride triple bond

    Science.gov (United States)

    King, David M.; Tuna, Floriana; McInnes, Eric J. L.; McMaster, Jonathan; Lewis, William; Blake, Alexander J.; Liddle, Stephen T.

    2013-06-01

    The nature and extent of covalency in uranium bonding is still unclear compared with that of transition metals, and there is great interest in studying uranium-ligand multiple bonds. Although U=O and U=NR double bonds (where R is an alkyl group) are well-known analogues to transition-metal oxo and imido complexes, the uranium(VI)-nitride triple bond has long remained a synthetic target in actinide chemistry. Here, we report the preparation of a uranium(VI)-nitride triple bond. We highlight the importance of (1) ancillary ligand design, (2) employing mild redox reactions instead of harsh photochemical methods that decompose transiently formed uranium(VI) nitrides, (3) an electrostatically stabilizing sodium ion during nitride installation, (4) selecting the right sodium sequestering reagent, (5) inner versus outer sphere oxidation and (6) stability with respect to the uranium oxidation state. Computational analyses suggest covalent contributions to U≡N triple bonds that are surprisingly comparable to those of their group 6 transition-metal nitride counterparts.

  20. Covalent modification of calcium hydroxyapatite surface by grafting phenyl phosphonate moieties

    International Nuclear Information System (INIS)

    Aissa, Abdallah; Debbabi, Mongi; Gruselle, Michel; Thouvenot, Rene; Gredin, Patrick; Traksmaa, Rainer; Tonsuaadu, Kaia

    2007-01-01

    The reaction between phenyl phosphonic dichloride (C 6 H 5 P(O)Cl 2 ) and synthetic calcium hydroxy- and fluorapatite has been investigated. The presence of mono- or polymeric (C 6 H 5 PO) fragment bound to hydroxyapatite was evidenced by IR, and solid-state 31 P NMR spectroscopy. X-ray powder analysis has shown that the apatitic structure remains unchanged during the reaction. In contrast, no reaction was found using fluorapatite. According to the results found for these two different apatites a mechanism was proposed for the formation of covalent P-O-P bonds as the result of a reaction between the C 6 H 5 P(O)Cl 2 organic reagent and (HPO 4 ) - and/or OH - ions of the hydroxyapatite. - Graphical abstract: Representation of the first step of the reaction between the phenyl phosphonic dichloride and the hydroxyl groups on the surface of the apatite, leading to covalent P-O-P bond with elimination of HCl

  1. Effects of Maternal Anxiety Disorders on Infant Self-Comforting Behaviors: The Role of Maternal Bonding, Infant Gender and Age.

    Science.gov (United States)

    Müller, Mitho; Tronick, Ed; Zietlow, Anna-Lena; Nonnenmacher, Nora; Verschoor, Stephan; Träuble, Birgit

    We investigated the links between maternal bonding, maternal anxiety disorders, and infant self-comforting behaviors. Furthermore, we looked at the moderating roles of infant gender and age. Our sample (n = 69) comprised 28 mothers with an anxiety disorder (according to DSM-IV criteria) and 41 controls, each with their 2.5- to 8-month-old infant (41 females and 28 males). Infant behaviors were recorded during the Face-to-Face Still-Face paradigm. Maternal bonding was assessed by the Postpartum Bonding Questionnaire. Conditional process analyses revealed that lower maternal bonding partially mediated between maternal anxiety disorders and increased self-comforting behaviors but only in older female infants (over 5.5 months of age). However, considering maternal anxiety disorders without the influence of bonding, older female infants (over 5.5 months of age) showed decreased rates of self-comforting behaviors, while younger male infants (under 3 months of age) showed increased rates in the case of maternal anxiety disorder. The results suggest that older female infants (over 5.5 months of age) are more sensitive to lower maternal bonding in the context of maternal anxiety disorders. Furthermore, results suggest a different use of self-directed regulation strategies for male and female infants of mothers with anxiety disorders and low bonding, depending on infant age. The results are discussed in the light of gender-specific developmental trajectories. © 2016 S. Karger AG, Basel.

  2. Electrocatalytic reduction of H{sub 2}O{sub 2} by Pt nanoparticles covalently bonded to thiolated carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    You, Jung-Min; Kim, Daekun [Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Jeon, Seungwon [Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757 (Korea, Republic of)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Novel thiolated carbon nanostructures - platinum nanoparticles [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] have been synthesized, and [t-GO-C(O)-pt and t-MWCNT-C(O)-S-pt] denotes as t-GO-pt and t-MWCNT-Pt in manuscript, respectively. Black-Right-Pointing-Pointer The modified electrode denoted as PDDA/t-GO-pt/GCE was used for the electrochemical determination of H{sub 2}O{sub 2} for the first time. Black-Right-Pointing-Pointer The results show that PDDA/t-GO-pt nanoparticles have the promising potential as the basic unit of the electrochemical biosensors for the detection of H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The proposed H{sub 2}O{sub 2} biosensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s. - Abstract: Glassy carbon electrodes were coated with thiolated carbon nanostructures - multi-walled carbon nanotubes and graphene oxide. The subsequent covalent addition of platinum nanoparticles and coating with poly(diallydimethylammonium chloride) resulted in biosensors that detected hydrogen peroxide through its electrocatalytic reduction. The sensors were easily and quickly prepared and showed improved sensitivity to the electrocatalytic reduction of H{sub 2}O{sub 2}. The Pt nanoparticles covalently bonded to the thiolated carbon nanostructures were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. Cyclic voltammetry and amperometry were used to characterize the biosensors' performances. The sensors exhibited wide linear ranges and low detection limits, giving fast responses within 10 s, thus demonstrating their potential for use in H{sub 2}O{sub 2} analysis.

  3. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution

    Science.gov (United States)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  4. The bonding character and magnetic properties of Fe3Al: Comparison between disordered and ordered alloy

    International Nuclear Information System (INIS)

    Fan Runhua; Qi Liang; Sun Kangning; Min Guanghui; Gong Hongyu

    2006-01-01

    Fe 3 Al with D0 3 -ordered structure is one of the few structural intermetallics that can be disordered using non-equilibrium processing techniques. The bonding and magnetic character of the stoichiometric Fe 3 Al, with D0 3 -ordered or disordered structure, have been studied using the empirical electron theory of solid and molecular (EET). It was found that the magnetic property is basically dictated by the chemical bonding. There is a change of the character of the interatomic bonds from 3d(Fe)-3p(Al) for the D0 3 -ordered Fe 3 Al to 4sp(Fe)-3p(Al) for the disordered Fe 3 Al. For the latter, while the Fe 3d electrons participating in bonding is reduced, the mean magnetic moment is increased

  5. Maternal bonding in mothers with postpartum anxiety disorder: the crucial role of subclinical depressive symptoms and maternal avoidance behaviour.

    Science.gov (United States)

    Tietz, A; Zietlow, A-L; Reck, C

    2014-10-01

    Hardly any research has examined the link between postpartum anxiety disorder and maternal bonding. This study examined if postpartum anxiety disorder and maternal bonding are related in the postpartum period. Thereby, subclinical depressive symptoms and specific aspects of an anxious symptomatology were also taken into consideration. The German sample of N = 78 mother-infant dyads is composed of n = 30 mothers with postpartum anxiety disorders but without major or minor depression according to the Diagnostic and Statistical Manual of Mental Disorders IV (DSM-IV) and n = 48 healthy mothers. Subjects were interviewed with the Structured Clinical Interview for DSM-IV Disorders at an average infant age of M = 4.1 months. Moreover, mothers filled out the Postpartum Bonding Questionnaire-16. The Anxiety Cognitions Questionnaire, the Body Sensations Questionnaire and the Mobility Inventory were chosen to assess different aspects of anxious symptomatology. To control for concurrent subclinical depressive symptoms, we used the German Edinburgh-Postnatal-Depression Scale. Mothers with postpartum anxiety disorder reported significantly lower bonding than healthy mothers. However, in a linear regression analysis, concurrent subclinical depressive symptoms and avoidance of anxiety-related situations in company explained 27 % of the overall variance in maternal bonding. The perceived lower bonding of mothers with anxiety disorder could be due to aspects of a concurrent subclinical depressive symptomatology. This notion emphasizes the need to target even mild depressive symptoms in the treatment of postpartum anxiety disorders. The outcomes also underline that the severity of anxious symptomatology, reflected by avoidance behaviour in company, puts the mother-infant bond at risk.

  6. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery

    Institute of Scientific and Technical Information of China (English)

    Ming-Xue Wu; Ying-Wei Yang

    2017-01-01

    Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B,C,N,O,Si) and linked by robust covalent bonds to endow such material with desirable properties,i.e.,inherent porosity,well-defined pore aperture,ordered channel structure,large surface area,high stability,and multi-dimension.As expected,the abovementioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation,catalysis,optoelectronics,sensing,small molecules adsorption,and drug delivery.In this review,we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.

  7. Bonding and M?ssbauer Isomer Shifts in (Tl,Pb) - 1223 Cuprate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using the chemical bond theory of dielectric description,the chemical bond parameters of (Tl,Pb) - 1223 was calculated.The results show that the Sr-O,Tl-O,and Ca-O types of bond have higher ionic character and the Cu-O types of bond have more covalent character.M?ssbauer isomer shifts of 57Fe and 119Sn doped in (Tl,Pb) -1223 were calculated by using the chemical environmental factor,he,defined by covalency and electronic polarizability.Four valence state tin and three valence iron sites were identified in 57Fe,and 119Sn doped (Tl,Pb) -1223 superconductor.We conclude that all of the Fe atoms substitute the Cu at square planar Cu (1) site,whereas Sn prefers to substitute the square pyramidal Cu (2) site.

  8. Optimising hydrogen bonding in solid wood

    DEFF Research Database (Denmark)

    Engelund, Emil Tang

    2009-01-01

    The chemical bonds of wood are both covalent bonds within the wood polymers and hydrogen bonds within and between the polymers. Both types of bonds are responsible for the coherence, strength and stiffness of the material. The hydrogen bonds are more easily modified by changes in load, moisture...... and temperature distorting the internal bonding state. A problem arises when studying hydrogen bonding in wood since matched wood specimens of the same species will have very different internal bonding states. Thus, possible changes in the bonding state due to some applied treatment such as conditioning...... maintaining 100 % moisture content of the wood. The hypothesis was that this would enable a fast stress relaxation as a result of reorganization of bonds, since moisture plasticizes the material and temperature promotes faster kinetics. Hereby, all past bond distortions caused by various moisture, temperature...

  9. Conformational Analysis of a Covalently Cross-Linked Watson-Crick Base Pair Model

    OpenAIRE

    Jensen, Erik A.; Allen, Benjamin D.; Kishi, Yoshito; O'Leary, Daniel J.

    2008-01-01

    Low temperature NMR experiments and molecular modeling have been used to characterize the conformational behavior of a covalently cross-linked DNA base pair model. The data suggest that Watson-Crick or reverse Watson-Crick hydrogen bonding geometries have similar energies and can interconvert at low temperatures. This low-temperature process involves rotation about the crosslink CH2–C(5′) (ψ) carbon-carbon bond, which is energetically preferred over the alternate CH2–N(3) (ϕ) carbon-nitrogen ...

  10. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds

    Directory of Open Access Journals (Sweden)

    Ibon Alkorta

    2017-10-01

    Full Text Available It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N2, CO, HC≡CH, CH2=CH2, C3H6, PH3, H2S, HCN, H2O, H2CO and NH3 and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H2O, F2, Cl2, Br2, ClF, BrCl, H3SiF, H3GeF, F2CO, CO2, N2O, NO2F, PH2F, AsH2F, SO2, SeO2, SF2, and SeF2 can be represented to good approximation by means of the equation D e = c ′ N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ′ is a constant, conveniently chosen to have the value 1.00 kJ mol−1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1 the hydrogen bond; (2 the halogen bond; (3 the tetrel bond; (4 the pnictogen bond; and (5 the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  11. X-ray Absorption Spectroscopy and Density Functional Theory Studies of [(H3buea)FeIII-X]n1 (X= S2-, O2-,OH-): Comparison of Bonding and Hydrogen Bonding in Oxo and Sulfido Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Abhishek; Hocking, Rosalie K.; /Stanford U., Chem. Dept.; Larsen, Peter; Borovik, Andrew S.; /Kansas U.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; /SLAC,

    2006-09-27

    Iron L-edge, iron K-edge, and sulfur K-edge X-ray absorption spectroscopy was performed on a series of compounds [Fe{sup III}H{sub 3}buea(X)]{sup n-} (X = S{sup 2-}, O{sup 2-}, OH{sup -}). The experimentally determined electronic structures were used to correlate to density functional theory calculations. Calculations supported by the data were then used to compare the metal-ligand bonding and to evaluate the effects of H-bonding in Fe{sup III}-O vs Fe{sup III-}S complexes. It was found that the Fe{sup III-}O bond, while less covalent, is stronger than the FeIII-S bond. This dominantly reflects the larger ionic contribution to the Fe{sup III-}O bond. The H-bonding energy (for three H-bonds) was estimated to be -25 kcal/mol for the oxo as compared to -12 kcal/mol for the sulfide ligand. This difference is attributed to the larger charge density on the oxo ligand resulting from the lower covalency of the Fe-O bond. These results were extended to consider an Fe{sup IV-}O complex with the same ligand environment. It was found that hydrogen bonding to Fe{sup IV-}O is less energetically favorable than that to Fe{sup III-}O, which reflects the highly covalent nature of the Fe{sup IV-}O bond.

  12. Unusual bond paths in organolithium compounds

    International Nuclear Information System (INIS)

    Bachrach, S.M.; Ritchie, J.P.

    1986-01-01

    We have applied the topological method to a number of organolithium compounds. The wavefunctions were determined with GAUSSIAN-82 using 3-21G basis set and fully optimized geometries. Gradient paths were obtained using the RHODER package and critical points were located using EXTREME. These results indicate the unusual nature of organolithium compounds. The strange bond paths arise mainly from the ionic nature of the C-Li interaction. We suggest that the term ''bond path'' may best be suited for covalent bonds. 4 figs., 1 tab

  13. Chemically fixed p-n heterojunctions for polymer electronics by means of covalent B-F bond formation

    Science.gov (United States)

    Hoven, Corey V.; Wang, Huiping; Elbing, Mark; Garner, Logan; Winkelhaus, Daniel; Bazan, Guillermo C.

    2010-03-01

    Widely used solid-state devices fabricated with inorganic semiconductors, including light-emitting diodes and solar cells, derive much of their function from the p-n junction. Such junctions lead to diode characteristics and are attained when p-doped and n-doped materials come into contact with each other. Achieving bilayer p-n junctions with semiconducting polymers has been hindered by difficulties in the deposition of thin films with independent p-doped and n-doped layers. Here we report on how to achieve permanently fixed organic p-n heterojunctions by using a cationic conjugated polyelectrolyte with fluoride counteranions and an underlayer composed of a neutral conjugated polymer bearing anion-trapping functional groups. Application of a bias leads to charge injection and fluoride migration into the neutral layer, where irreversible covalent bond formation takes place. After the initial charging and doping, one obtains devices with no delay in the turn on of light-emitting electrochemical behaviour and excellent current rectification. Such devices highlight how mobile ions in organic media can open opportunities to realize device structures in ways that do not have analogies in the world of silicon and promise new opportunities for integrating organic materials within technologies now dominated by inorganic semiconductors.

  14. Bonding and Moessbauer Isomer Shifts in (Hg,Pb)—1223 Cuprate

    Institute of Scientific and Technical Information of China (English)

    高发明; 田永君; 谌岩; 李东春; 董海峰; 张思远

    2003-01-01

    By using the chemical bond theory of dielectric description,the chemical bond parameters of(Hg,Pb)-1223 were calculated.The results show that the(Ba,Sr)-O and Ca-0 types of bond have higher ionic character,while the Cu-O and(Hg,Pb)-0 types of bond have more covalent character.Moessbauer isomer shifts of 57Fe and 119Sn doped in(Hg,Pb)-1223 were calculated by using the chemical environmental factor,he,defined by covalency and electronic polarizability.Four valence state tin and three valence iron sites were identified in 57Fe and 119Sn doped(Hg,Pb)-1223 superconductor.It can be concluded that all of the Fe atoms substitute the Cu at square planar Cu(1) site,Whereas Sn prefers to substitute the square pyramidal Cu(2) site.

  15. Covalent immobilization of lipase from Candida rugosa on Eupergit®

    Directory of Open Access Journals (Sweden)

    Bezbradica Dejan I.

    2005-01-01

    Full Text Available An approach is presented for the stable covalent immobilization of Upase from Candida rugosa on Eupergit® with a high retention of hydrolytic activity. It comprises covalent bonding via lipase carbohydrate moiety previously modified by periodate oxidation, allowing a reduction in the involvement of the enzyme functional groups that are probably important in the catalytic mechanism. The hydrolytic activities of the lipase immobilized on Eupergif1 by two conventional methods (via oxirane group and via glutaralde-hyde and with periodate method were compared. Results of lipase assays suggest that periodate method is superior for lipase immobilization on Eupergit® among methods applied in this study with respect to both, yield of immobilization and hydrolytic activity of the immobilized enzyme.

  16. Photo-induced cooperative covalent-bond switching in amorphous arsenic selenide

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-290031 (Ukraine); Balitska, V [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-290031 (Ukraine); Filipecki, J [Institute of Physics of Jan Dlugosz University, 13/15, Al. Armii Krajowej, Czestochowa, PL-42201 (Poland)

    2005-01-01

    A microstructural mechanism of photoinduced transformations in amorphous arsenic selenide films was studied with IR Fourier-spectroscopy technique in 300-100 cm{sup -1} region. It was shown that stage of irreversible photostructural changes was connected with cooperative process of coordination defect formation accompanied by homopolar chemical bonds switching in heteropolar ones. On the contrary, reversible photoinduced effects were caused by heteropolar chemical bonds switching in homopolar ones, as well as additional channel of bridge heteropolar bonds switching in short-layer ones. The both processes were associated with formation of anomalously coordinated defect pairs and accompanying atomic displacements at the level of medium-range ordering. The developed mathematical simulation procedure testified in a favour of defect-related origin of the reversible photo-thermallyinduced transformations, since their kinetics corresponded to known stretched-exponential dependence, tending to bimolecular behaviour rather then to single-exponential one.

  17. Improving the Thermostability and Optimal Temperature of a Lipase from the Hyperthermophilic Archaeon Pyrococcus furiosus by Covalent Immobilization

    Directory of Open Access Journals (Sweden)

    Roberta V. Branco

    2015-01-01

    Full Text Available A recombinant thermostable lipase (Pf2001Δ60 from the hyperthermophilic Archaeon Pyrococcus furiosus (PFUL was immobilized by hydrophobic interaction on octyl-agarose (octyl PFUL and by covalent bond on aldehyde activated-agarose in the presence of DTT at pH = 7.0 (one-point covalent attachment (glyoxyl-DTT PFUL and on glyoxyl-agarose at pH 10.2 (multipoint covalent attachment (glyoxyl PFUL. The enzyme’s properties, such as optimal temperature and pH, thermostability, and selectivity, were improved by covalent immobilization. The highest enzyme stability at 70°C for 48 h incubation was achieved for glyoxyl PFUL (around 82% of residual activity, whereas glyoxyl-DTT PFUL maintained around 69% activity, followed by octyl PFUL (27% remaining activity. Immobilization on glyoxyl-agarose improved the optimal temperature to 90°C, while the optimal temperature of octyl PFUL was 70°C. Also, very significant changes in activity with different substrates were found. In general, the covalent bond derivatives were more active than octyl PFUL. The E value also depended substantially on the derivative and the conditions used. It was observed that the reaction of glyoxyl-DTT PFUL using methyl mandelate as a substrate at pH 7 presented the best results for enantioselectivity E=22 and enantiomeric excess (ee (% = 91.

  18. The bonding character and magnetic properties of Fe{sub 3}Al: Comparison between disordered and ordered alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fan Runhua [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China)]. E-mail: fan@sdu.edu.cn; Qi Liang [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Sun Kangning [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Min Guanghui [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China); Gong Hongyu [MOE Key Laboratory for Liquid Structure and Heredity of Materials, Shandong University, Jinan 250061 (China)

    2006-12-25

    Fe{sub 3}Al with D0{sub 3}-ordered structure is one of the few structural intermetallics that can be disordered using non-equilibrium processing techniques. The bonding and magnetic character of the stoichiometric Fe{sub 3}Al, with D0{sub 3}-ordered or disordered structure, have been studied using the empirical electron theory of solid and molecular (EET). It was found that the magnetic property is basically dictated by the chemical bonding. There is a change of the character of the interatomic bonds from 3d(Fe)-3p(Al) for the D0{sub 3}-ordered Fe{sub 3}Al to 4sp(Fe)-3p(Al) for the disordered Fe{sub 3}Al. For the latter, while the Fe 3d electrons participating in bonding is reduced, the mean magnetic moment is increased.

  19. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.

    Science.gov (United States)

    Ploshnik, Elina; Danovich, David; Hiberty, Philippe C; Shaik, Sason

    2011-04-12

    We describe herein a valence bond (VB) study of 27 triply bonded molecules of the general type X≡Y, where X and Y are main element atoms/fragments from groups 13-15 in the periodic table. The following conclusions were derived from the computational data: (a) Single π-bond and double π-bond energies for the entire set correlate with the "molecular electronegativity", which is the sum of the X and Y electronegativites for X≡Y. The correlation with the molecular electronegativity establishes a simple rule of periodicity: π-bonding strength generally increases from left to right in a period and decreases down a column in the periodic table. (b) The σ frame invariably prefers trans bending, while π-bonding gets destabilized and opposes the trans distortion. In HC≡CH, the π-bonding destabilization overrides the propensity of the σ frame to distort, while in the higher row molecules, the σ frame wins out and establishes trans-bent molecules with 2(1)/2 bonds, in accord with recent experimental evidence based on solid state (29)Si NMR of the Sekiguchi compound. Thus, in the trans-bent molecules "less bonds pay more". (c) All of the π bonds show significant bonding contributions from the resonance energy due to covalent-ionic mixing. This quantity is shown to correlate linearly with the corresponding "molecular electronegativity" and to reflect the mechanism required to satisfy the equilibrium condition for the bond. The π bonds for molecules possessing high molecular electronegativity are charge-shift bonds, wherein bonding is dominated by the resonance energy of the covalent and ionic forms, rather than by either form by itself.

  20. Living Polymerization for the Introduction of Tailored Hydrogen Bonding

    OpenAIRE

    Elkins, Casey Lynn

    2005-01-01

    In an effort to synthesize macromolecules comprising both covalent and non-covalent bonding to tune ultimate physical properties, a variety of methodologies and functionalization strategies were employed. First, protected functional initiation, namely 3-[(N-benzyl-N-methyl)amino]-1-propyllithium and 3-(t-butyldimethylsilyloxy)-1-propyllithium, in living anionic polymerization of isoprene was used to yield well-defined chain end functional macromolecules. Using both initiating systems, polym...

  1. Theoretical investigation of compounds with triple bonds

    International Nuclear Information System (INIS)

    Devarajan, Deepa

    2011-01-01

    In this thesis, compounds with potential triple-bonding character involving the heavier main-group elements, Group 4 transition metals, and the actinides uranium and thorium were studied by using molecular quantum mechanics. The triple bonds are described in terms of the individual orbital contributions (σ, π parallel , and π perpendicular to ), involving electron-sharing covalent or donor-acceptor interactions between the orbitals of two atoms or fragments. Energy decomposition, natural bond orbital, and atoms in molecules analyses were used for the bonding analysis of the triple bonds. The results of this thesis suggest that the triple-bonding character between the heavier elements of the periodic table is important and worth further study and exploration.

  2. Watson-Crick hydrogen bonds : Nature and role in DNA replication

    NARCIS (Netherlands)

    Guerra, Célia Fonseca; Bickelhaupt, F. Matthias

    2006-01-01

    The hydrogen bonds in DNA Watson–Crick base pairs have long been considered predominantly electrostatic phenomena. In this chapter, we show with state-of-the-art calculations that this is not true and that electrostatic interactions and covalent contributions in these hydrogen bonds are in fact of

  3. Halogen bonding in solution: thermodynamics and applications.

    Science.gov (United States)

    Beale, Thomas M; Chudzinski, Michael G; Sarwar, Mohammed G; Taylor, Mark S

    2013-02-21

    Halogen bonds are noncovalent interactions in which covalently bound halogens act as electrophilic species. The utility of halogen bonding for controlling self-assembly in the solid state is evident from a broad spectrum of applications in crystal engineering and materials science. Until recently, it has been less clear whether, and to what extent, halogen bonding could be employed to influence conformation, binding or reactivity in the solution phase. This tutorial review summarizes and interprets solution-phase thermodynamic data for halogen bonding interactions obtained over the past six decades and highlights emerging applications in molecular recognition, medicinal chemistry and catalysis.

  4. Bonding in [CuNRR′]4 type clusters

    Institute of Scientific and Technical Information of China (English)

    WANG Bingwu; XU Guangxian; CHEN Zhida

    2004-01-01

    Many polynuclear Cu(I) compounds have been synthesized, but the problem whether there is direct or no direct Cu-Cu bonding in these compounds is not clear. The electronic structure of [CuNRR′]4 type clusters was investigated by using density functional methods. The results of geometrical optimization are in good agreement with experiment, and the localization of MO's shows that there are four Cu-Cu ( bonds to form the square Cu4 ring in addition to the four bridging Cu-N-Cu bonds. A concept of the covalence of molecular fragments is proposed to describe the bonding in these clusters.

  5. CovalentDock Cloud: a web server for automated covalent docking.

    Science.gov (United States)

    Ouyang, Xuchang; Zhou, Shuo; Ge, Zemei; Li, Runtao; Kwoh, Chee Keong

    2013-07-01

    Covalent binding is an important mechanism for many drugs to gain its function. We developed a computational algorithm to model this chemical event and extended it to a web server, the CovalentDock Cloud, to make it accessible directly online without any local installation and configuration. It provides a simple yet user-friendly web interface to perform covalent docking experiments and analysis online. The web server accepts the structures of both the ligand and the receptor uploaded by the user or retrieved from online databases with valid access id. It identifies the potential covalent binding patterns, carries out the covalent docking experiments and provides visualization of the result for user analysis. This web server is free and open to all users at http://docking.sce.ntu.edu.sg/.

  6. Clustering of carboxylated magnetite nanoparticles through polyethylenimine: Covalent versus electrostatic approach

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary); Nesztor, Dániel [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary); Novák, Levente [Department of Colloid and Environmental Chemistry, University of Debrecen, Egyetem square 1, Debrecen (Hungary); Illés, Erzsébet; Szekeres, Márta; Szabó, Tamás [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary); Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Materials Science, University of Szeged, Aradi vt. square 1, Szeged (Hungary)

    2017-04-01

    Carboxylated magnetite nanoparticles (MNPs) are frequently used to develop materials with enhanced properties for MRI and hyperthermia. The controlled clustering of MNPs via covalent or electrostatic approaches provides opportunity to prepare high quality materials. MNPs were prepared by co-precipitation and coated by poly(acrylic acid-co-maleic acid) (PAM@MNP). The clusters were synthesized from purified PAM@MNPs and polyethylenimine (PEI) solution via electrostatic interaction and covalent bond formation (ES-cluster and CB-cluster, respectively). The electrostatic adhesion (–NH{sub 3}{sup +} and –COO{sup –}) and the formed amide bond were confirmed by ATR-FTIR. The averaged area of CB-clusters was about twice as large as that of ES-cluster, based on TEM. The SAXS results showed that the surface of MNPs was smooth and the nanoparticles were close packed in both clusters. The pH-dependent aggregation state and zeta potential of clusters were characterized by DLS and electrophoresis measurements, the clusters were colloidally stable at pH>5. In hyperthermia experiments, the values of SAR were about two times larger for the chemically bonded cluster. The MRI studies showed exceptionally high transversion relaxivities, the r{sub 2} values are 457 mM{sup −1} s{sup −1} and 691 mM{sup −1} s{sup −1} for ES-cluster and CB-cluster, respectively. Based on these results, the chemically clustered product shows greater potential for feasible biomedical applications. - Highlights: • Chemically bonded clusters (CB-cluster) were prepared from PEI and PAM-coated MNPs. • The electrostatically clustered units (ES-cluster) are smaller and more compact. • The electrostatic adhesion and the amide bond formation were confirmed by ATR-FTIR. • CB-cluster dispersions are colloidally stable under physiological conditions. • CB-cluster shows great potential for application in MRI and hyperthermia.

  7. A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran

    International Nuclear Information System (INIS)

    Mornet, Stephane; Portier, Josik; Duguet, Etienne

    2005-01-01

    A new generation of susceptibility contrast agents for MRI and based on maghemite cores covalently bonded to dextran stabilizing macromolecules was investigated. The multistep preparation of these versatile ultrasmall superparamagnetic iron oxides (VUSPIO) consisted of colloidal maghemite synthesis, surface modification by aminopropylsilane groups, and coupling of partially oxidized dextran via Schiff's bases and secondary amine bonds. The dextran corona might be easily derivatized, e.g. by PEGylation

  8. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Norrman, Mathias; Strauss, Holger M.

    2012-01-01

    An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers...... in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic ß-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization...... and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization...

  9. Chemical bonding in view of electron charge density and kinetic energy density descriptors.

    Science.gov (United States)

    Jacobsen, Heiko

    2009-05-01

    Stalke's dilemma, stating that different chemical interpretations are obtained when one and the same density is interpreted either by means of natural bond orbital (NBO) and subsequent natural resonance theory (NRT) application or by the quantum theory of atoms in molecules (QTAIM), is reinvestigated. It is shown that within the framework of QTAIM, the question as to whether for a given molecule two atoms are bonded or not is only meaningful in the context of a well-defined reference geometry. The localized-orbital-locator (LOL) is applied to map out patterns in covalent bonding interaction, and produces results that are consistent for a variety of reference geometries. Furthermore, LOL interpretations are in accord with NBO/NRT, and assist in an interpretation in terms of covalent bonding. 2008 Wiley Periodicals, Inc.

  10. Bonding Strength of Ni/Ni3Al Interface with Different Lattice Misfit

    Institute of Scientific and Technical Information of China (English)

    Ping PENG; Caixing ZHENG; Shaochang HAN; Zhaohui JIN; Rui YANG; Zhuangqi HU

    2003-01-01

    The interfacial binding covalent bond density (CBD) and the local environmental total bond order (LTBO) of the Ni/Ni3Alinterface with different lattice misfits (δ) were calculated by using first-principles discrete variation Xα method. It was foundthat

  11. Oxygen Evolution at Manganite Perovskite Ruddlesden-Popper Type Particles: Trends of Activity on Structure, Valence and Covalence

    Directory of Open Access Journals (Sweden)

    Majid Ebrahimizadeh Abrishami

    2016-11-01

    Full Text Available An improved understanding of the correlation between the electronic properties of Mn-O bonds, activity and stability of electro-catalysts for the oxygen evolution reaction (OER is of great importance for an improved catalyst design. Here, an in-depth study of the relation between lattice structure, electronic properties and catalyst performance of the perovskite Ca1−xPrxMnO3 and the first-order RP-system Ca2−xPrxMnO4 at doping levels of x = 0, 0.25 and 0.5 is presented. Lattice structure is determined by X-ray powder diffraction and Rietveld refinement. X-ray absorption spectroscopy of Mn-L and O-K edges gives access to Mn valence and covalency of the Mn-O bond. Oxygen evolution activity and stability is measured by rotating ring disc electrode studies. We demonstrate that the highest activity and stability coincidences for systems with a Mn-valence state of +3.7, though also requiring that the covalency of the Mn-O bond has a relative minimum. This observation points to an oxygen evolution mechanism with high redox activity of Mn. Covalency should be large enough for facile electron transfer from adsorbed oxygen species to the MnO6 network; however, it should not be hampered by oxidation of the lattice oxygen, which might cause a crossover to material degradation. Since valence and covalency changes are not entirely independent, the introduction of the energy position of the eg↑ pre-edge peak in the O-K spectra as a new descriptor for oxygen evolution is suggested, leading to a volcano-like representation of the OER activity.

  12. Effects of Magnetic Field on the Valence Bond Property of the Double-Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    王立民; 罗莹; 马本堃

    2002-01-01

    The effects of the magnetic field on the valence bond property of the double-quantum-dot molecule are numerically studied by the finite element method and perturbation approach because of the absence of cylindrical symmetry in the horizontally coupled dots. The calculation results show that the energy value of the ground state changes differently from that of the first excited state with increasing magnetic field strength, and they cross under a certain magnetic field. The increasing magnetic field makes the covalent bond state change into an ionic bond state, which agrees qualitatively with experimental results and makes ionic bond states remain. The oscillator strength of transition between covalent bond states decreases distinctly with the increasing magnetic field strength, when the molecule is irradiated by polarized light. Such a phenomenon is possibly useful for actual applications.

  13. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, Leonard S.; Grate, Jay W.

    2010-06-01

    Fluorinated hydrogen-bond acidic groups are directly attached to the backbone of single walled carbon nanotubes (SWCNTs) without the introduction of intermediate electron donating surface groups. Hexafluoroalcohol functional groups are exceptionally strong hydrogen bond acids, and are added to the nanotube surface using the aryl diazonium approach to create hydrogen-bond acidic carbon nanotube (CNT) surfaces. These groups can promote strong hydrogen-bonding interactions with matrix materials in composites or with molecular species to be concentrated and sensed. In the latter case, this newly developed material is expected to find useful application in chemical sensors and in CNT-based preconcentrator devices for the detection of pesticides, chemical warfare agents and explosives.

  14. Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach.

    Science.gov (United States)

    Zhang, Gen; Tsujimoto, Masahiko; Packwood, Daniel; Duong, Nghia Tuan; Nishiyama, Yusuke; Kadota, Kentaro; Kitagawa, Susumu; Horike, Satoshi

    2018-02-21

    Covalent organic frameworks (COFs) represent an emerging class of crystalline porous materials that are constructed by the assembly of organic building blocks linked via covalent bonds. Several strategies have been developed for the construction of new COF structures; however, a facile approach to fabricate hierarchical COF architectures with controlled domain structures remains a significant challenge, and has not yet been achieved. In this study, a dynamic covalent chemistry (DCC)-based postsynthetic approach was employed at the solid-liquid interface to construct such structures. Two-dimensional imine-bonded COFs having different aromatic groups were prepared, and a homogeneously mixed-linker structure and a heterogeneously core-shell hollow structure were fabricated by controlling the reactivity of the postsynthetic reactions. Solid-state nuclear magnetic resonance (NMR) spectroscopy and transmission electron microscopy (TEM) confirmed the structures. COFs prepared by a postsynthetic approach exhibit several functional advantages compared with their parent phases. Their Brunauer-Emmett-Teller (BET) surface areas are 2-fold greater than those of their parent phases because of the higher crystallinity. In addition, the hydrophilicity of the material and the stepwise adsorption isotherms of H 2 O vapor in the hierarchical frameworks were precisely controlled, which was feasible because of the distribution of various domains of the two COFs by controlling the postsynthetic reaction. The approach opens new routes for constructing COF architectures with functionalities that are not possible in a single phase.

  15. Parental Bonds in Children at High and Low Familial Risk for Panic Disorder

    Science.gov (United States)

    Koszycki, Diana; Bilodeau, Cynthia; Zwanzger, Peter; Schneider, Barry H.; Flament, Martine F.; Bradwejn, Jacques

    2013-01-01

    A rejecting and overprotective parenting style is considered to be an important risk factor for the development of anxiety disorders. This study examined the role of perceived parental bonding as a potential environmental risk factor for panic disorder (PD) in unaffected offspring with parental PD. Children with a biological parent with PD (n =…

  16. Recognition of facial emotion and perceived parental bonding styles in healthy volunteers and personality disorder patients.

    Science.gov (United States)

    Zheng, Leilei; Chai, Hao; Chen, Wanzhen; Yu, Rongrong; He, Wei; Jiang, Zhengyan; Yu, Shaohua; Li, Huichun; Wang, Wei

    2011-12-01

    Early parental bonding experiences play a role in emotion recognition and expression in later adulthood, and patients with personality disorder frequently experience inappropriate parental bonding styles, therefore the aim of the present study was to explore whether parental bonding style is correlated with recognition of facial emotion in personality disorder patients. The Parental Bonding Instrument (PBI) and the Matsumoto and Ekman Japanese and Caucasian Facial Expressions of Emotion (JACFEE) photo set tests were carried out in 289 participants. Patients scored lower on parental Care but higher on parental Freedom Control and Autonomy Denial subscales, and they displayed less accuracy when recognizing contempt, disgust and happiness than the healthy volunteers. In healthy volunteers, maternal Autonomy Denial significantly predicted accuracy when recognizing fear, and maternal Care predicted the accuracy of recognizing sadness. In patients, paternal Care negatively predicted the accuracy of recognizing anger, paternal Freedom Control predicted the perceived intensity of contempt, maternal Care predicted the accuracy of recognizing sadness, and the intensity of disgust. Parenting bonding styles have an impact on the decoding process and sensitivity when recognizing facial emotions, especially in personality disorder patients. © 2011 The Authors. Psychiatry and Clinical Neurosciences © 2011 Japanese Society of Psychiatry and Neurology.

  17. Facile route to covalently-jointed graphene/polyaniline composite and it’s enhanced electrochemical performances for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hanxun [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Han, Xuebin; Qiu, Feilong [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Yang, Junhe, E-mail: hxqiu@usst.edu.cn [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2016-07-15

    Highlights: • A novel synthetic approach to graphene/polyaniline composite is developed. • Covalently bonds are introduced between graphene and polyaniline. • The composite exhibits great electrochemical property with capacitance of 489 F g{sup −1}. - Abstract: A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g{sup −1} at 0.5 A g{sup −1}, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  18. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    Science.gov (United States)

    Correia, Manuel; Neves-Petersen, Maria Teresa; Jeppesen, Per Bendix; Gregersen, Søren; Petersen, Steffen B

    2012-01-01

    In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2)) excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes in protein

  19. UV-light exposure of insulin: pharmaceutical implications upon covalent insulin dityrosine dimerization and disulphide bond photolysis.

    Directory of Open Access Journals (Sweden)

    Manuel Correia

    Full Text Available In this work we report the effects of continuous UV-light (276 nm, ~2.20 W.m(-2 excitation of human insulin on its absorption and fluorescence properties, structure and functionality. Continuous UV-excitation of the peptide hormone in solution leads to the progressive formation of tyrosine photo-product dityrosine, formed upon tyrosine radical cross-linkage. Absorbance, fluorescence emission and excitation data confirm dityrosine formation, leading to covalent insulin dimerization. Furthermore, UV-excitation of insulin induces disulphide bridge breakage. Near- and far-UV-CD spectroscopy shows that UV-excitation of insulin induces secondary and tertiary structure losses. In native insulin, the A and B chains are held together by two disulphide bridges. Disruption of either of these bonds is likely to affect insulin's structure. The UV-light induced structural changes impair its antibody binding capability and in vitro hormonal function. After 1.5 and 3.5 h of 276 nm excitation there is a 33.7% and 62.1% decrease in concentration of insulin recognized by guinea pig anti-insulin antibodies, respectively. Glucose uptake by human skeletal muscle cells decreases 61.7% when the cells are incubated with pre UV-illuminated insulin during 1.5 h. The observations presented in this work highlight the importance of protecting insulin and other drugs from UV-light exposure, which is of outmost relevance to the pharmaceutical industry. Several drug formulations containing insulin in hexameric, dimeric and monomeric forms can be exposed to natural and artificial UV-light during their production, packaging, storage or administration phases. We can estimate that direct long-term exposure of insulin to sunlight and common light sources for indoors lighting and UV-sterilization in industries can be sufficient to induce irreversible changes to human insulin structure. Routine fluorescence and absorption measurements in laboratory experiments may also induce changes

  20. Shielding and mediating of hydrogen bonding in amide-based (macro)molecules

    NARCIS (Netherlands)

    Harings, J.A.W.

    2009-01-01

    Polymers are long chain molecules comprising continuously repeating building blocks, monomers, which are chemically linked via covalent bonds, for example the C-C bond in polyethylene. A distinction can be made in biopolymers that are made in nature and synthetic polymers that are produced by the

  1. Investigation of Chemical Bond Properties and Mssbauer Spectroscopy in YBa2Cu3O7

    Institute of Scientific and Technical Information of China (English)

    高发明; 李东春; 张思远

    2003-01-01

    Chemical bond properties of YBa2Cu3O7 were studied by using the average band-gap model. The calculated results show that the covalency of Cu(1)-O bond is 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shifts of 57Fe in Y-123 were calculated by the chemical surrounding factor hv defined by covalency and electronic polarizability. The charge-state and site of Fe were determined. The relation between the coupling constant of electron-phonon interaction and covalency is employed to explain that the Cu(2)-O plane is more important than the Cu(1)-O chain on the superconductivity in the Y-123 compounds.

  2. Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method.

    Science.gov (United States)

    Zhang, Siyuan; Zhou, Shihong; Li, Huaiyong; Li, Ling

    2008-09-01

    The chemical bond properties, lattice energies, linear expansion coefficients, and mechanical properties of ReVO 4 (Re = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc, Y) are investigated systematically by the dielectric chemical bond theory. The calculated results show that the covalencies of Re-O bonds are increasing slightly from La to Lu and that the covalencies of V-O bonds in crystals are decreasing slightly from La to Lu. The linear expansion coefficients decrease progressively from LaVO 4 to LuVO 4; on the contrary, the bulk moduli increase progressively. Our calculated results are in good agreement with some experimental values for linear expansion coefficients and bulk moduli.

  3. K- and L-edge X-ray Absorption Spectroscopy (XAS) and Resonant Inelastic X-ray Scattering (RIXS) Determination of Differential Orbital Covalency (DOC) of Transition Metal Sites.

    Science.gov (United States)

    Baker, Michael L; Mara, Michael W; Yan, James J; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I

    2017-08-15

    Continual advancements in the development of synchrotron radiation sources have resulted in X-ray based spectroscopic techniques capable of probing the electronic and structural properties of numerous systems. This review gives an overview of the application of metal K-edge and L-edge X-ray absorption spectroscopy (XAS), as well as K resonant inelastic X-ray scattering (RIXS), to the study of electronic structure in transition metal sites with emphasis on experimentally quantifying 3d orbital covalency. The specific sensitivities of K-edge XAS, L-edge XAS, and RIXS are discussed emphasizing the complementary nature of the methods. L-edge XAS and RIXS are sensitive to mixing between 3d orbitals and ligand valence orbitals, and to the differential orbital covalency (DOC), that is, the difference in the covalencies for different symmetry sets of the d orbitals. Both L-edge XAS and RIXS are highly sensitive to and enable separation of and donor bonding and back bonding contributions to bonding. Applying ligand field multiplet simulations, including charge transfer via valence bond configuration interactions, DOC can be obtained for direct comparison with density functional theory calculations and to understand chemical trends. The application of RIXS as a probe of frontier molecular orbitals in a heme enzyme demonstrates the potential of this method for the study of metal sites in highly covalent coordination sites in bioinorganic chemistry.

  4. Assessing Covalency in Cerium and Uranium Hexachlorides: A Correlated Wavefunction and Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Reece Beekmeyer

    2015-11-01

    Full Text Available The electronic structure of a series of uranium and cerium hexachlorides in a variety of oxidation states was evaluated at both the correlated wavefunction and density functional (DFT levels of theory. Following recent experimental observations of covalency in tetravalent cerium hexachlorides, bonding character was studied using topological and integrated analysis based on the quantum theory of atoms in molecules (QTAIM. This analysis revealed that M–Cl covalency was strongly dependent on oxidation state, with greater covalency found in higher oxidation state complexes. Comparison of M–Cl delocalisation indices revealed a discrepancy between correlated wavefunction and DFT-derived values. Decomposition of these delocalisation indices demonstrated that the origin of this discrepancy lay in ungerade contributions associated with the f-manifold which we suggest is due to self-interaction error inherent to DFT-based methods. By all measures used in this study, extremely similar levels of covalency between complexes of U and Ce in the same oxidation state was found.

  5. Recent Advances in Adhesive Bonding - The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates.

    Science.gov (United States)

    Münchow, Eliseu A; Bottino, Marco C

    2017-09-01

    To present an overview on the main agents (i.e., biomolecules and nanocompounds) and/or strategies currently available to amplify or stabilize resin-dentin bonding. According to studies retrieved for full text reading (2014-2017), there are currently six major strategies available to overcome resin-dentin bond degradation: (i) use of collagen crosslinking agents, which may form stable covalent bonds with collagen fibrils, thus strengthening the hybrid layer; (ii) use of antioxidants, which may allow further polymerization reactions over time; (iii) use of protease inhibitors, which may inhibit or inactivate metalloproteinases; (iv) modification of the bonding procedure, which may be performed by using the ethanol wet-bonding technique or by applying an additional adhesive (hydrophobic) coating, thereby strengthening the hybrid layer; (v) laser treatment of the substrate prior to bonding, which may cause specific topographic changes in the surface of dental substrates, increasing bonding efficacy; and (vi) reinforcement of the resin matrix with inorganic fillers and/or remineralizing agents, which may positively enhance physico-mechanical properties of the hybrid layer. With the present review, we contributed to the better understanding of adhesion concepts and mechanisms of resin-dentin bond degradation, showing the current prospects available to solve that problematic. Also, adhesively-bonded restorations may be benefited by the use of some biomolecules, nanocompounds or alternative bonding strategies in order to minimize bond strength degradation.

  6. Application of infrared spectroscopy for study of chemical bonds in complexes of rare earth nitrates with alkylammonium nitrates

    International Nuclear Information System (INIS)

    Klimov, V.D.; Chudinov, Eh.G.

    1974-01-01

    The IR absorption spectra for the tri-n-octylamine, methyl-di-n-octylamine, their nitrates and complexes with the rare element nitrates are obtained. The IR spectra analysis of the complexes has suggested that the degree of covalent character bond of a nitrate with a metal grows with the atomic number of the element. Based on the comparison of the obtained data with those available in literature for various rare-earth complexes a conclusion is made that the bond character of a metal with nitrate groups is influenced by all ligands constituting the inner coordinating sphere. As the donor capacity of a ligand grows the covalent character of the metal-nitrate bond is enhanced. The replacement of the outer-sphere cations (trioctylammonium or methyldioctylammonium) only slightly affects the bond character of a metal with the nitrate group. The distribution coefficients in the rare-earth series are shown to decrease as the electrostatic part in the metal-nitrate declines. The phenomenon is attributed to the competition between nitrate and water for the metal bond as concurrently with the intensification of metal-nitrate covalent bond in the organic phase the strength of metal hydrates in aqueous phase grows much faster. (author)

  7. Substituent Effects on the Hydrogen Bonding between 4-Substituted Phenols and HF, H2O, NH3

    Institute of Scientific and Technical Information of China (English)

    程宇辉; 傅尧; 刘磊; 郭庆祥

    2003-01-01

    Density function theory UB3LYP/6-31+g(d) calculations were performed to study the hydrogen bonds between para-substituted phenols and HF, H2O, or NH3. It revealed that many properties of the non-covalent complexes, such as the interaction energies, donor-acceptor distances, bond lengths and vibration frequencies, showed well-defined substituent effects. Therefore, from the substituent effects not only the mechanism of a certain non-covalent interaction can be better understood, but also the interaction energies and structures of a certain non-covalent complex, which otherwise might be very hard or resource-consuming to estimate, can be easily predicted.

  8. Benchmarking lithium amide versus amine bonding by charge density and energy decomposition analysis arguments.

    Science.gov (United States)

    Engelhardt, Felix; Maaß, Christian; Andrada, Diego M; Herbst-Irmer, Regine; Stalke, Dietmar

    2018-03-28

    Lithium amides are versatile C-H metallation reagents with vast industrial demand because of their high basicity combined with their weak nucleophilicity, and they are applied in kilotons worldwide annually. The nuclearity of lithium amides, however, modifies and steers reactivity, region- and stereo-selectivity and product diversification in organic syntheses. In this regard, it is vital to understand Li-N bonding as it causes the aggregation of lithium amides to form cubes or ladders from the polar Li-N covalent metal amide bond along the ring stacking and laddering principle. Deaggregation, however, is more governed by the Li←N donor bond to form amine adducts. The geometry of the solid state structures already suggests that there is σ- and π-contribution to the covalent bond. To quantify the mutual influence, we investigated [{(Me 2 NCH 2 ) 2 (C 4 H 2 N)}Li] 2 ( 1 ) by means of experimental charge density calculations based on the quantum theory of atoms in molecules (QTAIM) and DFT calculations using energy decomposition analysis (EDA). This new approach allows for the grading of electrostatic Li + N - , covalent Li-N and donating Li←N bonding, and provides a way to modify traditional widely-used heuristic concepts such as the -I and +I inductive effects. The electron density ρ ( r ) and its second derivative, the Laplacian ∇ 2 ρ ( r ), mirror the various types of bonding. Most remarkably, from the topological descriptors, there is no clear separation of the lithium amide bonds from the lithium amine donor bonds. The computed natural partial charges for lithium are only +0.58, indicating an optimal density supply from the four nitrogen atoms, while the Wiberg bond orders of about 0.14 au suggest very weak bonding. The interaction energy between the two pincer molecules, (C 4 H 2 N) 2 2- , with the Li 2 2+ moiety is very strong ( ca. -628 kcal mol -1 ), followed by the bond dissociation energy (-420.9 kcal mol -1 ). Partitioning the interaction energy

  9. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies

    International Nuclear Information System (INIS)

    Lin, Chin Hsiung; Hurley, L.H.

    1990-01-01

    (+)-CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of the drug are thought to be due to the formation of a covalent adduct with DNA through N3 of adenine. Although the covalent linkage sites between (+)-CC-1065 and DNA have been determined, the tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA duplex adduct was not defined. The [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct was then studied by 1 H and 15 N NMR. One-dimensional NOE difference and two-dimensional NOESY 1 H NMR experiments on the nonisotopically labeled 12-mer duplex adduct demonstrate that the 6-amino protons of the covalently modified adenine exhibit two signals at 9.19 and 9.08 ppm. Proton NMR experiments on the [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct show that the two resonance signals for adenine H6 observed on the nonisotopically labeled duplex adduct were split into doublets by the 15 N nucleus with coupling constants of 91.3 Hz for non-hydrogen-bonded and 86.8 Hz for hydrogen-bonded amino protons. The authors conclude that the covalently modified adenine N6 of the (+)-CC-1065-12-mer duplex adduct is predominantly in the doubly protonated form, in which calculations predict that the C6-N6 bond is shortened and the positive charge is delocalized over the entire adenine molecule

  10. Alignment of non-covalent interactions at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    Full Text Available BACKGROUND: The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE: The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.

  11. Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins.

    Science.gov (United States)

    Leitner, Verena M; Walker, Greg F; Bernkop-Schnürch, Andreas

    2003-09-01

    Disulphide bonds between thiolated polymers (thiomers) and cysteine-rich subdomains of mucus glycoproteins are supposed to be responsible for the enhanced mucoadhesive properties of thiomers. This study set out to provide evidence for these covalent interactions using poly(acrylic acid)-cysteine conjugates of 2 and 450 kDa (PAA2-Cys, PAA450-Cys) displaying 402.5-776.0 micromol thiol groups per gram polymer. The effect of the disulphide bond breaker cysteine on thiomer-mucin disulphide bonds was monitored by (1) mucoadhesion studies and (2) rheological studies. Furthermore, (3) diffusion studies and (4) gel filtration studies were performed with thiomer-mucus mixtures. The addition of cysteine significantly (Ppolymer. Gel filtration studies showed that PAA2-Cys was able to form disulphide bonds with mucin glycoproteins resulting in an altered elution profile of the mucin/PAA2-Cys mixture in comparison to mucin alone or mucin/PAA2 mixture. According to these results, the study provides evidence for the formation of covalent bonds between thiomer and mucus glycoproteins.

  12. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization.

    Directory of Open Access Journals (Sweden)

    Tine N Vinther

    Full Text Available An ingenious system evolved to facilitate insulin binding to the insulin receptor as a monomer and at the same time ensure sufficient stability of insulin during storage. Insulin dimer is the cornerstone of this system. Insulin dimer is relatively weak, which ensures dissociation into monomers in the circulation, and it is stabilized by hexamer formation in the presence of zinc ions during storage in the pancreatic β-cell. Due to the transient nature of insulin dimer, direct investigation of this important form is inherently difficult. To address the relationship between insulin oligomerization and insulin stability and function, we engineered a covalently linked insulin dimer in which two monomers were linked by a disulfide bond. The structure of this covalent dimer was identical to the self-association dimer of human insulin. Importantly, this covalent dimer was capable of further oligomerization to form the structural equivalent of the classical hexamer. The covalently linked dimer neither bound to the insulin receptor, nor induced a metabolic response in vitro. However, it was extremely thermodynamically stable and did not form amyloid fibrils when subjected to mechanical stress, underlining the importance of oligomerization for insulin stability.

  13. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Lipeng; Zhao, Zhenghang; Xia, Zhenhai

    2017-05-01

    Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H 2 O 2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Interfacial Bonding on Interphase Properties in SiO2/Epoxy Nanocomposite: A Molecular Dynamics Simulation Study.

    Science.gov (United States)

    Wang, Zhikun; Lv, Qiang; Chen, Shenghui; Li, Chunling; Sun, Shuangqing; Hu, Songqing

    2016-03-23

    Atomistic molecular dynamics simulations have been performed to explore the effect of interfacial bonding on the interphase properties of a nanocomposite system that consists of a silica nanoparticle and the highly cross-linked epoxy matrix. For the structural properties, results show that interfacial covalent bonding can broaden the interphase region by increasing the radial effect range of fluctuated mass density and oriented chains, as well as strengthen the interphase region by improving the thermal stability of interfacial van der Waals excluded volume and reducing the proportion of cis conformers of epoxy segments. The improved thermal stability of the interphase region in the covalently bonded model results in an increase of ∼21 K in the glass transition temperature (Tg) compared to that of the pure epoxy. It is also found that interfacial covalent bonding mainly restricts the volume thermal expansion of the model at temperatures near or larger than Tg. Furthermore, investigations from mean-square displacement and fraction of immobile atoms point out that interfacial covalent and noncovalent bonding induces lower and higher mobility of interphase atoms than that of the pure epoxy, respectively. The obtained critical interfacial bonding ratio when the interphase and matrix atoms have the same mobility is 5.8%. These results demonstrate that the glass transitions of the interphase and matrix will be asynchronous when the interfacial bonding ratio is not 5.8%. Specifically, the interphase region will trigger the glass transition of the matrix when the ratio is larger than 5.8%, whereas it restrains the glass transition of the matrix when the ratio is smaller than 5.8%.

  15. Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene

    Directory of Open Access Journals (Sweden)

    Alexey V. Kondyurin

    2012-01-01

    Full Text Available The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers.

  16. Directionality of Cation/Molecule Bonding in Lewis Bases Containing the Carbonyl Group.

    Science.gov (United States)

    Valadbeigi, Younes; Gal, Jean-François

    2017-09-14

    Relationship between the C═O-X + (X = H, Li, Na, K, Al, Cu) angle and covalent characteristic of the X + -M (M = CH 2 O, CH 3 CHO, acetone, imidazol-2-one (C 2 H 2 N 2 O), cytosine, γ-butyrolactone) was investigated, theoretically. The calculated electron densities ρ at the bond critical points revealed that the covalency of the M-X + interaction depended on the nature of the cation and varied as H + > Cu + > Al + > Li + > Na + > K + . The alkali cations tended to participate in electrostatic interactions and aligned with the direction of the molecule dipole or local dipole of C═O group to form linear C═O-X geometries. Because of overlapping with lone-pair electrons of the sp 2 carbonyl oxygen, the H + and Cu + formed a bent C═O-X angle. Al + displayed an intermediate behavior; the C═O-Al angle was 180° in [CH 2 O/Al] + (mainly electrostatic), but when the angle was bent (146°) under the effect of local dipole of an adjacent imine group in cytosine, the covalency of the CO-Al + interaction increased. The C═O-X angles in M/X + adduct ions were scanned in different O-X bond lengths. It was found that the most favorable C═O-X angle depended on the O-X bond length. This dependency was attributed to variation of covalent and electrostatic contributions with O-X distance. In addition, the structures of [CH 2 S/X] + and [CH 2 Se/X] + were studied, and only bent C═S-X and C═Se-X angles were obtained for all cations, although the dipole vectors of CH 2 S and CH 2 Se coincide with the C═S and C═Se bonds. The bending of the C═S-X and C═Se-X angles was attributed to the covalent characteristic of S-X and Se-X interactions due to high polarizability of S and Se atoms.

  17. Native lignin for bonding fiber boards - evaluation of bonding mechanisms in boards made from laccase-treated fibers of beech (Fagus sylvatica)

    DEFF Research Database (Denmark)

    Felby, Claus; Thygesen, Lisbeth Garbrecht; Sanadi, Anand

    2004-01-01

    indicate that lignin extractives are precipitated on the fiber surfaces. The improved bonding may be related to several factors, linked to a more lignin rich fiber surface, such as surface molecular entanglements and covalent bonding between fibers through cross-linking of radicals. (C) 2004 Published......The auto-adhesion of beech wood (Fagus sylvatica) fibers can be enhanced by a pretreatment of the fibers with a phenol oxidase enzyme. The mechanism of enzymatic catalyzed bonding is linked to the generation of stable radicals in lignin by oxidation. Fiberboards made from laccase-treated fibers...

  18. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dexin; Zhang, Yan [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China); Bessho, Takeshi [Higashifuji Technical Center, Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193 (Japan); Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio [Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551 (Japan); Kang, Zhixin, E-mail: zxkang@scut.edu.cn [School of Mechanical and Automotive Engineering, South China University of Technology, 381 Wushan, Guangzhou 510640 (China)

    2015-09-15

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method.

  19. Formation of reflective and conductive silver film on ABS surface via covalent grafting and solution spray

    International Nuclear Information System (INIS)

    Chen, Dexin; Zhang, Yan; Bessho, Takeshi; Kudo, Takahiro; Sang, Jing; Hirahara, Hidetoshi; Mori, Kunio; Kang, Zhixin

    2015-01-01

    Highlights: • A pure and homogenous silver film was deposited by spray-style plating technique. • The mechanism of covalent bonding between coating and substrate was studied. • The silver coating is highly reflective and conductive. • UV light was used to activate the ABS surface with triazine azide derivative. - Abstract: Conductive and reflective silver layers on acrylonitrile butadiene styrene (ABS) plastics have been prepared by photo grafting of triazine azides upon ultraviolet activation, self-assembling of triazine dithiols and silver electroless plating by solution spray based on silver mirror reaction. The as-prepared silver film exhibited excellent adhesion with ABS owing to covalent bonds between coating and substrate, and the detailed bonding mechanism have been investigated by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) result revealed that silver film on ABS was pure and with a nanocrystalline structure. Atomic force microscope (AFM) analysis demonstrated that massive silver particles with sizes varying from 80 to 120 nm were deposited on ABS and formed a homogenous and smooth coating, resulting in highly reflective surface. Furthermore, silver maintained its unique conductivity even as film on ABS surface in term of four-point probe method

  20. Effect of Reaction Temperature on Structure, Appearance and Bonding Type of Functionalized Graphene Oxide Modified P-Phenylene Diamine

    Directory of Open Access Journals (Sweden)

    Hong-Juan Sun

    2018-04-01

    Full Text Available In this study, graphene oxides with different functionalization degrees were prepared by a facile one-step hydrothermal reflux method at various reaction temperatures using graphene oxide (GO as starting material and p-phenylenediamine (PPD as the modifier. The effects of reaction temperature on structure, appearance and bonding type of the obtained materials were investigated by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, and scanning electron microscopy (SEM. The results showed that when the reaction temperature was 10–70 °C, the GO reacted with PPD through non-covalent ionic bonds (–COO−H3+N–R and hydrogen bonds (C–OH…H2N–X. When the reaction temperature reached 90 °C, the GO was functionalized with PPD through covalent bonds of C–N. The crystal structure of products became more ordered and regular, and the interlayer spacing (d value and surface roughness increased as the temperature increased. Furthermore, the results suggested that PPD was grafted on the surface of GO through covalent bonding by first attacking the carboxyl groups and then the epoxy groups of GO.

  1. A new approach for enhancement of the corrosion protection properties and interfacial adhesion bonds between the epoxy coating and steel substrate through surface treatment by covalently modified amino functionalized graphene oxide film

    International Nuclear Information System (INIS)

    Parhizkar, N.; Shahrabi, T.; Ramezanzadeh, B.

    2017-01-01

    Highlights: •The steel substrate was treated by a covalently modified amino functionalized graphene oxide (fGO) film. •Deposition of fGO film at the interface of steel and epoxy could effectively improve the adhesion strength and corrosion protection properties. •More stable and stronger interfacial bonds was obtained when treating the interface by fGO film. -- Abstract: This study introduces a novel surface treatment approach of steel substrate by covalent modification of graphene oxide (fGO) nanosheets with 3-aminopropyltriethoxysilane to improve the adhesion and corrosion protection properties of an epoxy coating. The effect of fGO film on the epoxy coating performance was studied by field-emission scanning electron microscopy (FE-SEM), X-Ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), Pull-off adhesion, salt spray and cathodic delamination tests. Results revealed that deposition of fGO film on steel surface can effectively improve the adhesion strength and corrosion protection properties and reduce the cathodic delamination rate of the epoxy coating.

  2. The Influence of Disorder in Multifilament Yarns on the Bond Performance in Textile Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    M. Konrad

    2004-01-01

    Full Text Available In this paper we analyze the performance of a bond layer between the multi-filament yarn and the cementitious matrix. The performance of the bond layer is a central issue in the development of textile-reinforced concrete. The changes in the microstructure during the loading result in distinguished failure mechanisms on the micro, meso and macro scales. The paper provides a brief review of these effects and describes a modeling strategy capable of reflecting the failure process. Using the model of the bond layer we illuminate the correspondence between the disorder in the microstructure of the yarn and the bonding behavior at the meso- and macro level. Particular interest is paid to the influence of irregularities in the micro-structure (relative differences in filament lengths, varying bond quality, bond-free length for different levels of local bond quality between the filament surface and the matrix. 

  3. Characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe2 and related compounds

    International Nuclear Information System (INIS)

    Maeda, Tsuyoshi; Wada, Takahiro

    2009-01-01

    We studied characteristics of chemical bond and vacancy formation in chalcopyrite-type CuInSe 2 (CIS) by first principles calculations. The chalcopyrite-type CIS has two kinds of chemical bonds, Cu-Se and In-Se. The Cu-Se bond is a weak covalent bonding because electrons occupy both bonding and antibonding orbitals of Cu 3d and Se 4p and occupy only the bonding orbital (a 1 ) of Cu 4s and Se 4p and do not occupy the antibonding orbital (a 1 * ) of Cu 4s and Se 4p. On the other hand, the In-Se bond has a partially covalent and partially ionic character because the In 5s orbital covalently interacts with Se 4p; the In 5p orbital is higher than Se 4p and so the electron in the In 5p orbital moves to the Se 4p orbital. The average bond order of the Cu-Se and In-Se bonds can be calculated to be 1/4 and 1, respectively. The bond order of Cu-Se is smaller than that of In-Se. The characteristics of these two chemical bonds are related to the formation of Cu and In vacancies in CIS. The formation energy of the Cu vacancy is smaller than that of the In vacancy under both Cu-poor and In-poor conditions. The displacement (Δl) of the surrounding Se atoms after the formation of the Cu vacancy is smaller than the Δl after the formation of the In vacancy. The interesting and unique characteristics of CIS are discussed on the basis of the characteristics of the chemical bond. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Building high-coverage monolayers of covalently bound magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mackenzie G.; Teplyakov, Andrew V., E-mail: andrewt@udel.edu

    2016-12-01

    Graphical abstract: - Highlights: • A method for forming a layer of covalently bound nanoparticles is offered. • A nearly perfect monolayer of covalently bound magnetic nanoparticles was formed on gold. • Spectroscopic techniques confirmed covalent binding by the “click” reaction. • The influence of the functionalization scheme on surface coverage was investigated. - Abstract: This work presents an approach for producing a high-coverage single monolayer of magnetic nanoparticles using “click chemistry” between complementarily functionalized nanoparticles and a flat substrate. This method highlights essential aspects of the functionalization scheme for substrate surface and nanoparticles to produce exceptionally high surface coverage without sacrificing selectivity or control over the layer produced. The deposition of one single layer of magnetic particles without agglomeration, over a large area, with a nearly 100% coverage is confirmed by electron microscopy. Spectroscopic techniques, supplemented by computational predictions, are used to interrogate the chemistry of the attachment and to confirm covalent binding, rather than attachment through self-assembly or weak van der Waals bonding. Density functional theory calculations for the surface intermediate of this copper-catalyzed process provide mechanistic insight into the effects of the functionalization scheme on surface coverage. Based on this analysis, it appears that steric limitations of the intermediate structure affect nanoparticle coverage on a flat solid substrate; however, this can be overcome by designing a functionalization scheme in such a way that the copper-based intermediate is formed on the spherical nanoparticles instead. This observation can be carried over to other approaches for creating highly controlled single- or multilayered nanostructures of a wide range of materials to result in high coverage and possibly, conformal filling.

  5. The Nature of Bonding in WC and WN

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The nature of bonding in the title compounds has been studied by using CASSCF and FOCl techniques. The ground states of WC and WN are found to be 3Δ and 4∑- state arising primarily from:...1σ2σ21π41δ13σ1 and ...1σ2σ21π41δ23σ1 configuration respectively. WC shows a strong character of covalent bond while WN have obvious character of ionic bond and the dissociation energy of WN is larger than that of WC (6.15 and 5.41 eV respective).

  6. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly.

    Science.gov (United States)

    Ou, Junfei; Wang, Jinqing; Liu, Sheng; Mu, Bo; Ren, Junfang; Wang, Honggang; Yang, Shengrong

    2010-10-19

    Reduced graphene oxide (RGO) sheets were covalently assembled onto silicon wafers via a multistep route based on the chemical adsorption and thermal reduction of graphene oxide (GO). The formation and microstructure of RGO were analyzed by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and water contact angle (WCA) measurements. Characterization by atomic force microscopy (AFM) was performed to evaluate the morphology and microtribological behaviors of the samples. Macrotribological performance was tested on a ball-on-plate tribometer. Results show that the assembled RGO possesses good friction reduction and antiwear ability, properties ascribed to its intrinsic structure, that is, the covalent bonding to the substrate and self-lubricating property of RGO.

  7. Substituent Effects on the Hydrogen Bonding Between Phenolate and HF, H2O and NH3

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    B3LYP/6-31+g(d) calculations were performed on the hydrogen bonded complexes between substituted phenolates and HF, H2O as well as NH3. It was found that some properties of the non-covalent complexes, including the interaction energies, donor-acceptor (host-guest) distances, bond lengths, and vibration frequencies, could show well-defined substituent effects. Thus, from the substituent studies we can not only understand the mechanism of a particular non-covalent interaction better, but also easily predict the interaction energies and structures of a particular non-covalent complex, which might otherwise be very hard or resource-consuming to be known. This means that substituent effect is indeed a useful tool to be used in supramolecular chemistry and therefore, many valuable studies remain to be carried out.

  8. Intrinsic self-healing thermoset through covalent and hydrogen bonding interactions

    NARCIS (Netherlands)

    Araya-Hermosilla, R.; Lima, G. M. R.; Raffa, P.; Fortunato, G.; Pucci, A.; Flores, Mario E.; Moreno-Villoslada, I.; Broekhuis, A. A.; Picchioni, F.

    The intrinsic self-healing ability of polyketone (PK) chemically modified into furan and/or OH groups containing derivatives is presented. Polymers bearing different ratios of both functional groups were cross-linked via furan/bis-maleimide (Diels-Alder adducts) and hydrogen bonding interactions

  9. Study on the covalence of Cu and chemical bonding in an inorganic fullerene-like molecule, [CuCl]20[Cp*FeP5]12[Cu-(CH3CN)2+Cl-]5, by a density functional approach

    Institute of Scientific and Technical Information of China (English)

    WANG; Bingwu; XU; Guangxian; CHEN; Zhida

    2004-01-01

    The electronic structure and chemical bonding in a recently synthesized inorganic fullerene-like molecule, {[CuCl]20[Cp*FeP5]12 [Cu(CH3CN)+2Cl-]5}, has been studied by a density functional approach. Geometrical optimization of the three basic structural units of the molecule is performed with Amsterdam Density Functional Program. The results are in agreement with the experiment. Localized MO's obtained by Boys-Foster method give a clear picture of the chemical bonding in this molecule. The reason why CuCl can react with Cp*FeP5 in solvent CH3CN to form the fullerene-like molecule is explained in terms of the soft-hard Lewis acid base theory and a new concept of covalence.

  10. Rehealable, fully recyclable, and malleable electronic skin enabled by dynamic covalent thermoset nanocomposite.

    Science.gov (United States)

    Zou, Zhanan; Zhu, Chengpu; Li, Yan; Lei, Xingfeng; Zhang, Wei; Xiao, Jianliang

    2018-02-01

    Electronic skin (e-skin) mimicking functionalities and mechanical properties of natural skin can find broad applications. We report the first dynamic covalent thermoset-based e-skin, which is connected through robust covalent bonds, rendering the resulting devices good chemical and thermal stability at service condition. By doping the dynamic covalent thermoset with conductive silver nanoparticles, we demonstrate a robust yet rehealable, fully recyclable, and malleable e-skin. Tactile, temperature, flow, and humidity sensing capabilities are realized. The e-skin can be rehealed when it is damaged and can be fully recycled at room temperature, which has rarely, if at all, been demonstrated for e-skin. After rehealing or recycling, the e-skin regains mechanical and electrical properties comparable to the original e-skin. In addition, malleability enables the e-skin to permanently conform to complex, curved surfaces without introducing excessive interfacial stresses. These properties of the e-skin yield an economical and eco-friendly technology that can find broad applications in robotics, prosthetics, health care, and human-computer interface.

  11. Atomic bonding and mechanical properties of Al-Mg-Zr-Sc alloy

    Institute of Scientific and Technical Information of China (English)

    高英俊; 班冬梅; 韩永剑; 钟夏平; 刘慧

    2004-01-01

    The valence electron structures of Al-Mg alloy with minor Sc and Zr were calculated according to the empirical electron theory(EET) in solid. The results show that because of the strong interaction of Al atom with Zr and Sc atom in melting during solidification, the Al3 Sc and Al3 (Sc1-xZrx) particles which act as heterogeneous nuclear are firstly crystallized in alloy to make grains refine. In progress of solidification, the Al-Sc, Al-Zr-Sc segregation regions are formed in solid solution matrix of Al-Mg alloy owing to the strong interaction of Al atom with Zr, Scatoms in bulk of alloy, so in the following homogenization treatment, the finer dispersed Al3 Sc and Al3 (Sc1-x Zrx) second-particles which are coherence with the matrix are precipitated in the segregation region. These finer second particles with the strong Al-Zr, Al-Sc covalent bonds can strengthen the covalent bonds in matrix of the alloy, and also enhance the hardness and strength of Al-Mg alloy. Those finer second-particles precipitated in interface of sub-grains can also strengthen the covalence bonds there, and effectively hinder the interface of sub-grains from migrating and restrain the sub-grains from growing, and cause better thermal stability of Al-Mg alloy.

  12. Covalently Bonded Chitosan on Graphene Oxide via Redox Reaction

    Directory of Open Access Journals (Sweden)

    Víctor M. Castaño

    2013-03-01

    Full Text Available Carbon nanostructures have played an important role in creating a new field of materials based on carbon. Chemical modification of carbon nanostructures through grafting has been a successful step to improve dispersion and compatibility in solvents, with biomolecules and polymers to form nanocomposites. In this sense carbohydrates such as chitosan are extremely valuable because their functional groups play an important role in diversifying the applications of carbon nanomaterials. This paper reports the covalent attachment of chitosan onto graphene oxide, taking advantage of this carbohydrate at the nanometric level. Grafting is an innovative route to modify properties of graphene, a two-dimensional nanometric arrangement, which is one of the most novel and promising nanostructures. Chitosan grafting was achieved by redox reaction using different temperature conditions that impact on the morphology and features of graphene oxide sheets. Transmission Electron Microscopy, Fourier Transform Infrared, Raman and Energy Dispersive spectroscopies were used to study the surface of chitosan-grafted-graphene oxide. Results show a successful modification indicated by the functional groups found in the grafted material. Dispersions of chitosan-grafted-graphene oxide samples in water and hexane revealed different behavior due to the chemical groups attached to the graphene oxide sheet.

  13. Influence of crystallography and bonding on the structure and migration of irrational interphase boundaries

    Science.gov (United States)

    Aaronson, H. I.

    2006-03-01

    Interphase boundary structure developed during precipitation from solid solution and during massive transformations is considered in diverse alloy systems in the presence of differences in stacking sequence across interphase boundaries. Linear misfit compensating defects, including misfit dislocations, structural disconnections, and misfit disconnections, are present over a wide range of crystallographie when both phases have metallic bonding. Misfit dislocations have also been observed when both phases have covalent bonding ( e.g., US: β US2 by Sole and van der Walt). These defects are also found when one phase is ionic and the other is metallic (Nb∶Al2O3 by Rühle et al.), albeit when the latter is formed by vapor deposition. However, when bonding is metallic in one phase but significantly covalent in the other, the structure of the interphase boundary appears to depend upon the strength of the covalent bonding relative to that in the metallically bonded phase. When this difference is large, growth can take place as if it were occurring at a free surface, resulting in orientation relationships that are irrational and conjugate habit planes that are ill matched ( e.g., ZrN: α Zr-N by Li et al. and Xe(solid):Al-Xe by Kishida and Yamaguchi). At lower levels of bonding directionality and strength, crystallography is again irrational, but now edge-to-edge-based low-energy structures can replace linear misfit compensating defects (γm:TiAl:αTi-Al by Reynolds et al.). In the perhaps still smaller difference case of Widmanstätten cementite precipitated from austenite, one orientation relationship yields plates with linear misfit compensating defects at their broad faces whereas another (presumably nucleated at different types of site) produces laths with poorly defined shapes and interfacial structures. Hence, Hume-Rothery-type bonding considerations can markedly affect interphase boundary structure and thus the mechanisms, kinetics, and morphology of growth.

  14. Bond and flux-disorder effects on the superconductor-insulator transition of a honeycomb array of Josephson junctions

    Science.gov (United States)

    Granato, Enzo

    2018-05-01

    We study the effects of disorder on the zero-temperature quantum phase transition of a honeycomb array of Josephson junctions in a magnetic field with an average of fo flux quantum per plaquette. Bond disorder due to spatial variations in the Josephson couplings and magnetic flux disorder due to variations in the plaquette areas are considered. The model can describe the superconductor-insulator transition in ultra-thin films with a triangular pattern of nanoholes. Path integral Monte Carlo simulations of the equivalent (2 + 1)-dimensional classical model are used to study the critical behavior and estimate the universal resistivity at the transition. The results show that bond disorder leads to a rounding of the first-order phase transition for fo = 1 / 3 to a continuous transition. For integer fo, the decrease of the critical coupling parameter with flux disorder is significantly different from that of the same model defined on a square lattice. The results are compared with recent experimental observations on nanohole thin films with geometrical disorder and external magnetic field.

  15. Elucidating How Wood Adhesives Bond to Wood Cell Walls using High-Resolution Solution-State NMR Spectroscopy

    Science.gov (United States)

    Daniel J. Yelle

    2013-01-01

    Some extensively used wood adhesives, such as pMDI (polymeric methylene diphenyl diisocyanate) and PF (phenol formaldehyde) have shown excellent adhesion properties with wood. However, distinguishing whether the strength is due to physical bonds (i.e., van der Waals, London, or hydrogen bond forces) or covalent bonds between the adherend and the adhesive is not fully...

  16. Political Culture and Covalent Bonding. A Conceptual Model of Political Culture Change

    OpenAIRE

    Camelia Florela Voinea

    2015-01-01

    Our class of models aims at explaining the dynamics of political attitude change by means of the dynamic changes in values, beliefs, norms and knowledge with which it is associated. The model constructs a political culture perspective over the relationship between macro and micro levels of a society and polity. The model defines the bonding mechanism as a basic mechanism of the political culture change by taking inspiration from the valence bonding theory in Chemistry, which has inspired the ...

  17. Analysis of Halogen and Other σ-Hole Bonds in Crystals

    Directory of Open Access Journals (Sweden)

    Peter Politzer

    2018-01-01

    Full Text Available Schneider has observed that [1]: “ . . . the chemistry of the last century was largely the chemistry of covalent bonding, whereas that of the present century is more likely to be the chemistry of noncovalent binding.”[...

  18. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    Science.gov (United States)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  19. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion.

    Science.gov (United States)

    Córdoba, Alba; Hierro-Oliva, Margarita; Pacha-Olivenza, Miguel Ángel; Fernández-Calderón, María Coronada; Perelló, Joan; Isern, Bernat; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M

    2016-05-11

    Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants.

  20. K2 ZnSn3 Se8 : A Non-Centrosymmetric Zinc Selenidostannate(IV) Featuring Interesting Covalently Bonded [ZnSn3 Se8 ]2- Layer and Exhibiting Intriguing Second Harmonic Generation Activity.

    Science.gov (United States)

    Zhou, Molin; Jiang, Xingxing; Yang, Yi; Guo, Yangwu; Lin, Zheshuai; Yao, JJiyong; Wu, Yicheng

    2017-06-19

    Non-centrosymmetric zinc selenidostannate(IV) K 2 ZnSn 3 Se 8 was synthesized. It features interesting covalently bonded [ZnSn 3 Se 8 ] 2- layers with K + cations filling in the interlayer voids. The phonon spectrum was calculated to clarify its structural stability. Based on the X-ray diffraction data along with the Raman spectrum, the major bonding features of the title compound were identified. According to the UV/vis-NIR spectroscopy, K 2 ZnSn 3 Se 8 possesses a typical direct band gap of 2.10 eV, which is in good agreement with the band structure calculations. Moreover, our experimental measurements and detailed theoretical calculations reveal that K 2 ZnSn 3 Se 8 is a new phase-matchable nonlinear optical material with a powder second harmonic generation (SHG) signal about 0.6 times of that of AgGaS 2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-generated covalent cross-links in the cell-surface adhesins of Gram-positive bacteria.

    Science.gov (United States)

    Baker, Edward N; Squire, Christopher J; Young, Paul G

    2015-10-01

    The ability of bacteria to adhere to other cells or to surfaces depends on long, thin adhesive structures that are anchored to their cell walls. These structures include extended protein oligomers known as pili and single, multi-domain polypeptides, mostly based on multiple tandem Ig-like domains. Recent structural studies have revealed the widespread presence of covalent cross-links, not previously seen within proteins, which stabilize these domains. The cross-links discovered so far are either isopeptide bonds that link lysine side chains to the side chains of asparagine or aspartic acid residues or ester bonds between threonine and glutamine side chains. These bonds appear to be formed by spontaneous intramolecular reactions as the proteins fold and are strategically placed so as to impart considerable mechanical strength. © 2015 Authors; published by Portland Press Limited.

  2. High Charge Mobility of a Perylene Bisimide Dye with Hydrogen-bond Formation Group

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A perylene bisimide dye covalently bonded with a hydrogen-bond formation group of 1,3, 5-triazine-2, 4-diamine has been synthesized. Its casting films show a charge carrier mobility over 10-3 cm2/Vs, which is in the range of the highest values found for other promising charge transport materials suitable for solution processable technique.

  3. Parental bonding and hoarding in obsessive-compulsive disorder

    Science.gov (United States)

    Chen, David; Bienvenu, O. Joseph; Krasnow, Janice; Wang, Ying; Grados, Marco A.; Cullen, Bernadette; Goes, Fernando S.; Maher, Brion; Greenberg, Benjamin D.; McLaughlin, Nicole C.; Rasmussen, Steven A.; Fyer, Abby J.; Knowles, James A.; McCracken, James T.; Piacentini, John; Geller, Dan; Pauls, David L.; Stewart, S. Evelyn; Murphy, Dennis L.; Shugart, Yin-Yao; Riddle, Mark A.; Nestadt, Gerald; Samuels, Jack

    2017-01-01

    Background Hoarding behavior may indicate a clinically and possibly etiologically distinct subtype of obsessive compulsive disorder (OCD). Empirical evidence supports a relationship between hoarding and emotional over-attachment to objects. However, little is known about the relationship between hoarding and parental attachment in OCD. Method The study sample included 894 adults diagnosed with DSM-IV OCD who had participated in family and genetic studies of OCD. Participants were assessed for Axis I disorders, personality disorders, and general personality dimensions. The Parental Bonding Instrument (PBI) was used to assess dimensions of perceived parental rearing (care, overprotection, and control). We compared parental PBI scores in the 334 hoarding and 560 non-hoarding participants, separately in men and women. We used logistic regression to evaluate the relationship between parenting scores and hoarding in women, adjusting for other clinical features associated with hoarding. Results In men, there were no significant differences between hoarding and non-hoarding groups in maternal or paternal parenting scores. In women, the hoarding group had a lower mean score on maternal care (23.4 vs. 25.7, poverprotection, and maternal overcontrol are associated with hoarding in women with OCD. Parenting dimensions are not related to hoarding in men. These findings provide further support for a hoarding subtype of OCD and for sex-specific differences in etiologic pathways for hoarding in OCD. PMID:27915218

  4. Novel hydroxyapatite biomaterial covalently linked to raloxifene.

    Science.gov (United States)

    Meme, L; Santarelli, A; Marzo, G; Emanuelli, M; Nocini, P F; Bertossi, D; Putignano, A; Dioguardi, M; Lo Muzio, L; Bambini, F

    2014-01-01

    Since raloxifene, a drug used in osteoporosis therapy, inhibits osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present paper describes an effective method to link raloxifene, through a covalent bond, to a nano-Hydroxyapatite-based biomaterial by interfacing with (3-aminopropyl)-Triethoxysilane as assessed by Infra Red-Fourier Transformed (IR-FT) spectroscopy and Scanning Electron Microscope (SEM). To evaluate the safety of this modified new material, the vitality of osteoblast-like cells cultured with the new biomaterial was then investigated. Raloxifene-conjugated HAbiomaterial has been shown to be a safe material easy to obtain which could be an interesting starting point for the use of a new functional biomaterial suitable in bone regeneration procedures.

  5. Young adults' recollections of parental bonds--does satisfaction with partner relationships mediate the longitudinal association with mental disorders?

    Science.gov (United States)

    Overbeek, Geertjan; Vollebergh, Wilma; Meeus, Wim; de Graaf, Ron; Engels, Rutger C M E

    2004-09-01

    Recollections of cold and overprotective behaviors from parents have been hypothesized to lead to the presence of mental disorders in young adulthood through their detrimental effects on individuals' satisfaction in later partner relationships. Previous studies have not explicitly tested, however, whether partner relationship satisfaction mediates the longitudinal relationship from parental bonds to DSM-III-R disorders in young adults. We examined: (1) whether recollections of parental bonds in the first 16 years of life were related to the prevalence of DSM-III-R mental disorders in young adulthood, and (2) whether young adults' satisfaction with current partner relationships mediated these links. Data were used from 1,581 Dutch young adults aged 18-34 years, who were interviewed in three waves (1996, 1997, and 1999) of a nationwide epidemiological study. Structural Equation Models demonstrated that recollections of caring, non-intrusive parenting behaviors were significantly, negatively associated with the prevalence of mood and anxiety disorders (but not substance disorders) in young adulthood. The satisfaction with current partner relationships did not mediate these negative associations. Results replicate and extend earlier findings from the National Comorbidity Survey (Enns et al. 2002), demonstrating that mental disorders are directly related to people's recollections of parental care and overprotection. Low-quality parental bonds were only related to internalizing types of psychopathology, however, and were of a modest strength. Results may indicate that there is relatively little cross-relationship continuity in the experience of intimacy between relationships with parents and with partners.

  6. Rationally Designed, Multifunctional Self-Assembled Nanoparticles for Covalently Networked, Flexible and Self-Healable Superhydrophobic Composite Films.

    Science.gov (United States)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2018-03-21

    For constructing bioinspired functional films with various superhydrophobic functions, including self-cleaning, anticorrosion, antibioadhesion, and oil-water separation, hydrophobic nanomaterials have been widely used as crucial structural components. In general, hydrophobic nanomaterials, however, cannot form strong chemical bond networks in organic-inorganic hybrid composite films because of the absence of chemically compatible binding components. Herein, we report the rationally designed, multifunctional self-assembled nanoparticles with tunable functionalities of covalent cross-linking and hydrophobicity for constructing three-dimensionally interconnected superhydrophobic composite films via a facile solution-based fabrication at room temperature. The multifunctional self-assembled nanoparticles allow the systematic control of functionalities of composite films, as well as the stable formation of covalently linked superhydrophobic composite films with excellent flexibility (bending radii of 6.5 and 3.0 mm, 1000 cycles) and self-healing ability (water contact angle > 150°, ≥10 cycles). The presented strategy can be a versatile and effective route to generating other advanced functional films with covalently interconnected composite networks.

  7. Super-pnicogen bonding in the radical anion of the fluorophosphine dimer

    Science.gov (United States)

    Setiawan, Dani; Cremer, Dieter

    2016-10-01

    The LUMO of the pnicogen-bonded fluoro-phosphine dimer has PP bonding character. Radical anion and dianion form relatively strong pnicogen bonds with some covalent character where however the dianion turns out to be a second order transition state. The binding energy of (FPH 2)2- is 30.4 kcal/mol (CCSD(T)/aug-cc-pVTZ; CASPT2(5,8): 30.7 kcal/mol) and the bond strength order measured with the local PP bond stretching force constant increases from 0.055 for the neutral dimer to 0.187 thus revealing that the stabilization of the radical anion is to a large extend a result of one-electron six-center delocalization. Pnicogen-bonded complexes have a stabilizing electron affinity.

  8. New approaches to organocatalysis based on C–H and C–X bonding for electrophilic substrate activation

    Directory of Open Access Journals (Sweden)

    Pavel Nagorny

    2016-12-01

    Full Text Available Hydrogen bond donor catalysis represents a rapidly growing subfield of organocatalysis. While traditional hydrogen bond donors containing N–H and O–H moieties have been effectively used for electrophile activation, activation based on other types of non-covalent interactions is less common. This mini review highlights recent progress in developing and exploring new organic catalysts for electrophile activation through the formation of C–H hydrogen bonds and C–X halogen bonds.

  9. Hydrogen bonding characterization in water and small molecules

    Science.gov (United States)

    Silvestrelli, Pier Luigi

    2017-06-01

    The prototypical hydrogen bond in water dimer and hydrogen bonds in the protonated water dimer, in other small molecules, in water cyclic clusters, and in ice, covering a wide range of bond strengths, are theoretically investigated by first-principles calculations based on density functional theory, considering not only a standard generalized gradient approximation functional but also, for the water dimer, hybrid and van der Waals corrected functionals. We compute structural, energetic, and electrostatic (induced molecular dipole moments) properties. In particular, hydrogen bonds are characterized in terms of differential electron density distributions and profiles, and of the shifts of the centres of maximally localized Wannier functions. The information from the latter quantities can be conveyed to a single geometric bonding parameter that appears to be correlated with the Mayer bond order parameter and can be taken as an estimate of the covalent contribution to the hydrogen bond. By considering the water trimer, the cyclic water hexamer, and the hexagonal phase of ice, we also elucidate the importance of cooperative/anticooperative effects in hydrogen-bonding formation.

  10. Superior H2 production by hydrophilic ultrafine Ta2O5 engineered covalently on graphene

    International Nuclear Information System (INIS)

    Mao, Lin; Zhu, Shenmin; Shi, Dian; Chen, Yixin; Yin, Chao; Li, Yao; Zhang, Di; Ma, Jun; Chen, Zhixin

    2014-01-01

    A H 2 O 2 -mediated hydrothermal method was developed for the fabrication of hydrophilic Ta 2 O 5 /graphene composite. The composite shows a superior H 2 productivity, up to 30 mmol g −1 h −1 when used as a photocatalyst for water splitting, corresponding to an apparent quantum efficiency of 33.8% at 254 nm. This superior performance is due to the hydrophilic nature of the composite and more importantly due to the ultrafine Ta 2 O 5 nanoparticles (about 4.0 ± 1.5 nm) which are covalently bonded with the conductive graphene. The hydrophilic property of the composite is attributed to the use of H 2 O 2 in the hydrothermal process. The ultrafine size of the Ta 2 O 5 particles which are covalently bonded with the graphene sheets is attributed to the use of sonication in the synthesis process. Furthermore, the hydrophilic Ta 2 O 5 /Gr composite is durable, which is beneficial to long term photocatalysis. The strategy reported here provides a new approach to designing photocatalysts with superior performance for H 2 production. (papers)

  11. Association between perception of maternal bonding styles and social anxiety disorder among young women.

    Science.gov (United States)

    Castelli, Rochele D; Quevedo, Luciana de Á; Coelho, Fábio M; Lopez, Mariane A; da Silva, Ricardo A; Böhm, Denise M; Souza, Luciano D; de Matos, Mariana B; Pinheiro, Karen A; Pinheiro, Ricardo T

    2015-01-01

    To evaluate the association between social anxiety disorder (SAD) and perceived maternal bonding styles among young women during pregnancy and 30 months after childbirth. A cohort of young women from the city of Pelotas, Brazil was followed up from pregnancy to 30 months postpartum. The Mini Neuropsychiatric Interview Plus was used to assess SAD and the Parental Bonding Instrument was administered to measure maternal bonding styles. Poisson regression with robust variance was used for multivariable analysis. After adjusting for potential confounding factors, SAD prevalence was 6.39 times higher among young women who perceived their mothers as neglectful (prevalence ratio [PR] 6.39; 95% confidence interval [95%CI] 1.2-32.0), and 5.57 times higher in women who perceived their mothers as affectionless controlling (PR = 5.57; 95%CI 1.5-19.7) when compared with those who received optimal care. Maternal bonding style may have an influence on the development of SAD. Therefore, support and early prevention strategies should be offered to the family.

  12. Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System.

    Science.gov (United States)

    Ni, Cailing; Zha, Daijun; Ye, Hebo; Hai, Yu; Zhou, Yuntao; Anslyn, Eric V; You, Lei

    2018-01-26

    Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central-to-axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Covalent Organic Frameworks: From Materials Design to Biomedical Application

    Directory of Open Access Journals (Sweden)

    Fuli Zhao

    2017-12-01

    Full Text Available Covalent organic frameworks (COFs are newly emerged crystalline porous polymers with well-defined skeletons and nanopores mainly consisted of light-weight elements (H, B, C, N and O linked by dynamic covalent bonds. Compared with conventional materials, COFs possess some unique and attractive features, such as large surface area, pre-designable pore geometry, excellent crystallinity, inherent adaptability and high flexibility in structural and functional design, thus exhibiting great potential for various applications. Especially, their large surface area and tunable porosity and π conjugation with unique photoelectric properties will enable COFs to serve as a promising platform for drug delivery, bioimaging, biosensing and theranostic applications. In this review, we trace the evolution of COFs in terms of linkages and highlight the important issues on synthetic method, structural design, morphological control and functionalization. And then we summarize the recent advances of COFs in the biomedical and pharmaceutical sectors and conclude with a discussion of the challenges and opportunities of COFs for biomedical purposes. Although currently still at its infancy stage, COFs as an innovative source have paved a new way to meet future challenges in human healthcare and disease theranostic.

  14. Encapsulation and covalent binding of molecular payload in enzymatically activated micellar nanocarriers.

    Science.gov (United States)

    Rosenbaum, Ido; Harnoy, Assaf J; Tirosh, Einat; Buzhor, Marina; Segal, Merav; Frid, Liat; Shaharabani, Rona; Avinery, Ram; Beck, Roy; Amir, Roey J

    2015-02-18

    The high selectivity and often-observed overexpression of specific disease-associated enzymes make them extremely attractive for triggering the release of hydrophobic drug or probe molecules from stimuli-responsive micellar nanocarriers. Here we utilized highly modular amphiphilic polymeric hybrids, composed of a linear hydrophilic polyethylene glycol (PEG) and an esterase-responsive hydrophobic dendron, to prepare and study two diverse strategies for loading of enzyme-responsive micelles. In the first type of micelles, hydrophobic coumarin-derived dyes were encapsulated noncovalently inside the hydrophobic core of the micelle, which was composed of lipophilic enzyme-responsive dendrons. In the second type of micellar nanocarrier the hydrophobic molecular cargo was covalently linked to the end-groups of the dendron through enzyme-cleavable bonds. These amphiphilic hybrids self-assembled into micellar nanocarriers with their cargo covalently encapsulated within the hydrophobic core. Both types of micelles were highly responsive toward the activating enzyme and released their molecular cargo upon enzymatic stimulus. Importantly, while faster release was observed with noncovalent encapsulation, higher loading capacity and slower release rate were achieved with covalent encapsulation. Our results clearly indicate the great potential of enzyme-responsive micellar delivery platforms due to the ability to tune their payload capacities and release rates by adjusting the loading strategy.

  15. Fluorine-enhanced low-temperature wafer bonding of native-oxide covered Si wafers

    Science.gov (United States)

    Tong, Q.-Y.; Gan, Q.; Fountain, G.; Enquist, P.; Scholz, R.; Gösele, U.

    2004-10-01

    The bonding energy of bonded native-oxide-covered silicon wafers treated in the HNO3/H2O/HF or the HNO3/HF solution prior to room-temperature contact is significantly higher than bonded standard RCA1 cleaned wafer pairs after low-temperature annealing. The bonding energy reaches over 2000mJ/m2 after annealing at 100 °C. The very slight etching and fluorine in the chemically grown oxide are believed to be the main contributors to the enhanced bonding energy. Transmission-electron-microscopic images have shown that the chemically formed native oxide at bonding interface is embedded with many flake-like cavities. The cavities can absorb the by-products of the interfacial reactions that result in covalent bond formation at low temperatures allowing the strong bond to be retained.

  16. Solvent-free covalent functionalization of nanodiamond with amines

    Energy Technology Data Exchange (ETDEWEB)

    Basiuk, Elena V., E-mail: elenagd@unam.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Santamaría-Bonfil, Adriana; Meza-Laguna, Victor [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Gromovoy, Taras Yu. [Institute of Surface Chemistry, National Academy of Sciences of the Ukraine, Gen. Naumova 17, 03164 Kiev (Ukraine); Alvares-Zauco, Edgar [Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Contreras-Torres, Flavio F.; Rizo, Juan [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México D.F. (Mexico); Zavala, Guadalupe [Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos (Mexico); Basiuk, Vladimir A. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, D.F. (Mexico)

    2013-06-15

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  17. Solvent-free covalent functionalization of nanodiamond with amines

    International Nuclear Information System (INIS)

    Basiuk, Elena V.; Santamaría-Bonfil, Adriana; Meza-Laguna, Victor; Gromovoy, Taras Yu.; Alvares-Zauco, Edgar; Contreras-Torres, Flavio F.; Rizo, Juan; Zavala, Guadalupe; Basiuk, Vladimir A.

    2013-01-01

    Covalent functionalization of pristine nanodiamond (ND) with 1,12-diaminododecane (DAD), 1,5-diaminonaphthalene (DAN), poly(ethylene glycol) diamine (PEGDA), and polyethylenimine (PEI) was carried out by employing solvent-free methodology, which is based on thermal instead of chemical activation of carboxylic groups at ND surface. A simple solubility/dispersibility test in water and isopropanol showed an increased lipophilicity of the functionalized samples. The conversion of intrinsic carboxylic groups into the corresponding amide derivatives was characterized by means of Fourier-transform infrared spectroscopy. Thermogravimetric analysis found the highest organic content of about 18% for ND-PEI, followed by ND-DAD, for which the contribution of covalently bonded diamine was estimated to be of ca. 10%. In temperature programmed desorption measurements with mass spectrometric detection, the presence of organic functionalizing groups changed both mass spectra and thermodesorption curves of ND. The changes in morphology of primary and secondary ND aggregates were characterized by scanning and transmission electron microscopy, as well as by atomic force microscopy. The current–voltage measurements under atmospheric pressure found an increased conductivity for ND-DAN, as compared to that of pristine ND, whereas for ND-DAD, ND-PEGDA and ND-PEI a dramatic decrease in conductivity due to functionalization was observed.

  18. The Role of Wheat and Egg Constituents in the Formation of a Covalent and Non-covalent Protein Network in Fresh and Cooked Egg Noodles.

    Science.gov (United States)

    Lambrecht, Marlies A; Rombouts, Ine; Nivelle, Mieke A; Delcour, Jan A

    2017-01-01

    Noodles of constant protein content and flour-to-egg protein ratio were made with whole egg, egg white, or egg yolk. The optimal cooking time, water absorption, and cooking loss of salted whole egg noodles was respectively lower and higher than of egg white and egg yolk noodles. However, cooked whole egg noodles showed the best Kieffer-rig extensibility. Differences in noodle properties were linked to protein network formation. Disulfide bonds in whole egg noodles developed faster and to a larger extent during cooking than in egg yolk noodles but slower and to a lower extent than in egg white noodles. The balance between the rate of protein cross-linking and starch swelling determines cooked noodle properties. Ionic and hydrophobic protein interactions increase the optimum cooking time and total work in Kieffer-rig extensibility testing of fresh noodles. Hydrogen bonds and covalent cross-links are probably the main determinants of the extensibility of cooked noodles. © 2016 Institute of Food Technologists®.

  19. Relevant insight of surface characterization techniques to study covalent grafting of a biopolymer to titanium implant and its acidic resistance

    Science.gov (United States)

    D'Almeida, Mélanie; Amalric, Julien; Brunon, Céline; Grosgogeat, Brigitte; Toury, Bérangère

    2015-02-01

    Peri-implant bacterial infections are the main cause of complications in dentistry. Our group has previously proposed the attachment of chitosan on titanium implants via a covalent bond to improve its antibacterial properties while maintaining its biocompatibility. A better knowledge of the coating preparation process allows a better understanding of the bioactive coating in biological conditions. In this work, several relevant characterization techniques were used to assess an implant device during its production phase and its resistance in natural media at different pH. The titanium surface was functionalized with 3-aminopropyltriethoxysilane (APTES) followed by grafting of an organic coupling agent; succinic anhydride, able to form two covalent links, with the substrate through a Ti-O-Si bond and the biopolymer through a peptide bond. Each step of the coating synthesis as well as the presence confirmation of the biopolymer on titanium after saliva immersion was followed by FTIR-ATR, SEM, EDS, 3D profilometry, XPS and ToF-SIMS analyses. Results allowed to highlight the efficiency of each step of the process, and to propose a mechanism occurring during the chitosan coating degradation in saliva media at pH 5 and at pH 3.

  20. Computational study of the signature of hydrogen-bond strength on the infrared spectra of a hydrogen-bonded complex dissolved in a polar liquid

    International Nuclear Information System (INIS)

    Hanna, Gabriel; Geva, Eitan

    2010-01-01

    The signature of hydrogen-bond strength on the one- and two-dimensional infrared spectra of the hydrogen-stretch in a hydrogen-bonded complex dissolved in a polar liquid was investigated via mixed quantum-classical molecular dynamics simulations. Non-Condon effects were found to intensify with increasing hydrogen-bond strength and to shift oscillator strength from the stable configurations that correspond to the ionic and covalent tautomers into unstable configurations that correspond to the transition-state between them. The transition-state peak is observed to blue shift and increase in intensity with increasing hydrogen-bond strength, and to dominate the spectra in the case of a strong hydrogen-bond. It is argued that the application of multidimensional infrared spectroscopy in the region of the transition-state peak can provide a uniquely direct probe of the molecular events underlying breaking and forming of hydrogen-bonds in the condensed phase.

  1. Coupling gold nanoparticles to silica nanoparticles through disulfide bonds for glutathione detection

    International Nuclear Information System (INIS)

    Shi Yupeng; Zhang Heng; Zhang Zhaomin; Yi Changqing; Yue Zhenfeng; Teng, Kar-Seng; Li Meijin; Yang Mengsu

    2013-01-01

    Advances in the controlled assembly of nanoscale building blocks have resulted in functional devices which can find applications in electronics, biomedical imaging, drug delivery etc. In this study, novel covalent nanohybrid materials based upon [Ru(bpy) 3 ] 2+ -doped silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs), which could be conditioned as OFF–ON probes for glutathione (GSH) detection, were designed and assembled in sequence, with the disulfide bonds as the bridging elements. The structural and optical properties of the nanohybrid architectures were characterized using transmission electron microscopy, UV–vis spectroscopy and fluorescence spectroscopy, respectively. Zeta potential measurements, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were employed to monitor the reaction processes of the SiNPs–S–S–COOH and SiNPs–S–S–AuNPs synthesis. It was found that the covalent nanohybrid architectures were fluorescently dark (OFF state), indicating that SiNPs were effectively quenched by AuNPs. The fluorescence of the OFF–ON probe was resumed (ON state) when the bridge of the disulfide bond was cleaved by reducing reagents such as GSH. This work provides a new platform and strategy for GSH detection using covalent nanohybrid materials. (paper)

  2. What Is a Hydrogen Bond? Resonance Covalency in the Supramolecular Domain

    Science.gov (United States)

    Weinhold, Frank; Klein, Roger A.

    2014-01-01

    We address the broader conceptual and pedagogical implications of recent recommendations of the International Union of Pure and Applied Chemistry (IUPAC) concerning the re-definition of hydrogen bonding, drawing upon the recommended IUPAC statistical methodology of mutually correlated experimental and theoretical descriptors to operationally…

  3. A new bonded catalyst for safe lithium-thionyl chloride batteries

    Science.gov (United States)

    Walsh, F.; Hopewood, J.

    1982-08-01

    The goal of the research effort was to demonstrate that a new class of organometallic cathode catalysts, the TAAs, are stable in thionyl chloride and that they significantly improve the power performance of lithium-thionyl chloride primary batteries. A number of TAAs were evaluated and shown to be active catalysts. Included in this evaluation were TAAs which were covalently bonded to the supporting carbon electrode material; a covalently bonded catalyst has the potential advantage that it will not dissolve into the electrolyte and negatively affect anode performance. During the six month research program, the TAAS were shown to: significantly improve cathode performance in Li/SOCl2 cells; improve cathode capacity; improve cathode performance throughout long-term tests; and not affect anode performance. Further work is needed to develop data in cell studies on temperature range, shelf life, voltage delay effects, energy/power density as a function of rate, and factors affecting electrode capacity. Battery performance in stress tests to develop safety and cost data is also needed.

  4. Characterising non-covalent interactions with the Cambridge Structural Database.

    Science.gov (United States)

    Lommerse, J P; Taylor, R

    1997-02-01

    This review describes how the CSD can be used to study non-covalent interactions. Several different types of information may be obtained. First, the relative frequencies of various interactions can be studied; for example, we have shown that the terminal oxygen atoms of phosphate groups accept hydrogen bonds far more often than the linkage oxygens. Secondly, information can be obtained about the geometries of nonbonded contacts; for example, hydrogen bonds to P-O groups rarely form along the extension of the P-O bond, whereas short contacts between oxygen and carbon-bound iodine show a strong preference for linear C-I ... O angles. Thirdly, the CSD can be searched for novel interactions which may be exploited in inhibitor design; for example, the I ... O contacts just mentioned, and N-H ... pi hydrogen bonds. Finally, the CSD can suggest synthetic targets for medicinal chemistry; for example, molecules containing delocalised electron deficient groups such as trimethylammonium, pyridinium, thaizolium and dinitrophenyl have a good chance of binding to an active-site tryptophan. Although the CSD contains small-molecule crystal structures, not protein-ligand complexes, there is considerable evidence that the contacts seen in the two types of structures are similar. We have illustrated this a number of times in the present review and additional evidence has been given previously by Klebe. The major advantages of the CSD are its size, diversity and experimental accuracy. For these reasons, it is a useful tool for modellers engaged in rational inhibitor design.

  5. Effect of photocurrent enhancement in porphyrin–graphene covalent hybrids

    International Nuclear Information System (INIS)

    Tang, Jianguo; Niu, Lin; Liu, Jixian; Wang, Yao; Huang, Zhen; Xie, Shiqiang; Huang, Linjun; Xu, Qingsong; Wang, Yuan; Belfiore, Laurence A.

    2014-01-01

    Graphene oxide (GO) sheets were covalently functionalized with 5-p-aminophenyl-10,15,20-triphenylporphyrin (NH 2 TPP) by an amidation reaction between the amino group in NH 2 TPP and carboxyl groups in GO. The Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning and transmission electron microscopies reveal that NH 2 TPP covalent bonds form on the double surface of graphene oxide sheets, generating a unique nano-framework, i.e., NH 2 TPP-graphene-NH 2 TPP. Its UV–visible spectroscopy reveals that the absorption spectrum is not a linear superposition of the spectra of NH 2 TPP and graphene oxide, because a 59 nm red shift of the strong graphene oxide absorption is observed from 238 to 297 nm, with significant spectral broadening between 300 and 700 nm. Fluorescence emission spectroscopy indicates efficient quenching of NH 2 TPP photoluminescence in this hybrid material, suggesting that photo-induced electron transfer occurs at the interface between NH 2 TPP and GO. A reversible on/off photo-current density of 47 mA/cm 2 is observed when NH 2 TPP-graphene-NH 2 TPP hybrid sandwiches are subjected to pulsed white-light illumination. Covalently-bound porphyrins decrease the optical HOMO/LUMO band gap of graphene oxide by ≈ 1 eV, according to UV–visible spectroscopy. Cyclic voltammetry predicts a small HOMO/LUMO band gap of 0.84 eV for NH 2 TPP-graphene-NH 2 TPP hybrid sandwiches, which is consistent with efficient electron transfer and fluorescence quenching. - Highlights: • Porphyrins are covalently bound to sheets of graphene oxide via an amidation reaction. • The formed hetero-junction interface decreases the optical band gap of graphene oxide. • Cyclic voltammetry predicts a graphene oxide band gap of 0.84 eV, which is easily photo-excited. • Its on/off photo-current density of 46 μA/cm 2 is 5-fold larger than that for physically stacked hybrid

  6. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food.

    Science.gov (United States)

    Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin

    2017-10-13

    A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electron Beam Modification and Functionalization of MWNT for Covalent Dispersion into Polymeric Systems

    International Nuclear Information System (INIS)

    Palmese, G. R.

    2006-01-01

    The discovery of multiwalled carbon nanotubes (MWNT) and singlewalled nanotubes (SWNT) has allowed for the development of structural and conductive reinforcement fillers for polymers and electronic systems. Due to their small diameter, high aspect ratio, strength, and conductive and semi-conductive properties, nanotubes are excellent reinforcing fillers for systems requiring enhanced electrical or material properties and may disperse into such systems at low percolation concentrations. However, despite their potential for enhanced composites properties, van der Waals interactions between nanotubes as well as their highly stable graphitic structure render them insoluble in water, organic solvents and most monomers. As a result, nanotubes separate from solution, and their excellent material properties are not realized on a macroscopic scale. Furthermore, in order for nanotube-reinforced systems to be structurally enhanced (allowing for load transfer from the bulk material to the nanotube filler), covalent interactions between nanotubes and the polymer chains are preferred. Therefore, the development of nanotube-based polymer composites with improved mechanical properties and electrical conductivity requires the covalent dispersion of carbon nanotubes. In this work, we have developed a novel method of nanotube surface modification in which dry MWNT are irradiated with a high-energy electron-beam (EB) in ambient air environment. Raman spectroscopy was performed to characterize the influence of EB irradiation on nanotubes, namely, variance of the disorder, or D band (∼1360 cm - 1) with respect to the graphitic, or G, peak (∼1580 cm - 1). Spectra show increased deformation to the graphitic structure, as well as increased strain on the carbon-carbon bonds, weakening the nanotube. Transmission Electron Microscopy (TEM) confirms that nanotubes remain intact despite high EB dose. In addition, minimal surface deformation and length reduction occurred on irradiated MWNT

  8. Effects of a donor on the bond property of quantum-dot molecules

    Institute of Scientific and Technical Information of China (English)

    Wang Li-Min; Luo Ying; Ma Ben-Kun; Duan Su-Qing; Zhao Xian-Geng

    2004-01-01

    Within the framework of effective mass approximation, we have calculated the electronic structure of the two laterally coupled quantum dots with a donor by the finite element method. The calculated results show that the bond states of quantum-dot molecules are quite sensitive to the donor positions. By varying the donor position, the transition from covalent to ionic bond state is realized for some electronic states. Some extreme cases are also discussed for comparison.

  9. Association between perception of maternal bonding styles and social anxiety disorder among young women

    Directory of Open Access Journals (Sweden)

    Rochele D. Castelli

    2015-12-01

    Full Text Available Objective: To evaluate the association between social anxiety disorder (SAD and perceived maternal bonding styles among young women during pregnancy and 30 months after childbirth. Methods: A cohort of young women from the city of Pelotas, Brazil was followed up from pregnancy to 30 months postpartum. The Mini Neuropsychiatric Interview Plus was used to assess SAD and the Parental Bonding Instrument was administered to measure maternal bonding styles. Poisson regression with robust variance was used for multivariable analysis. Results: After adjusting for potential confounding factors, SAD prevalence was 6.39 times higher among young women who perceived their mothers as neglectful (prevalence ratio [PR] 6.39; 95% confidence interval [95%CI] 1.2-32.0, and 5.57 times higher in women who perceived their mothers as affectionless controlling (PR = 5.57; 95%CI 1.5-19.7 when compared with those who received optimal care. Conclusion: Maternal bonding style may have an influence on the development of SAD. Therefore, support and early prevention strategies should be offered to the family.

  10. Hydrogen bonding in ionic liquids.

    Science.gov (United States)

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  11. Chemical bond properties and Mossbauer spectroscopy in (La1-xMx)2CuO4 (M=Ba, Sr)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By using the average band-gap model, the chemical bond properties of (La1-x Mx)2CuO4(M=Ba, Sr) were calculated . The calculated covalencies for Cu(O and La(O bond in the compounds are 0.3 and 0.03 respectively. M?ssbauer isomer shifts of 57Fe doped in La2CuO4 and 119Sn doped in La2CuO4 were calculated by using the chemical surrounding factor defined by covalency and electronic polarizability. Four valence state tin and three valence iron sites were identified in 57Fe and 119Sn doped La2CuO4.

  12. Preparation and characterization of malonic acid cross-linked chitosan and collagen 3D scaffolds: an approach on non-covalent interactions.

    Science.gov (United States)

    Mitra, Tapas; Sailakshmi, G; Gnanamani, A; Mandal, A B

    2012-05-01

    The present study emphasizes the influence of non-covalent interactions on the mechanical and thermal properties of the scaffolds of chitosan/collagen origin. Malonic acid (MA), a bifuncitonal diacid was chosen to offer non-covalent cross-linking. Three dimensional scaffolds was prepared using chitosan at 1.0% (w/v) and MA at 0.2% (w/v), similarly collagen 0.5% (w/v) and MA 0.2% (w/v) and characterized. Results on FT-IR, TGA, DSC, SEM and mechanical properties (tensile strength, stiffness, Young's modulus, etc.) assessment demonstrated the existence of non-covalent interaction between MA and chitosan/collagen, which offered flexibility and high strength to the scaffolds suitable for tissue engineering research. Studies using NIH 3T3 fibroblast cells suggested biocompatibility nature of the scaffolds. Docking simulation study further supports the intermolecular hydrogen bonding interactions between MA and chitosan/collagen.

  13. Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data.

    Science.gov (United States)

    Pitonák, Michal; Neogrády, Pavel; Cerný, Jirí; Grimme, Stefan; Hobza, Pavel

    2009-01-12

    Scaled MP3 interaction energies calculated as a sum of MP2/CBS (complete basis set limit) interaction energies and scaled third-order energy contributions obtained in small or medium size basis sets agree very closely with the estimated CCSD(T)/CBS interaction energies for the 22 H-bonded, dispersion-controlled and mixed non-covalent complexes from the S22 data set. Performance of this so-called MP2.5 (third-order scaling factor of 0.5) method has also been tested for 33 nucleic acid base pairs and two stacked conformers of porphine dimer. In all the test cases, performance of the MP2.5 method was shown to be superior to the scaled spin-component MP2 based methods, e.g. SCS-MP2, SCSN-MP2 and SCS(MI)-MP2. In particular, a very balanced treatment of hydrogen-bonded compared to stacked complexes is achieved with MP2.5. The main advantage of the approach is that it employs only a single empirical parameter and is thus biased by two rigorously defined, asymptotically correct ab-initio methods, MP2 and MP3. The method is proposed as an accurate but computationally feasible alternative to CCSD(T) for the computation of the properties of various kinds of non-covalently bound systems.

  14. Morphological effects of single-layer graphene oxide in the formation of covalently bonded polypyrrole composites using intermediate diisocyanate chemistry

    International Nuclear Information System (INIS)

    Whitby, Raymond L. D.; Korobeinyk, Alina; Mikhalovsky, Sergey V.; Fukuda, Takahiro; Maekawa, Toru

    2011-01-01

    Single-layer graphene oxide (SLGO) possesses carboxylic and hydroxyl groups suitable for reactions with aliphatic or aromatic diisocyanate molecules. TEM analysis reveals that aliphatic diisocyanate molecules caused SLGO to scroll into star-like formations, whereas aromatic diisocyanate molecules retained SGLO in a flat-sheet morphology. TGA confirms the stabilisation of the formed urea and urethane groups on SLGO, but the onset of sheet pyrolysis occurs at a lower temperature due to isocyanate reactions with anhydride and epoxide groups embedded in the sheet. Pendant isocyanate groups act as bridging units to facilitate the attachment of pyrrole molecules, which are then used as anchor sites for the covalent polymerisation of pyrrole to polypyrrole (PPy). The use of FeCl 3 as the polymerisation catalyst generated both covalent and free PPy, but also iron hydroxide nanoparticles were observed decorating the SLGO surface. When using ammonium persulfate as a catalyst and dodecylbenzenesulfonate as a dopant, free PPy could be removed under treatment with solvents to leave a purely covalent system. Discrete regions of SLGO were observed decorated with nanoparticles of PPy along the edge or across the surface of individual sheets. It was found that the flexibility of the SLGO sheet and the type of diisocyanate used directly affected the electrical resistance of the final composite.

  15. Biofriendly bonding processes for nanoporous implantable SU-8 microcapsules for encapsulated cell therapy.

    Science.gov (United States)

    Nemani, Krishnamurthy; Kwon, Joonbum; Trivedi, Krutarth; Hu, Walter; Lee, Jeong-Bong; Gimi, Barjor

    2011-01-01

    Mechanically robust, cell encapsulating microdevices fabricated using photolithographic methods can lead to more efficient immunoisolation in comparison to cell encapsulating hydrogels. There is a need to develop adhesive bonding methods which can seal such microdevices under physiologically friendly conditions. We report the bonding of SU-8 based substrates through (i) magnetic self assembly, (ii) using medical grade photocured adhesive and (iii) moisture and photochemical cured polymerization. Magnetic self-assembly, carried out in biofriendly aqueous buffers, provides weak bonding not suitable for long term applications. Moisture cured bonding of covalently modified SU-8 substrates, based on silanol condensation, resulted in weak and inconsistent bonding. Photocured bonding using a medical grade adhesive and of acrylate modified substrates provided stable bonding. Of the methods evaluated, photocured adhesion provided the strongest and most stable adhesion.

  16. Electronic Structure and Chemical Bond of Ti3SiC2 and Adding Al Element

    Institute of Scientific and Technical Information of China (English)

    MIN Xinmin; LU Ning; MEI Bingchu

    2006-01-01

    The relation among electronic structure, chemical bond and property of Ti3SiC2 and Al-doped was studied by density function and discrete variation (DFT-DVM) method. When Al element is added into Ti3SiC2, there is a less difference of ionic bond, which does not play a leading role to influent the properties. After adding Al, the covalent bond of Al and the near Ti becomes somewhat weaker, but the covalent bond of Al and the Si in the same layer is obviously stronger than that of Si and Si before adding. Therefore, in preparation of Ti3SiC2, adding a proper quantity of Al can promote the formation of Ti3SiC2. The density of state shows that there is a mixed conductor character in both of Ti3SiC2 and adding Al element. Ti3SiC2 is with more tendencies to form a semiconductor. The total density of state near Fermi lever after adding Al is larger than that before adding, so the electric conductivity may increase after adding Al.

  17. Amorphous chalcogenides as random octahedrally bonded solids: I. Implications for the first sharp diffraction peak, photodarkening, and Boson peak

    Science.gov (United States)

    Lukyanov, Alexey; Lubchenko, Vassiliy

    2017-09-01

    We develop a computationally efficient algorithm for generating high-quality structures for amorphous materials exhibiting distorted octahedral coordination. The computationally costly step of equilibrating the simulated melt is relegated to a much more efficient procedure, viz., generation of a random close-packed structure, which is subsequently used to generate parent structures for octahedrally bonded amorphous solids. The sites of the so-obtained lattice are populated by atoms and vacancies according to the desired stoichiometry while allowing one to control the number of homo-nuclear and hetero-nuclear bonds and, hence, effects of the mixing entropy. The resulting parent structure is geometrically optimized using quantum-chemical force fields; by varying the extent of geometric optimization of the parent structure, one can partially control the degree of octahedrality in local coordination and the strength of secondary bonding. The present methodology is applied to the archetypal chalcogenide alloys AsxSe1-x. We find that local coordination in these alloys interpolates between octahedral and tetrahedral bonding but in a non-obvious way; it exhibits bonding motifs that are not characteristic of either extreme. We consistently recover the first sharp diffraction peak (FSDP) in our structures and argue that the corresponding mid-range order stems from the charge density wave formed by regions housing covalent and weak, secondary interactions. The number of secondary interactions is determined by a delicate interplay between octahedrality and tetrahedrality in the covalent bonding; many of these interactions are homonuclear. The present results are consistent with the experimentally observed dependence of the FSDP on arsenic content, pressure, and temperature and its correlation with photodarkening and the Boson peak. They also suggest that the position of the FSDP can be used to infer the effective particle size relevant for the configurational equilibration in

  18. Covalency in lanthanides. An X-ray absorption spectroscopy and density functional theory study of LnCl6(x-) (x = 3, 2).

    Science.gov (United States)

    Löble, Matthias W; Keith, Jason M; Altman, Alison B; Stieber, S Chantal E; Batista, Enrique R; Boland, Kevin S; Conradson, Steven D; Clark, David L; Lezama Pacheco, Juan; Kozimor, Stosh A; Martin, Richard L; Minasian, Stefan G; Olson, Angela C; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Zehnder, Ralph A

    2015-02-25

    Covalency in Ln-Cl bonds of Oh-LnCl6(x-) (x = 3 for Ln = Ce(III), Nd(III), Sm(III), Eu(III), Gd(III); x = 2 for Ln = Ce(IV)) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L3,2-edge and M5,4-edge XAS were also used to characterize CeCl6(x-) (x = 2, 3). The M5,4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce(III) and Ce(IV)). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t2g* and eg*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl6(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce(IV) 4f-orbital mixing (t1u* + t2u*) in CeCl6(2-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl6(2-) (M = Ti, Zr, Hf, U).

  19. Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays.

    Science.gov (United States)

    Gopinath, Ashwin; Rothemund, Paul W K

    2014-12-23

    Artificial DNA nanostructures, such as DNA origami, have great potential as templates for the bottom-up fabrication of both biological and nonbiological nanodevices at a resolution unachievable by conventional top-down approaches. However, because origami are synthesized in solution, origami-templated devices cannot easily be studied or integrated into larger on-chip architectures. Electrostatic self-assembly of origami onto lithographically defined binding sites on Si/SiO2 substrates has been achieved, but conditions for optimal assembly have not been characterized, and the method requires high Mg2+ concentrations at which most devices aggregate. We present a quantitative study of parameters affecting origami placement, reproducibly achieving single-origami binding at 94±4% of sites, with 90% of these origami having an orientation within ±10° of their target orientation. Further, we introduce two techniques for converting electrostatic DNA-surface bonds to covalent bonds, allowing origami arrays to be used under a wide variety of Mg2+-free solution conditions.

  20. Reversible and formaldehyde-mediated covalent binding of a bis-amino mitoxantrone analogue to DNA.

    Science.gov (United States)

    Konda, Shyam K; Kelso, Celine; Pumuye, Paul P; Medan, Jelena; Sleebs, Brad E; Cutts, Suzanne M; Phillips, Don R; Collins, J Grant

    2016-05-18

    The ability of a bis-amino mitoxantrone anticancer drug (named WEHI-150) to form covalent adducts with DNA, after activation by formaldehyde, has been studied by electrospray ionisation mass spectrometry and HPLC. Mass spectrometry results showed that WEHI-150 could form covalent adducts with d(ACGCGCGT)2 that contained one, two or three covalent links to the octanucleotide, whereas the control drugs (daunorubicin and the anthracenediones mitoxantrone and pixantrone) only formed adducts with one covalent link to the octanucleotide. HPLC was used to examine the extent of covalent bond formation of WEHI-150 with d(CGCGCG)2 and d(CG(5Me)CGCG)2. Incubation of WEHI-150 with d(CG(5Me)CGCG)2 in the presence of formaldehyde resulted in the formation of significantly greater amounts of covalent adducts than was observed with d(CGCGCG)2. In order to understand the observed increase of covalent adducts with d(CG(5Me)CGCG)2, an NMR study of the reversible interaction of WEHI-150 at both CpG and (5Me)CpG sites was undertaken. Intermolecular NOEs were observed in the NOESY spectra of d(ACGGCCGT)2 with added WEHI-150 that indicated that the drug selectively intercalated at the CpG sites and from the major groove. In particular, NOEs were observed from the WEHI-150 H2,3 protons to the H1' protons of G3 and G7 and from the H6,7 protons to the H5 protons of C2 and C6. By contrast, intermolecular NOEs were observed between the WEHI-150 H2,3 protons to the H2'' proton of the (5Me)C3 in d(CG(5Me)CGCG)2, and between the drug aliphatic protons and the H1' proton of G4. This demonstrated that WEHI-150 preferentially intercalates at (5Me)CpG sites, compared to CpG sequences, and predominantly via the minor groove at the (5Me)CpG site. The results of this study demonstrate that WEHI-150 is likely to form interstrand DNA cross-links, upon activation by formaldehyde, and consequently exhibit greater cytotoxicity than other current anthracenedione drugs.

  1. Real space in situ bond energies: toward a consistent energetic definition of bond strength.

    Science.gov (United States)

    Menéndez-Crespo, Daniel; Costales, Aurora; Francisco, Evelio; Martin Pendas, Angel

    2018-04-14

    A rigorous definition of intrinsic bond strength based on the partitioning of a molecule into real space fragments is presented. Using the domains provided by the quantum theory of atoms in molecules (QTAIM) together with the interacting quantum atoms (IQA) energetic decomposition, we show how an in situ bond strength, matching all the requirements of an intrinsic bond energy, can be defined between each pair of fragments. Total atomization or fragmentation energies are shown to be equal to the sum of these in situ bond energies (ISBEs) if the energies of the fragments are measured with respect to their in-the-molecule state. These energies usually lie above the ground state of the isolated fragments by quantities identified with the standard fragment relaxation or deformation energies, which are also provided by the protocol. Deformation energies bridge dissociation energies with ISBEs, and can be dissected using well-known tools of real space theories of chemical bonding. Similarly, ISBEs can be partitioned into ionic and covalent contributions, and this feature adds to the chemical appeal of the procedure. All the energetic quantities examined are observable and amenable, in principle, to experimental determination. Several systems, exemplifying the role of each energetic term herein presented are used to show the power of the approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.

    Science.gov (United States)

    Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter

    2017-10-01

    The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Understanding of chemical bonding towards the enhancement of catalytic of Co(III)-doped ZrO2 catalyst material using x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Nor Aziah Buang; Wan Azelee Wan Abu Bakar; Harrison, P.G.

    2000-01-01

    The x-ray photoelectron spectroscopy (XPS) analysis has demonstrated the formation metal ions in different oxidation states or similar oxidation state with different bonding character in the ZrO 2 based catalyst material. Interaction of cobalt oxide with ZrO 2 matrixes shows the formation of surface species of Zr-O-Co with Co in the +2 oxidation state and Co 3 O 4 -CoO in a mixture of +2 and +3 oxidation states. The formation of Zr-O-Co species in sample calcined at 400 degree C results in the more ionic character of Co-O bond and more covalent character of Zr-0 bond compared to their ordinary oxides. These behaviour cause the shifting of Co(2p) XPS peaks position towards higher binding energy and the Zr(3d) XPS peaks position towards lower binding energy. Meanwhile, the formation Of Co 3 0 4 -CoO in sample calcined at temperature of 600 degree C exhibits Co(2p) XPS peaks in the region correspond to the Co in the +2 and +3 oxidation states, which is more covalent in bonding character. The catalytic activity measurement of the catalyst material calcined at 600 o C showed that the existence of Co-O species with more covalent in bonding character gave the best catalytic performance towards 100 % conversion of carbon monoxide and propane. (Author)

  4. Thermal solid-state Z/E isomerization of 2-alkylidene-4-oxothiazolidines: effects of non-covalent interactions

    Directory of Open Access Journals (Sweden)

    ZDRAVKO DŽAMBASKI

    2011-03-01

    Full Text Available Configurational isomerization of stereo-defined 5-substituted and unsubstituted 2-alkylidene-4-oxothiazolidines (1 in the solid state, giving the Z/E mixtures in various ratios, was investigated by 1H-NMR spectroscopy, X-ray powder crystallography and differential scanning calorimetry (DSC. The Z/E composition can be rationalized in terms of non-covalent interactions, involving intermolecular and intramolecular hydrogen bonding and directional non-bonded 1,5-type S×××O interactions. X-Ray powder crystallography, using selected crystalline (Z-4-oxothiazolidine substrates, revealed transformation to the amorphous state during the irreversible Z®E process. A correlation between previous results on the Z/E isomerization in solution and now in the solid state was established.

  5. Hydrogen Bonds and Life in the Universe

    Directory of Open Access Journals (Sweden)

    Giovanni Vladilo

    2018-01-01

    Full Text Available The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry.

  6. Hydrogen Bonds and Life in the Universe

    Science.gov (United States)

    2018-01-01

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a “covalent-bond stage” to a “hydrogen-bond stage” in prebiotic chemistry. PMID:29301382

  7. Hydrogen Bonds and Life in the Universe.

    Science.gov (United States)

    Vladilo, Giovanni; Hassanali, Ali

    2018-01-03

    The scientific community is allocating more and more resources to space missions and astronomical observations dedicated to the search for life beyond Earth. This experimental endeavor needs to be backed by a theoretical framework aimed at defining universal criteria for the existence of life. With this aim in mind, we have explored which chemical and physical properties should be expected for life possibly different from the terrestrial one, but similarly sustained by genetic and catalytic molecules. We show that functional molecules performing genetic and catalytic tasks must feature a hierarchy of chemical interactions operating in distinct energy bands. Of all known chemical bonds and forces, only hydrogen bonds are able to mediate the directional interactions of lower energy that are needed for the operation of genetic and catalytic tasks. For this reason and because of the unique quantum properties of hydrogen bonding, the functional molecules involved in life processes are predicted to have extensive hydrogen-bonding capabilities. A molecular medium generating a hydrogen-bond network is probably essential to support the activity of the functional molecules. These hydrogen-bond requirements constrain the viability of hypothetical biochemistries alternative to the terrestrial one, provide thermal limits to life molecular processes, and offer a conceptual framework to define a transition from a "covalent-bond stage" to a "hydrogen-bond stage" in prebiotic chemistry.

  8. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  9. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  10. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    International Nuclear Information System (INIS)

    Gao, Min; Chen, Chao; Fan, Aiping; Wang, Zheng; Zhao, Yanjun; Zhang, Ju; Kong, Deling

    2015-01-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC_5_0 of 14.7 ± 1.6 (μg mL"−"1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL"−"1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer–drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders. (paper)

  11. Covalent and non-covalent curcumin loading in acid-responsive polymeric micellar nanocarriers

    Science.gov (United States)

    Gao, Min; Chen, Chao; Fan, Aiping; Zhang, Ju; Kong, Deling; Wang, Zheng; Zhao, Yanjun

    2015-07-01

    Poor aqueous solubility, potential degradation, rapid metabolism and elimination lead to low bioavailability of pleiotropic impotent curcumin. Herein, we report two types of acid-responsive polymeric micelles where curcumin was encapsulated via both covalent and non-covalent modes for enhanced loading capacity and on-demand release. Biodegradable methoxy poly(ethylene glycol)-poly(lactic acid) copolymer (mPEG-PLA) was conjugated with curcumin via a hydrazone linker, generating two conjugates differing in architecture (single-tail versus double-tail) and free curcumin was encapsulated therein. The two micelles exhibited similar hydrodynamic size at 95 ± 3 nm (single-tail) and 96 ± 3 nm (double-tail), but their loading capacities differed significantly at 15.0 ± 0.5% (w/w) (single-tail) and 4.8 ± 0.5% (w/w) (double-tail). Under acidic sink conditions (pH 5.0 and 6.0), curcumin displayed a faster release from the single-tail nanocarrier, which was correlated to a low IC50 of 14.7 ± 1.6 (μg mL-1) compared to the value of double-tail micelle (24.9 ± 1.3 μg mL-1) in HeLa cells. The confocal imaging and flow cytometry analysis demonstrated a superior capability of single-tail micelle for intracellular curcumin delivery, which was a consequence of the higher loading capacity and lower degree of mPEG surface coverage. In conclusion, the dual loading mode is an effective means to increase the drug content in the micellar nanocarriers whose delivery efficiency is highly dependent on its polymer-drug conjugate architecture. This strategy offers an alternative nanoplatform for intracellularly delivering impotent hydrophobic agents (i.e. curcumin) in an efficient stimuli-triggered way, which is valuable for the enhancement of curcumin’s efficacy in managing a diverse range of disorders.

  12. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    Science.gov (United States)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to

  13. Cell Signalling Through Covalent Modification and Allostery

    Science.gov (United States)

    Johnson, Louise N.

    Phosphorylation plays essential roles in nearly every aspect of cell life. Protein kinases catalyze the transfer of the γ-phosphate of ATP to a serine, threonine or tyrosine residue in protein substrates. This covalent modification allows activation or inhibition of enzyme activity, creates recognition sites for other proteins and promotes order/disorder or disorder/order transitions. These properties regulate ­signalling pathways and cellular processes that mediate metabolism, transcription, cell cycle progression, differentiation, cytoskeleton arrangement and cell movement, apoptosis, intercellular communication, and neuronal and immunological functions. In this lecture I shall review the structural consequences of protein phosphorylation using our work on glycogen phosphorylase and the cell cycle cyclin dependent protein kinases as illustrations. Regulation of protein phosphorylation may be disrupted in the diseased state and protein kinases have become high profile targets for drug development. To date there are 11 compounds that have been approved for clinical use in the treatment of cancer.

  14. Effects of Electric Field on the Valence-Bond Property of an Electron in a Quantum-Dot Molecule

    Institute of Scientific and Technical Information of China (English)

    王立民; 罗莹; 马本堃

    2002-01-01

    The electronic structure of the quantum-dot molecules in an electric field is investigated by the finite element method with the effective mass approximation. The numerical calculation results show that the valence bond of the quantum-dot molecule alternates between covalent bonds and ionic bonds as the electric field increases. The valence-bond property can be reflected by the oscillator strength of the intraband transition. The bound state with the highest energy level in the quantum-dot molecule gradually changes into a quasibound state when the electric field increases.

  15. H-Bonding Cooperativity Effects in Amyloids: Quantum Mechanical and Molecular Mechanics Study

    Czech Academy of Sciences Publication Activity Database

    Přenosil, Ondřej; Pitoňák, Michal; Sedlák, Robert; Kabeláč, Martin; Hobza, Pavel

    2011-01-01

    Roč. 225, č. 5 (2011), s. 553-574 ISSN 0942-9352 R&D Projects: GA MŠk LC512 Institutional research plan: CEZ:AV0Z40550506 Keywords : non- covalent interaction * hydrogen bond * amyloids * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.568, year: 2011

  16. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    Science.gov (United States)

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical

  17. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading

    Directory of Open Access Journals (Sweden)

    M. A. García-Sánchez

    2016-07-01

    Full Text Available Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most

  18. Accuracy of the DLPNO-CCSD(T) method for non-covalent bond dissociation enthalpies from coinage metal cation complexes

    KAUST Repository

    Minenkov, Yury; Chermak, Edrisse; Cavallo, Luigi

    2015-01-01

    The performance of the domain based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) method has been tested to reproduce the experimental gas phase ligand dissociation enthalpy in a series of Cu+, Ag+ and Au+ complexes. For 33 Cu+ - non-covalent ligand dissociation enthalpies all-electron calculations with the same method result in MUE below 2.2 kcal/mol, although a MSE of 1.4 kcal/mol indicates systematic underestimation of the experimental values. Inclusion of scalar relativistic effects for Cu either via effective core potential (ECP) or Douglass-Kroll-Hess Hamiltonian, reduces the MUE below 1.7 kcal/mol and the MSE to -1.0 kcal/mol. For 24 Ag+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) method results in a mean unsigned error (MUE) below 2.1 kcal/mol and vanishing mean signed error (MSE). For 15 Au+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) methods provides larger MUE and MSE, equal to 3.2 and 1.7 kcal/mol, which might be related to poor precision of the experimental measurements. Overall, for the combined dataset of 72 coinage metal ion complexes DLPNO-CCSD(T) results in a MUE below 2.2 kcal/mol and an almost vanishing MSE. As for a comparison with computationally cheaper density functional theory (DFT) methods, the routinely used M06 functional results in MUE and MSE equal to 3.6 and -1.7 kca/mol. Results converge already at CC-PVTZ quality basis set, making highly accurate DLPNO-CCSD(T) estimates to be affordable for routine calculations (single-point) on large transition metal complexes of > 100 atoms.

  19. Accuracy of the DLPNO-CCSD(T) method for non-covalent bond dissociation enthalpies from coinage metal cation complexes

    KAUST Repository

    Minenkov, Yury

    2015-08-27

    The performance of the domain based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) method has been tested to reproduce the experimental gas phase ligand dissociation enthalpy in a series of Cu+, Ag+ and Au+ complexes. For 33 Cu+ - non-covalent ligand dissociation enthalpies all-electron calculations with the same method result in MUE below 2.2 kcal/mol, although a MSE of 1.4 kcal/mol indicates systematic underestimation of the experimental values. Inclusion of scalar relativistic effects for Cu either via effective core potential (ECP) or Douglass-Kroll-Hess Hamiltonian, reduces the MUE below 1.7 kcal/mol and the MSE to -1.0 kcal/mol. For 24 Ag+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) method results in a mean unsigned error (MUE) below 2.1 kcal/mol and vanishing mean signed error (MSE). For 15 Au+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) methods provides larger MUE and MSE, equal to 3.2 and 1.7 kcal/mol, which might be related to poor precision of the experimental measurements. Overall, for the combined dataset of 72 coinage metal ion complexes DLPNO-CCSD(T) results in a MUE below 2.2 kcal/mol and an almost vanishing MSE. As for a comparison with computationally cheaper density functional theory (DFT) methods, the routinely used M06 functional results in MUE and MSE equal to 3.6 and -1.7 kca/mol. Results converge already at CC-PVTZ quality basis set, making highly accurate DLPNO-CCSD(T) estimates to be affordable for routine calculations (single-point) on large transition metal complexes of > 100 atoms.

  20. From Coordination Cages to a Stable Crystalline Porous Hydrogen-Bonded Framework

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Zhanfeng [State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 P. R. China; Liu, Guoliang [State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 P. R. China; Chen, Yu-Sheng [ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, Argonne Illinois 60439 USA; Yuan, Daqiang [State Key Lab of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, CAS, Fuzhou 350002 P. R. China; Chen, Banglin [Department of Chemistry, University of Texas at San Antonio, San Antonio Texas 78249-0698 USA

    2017-03-20

    A stable framework has been constructed through multiple charge-assisted H-bonds between cationic coordination cages and chloride ions. The framework maintained its original structure upon desolvation, which has been established by single-crystal structure analysis. This is the first fully characterized stable porous framework based on coordination cages after desolvation, with a moderately high Brunauer–Emmett–Teller (BET) surface area of 1201 m2 g-1. This work will not only give a light to construct stable porous frameworks based on coordination cages and thus broaden their applications, but will also provide a new avenue to the assembly of other porous materials such as porous organic cages and hydrogen-bonded organic frameworks (HOFs) through non covalent bonds.

  1. A novel stibacarbaborane cluster with adjacent antimony atoms exhibiting unique pnictogen bond formation that dominates its crystal packing.

    Science.gov (United States)

    Holub, Josef; Melichar, Petr; Růžičková, Zdeňka; Vrána, Jan; Wann, Derek A; Fanfrlík, Jindřich; Hnyk, Drahomír; Růžička, Aleš

    2017-10-17

    We have prepared nido-7,8,9,11-Sb 2 C 2 B 7 H 9 , the first cluster with simultaneous Sb-B, Sb-C and Sb-Sb atom pairs with interatomic separations with magnitudes that approach the respective sums of covalent radii. However, the length of the Sb-Sb separation in this cluster is slightly less than the sum of the covalent radii. Quantum chemical analysis has revealed that the crystal packing of nido-7,8,9,11-Sb 2 C 2 B 7 H 9 is predominantly dictated by pnictogen (Pn) bonding, an unconventional σ-hole interaction. Indeed, the interaction energy of a very strong Sb 2 H-B Pn-bond in the nido-7,8,9,11-Sb 2 C 2 B 7 H 9 dimer exceeds -6.0 kcal mol -1 . This is a very large value and is comparable to the strengths of known Pn-bonds in Cl 3 Pnπ complexes (Pn = As, Sb).

  2. Hydrogen bond disruption in DNA base pairs from (14)C transmutation.

    Science.gov (United States)

    Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Christopher R; Mancera, Ricardo L; Marks, Nigel A

    2014-09-04

    Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C → N transmutation on hydrogen bonding in DNA base pairs. We find that (14)C decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these (14)C-induced modifications, while infrequent, may trigger errors in DNA transcription and replication.

  3. Holistic Approach to Partial Covalent Interactions in Protein Structure Prediction and Design with Rosetta.

    Science.gov (United States)

    Combs, Steven A; Mueller, Benjamin K; Meiler, Jens

    2018-05-29

    Partial covalent interactions (PCIs) in proteins, which include hydrogen bonds, salt bridges, cation-π, and π-π interactions, contribute to thermodynamic stability and facilitate interactions with other biomolecules. Several score functions have been developed within the Rosetta protein modeling framework that identify and evaluate these PCIs through analyzing the geometry between participating atoms. However, we hypothesize that PCIs can be unified through a simplified electron orbital representation. To test this hypothesis, we have introduced orbital based chemical descriptors for PCIs into Rosetta, called the PCI score function. Optimal geometries for the PCIs are derived from a statistical analysis of high-quality protein structures obtained from the Protein Data Bank (PDB), and the relative orientation of electron deficient hydrogen atoms and electron-rich lone pair or π orbitals are evaluated. We demonstrate that nativelike geometries of hydrogen bonds, salt bridges, cation-π, and π-π interactions are recapitulated during minimization of protein conformation. The packing density of tested protein structures increased from the standard score function from 0.62 to 0.64, closer to the native value of 0.70. Overall, rotamer recovery improved when using the PCI score function (75%) as compared to the standard Rosetta score function (74%). The PCI score function represents an improvement over the standard Rosetta score function for protein model scoring; in addition, it provides a platform for future directions in the analysis of small molecule to protein interactions, which depend on partial covalent interactions.

  4. Covalent Organic

    DEFF Research Database (Denmark)

    Vutti, Surendra

    chemistry of silicon, InAs and GaAs materials, covalentsurface functionalization using organosilanes, liquid-phase, and vapor-phasefunctionalizations, diazo-transfer reaction, CuAAC click chemistry, different types ofbiorthogonal chemistries, SPAAC chemistry, and cellular interactions of chemically...... immobilization of D-amino acid adhesion peptideson azide functionalized silicon, GaAs and InAs materials by using CuAAC-click chemistry.The covalent immobilization of penetration peptide (TAT) on gold nanotips of InAs NWs isalso demonstrated.In chapter four, the covalent immobilization of GFP on silicon wafers......, GaAs wafers andGaAs NWs is demonstrated. Series of Fmoc-Pra-OH, NHS-PEG5-NHS and BCN-NHSfunctionalized silicon surfaces has been prepared, whereby GFP-N3 and GFP-bicyclononyneare immobilized by using CuAAC and SPAAC chemistry. The specific and covalentimmobilization of GFP-N3 on bicyclononyne...

  5. Dispersive and Covalent Interactions between Graphene and Metal Surfaces from the Random Phase Approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Yan, Jun; Mortensen, Jens Jørgen

    2011-01-01

    We calculate the potential energy surfaces for graphene adsorbed on Cu(111), Ni(111), and Co(0001) using density functional theory and the random phase approximation (RPA). For these adsorption systems covalent and dispersive interactions are equally important and while commonly used approximations...... for exchange-correlation functionals give inadequate descriptions of either van der Waals or chemical bonds, RPA accounts accurately for both. It is found that the adsorption is a delicate competition between a weak chemisorption minimum close to the surface and a physisorption minimum further from the surface....

  6. Molecular marriage through partner preferences in covalent cage formation and cage-to-cage transformation.

    Science.gov (United States)

    Acharyya, Koushik; Mukherjee, Sandip; Mukherjee, Partha Sarathi

    2013-01-16

    Unprecedented self-sorting of three-dimensional purely organic cages driven by dynamic covalent bonds is described. Four different cages were first synthesized by condensation of two triamines and two dialdehydes separately. When a mixture of all the components was allowed to react, only two cages were formed, which suggests a high-fidelity self-recognition. The issue of the preference of one triamine for a particular dialdehyde was further probed by transforming a non-preferred combination to either of the two preferred combinations by reacting it with the appropriate triamine or dialdehyde.

  7. Description of pnicogen bonding with the help of vibrational spectroscopy-The missing link between theory and experiment

    Science.gov (United States)

    Setiawan, D.; Kraka, E.; Cremer, D.

    2014-10-01

    The nature of the E⋯E‧ pnicogen bond (E = N, P, As) in dimers such as H2FP⋯PH2F (1) and H3N⋯PHNO2 (2) can be described using vibrational spectroscopy in form of the calculated infrared and depolarized Raman scattering spectra. Utilizing the six calculated intermonomer frequencies, the corresponding local mode E⋯E‧ stretching frequency and force constant are obtained, where the latter provides a unique measure of the E⋯E‧ bond strength. Pnicogen bonding in 1 is relative strong (bond strength order n = 0.151) and covalent whereas pnicogen bonding in 2 is electrostatic (n = 0.047) because of a different bonding mechanism.

  8. Postpartum Bonding Disorder: Factor Structure, Validity, Reliability and a Model Comparison of the Postnatal Bonding Questionnaire in Japanese Mothers of Infants

    Directory of Open Access Journals (Sweden)

    Yukiko Ohashi

    2016-08-01

    Full Text Available Negative attitudes of mothers towards their infant is conceptualized as postpartum bonding disorder, which leads to serious health problems in perinatal health care. However, its measurement still remains to be standardized. Our aim was to examine and confirm the psychometric properties of the Postnatal Bonding Questionnaire (PBQ in Japanese mothers. We distributed a set of questionnaires to community mothers and studied 392 mothers who returned the questionnaires at 1 month after childbirth. Our model was compared with three other models derived from previous studies. In a randomly halved sample, an exploratory factor analysis yielded a three-factor structure: Anger and Restrictedness, Lack of Affection, and Rejection and Fear. This factor structure was cross-validated by a confirmatory factor analysis using the other halved sample. The three subscales showed satisfactory internal consistency. The three PBQ subscale scores were correlated with depression and psychological abuse scores. Their test–retest reliability between day 5 and 1 month after childbirth was measured by intraclass correlation coefficients between 0.76 and 0.83. The Akaike Information Criteria of our model was better than the original four-factor model of Brockington. The present study indicates that the PBQ is a reliable and valid measure of bonding difficulties of Japanese mothers with neonates.

  9. Facile route to covalently-jointed graphene/polyaniline composite and it's enhanced electrochemical performances for supercapacitors

    Science.gov (United States)

    Qiu, Hanxun; Han, Xuebin; Qiu, Feilong; Yang, Junhe

    2016-07-01

    A polyaniline/graphene composite with covalently-bond is synthesized by a novel approach. In this way, graphene oxide is functionalized firstly by introducing amine groups onto the surface with the reduction of graphene oxide in the process and then served as the anchor sites for the growth of polyaniline (PANI) via in-situ polymerization. The composite material is characterized by electron microscopy, the resonant Raman spectra, X-ray diffraction, transform infrared spectroscopy and X-ray photoelectron spectroscopy. The electrochemical properties of the composite are measured by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charging/discharging. With the functionalization process, the graphene/polyaniline composite electrode exhibits remarkably enhanced electrochemical performance with specific capacitance of 489 F g-1 at 0.5 A g-1, which is superior to those of its individual components. The outstanding electrochemical performance of the hybrid can be attributed to its covalently synergistic effect between graphene and polyaniline, suggesting promising potentials for supercapacitors.

  10. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light

    Science.gov (United States)

    Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan

    2016-12-01

    Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched `on' and `off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication.

  11. Dynamic Multi-Component Covalent Assembly for the Reversible Binding of Secondary Alcohols and Chirality Sensing

    Science.gov (United States)

    You, Lei; Berman, Jeffrey S.; Anslyn, Eric V.

    2011-01-01

    Reversible covalent bonding is often employed for the creation of novel supramolecular structures, multi-component assemblies, and sensing ensembles. In spite of remarkable success of dynamic covalent systems, the reversible binding of a mono-alcohol with high strength is challenging. Here we show that a strategy of carbonyl activation and hemiaminal ether stabilization can be embodied in a four-component reversible assembly that creates a tetradentate ligand and incorporates secondary alcohols with exceptionally high affinity. Evidence is presented that the intermediate leading to binding and exchange of alcohols is an iminium ion. Further, to demonstrate the use of this assembly process we explored chirality sensing and enantiomeric excess determinations. An induced twist in the ligand by a chiral mono-ol results in large Cotton effects in the circular dichroism spectra indicative of the alcohol’s handedness. The strategy revealed in this study should prove broadly applicable for the incorporation of alcohols into supramolecular architecture construction. PMID:22109274

  12. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859

  13. Spectroscopic and DFT Studies of Second Sphere Variants of the Type 1 Copper Site in Azurin: Covalent and Non-Local Electrostatic Contributions to Reduction Potentials

    Science.gov (United States)

    Hadt, Ryan G.; Sun, Ning; Marshall, Nicholas M.; Hodgson, Keith O.; Hedman, Britt; Lu, Yi; Solomon, Edward I.

    2012-01-01

    The reduction potentials (E0) of type 1 (T1) or blue copper (BC) sites in proteins and enzymes with identical first coordination spheres around the redox active copper ion can vary by ~400 mV. Here, we use a combination of low temperature electronic absorption and magnetic circular dichroism, electron paramagnetic resonance, resonance Raman, and S K-edge X-ray absorption spectroscopies to investigate a series of second sphere variants—F114P, N47S, and F114N in Pseudomonas aeruginosa azurin (Az)—which modulate hydrogen bonding to and protein derived dipoles nearby the Cu-S(Cys) bond. Density functional theory (DFT) calculations correlated to the experimental data allow for the fractionation of the contributions to tuning E0 into covalent and non-local electrostatic components. These are found to be significant, comparable in magnitude, and additive for active H-bonds, while passive H-bonds are mostly non-local electrostatic in nature. For dipoles, these terms can be additive to or oppose one another. This study provides a methodology for uncoupling covalency from non-local electrostatics, which, when coupled to X-ray crystallographic data, distinguishes specific local interactions from more long range protein/active interactions, while affording further insight into the second sphere mechanisms available to the protein to tune the E0 of electron transfer sites in biology. PMID:22985400

  14. Bonding in phase change materials: concepts and misconceptions

    Science.gov (United States)

    Jones, R. O.

    2018-04-01

    Bonding concepts originating in chemistry are surveyed from a condensed matter perspective, beginning around 1850 with ‘valence’ and the word ‘bond’ itself. The analysis of chemical data in the 19th century resulted in astonishing progress in understanding the connectivity and stereochemistry of molecules, almost without input from physicists until the development of quantum mechanics in 1925 and afterwards. The valence bond method popularized by Pauling and the molecular orbital methods of Hund, Mulliken, Bloch, and Hückel play major roles in the subsequent development, as does the central part played by the kinetic energy in covalent bonding (Ruedenberg and others). ‘Metallic’ (free electron) and related approaches, including pseudopotential and density functional theories, have been remarkably successful in understanding structures and bonding in molecules and solids. We discuss these concepts in the context of phase change materials, which involve the rapid and reversible transition between amorphous and crystalline states, and note the confusion that some have caused, in particular ‘resonance’ and ‘resonant bonding’.

  15. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  16. Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5'-dAMP

    International Nuclear Information System (INIS)

    Garcia, P.; Hermoso, J.M.; Garcia, J.A.; Garcia, E.; Lopez, R.; Salas, M.

    1986-01-01

    Incubation of extracts of Cp-1-infected Streptococcus pneumoniae with [α- 32 P]dATP produced a labeled protein with the electrophoretic mobility of the Cp-1 terminal protein. The reaction product was resistant to treatment with micrococcal nuclease and sensitive to treatment with proteinase K. Incubation of the 32 P-labeled protein with 5 M piperidine for 4 h at 50 0 C released 5'-dAMP, indicating that a covalent complex between the terminal protein and 5'-dAMP was formed in vitro. When the four deoxynucleoside triphosphates were included in the reaction mixture, a labeled complex of slower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels than the terminal protein-dAMP complex was also found, indicating that the Cp-1 terminal protein-dAMP complex can be elongated and, therefore, that it is an initiation complex. Treatment of the 32 P-labeled terminal protein-dAMP complex with 5.8 M HCl at 110 0 C for 2 h yielded phosphothreonine. These results, together with the resistance of the terminal protein-DNA linkage to hydroxylamine, suggest that the Cp-1 terminal protein is covalently linked to the DNA through a phosphoester bond between L-threonine and 5'-dAMP, namely, a O-5'-deoxyadenylyl-L-threonine bond

  17. Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dharmawardhana, C.C. [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States); Misra, A. [Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045 (United States); Aryal, S.; Rulis, P. [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States); Ching, W.Y., E-mail: ccdxz8@mail.umkc.edu [Department of Physics and Astronomy, University of Missouri—Kansas City, Kansas City, MO 64110 (United States)

    2013-10-15

    Atomic scale properties of calcium silicate hydrate (CSH), the main binding phase of hardened Portland cement, are not well understood. Over a century of intense research has identified almost 50 different crystalline CSH minerals which are mainly categorized by their Ca/Si ratio. The electronic structure and interatomic bonding in four major CSH crystalline phases with structures close to those found in hardened cement are investigated via ab initio methods. Our result reveals the critical role of hydrogen bonding and importance of specifying precise locations for water molecules. Quantitative analysis of contributions from different bond types to the overall cohesion shows that while the Si-O covalent bonds dominate, the hydrogen bonding and Ca-O bonding are also very significant. Calculated results reveal the correlation between bond topology and interlayer cohesion. The overall bond order density (BOD) is found to be a more critical measure than the Ca/Si ratio in classifying different CSH crystals.

  18. Muon-oxygen bonding in V2O3

    International Nuclear Information System (INIS)

    Chan, K.C.B.; Lichti, R.L.; Boekema, C.

    1986-01-01

    A muon site search using calculated internal fields has been performed for V 2 O 3 , where purely dipolar fields allow a site determination free from covalent complications. The obtained sites are a subset of the Rodriguez and Bates sites found in α-Fe 2 O 3 and indicate muon oxygen bond formation. The sites missing at low temperatures are consistent with the vanadium pairing mechanism for the metal-to-insulator (corundum-to-monoclinic) phase transition. (orig.)

  19. Formation and properties of electroactive fullerene based films with a covalently attached ferrocenyl redox probe

    International Nuclear Information System (INIS)

    Wysocka-Zolopa, Monika; Winkler, Krzysztof; Caballero, Ruben; Langa, Fernando

    2011-01-01

    Highlights: → Formation of redox active films of ferrocene derivatives of C 60 and palladium. → Fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. → Electrochemical activity at both positive and negative potentials. → Charge transfer processes accompanied by transport of supporting electrolyte to and from the polymer layers. - Abstract: Redox active films have been produced via electrochemical reduction in a solution containing palladium(II) acetate and ferrocene derivatives of C 60 (Fc-C 60 and bis-Fc-C 60 ). In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Fc-C 60 /Pd and bis-Fc-C 60 /Pd films form uniform and relatively smooth layers on the electrode surface. These films are electrochemically active in both the positive and negative potential regions. At negative potentials, reduction of fullerene moiety takes place resulting in voltammetric behavior resembles typical of conducting polymers. In the positive potential range, oxidation of ferrocene is responsible for the formation of a sharp and symmetrical peak on the voltammograms. In this potential range, studied films behave as typical redox polymers. The charge associated with the oxidation process depends on the number of ferrocene units attached to the C 60 moiety. Oxidation and reduction of these redox active films are accompanied by transport of supporting electrolyte to and from the polymer layer. Films also show a higher permeability to anions than to cations.

  20. Unusually short chalcogen bonds involving organoselenium: insights into the Se-N bond cleavage mechanism of the antioxidant ebselen and analogues.

    Science.gov (United States)

    Thomas, Sajesh P; Satheeshkumar, K; Mugesh, Govindasamy; Guru Row, T N

    2015-04-27

    Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se⋅⋅⋅O chalcogen bonds that lead to conserved supramolecular recognition units. Se⋅⋅⋅O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se⋅⋅⋅O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se⋅⋅⋅O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se⋅⋅⋅O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se⋅⋅⋅O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Characterization of Hydrogen Bonds by IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Vojta, D.

    2012-05-01

    Full Text Available In the identification and quantification of hydrogen bond, as one of the most abundant non-covalent interactions in phenomena like self-assembly and molecular recognition, IR spectrosopy has been employed as the most sensitive method. The performance of the high dilution method enables determination of the stability constant of hydrogen-bonded complex as one of the most important thermodynamic quantities used in their characterization. However, the alleged experimental simplicity of the mentioned method is loaded with errors originating not only from researcher intervention but also independent from it. The second source of error is particularly emphasized and elaborated in this paper, which is designed as the recipe for the successful characterization of hydrogen bonds. Besides the enumeration of all steps in the determination of hydrogen-bonded stability constants, the reader can be acquainted with the most important ex perimental conditions that should be fulfilled in order to minimize the naturally occurring errors in this type of investigation. In the spectral analysis, the application of both uni- and multivariate approach has been discussed. Some computer packages, considering the latter, are mentioned, described, and recommended. KUI -10/2012Received August 1, 2011Accepted October 24, 2011

  2. Covalent and non-covalent functionalization and solubilization of ...

    Indian Academy of Sciences (India)

    Wintec

    photographs of the dispersions of amide-functio- nalized DWNTs in dichloromethane and tetrahydro- furan. In figure 3b, we show a TEM image of DWNTs after covalent functionalization. The images are not as sharp after functionalization as in the case of pris- tine nanotubes (figure 3a), and the bundles seem to be intact.

  3. Bond orientational ordering in a metastable supercooled liquid: a shadow of crystallization and liquid–liquid transition

    International Nuclear Information System (INIS)

    Tanaka, Hajime

    2010-01-01

    It is widely believed that a liquid state can be characterized by a single order parameter, density, and that a transition from a liquid to solid can be described by density ordering (translational ordering). For example, this type of theory has had great success in describing the phase behaviour of hard spheres. However, there are some features that cannot be captured by such theories. For example, hard spheres crystallize into either hcp or fcc structures, without a tendency of bcc ordering which is expected by the Alexander–McTague theory based on the Landau-type free energy of the density order parameter. We also found hcp-like bond orientational ordering in a metastable supercooled liquid, which promotes nucleation of hcp crystals. Furthermore, theories based on the single order parameter cannot explain water-like thermodynamic and kinetic anomalies of a liquid and liquid–liquid transition in a single-component liquid. Based on these facts, we argue that we need an additional order parameter to describe a liquid state. It is bond orientational order, which is induced by dense packing in hard spheres or by directional bonding in molecular and atomic liquids. Bond orientational order is intrinsically of local nature, unlike translational order which is of global nature. This feature plays a unique role in crystallization and quasicrystal formation. We also reveal that bond orientational ordering is a cause of dynamic heterogeneity near a glass transition and is linked to slow dynamics. In relation to this, we note that, for describing the structuring of a highly disordered liquid, we need a structural signature of low configurational entropy, which is more general than bond orientational order. Finally, the water-like anomaly and liquid–liquid transition can be explained by bond orientational ordering due to hydrogen or covalent bonding and its cooperativity, respectively. So we argue that bond orientational ordering is a key to the physical understanding

  4. Hydrolytic Stability of Boronate Ester-Linked Covalent Organic Frameworks

    KAUST Repository

    Li, Huifang

    2018-01-30

    The stability of covalent organic frameworks (COFs) is essential to their applications. However, the common boronate ester-linked COFs are susceptible to attack by nucleophiles (such as water molecules) at the electron-deficient boron sites. To provide an understanding of the hydrolytic stability of the representative boronate ester-linked COF-5 and of the associated hydrolysis mechanisms, density functional theory (DFT) calculations were performed to characterize the hydrolysis reactions of the molecule formed by the condensation of 1,4-phenylenebis(boronic acid) (PBBA) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) monomers; two cases were considered, one dealing with the freestanding molecule and the other with the molecule interacting with COF layers. It was found that the boronate ester (B–O) bond dissociation, which requires one H2O molecule, has a relatively high energy barrier of 22.3 kcal mol−1. However, the presence of an additional H2O molecule significantly accelerates hydrolysis by reducing the energy barrier by a factor of 3. Importantly, the hydrolysis of boronate ester bonds situated in a COF environment follows reaction pathways that are different and have increased energy barriers. These results point to an enhanced hydrolytic stability of COF-5 crystals.

  5. Surface passivation for tight-binding calculations of covalent solids

    International Nuclear Information System (INIS)

    Bernstein, N

    2007-01-01

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp 3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system

  6. Short-time dynamics of random-bond Potts ferromagnet with continuous self-dual quenched disorders

    OpenAIRE

    Pan, Z. Q.; Ying, H. P.; Gu, D. W.

    2001-01-01

    We present Monte Carlo simulation results of random-bond Potts ferromagnet with the Olson-Young self-dual distribution of quenched disorders in two-dimensions. By exploring the short-time scaling dynamics, we find universal power-law critical behavior of the magnetization and Binder cumulant at the critical point, and thus obtain estimates of the dynamic exponent $z$ and magnetic exponent $\\eta$, as well as the exponent $\\theta$. Our special attention is paid to the dynamic process for the $q...

  7. The pseudohydrogen bond structures between 2-F-epoxy-butane and three kinds of bimolecular

    International Nuclear Information System (INIS)

    Liu Yanzhi; Yuan Kun; Lu Lingling; Zhu Yuancheng; Dong Xiaoning

    2012-01-01

    The weak intermolecular interactions between 2-F-epoxy-butane and Iminazole, Thiazole and Oxazole were theoretically discussed by using density functional B3LYP (Becke, three-parameter, Lee- Yang-Parr)/6-311++G ** and HF (Hartree Fock)/6-311++G ** methods. The results showed that both the N…H conventional hydrogen bond and C-F…H-C pseudohydrogen bond (PHB) structures are coexisting in the three complexes. The weak intermolecular interactions energies indicate the relative stabilities of the three complexes are proportionable. The calculated results showed that the stretch vibrational frequency of C-H bond (electronic acceptor) presents blue shift, but that of C-F bond, which is intensely related to F group (electronic donor), presents red shift. Electron density topological properties demonstrates that the covalent and ionic characteristics of the C-F…H-C pseudohydrogen bond are proportional to that of convention hydrogen bond. (authors)

  8. Covalent-bond stabilization of the Si(111)-(3 1 -1 1)-Pb structure

    DEFF Research Database (Denmark)

    Kumpf, C.; Nielsen, M.; Feidenhans'l, R.

    2001-01-01

    by codeposition of Pb and Sn. Our surface X-ray diffraction measurements prove that the alloy structure is closely related to the low-temperature reconstruction. The interatomic distances reveal the nature of the chemical bonding in the surface layer and provide insight into the mechanism stabilizing...

  9. Atomic structures and covalent-to-metallic transition of lead clusters Pbn (n=2-22)

    International Nuclear Information System (INIS)

    Wang Baolin; Zhao Jijun; Chen Xiaoshuang; Shi Daning; Wang Guanghou

    2005-01-01

    The lowest-energy structures and electronic properties of the lead clusters are studied by density-functional-theory calculations with Becke-Lee-Yang-Parr gradient correction. The lowest-energy structures of Pb n (n=2-22) clusters are determined from a number of structural isomers, which are generated from empirical genetic algorithm simulations. The competition between atom-centered compact structures and layered stacking structures leads to the alternative appearance of the two types of structures as global minimum. The size evolution of geometric and electronic properties from covalent bonding towards bulk metallic behavior in Pb clusters is discussed

  10. Reconstitution of Qbeta RNA replicase from a covalently bonded elongation factor Tu-Ts complex

    DEFF Research Database (Denmark)

    Brown, S; Blumenthal, T

    1976-01-01

    of these polypeptides, protein synthesis elongation factors EF-Tu and EF-Ts, can be covalently crosslinked with dimethyl suberimidate to form a complex which lacks the ability to catalyze the known host functions catalyzed by the individual elongation factors. Using a previously developed reconstitution system we have...... examined the effects of crosslinking the EF-Tu-Ts complex on reconstituted replicase activity. Renaturation is significantly more efficient when exogenously added native EF-Tu-Ts is crosslinked than when it is not. Crosslinked EF-Tu-Ts can be purified from a crude crosslinked postribosomal supernatant...... by its ability to replace EF-Tu and EF-Ts in the renaturation of denatured Qbeta replicase. A sample of Qbeta replicase with crosslinked EF-Tu-Ts replacing the individual elongation factors was prepared. Although it lacked EF-Tu and EF-Ts activities, it could initiate transcription of both poly...

  11. Structural, dynamical, electronic, and bonding properties of laser-heated silicon: An ab initio molecular-dynamics study

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1997-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to simulate laser heating of crystalline silicon. We found that a high concentration of excited electrons dramatically weakens the covalent bonding. As a result the system undergoes a melting

  12. Electronic Structures and Bonding Properties of Ti2AlC and Ti3AlC2

    Institute of Scientific and Technical Information of China (English)

    MIN Xinmin; REN Yi

    2007-01-01

    The relation among electronic structure, chemical bond and property of Ti2AlC, Ti3AlC2 and doping Si into Ti2AlC was studied by density function and the discrete variation (DFT-DVM) method. After adding Si into Ti2AlC, the interaction between Si and Ti is weaker than that between Al and Ti, and the strengths of ionic and covalent bonds decrease both. The ionic and covalent bonds in Ti3AlC2, especially in Ti-Al, are stronger than those in Ti2AlC. Therefore, in synthesis of Ti2AlC, the addition of Si enhances the Ti3AlC2 content instead of Ti2AlC. The density of state (DOS) shows that there is mixed conductor characteristic in Ti2AlC and Ti3AlC2. The DOS of Ti3AlC2 is much like that of Ti2AlC. Ti2SixAl1-x C has more obvious tendency to form a semiconductor than Ti2AlC, which is seen from the obvious difference of partial DOS between Si and Al3p.

  13. The Effect of Intermolecular Halogen Bond on 19F DNP Enhancement in 1, 4-Diiodotetrafluorobenzene/4-OH-TEMPO Supramolecular Assembly

    Directory of Open Access Journals (Sweden)

    GAO Shan

    2017-12-01

    Full Text Available Halogen bond, as hydrogen bond, is a non-covalent bond. Dynamic nuclear polarization (DNP technique has been used previously to study hydrogen bonds-mediated intermolecular interactions. However, no study has been carried out so far to study the halogen bond-mediated intermolecular interactions with DNP. In this work, 19F DNP polarization efficiency of the halogen bonds existing in supramolecular assembling by 4-OH-TEMPO and 1,4-diiodotetrafluorobenzene (DITFB was studied on a home-made DNP system. The formation of intermolecular halogen bonds appeared to increase 19F DNP polarization efficiency, suggesting that the spin-spin interactions among electrons were weakened by the halogen bonds, resulting in an increased T2e and a larger saturation factor.

  14. Porous Hydrogen-Bonded Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Yi-Fei Han

    2017-02-01

    Full Text Available Ordered porous solid-state architectures constructed via non-covalent supramolecular self-assembly have attracted increasing interest due to their unique advantages and potential applications. Porous metal-coordination organic frameworks (MOFs are generated by the assembly of metal coordination centers and organic linkers. Compared to MOFs, porous hydrogen-bonded organic frameworks (HOFs are readily purified and recovered via simple recrystallization. However, due to lacking of sufficiently ability to orientate self-aggregation of building motifs in predictable manners, rational design and preparation of porous HOFs are still challenging. Herein, we summarize recent developments about porous HOFs and attempt to gain deeper insights into the design strategies of basic building motifs.

  15. Ultra-stiff metallic glasses through bond energy density design.

    Science.gov (United States)

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  16. A novel amperometric biosensor based on covalently attached multilayer assemblies of gold nanoparticles, diazo-resins and acetylcholinesterase for the detection of organophosphorus pesticides.

    Science.gov (United States)

    Jiang, Bin; Dong, Pei; Zheng, Jianbin

    2018-06-01

    Using an ionic layer-by-layer self-assembly technique, colloidal gold nanoparticles (AuNPs) and diazo-resins (DAR) were immobilised on the surface of a p-aminobenzenesulfonic acid-modified glassy carbon electrode to form a matrix composite membrane for acetylcholinesterase (AChE) immobilisation. Photo-sensitive DAR was used as the assembly interlayer to convert the ionic bond into a covalent bond to improve the biosensor stability. These fabrication processes were followed by electrochemical impedance spectroscopy and cyclic voltammetry to verify the membrane formation. Because of the introduction of AuNPs/DAR/AChE biofilms, the modified electrode exhibited excellent electron transfer mediation and electrical conductivity. In addition, it exhibited high sensitivity in the range of linear concentration from 1.0 × 10 -8 to 1.0 × 10 -12 g L -1 with the detection limit of 5.12 × 10 -13 and 5.85 × 10 -13 g L -1 for malathion and methyl parathion, respectively. More importantly, the presented biosensor considerably improved stability because the electrostatic interaction was converted into covalent bonds by UV irradiation. It is a simple, cheap and stable method for quantitative detection of organophosphorus pesticides, and this method may pave a way for the sensitive, simple detection of different analytes without the need of expensive instrumentation. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Neutron diffraction study of crystal structures of deuterated glycinium phosphite in paraelectric and ferroelectric phases

    International Nuclear Information System (INIS)

    Machida, Mitsuo; Uchida, Hiroyuki; Ishibashi, Toku; Taniguchi, Hiroki; Komukae, Masaru; Osaka, Toshio; Koyano, Nobumitsu

    2004-01-01

    Crystal structure of deuterated glycinium phosphite was studied in the paraelectric (P) phase at 348 K and in the ferroelectric (F) phase at 223 K by means of the single crystal neutron diffraction. Deuteration rate is estimated to be 0.939 by the least-squares refinement. In the P phase, quasi-one-dimensional hydrogen bond chains are built by mutually linking the DPO 3 2- anions through two different types of hydrogen bonds with the bond angles of 179.2 and 171.6deg. Two independent deuterons within the hydrogen bonds forming the chains are disordered over two sites separated by 0.545 and 0.539A. In the F phase, they order at a position nearly equal to one of two sites related by the disorder in the P phase. With the ordering of the deuterons, the P-O bonds with covalently bonded deuteron elongate, and those without covalently bonded deuteron reduce their lengths to some extend from the values determined in the P phase. Two oxygens involved in the hydrogen bond with the bond angle 179.2deg exhibits especially large displacements in the F phase. This suggests strongly an importance of this hydrogen bond in the polarization appearance and in the ferroelectric transition. Comparison with results of non-deuterated salt indicates that only the hydrogen bonds forming the chains show significant isotope shift. In particular, the hydrogen bond with the bond angle 179.2deg exhibits the most pronounced shift on the angle parameter defined by the angle between the line connecting two sites of disordered proton or deuteron and the line connecting two oxygens involved in the hydrogen bond. (author)

  18. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    Science.gov (United States)

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  19. Determination of the number of and classification of two-component ionic-covalent chemical compounds

    International Nuclear Information System (INIS)

    Vigdorovich, V.N.; Dzhuraev, T.D.; Khanin, V.A.

    1989-01-01

    The aim of this work was to determine the number of and to classify two-component compounds corresponding to the four-electron and full-valence concepts and characterized by the ionic-covalent type of bond, on which the metallic bond is superimposed to a greater lesser degree. At the same time it was proposed to verify the position of the axes in the periodic system. The presence of numerous compound analogs for the element prototypes of one axis of the Mendeleev periodic system [the group of noble (inert) gases] was confirmed by computer experiments. However, the other axis (the carbon group) is not so obvious and is evidently due, on account of the superimposition of the effect of noncharacteristic (possible) valences, to the elements of various groups (boron, aluminum, germanium, antimony, bismuth). In addition, the compound analogs for the element prototypes of the d block are numerous, i.e., the copper-silver-gold, manganese-technetium-rhenium, and iron and platinum families

  20. Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework

    KAUST Repository

    Chen, Chen

    2017-12-20

    We have characterized the local electronic structure of a porphyrin-containing single-layer covalent organic framework (COF) exhibiting a square lattice. The COF monolayer was obtained by the deposition of 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMA) and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin (TAPP) onto a Au(111) surface in ultrahigh vacuum followed by annealing to facilitate Schiff-base condensations between monomers. Scanning tunneling spectroscopy (STS) experiments conducted on isolated TAPP precursor molecules and the covalently linked COF networks yield similar transport (HOMO-LUMO) gaps of 1.85 ± 0.05 eV and 1.98 ± 0.04 eV, respectively. The COF orbital energy alignment, however, undergoes a significant downward shift compared to isolated TAPP molecules due to the electron-withdrawing nature of the imine bond formed during COF synthesis. Direct imaging of the COF local density of states (LDOS) via dI/dV mapping reveals that the COF HOMO and LUMO states are localized mainly on the porphyrin cores and that the HOMO displays reduced symmetry. DFT calculations reproduce the imine-induced negative shift in orbital energies and reveal that the origin of the reduced COF wave function symmetry is a saddle-like structure adopted by the porphyrin macrocycle due to its interactions with the Au(111) substrate.

  1. Nature of the bonding in the AuNgX (Ng = Ar, Kr, Xe; X = F, Cl, Br, I) molecules. Topological study on electron density and the electron localization function (ELF).

    Science.gov (United States)

    Makarewicz, Emilia; Gordon, Agnieszka J; Berski, Slawomir

    2015-03-19

    Topological analysis of the electron localization function (ELF) has been carried out for the AuNgX (Ng = Ar, Kr, Xe; X = F, Cl, Br, I) molecules using the wave function approximated by the CCSD, MP2, and DFT(B3LYP, M062X) methods including zero-order regular approximation (ZORA). In the Ng-F bond, the bonding disynaptic attractor V(Ng,F) is missing; therefore, there are no signs of the covalent binding. The nature of the Au-Ng bond depends on the computational method used. Analysis of the ELF carried out for the AuArF and AuXeF molecules, with the wave function approximated by the CCSD and MP2 methods, shows the V(Au,Ng) attractor possibly corresponding to a partially covalent binding between the gold and noble gas atom. However, its very small basin population (<1e) and a very large value of the variance of the basin population suggest that the Au-Ng bond has a very delocalized character. Such bond nature may be related to the charge shift concept with a resonance of the Au(-+)NgX, Au(+-)NgX hybrids. The weakest Au-Ng bond, in terms of the smallest amount of electron density for the V(Au,Ng) basin, is found for the AuKrF molecule with the CCSD method (0.13e). The MP2 method, however, does not yield any V(Au, Ng) population; hence, the covalent Au-Kr bond is not confirmed. Because the V(Au,Ng) attractor is also not observed with the DFT method, the proper characterization of the Au-Ng bond requires proper description of correlation effects. Additional studies on the Au2 and [AuXe](+) molecules, performed at the CCSD and B3LYP levels, exhibit no V(Au,Au) and V(Au,Xe) bonding basins either.

  2. The specific cleavage of lactone linkage to open-loop in cyclic lipopeptide during negative ESI tandem mass spectrometry: the hydrogen bond interaction effect of 4-ethyl guaiacol.

    Directory of Open Access Journals (Sweden)

    Mengzhe Guo

    Full Text Available Mass spectrometry is a valuable tool for the analysis and identification of chemical compounds, particularly proteins and peptides. Lichenysins G, the major cyclic lipopeptide of lichenysin, and the non-covalent complex of lichenysins G and 4-ethylguaiacol were investigated with negative ion ESI tandem mass spectrometry. The different fragmentation mechanisms for these compounds were investigated. Our study shows the 4-ethylguaiacol hydrogen bond with the carbonyl oxygen of the ester group in the loop of lichenysins G. With the help of this hydrogen bond interaction, the ring structure preferentially opens in lactone linkage rather than O-C bond of the ester-group to produce alcohol and ketene. Isothermal titration 1H-NMR analysis verified the hydrogen bond and determined the proportion of subject and ligand in the non-covalent complex to be 1∶1. Theoretical calculations also suggest that the addition of the ligand can affect the energy of the transition structures (TS during loop opening.

  3. Photoactive Zn(II)Porphyrin–multi-walled carbon nanotubes nanohybrids through covalent β-linkages

    Energy Technology Data Exchange (ETDEWEB)

    Lipińska, Monika E., E-mail: m.e.lipinska@gmail.com [REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Rebelo, Susana L.H., E-mail: susana.rebelo@fc.up.pt [REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal); Pereira, M. Fernando R., E-mail: fpereira@fe.up.pt [Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Figueiredo, José L., E-mail: jlfig@fe.up.pt [Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE/LCM, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Freire, Cristina, E-mail: acfreire@fc.up.pt [REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto (Portugal)

    2013-12-16

    Donor–acceptor nanohybrids by a covalent linkage between the β-position of a Zn(II)Porphyrin and multi-walled carbon nanotubes are reported for the first time, in a closer analogy to the natural light harvesting systems, which are based on β-substituted porphyrinoid structures, the chlorophylls. An unique and direct connection was established through the immobilization of the Zn(II)(β-NH{sub 2}-tetraphenylporphyrin), using diazonium chemistry, in order to afford i) a short and conjugated linkage between the two aromatic systems and ii) an amide bond resulting from a three-step functionalization synthesis. Electronic and steady-state fluorescence spectroscopies confirmed high photoinduced electron communication through the β-linkage when compared to analogous meso-phenyl linkers, stating its positive effect. The procedure involving the amide linkage allowed higher chromophore loadings; however, the direct conjugated bond showed improved photoinduced activity and a different emission pattern that can be associated with intense communication within the expanded π-system MWCNT–metalloporphyrin. - Graphical abstract: Preparation and photo-induced activity of two donor–acceptor nanohybrids is reported based on different linkages through β-position of porphyrin core to MWCNT, direct conjugation and amide bond. - Highlights: • β-linked Zn(II)Porphyrin–MWCNT nanohybrids were prepared through direct or amide bond. • Efficient and mild functionalizations were achieved using diazonium chemistry. • Good nanohybrid dispersibility was obtained in low boiling point solvent. • Nanohybrids showed strong photoinduced electronic transfer. • The emission quenching was higher for the π-expanded system.

  4. Photoactive Zn(II)Porphyrin–multi-walled carbon nanotubes nanohybrids through covalent β-linkages

    International Nuclear Information System (INIS)

    Lipińska, Monika E.; Rebelo, Susana L.H.; Pereira, M. Fernando R.; Figueiredo, José L.; Freire, Cristina

    2013-01-01

    Donor–acceptor nanohybrids by a covalent linkage between the β-position of a Zn(II)Porphyrin and multi-walled carbon nanotubes are reported for the first time, in a closer analogy to the natural light harvesting systems, which are based on β-substituted porphyrinoid structures, the chlorophylls. An unique and direct connection was established through the immobilization of the Zn(II)(β-NH 2 -tetraphenylporphyrin), using diazonium chemistry, in order to afford i) a short and conjugated linkage between the two aromatic systems and ii) an amide bond resulting from a three-step functionalization synthesis. Electronic and steady-state fluorescence spectroscopies confirmed high photoinduced electron communication through the β-linkage when compared to analogous meso-phenyl linkers, stating its positive effect. The procedure involving the amide linkage allowed higher chromophore loadings; however, the direct conjugated bond showed improved photoinduced activity and a different emission pattern that can be associated with intense communication within the expanded π-system MWCNT–metalloporphyrin. - Graphical abstract: Preparation and photo-induced activity of two donor–acceptor nanohybrids is reported based on different linkages through β-position of porphyrin core to MWCNT, direct conjugation and amide bond. - Highlights: • β-linked Zn(II)Porphyrin–MWCNT nanohybrids were prepared through direct or amide bond. • Efficient and mild functionalizations were achieved using diazonium chemistry. • Good nanohybrid dispersibility was obtained in low boiling point solvent. • Nanohybrids showed strong photoinduced electronic transfer. • The emission quenching was higher for the π-expanded system

  5. Atomic Charges and Chemical Bonding in Y-Ga Compounds

    Directory of Open Access Journals (Sweden)

    Yuri Grin

    2018-02-01

    Full Text Available A negative deviation from Vegard rule for the average atomic volume versus yttrium content was found from experimental crystallographic information about the binary compounds of yttrium with gallium. Analysis of the electron density (DFT calculations employing the quantum theory of atoms in molecules revealed an increase in the atomic volumes of both Y and Ga with the increase in yttrium content. The non-linear increase is caused by the strengthening of covalent Y-Ga interactions with stronger participation of genuine penultimate shell electrons (4d electrons of yttrium in the valence region. Summing the calculated individual atomic volumes for a unit cell allows understanding of the experimental trend. With increasing yttrium content, the polarity of the Y-Ga bonding and, thus its ionicity, rises. The covalency of the atomic interactions in Y-Ga compounds is consistent with their delocalization from two-center to multi-center ones.

  6. Liquid-solid transition in the bond particle model for elemental semiconductors

    International Nuclear Information System (INIS)

    Badirkhan, Z.; Tosi, M.P.; Rovere, M.

    1991-07-01

    Freezing of Silicon and Germanium involves a reconstruction of covalent tetrahedral bonds from a metallic liquid having density and coordination then the solid. We first contrast the metallic liquid structure of Germanium with that of its semiconducting amorphous state, in order to emphasize the changes in the atomic structure factor that arise from reconstruction of the interatomic bonds. We then use the density wave theory of freezing to discuss the liquid-solid transition within a pseudoclassical model, which describes the liquid structure by means of partial structure factors giving the pair correlations between atoms and bond particles. The phase transition is viewed as a freezing of the bonds driven by tetrahedrally constrained attractions between ionic cores and valence electrons and accompanied by an opening of the structure to allow long-range connectivity of tetrahedral atomic units. Quantitative calculations on the bond particle model illustrate the relationship between the liquid structure and the microscopic Fourier components of the single-particle densities of atoms and bonds. In further support of this picture, we also present calculations for freezing of a liquid having the density and the atomic structure of compacted amorphous Germanium. (author). 25 refs, 2 figs, 2 tabs

  7. Quantitative Measurement of GPCR Endocytosis via Pulse-Chase Covalent Labeling.

    Directory of Open Access Journals (Sweden)

    Hidetoshi Kumagai

    Full Text Available G protein-coupled receptors (GPCRs play a critical role in many physiological systems and represent one of the largest families of signal-transducing receptors. The number of GPCRs at the cell surface regulates cellular responsiveness to their cognate ligands, and the number of GPCRs, in turn, is dynamically controlled by receptor endocytosis. Recent studies have demonstrated that GPCR endocytosis, in addition to affecting receptor desensitization and resensitization, contributes to acute G protein-mediated signaling. Thus, endocytic GPCR behavior has a significant impact on various aspects of physiology. In this study, we developed a novel GPCR internalization assay to facilitate characterization of endocytic GPCR behavior. We genetically engineered chimeric GPCRs by fusing HaloTag (a catalytically inactive derivative of a bacterial hydrolase to the N-terminal end of the receptor (HT-GPCR. HaloTag has the ability to form a stable covalent bond with synthetic HaloTag ligands that contain fluorophores or a high-affinity handle (such as biotin and the HaloTag reactive linker. We selectively labeled HT-GPCRs at the cell surface with a HaloTag PEG ligand, and this pulse-chase covalent labeling allowed us to directly monitor the relative number of internalized GPCRs after agonist stimulation. Because the endocytic activities of GPCR ligands are not necessarily correlated with their agonistic activities, applying this novel methodology to orphan GPCRs, or even to already characterized GPCRs, will increase the likelihood of identifying currently unknown ligands that have been missed by conventional pharmacological assays.

  8. Theory and Applications of Covalent Docking in Drug Discovery: Merits and Pitfalls

    Directory of Open Access Journals (Sweden)

    Hezekiel Mathambo Kumalo

    2015-01-01

    Full Text Available he present art of drug discovery and design of new drugs is based on suicidal irreversible inhibitors. Covalent inhibition is the strategy that is used to achieve irreversible inhibition. Irreversible inhibitors interact with their targets in a time-dependent fashion, and the reaction proceeds to completion rather than to equilibrium. Covalent inhibitors possessed some significant advantages over non-covalent inhibitors such as covalent warheads can target rare, non-conserved residue of a particular target protein and thus led to development of highly selective inhibitors, covalent inhibitors can be effective in targeting proteins with shallow binding cleavage which will led to development of novel inhibitors with increased potency than non-covalent inhibitors. Several computational approaches have been developed to simulate covalent interactions; however, this is still a challenging area to explore. Covalent molecular docking has been recently implemented in the computer-aided drug design workflows to describe covalent interactions between inhibitors and biological targets. In this review we highlight: (i covalent interactions in biomolecular systems; (ii the mathematical framework of covalent molecular docking; (iii implementation of covalent docking protocol in drug design workflows; (iv applications covalent docking: case studies and (v shortcomings and future perspectives of covalent docking. To the best of our knowledge; this review is the first account that highlights different aspects of covalent docking with its merits and pitfalls. We believe that the method and applications highlighted in this study will help future efforts towards the design of irreversible inhibitors.

  9. Comparing Ullmann Coupling on Noble Metal Surfaces: On-Surface Polymerization of 1,3,6,8-Tetrabromopyrene on Cu(111) and Au(111)

    DEFF Research Database (Denmark)

    Pham, Tuan Anh; Song, Fei; Nguyen, Manh-Thuong

    2016-01-01

    to a dissociation of the C−Br bonds and the formation of disordered metal-coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann...

  10. A solution-state NMR approach to elucidating pMDI-wood bonding mechanisms in loblolly pine

    Science.gov (United States)

    Daniel Joseph Yelle

    2009-01-01

    Solution-state NMR spectroscopy is a powerful tool for unambiguously determining the existence or absence of covalent chemical bonds between wood components and adhesives. Finely ground wood cell wall material dissolves in a solvent system containing DMSO-d6 and NMI-d6, keeping wood component polymers intact and in a near-...

  11. Direct measurement and modulation of single-molecule coordinative bonding forces in a transition metal complex

    DEFF Research Database (Denmark)

    Hao, Xian; Zhu, Nan; Gschneidtner, Tina

    2013-01-01

    remain a daunting challenge. Here we demonstrate an interdisciplinary and systematic approach that enables measurement and modulation of the coordinative bonding forces in a transition metal complex. Terpyridine is derived with a thiol linker, facilitating covalent attachment of this ligand on both gold...... substrate surfaces and gold-coated atomic force microscopy tips. The coordination and bond breaking between terpyridine and osmium are followed in situ by electrochemically controlled atomic force microscopy at the single-molecule level. The redox state of the central metal atom is found to have...

  12. Characterization of the regions from E. coli 16 S RNA covalently linked to ribosomal proteins S4 and S20 after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ehresmann, B.; Backendorf, C.; Ehresmann, C.; Ebel, J.P.

    1977-01-01

    The use of ultraviolet irradiation to form photochemical covalent bonds between the 16 S RNA and a ribosomal protein is a reliable method to check RNA regions which are interacting with the protein. This technique was successfully used to covalently link RNA or DNA and specific proteins in several cases. In the case of ribosome, it has been shown that the irradiation of 30 S and 50 S subunits using high doses of ultraviolet light allowed the covalent binding of almost all of the ribosomal proteins to the 16 S or 23 S RNAs. Using mild conditions, only proteins S7 and L4 could be covalently linked to the 16 S and 23 S RNAs, respectively, and the 16 S RNA region linked to protein S7 has now been characterized. The specificity of the photoreaction was demonstrated earlier and the tryptic peptides from proteins S4 and S7, photochemically linked to the 16 S RNA complexes, were identified. A report is presented on the sequences of the RNA regions which can be photochemically linked to proteins S4 and S7 after ultraviolet irradiation of the specific S4-16 S RNA and 20 S-16 S RNA complexes

  13. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    International Nuclear Information System (INIS)

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui; Su, Zhiguo

    2012-01-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate–divinylbezene) (PGMA–DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA–DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA–DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184° to 13°, and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: ► Macroporous PGMA–DVB microspheres were covalently coated with dextran. ► The hydrophilicity of the coated microspheres was significantly improved. ► The irreversible adsorption of proteins was reduced to zero. ► The coated microspheres can maintain the macropore structure. ► The coated microspheres were applied to rapid protein separation.

  14. Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5'-dAMP

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, P.; Hermoso, J.M.; Garcia, J.A.; Garcia, E.; Lopez, R.; Salas, M.

    1986-04-01

    Incubation of extracts of Cp-1-infected Streptococcus pneumoniae with (..cap alpha..-/sup 32/P)dATP produced a labeled protein with the electrophoretic mobility of the Cp-1 terminal protein. The reaction product was resistant to treatment with micrococcal nuclease and sensitive to treatment with proteinase K. Incubation of the /sup 32/P-labeled protein with 5 M piperidine for 4 h at 50/sup 0/C released 5'-dAMP, indicating that a covalent complex between the terminal protein and 5'-dAMP was formed in vitro. When the four deoxynucleoside triphosphates were included in the reaction mixture, a labeled complex of slower electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gels than the terminal protein-dAMP complex was also found, indicating that the Cp-1 terminal protein-dAMP complex can be elongated and, therefore, that it is an initiation complex. Treatment of the /sup 32/P-labeled terminal protein-dAMP complex with 5.8 M HCl at 110/sup 0/C for 2 h yielded phosphothreonine. These results, together with the resistance of the terminal protein-DNA linkage to hydroxylamine, suggest that the Cp-1 terminal protein is covalently linked to the DNA through a phosphoester bond between L-threonine and 5'-dAMP, namely, a O-5'-deoxyadenylyl-L-threonine bond.

  15. Inter- and intramolecular non-covalent interactions in 1-methylimidazole-2-carbaldehyde complexes of copper, silver, and gold

    Science.gov (United States)

    Koskinen, Laura; Jääskeläinen, Sirpa; Hirva, Pipsa; Haukka, Matti

    2014-09-01

    Three new imidazole compounds, [CuBr2(mimc)2] (1), [Ag(mimc)2][CF3SO3] (2), and [AuCl3(mimc)] (3) (mimc = 1-methylimidazole-2-carbaldehyde), have been synthesized, structurally characterized, and further analyzed using the QTAIM analysis. The compounds exhibit self-assembled 3D networks arising from intermolecular non-covalent interactions such as metallophilic interactions, metal-π contacts, halogens-halogen interactions, and hydrogen bonds. These weak interactions have a strong impact on the coordination sphere of the metal atoms and on the packing of compounds 1, 2, and 3.

  16. Second-Generation Non-Covalent NAAA Inhibitors are Protective in a Model of Multiple Sclerosis.

    Science.gov (United States)

    Migliore, Marco; Pontis, Silvia; Fuentes de Arriba, Angel Luis; Realini, Natalia; Torrente, Esther; Armirotti, Andrea; Romeo, Elisa; Di Martino, Simona; Russo, Debora; Pizzirani, Daniela; Summa, Maria; Lanfranco, Massimiliano; Ottonello, Giuliana; Busquet, Perrine; Jung, Kwang-Mook; Garcia-Guzman, Miguel; Heim, Roger; Scarpelli, Rita; Piomelli, Daniele

    2016-09-05

    Palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are endogenous lipid mediators that suppress inflammation. Their actions are terminated by the intracellular cysteine amidase, N-acylethanolamine acid amidase (NAAA). Even though NAAA may offer a new target for anti-inflammatory therapy, the lipid-like structures and reactive warheads of current NAAA inhibitors limit the use of these agents as oral drugs. A series of novel benzothiazole-piperazine derivatives that inhibit NAAA in a potent and selective manner by a non-covalent mechanism are described. A prototype member of this class (8) displays high oral bioavailability, access to the central nervous system (CNS), and strong activity in a mouse model of multiple sclerosis (MS). This compound exemplifies a second generation of non-covalent NAAA inhibitors that may be useful in the treatment of MS and other chronic CNS disorders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Unexpected covalency from actinide 5f orbital interactions (An = Th, U, Np, Pu) determined from chlorine K-edge X-ray absorption spectroscopy and electronic structure theory

    International Nuclear Information System (INIS)

    Clark, D.L.; Batista, E.R.; Boland, K.S.

    2010-01-01

    We have employed Cl K-edge XAS and multiple levels of sophisticated electronic structure calculations on a series of simple octahedral light actinide (Th, U, Np, Pu) chloride salts, AnCl 6 n- in order to assess the relative roles of the valence 5f and 6d orbitals in chemical bonding. Chlorine K-edge X-ray absorption spectroscopy on AnCl 6 n- (An = Th, U, Np, Pu) systems indicates the presence of covalent interactions between both Cl 3p and An 5f and 6d orbitals, with the relative contributions changing across the series. Electronic structure calculations indicate the predominant covalent interactions are expected to occur through An-Cl bonding via t 1u and t 2u interactions with the An 5f orbitals, and through t 2g and e g interactions with An 6d orbitals. For the Cl K-edge data therefore, we expect bound state transitions from Cl 1s → e g (σ), t 2g (π), and t 1u (σ + π) orbitals. Qualitatively, the Cl K-edge data fulfills these expectations

  18. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    Science.gov (United States)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  19. Political Culture and Covalent Bonding. A Conceptual Model of Political Culture Change

    Directory of Open Access Journals (Sweden)

    Camelia Florela Voinea

    2015-01-01

    Full Text Available Our class of models aims at explaining the dynamics of political attitude change by means of the dynamic changes in values, beliefs, norms and knowledge with which it is associated. The model constructs a political culture perspective over the relationship between macro and micro levels of a society and polity. The model defines the bonding mechanism as a basic mechanism of the political culture change by taking inspiration from the valence bonding theory in Chemistry, which has inspired the elaboration of the mechanisms and processes underlying the political culture emergence and the political culture control over the relationship between macro-level political entities and the micro-level individual agents. The model introduces operational definitions of the individual agent in political culture terms. The simulation model is used for the study of emergent political culture change phenomena based on individual interactions (emergent or upward causation as well as the ways in which the macro entities and emergent phenomena influence in turn the behaviors of individual agents (downward causation. The model is used in the ongoing research concerning the quality of democracy and political participation of the citizens in the Eastern European societies after the Fall of Berlin Wall. It is particularly aimed at explaining the long-term effect of the communist legacy and of the communist polity concept and organization onto the political mentalities and behaviors of the citizens with respect to democratic institutions and political power. The model has major implications in political socialization, political involvement, political behavior, corruption and polity modeling.

  20. Absence of magnetic long-range order in Y2CrSbO7 : Bond-disorder-induced magnetic frustration in a ferromagnetic pyrochlore

    Science.gov (United States)

    Shen, L.; Greaves, C.; Riyat, R.; Hansen, T. C.; Blackburn, E.

    2017-09-01

    The consequences of random nonmagnetic-ion dilution for the pyrochlore family Y2(M 1 -xN x)2O7 (M = magnetic ion, N = nonmagnetic ion) have been investigated. As a first step, we experimentally examine the magnetic properties of Y2CrSbO7 (x =0.5 ), in which the magnetic sites (Cr3 +) are percolative. Although the effective Cr-Cr spin exchange is ferromagnetic, as evidenced by a positive Curie-Weiss temperature, ΘCW ≃19.5 K , our high-resolution neutron powder diffraction measurements detect no sign of magnetic long-range order down to 2 K. In order to understand our observations, we construct a lattice model to numerically study the bond disorder introduced by the ionic size mismatch between M and N , which reveals that the bond disorder percolates at xb ≃0.23 , explaining the absence of magnetic long-range order. This model could be applied to a series of frustrated magnets with a pyrochlore sublattice, for example, the spinel compound Zn (Cr1 -xGax )2O4 , wherein a Néel to spin glass phase transition occurs between x =0.2 and 0.25 [Lee et al., Phys. Rev. B 77, 014405 (2008), 10.1103/PhysRevB.77.014405]. Our study stresses the non-negligible role of bond disorder on magnetic frustration, even in ferromagnets.

  1. Neutron diffraction of α, β and γ cyclodextrins: hydrogen bonding patterns

    International Nuclear Information System (INIS)

    Hingerty, B.E.; Klar, B.; Hardgrove, G.; Betzel, C.; Saenger, W.

    1983-01-01

    Cyclodextrins (CD's) are torus-shaped molecules composed of six (α), seven (β) or eight (γ) (1 → 4) linked glucoses. α-CD has been shown to have two different structures with well-defined hydrogen bonds, one tense and the other relaxed. An induced-fit-like mechanism for α-CD complex formation has been proposed. Circular hydrogen bond networks have also been found for α-CD due to the energetically favored cooperative effect. β-CD with a disordered water structure possesses an unusual flip-flop hydrogen bonding system of the type O-H H-O representing an equilibrium between two states; O-H O reversible H-O. γ-CD with a disordered water structure similar to β-CD also possesses the flip-flop hydrogen bond. This study demonstrates that hydrogen bonds are operative in disordered systems and display dynamics even in the solid state

  2. Reassigning hydrogen-bond centering in dense ice

    International Nuclear Information System (INIS)

    Benoit, Magali; Romero, Aldo H.; Marx, Dominik

    2002-01-01

    Hydrogen bonds in H 2 O ice change dramatically upon compression. Thereby a hydrogen-bonded molecular crystal, ice VII, is transformed to an atomic crystal, ice X. Car-Parrinello simulations reproduce the features of the x-ray diffraction spectra up to about 170 GPa but allow for analysis in real space. Starting from molecular ice VII with static orientational disorder, dynamical translational disordering occurs first via creation of ionic defects, which results in a systematic violation of the ice rules. As a second step, the transformation to an atomic solid and thus hydrogen-bond centering occurs around 110 GPa at 300 K and no novel phase is found up to at least 170 GPa

  3. Thermally assisted peeling of an elastic strip in adhesion with a substrate via molecular bonds

    Science.gov (United States)

    Qian, Jin; Lin, Ji; Xu, Guang-Kui; Lin, Yuan; Gao, Huajian

    A statistical model is proposed to describe the peeling of an elastic strip in adhesion with a flat substrate via an array of non-covalent molecular bonds. Under an imposed tensile peeling force, the interfacial bonds undergo diffusion-type transition in their bonding state, a process governed by a set of probabilistic equations coupled to the stretching, bending and shearing of the elastic strip. Because of the low characteristic energy scale associated with molecular bonding, thermal excitations are found to play an important role in assisting the escape of individual molecular bonds from their bonding energy well, leading to propagation of the peeling front well below the threshold peel-off force predicted by the classical theories. Our study establishes a link between the deformation of the strip and the spatiotemporal evolution of interfacial bonds, and delineates how factors like the peeling force, bending rigidity of the strip and binding energy of bonds influence the resultant peeling velocity and dimensions of the process zone. In terms of the apparent adhesion strength and dissipated energy, the bond-mediated interface is found to resist peeling in a strongly rate-dependent manner.

  4. Covalent Surface Modifications of Carbon Nanotubes.

    Energy Technology Data Exchange (ETDEWEB)

    Pavia Sanders, Adriana [Sandia National Lab. (SNL-CA), Livermore, CA (United States); O' Bryan, Greg [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    A report meant to document the chemistries investigated by the author for covalent surface modification of CNTs. Oxidation, cycloaddition, and radical reactions were explored to determine their success at covalently altering the CNT surface. Characterization through infrared spectroscopy, Raman spectroscopy, and thermo gravimetric analysis was performed in order to determine the success of the chemistries employed. This report is not exhaustive and was performed for CNT surface modification exploration as it pertains to the "Next Gen" project.

  5. Ionic bonding of lanthanides, as influenced by d- and f-atomic orbitals, by core-shells and by relativity.

    Science.gov (United States)

    Ji, Wen-Xin; Xu, Wei; Schwarz, W H Eugen; Wang, Shu-Guang

    2015-03-15

    Lanthanide trihalide molecules LnX3 (X = F, Cl, Br, I) were quantum chemically investigated, in particular detail for Ln = Lu (lutetium). We applied density functional theory (DFT) at the nonrelativistic and scalar and SO-coupled relativistic levels, and also the ab initio coupled cluster approach. The chemically active electron shells of the lanthanide atoms comprise the 5d and 6s (and 6p) valence atomic orbitals (AO) and also the filled inner 4f semivalence and outer 5p semicore shells. Four different frozen-core approximations for Lu were compared: the (1s(2) -4d(10) ) [Pd] medium core, the [Pd+5s(2) 5p(6) = Xe] and [Pd+4f(14) ] large cores, and the [Pd+4f(14) +5s(2) 5p(6) ] very large core. The errors of LuX bonding are more serious on freezing the 5p(6) shell than the 4f(14) shell, more serious upon core-freezing than on the effective-core-potential approximation. The LnX distances correlate linearly with the AO radii of the ionic outer shells, Ln(3+) -5p(6) and X(-) -np(6) , characteristic for dominantly ionic Ln(3+) -X(-) binding. The heavier halogen atoms also bind covalently with the Ln-5d shell. Scalar relativistic effects contract and destabilize the LuX bonds, spin orbit coupling hardly affects the geometries but the bond energies, owing to SO effects in the free atoms. The relativistic changes of bond energy BE, bond length Re , bond force k, and bond stretching frequency vs do not follow the simple rules of Badger and Gordy (Re ∼BE∼k∼vs ). The so-called degeneracy-driven covalence, meaning strong mixing of accidentally near-degenerate, nearly nonoverlapping AOs without BE contribution is critically discussed. © 2015 Wiley Periodicals, Inc.

  6. DFT+DMFT study on soft moment magnetism and covalent bonding in SrRu.sub.2./sub.O.sub.6./sub.

    Czech Academy of Sciences Publication Activity Database

    Hariki, A.; Hausoel, A.; Sangiovanni, G.; Kuneš, Jan

    2017-01-01

    Roč. 96, č. 15 (2017), s. 1-8, č. článku 155135. ISSN 2469-9950 EU Projects: European Commission(XE) 646807 - EXMAG Institutional support: RVO:68378271 Keywords : covalent insulator * dynamical mean-field theory Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  7. Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry.

    Science.gov (United States)

    Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R Ogorzalek; Julian, Ryan R; Loo, Joseph A

    2015-11-15

    The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.

  8. Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems

    Institute of Scientific and Technical Information of China (English)

    PANG Xiao-Feng; YU Jia-Feng

    2007-01-01

    The dynamic properties of proton conductivity along hydrogen-bonded molecular systems,for example,ice crystal,with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our Soliton model.The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium,the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium,but the proton-soliton disperses for quite great fluctuation of the force constant and damping coefficient.In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T ≤ 273 K under influences of damping and externally applied electric-field in ice crystal.This shows that our model is available and appropriate to ice.

  9. Influences of Structure Disorder and Temperature on Properties of Proton Conductivity in Hydrogen-Bond Molecular Systems

    International Nuclear Information System (INIS)

    Pang Xiaofeng; Yu Jiafeng

    2007-01-01

    The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our soliton model. The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium, the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium, but the proton-soliton disperses for quite great fluctuation of the force constant and damping coefficient. In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T≤273 K under influences of damping and externally applied electric-field in ice crystal. This shows that our model is available and appropriate to ice.

  10. Bonding and energy parameters for Pr and Nd complexes of benzimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, S; Vyas, P C; Oza, C K [Rajasthan Univ., Jaipur (India). Dept. of Chemistry

    1991-01-01

    Complexes of praseodymium(III) and neodymium(III) with benzimidazoles have been synthesized and characterized by their conductance and infrared spectral studies. The values of interelectronic repulsion, i.e. Slater-Condon (F{sub 2}, F{sub 4}, F{sub 6}), Racah (E{sup 1}, E{sup 2}, E{sup 3}) parameters and spin-orbit interaction referred as Lande' ({zeta}4f) parameters have been calculated from their electronic spectral data. A comparison of these parameters for the complexes with Pr{sup 3+} and Nd{sup 3+} free ion parameters is discussed. Using F{sub 2} values, the nephelauxetic ratio({Beta}) and bonding parameter(b{sup 1/2}) have beeen calculated. The relative variation of covalent bonding in the complexes has been reported. (author). 11 refs., 1 tab.

  11. Dependence of the length of the hydrogen bond on the covalent and cationic radii of hydrogen, and additivity of bonding distances

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2006-01-01

    Roč. 432, č. 1-3 (2006), s. 348-351 ISSN 0009-2614 R&D Projects: GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507 Keywords : length of the hydrogen bond * ionic radius * Golden ratio Subject RIV: BO - Biophysics Impact factor: 2.462, year: 2006

  12. Covalently coating dextran on macroporous polyglycidyl methacrylate microsphere enabled rapid protein chromatographic separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongyue; Li, Qiang; Li, Juan; Zhou, Weiqing; Ye, Peili; Gao, Yang; Ma, Guanghui, E-mail: ghma@home.ipe.ac.cn; Su, Zhiguo

    2012-12-01

    Protein denaturation and nonspecific adsorption on polymer media as a chromatographic support have been a problem which needs to be overcome. Macroporous poly(glycidyl methacrylate-divinylbezene) (PGMA-DVB) microspheres prepared in this study were firstly covalently coated with dextran through a three-step method. The dextran was firstly adsorbed onto the microspheres and then covalently bound to the PGMA-DVB microsphere through ether bonds which were formed by hydroxyl group reacting with epoxy group at the presence of 4-(Dimethylamino) pyridine. Finally, the coating dextran layer was crosslinked by ethylene glycol diglycidyl ether to form the continuous network coating. The coated microspheres were characterized by Fourier transform infrared spectra, scanning electron microscope, mercury porosimetry measurements, laser scanning confocal microscope, and protein adsorption experiments. Results showed that PGMA-DVB microspheres coated with dextran successfully maintained the macroporous structure and high permeability. The backpressure was only 1.69 MPa at a high flow rate of 2891 cm/h. Consequently, the hydrophilicity and biocompatibility of modified microspheres were greatly improved, and the contact angle decreased from 184 Degree-Sign to 13 Degree-Sign , and nonspecific adsorption of proteins was decreased to little or none. The clad dextran coating with large amounts of hydroxyl group was easily derived to be various functional groups. The derived media have great potential applications in rapid protein chromatography. - Highlights: Black-Right-Pointing-Pointer Macroporous PGMA-DVB microspheres were covalently coated with dextran. Black-Right-Pointing-Pointer The hydrophilicity of the coated microspheres was significantly improved. Black-Right-Pointing-Pointer The irreversible adsorption of proteins was reduced to zero. Black-Right-Pointing-Pointer The coated microspheres can maintain the macropore structure. Black-Right-Pointing-Pointer The coated microspheres

  13. A tensegrity model for hydrogen bond networks in proteins.

    Science.gov (United States)

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  14. Halonium Ions as Halogen Bond Donors in the Solid State [XL2]Y Complexes.

    Science.gov (United States)

    Rissanen, Kari; Haukka, Matti

    2015-01-01

    The utilization of halogen bonding interactions is one of the most rapidly developing areas of supramolecular chemistry. While the other weak non-covalent interactions and their influence on the structure and chemistry of various molecules, complexes, and materials have been investigated extensively, the understanding, utilizations, and true nature of halogen bonding are still relatively unexplored. Thus its final impact in chemistry in general and in materials science has not yet been fully established. Because of the polarized nature of a Z-X bond (Z=electron-withdrawing atom or moiety and X=halogen atom), such a moiety can act as halogen bond donor when the halogen is polarized enough by the atom/moiety Z. The most studied and utilized halogen bond donor molecules are the perfluorohalocarbons, where Z is a perfluorinated aryl or alkyl moiety and X is either iodine or bromine. Complementing the contemporary halogen bonding research, this chapter reviews the solid state structural chemistry of the most extremely polarized halogen atoms, viz. halonium ions, X+, and discussed them as halogen bond donors in the solid state [XL2]Y complexes (X=halonium ion, Y=any anion).

  15. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Kjeldsen, Thomas B.; Jensen, Knud Jørgen

    2015-01-01

    Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non-covalent oligomerization. All known insulin...... variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra-chain bond in the A-chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We...... addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four-disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs...

  16. X-ray electron density investigation of chemical bonding in van der Waals materials

    Science.gov (United States)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  17. Phase stability, physical properties of rhenium diboride under high pressure and the effect of metallic bonding on its hardness

    International Nuclear Information System (INIS)

    Zhong, Ming-Min; Kuang, Xiao-Yu; Wang, Zhen-Hua; Shao, Peng; Ding, Li-Ping; Huang, Xiao-Fen

    2013-01-01

    Highlights: •The transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. •The single-bonded B–B feather remains in ReB 2 compounds. •A semiempirical method to evaluate the hardness of crystals with partial metallic bond is presented. •The large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material. •The zigzag interconnected B–Re and B–B covalent bonds underlie the ultraincompressibilities. -- Abstract: Using first-principles calculations, the elastic constants, thermodynamic property and structural phase transition of rhenium diboride under pressure are investigated by means of the pseudopotential plane-waves method, as well as the effect of metallic bond on its hardness. Eight candidate structures of known transition-metal compounds are chosen to probe for rhenium diboride ReB 2 . The calculated lattice parameters are consistent with the experimental and theoretical values. Based on the third order Birch–Murnaghan equation of states, the transition pressure P t between the ReB 2 –ReB 2 and MoB 2 –ReB 2 phases is firstly determinate. Elastic constants, shear modulus, Young’s modulus, Poisson’s ratio and Debye temperature are derived. The single-bonded B–B feather remains in ReB 2 compounds. Furthermore, according to Mulliken overlap population analysis, a semiempirical method to evaluate the hardness of multicomponent crystals with partial metallic bond is presented. Both strong covalency and a zigzag topology of interconnected bonds underlie the ultraincompressibilities. In addition, the superior performance and large hardness (39.1 GPa) of ReB 2 –ReB 2 indicate that it is a superhard material

  18. Experimental Realisation of Elusive Multiple-bonded Aluminium Compounds: A New Horizon in the Aluminium Chemistry.

    Science.gov (United States)

    Inoue, Shigeyoshi; Bag, Prasenjit; Weetman, Catherine

    2018-05-23

    Synthesis and isolation of stable main group compounds featuring multiple bonds has been of keen interest for the last several decades. Multiply bonded complexes were obtained using sterically demanding substituents that provide kinetic and thermodynamic stability. Many of these compounds have unusual structural and electronic properties that challenges the classical concept of covalent multiple bonding. In contrast, analogous aluminium compounds are scarce in spite of its high natural abundance. The parent dialumene (Al2H2) has been calculated to be extremely weak, thus making Al multiple bonds a challenging synthetic target. This review provides an overview of these recent advances in the cutting edge synthetic approaches used to obtain aluminium homo- and heterodiatomic multiply bonded complexes. Additionally, the reactivity of these novel compounds towards various small molecules and reagents will be discussed herein. This review provides an overview on the current progress in aluminium multiple bond chemistry and the careful ligand design required to stabilise these reactive species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrogen-bonded Three-Dimensional Networks Encapsulating One-dimensional Covalent Chains: [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-Aminopyridine)

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A three-dimensional complex [Cu(3-ampy)(H2O)4](SO4)·(H2O) (3-ampy = 3-aminopyridine) has been synthesized. Crystallographic data: C5H16CuN2O9S, Mr = 343.80, triclinic, space group P, a = 7.675(2), b = 8.225(3), c = 10.845(3) (A), α= 86.996(4), β = 76.292(4),γ = 68.890(4)°, V = 620.0(3) (A)3, Z = 2, Dc = 1.841 g/cm3, F(000) = 354 and μ = 1.971 mm-1. The structure was refined to R = 0.0269 and wR = 0.0659 for 1838 observed reflections (I > 2σ(Ⅰ)). The structure consists of [Cu(3-ampy)(H2O)4]2+ cations, SO42- anions and lattice water molecules. 3-Ampy acting as a bidentate bridging ligand generates a 1D covalent chain. A supramolecular 2D framework is formed through π-π stacking of pyridine rings. The lattice water molecules and SO42- anions are located between the adjacent 2D frameworks. The hydrogen bonding interactions from lattice water molecules and SO42- anions to coordinate water extend the 2D framework into a 3D network.

  20. Oxytocin and Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Gokce Nur Say

    2016-06-01

    Full Text Available Oxytocin is a neuropeptide that plays critical role in mother-infant bonding, pair bonding and prosocial behaviors. Several neuropsychiatric disorders such as autism, schizophrenia, affective disorders, anxiety disorders, attention deficit/hyperactivity disorder, alcohol/substance addiction, aggression, suicide, eating disorders and personality disorders show abnormalities of oxytocin system. These findings have given rise to the studies searching therapeutic use of oxytocin for psychi-atric disorders. The studies of oxytocin interventions in psychiatric disorders yielded potentially promising findings. This paper reviews the role of oxytocin in emotions, behavior and its effects in psychiatric disorders. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(2: 102-113

  1. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms

    Directory of Open Access Journals (Sweden)

    Xin-Ping Wu

    2018-05-01

    Full Text Available Combined quantum mechanical and molecular mechanical (QM/MM methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM−MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM−MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM−MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  2. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms.

    Science.gov (United States)

    Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G

    2018-05-30

    Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  3. Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode

    Science.gov (United States)

    Fu, Yongsheng; Zhu, Junwu; Hu, Chong; Wu, Xiaodong; Wang, Xin

    2014-10-01

    An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via a covalent C-N bond, and then both the in situ polymerization of C2H4N4 and the thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4-rGO. FT-IR, CP-MAS NMR and XPS analyses, clearly revealed a covalent interaction between the g-C3N4 and rGO sheets. The g-C3N4-rGO exhibits an unprecedented high, stable and reversible capacity of 1525 mA h g-1 at a current density of 100 mA g-1 after 50 cycles. Even at a large current density of 1000 mA g-1, a reversible capacity of 943 mA h g-1 can still be retained. The superior electrochemical performance of g-C3N4-rGO is attributed to the specific characteristics of the unique nanostructure of g-C3N4-rGO and the concerted effects of g-C3N4 and rGO, including covalent interactions between the two moieties, the good conductivity and high special surface area of the nanocomposite, as well as the template effect of the planar amino group of g-C3N4 for the dispersed decoration of Li+ ions.An in situ chemical synthetic approach has been designed for the fabrication of a covalently coupled hybrid consisting of graphitic carbon nitride (g-C3N4) with reduced graphene oxide (rGO) with differing g-C3N4/rGO ratio. The epoxy groups of graphene oxide (GO) undergo a nucleophilic substitution reaction with dicyandiamide (C2H4N4) to form the C2H4N4-GO composite via a covalent C-N bond, and then both the in situ polymerization of C2H4N4 and the thermal reduction of GO can be achieved at higher temperatures, forming the covalently coupled g-C3N4-rGO. FT-IR, CP-MAS NMR and XPS analyses, clearly revealed a covalent interaction between

  4. Photogeneration of singlet oxygen by the phenothiazine derivatives covalently bound to the surface-modified glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Blacha-Grzechnik, Agata, E-mail: agata.blacha@polsl.pl [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Piwowar, Katarzyna; Krukiewicz, Katarzyna [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Koscielniak, Piotr; Szuber, Jacek [Institute of Electronics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice (Poland); Zak, Jerzy K. [Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland)

    2016-05-15

    Highlights: • The selected group of four NH{sub 2}-derivatives of phenothiazine was grafted to Glassy Carbon (GC) surface. • The grafted phenothiazines are able to generate {sup 1}O{sub 2} when activated by the radiation. • Such modified solid surfaces may find their application in the wastewater treatment. - Abstract: The selected group of four amine-derivatives of phenothiazine was covalently grafted to the glassy carbon surface in the four-step procedure consisting of the electrochemical reduction of the diazonium salt followed by the electrochemical and chemical post-modification steps. The proposed strategy involves the bonding of linker molecule to which the photosensitizer is attached. The synthesized organic layers were characterized by means of cyclic voltammetry, XPS and Raman Spectroscopy. It was shown that the phenothiazines immobilized via proposed strategy retain their photochemical properties and are able to generate {sup 1}O{sub 2} when activated by the laser radiation. The effectiveness of in situ singlet oxygen generation by those new solid photoactive materials was determined by means of UVVis spectroscopy. The reported, covalently modified solid surfaces may find their application as the singlet oxygen photogenerators in the fine chemicals’ synthesis or in the wastewater treatment.

  5. Theory of Covalent Adsorbate Frontier Orbital Energies on Functionalized Light-Absorbing Semiconductor Surfaces.

    Science.gov (United States)

    Yu, Min; Doak, Peter; Tamblyn, Isaac; Neaton, Jeffrey B

    2013-05-16

    Functional hybrid interfaces between organic molecules and semiconductors are central to many emerging information and solar energy conversion technologies. Here we demonstrate a general, empirical parameter-free approach for computing and understanding frontier orbital energies - or redox levels - of a broad class of covalently bonded organic-semiconductor surfaces. We develop this framework in the context of specific density functional theory (DFT) and many-body perturbation theory calculations, within the GW approximation, of an exemplar interface, thiophene-functionalized silicon (111). Through detailed calculations taking into account structural and binding energetics of mixed-monolayers consisting of both covalently attached thiophene and hydrogen, chlorine, methyl, and other passivating groups, we quantify the impact of coverage, nonlocal polarization, and interface dipole effects on the alignment of the thiophene frontier orbital energies with the silicon band edges. For thiophene adsorbate frontier orbital energies, we observe significant corrections to standard DFT (∼1 eV), including large nonlocal electrostatic polarization effects (∼1.6 eV). Importantly, both results can be rationalized from knowledge of the electronic structure of the isolated thiophene molecule and silicon substrate systems. Silicon band edge energies are predicted to vary by more than 2.5 eV, while molecular orbital energies stay similar, with the different functional groups studied, suggesting the prospect of tuning energy alignment over a wide range for photoelectrochemistry and other applications.

  6. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets.

    Science.gov (United States)

    Mitchell, Miguel O

    2017-09-24

    The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.

  7. Relation between frequency and H bond length in heavy water: Towards the understanding of the unusual properties of H bond dynamics in nanoporous media

    International Nuclear Information System (INIS)

    Pommeret, Stanislas; Leicknam, Jean-Claude; Bratos, Savo; Musat, Raluca; Renault, Jean Philippe

    2009-01-01

    The published work on H bond dynamics mainly refers to diluted solutions HDO/D 2 O rather than to normal water. The reasons for this choice are both theoretical and experimental. Mechanical isolation of the OH vibrator eliminating the resonant energy transfer makes it a better probe of the local H bond network, while the dilution in heavy water reduces the infrared absorption, which permits the use of thicker experimental cells. The isotopic substitution does not alter crucially the nature of the problem. The length r of an OH . . . O group is statistically distributed over a large interval comprised between 2.7 and 3.2 A with a mean value r 0 = 2.86 A. Liquid water may thus be viewed as a mixture of hydrogen bonds of different length. Two important characteristics of hydrogen bonding must be mentioned. (i) The OH stretching vibrations are strongly affected by this interaction. The shorter the length r of the hydrogen bond, the strongest the H bond link and the lower is its frequency ω: the covalent OH bond energy is lent to the OH. . .O bond and reinforces the latter. A number of useful relationships between ω and r were published to express this correlation. The one adopted in our previous work is the relationship due to Mikenda. (ii) Not only the OH vibrations, but also the HDO rotations are influenced noticeably by hydrogen bonding. This is due to steric forces that hinder the HDO rotations. As they are stronger in short than in long hydrogen bonds, rotations are slower in the first case than in the second. This effect was only recently discovered, but its existence is hardly to be contested. In the present contribution, we want to revisit the relationship between the frequency of the OH vibrator and the distance OH. . .O.

  8. Effects of ultraviolet irradiation on bonding strength between Co-Cr alloy and citric acid-crosslinked gelatin matrix.

    Science.gov (United States)

    Inoue, Motoki; Sasaki, Makoto; Katada, Yasuyuki; Taguchi, Tetsushi

    2014-02-01

    Novel techniques for creating a strong bond between polymeric matrices and biometals are required. We immobilized polymeric matrices on the surface of biometal for drug-eluting stents through covalent bond. We performed to improve the bonding strength between a cobalt-chromium alloy and a citric acid-crosslinked gelatin matrix by ultraviolet irradiation on the surface of cobalt-chromium alloy. The ultraviolet irradiation effectively generated hydroxyl groups on the surface of the alloy. The bonding strength between the gelatin matrix and the alloy before ultraviolet irradiation was 0.38 ± 0.02 MPa, whereas it increased to 0.48 ± 0.02 MPa after ultraviolet irradiation. Surface analysis showed that the citric acid derivatives occurred on the surface of the cobalt-chromium alloy through ester bond. Therefore, ester bond formation between the citric acid derivatives active esters and the hydroxyl groups on the cobalt-chromium alloy contributed to the enhanced bonding strength. Ultraviolet irradiation and subsequent immobilization of a gelatin matrix using citric acid derivatives is thus an effective way to functionalize biometal surfaces.

  9. Covalent modification and exfoliation of graphene oxide using ferrocene

    Science.gov (United States)

    Avinash, M. B.; Subrahmanyam, K. S.; Sundarayya, Y.; Govindaraju, T.

    2010-09-01

    Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior.Large scale preparation of single-layer graphene and graphene oxide is of great importance due to their potential applications. We report a simple room temperature method for the exfoliation of graphene oxide using covalent modification of graphene oxide with ferrocene to obtain single-layer graphene oxide sheets. The samples were characterized by FESEM, HRTEM, AFM, EDAX, FT-IR, Raman and Mössbauer spectroscopic studies. HRTEM micrograph of the covalently modified graphene oxide showed increased interlayer spacing of ~2.4 nm due to ferrocene intercalation. The presence of single-layer graphene oxide sheets were confirmed by AFM studies. The covalently modified ferrocene-graphene oxide composite showed interesting magnetic behavior. Electronic supplementary information (ESI) available: Magnetic data; AFM images; TEM micrographs; and Mössbauer spectroscopic data. See DOI: 10.1039/c0nr00024h

  10. Medical implants and methods of making medical implants

    Science.gov (United States)

    Shaw, Wendy J; Yonker, Clement R; Fulton, John L; Tarasevich, Barbara J; McClain, James B; Taylor, Doug

    2014-09-16

    A medical implant device having a substrate with an oxidized surface and a silane derivative coating covalently bonded to the oxidized surface. A bioactive agent is covalently bonded to the silane derivative coating. An implantable stent device including a stent core having an oxidized surface with a layer of silane derivative covalently bonded thereto. A spacer layer comprising polyethylene glycol (PEG) is covalently bonded to the layer of silane derivative and a protein is covalently bonded to the PEG. A method of making a medical implant device including providing a substrate having a surface, oxidizing the surface and reacting with derivitized silane to form a silane coating covalently bonded to the surface. A bioactive agent is then covalently bonded to the silane coating. In particular instances, an additional coating of bio-absorbable polymer and/or pharmaceutical agent is deposited over the bioactive agent.

  11. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry

    Science.gov (United States)

    Ryder, Christopher R.; Wood, Joshua D.; Wells, Spencer A.; Yang, Yang; Jariwala, Deep; Marks, Tobin J.; Schatz, George C.; Hersam, Mark C.

    2016-06-01

    Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)—a layered two-dimensional semiconductor—exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus-carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.

  12. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.

    Science.gov (United States)

    Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R

    2009-03-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.

  13. Non-covalent conjugates of single-walled carbon nanotubes and folic acid for interaction with cells overexpressing folate receptors

    DEFF Research Database (Denmark)

    Castillo, John J.; Rindzevicius, Tomas; Novoa, Leidy V.

    2013-01-01

    We here present amethod to form a noncovalent conjugate of single-walled carbon nanotubes and folic acid aimed to interact with cells over-expressing folate receptors. The bonding was obtained without covalent chemical functionalization using a simple, rapid “one pot” synthesis method. The zeta...... a low toxicity of the conjugates in the THP-1 cells. The low toxicity and the cellular uptake of single-walled carbon nanotube–folic acid by cancer cells suggest their potential use in carbon nanotube-based drug delivery systems and in the diagnosis of cancer or tropical diseases such as leishmaniasis....

  14. Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture.

    Science.gov (United States)

    Jain, Prashant; Ramachandran, Vasanth; Clark, Ronald J; Zhou, Hai Dong; Toby, Brian H; Dalal, Naresh S; Kroto, Harold W; Cheetham, Anthony K

    2009-09-30

    Multiferroic behavior in perovskite-related metal-organic frameworks of general formula [(CH(3))(2)NH(2)]M(HCOO)(3), where M = Mn, Fe, Co, and Ni, is reported. All four compounds exhibit paraelectric-antiferroelectric phase transition behavior in the temperature range 160-185 K (Mn: 185 K, Fe: 160 K; Co: 165 K; Ni: 180 K); this is associated with an order-disorder transition involving the hydrogen bonded dimethylammonium cations. On further cooling, the compounds become canted weak ferromagnets below 40 K. This research opens up a new class of multiferroics in which the electrical ordering is achieved by means of hydrogen bonding.

  15. Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5

    KAUST Repository

    Li, Haoyuan

    2017-10-24

    The preparation of two-dimensional covalent organic frameworks (2D COFs) with large crystalline domains and controlled morphology is necessary for realizing the full potential of their atomically precise structures and uniform, tailorable porosity. Currently 2D COF syntheses are developed empirically, and most materials are isolated as insoluble and unprocessable powders with typical crystalline domain sizes smaller than 50 nm. Little is known about their nucleation and growth processes, which involve a combination of covalent bond formation, degenerate exchange, and non-covalent stacking processes. A deeper understanding of the chemical processes that lead to COF polymerization and crystallization is key to achieving improved materials quality and control. Here, we report a kinetic Monte Carlo (KMC) model that describes the formation of a prototypical boronate-ester linked 2D COF known as COF-5 from its 2,3,6,7,10,11-hexahydroxytriphenylene and 1,4-phenylene bis(boronic acid) monomers in solution. The key rate parameters for the KMC model were derived from experimental measurements when possible and complemented with reaction pathway analyses, molecular dynamics simulations, and binding free-energy calculations. The essential features of experimentally measured COF-5 growth kinetics are reproduced well by the KMC simulations. In particular, the simulations successfully captured a nucleation process followed by a subsequent growth process. The nucleating species are found to be multi-layer structures that form through multiple pathways. During the growth of COF-5, extensions in the lateral (in-plane) and vertical (stacking) directions are both seen to be linear with respect to time and are dominated by monomer addition and oligomer association, respectively. Finally, we show that the experimental observations of increased average crystallite size with the addition of water are modeled accurately by the simulations. These results will inform the rational development

  16. Metal and ligand K-edge XAS of organotitanium complexes: metal 4p and 3d contributions to pre-edge intensity and their contributions to bonding.

    Science.gov (United States)

    George, Serena DeBeer; Brant, Patrick; Solomon, Edward I

    2005-01-19

    Titanium cyclopentadienyl (Cp) complexes play important roles as homogeneous polymerization catalysts and have recently received attention as potential anticancer agents. To systematically probe the contribution of the Cp to bonding in organotitanium complexes, Ti K-edge XAS has been applied to TiCl(4) and then to the mono- and bis-Cp complexes, TiCpCl(3) and TiCp(2)Cl(2). Ti K-edge XAS is used as a direct probe of metal 3d-4p mixing and provides insight into the contribution of the Cp to bonding. These data are complimented by Cl K-edge XAS data, which provide a direct probe of the effect of the Cp on the bonding to the spectator chloride ligand. The experimental results are correlated to DFT calculations. A model for metal 3d-4p mixing is proposed, which is based on covalent interactions with the ligands and demonstrates that metal K-pre-edge intensities may be used as a measure of ligand-metal covalency in molecular Ti(IV) systems in noncentrosymmetric environments.

  17. Halogen bonding from a hard and soft acids and bases perspective: investigation by using density functional theory reactivity indices.

    Science.gov (United States)

    Pinter, Balazs; Nagels, Nick; Herrebout, Wouter A; De Proft, Frank

    2013-01-07

    Halogen bonds between the trifluoromethyl halides CF(3)Cl, CF(3)Br and CF(3)I, and dimethyl ether, dimethyl sulfide, trimethylamine and trimethyl phosphine were investigated using Pearson's hard and soft acids and bases (HSAB) concept with conceptual DFT reactivity indices, the Ziegler-Rauk-type energy-decomposition analysis, the natural orbital for chemical valence (NOCV) framework and the non-covalent interaction (NCI) index. It is found that the relative importance of electrostatic and orbital (charge transfer) interactions varies as a function of both the donor and acceptor molecules. Hard and soft interactions were distinguished and characterised by atomic charges, electrophilicity and local softness indices. Dual-descriptor plots indicate an orbital σ hole on the halogen similar to the electrostatic σ hole manifested in the molecular electrostatic potential. The predicted high halogen-bond-acceptor affinity of N-heterocyclic carbenes was evidenced in the highest complexation energy for the hitherto unknown CF(3) I·NHC complex. The dominant NOCV orbital represents an electron-density deformation according to a n→σ*-type interaction. The characteristic signal found in the reduced density gradient versus electron-density diagram corresponds to the non-covalent interaction between contact atoms in the NCI plots, which is the manifestation of halogen bonding within the NCI theory. The unexpected C-X bond strengthening observed in several cases was rationalised within the molecular orbital framework. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Disorder Identification in Hysteresis Data: Recognition Analysis of the Random-Bond-Random-Field Ising Model

    International Nuclear Information System (INIS)

    Ovchinnikov, O. S.; Jesse, S.; Kalinin, S. V.; Bintacchit, P.; Trolier-McKinstry, S.

    2009-01-01

    An approach for the direct identification of disorder type and strength in physical systems based on recognition analysis of hysteresis loop shape is developed. A large number of theoretical examples uniformly distributed in the parameter space of the system is generated and is decorrelated using principal component analysis (PCA). The PCA components are used to train a feed-forward neural network using the model parameters as targets. The trained network is used to analyze hysteresis loops for the investigated system. The approach is demonstrated using a 2D random-bond-random-field Ising model, and polarization switching in polycrystalline ferroelectric capacitors.

  19. Single-Molecule Rotational Switch on a Dangling Bond Dimer Bearing.

    Science.gov (United States)

    Godlewski, Szymon; Kawai, Hiroyo; Kolmer, Marek; Zuzak, Rafał; Echavarren, Antonio M; Joachim, Christian; Szymonski, Marek; Saeys, Mark

    2016-09-27

    One of the key challenges in the construction of atomic-scale circuits and molecular machines is to design molecular rotors and switches by controlling the linear or rotational movement of a molecule while preserving its intrinsic electronic properties. Here, we demonstrate both the continuous rotational switching and the controlled step-by-step single switching of a trinaphthylene molecule adsorbed on a dangling bond dimer created on a hydrogen-passivated Ge(001):H surface. The molecular switch is on-surface assembled when the covalent bonds between the molecule and the dangling bond dimer are controllably broken, and the molecule is attached to the dimer by long-range van der Waals interactions. In this configuration, the molecule retains its intrinsic electronic properties, as confirmed by combined scanning tunneling microscopy/spectroscopy (STM/STS) measurements, density functional theory calculations, and advanced STM image calculations. Continuous switching of the molecule is initiated by vibronic excitations when the electrons are tunneling through the lowest unoccupied molecular orbital state of the molecule. The switching path is a combination of a sliding and rotation motion over the dangling bond dimer pivot. By carefully selecting the STM conditions, control over discrete single switching events is also achieved. Combined with the ability to create dangling bond dimers with atomic precision, the controlled rotational molecular switch is expected to be a crucial building block for more complex surface atomic-scale devices.

  20. The covalence effect of energy levels of ZnS:Mn2+

    International Nuclear Information System (INIS)

    Dong-Yang, Li; Mao-Lu, Du; Yi, Huang

    2013-01-01

    The contribution of the different covalence for t 2 and e orbitals must be considered in the investigation of the optical and magnetic properties of the transition metal ion in II–VI and III–V semiconductors. In present paper, two covalent parameters N t and N e associated with t 2 and e orbitals have been adopted to describe the covalence. The energy matrices considering the different covalence for t 2 and e orbitals have been provided for d 5 ions in crystal. These matrices show that the contribution from the Racah parameter A cannot be neglected in calculation of energy-level of d 5 ions in covalent crystal. The calculated results using the matrix show that the energy levels of 4 E and 4 A 1 states split, and the energy-level difference between 4 E and 4 A 1 states increases with increase of the different covalence between t 2 and e orbitals. These energy levels are always degenerate, when the different covalence for t 2 and e orbitals is neglected. By using the energy matrices, the energy-level of ZnS:Mn 2+ has been calculated. The calculated energy levels of ZnS:Mn 2+ are in good agreement with the experiments

  1. Water’s dual nature and its continuously changing hydrogen bonds

    International Nuclear Information System (INIS)

    Henchman, Richard H

    2016-01-01

    A model is proposed for liquid water that is a continuum between the ordered state with predominantly tetrahedral coordination, linear hydrogen bonds and activated dynamics and a disordered state with a continuous distribution of multiple coordinations, multiple types of hydrogen bond, and diffusive dynamics, similar to that of normal liquids. Central to water’s heterogeneous structure is the ability of hydrogen to donate to either one acceptor in a conventional linear hydrogen bond or to multiple acceptors as a furcated hydrogen. Linear hydrogen bonds are marked by slow, activated kinetics for hydrogen-bond switching to more crowded acceptors and sharp first peaks in the hydrogen-oxygen radial distribution function. Furcated hydrogens, equivalent to free, broken, dangling or distorted hydrogens, have barrierless, rapid kinetics and poorly defined first peaks in their hydrogen-oxygen radial distribution function. They involve the weakest donor in a local excess of donors, such that barrierless whole-molecule vibration rapidly swaps them between the linear and furcated forms. Despite the low number of furcated hydrogens and their transient existence, they are readily created in a single hydrogen-bond switch and free up the dynamics of numerous surrounding molecules, bringing about the disordered state. Hydrogens in the ordered state switch with activated dynamics to make the non-tetrahedral coordinations of the disordered state, which can also combine to make the ordered state. Consequently, the ordered and disordered states are both connected by diffusive dynamics and differentiated by activated dynamics, bringing about water’s continuous heterogeneity. (paper)

  2. A hydrazone covalent organic polymer based micro-solid phase extraction for online analysis of trace Sudan dyes in food samples.

    Science.gov (United States)

    Zhang, Chengjiang; Li, Gongke; Zhang, Zhuomin

    2015-11-06

    Covalent organic polymers (COPs) connected by covalent bonds are a new class of porous network materials with large surface area and potential superiority in sample pretreatment. In this study, a new hydrazone linked covalent organic polymer (HL-COP) adsorbent was well-designed and synthesized based on a simple Schiff-base reaction. The condensation of 1,4-phthalaldehyde and 1,3,5-benzenetricarbohydrazide as organic building blocks led to the synthesis of HL-COP with uniform particle size and good adsorption performance. This HL-COP adsorbent with high hydrophobic property and rich stacking π electrons contained abundant phenyl rings and imine (CN) groups throughout the entire molecular framework. The adsorption mechanism was explored and discussed based on π-π affinity, hydrophobic effect, hydrogen bonding and electron-donor-acceptor (EDA) interaction, which contributed to its strong recognition affinity to target compounds. Enrichment factors were 305-757 for six Sudan dyes by HL-COP micro-solid phase extraction (μ-SPE), indicating its remarkable preconcentration ability. Furthermore, the adsorption amounts by HL-COP μ-SPE were 1.0-11.0 folds as those by three commonly used commercial adsorbents. Then, HL-COP was applied as adsorbent of online μ-SPE coupled with high performance liquid chromatography (HPLC) for enrichment and analysis of trace Sudan dyes in food samples with detection limit of 0.03-0.15μg/L. The method was successfully applied for online analysis of chilli powder and sausage samples. Sudan II and Sudan III in one positive chilli powder sample were actually found and determined with concentrations of 8.3 and 6.8μg/kg, respectively. The recoveries of chilli powder and sausage samples were in range of 75.8-108.2% and 73.8-112.6% with relative standard deviations of 1.2-8.5% and 1.9-9.4% (n=5), respectively. The proposed method was accurate, reliable and convenient for the online simultaneous analysis of trace Sudan dyes in food samples

  3. Covalent functionalization of graphene with reactive intermediates.

    Science.gov (United States)

    Park, Jaehyeung; Yan, Mingdi

    2013-01-15

    Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations

  4. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional.

    Science.gov (United States)

    Sun, Jianwei; Remsing, Richard C; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L; Perdew, John P

    2016-09-01

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.

  5. Bad metal behaviour in the new Hg-rich amalgam KHg{sub 6} with polar metallic bonding

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Hoch, Constantin, E-mail: constantin.hoch@cup.uni-muenchen.de

    2015-01-05

    Highlights: • The novel Hg-rich amalgam KHg{sub 6} was synthesised by electrocrystallisation. • The structure was investigated by single crystal and powder diffraction. • Thermal decomposition, electric resistance and magnetic susceptibiliy were examined. • Band structure, total and partial density of states and Bader charges were calculated. • Bad metal behaviour results from ionic, metallic and covalent bonding contributions. - Abstract: The new mercury-rich amalgam KHg{sub 6} crystallises with the BaHg{sub 6} structure type (orthorhombic, space group Pnma (No. 62), a = 13.394(9) Å, b = 5.270(3) Å, c = 10.463 Å). It was prepared by electrolysis of a solution of KI in N,N′-Dimethylformamide at 343 K at a reactive Hg cathode. The structure of KHg{sub 6} shows motifs of ionic packing, covalent Hg cluster formation and metallic properties. KHg{sub 6} decomposes peritectically at 443 K. The combination of alkali metals with a noble metal with moderate electron affinity results in the formation of polar metal–metal bonding with considerable but incomplete electron transfer from the electropositive to the electronegative sublattice, resulting in typical “bad metal behaviour”, illustrated by resistance and susceptibility measurements and quantum theoretical calculations.

  6. Non-covalently functionalized carbon nanostructures for synthesizing carbon-based hybrid nanomaterials.

    Science.gov (United States)

    Li, Haiqing; Song, Sing I; Song, Ga Young; Kim, Il

    2014-02-01

    Carbon nanostructures (CNSs) such as carbon nanotubes, graphene sheets, and nanodiamonds provide an important type of substrate for constructing a variety of hybrid nanomaterials. However, their intrinsic chemistry-inert surfaces make it indispensable to pre-functionalize them prior to immobilizing additional components onto their surfaces. Currently developed strategies for functionalizing CNSs include covalent and non-covalent approaches. Conventional covalent treatments often damage the structure integrity of carbon surfaces and adversely affect their physical properties. In contrast, the non-covalent approach offers a non-destructive way to modify CNSs with desired functional surfaces, while reserving their intrinsic properties. Thus far, a number of surface modifiers including aromatic compounds, small-molecular surfactants, amphiphilic polymers, and biomacromolecules have been developed to non-covalently functionalize CNS surfaces. Mediated by these surface modifiers, various functional components such as organic species and inorganic nanoparticles were further decorated onto their surfaces, resulting in versatile carbon-based hybrid nanomaterials with broad applications in chemical engineering and biomedical areas. In this review, the recent advances in the generation of such hybrid nanostructures based on non-covalently functionalized CNSs will be reviewed.

  7. Theoretical description of metal-ligand bonding within f-element complexes: A successful and necessary interplay between theory and experiment

    International Nuclear Information System (INIS)

    Maldivi, P.; Petit, L.; Vetere, V.; Petit, L.; Adamo, C.

    2007-01-01

    The quantum chemical study presented here shows various aspects of the bonding of lanthanide (La 3+ , Gd 3+ ) and actinide (U 3+ , Am 3+ , Cm 3+ ) ions with N-heterocyclic ligands (poly-azines, BTP: bis(1,2,4-triazinyl)-2,6-pyridine). Several families of complexes, differing by their coordination sphere, have been examined. Clearly, the lanthanide complexes always show a purely ionic bonding. The behaviour of U(III) is also well defined with a more or less strong back bonding interaction whatever the complex is. In contrast, the heavy actinides (Am 3+ and Cm 3+ ) are changeable, with a weak covalent character, going from donation to back donation, depending on the coordination sphere of the complex. (authors)

  8. Protein covalent immobilization via its scarce thiol versus abundant amine groups: Effect on orientation, cell binding domain exposure and conformational lability.

    Science.gov (United States)

    Ba, O M; Hindie, M; Marmey, P; Gallet, O; Anselme, K; Ponche, A; Duncan, A C

    2015-10-01

    to the covalent grafting immobilization methods. However no differences in exposure of the cell binding domains were observed (ELISA results) before SDS rinsing, suggesting that pFN protein grafting to the surface is initially kinetically driven be a stochastic random adsorption phenomenon. Covalent grafting acts in the final stage as a process that simply tethers and stabilizes (or freezes) the initial conformation/orientation of the adsorbed protein on the surface. In addition covalent linkage via the SSMPB approach is likely favored by surface-induce exposure of one of the normally hidden free thiol group pair, thus optimizing covalent linkage to the surface. However after SDS rinsing, this "tethering"/"freezing" effect was significantly more prominent for the GA grafting approach (due to greater number of potential covalent links between the protein and the surface) compared to that for the SSMPB approach. This hypothesis was buttressed by the improved resistance to denaturation (smaller conformational lability) for the GA compared to the SMPB approach and improved exposure of the cell binding domain for the former (>50%) even after SDS rinsing. These results are promising in that they suggest covalent tethering of fibronectin to PS substrate in a monolayer range, with significantly improved irreversible protein surface bonding via both approaches (compared to that for mere adsorption). The latter are likely applicable to a wide range of proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The effect of non-covalent functionalization on the thermal conductance of graphene/organic interfaces

    International Nuclear Information System (INIS)

    Lin Shangchao; Buehler, Markus J

    2013-01-01

    The intrinsic interfacial thermal resistance at graphene/organic interfaces, as a result of mismatches in the phonon vibrational spectra of the two materials, diminishes the overall heat transfer performance of graphene/organic nanocomposites. In this paper, we use molecular dynamics (MD) simulations to design alkyl-pyrene molecules that can non-covalently functionalize graphene surfaces in contact with a model organic phase composed of octane. The alkyl-pyrene molecules possess phonon-spectra features of both graphene and octane and, therefore, can serve as phonon-spectra linkers to bridge the vibrational mismatch at the graphene/octane interface. In support of this hypothesis, we find that the best linker candidate can enhance the out-of-plane graphene/organic interfacial thermal conductance by ∼22%, attributed to its capability to compensate the low-frequency phonon mode of graphene. We also find that the length of the alkyl chain indirectly affects the interfacial thermal conductance through different orientations of these chains because they dictate the contribution of the out-of-plane high-frequency carbon–hydrogen bond vibrations to the overall phonon transport. This study advances our understanding of the less destructive non-covalent functionalization method and design principles of suitable linker molecules to enhance the thermal performance of graphene/organic nanocomposites while retaining the intrinsic chemical, thermal, and mechanical properties of pristine graphene. (paper)

  10. Non-bonding interactions and non-covalent delocalization effects play a critical role in the relative stability of group 12 complexes arising from interaction of diethanoldithiocarbamate with the cations of transition metals Zn(II), Cd(II), and Hg(II): a theoretical study.

    Science.gov (United States)

    Bahrami, Homayoon; Farhadi, Saeed; Siadatnasab, Firouzeh

    2016-07-01

    The chelating properties of diethanoldithiocarbamate (DEDC) and π-electron flow from the nitrogen atom to the sulfur atom via a plane-delocalized π-orbital system (quasi ring) was studied using a density functional theory method. The molecular structure of DEDC and its complexes with Zn(II), Cd(II), and Hg(II) were also considered. First, the geometries of this ligand and DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) were optimized, and the formation energies of these complexes were then calculated based on the electronic energy, or sum of electronic energies, with the zero point energy of each species. Formation energies indicated the DEDC-Zn(II) complex as the most stable complex, and DEDC-Cd(II) as the least stable. Structural data showed that the N1-C2 π-bond was localized in the complexes rather than the ligand, and a delocalized π-bond over S7-C2-S8 was also present. The stability of DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) complexes increased in the presence of the non-specific effects of the solvent (PCM model), and their relative stability did not change. There was π-electron flow or resonance along N1-C2-S7 and along S7-C2-S8 in the ligand. The π-electron flow or resonance along N1-C2-S7 was abolished when the metal interacted with sulfur atoms. Energy belonging to van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand was calculated for each complex. The results of nucleus-independent chemical shift (NICS) indicated a decreasing trend as Zn(II) Hg(II) for the aromaticity of the quasi-rings. Finally, by ignoring van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand, the relative stability of the complexes was changed as follows:[Formula: see text] Graphical Abstract Huge electronic cloud localized on Hg(II) in the Hg(II)-DEDC complex.

  11. Engaging the Terminal: Promoting Halogen Bonding Interactions with Uranyl Oxo Atoms.

    Science.gov (United States)

    Carter, Korey P; Kalaj, Mark; Surbella, Robert G; Ducati, Lucas C; Autschbach, Jochen; Cahill, Christopher L

    2017-11-02

    Engaging the nominally terminal oxo atoms of the linear uranyl (UO 2 2+ ) cation in non-covalent interactions represents both a significant challenge and opportunity within the field of actinide hybrid materials. An approach has been developed for promoting oxo atom participation in a range of non-covalent interactions, through judicious choice of electron donating equatorial ligands and appropriately polarizable halogen-donor atoms. As such, a family of uranyl hybrid materials was generated based on a combination of 2,5-dihalobenzoic acid and aromatic, chelating N-donor ligands. Delineation of criteria for oxo participation in halogen bonding interactions has been achieved by preparing materials containing 2,5-dichloro- (25diClBA) and 2,5-dibromobenzoic acid (25diBrBA) coupled with 2,2'-bipyridine (bipy) (1 and 2), 1,10-phenanthroline (phen) (3-5), 2,2':6',2''-terpyridine (terpy) (6-8), or 4'-chloro-2,2':6',2''-terpyridine (Cl-terpy) (9-10), which have been characterized through single crystal X-ray diffraction, Raman, Infrared (IR), and luminescence spectroscopy, as well as through density functional calculations of electrostatic potentials. Looking comprehensively, these results are compared with recently published analogues featuring 2,5-diiodobenzoic acid which indicate that although inclusion of a capping ligand in the uranyl first coordination sphere is important, it is the polarizability of the selected halogen atom that ultimately drives halogen bonding interactions with the uranyl oxo atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photoinduced electron transfer through hydrogen bonds in a rod-like donor-acceptor molecule: A time-resolved EPR study

    International Nuclear Information System (INIS)

    Jakob, Manuela; Berg, Alexander; Stavitski, Eli; Chernick, Erin T.; Weiss, Emily A.; Wasielewski, Michael R.; Levanon, Haim

    2006-01-01

    Light-driven multi-step intramolecular electron transfer in a rod-like triad, in which two of the three redox components are linked by three hydrogen bonds, was studied by time-resolved electron paramagnetic resonance (TREPR) and optical spectroscopies. One part of the molecule consists of a p-methoxyaniline primary electron donor (MeOAn) covalently linked to a 4-aminonaphthalene-1, 8-dicarboximide (6ANI) chromophoric electron acceptor (MeOAn-6ANI). The unsubstituted dicarboximide of 6ANI serves as one half of a hydrogen bonding receptor pair. The other half of the receptor pair consists of a melamine linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) secondary electron acceptor (MEL-NI). TREPR spectroscopy is used to probe the electronic interaction between the radicals within the photogenerated, spin-correlated radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- . The results are compared to those obtained in earlier studies in which MeOAn-6ANI is covalently linked to NI through a 2,5-dimethylphenyl group (MeOAn-6ANI-Ph-NI). We show that the electronic coupling between the oxidized donor and reduced acceptor in the hydrogen-bonded radical ion pair MeOAn ·+ -6ANI/MEL-NI ·- is very similar to that of MeOAn ·+ -6ANI-Ph-NI ·-

  13. The influence of anharmonic core vibrations in the X-ray bond charge analysis of A/sup N/B/sup 8-N/ compounds

    International Nuclear Information System (INIS)

    Pietsch, U.

    1982-01-01

    X-ray structure amplitudes of elemental and A 3 B 5 semiconductors can be described by means of spherical atomic form factors and an additional scattered particle at the position of the centre of the covalent bond between next neighbours named bond charge. For this analysis anharmonic core vibrations were neglegted. In this note the influence is estimated of anharmonic core vibrations on the total structure amplitudes of some zinc-blende compounds (GaAs, ZnSe, CuBr, InSb, and CuCl)

  14. A tensegrity model for hydrogen bond networks in proteins

    Directory of Open Access Journals (Sweden)

    Robert P. Bywater

    2017-05-01

    Full Text Available Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger − covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance (“closure” is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins (“domains” as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating

  15. Strategies to balance covalent and non-covalent biomolecule attachment within collagen-GAG biomaterials.

    Science.gov (United States)

    Pence, Jacquelyn C; Gonnerman, Emily A; Bailey, Ryan C; Harley, Brendan A C

    2014-09-01

    Strategies to integrate instructive biomolecular signals into a biomaterial are becoming increasingly complex and bioinspired. While a large majority of reports still use repeated treatments with soluble factors, this approach can be prohibitively costly and difficult to translate in vivo for applications where spatial control over signal presentation is necessary. Recent efforts have explored the use of covalent immobilization of biomolecules to the biomaterial, via both bulk (ubiquitous) as well as spatially-selective light-based crosslinking, as a means to both enhance stability and bioactivity. However, little is known about how processing conditions during immobilization impact the degree of unintended non-covalent interactions, or fouling, that takes place between the biomaterial and the biomolecule of interest. Here we demonstrate the impact of processing conditions for bulk carbodiimide (EDC) and photolithography-based benzophenone (BP) crosslinking on specific attachment vs. fouling of a model protein (Concanavalin A, ConA) within collagen-glycosaminoglycan (CG) scaffolds. Collagen source significantly impacts the selectivity of biomolecule immobilization. EDC crosslinking intensity and ligand concentration significantly impacted selective immobilization. For benzophenone photoimmobilization we observed that increased UV exposure time leads to increased ConA immobilization. Immobilization efficiency for both EDC and BP strategies was maximal at physiological pH. Increasing ligand concentration during immobilization process led to enhanced immobilization for EDC chemistry, no impact on BP immobilization, but significant increases in non-specific fouling. Given recent efforts to covalently immobilize biomolecules to a biomaterial surface to enhance bioactivity, improved understanding of the impact of crosslinking conditions on selective attachment versus non-specific fouling will inform the design of instructive biomaterials for applications across tissue

  16. Fluorescence properties of dansyl groups covalently bonded to the surface of oxidatively functionalized low-density polyethylene film

    Science.gov (United States)

    Holmes-Farley, S. R.; Whitesides, G. M.

    1985-12-01

    Brief oxidation of low-density polyethylene film with chromic acid in aqueous sulfuric acid introduced carboxylic acid and ketone and/or aldehyde groups onto the surface of the film. The carboxylic acid moieties can be used to attach more complex functionality to the polymer surface. We are developing this surface-functionalized polyethylene (named polyethylene carboxylic acid, PE-CO2H, to emphasize the functional group that dominates its surface properties) as a substrate with which to study problems in organic surface chemistry--especially wetting, polymer surface reconstruction, and adhesion--using physical-organic techniques. This document describes the preparation, characterization, and fluorescence properties of derivatives of PE-CO2H in which the Dansyl (5-dimethylaminonaphthalene-1-sulfonyl) group has been covalently attached by amide links to the surface carbonyl moieties.

  17. The Ru-NO bonding in nitrosyl-[poly(1-pyrazolyl)borate]ruthenium complexes: a theoretical insight based on EDA

    Energy Technology Data Exchange (ETDEWEB)

    Caramori, Giovanni F.; Kunitz, Andre G.; Coimbra, Daniel F.; Garcia, Leone C.; Fonseca, David E.P., E-mail: giovanni.caramori@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Centro de Ciencias Fisicas e Matematicas. Dept. de Quimica

    2013-09-15

    The lability of NO{sup +} group in [TpRuCl{sub 2}(NO)]{sup q} (Tp = BL(pyrazol-1-yl){sub 3}) complexes was evaluated at the light of energy decomposition analysis (Su-Li EDA). The electronic effects of different pseudoaxial substituents (L = H, pyrazolyl anion, pyrazole, isoxazole and isothiazole) on the nature of Ru-NO bonding were evaluated considering complexes in ground (GS) and in metastable (MS1 and MS2) states. (Ru-NO){sup 6} bond nature in [TpRuCl{sub 2}(NO)]{sup q} (Tp = BL(pyrazol-1-yl){sub 3}) complexes is in essence covalent, but with a still significant electrostatic character. The nature of pseudoaxial substituents has a direct effect on the magnitude of (Ru-NO){sup 6} bonds. (author)

  18. Electric field gradient and electronic structure of linear-bonded halide compounds

    International Nuclear Information System (INIS)

    Ellis, D.E.; Guenzburger, D.J.R.; Jansen, H.B.

    1983-01-01

    The importance of covalent metal-ligand interactions in determining hyperfine fields and energy-level structure of MX 2 linear-bonded halide compounds has been studied, using the self-consistent local density molecular orbital approach. Results for FeCl 2 , FeBr 2 and EuCl 2 obtained using the Discrete Variational Method with numerical basis sets are presented. The high spin configuration for the iron compounds, first predicted by Berkowitz, et al., is verified; a successful comparison with gas phase photoelectron spectra is made. Variation of the predicted electric field gradient with bond length R is found to be rapid; the need for an EXAFS measurement of R for the matrix isolated species and experimental determination of the spin of the EFG is seen to be crucial for more accurate determinations of the sub(57) Fe quadrupole moment. (Author) [pt

  19. High strength films from oriented, hydrogen-bonded "graphamid" 2D polymer molecular ensembles.

    Science.gov (United States)

    Sandoz-Rosado, Emil; Beaudet, Todd D; Andzelm, Jan W; Wetzel, Eric D

    2018-02-27

    The linear polymer poly(p-phenylene terephthalamide), better known by its tradename Kevlar, is an icon of modern materials science due to its remarkable strength, stiffness, and environmental resistance. Here, we propose a new two-dimensional (2D) polymer, "graphamid", that closely resembles Kevlar in chemical structure, but is mechanically advantaged by virtue of its 2D structure. Using atomistic calculations, we show that graphamid comprises covalently-bonded sheets bridged by a high population of strong intermolecular hydrogen bonds. Molecular and micromechanical calculations predict that these strong intermolecular interactions allow stiff, high strength (6-8 GPa), and tough films from ensembles of finite graphamid molecules. In contrast, traditional 2D materials like graphene have weak intermolecular interactions, leading to ensembles of low strength (0.1-0.5 GPa) and brittle fracture behavior. These results suggest that hydrogen-bonded 2D polymers like graphamid would be transformative in enabling scalable, lightweight, high performance polymer films of unprecedented mechanical performance.

  20. Luminescent hybrid films obtained by covalent grafting of terbium complex to silica network

    International Nuclear Information System (INIS)

    Liu Fengyi; Fu Lianshe; Wang Jun; Liu Ze; Li Huanrong; Zhang Hongjie

    2002-01-01

    Luminescent hybrid thin films consisting of terbium complex covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. A new monomer, N-(4-benzoic acid-yl), N'-(propyltriethoxysilyl)urea (PABI), has been synthesized by grafting isocyanatopropyltriethoxysilane (ICPTES) to p-aminobenzoic acid and characterized by 1 H NMR, IR and MS. The monomer acts as a ligand for Tb 3+ ion and as a sol-gel precursor. Band emission from Tb 3+ ion due to an efficient ligand-to-metal energy transfer was observed by UV excitation. The decay curves of Tb 3+ in the hybrid films were measured. The energy difference between the triplet state energy of PABI and the 5 D 4 level of Tb 3+ ion falls in the exciting range to sensitize Tb 3+ ion fluorescence

  1. [Two-dimensional model of a double-well potential: proton transfer when a hydrogen bond is deformed].

    Science.gov (United States)

    Krasilnikov, P M

    2014-01-01

    The potential energy cross-section profile along a hydrogen bond may contain two minima in certain conditions; it is so-called a double well potential. The H-bond double well potential is essential for proton transfer along this hydrogen bond. We have considered the two-dimensional model of such double well potential in harmonic approximation, and we have also investigated the proton tunneling in it. In real environments thermal motion of atoms or conformational changes may cause reorientation and relative shift of molecule fragment forming the hydrogen bond and, as a result, the hydrogen bond isdeformed. This deformation is liable to change the double well potential form and, hence, the probability of the proton tunneling is changed too. As it is shown the characteristic time of proton tunneling is essentially increased by even small relative shift of heavy atoms forming the H-bond and also rotational displacement of covalent bond generated by one of heavy atoms and the proton (hydrogen atom). However, it is also shown, at the certain geometry of the H-bond deformation the opposite effect occurred, i.e., the characteristic time is not increased and even decreased. Notice that such its behavior arises from two-dimensionality of potential wells; this and other properties of our model are discussed in detail.

  2. Theoretical study of ZnO adsorption and bonding on Al2O3 (0001) surface

    Institute of Scientific and Technical Information of China (English)

    LI Yanrong; YANG Chun; XUE Weidong; LI Jinshan; LIU Yonghua

    2004-01-01

    ZnO adsorption on sapphire (0001) surface is theoretically calculated by using a plane wave ultrasoft pseudo-potential method based on ab initio molecular dynamics. The results reveal that the surface relaxation in the first layer Al-O is reduced, even eliminated after the surface adsorption of ZnO, and the chemical bonding energy is 434.3(±38.6) kJ·mol-1. The chemical bond of ZnO (0.185 ± 0.01 nm) has a 30° angle away from the adjacent Al-O bond, and the stable chemical adsorption position of the Zn is deflected from the surface O-hexagonal symmetry with an angle of about 30°. The analysis of the atomic populations, density of state and bonding electronic density before and after the adsorption indicates that the chemical bond formed by the O2- of the ZnO and the surface Al3+ has a strong ionic bonding characteristic, while the chemical bond formed by the Zn2+ and the surface O2- has an obvious covalent characteristic, which comes mainly from the hybridization of the Zn 4s and the O 2p and partially from that of the Zn 3d and the O 2p.

  3. Exceptional increase in the creep life of magnesium rare-earth alloys due to localized bond stiffening.

    Science.gov (United States)

    Choudhuri, Deep; Srinivasan, Srivilliputhur G; Gibson, Mark A; Zheng, Yufeng; Jaeger, David L; Fraser, Hamish L; Banerjee, Rajarshi

    2017-12-08

    Several recent papers report spectacular, and unexpected, order of magnitude improvement in creep life of alloys upon adding small amounts of elements like zinc. This microalloying effect raises fundamental questions regarding creep deformation mechanisms. Here, using atomic-scale characterization and first principles calculations, we attribute the 600% increase in creep life in a prototypical Mg-rare earth (RE)-Zn alloy to multiple mechanisms caused by RE-Zn bonding-stabilization of a large volume fraction of strengthening precipitates on slip planes, increase in vacancy diffusion barrier, reduction in activated cross-slip, and enhancement of covalent character and bond strength around Zn solutes along the c-axis of Mg. We report that increased vacancy diffusion barrier, which correlates with the observed 25% increase in interplanar bond stiffness, primarily enhances the high-temperature creep life. Thus, we demonstrate that an approach of local, randomized tailoring of bond stiffness via microalloying enhances creep performance of alloys.

  4. Kekulé-based Valence Bond Model.I. The Ground-state Properties of Conjugated π-Systems

    Institute of Scientific and Technical Information of China (English)

    LI,Shu-Hua(黎书华); MA,Jing(马晶); JIANG,Yuan-Sheng(江元生)

    2002-01-01

    The Kekulé-based valence bond ( VB ) method, in which the VB model is solved using covalent Kekulé structures as basis functions, is justified in the present work. This method is dimonstrated to provide satisfactory descriptions for resoance energies and bond ang lengths of benzenoid hydrocarbons, being in good agreement with SCF-MO and experimental results. In additicn, an alternative way of discyssing characters of localizedsubstructures within a polyclic benzenoid system is suggested based upon such sunokufied VB calculations. Finally,the symmetries of VB ground states for nonalternant conjugated systems are also illustrated to be obtainable through these calculations, presenting very useful information for understanding the chemical behaviors of some nonalternant conjugated molecules.

  5. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  6. The subtle balance of weak supramolecular interactions: The hierarchy of halogen and hydrogen bonds in haloanilinium and halopyridinium salts

    Directory of Open Access Journals (Sweden)

    Kari Raatikainen

    2010-01-01

    Full Text Available The series of haloanilinium and halopyridinium salts: 4-IPhNH3Cl (1, 4-IPhNH3Br (5, 4-IPhNH3H2PO4 (6, 4-ClPhNH3H2PO4 (8, 3-IPyBnCl (9, 3-IPyHCl (10 and 3-IPyH-5NIPA (3-iodopyridinium 5-nitroisophthalate, 13, where hydrogen or/and halogen bonding represents the most relevant non-covalent interactions, has been prepared and characterized by single crystal X-ray diffraction. This series was further complemented by extracting some relevant crystal structures: 4-BrPhNH3Cl (2, CCDC ref. code TAWRAL, 4-ClPhNH3Cl (3, CURGOL, 4-FPhNH3Cl (4, ANLCLA, 4-BrPhNH3H2PO4, (7, UGISEI, 3-BrPyHCl, (11, CIHBAX and 3-ClPyHCl, (12, VOQMUJ from Cambridge Structural Database for sake of comparison. Based on the X-ray data it was possible to highlight the balance between non-covalent forces acting in these systems, where the relative strength of the halogen bonding C–X···A− (X = I, Br or Cl and the ratio between the halogen and hydrogen bonds [C–X···A− : D–H···A−] varied across the series.

  7. Covalently Bonded Polyaniline and para-phenylenediamine Functionalized Graphene Oxide: How the Conductive Two-dimensional Nanostructure Influences the Electrochromic Behaviors of Polyaniline

    International Nuclear Information System (INIS)

    Xiong, Shanxin; Li, Zhufeng; Gong, Ming; Wang, Xiaoqin; Fu, Jialun; Shi, Yujing; Wu, Bohua; Chu, Jia

    2014-01-01

    Graphical abstract: - Abstract: Polyaniline (PANI) was attached onto the reduced graphene oxide (rGO) sheets through copolymerization of aniline with a para-phenylenediamine (PPD) functionalized graphene oxide (GO-PPD) using the poly(styrene sulfonate) (PSS) as the macromolecular dopant agent to produce a water-dispersible electrochromic material. The structures and the morphologies analysis confirm that the final electrochromic materials (rGO-PANI) are the mixture of PANI/PSS and the covalently bonded rGO-PANI (rGO-PANI hybrid). The rGO-PANI hybrid can be found to form a parallel arrangement to the substrate in the spin-coated film. This parallel arrangement of the layered two-dimensional nanostructure of rGO-PANI hybrid may narrow the ion transportation pathways of the exchanged ions, which will result in a high charge transfer resistance and slow switching speed. Meanwhile, with the conductive rGO added, the electrical conductivity of the electrochromic layer will be increased, which will benefit to low charge transfer resistance and high optical contrast. So the conductive two-dimensional nanostructure has a double-face influence on the electrochromic performances of PANI, which include a positive influence on the electrical conductivity and a negative influence on the ion diffusion. The overall influences depend on the loading amount of GO-PPD. With 4 wt.% GO-PPD feeding, the optical contrast was enhanced by 36% from 0.38 for PANI/PSS to 0.52 for rGO-PANI-3, while the coloration time was almost same as that of PANI/PSS and the bleaching time was decreased by ∼20% from 9.1s for PANI/PSS to 7.4s for rGO-PANI-3. The electrochemical tests showed that with the increasing of GO-PPD loading, the peak currents of cyclic voltammetry (CV) curves were increased, and the peak locations shifted to the positive potential for oxidation peak and the negative potential for reduction peak, respectively, which confirmed that the double-face influences of rGO-PANI on the

  8. Oligomerization of optineurin and its oxidative stress- or E50K mutation-driven covalent cross-linking: possible relationship with glaucoma pathology.

    Directory of Open Access Journals (Sweden)

    Jie Gao

    Full Text Available The optineurin gene, OPTN, is one of the causative genes of primary open-angle glaucoma. Although oligomerization of optineurin in cultured cells was previously observed by gel filtration analysis and blue native gel electrophoresis (BNE, little is known about the characteristics of optineurin oligomers. Here, we aimed to analyze the oligomeric state of optineurin and factors affecting oligomerization, such as environmental stimuli or mutations in OPTN. Using BNE or immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, we demonstrated that both endogenous and transfected optineurin exist as oligomers, rather than monomers, in NIH3T3 cells. We also applied an in situ proximity ligation assay to visualize the self-interaction of optineurin in fixed HeLaS3 cells and found that the optineurin oligomers were localized diffusely in the cytoplasm. Optineurin oligomers were usually detected as a single band of a size equal to that of the optineurin monomer upon SDS-PAGE, while an additional protein band of a larger size was observed when cells were treated with H2O2. We showed that larger protein complex is optineurin oligomers by immunoprecipitation and termed it covalent optineurin oligomers. In cells expressing OPTN bearing the most common glaucoma-associated mutation, E50K, covalent oligomers were formed even without H2O2 stimulation. Antioxidants inhibited the formation of E50K-induced covalent oligomers to various degrees. A series of truncated constructs of OPTN was used to reveal that covalent oligomers may be optineurin trimers and that the ubiquitin-binding domain is essential for formation of these trimers. Our results indicated that optineurin trimers may be the basic unit of these oligomers. The oligomeric state can be affected by many factors that induce covalent bonds, such as H2O2 or E50K, as demonstrated here; this provides novel insights into the pathogenicity of E50K. Furthermore

  9. Mussel byssus-inspired engineering of synergistic nanointerfacial interactions as sacrificial bonds into carbon nanotube-reinforced soy protein/nanofibrillated cellulose nanocomposites: Versatile mechanical enhancement

    Science.gov (United States)

    Wang, Zhong; Zhao, Shujun; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang

    2018-03-01

    Achieving flexible and stretchable biobased nanocomposites combining high strength and toughness is still a very challenging endeavor. Herein, we described a novel and versatile biomimetic design for tough and high-performance TEMPO-oxidized nanofibrillated cellulose (TONFC)/soy protein isolate (SPI) nanocomposites, which are triggered by catechol-mimetic carbon nanotubes (PCT) and iron ions (Fe(III)) to yield a strong yet sacrificial metal-ligand motifs into a chemically cross-linked architecture network. Taking advantage of self-polymerization of catechol-inspired natural tannic acid, PCT nanohybrid was prepared through adhering reactive poly-(tannic acid) (PTA) layer onto surfaces of carbon nanotubes via a simple dip-coating process. The high-functionality PCT induced the formation of the metal-ligand bonds through the ionic coordinates between the catechol groups in PCT and -COOH groups of TONFC skeleton with Fe(III) mediation that mimicked mussel byssus. Upon stretching, this tailored TONFC-Fe(III)-catechol coordination bonds served as sacrificial bonds that preferentially detach prior to the covalent network, which gave rise to efficient energy dissipation that the nanocomposites integrity was survived. As a result of these kind of synergistic interfacial interactions (sacrificial and covalent bonding), the optimal nanocomposite films processed high tensile strength (ca. 11.5 MPa), large elongation (ca. 79.3%), remarkable toughness (ca. 6.9 MJ m-3), and favorable water resistance as well as electrical conductivity. The proposed bioinspired strategy for designing plant protein-based materials enables control over their mechanical performance through the synergistic engineering of sacrificial bonds into the composite interface.

  10. The role of uranium-arene bonding in H2O reduction catalysis

    Science.gov (United States)

    Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten

    2018-03-01

    The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.

  11. Covalent magnetism, exchange interactions and anisotropy of the high temperature layered antiferromagnet MnB₂.

    Science.gov (United States)

    Khmelevskyi, S; Mohn, P

    2012-01-11

    The investigation of the electronic structure and magnetism for the compound MnB(2) with crystal structure type AlB(2) has been revisited to resolve contradictions between various experimental and theoretical results present in the literature. We find that MnB(2) exhibits an interesting example of a Kübler's covalent magnetism (Williams et al 1981 J. Appl. Phys. 52 2069). The covalent magnetism also appears to be the source of some disagreement between the calculated values of the magnetic moments and those given by neutron diffraction experiments. We show that this shortcoming is due to the atomic sphere approximation applied in earlier calculations. The application of the disordered local moment approach and the calculation of the inter-atomic exchange interactions within the Liechtenstein formalism reveal strong local moment antiferromagnetism with a high Néel temperature predicted from Monte Carlo simulations. A fully relativistic band structure calculation and then the application of the torque method yields a strong in-plane anisotropy of the Mn magnetic moments. The agreement of these results with neutron diffraction studies rules out any possible weak itinerant electron magnetism scenarios as proposed earlier for MnB(2).

  12. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    International Nuclear Information System (INIS)

    Lichtenberger, D.L.

    1991-10-01

    The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies has been developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. This relationship has been used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. We have been able to obtain a direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal. The ionization energies have also been used to correlate the rates of carbonyl substitution reactions of (η 5 -C 5 H 4 X)Rh(CO) 2 complexes, and to reveal the electronic factors that control the stability of the transition state. The extent that the electronic features of these bonding interactions transfer to other chemical systems is being investigated in terms of the principle of additivity of ligand electronic effects. Specific examples under study include metal- phosphines, metal-halides, and metallocenes. Especially interesting has been the recent application of these techniques to the characterization of the soccer-ball shaped C 60 molecule, buckminsterfullerene, and its interaction with a metal surface. The high-resolution valence ionizations in the gas phase reveal the high symmetry of the molecule, and studies of thin films of C 60 reveal weak intermolecular interactions. Scanning tunneling and atomic force microscopy reveal the arrangement of spherical molecules on gold substrates, with significant delocalization of charge from the metal surface. 21 refs

  13. Study on immobilization enzyme using radiation grafting and condensation covalent

    International Nuclear Information System (INIS)

    Cao Jin; Su Zongxian; Gao Jianfeng

    1989-01-01

    The immobilization of gluecose oxidase (GOD) on polyethylene and F 46 is described by radiation grafting and condensation covalent. The GOD on polyethylene film is characterized with IR-spectrum. The results show that the enzyme activity on F 46 film is high when dose rate and covalent yield are low. When covalent yield is 4.3% the enzyme relative activity achieves the greatest value for F 46 film. The experiment also demonstrates that acrylic acid affects the relative activity of enzyme and the method of IR-pectrum character is convenient and efficient for GOD on polyethylene film

  14. Preparation and characterization of uranium-iron triple-bonded UFe(CO){sub 3}{sup -} and OUFe(CO){sub 3}{sup -} complexes

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Chaoxian; Meng, Luyan; Luo, Mingbiao [School of Chemistry, Biological and Materials Sciences, State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang (China); Wang, Jia-Qi; Li, Wan-Lu; Li, Jun [Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing (China); Qu, Hui; Zhou, Mingfei [Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai (China)

    2017-06-06

    We report the preparation of UFe(CO){sub 3}{sup -} and OUFe(CO){sub 3}{sup -} complexes using a laser-vaporization supersonic ion source in the gas phase. These compounds were mass-selected and characterized by infrared photodissociation spectroscopy and state-of-the-art quantum chemical studies. There are unprecedented triple bonds between U 6d/5f and Fe 3d orbitals, featuring one covalent σ bond and two Fe-to-U dative π bonds in both complexes. The uranium and iron elements are found to exist in unique formal U(I or III) and Fe(-II) oxidation states, respectively. These findings suggest that there may exist a whole family of stable df-d multiple-bonded f-element-transition-metal compounds that have not been fully recognized to date. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. NOVEL APPLICATION OF POROUS AND CELLULAR MATERIALS FOR COVALENT IMMOBILIZATION OF PEPSIN

    Directory of Open Access Journals (Sweden)

    K. Szałapata

    Full Text Available Abstract Pepsin was immobilized via covalent bonds on different carriers: a silica gel carrier, acrylic beads, and a cellulose-based carrier - Granocel. All carriers were functionalized through the presence of -OH, -COOH, -NH2, or glycidyl groups on their surfaces. Three different cross-linkers were used for activation thereof. The results showed that Granocel activated by glutaraldehyde or carbodiimide and silica gel activated by glutaraldehyde were suitable carriers for the expression of enzyme activity. The optimum pH range for the native enzyme was 2.5-3.5 and this range was extended to the value 6.5 in the case of enzyme immobilized on the silica gel carrier and on Granocel. The optimum temperature values for the native and immobilized enzyme were in the range 37-40 °C and 40-50 °C, respectively. The activity of the immobilized pepsin at different values of pH and temperature was higher in comparison with the activity of the free enzyme.

  16. Th-Based Endohedral Metallofullerenes: Anomalous Metal Position and Significant Metal-Cage Covalent Interactions with the Involvement of Th 5f Orbitals.

    Science.gov (United States)

    Li, Ying; Yang, Le; Liu, Chang; Hou, Qinghua; Jin, Peng; Lu, Xing

    2018-05-29

    Endohedral metallofullerenes (EMFs) containing actinides are rather intriguing due to potential 5f-orbital participation in the metal-metal or metal-cage bonding. In this work, density functional theory calculations first characterized the structure of recently synthesized ThC 74 as Th@ D 3 h (14246)-C 74 . We found that the thorium atom adopts an unusual off-axis position inside cage due to small metal ion size and the requirement of large coordination number, which phenomenon was further extended to other Th-based EMFs. Significantly, besides the strong metal-cage electrostatic attractions, topological and orbital analysis revealed that all the investigated Th-based EMFs exhibit obvious covalent interactions between metal and cage with substantial contribution from the Th 5f orbitals. The encapsulation by fullerenes is thus proposed as a practical pathway toward the f-orbital covalency for thorium. Interestingly, the anomalous internal position of Th led to a novel three-dimensional metal trajectory at elevated temperatures in the D 3 h -C 74 cavity, as elucidated by the static computations and molecular dynamic simulations.

  17. Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.

    Science.gov (United States)

    Prentice, Boone M; McLuckey, Scott A

    2013-02-01

    Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.

  18. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to-brittle criterion.

    Science.gov (United States)

    Niu, Haiyang; Chen, Xing-Qiu; Liu, Peitao; Xing, Weiwei; Cheng, Xiyue; Li, Dianzhong; Li, Yiyi

    2012-01-01

    Traditional strengthening ways, such as strain, precipitation, and solid-solution, come into effect by pinning the motion of dislocation. Here, through first-principles calculations we report on an extra-electron induced covalent strengthening mechanism, which alters chemical bonding upon the introduction of extra-valence electrons in the matrix of parent materials. It is responsible for the brittle and high-strength properties of Al(12)W-type compounds featured by the typical fivefold icosahedral cages, which are common for quasicrystals and bulk metallic glasses (BMGs). In combination with this mechanism, we generalize ductile-to-brittle criterion in a universal hyperbolic form by integrating the classical Pettifor's Cauchy pressure with Pugh's modulus ratio for a wide variety of materials with cubic lattices. This study provides compelling evidence to correlate Pugh's modulus ratio with hardness of materials and may have implication for understanding the intrinsic brittleness of quasicrystals and BMGs.

  19. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Andreas, E-mail: a.hermann@ed.ac.uk; Nelmes, Richard J.; Loveday, John S. [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Guthrie, Malcolm [Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); European Spallation Source AB, P.O. Box 176, SE-22100 Lund (Sweden)

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH){sub 4} units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  20. Self-assembly of Hydrazide-based Heterodimers Driven by Hydrogen Bonding and Donor-Acceptor Interaction

    Institute of Scientific and Technical Information of China (English)

    FENG,Dai-Jun; WANG,Peng; LI,Xiao-Qiang; LI,Zhan-Ting

    2006-01-01

    A new series of hydrogen bonding-driven heterodimers have been self-assembled in chloroform from hydrazide-based monomers. Additional intermolecular donor-acceptor interaction between the electron-rich bis(p-phenylene)-34-crown-10 unit and the electron-deficient naphthalene diimide unit has been utilized to increase the stability of the dimmers, and pronounced cooperativity of the two discrete non-covalent forces to stabilize the dimer has been revealed by the quantitative 1H (2D) NMR and UV-Vis experiments.

  1. Recognition of anions using urea and thiourea substituted calixarenes: A density functional theory study of non-covalent interactions

    Science.gov (United States)

    Athar, Mohd; Lone, Mohsin Y.; Jha, Prakash C.

    2018-02-01

    Designing of new calixarene receptors for the selective binding of anions is an age-old concept; even though expected outcomes from this field are at premature stage. Herein, we have performed quantum chemical calculations to provide structural basis of anion binding with urea and thiourea substituted calixarenes (1, 2, and 3). In particular, spherical halides (F-, Cl-, Br-) and linear anions (CN-, N3-, SCN-) were modelled for calculating binding energies with receptor 1, 2 and 3 followed by their marked IR vibrations; taking the available experimental information into account. We found that the thiourea substitutions have better capability to stabilize the anions. Results have suggested that the structural behaviour of macrocyclic motifs were responsible for displaying the anion binding potentials. Moreover, second order "charge transfer" interactions of n-σ∗NH and n-σ∗OH type along the H-bond axis played critical role in developing hydrogen bonds. The present work also examines the role of non-covalent interactions (NCI) and their effects on thermodynamic and chemical-reactivity descriptors.

  2. Ab initio calculations of the electronic structure and bonding characteristics of LaB6

    International Nuclear Information System (INIS)

    Hossain, Faruque M.; Riley, Daniel P.; Murch, Graeme E.

    2005-01-01

    Lanthanum hexaboride (LaB 6 , NIST SRM-660a) is widely used as a standard reference material for calibrating the line position and line shape parameters of powder diffraction instruments. The accuracy of this calibration technique is highly dependent on how completely the reference material is characterized. Critical to x-ray diffraction, this understanding must include the valence of the La atomic position, which in turn will influence the x-ray form factor (f) and hence the diffracted intensities. The electronic structure and bonding properties of LaB 6 have been investigated using ab initio plane-wave pseudopotential total energy calculations. The electronic properties and atomic bonding characteristics were analyzed by estimating the energy band structure and the density of states around the Fermi energy level. The calculated energy band structure is consistent with previously reported experimental findings; de Haas-van Alphen and two-dimensional angular correlation of electron-positron annihilation radiation. In addition, the bond strengths and types of atomic bonds in the LaB 6 compound were estimated by analyzing the Mulliken charge density population. The calculated result revealed the coexistence of covalent, ionic, and metallic bonding in the LaB 6 system and partially explains its high efficiency as a thermionic emitter

  3. Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Shunichi Kosugi

    Full Text Available Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in 'targeted' alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/.

  4. Parental bonding and suicidality in adulthood.

    Science.gov (United States)

    Heider, Dirk; Bernert, Sebastian; Matschinger, Herbert; Haro, Josep M; Alonso, Jordi; Angermeyer, Matthias C

    2007-01-01

    The short-term effect of an adverse parental child rearing style on suicidality in adolescence has been extensively discussed. Nevertheless, little is known about the long-term effect of adverse parental child rearing on lifetime suicidality in adulthood. So the present study aims to examine the relation between parental bonding on the one hand and suicidality in adulthood on the other. We used data from 7740 respondents of the European Study of Epidemiology of Mental Disorders project, a cross-sectional household survey carried out in six European countries. The data were assessed with the World Mental Health Composite International Diagnostic Interview, a comprehensive, fully structured psychiatric diagnostic interview. Suicidality was categorized as follows: 'no ideation', 'ideation', 'attempt'. Parental bonding was assessed by means of a three-factor ('care', 'overprotection', 'authoritarianism') short form of the Parental Bonding Instrument. Using a multinomial-logistic regression model to investigate the association between these two constructs, we also adjusted for mood disorders, anxiety disorders, alcohol abuse/dependence and possible country effects. We found associations between low maternal and paternal care on the one hand and suicidality on the other. Country-specific differences proved negligible. Prevention programs can help better equip parents in their child-rearing role to create a more caring parenting environment. This can be a protective factor for suicidality in adulthood. Nevertheless, more efforts are necessary to better describe the paths that lead from child-rearing behaviour to suicidality in adulthood.

  5. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry.

    Science.gov (United States)

    Morrison, Lindsay J; Chai, Wenrui; Rosenberg, Jake A; Henkelman, Graeme; Brodbelt, Jennifer S

    2017-08-02

    Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modifications or complexation with non-covalent ligands on the basis of m/z. Cleavage of the peptide backbone can be further utilized to obtain residue-specific structural information. Here, hydrogen elimination monitoring (HEM) upon ultraviolet photodissociation (UVPD) of proteins transferred to the gas phase via nativespray ionization is introduced as an innovative approach to deduce backbone hydrogen bonding patterns. Using well-characterized peptides and a series of proteins, prediction of the engagement of the amide carbonyl oxygen of the protein backbone in hydrogen bonding using UVPD-HEM is demonstrated to show significant agreement with the hydrogen-bonding motifs derived from molecular dynamics simulations and X-ray crystal structures.

  6. Nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]: Synthesis, structure, and the nature of the K–O chemical bond

    Energy Technology Data Exchange (ETDEWEB)

    Somov, N. V., E-mail: somov@phys.unn.ru [Lobachevsky State University of Nizhni Novgorod (Russian Federation); Chausov, F. F., E-mail: xps@ftiudm.ru [Russian Academy of Sciences, Physical-Technical Institute, Ural Branch (Russian Federation); Zakirova, R. M., E-mail: ftt@udsu.ru [Udmurt State University (Russian Federation)

    2016-07-15

    The crystal structure of nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]—a three-dimensional coordination polymer—was determined. The potassium atom is coordinated by seven oxygen atoms belonging to the six nearest ligand molecules, resulting in distorted monocapped octahedral coordination geometry. The complex contains the four-membered chelate ring K–O–P–O. The K–O chemical bond is predominantly ionic. Meanwhile, the bonds of the potassium atom with some oxygen atoms have a noticeable covalent component. In addition to coordination bonds, the molecules in the crystal packing are linked by hydrogen bonds.

  7. Interatomic forces and bonding mechanisms in MgO clusters

    International Nuclear Information System (INIS)

    Wright, N.F.; Painter, G.S.

    1990-01-01

    We report results from a first-principles local spin density quantum mechanical study of the energetics and elastic properties of a series of magnesium-oxygen clusters of various morphologies. The role of quantum effects, e.g. covalency, in the bonding character of diatomic MgO is determined by comparison of classical and quantum restoring force curves. The dependence of binding properties on geometry and metal to oxygen ratio is determined by comparison of binding energy curves for a series of clusters. Results show that while gross features of the binding curves may be represented by simple interatomic potentials, details require the many body corrections of a full quantum treatment. 6 refs., 5 figs

  8. A first-principles study of B2 NiAl alloyed with rare earth elements Pr, Pm, Sm, and Eu

    Institute of Scientific and Technical Information of China (English)

    He Jun-Qi; Wang You; Yan Mu-Fu; Pan Zhao-Yi; Guo Li-Xin

    2013-01-01

    The structural,elastic,and electronic properties of NiAl alloyed with rare earth elements Pr,Pm,Sm,and Eu are investigated by using density functional theory (DFT).The study suggests that Pr,Pm,Sm,and Eu all tend to be substituted for an Al site.Ni8Al7Pm possesses the largest ductility.Only the hardness and ductility of Ni8Al7Eu are enhanced simultaneously.The covalency strength of the Ni-Al bond in Ni8Al7Pm is higher than that in Ni8Al7Eu.The covalency strength of an Al-Al bond and that of a Ni-Ni bond in Ni8Al7Eu are higher than that in Ni8Al7Pm.The Ni-Pm bond and the Ni-Eu bond are covalent,and the covalency strength of the Ni-Pm bond is greater.The Al-Pm bond and the Al-Eu bond show great covalency strength and ionicity,respectively.

  9. Capillary electrophoresis of covalently functionalized single-chirality carbon nanotubes.

    Science.gov (United States)

    He, Pingli; Meany, Brendan; Wang, Chunyan; Piao, Yanmei; Kwon, Hyejin; Deng, Shunliu; Wang, YuHuang

    2017-07-01

    We demonstrate the separation of chirality-enriched single-walled carbon nanotubes (SWCNTs) by degree of surface functionalization using high-performance CE. Controlled amounts of negatively charged and positively charged functional groups were attached to the sidewall of chirality-enriched SWCNTs through covalent functionalization using 4-carboxybenzenediazonium tetrafluoroborate or 4-diazo-N,N-diethylaniline tetrafluoroborate, respectively. Surfactant- and pH-dependent studies confirmed that under conditions that minimized ionic screening effects, separation of these functionalized SWCNTs was strongly dependent on the surface charge density introduced through covalent surface chemistry. For both heterogeneous mixtures and single-chirality-enriched samples, covalently functionalized SWCNTs showed substantially increased peak width in electropherogram spectra compared to nonfunctionalized SWCNTs, which can be attributed to a distribution of surface charges along the functionalized nanotubes. Successful separation of functionalized single-chirality SWCNTs by functional density was confirmed with UV-Vis-NIR absorption and Raman scattering spectroscopies of fraction collected samples. These results suggest a high degree of structural heterogeneity in covalently functionalized SWCNTs, even for chirality-enriched samples, and show the feasibility of applying CE for high-performance separation of nanomaterials based on differences in surface functional density. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    Science.gov (United States)

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-02

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.

  11. Covalent and non-covalent chemical engineering of actin for biotechnological applications.

    Science.gov (United States)

    Kumar, Saroj; Mansson, Alf

    2017-11-15

    The cytoskeletal filaments are self-assembled protein polymers with 8-25nm diameters and up to several tens of micrometres length. They have a range of pivotal roles in eukaryotic cells, including transportation of intracellular cargoes (primarily microtubules with dynein and kinesin motors) and cell motility (primarily actin and myosin) where muscle contraction is one example. For two decades, the cytoskeletal filaments and their associated motor systems have been explored for nanotechnological applications including miniaturized sensor systems and lab-on-a-chip devices. Several developments have also revolved around possible exploitation of the filaments alone without their motor partners. Efforts to use the cytoskeletal filaments for applications often require chemical or genetic engineering of the filaments such as specific conjugation with fluorophores, antibodies, oligonucleotides or various macromolecular complexes e.g. nanoparticles. Similar conjugation methods are also instrumental for a range of fundamental biophysical studies. Here we review methods for non-covalent and covalent chemical modifications of actin filaments with focus on critical advantages and challenges of different methods as well as critical steps in the conjugation procedures. We also review potential uses of the engineered actin filaments in nanotechnological applications and in some key fundamental studies of actin and myosin function. Finally, we consider possible future lines of investigation that may be addressed by applying chemical conjugation of actin in new ways. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Covalently linked bisporphyrins bearing tetraphenylporphyrin and ...

    Indian Academy of Sciences (India)

    Covalently linked bisporphyrins bearing tetraphenylporphyrin and perbromoporphyrin units: Synthesis and their properties. Puttaiah Bhyrappa V Krishnan ... yields of the TPP moiety. Electrochemical redox and fluorescence data seem to suggest the possible existence of intramolecular interactions in these bisporphyrins.

  13. Immobilization of Candida antarctica Lipase B by Covalent Attachment to Green Coconut Fiber

    Science.gov (United States)

    Brígida, Ana I. S.; Pinheiro, Álvaro D. T.; Ferreira, Andrea L. O.; Pinto, Gustavo A. S.; Gonçalves, Luciana R. B.

    The objective of this study was to covalently immobilize Candida antarctica type B lipase (CALB) onto silanized green coconut fibers. Variables known to control the number of bonds between enzyme and support were evaluated including contact time, pH, and final reduction with sodium borohydride. Optimal conditions for lipase immobilization were found to be 2h incubation at both pH 7.0 and 10.0. Thermal stability studies at 60°C showed that the immobilized lipase prepared at pH 10.0 (CALB-10) was 363-fold more stable than the soluble enzyme and 5.4-fold more stable than the biocatalyst prepared at pH 7.0 (CALB-7). CALB-7 was found to have higher specific activity and better stability when stored at 5°C. When sodium borohydride was used as reducing agent on CALB-10 there were no improvement in storage stability and at 60°C stability was reduced for both CALB-7 and CALB-10.

  14. Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine

    Energy Technology Data Exchange (ETDEWEB)

    Pletnev, Vladimir Z., E-mail: vzpletnev@gmail.com; Pletneva, Nadya V.; Lukyanov, Konstantin A.; Souslova, Ekaterina A.; Fradkov, Arkady F.; Chudakov, Dmitry M.; Chepurnykh, Tatyana; Yampolsky, Ilia V. [Russian Academy of Sciences, Moscow (Russian Federation); Wlodawer, Alexander [National Cancer Institute, Frederick, MD 21702 (United States); Dauter, Zbigniew [National Cancer Institute, Argonne, IL 60439 (United States); Pletnev, Sergei, E-mail: vzpletnev@gmail.com [National Cancer Institute, Argonne, IL 60439 (United States); SAIC-Frederick, Argonne, IL 60439 (United States); Russian Academy of Sciences, Moscow (Russian Federation)

    2013-09-01

    The crystal structure of the novel red emitting fluorescent protein from lancelet Branchiostoma lanceolatum (Chordata) revealed an unusual five residues cyclic unit comprising Gly58-Tyr59-Gly60 chromophore, the following Phe61 and Tyr62 covalently bound to chromophore Tyr59. A key property of proteins of the green fluorescent protein (GFP) family is their ability to form a chromophore group by post-translational modifications of internal amino acids, e.g. Ser65-Tyr66-Gly67 in GFP from the jellyfish Aequorea victoria (Cnidaria). Numerous structural studies have demonstrated that the green GFP-like chromophore represents the ‘core’ structure, which can be extended in red-shifted proteins owing to modifications of the protein backbone at the first chromophore-forming position. Here, the three-dimensional structures of green laGFP (λ{sub ex}/λ{sub em} = 502/511 nm) and red laRFP (λ{sub ex}/λ{sub em} ≃ 521/592 nm), which are fluorescent proteins (FPs) from the lancelet Branchiostoma lanceolatum (Chordata), were determined together with the structure of a red variant laRFP-ΔS83 (deletion of Ser83) with improved folding. Lancelet FPs are evolutionarily distant and share only ∼20% sequence identity with cnidarian FPs, which have been extensively characterized and widely used as genetically encoded probes. The structure of red-emitting laRFP revealed three exceptional features that have not been observed in wild-type fluorescent proteins from Cnidaria reported to date: (i) an unusual chromophore-forming sequence Gly58-Tyr59-Gly60, (ii) the presence of Gln211 at the position of the conserved catalytic Glu (Glu222 in Aequorea GFP), which proved to be crucial for chromophore formation, and (iii) the absence of modifications typical of known red chromophores and the presence of an extremely unusual covalent bond between the Tyr59 C{sup β} atom and the hydroxyl of the proximal Tyr62. The impact of this covalent bond on the red emission and the large Stokes shift (

  15. A Heterobimetallic Complex With an Unsupported Uranium(III)-Aluminum(I) Bond: (CpSiMe3)3U-AlCp* (Cp* = C5Me5)

    Energy Technology Data Exchange (ETDEWEB)

    Minasian, Stefan; Krinsky Ph.D., Jamin; Williams, Valerie; Arnold Ph.D., John

    2008-07-23

    The discovery of molecular metal-metal bonds has been of fundamental importance to the understanding of chemical bonding. For the actinides, examples of unsupported metal-metal bonds are relatively uncommon, consisting of Cp{sub 3}U-SnPh{sub 3}, and several actinide-transition metal complexes. Traditionally, bonding in the f-elements has been described as electrostatic; however, elucidating the degree of covalency is a subject of recent research. In carbon monoxide complexes of the trivalent uranium metallocenes, decreased {nu}{sub CO} values relative to free CO suggest that the U(III) atom acts as a {pi}-donor. Ephritikhine and coworkers have demonstrated that {pi}-accepting ligands can differentiate trivalent lanthanide and actinide ions, an effect that renders this chemistry of interest in the context of nuclear waste separation technology.

  16. Covalently bound conjugates of albumin and heparin: Synthesis, fractionation and characterization

    NARCIS (Netherlands)

    Hennink, Wim E.; Feijen, Jan; Ebert, Charles D.; Kim, Sung Wan

    1983-01-01

    Covalently bound conjugates of human serum albumin and heparin were prepared as compounds which could improve the blood-compatibility of polymer surfaces either by preadsorption or by covalent coupling of the conjugates onto blood contacting surfaces. The conjugates (10–16 weight % of heparin) were

  17. Ionothermal Synthesis, Structure, and Bonding of the Catena -Heteropolycation 1 ∞ [Sb 2 Se 2 ] +

    KAUST Repository

    Groh, Matthias F.

    2015-01-26

    The reaction of antimony and selenium in the Lewis-acidic ionic liquid 1-butyl-3-methyl-imidazolium tetrachloridoaluminate, [BMIm]Cl•4.7AlCl3, yielded dark-red crystals of [Sb2Se2]AlCl4. The formation starts above 160 ° C; at about 190 ° C, irreversible decomposition takes place. The compound crystallizes in the triclinic space group P 1¯ with a = 919.39(2) pm, b = 1137.92(3) pm, c = 1152.30(3) pm, α = 68.047(1)° , β = 78.115(1)° , γ = 72.530(1)° , and Z = 4. The structure is similar to that of [Sb2Te2]AlCl4 but has only half the number of crystallographically independent atoms. Polycationic chains 1∞ [Sb2Se2]+ form a pseudo-hexagonal arrangement along [011¯] ], which is interlaced by tetrahedral AlCl4 - groups. The catena-heteropolycation 1∞ [Sb2Se2]+ is a sequence of three different four-membered [Sb2Se2 ] rings. The chemical bonding scheme, established from the topological analysis of the real-space bonding indicator ELI-D, includes significantly polar covalent bonding in four-member rings withinthepolycation.Theringsareconnectedintoaninfinitechainbyhomonuclear non-polar Sb-Sb bonds and highly polar Sb-Se bonds. Half of the selenium atoms are three-bonded.

  18. Covalently Immobilised Cytochrome C Imaged by In Situ Scanning Tunnelling Microscopy

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Olesen, Klaus G.; Danilov, Alexey I.

    1997-01-01

    In situ scanning tunnelling microscopy (STM) imaging of cytochrome c (cyt c) on polycrystalline Pt surfaces and on Au(lll) was achieved first by covalent immobilisation of 3-aminopropyltriethoxysilane (3-APTS) brought to react with oxide present on the Pt surfaces. Covalently bound 3-APTS forms...

  19. Gold nanoparticles physicochemically bonded onto tungsten disulfide nanosheet edges exhibit augmented plasmon damping

    Science.gov (United States)

    Forcherio, Gregory T.; Dunklin, Jeremy R.; Backes, Claudia; Vaynzof, Yana; Benamara, Mourad; Roper, D. Keith

    2017-07-01

    Augmented plasmonic damping of dipole-resonant gold (Au) nanoparticles (NP) physicochemically bonded onto edges of tungsten disulfide (WS2) nanosheets, ostensibly due to hot electron injection, is quantified using electron energy loss spectroscopy (EELS). EELS allows single-particle spatial resolution. A measured 0.23 eV bandwidth expansion of the localized surface plasmon resonance upon covalent bonding of 20 nm AuNP to WS2 edges was deemed significant by Welch's t-test. Approximately 0.19 eV of the measured 0.23 eV expansion went beyond conventional radiative and nonradiative damping mechanisms according to discrete dipole models, ostensibly indicating emergence of hot electron transport from AuNP into the WS2. A quantum efficiency of up to 11±5% spanning a 7 fs transfer process across the optimized AuNP-TMD ohmic junction is conservatively calculated. Putative hot electron transport for AuNP physicochemically bonded to TMD edges exceeded that for AuNP physically deposited onto the TMD basal plane. This arose from contributions due to (i) direct physicochemical bond between AuNP and WS2; (ii) AuNP deposition at TMD edge sites; and (iii) lower intrinsic Schottky barrier. This improves understanding of photo-induced doping of TMD by metal NP which could benefit emerging catalytic and optoelectronic applications.

  20. Use of Functionalized Carbon Nanotubes for Covalent Attachment of Nanotubes to Silicon

    Science.gov (United States)

    Tour, James M.; Dyke, Christopher A.; Maya, Francisco; Stewart, Michael P.; Chen, Bo; Flatt, Austen K.

    2012-01-01

    The purpose of the invention is to covalently attach functionalized carbon nanotubes to silicon. This step allows for the introduction of carbon nanotubes onto all manner of silicon surfaces, and thereby introduction of carbon nano - tubes covalently into silicon-based devices, onto silicon particles, and onto silicon surfaces. Single-walled carbon nanotubes (SWNTs) dispersed as individuals in surfactant were functionalized. The nano - tube was first treated with 4-t-butylbenzenediazonium tetrafluoroborate to give increased solubility to the carbon nanotube; the second group attached to the sidewall of the nanotube has a silyl-protected terminal alkyne that is de-protected in situ. This gives a soluble carbon nanotube that has functional groups appended to the sidewall that can be attached covalently to silicon. This reaction was monitored by UV/vis/NJR to assure direct covalent functionalization.

  1. Trigermanides AEGe{sub 3} (AE = Ca, Sr, Ba). Chemical bonding and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rodrigo; Schnelle, Walter; Baranov, Alexey I.; Burkhardt, Ulrich; Bobnar, Matej; Cardoso-Gil, Raul; Schwarz, Ulrich; Grin, Yuri [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany)

    2016-08-01

    The crystal structures of the trigermanides AEGe{sub 3}(tI32) (AE = Ca, Sr, Ba; space group I4/mmm, for SrGe{sub 3}: a = 7.7873(1), c = 12.0622(3) Aa) comprise Ge{sub 2} dumbbells forming layered Ge substructures which enclose embedded AE atoms. The chemical bonding analysis by application of the electron localizability approach reveals a substantial charge transfer from the AE atoms to the germanium substructure. The bonding within the dumbbells is of the covalent two-center type. A detailed analysis of SrGe{sub 3} reveals that the interaction on the bond-opposite side of the Ge{sub 2} groups is not lone pair-like - as it would be expected from the Zintl-like interpretation of the crystal structure with anionic Ge layers separated by alkaline-earth cations - but multi-center strongly polar between the Ge{sub 2} dumbbells and the adjacent metal atoms. Similar atomic interactions are present in CaGe{sub 3} and BaGe{sub 3}. The variation of the alkaline-earth metal has a merely insignificant influence on the superconducting transition temperatures in the s,p-electron compounds AEGe{sub 3}.

  2. Love and attachment: the psychobiology of social bonding.

    Science.gov (United States)

    Stein, Dan J; Vythilingum, Bavanisha

    2009-05-01

    Basic animal studies and human imaging studies have contributed to our understanding of the psychobiology of love and attachment. There are overlaps and distinctions in the neuronal circuitry of maternal love, romantic love, and long-term attachment. In these circuits, important molecules, which have been demonstrated to play a role in the psychobiology of social bonding include dopamine, serotonin, opioids, oxytocin, and vasopressin. Particular genetic and environmental variations contribute to social-bonding phenotypes, consistent with an evolutionary perspective on the value of these behaviors. Advances in the psychobiology of social bonds have led to hypotheses about the pharmacotherapy of disorders of attachment.

  3. Superconductivity and the magnetic electron bond

    International Nuclear Information System (INIS)

    Szurek, P.

    1989-01-01

    The concept of the magnetic electron bond as the fundamental characteristic of superconductivity was first introduced during a presentation at the 1988 Winter Annual Meeting of the American Society of Mechanical Engineers. Postulates describing the role of the electron and the magnetic bond were suggested to explain in a consistent manner known observations. What may becoming clear is that a boundary set of conditions may exist above and below the transition temperature at which a material superconducts. Prior to recent history, scientists have concentrated on postulating, experimenting, and learning about the set of conditions that exist above the transition temperature, which has set the standard for todays quantum theory. Above the transition temperature they have learned about the interrelationships that exist between the electron, a small magnetic and negatively charged body, and the nucleus, a large positively charged body. By grouping common general characteristics due to the interaction between the outer shell electrons and the nucleus of different elements, three bond types have been established, covalent, ionic, and metallic. They may now be in the process of determining those conditions that lie below the transition temperature, a realm where charge effects may no longer dominate magnetic effects. This may involve updating the quantum theory to reflect those conditions that exist above and below the transition temperature. The following discussion reviews, updates, and attempts to answer some preliminary questions regarding postulates that may define some of the conditions that lie below the transition temperature. As an introduction, figure 1 depicts what may occur to loosely held outer shell electrons below the transition temperature due to increased inner electron shielding. 7 refs., 9 figs

  4. Kinetics of rapid covalent bond formation of aniline with humic acid: ESR investigations with nitroxide spin labels

    Science.gov (United States)

    Glinka, Kevin; Matthies, Michael; Theiling, Marius; Hideg, Kalman; Steinhoff, Heinz-Jürgen

    2016-04-01

    Sulfonamide antibiotics used in livestock farming are distributed to farmland by application of slurry as fertilizer. Previous work suggests rapid covalent binding of the aniline moiety to humic acids found in soil. In the current work, kinetics of this binding were measured in X-band EPR spectroscopy by incubating Leonardite humic acid (LHA) with a paramagnetic aniline spin label (anilino-NO (2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-oxyl)). Binding was detected by a pronounced broadening of the spectral lines after incubation of LHA with anilino-NO. The time evolution of the amplitude of this feature was used for determining the reaction kinetics. Single- and double-exponential models were fitted to the data obtained for modelling one or two first-order reactions. Reaction rates of 0.16 min-1 and 0.012 min-1, were found respectively. Addition of laccase peroxidase did not change the kinetics but significantly enhanced the reacting fraction of anilino-NO. This EPR-based method provides a technically simple and effective method for following rapid binding processes of a xenobiotic substance to humic acids.

  5. Green coconut fiber: a novel carrier for the immobilization of commercial laccase by covalent attachment for textile dyes decolourization.

    Science.gov (United States)

    Cristóvão, Raquel O; Silvério, Sara C; Tavares, Ana P M; Brígida, Ana Iraidy S; Loureiro, José M; Boaventura, Rui A R; Macedo, Eugénia A; Coelho, Maria Alice Z

    2012-09-01

    Commercial laccase formulation was immobilized on modified green coconut fiber silanized with 3-glycidoxypropyltrimethoxysilane, aiming to achieve a cheap and effective biocatalyst. Two different strategies were followed: one point (pH 7.0) and multipoint (pH 10.0) covalent attachment. The influence of immobilization time on enzymatic activity and the final reduction with sodium borohydride were evaluated. The highest activities were achieved after 2 h of contact time in all situations. Commercial laccase immobilized at pH 7.0 was found to have higher activity and higher affinity to the substrate. However, the immobilization by multipoint covalent attachment improved the biocatalyst thermal stability at 50 °C, when compared to soluble enzyme and to the immobilized enzyme at pH 7.0. The Schiff's bases reduction by sodium borohydride, in spite of causing a decrease in enzyme activity, showed to contribute to the increase of operational stability through bonds stabilization. Finally, these immobilized enzymes showed high efficiency in the continuous decolourization of reactive textile dyes. In the first cycle, the decolourization is mainly due to dyes adsorption on the support. However, when working in successive cycles, the adsorption capacity of the support decreases (saturation) and the enzymatic action increases, indicating the applicability of this biocatalyst for textile wastewater treatment.

  6. Chemial Bond and Stability of Adsorption of[Au(AsS3)]2- on the Surface of Kaolinite

    Institute of Scientific and Technical Information of China (English)

    MIN Xin-min; CHEN Yun; HONG Han-lie

    2004-01-01

    Density function theory and discrete variation method (DFT-DVM) were used to study the adsorption of [Au(AsS3 ) ]2- on the surface of kaolinite. The correlation among structure, chemical bond and stability was discussed. Several models were selected with [ Au( AsS3 ) ]2- in different directions and sites. The resultsshow that the models with gold on the edge of kaolinite basal layer contain pincerlike bond among gold and severaloxygen atoms and form strong Au - O covalent bond, so these models are more stable than those with gold aboveor under the layer. The models with gold near to [ AlO2(OH)4 ] octahedra are more stable than those with goldnear to the vacancy without aluminium. These two stable tendencies in kaolinite- [ Au( AsS3 ) ]2- are stronger thanthat in kaolinite-Au systems. The interaction between [ Au( AsS3 ) ]2- and kaolinite is stronger than that betweengold and kaolinite, and this interaction is strong enough to form the surface complexes.

  7. Amino-Functionalized Multiwalled Carbon Nanotubes Lead to Successful Ring-Opening Polymerization of Poly(ε-caprolactone): Enhanced Interfacial Bonding and Optimized Mechanical Properties.

    Science.gov (United States)

    Roumeli, Eleftheria; Papageorgiou, Dimitrios G; Tsanaktsis, Vasilios; Terzopoulou, Zoe; Chrissafis, Konstantinos; Avgeropoulos, Apostolos; Bikiaris, Dimitrios N

    2015-06-03

    In this work, the synthesis, structural characteristics, interfacial bonding, and mechanical properties of poly(ε-caprolactone) (PCL) nanocomposites with small amounts (0.5, 1.0, and 2.5 wt %) of amino-functionalized multiwalled carbon nanotubes (f-MWCNTs) prepared by ring-opening polymerization (ROP) are reported. This method allows the creation of a covalent-bonding zone on the surface of nanotubes, which leads to efficient debundling and therefore satisfactory dispersion and effective load transfer in the nanocomposites. The high covalent grafting extent combined with the higher crystallinity provide the basis for a significant enhancement of the mechanical properties, which was detected in the composites with up to 1 wt % f-MWCNTs. Increasing filler concentration encourages intrinsic aggregation forces, which allow only minor grafting efficiency and poorer dispersion and hence inferior mechanical performance. f-MWCNTs also cause a significant improvement on the polymerization reaction of PCL. Indeed, the in situ polymerization kinetics studies reveal a significant decrease in the reaction temperature, by a factor of 30-40 °C, combined with accelerated the reaction kinetics during initiation and propagation and a drastically reduced effective activation energy.

  8. Local structure and influence of bonding on the phase-change behavior of the chalcogenide compounds K{sub 1-} {sub x} Rb {sub x} Sb{sub 5}S{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, J B [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Chrissafis, K [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Petkov, V [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Malliakas, C D [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Bilc, D [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Kyratsi, Th [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Paraskevopoulos, K M [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Mahanti, S D [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Torbruegge, T [Institut fuer Physikalische Chemie, Westf. Wilhelms-Universitaet Muenster (Germany); Eckert, H [Institut fuer Physikalische Chemie, Westf. Wilhelms-Universitaet Muenster (Germany); Kanatzidis, M.G. [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States)], E-mail: m-kanatzidis@northwestern.edu

    2007-02-15

    KSb{sub 5}S{sub 8} and its solid solution analogs with Rb and Tl were found to exhibit a reversible and tunable glass{sup {yields}}crystal{sup {yields}}glass phase transition. Selected members of this series were analyzed by differential scanning calorimetry to measure the effect of the substitution on the thermal properties. The solid solutions K{sub 1-} {sub x} Rb {sub x} Sb{sub 5}S{sub 8} exhibited clear deviations in melting and crystallization behavior and temperatures from the parent structure. The crystallization process of the glassy KSb{sub 5}S{sub 8} as a function of temperature could clearly be followed with Raman spectroscopy. The thermal conductivity of both glassy and crystalline KSb{sub 5}S{sub 8} at room temperature is {approx}0.40 W/m K, among the lowest known values for any dense solid-state material. Electronic band structure calculations carried out on KSb{sub 5}S{sub 8} and TlSb{sub 5}S{sub 8} show the presence of large indirect band-gaps and confirm the coexistence of covalent Sb-S bonding and predominantly ionic K(Tl)...S bonding. Pair distribution function analyses based on total X-ray scattering data on both crystalline and glassy K{sub 1-} {sub x} Rb {sub x} Sb{sub 5}S{sub 8} showed that the basic structure-defining unit is the same and it involves a distorted polyhedron of 'SbS{sub 7}' fragment of {approx}7 A diameter. The similarity of local structure between the glassy and crystalline phases accounts for the facile crystallization rate in this system. - Graphical abstract: The KSb{sub 5}S{sub 8} is a good example of a phase-change material with a mixed ionic/covalent bonding. The members of the K{sub 1-} {sub x} Rb {sub x} Sb{sub 5}S{sub 8} series exhibit phase-change properties with greater glass forming ability (GFA) than KSb{sub 5}S{sub 8}. The GFA increases with increasing Rb content. In this case, the random alloy disorder in the alkali metal sublattice seems to predominate over the increased degree of ionicity in going from K

  9. Mutual influence between triel bond and cation-π interactions: an ab initio study

    Science.gov (United States)

    Esrafili, Mehdi D.; Mousavian, Parisasadat

    2017-12-01

    Using ab initio calculations, the cooperative and solvent effects on cation-π and B...N interactions are studied in some model ternary complexes, where these interactions coexist. The nature of the interactions and the mechanism of cooperativity are investigated by means of quantum theory of atoms in molecules (QTAIM), noncovalent interaction (NCI) index and natural bond orbital analysis. The results indicate that all cation-π and B...N binding distances in the ternary complexes are shorter than those of corresponding binary systems. The QTAIM analysis reveals that ternary complexes have higher electron density at their bond critical points relative to the corresponding binary complexes. In addition, according to the QTAIM analysis, the formation of cation-π interaction increases covalency of B...N bonds. The NCI analysis indicates that the cooperative effects in the ternary complexes make a shift in the location of the spike associated with each interaction, which can be regarded as an evidence for the reinforcement of both cation-π and B...N interactions in these systems. Solvent effects on the cooperativity of cation-π and B...N interactions are also investigated.

  10. The covalent effect on the energy levels of d3 ions in tetragonal compounds

    International Nuclear Information System (INIS)

    Li, Dong-Yang; Du, Mao-Lu

    2015-01-01

    For d 3 ions in covalent compounds with tetragonal symmetry, this paper presents a complete energy matrix, in which the different covalence of t 2 and e orbitals is considered not only in the electrostatic repulsions part of energy matrix elements but also in the crystal-field potential part of energy matrix elements. With taking and no taking the crystal field parameter B 00 0 into account, the effect of covalence on the energy levels of d 3 ions system were investigated, respectively. The investigation shows that it is very necessary for considering the different covalence of t 2 and e orbitals in both electrostatic repulsions part and crystal-field potential part when the optical properties of d 3 ions in strong covalent compounds with tetragonal symmetry is investigated. On the other hand, the crystal field parameter B 00 0 has a significant effect on the energy levels, and should be considered in investigations of d 3 ions in strong covalent compounds with tetragonal symmetry. Application to calculating the energy levels for Co 2+ in CdGa 2 Se 4 , the calculated results are in agreement with the experiment data

  11. Bonding in scandium monosulfide a NaCl crystal type

    International Nuclear Information System (INIS)

    Merrick, J.A.

    1980-08-01

    The transition temperature of an order-disorder transition in Sc 0 81 S (R anti 3m to Fm3m) occurs at 700 0 C. A group of ordered sublattices on the NaCl-type lattice (Fm3m) was generated and a Madelung energy and configurational entropy were calculated for each sublattice assuming the ions to be Sc 2 48+ and S 2- . Mean field and pair interaction approximations were used to model long-range and short-range orderings, respectively. The electrostatic model fails to predict the observed short-range and long-range orderings. The high temperature vaporization of ScP was investigated by mass spectrometry and target collection Knudsen effusion at 1767 to 2209K. The composition ScP 1 00 vaporizes congruently to the gaseous species Sc, P, and P 2 . A temperature independent third law enthalpy of atomization (ΔH 0 /sub atom,298/ = 252.2 +- 2.8 kcal mole -1 ) has a value approx. 12 kcal larger than that reported for ScS. Nonrelativistic, nonself-consistent LAPW band structure calculations are reported for ScS. XPS and UPS measurements are reported for Sc 2 S 3 and several compositions Sc/sub 1-x/S (0.0 less than or equal to x less than or equal to 0.2). The Sc and S 2p binding energies (XPS) obtained for the defect scandium monosulfides are very close to those found in the pure elements, suggesting covalent bonding. The Sc 2p energy region has an interesting satellite structure

  12. A binderless, covalently bulk modified electrochemical sensor: Application to simultaneous determination of lead and cadmium at trace level

    Energy Technology Data Exchange (ETDEWEB)

    Gunigollahalli Kempegowda, Raghu [Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore 560001 (India); Malingappa, Pandurangappa, E-mail: mprangachem@gmail.com [Department of Studies in Chemistry, Bangalore University, Central College Campus, Bangalore 560001 (India)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer Proposed sensor is a new type of binderless covalent bulk modified electrode. Black-Right-Pointing-Pointer Surface can be easily renewed by simple mechanical polishing using emery sheets. Black-Right-Pointing-Pointer Free from modifier leaching during electrochemical measurements. Black-Right-Pointing-Pointer Provides long term storage stability with good reproducibility. Black-Right-Pointing-Pointer Nanomolar level detection limit achieved with selectivity. - Abstract: A new type of covalent binderless bulk modified electrode has been fabricated and used in the simultaneous determination of lead and cadmium ions at nanomolar level. The modification of graphitic carbon with 4-amino salicylic acid was carried out under microwave irradiation through the amide bond formation. The electrochemical behavior of the fabricated electrode has been carried out to decipher the interacting ability of the functional moieties present on the modifier molecules toward the simultaneous determination of Pb{sup 2+} and Cd{sup 2+} ions using cyclic and differential pulse anodic stripping voltammetry. The possible mode of interaction of functional groups with metal ions is proposed based on the pKa values of the modifier functionalities present on the surface of graphitic carbon particles. The analytical utility of the proposed sensor has been validated by measuring the lead and cadmium content from pretreated waste water samples of lead acid batteries.

  13. Chemical bonding analysis for solid-state systems using intrinsic oriented quasiatomic minimal-basis-set orbitals

    International Nuclear Information System (INIS)

    Yao, Y.X.; Wang, C.Z.; Ho, K.M.

    2010-01-01

    A chemical bonding scheme is presented for the analysis of solid-state systems. The scheme is based on the intrinsic oriented quasiatomic minimal-basis-set orbitals (IO-QUAMBOs) previously developed by Ivanic and Ruedenberg for molecular systems. In the solid-state scheme, IO-QUAMBOs are generated by a unitary transformation of the quasiatomic orbitals located at each site of the system with the criteria of maximizing the sum of the fourth power of interatomic orbital bond order. Possible bonding and antibonding characters are indicated by the single particle matrix elements, and can be further examined by the projected density of states. We demonstrate the method by applications to graphene and (6,0) zigzag carbon nanotube. The oriented-orbital scheme automatically describes the system in terms of sp 2 hybridization. The effect of curvature on the electronic structure of the zigzag carbon nanotube is also manifested in the deformation of the intrinsic oriented orbitals as well as a breaking of symmetry leading to nonzero single particle density matrix elements. In an additional study, the analysis is performed on the Al 3 V compound. The main covalent bonding characters are identified in a straightforward way without resorting to the symmetry analysis. Our method provides a general way for chemical bonding analysis of ab initio electronic structure calculations with any type of basis sets.

  14. Structure and bonding in compounds containing the NpO2+ and NpO22+ ions

    International Nuclear Information System (INIS)

    Musikas, C.; Burns, J.H.

    1975-01-01

    Studies of oxo cations of Np(V) and Np(VI) were made on single crystals using X-ray diffraction and spectroscopic methods. Quantitative measurements of the geometry of the triatomic ion and its uranyl(VI) analog made it possible to assess the effects on bond lengths of the nature of equatorial secondary bonds, the change in valence from V to VI, and the actinide contraction. Absorption spectra showed marked changes in the solid state compared to the same ion in solution, especially anisotropy with crystal orientation (dichroism). The compounds analyzed were Na 4 NpO 2 (O 2 ) 3 .9H 2 O, Na 4 UO 2 (O 2 ) 3 .9H 2 O, K 4 NpO 2 (CO 3 ) 3 , and BaNpO 2 (H 3 C 2 O 2 ).2H 2 O. All actinyl ions were found to be linear. The largest difference in M=O bond lengths is between 1.776 in the compound having the relatively weak secondary linkage to carbonate, and 1.843 A in which the peroxide forms much stronger covalent bonds. Between compounds identical except for change of U to Np the M=O bond length contracts by only about 0.01 A. However an elongation of about 0.11A is observed when neptunium(VI) is reduced to neptunium(V) without change in the equatorial ligand. (U.S.)

  15. Covalent biofunctionalization of silicon nitride surfaces

    NARCIS (Netherlands)

    Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E.J.R.; Schroën, C.G.P.H.; White, R.G.; Li Yang,; Linford, M.R.; Zuilhof, H.

    2007-01-01

    Covalently attached organic monolayers on etched silicon nitride (SixN4; x 3) surfaces were prepared by reaction of SixN4-coated wafers with neat or solutions of 1-alkenes and 1-alkynes in refluxing mesitylene. The surface modification was monitored by measurement of the static water contact angle,

  16. [Anorexia and borderline personality disorder : bonds pathology].

    Science.gov (United States)

    Cayn, Delphine; Pham-Scottez, Alexandra

    Comorbidity with a borderline personality disorder is far from rare in patients suffering from eating disorders. Clinically, this presents as chronic instability in many areas: interpersonal relationships, self-image, emotions, mood and acting out. Treatment is mainly based on a containing and reassuring therapeutic framework. A care plan may be put in place that incorporates reducing impulsive harmful, eating and self-harming behaviours. Dialectical behaviour therapy is intended in particular to prevent suicide risk in borderline personality disorder patients. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Gold nanoparticles physicochemically bonded onto tungsten disulfide nanosheet edges exhibit augmented plasmon damping

    Directory of Open Access Journals (Sweden)

    Gregory T. Forcherio

    2017-07-01

    Full Text Available Augmented plasmonic damping of dipole-resonant gold (Au nanoparticles (NP physicochemically bonded onto edges of tungsten disulfide (WS2 nanosheets, ostensibly due to hot electron injection, is quantified using electron energy loss spectroscopy (EELS. EELS allows single-particle spatial resolution. A measured 0.23 eV bandwidth expansion of the localized surface plasmon resonance upon covalent bonding of 20 nm AuNP to WS2 edges was deemed significant by Welch’s t-test. Approximately 0.19 eV of the measured 0.23 eV expansion went beyond conventional radiative and nonradiative damping mechanisms according to discrete dipole models, ostensibly indicating emergence of hot electron transport from AuNP into the WS2. A quantum efficiency of up to 11±5% spanning a 7 fs transfer process across the optimized AuNP-TMD ohmic junction is conservatively calculated. Putative hot electron transport for AuNP physicochemically bonded to TMD edges exceeded that for AuNP physically deposited onto the TMD basal plane. This arose from contributions due to (i direct physicochemical bond between AuNP and WS2; (ii AuNP deposition at TMD edge sites; and (iii lower intrinsic Schottky barrier. This improves understanding of photo-induced doping of TMD by metal NP which could benefit emerging catalytic and optoelectronic applications.

  18. Covalent-ionically cross-linked polyetheretherketone proton exchange membrane for direct methanol fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2010-08-01

    Full Text Available cross-linked PEEK-WC membrane, this covalent-ionically cross-linked PEEK-WC membrane exhibits extremely reduced water uptake and methanol permeability, but just slightly sacrificed proton conductivity. The proton conductivity of the covalent...

  19. A Computational and Theoretical Study of Conductance in Hydrogen-bonded Molecular Junctions

    Science.gov (United States)

    Wimmer, Michael

    This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano-junctions between molecular electronic devices and biological systems. This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junction significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction. In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH˙˙˙O, OH˙˙˙O, and NH˙˙˙N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has focused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance descriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular description of conductance that is not based on the conventional view of molecular orbitals as

  20. Bond breaking and bond making in tetraoxygen: analysis of the O2(X3Sigma(g)-) + O2(X3Sigma(g)-) O4 reaction using the electron pair localization function.

    Science.gov (United States)

    Scemama, Anthony; Caffarel, Michel; Ramírez-Solís, Alejandro

    2009-08-06

    We study the nature of the electron pairing at the most important critical points of the singlet potential energy surface of the 2O2 O4 reaction and its evolution along the reaction coordinate using the electron pair localization function (EPLF) [Scemama, A.; Chaquin, P.; Caffarel, M. J. Chem. Phys. 2004, 121, 1725]. To do that, the 3D topology of the EPLF calculated with quantum Monte Carlo (at both variational and fixed-node-diffusion Monte Carlo levels) using Hartree-Fock, multiconfigurational CASSCF, and explicitly correlated trial wave functions is analyzed. At the O4 equilibrium geometry the EPLF analysis reveals four equivalent covalent bonds and two lone pairs on each oxygen atom. Along the reaction path toward dissociation it is found that the two oxygen-oxygen bonds are not broken simultaneously but sequentially, and then the lone pairs are rearranged. In a more general perspective, the usefulness of the EPLF as a unique tool to analyze the topology of electron pairing in nontrivial chemical bonding situations as well as to visualize the major steps involved in chemical reactivity is emphasized. In contrast with most standard schemes to reveal electron localization (atoms in molecules, electron localization function, natural bond orbital, etc.), the newly introduced EPLF function gives a direct access to electron pairings in molecules.

  1. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes

    KAUST Repository

    Li, Yang; Tu, Xingchen; Wang, Minglang; Wang, Hao; Sanvito, Stefano; Hou, Shimin

    2014-01-01

    © 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green's function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  2. Microscopic mechanism of electron transfer through the hydrogen bonds between carboxylated alkanethiol molecules connected to gold electrodes

    KAUST Repository

    Li, Yang

    2014-11-07

    © 2014 AIP Publishing LLC. The atomic structure and the electron transfer properties of hydrogen bonds formed between two carboxylated alkanethiol molecules connected to gold electrodes are investigated by employing the non-equilibrium Green\\'s function formalism combined with density functional theory. Three types of molecular junctions are constructed, in which one carboxyl alkanethiol molecule contains two methylene, -CH2, groups and the other one is composed of one, two, or three -CH2 groups. Our calculations show that, similarly to the cases of isolated carboxylic acid dimers, in these molecular junctions the two carboxyl, -COOH, groups form two H-bonds resulting in a cyclic structure. When self-interaction corrections are explicitly considered, the calculated transmission coefficients of these three H-bonded molecular junctions at the Fermi level are in good agreement with the experimental values. The analysis of the projected density of states confirms that the covalent Au-S bonds localized at the molecule-electrode interfaces and the electronic coupling between -COOH and S dominate the low-bias junction conductance. Following the increase of the number of the -CH2 groups, the coupling between -COOH and S decreases deeply. As a result, the junction conductance decays rapidly as the length of the H-bonded molecules increases. These findings not only provide an explanation to the observed distance dependence of the electron transfer properties of H-bonds, but also help the design of molecular devices constructed through H-bonds.

  3. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    Science.gov (United States)

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  4. Predominantly ligand guided non-covalently linked assemblies of ...

    Indian Academy of Sciences (India)

    JUBARAJ B BARUAH

    2018-05-12

    May 12, 2018 ... Abstract. Various non-covalently linked inorganic self-assemblies formed by the supramolecular interacting .... metal-organic frameworks.59 Inorganic chemists rou- ...... two-dimensional organic–inorganic layered perovskite.

  5. Molecular Level Design Principle behind Optimal Sizes of Photosynthetic LH2 Complex: Taming Disorder through Cooperation of Hydrogen Bonding and Quantum Delocalization.

    Science.gov (United States)

    Jang, Seogjoo; Rivera, Eva; Montemayor, Daniel

    2015-03-19

    The light harvesting 2 (LH2) antenna complex from purple photosynthetic bacteria is an efficient natural excitation energy carrier with well-known symmetric structure, but the molecular level design principle governing its structure-function relationship is unknown. Our all-atomistic simulations of nonnatural analogues of LH2 as well as those of a natural LH2 suggest that nonnatural sizes of LH2-like complexes could be built. However, stable and consistent hydrogen bonding (HB) between bacteriochlorophyll and the protein is shown to be possible only near naturally occurring sizes, leading to significantly smaller disorder than for nonnatural ones. Extensive quantum calculations of intercomplex exciton transfer dynamics, sampled for a large set of disorder, reveal that taming the negative effect of disorder through a reliable HB as well as quantum delocalization of the exciton is a critical mechanism that makes LH2 highly functional, which also explains why the natural sizes of LH2 are indeed optimal.

  6. Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration

    KAUST Repository

    Gadwal, Ikhlas

    2018-04-06

    We demonstrated here a novel and facile synthesis of two-dimensional (2D) covalent organic thin film with pore size around 1.5 nm using a planar, amphiphilic and substituted heptacyclic truxene based triamine and a simple dialdehyde as building blocks by dynamic imine bond formation at the air/water interface using Langmuir–Blodgett (LB) method. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM), all unanimously showed the formation of large, molecularly thin and free-standing membrane that can be easily transferred on different substrate surfaces. The 2D membrane supported on a porous polysulfone showed a rejection rate of 64 and 71% for NaCl and MgSO4, respectively, and a clear molecular sieving at molecular size around 1.3 nm, which demonstrated a great potential in the application of pretreatment of seawater desalination and separation of organic molecules.

  7. The psychopathology of James Bond and its implications for the revision of the DSM-(00)7.

    Science.gov (United States)

    Alrutz, Anna Stowe; Kool, Bridget; Robinson, Tom; Moyes, Simon; Huggard, Peter; Hoare, Karen; Arroll, Bruce

    2015-12-14

    To develop a more concise, user-friendly edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM). The DSM advisory board is probably already hard at work on the DSM-6, so this study is focused on the DSM-(00)7 edition. We conducted an observational study, using a mixed methods approach to analyse the 50th edition boxset of James Bond experiences. James Bond was selected as a suitably complex subject for the basis of a trial of simplifying the DSM. Researchers' televisions and computers from late January to mid-April in Auckland, New Zealand. Following a review of the 23 James Bond video observations, we identified 32 extreme behaviours exhibited by the subject; these could be aggregated into 13 key domains. A Delphi process identified a cluster of eight behaviours that comprise the Bond Adequacy Disorder (BAD). A novel screening scale was then developed, the Bond Additive Descriptors of Anti-Sociality Scale (BADASS), with a binary diagnostic outcome, BAD v Normality Disorder. We propose that these new diagnoses be adopted as the foundation of the DSM-(00)7. The proposed DSM-(00)7 has benefits for both patients and clinicians. Patients will experience reduced stigma, as most individuals will meet the criteria for Normality Disorder. This parsimonious diagnostic approach will also mean clinicians have more time to focus on patient management.

  8. X-ray study of chemical bonding in actinides(IV) and lanthanides(III) hexa-cyanoferrates

    International Nuclear Information System (INIS)

    Dumas, T.

    2011-01-01

    Bimetallic cyanide molecular solids derived from Prussian blue are well known to foster long-range magnetic ordering and show an intense inter-valence charge transfer band resulting from an exchange interaction through the cyanide-bridge. For those reasons the ferrocyanide and ferricyanide building blocks have been chosen to study electronic delocalization and covalent character in actinide bonding using an experimental and theoretical approach based on X-ray absorption spectroscopy. In 2001, the actinide (IV) and early lanthanides (III) hexacyanoferrate have been found by powder X-ray diffraction to be isostructural (hexagonal, P6 3 /m group). Here, extended X-ray Absorption Fine Structure (EXAFS) at the iron K-edge and actinide L 3 -edge have been undertaken to probe the local environment of both actinides and iron cations. In an effort to describe the cyano bridge, a double edge fitting procedure including both iron and actinide edges and based on multiple scattering approach has been developed. We have also investigated the electronic properties of these molecular solids. Low energy electronic transitions have been used iron L 2,3 edge, nitrogen and carbon K-edge and also actinides N 4,5 edge to directly probe the valence molecular orbitals of the complex. Using a phenomenological approach, a clear distinctive behaviour between actinides and lanthanides has been shown. Then a theoretical approach using quantum chemistry calculation has shown more specifically the effect of covalency in the actinide-ferrocyanide bond. More specifically, π interactions were underlined by both theoretical and experimental methods. Finally, in agreement with the ionic character of the lanthanide bonding no inter-valence charge transfer has been observed in the corresponding optical spectra of these compounds. On the contrary, optical spectra for actinides adducts (except for thorium) show an intense inter-valence charge transfer band like in the transition metal cases which is

  9. Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation.

    Science.gov (United States)

    Greenwood, John; Phan, Thanh Hai; Fujita, Yasuhiko; Li, Zhi; Ivasenko, Oleksandr; Vanderlinden, Willem; Van Gorp, Hans; Frederickx, Wout; Lu, Gang; Tahara, Kazukuni; Tobe, Yoshito; Uji-I, Hiroshi; Mertens, Stijn F L; De Feyter, Steven

    2015-05-26

    We shine light on the covalent modification of graphite and graphene substrates using diazonium chemistry under ambient conditions. We report on the nature of the chemical modification of these graphitic substrates, the relation between molecular structure and film morphology, and the impact of the covalent modification on the properties of the substrates, as revealed by local microscopy and spectroscopy techniques and electrochemistry. By careful selection of the reagents and optimizing reaction conditions, a high density of covalently grafted molecules is obtained, a result that is demonstrated in an unprecedented way by scanning tunneling microscopy (STM) under ambient conditions. With nanomanipulation, i.e., nanoshaving using STM, surface structuring and functionalization at the nanoscale is achieved. This manipulation leads to the removal of the covalently anchored molecules, regenerating pristine sp(2) hybridized graphene or graphite patches, as proven by space-resolved Raman microscopy and molecular self-assembly studies.

  10. Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress

    International Nuclear Information System (INIS)

    Bhattacharya, Somesh Kr; Tanaka, Shingo; Kohyama, Masanori; Shiihara, Yoshinori

    2013-01-01

    We present first-principle calculations on symmetric tilt grain boundaries (GBs) in bcc Fe. Using density functional theory (DFT), we studied the structural, electronic and magnetic properties of Σ3(111) and Σ11(332) GBs formed by rotation around the [110] axis. The optimized structures, GB energies and GB excess free volumes are consistent with previous DFT and classical simulation studies. The GB configurations can be interpreted by the structural unit model as given by Nakashima and Takeuchi (2000 ISIJ 86 357). Both the GBs are composed of similar structural units of three- and five-membered rings with different densities at the interface according to the rotation angle. The interface atoms with larger atomic volumes reveal higher magnetic moments than the bulk value, while the interface atoms with shorter bond lengths have reduced magnetic moments in each GB. The charge density and local density of states reveal that the interface bonds with short bond lengths have more covalent nature, where minority-spin electrons play a dominant role as the typical nature of ferromagnetic Fe. In order to understand the structural stability of these GBs, we calculated the local energy and local stress for each atomic region using the scheme of Shiihara et al (2010 Phys. Rev. B 81 075441). In each GB, the interface atoms with larger atomic volumes and enhanced magnetic moments reveal larger local energy increase and tensile stress. The interface atoms constituting more covalent-like bonds with reduced magnetic moments have lower local energy increase, contributing to the stabilization, while compressive stress is generated at these atoms. The relative stability between the two GBs can be understood by the local energies at the structural units. The local energy and local stress analysis is a powerful tool to investigate the structural properties of GBs based on the behavior of valence electrons. (paper)

  11. Covalent attachment of cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) to poly(etheretherketone) surface by tailored silanization layers technique

    International Nuclear Information System (INIS)

    Zheng, Yanyan; Xiong, Chengdong; Li, Xiaoyu; Zhang, Lifang

    2014-01-01

    Highlights: • The carbonyl groups on PEEK surface were effectively reduced to hydroxyl groups using sodium borohydride. • Silanization layers technique was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on hydroxylation-pretreated PEEK sheet surface by covalent chemical attachment. • XPS, surface profiler and water contact angle measurements proved the presence of GRGD on PEEK surface. • Osteoblast-like cells (MC3T3-E1) attachment and proliferation were improved effectively on GRGD-modified PEEK surface. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, PEEK is naturally bioinert, leading to limited biomedical applications, especially when a direct bone-implant osteointegration is desired. In this study, a three-step reaction procedure was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on the surface of PEEK sheet by covalent chemical attachment to favor cell adhesion and proliferation. First, hydroxylation-pretreated PEEK surfaces were silanized with 7-Oct-1-enyltrichlorosilane (OETS) in dry cyclohexane, resulting in a silanization layer with terminal ethenyl. Second, the terminal ethylenic double bonds of the silanization layer on PEEK surface were converted to carboxyl groups through acidic potassium manganate oxidation. Finally, GRGD was covalently attached by carbodiimide mediated condensation between the carboxyl on PEEK surface and amine presents in GRGD. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, surface profiler and water contact angle measurements were applied to characterize the modified surfaces. The effect of cells attachment and proliferation on each specimen was investigated. Pre-osteoblast cells (MC3T3-E1) attachment, spreading and proliferation

  12. Covalent attachment of cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) to poly(etheretherketone) surface by tailored silanization layers technique

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2014-11-30

    Highlights: • The carbonyl groups on PEEK surface were effectively reduced to hydroxyl groups using sodium borohydride. • Silanization layers technique was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on hydroxylation-pretreated PEEK sheet surface by covalent chemical attachment. • XPS, surface profiler and water contact angle measurements proved the presence of GRGD on PEEK surface. • Osteoblast-like cells (MC3T3-E1) attachment and proliferation were improved effectively on GRGD-modified PEEK surface. - Abstract: Poly(etheretherketone) (PEEK) is a rigid semicrystalline polymer that combines excellent mechanical properties, broad chemical resistance and bone-like stiffness and is widely used in biomedical fields. However, PEEK is naturally bioinert, leading to limited biomedical applications, especially when a direct bone-implant osteointegration is desired. In this study, a three-step reaction procedure was employed to immobilize the cell-adhesive peptide Gly-Arg-Gly-Asp (GRGD) on the surface of PEEK sheet by covalent chemical attachment to favor cell adhesion and proliferation. First, hydroxylation-pretreated PEEK surfaces were silanized with 7-Oct-1-enyltrichlorosilane (OETS) in dry cyclohexane, resulting in a silanization layer with terminal ethenyl. Second, the terminal ethylenic double bonds of the silanization layer on PEEK surface were converted to carboxyl groups through acidic potassium manganate oxidation. Finally, GRGD was covalently attached by carbodiimide mediated condensation between the carboxyl on PEEK surface and amine presents in GRGD. X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, surface profiler and water contact angle measurements were applied to characterize the modified surfaces. The effect of cells attachment and proliferation on each specimen was investigated. Pre-osteoblast cells (MC3T3-E1) attachment, spreading and proliferation

  13. Covalent defects restrict supramolecular self-assembly of homopolypeptides: case study of β2-fibrils of poly-L-glutamic acid.

    Directory of Open Access Journals (Sweden)

    Aleksandra Fulara

    Full Text Available Poly-L-glutamic acid (PLGA often serves as a model in studies on amyloid fibrils and conformational transitions in proteins, and as a precursor for synthetic biomaterials. Aggregation of PLGA chains and formation of amyloid-like fibrils was shown to continue on higher levels of superstructural self-assembly coinciding with the appearance of so-called β2-sheet conformation manifesting in dramatic redshift of infrared amide I' band below 1600 cm(-1. This spectral hallmark has been attributed to network of bifurcated hydrogen bonds coupling C = O and N-D (N-H groups of the main chains to glutamate side chains. However, other authors reported that, under essentially identical conditions, PLGA forms the conventional in terms of infrared characteristics β1-sheet structure (exciton-split amide I' band with peaks at ca. 1616 and 1683 cm(-1. Here we attempt to shed light on this discrepancy by studying the effect of increasing concentration of intentionally induced defects in PLGA on the tendency to form β1/β2-type aggregates using infrared spectroscopy. We have employed carbodiimide-mediated covalent modification of Glu side chains with n-butylamine (NBA, as well as electrostatics-driven inclusion of polylysine chains, as two different ways to trigger structural defects in PLGA. Our study depicts a clear correlation between concentration of defects in PLGA and increasing tendency to depart from the β2-structure toward the one less demanding in terms of chemical uniformity of side chains: β1-structure. The varying predisposition to form β1- or β2-type aggregates assessed by infrared absorption was compared with the degree of morphological order observed in electron microscopy images. Our results are discussed in the context of latent covalent defects in homopolypeptides (especially with side chains capable of hydrogen-bonding that could obscure their actual propensities to adopt different conformations, and limit applications in the field of

  14. Covalent Defects Restrict Supramolecular Self-Assembly of Homopolypeptides: Case Study of β2-Fibrils of Poly-L-Glutamic Acid

    Science.gov (United States)

    Fulara, Aleksandra; Hernik, Agnieszka; Nieznańska, Hanna; Dzwolak, Wojciech

    2014-01-01

    Poly-L-glutamic acid (PLGA) often serves as a model in studies on amyloid fibrils and conformational transitions in proteins, and as a precursor for synthetic biomaterials. Aggregation of PLGA chains and formation of amyloid-like fibrils was shown to continue on higher levels of superstructural self-assembly coinciding with the appearance of so-called β2-sheet conformation manifesting in dramatic redshift of infrared amide I′ band below 1600 cm−1. This spectral hallmark has been attributed to network of bifurcated hydrogen bonds coupling C = O and N-D (N-H) groups of the main chains to glutamate side chains. However, other authors reported that, under essentially identical conditions, PLGA forms the conventional in terms of infrared characteristics β1-sheet structure (exciton-split amide I′ band with peaks at ca. 1616 and 1683 cm−1). Here we attempt to shed light on this discrepancy by studying the effect of increasing concentration of intentionally induced defects in PLGA on the tendency to form β1/β2-type aggregates using infrared spectroscopy. We have employed carbodiimide-mediated covalent modification of Glu side chains with n-butylamine (NBA), as well as electrostatics-driven inclusion of polylysine chains, as two different ways to trigger structural defects in PLGA. Our study depicts a clear correlation between concentration of defects in PLGA and increasing tendency to depart from the β2-structure toward the one less demanding in terms of chemical uniformity of side chains: β1-structure. The varying predisposition to form β1- or β2-type aggregates assessed by infrared absorption was compared with the degree of morphological order observed in electron microscopy images. Our results are discussed in the context of latent covalent defects in homopolypeptides (especially with side chains capable of hydrogen-bonding) that could obscure their actual propensities to adopt different conformations, and limit applications in the field of synthetic

  15. Ampicillin-Ester Bonded Branched Polymers: Characterization, Cyto-, Genotoxicity and Controlled Drug-Release Behaviour

    Directory of Open Access Journals (Sweden)

    Ewa Oledzka

    2014-06-01

    Full Text Available The development and characterization of novel macromolecular conjugates of ampicillin using branched biodegradable polymers has been described in this study. The conjugates have been prepared coupling the β-lactam antibiotic with branched polymer matrices based on the natural oligopeptide core. The cyto- and genotoxicity of the synthesized polymers were evaluated with a bacterial luminescence test, two protozoan assays and Salmonella typhimurium TA1535. The presence of a newly formed covalent bond between the drug and the polymer matrices was confirmed by 1H-NMR and FTIR studies. A drug content (15.6 and 10.2 mole % in the macromolecular conjugates has been determined. The obtained macromolecular products have been subjected to further in vitro release studies. The total percentage of ampicillin released after 21 days of incubation was nearly 60% and 14% and this resulted from the different physicochemical properties of the polymeric matrices. This is the first report on the application of branched biodegradable polymeric matrices for the covalent conjugation of ampicillin. The obtained results showed that the synthesized macromolecular drug-conjugates might slowly release the active drug molecule and improve the pharmacokinetics of ampicillin.

  16. Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox.

    Science.gov (United States)

    Zhang, Xi; Huang, Yongli; Ma, Zengsheng; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Jiang, Qing; Sun, Chang Q

    2014-11-14

    The Mpemba paradox, that is, hotter water freezes faster than colder water, has baffled thinkers like Francis Bacon, René Descartes, and Aristotle since B.C. 350. However, a commonly accepted understanding or theoretical reproduction of this effect remains challenging. Numerical reproduction of observations, shown herewith, confirms that water skin supersolidity [Zhang et al., Phys. Chem. Chem. Phys., DOI: ] enhances the local thermal diffusivity favoring heat flowing outwardly in the liquid path. Analysis of experimental database reveals that the hydrogen bond (O:H-O) possesses memory to emit energy at a rate depending on its initial storage. Unlike other usual materials that lengthen and soften all bonds when they absorb thermal energy, water performs abnormally under heating to lengthen the O:H nonbond and shorten the H-O covalent bond through inter-oxygen Coulomb coupling [Sun et al., J. Phys. Chem. Lett., 2013, 4, 3238]. Cooling does the opposite to release energy, like releasing a coupled pair of bungees, at a rate of history dependence. Being sensitive to the source volume, skin radiation, and the drain temperature, the Mpemba effect proceeds only in the strictly non-adiabatic 'source-path-drain' cycling system for the heat "emission-conduction-dissipation" dynamics with a relaxation time that drops exponentially with the rise of the initial temperature of the liquid source.

  17. Covalently bound molecular states in beryllium and carbon isotopes

    International Nuclear Information System (INIS)

    Wolfram von, Oertzen; Hans-Gerhard, Bohlen; Wolfram von, Oertzen

    2003-01-01

    Nuclear clustering in N=Z nuclei has been studied since many decades. States close to the decay thresholds, as described by the Ikeda diagram, are of particular interest. Recent studies in loosely bound systems, as observed with neutron-rich nuclei has revived the interest in cluster structures in nuclei, with additional valence neutrons, which give rise to pronounced covalent molecular structures. The Beryllium isotopes represent the first example of such unique states in nuclear physics with extreme deformations. In the deformed shell model these are referred to as super- and hyper-deformation. These states can be described explicitly by molecular concepts, with neutrons in covalent binding orbits. Examples of recent experiments performed at the HMI-Berlin demonstrating the molecular structure of the rotational bands in Beryllium isotopes are presented. Further work on chain states (nuclear polymers) in the carbon isotopes is in progress, these are the first examples of deformed structures in nuclei with an axis ratio of 3:1. A threshold diagram with clusters bound via neutrons in covalent molecular configurations can be established, which can serve as a guideline for future work. (authors)

  18. Crystallographic Studies Evidencing the High Energy Tolerance to Disrupting the Interface Disulfide Bond of Thioredoxin 1 from White Leg Shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Adam A. Campos-Acevedo

    2014-12-01

    Full Text Available Thioredoxin (Trx is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Å2. This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx.

  19. Crystallographic studies evidencing the high energy tolerance to disrupting the interface disulfide bond of thioredoxin 1 from white leg shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Campos-Acevedo, Adam A; Rudiño-Piñera, Enrique

    2014-12-15

    Thioredoxin (Trx) is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx) revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Å2). This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx.

  20. High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds.

    Science.gov (United States)

    Luo, Wen; Feng, Yiyu; Qin, Chengqun; Li, Man; Li, Shipei; Cao, Chen; Long, Peng; Liu, Enzuo; Hu, Wenping; Yoshino, Katsumi; Feng, Wei

    2015-10-21

    An important method for establishing a high-energy, stable and recycled molecular solar heat system is by designing and preparing novel photo-isomerizable molecules with a high enthalpy and a long thermal life by controlling molecular interactions. A meta- and ortho-bis-substituted azobenzene chromophore (AZO) is covalently grafted onto reduced graphene oxide (RGO) for solar thermal storage materials. High grafting degree and close-packed molecules enable intermolecular hydrogen bonds (H-bonds) for both trans-(E) and cis-(Z) isomers of AZO on the surface of nanosheets, resulting in a dramatic increase in enthalpy and lifetime. The metastable Z-form of AZO on RGO is thermally stabilized with a half-life of 52 days by steric hindrance and intermolecular H-bonds calculated using density functional theory (DFT). The AZO-RGO fuel shows a high storage capacity of 138 Wh kg(-1) by optimizing intermolecular H-bonds with a good cycling stability for 50 cycles induced by visible light at 520 nm. Our work opens up a new method for making advanced molecular solar thermal storage materials by tuning molecular interactions on a nano-template.

  1. Covalent Bonding of Thermoplastics to Rubbers for Printable, Reel-to-Reel Processing in Soft Robotics and Microfluidics.

    Science.gov (United States)

    Taylor, Jay M; Perez-Toralla, Karla; Aispuro, Ruby; Morin, Stephen A

    2018-02-01

    The lamination of mechanically stiff structures to elastic materials is prevalent in biological systems and popular in many emerging synthetic systems, such as soft robotics, microfluidics, stretchable electronics, and pop-up assemblies. The disparate mechanical and chemical properties of these materials have made it challenging to develop universal synthetic procedures capable of reliably adhering to these classes of materials together. Herein, a simple and scalable procedure is described that is capable of covalently laminating a variety of commodity ("off-the-shelf") thermoplastic sheets to silicone rubber films. When combined with laser printing, the nonbonding sites can be "printed" onto the thermoplastic sheets, enabling the direct fabrication of microfluidic systems for actuation and liquid handling applications. The versatility of this approach in generating thin, multifunctional laminates is demonstrated through the fabrication of milliscale soft actuators and grippers with hinged articulation and microfluidic channels with built-in optical filtering and pressure-dependent geometries. This method of fabrication offers several advantages, including technical simplicity, process scalability, design versatility, and material diversity. The concepts and strategies presented herein are broadly applicable to the soft robotics, microfluidics, and advanced and additive manufacturing communities where hybrid rubber/plastic structures are prevalent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spectral intensities and bonding parameters for some praseodymium(III) and neodymium(III) complexes with benzimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, P C; Ojha, C K; Mittal, S; Joshi, G K

    1988-09-01

    The electronic spectral intensity parameters (Judd-Ofelt; Tsub(lambda)) calculated from absorption spectral data for the complexes of praseodymium(III) and neodymium(III) nitrates with benzimidazole and 2-methyl-, 2-ethyl- and 2-n-propyl-benzimidazoles are reported. The conductance of these derivatives in dimethylformamide suggests 1:1 electrolytic nature. The infrared spectral data indicate the presence of Csub(2v) as well Dsub(2h)-nitrate ions in the complexes. The correlation of the intensity of hypersensitive transitions with bonding (nephelauxetic ratio and degree of covalency) parameters are also reported. (author). 13 refs., 2 tables.

  3. Influence of disorder on localization and density of states in amorphous carbon nitride thin films systems rich in π-bonded carbon atoms

    International Nuclear Information System (INIS)

    Alibart, F.; Lejeune, M.; Durand Drouhin, O.; Zellama, K.; Benlahsen, M.

    2010-01-01

    We discuss in this paper the evolution of both the density of states (DOS) located between the band-tail states and the DOS around the Fermi level N(E F ) in amorphous carbon nitride films (a-CN x ) as a function of the total nitrogen partial pressure ratio in the Ar/N 2 plasma mixture. The films were deposited by three different deposition techniques and their microstructure was characterized using a combination of infrared and Raman spectroscopy and optical transmission experiments, completed with electrical conductivity measurements, as a function of temperature. The observed changes in the optoelectronic properties are attributed to the modification in the atomic bonding structures, which were induced by N incorporation, accompanied by an increase in the sp 2 carbon bonding configurations and their relative disorder. The electrical conductivity variation was interpreted in terms of local effects on the nature and energy distribution of π and π* states.

  4. Evolution of the chemical bonding nature and electrode activity of indium selenide upon the composite formation with graphene nanosheets

    International Nuclear Information System (INIS)

    Oh, Seung Mi; Lee, Eunsil; Adpakpang, Kanyaporn; Patil, Sharad B.; Park, Mi Jin; Lim, Young Soo; Lee, Kyu Hyoung; Kim, Jong-Young; Hwang, Seong-Ju

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • In 4 Se 2.85 @graphene nanocomposite is easily prepared by high energy mechanical milling process. • The bond covalency of In 4 Se 2.85 is notably changed upon the composite formation with graphene. • In 4 Se 2.85 @graphene nanocomposite shows promising anode performance for lithium ion battery. -- Abstract: Evolution of the chemical bonding nature and electrochemical activity of indium selenide upon the composite formation with carbon species is systematically investigated. Nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black are synthesized via a solid state reaction between In and Se elements, and the following high energy mechanical milling of In 4 Se 2.85 with graphene and carbon-black, respectively. The high energy mechanical milling (HEMM) of In 4 Se 2.85 with carbon species gives rise to a decrease of particle size with a significant depression of the crystallinity of In 4 Se 2.85 phase. In contrast to the composite formation with carbon-black, that with graphene induces a notable decrease of (In−Se) bond covalency, underscoring significant chemical interaction between graphene and In 4 Se 2.85 . Both the nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black show much better anode performance for lithium ion batteries with larger discharge capacity and better cyclability than does the pristine In 4 Se 2.85 material, indicating the beneficial effect of composite formation on the electrochemical activity of indium selenide. Between the present nanocomposites, the electrode performance of the In 4 Se 2.85 @graphene nanocomposite is superior to that of the In 4 Se 2.85 @carbon-black nanocomposite, which is attributable to the weakening of (In−Se) bonds upon the composite formation with graphene as well as to the better mixing between In 4 Se 2.85 and graphene. The present study clearly demonstrates that the composite formation with graphene has strong influence

  5. A perfluorinated covalent triazine-based framework for highly selective and water-tolerant CO2 capture

    KAUST Repository

    Zhao, Yunfeng

    2013-01-01

    We designed and synthesized a perfluorinated covalent triazine-based framework (FCTF-1) for selective CO2 capture. The incorporation of fluorine (F) groups played multiple roles in improving the framework\\'s CO 2 adsorption and separation capabilities. Thermodynamically, the strongly polar C-F bonds promoted CO2 adsorption via electrostatic interactions, especially at low pressures. FCTF-1\\'s CO2 uptake was 1.76 mmol g-1 at 273 K and 0.1 bar through equilibrium adsorption, exceeding the CO2 adsorption capacity of any reported porous organic polymers to date. In addition, incorporating F groups produced a significant amount of ultra-micropores (<0.5 nm), which offered not only high gas adsorption potential but also kinetic selectivity for CO2-N 2 separation. In mixed-gas breakthrough experiments, FCTF-1 exhibited an exceptional CO2-N2 selectivity of 77 under kinetic flow conditions, much higher than the selectivity (31) predicted from single-gas equilibrium adsorption data. Moreover, FCTF-1 proved to be tolerant to water and its CO2 capture performance remained excellent when there was moisture in the gas mixture, due to the hydrophobic nature of the C-F bonds. In addition, the moderate adsorbate-adsorbent interaction allowed it to be fully regenerated by pressure swing adsorption processes. These attributes make FCTF-1 a promising sorbent for CO2 capture from flue gas. © 2013 The Royal Society of Chemistry.

  6. Halogen Bonding Involving CO and CS with Carbon as the Electron Donor

    Directory of Open Access Journals (Sweden)

    Janet E. Del Bene

    2017-11-01

    Full Text Available MP2/aug’-cc-pVTZ calculations have been carried out to investigate the halogen-bonded complexes formed when CO and CS act as electron-pair donors through C to ClF, ClNC, ClCl, ClOH, ClCN, ClCCH, and ClNH2. CO forms only complexes stabilized by traditional halogen bonds, and all ClY molecules form traditional halogen-bonded complexes with SC, except ClF which forms only an ion-pair complex. Ion-pair complexes are also found on the SC:ClNC and SC:ClCl surfaces. SC:ClY complexes stabilized by traditional halogen bonds have greater binding energies than the corresponding OC:ClY complexes. The largest binding energies are found for the ion-pair SC–Cl+:−Y complexes. The transition structures which connect the complex and the ion pair on SC:ClNC and SC:ClCl potential surfaces provide the barriers for inter-converting these structures. Charge-transfer from the lone pair on C to the σ-hole on Cl is the primary charge-transfer interaction stabilizing OC:ClY and SC:ClY complexes with traditional halogen bonds. A secondary charge-transfer occurs from the lone pairs on Cl to the in-plane and out-of-plane π antibonding orbitals of ClY. This secondary interaction assumes increased importance in the SC:ClNH2 complex, and is a factor leading to its unusual structure. C–O and C–S stretching frequencies and 13C chemical shieldings increase upon complex formation with ClY molecules. These two spectroscopic properties clearly differentiate between SC:ClY complexes and SC–Cl+:−Y ion pairs. Spin–spin coupling constants 1xJ(C–Cl for OC:ClY complexes increase with decreasing distance. As a function of the C–Cl distance, 1xJ(C–Cl and 1J(C–Cl provide a fingerprint of the evolution of the halogen bond from a traditional halogen bond in the complexes, to a chlorine-shared halogen bond in the transition structures, to a covalent bond in the ion pairs.

  7. Spectroscopic Studies of a Three-dimensional, Five-coordinated Copper(Ⅱ) Complex via Hydrogen Bonds: [Cu(PDA)(H2O)2](H2PDA=Pyridine-2,6-dicarboxylic Acid)

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new copper(Ⅱ) complex [Cu(PDA)(H2O)2] was synthesized and its structure was determined. Cu(Ⅱ) is five-coordinated in a tetragonal pyramid geometry. The two coordinating water molecules are different and the two Cu-O bond lengths differ by nearly 0.02 nm. The whole crystal is linked to form a three-dimensional network by means of hydrogen bonds. The X-band ESR spectrum shows three different g tensors with a well-resolved hyperfine structure in the gz signal, giving the ESR parameters gx=2.05, gy=2.065 and gz=2.29. The covalency of the coordinate bonds and the deviation from tetragonal pyramid geometry for the complex are discussed based on the ESR spectra.

  8. Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives.

    Science.gov (United States)

    Goins, Christopher M; Dajnowicz, Steven; Thanna, Sandeep; Sucheck, Steven J; Parks, Jerry M; Ronning, Donald R

    2017-05-12

    Previous studies identified ebselen as a potent in vitro and in vivo inhibitor of the Mycobacterium tuberculosis (Mtb) antigen 85 (Ag85) complex, comprising three homologous enzymes required for the biosynthesis of the mycobacterial cell wall. In this study, the Mtb Ag85C enzyme was cocrystallized with azido and adamantyl ebselen derivatives, resulting in two crystallographic structures of 2.01 and 1.30 Å resolution, respectively. Both structures displayed the anticipated covalent modification of the solvent accessible, noncatalytic Cys209 residue forming a selenenylsulfide bond. Continuous difference density for both thiol modifiers allowed for the assessment of interactions that influence ebselen binding and inhibitor orientation that were unobserved in previous Ag85C ebselen structures. The k inact /K I values for ebselen, adamantyl ebselen, and azido ebselen support the importance of observed constructive chemical interactions with Arg239 for increased in vitro efficacy toward Ag85C. To better understand the in vitro kinetic properties of these ebselen derivatives, the energetics of specific protein-inhibitor interactions and relative reaction free energies were calculated for ebselen and both derivatives using density functional theory. These studies further support the different in vitro properties of ebselen and two select ebselen derivatives from our previously published ebselen library with respect to kinetics and protein-inhibitor interactions. In both structures, the α9 helix was displaced farther from the enzyme active site than the previous Ag85C ebselen structure, resulting in the restructuring of a connecting loop and imparting a conformational change to residues believed to play a role in substrate binding specific to Ag85C. These notable structural changes directly affect protein stability, reducing the overall melting temperature by up to 14.5 °C, resulting in the unfolding of protein at physiological temperatures. Additionally, this structural

  9. Covalent modification of platelet proteins by palmitate

    International Nuclear Information System (INIS)

    Muszbek, L.; Laposata, M.

    1989-01-01

    Covalent attachment of fatty acid to proteins plays an important role in association of certain proteins with hydrophobic membrane structures. In platelets, the structure of many membrane glycoproteins (GPs) has been examined in detail, but the question of fatty acid acylation of platelet proteins has not been addressed. In this study, we wished to determine (a) whether platelet proteins could be fatty acid acylated; and, if so, (b) whether these modified proteins were present in isolated platelet membranes and cytoskeletal fractions; and (c) if the pattern of fatty acid acylated proteins changed on stimulation of the platelets with the agonist thrombin. We observed that in platelets allowed to incorporate 3H-palmitate, a small percentage (1.37%) of radioactivity incorporated into the cells became covalently bound to protein. Selective cleavage of thioester, thioester plus O-ester, and amide-linked 3H-fatty acids from proteins, and their subsequent analysis by high-performance liquid chromatography (HPLC) indicated that the greatest part of 3H-fatty acid covalently bound to protein was thioester-linked 3H-palmitate. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography, at least ten major radiolabeled proteins were detected. Activation of platelets by thrombin greatly increased the quantity of 3H-palmitoylated proteins associated with the cytoskeleton. Nearly all radiolabeled proteins were recovered in the membrane fraction, indicating that these proteins are either integral or peripheral membrane proteins or proteins tightly associated to membrane constituents. Components of the GPIIb-IIIa complex were not palmitoylated. Thus, platelet proteins are significantly modified posttranslationally by 3H-palmitate, and incorporation of palmitoylated proteins into the cytoskeleton is a prominent component of the platelet response to thrombin stimulation

  10. Crystal structure of mineral grechishchevite synthetic analogue and Hg-X (X=S, Se, Te) bonds topology in structures of mercury chalcogenhalides

    International Nuclear Information System (INIS)

    Pervukhina, N.V.; Borisov, S.V.; Magarill, S.A.; Naumov, D.Yu.; Vasil'ev, V.I.; Nenashev, B.G.

    2004-01-01

    Structural studies of synthetic analog of mineral grechishchevite Hg 3 S 2 Br 1.00 Cl 0.50 I 0.50 were conducted, the mineral crystal structure was refined, the results of the studies being analyzed. For chalcogenhalides Hg 3 X 2 Hal 2 (X=S, Se, Te; Hal=Cl, Br, I) inventory was taken of intergrowing isolated and infinite, i.e. continuous, layered and carcass, covalently bonded Hg-X-radicals into pseudocubical matrix from halide ions [ru

  11. Covalent Crosslinking of Porous Poly(Ionic Liquid) Membrane via a Triazine Network

    OpenAIRE

    Täuber, Karoline; Dani, Alessandro; Yuan, Jiayin

    2017-01-01

    Porous poly(ionic liquid) membranes that were prepared via electrostatic cross-linking were subsequently covalently cross-linked via formation of a 1,3,5-triazine network. The additional covalent cross-links do not affect the pore size and pore size distribution of the membranes and stabilize them towards salt solutions of high ionic strength, enabling the membranes to work in a broader environmental window.

  12. Inorganic Materials as Supports for Covalent Enzyme Immobilization: Methods and Mechanisms

    Directory of Open Access Journals (Sweden)

    Paolo Zucca

    2014-09-01

    Full Text Available Several inorganic materials are potentially suitable for enzymatic covalent immobilization, by means of several different techniques. Such materials must meet stringent criteria to be suitable as solid matrices: complete insolubility in water, reasonable mechanical strength and chemical resistance under the operational conditions, the capability to form manageable particles with high surface area, reactivity towards derivatizing/functionalizing agents. Non-specific protein adsorption should be always considered when planning covalent immobilization on inorganic solids. A huge mass of experimental work has shown that silica, silicates, borosilicates and aluminosilicates, alumina, titania, and other oxides, are the materials of choice when attempting enzyme immobilizations on inorganic supports. More recently, some forms of elemental carbon, silicon, and certain metals have been also proposed for certain applications. With regard to the derivatization/functionalization techniques, the use of organosilanes through silanization is undoubtedly the most studied and the most applied, although inorganic bridge formation and acylation with selected acyl halides have been deeply studied. In the present article, the most common inorganic supports for covalent immobilization of the enzymes are reviewed, with particular focus on their advantages and disadvantages in terms of enzyme loadings, operational stability, undesired adsorption, and costs. Mechanisms and methods for covalent immobilization are also discussed, focusing on the most widespread activating approaches (such as glutaraldehyde, cyanogen bromide, divinylsulfone, carbodiimides, carbonyldiimidazole, sulfonyl chlorides, chlorocarbonates, N-hydroxysuccinimides.

  13. Perovskite BaBiO3 Transformed Layered BaBiO2.5 Crystals Featuring Unusual Chemical Bonding and Luminescence.

    Science.gov (United States)

    Li, Hong; Zhao, Qing; Liu, Bo-Mei; Zhang, Jun-Ying; Li, Zhi-Yong; Guo, Shao-Qiang; Ma, Ju-Ping; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Zheng, Li-Rong; Sun, Hong-Tao

    2018-04-14

    Engineering oxygen coordination environments of cations in oxides has received intense interest thanks to the opportunities for the discovery of novel oxides with unusual properties. Here we present the successful synthesis of stoichiometric layered BaBiO2.5 enabled by a non-topotactic phase transformation of perovskite BaBiO3. By analysing the synchrotron X-ray diffraction data using the maximum entropy method/Rietveld technique, we find that Bi forms unusual chemical bondings with four oxygen atoms, featuring one ionic bonding and three covalent bondings that results in an asymmetric coordination geometry. A broad range of photophysical characterizations reveal that this peculiar structure shows near-infrared luminescence differing from conventional Bi-bearing systems. Experimental and theoretical results lead us to propose the excitonic nature of luminescence. Our work highlights that synthesizing materials with uncommon Bi-O bonding and Bi coordination geometry provides a pathway to the discovery of systems with new functionalities. We envisage that this work could inspire interest for the exploration of a range of materials containing heavier p-block elements, offering prospects for the finding of systems with unusual properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Construction of covalently coupled, concatameric dimers of 7TM receptors

    DEFF Research Database (Denmark)

    Terpager, Marie; Scholl, D Jason; Kubale, Valentina

    2009-01-01

    -Ala repeats flanked by flexible spacers and positively charged residues to ensure correct inside-out orientation plus an extracellular HA-tag to construct covalently coupled dimers of 7TM receptors. Such 15 TM concatameric homo- and heterodimers of the beta(2)-adrenergic and the NK(1) receptors, which...... for either of the protomers, which was not observed upon simple coexpression of the two receptors. It is concluded that covalently joined 7TM receptor dimers with surprisingly normal receptor properties can be constructed with use of an artificial transmembrane connector, which perhaps can be used to fuse...

  15. Combination of computational methods, adsorption isotherms and selectivity tests for the conception of a mixed non-covalent-semi-covalent molecularly imprinted polymer of vanillin.

    Science.gov (United States)

    Puzio, Kinga; Delépée, Raphaël; Vidal, Richard; Agrofoglio, Luigi A

    2013-08-06

    A novel molecularly imprinted polymer (MIP) for vanillin was prepared by photo initiated polymerization in dichloromethane using a mixed semi-covalent and non-covalent imprinting strategy. Taking polymerisable syringaldehyde as "dummy" template, acrylamide was chosen as functional monomer on B3LYP/6-31+G(d,p) density functional theory computational method basis with counterpoise. The binding parameters for the recognition of vanillin on imprinted polymers were studied with three different isotherm models (Langmuir, bi-Langmuir and Langmuir-Freundlich) and compared. The results indicate an heterogeneity of binding sites. It was found and proved by DFT calculations that the specific binding of vanillin in the cavities is due to non-covalent interactions of the template with the hydroxyphenyl- and the amide-moieties. The binding geometry of vanillin in the MIP cavity was also modelled. The obtained MIP is highly specific for vanillin (with an imprinting factor of 7.4) and was successfully applied to the extraction of vanillin from vanilla pods, red wine spike with vanillin, natural and artificial vanilla sugar with a recovery of 80%. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Dynamic response of a carbon nanotube-based rotary nano device with different carbon-hydrogen bonding layout

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Hang [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Cai, Kun, E-mail: caikun1978@163.com [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Wan, Jing [College of Water Resources and Architectural Engineering, Northwest A& F University, Yangling 712100 (China); Gao, Zhaoliang, E-mail: coopcg@163.com [Institute of Soil and Water Conservation, Northwest A& F University, Yangling, 712100 (China); Chen, Zhen [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The rotational transmission performance of a rotational transmission system (RTS) with different types of C−H bonding layouts on the edge of motor and rotor is investigated using MD simulation method. • The L–J interaction between covalently bonded hydrogen atoms and sp1 carbon atoms is too weak to support a stable rotational transmission when only the motor or rotor has bonded hydrogen atoms. • When both the motor and rotor have the same C−H bonding layout on their adjacent ends, a stable output rotational speed of rotor can be obtained. • A low input rotational speed (e.g., 100 GHz) would lead to a synchronous rotational transmission if the system has (+0.5H) C−H bonding layout. - Abstract: In a nano rotational transmission system (RTS) which consists of a single walled carbon nanotube (SWCNT) as the motor and a coaxially arranged double walled carbon nanotube (DWCNT) as a bearing, the interaction between the motor and the rotor in bearing, which has great effects on the response of the RTS, is determined by their adjacent edges. Using molecular dynamics (MD) simulation, the interaction is analyzed when the adjacent edges have different carbon-hydrogen (C−H) bonding layouts. In the computational models, the rotor in bearing and the motor with a specific input rotational speed are made from the same armchair SWCNT. Simulation results demonstrate that a perfect rotational transmission could happen when the motor and rotor have the same C−H bonding layout on their adjacent ends. If only half or less of the carbon atoms on the adjacent ends are bonded with hydrogen atoms, the strong attraction between the lower speed (100 GHz) motor and rotor leads to a synchronous rotational transmission. If only the motor or the rotor has C−H bonds on their adjacent ends, no rotational transmission happens due to weak interaction between the bonded hydrogen atoms on one end with the sp{sup 1} bonded carbon atoms on the other

  17. Socialization of didactic units for teaching-learning of chemical bond to students of basic course in high school

    Directory of Open Access Journals (Sweden)

    Mercedes Cárdenas-Ojeda

    2016-12-01

    with the complexity this demands. The research is empirical with the constructivist point or view. The test Covalent Bond and its structure was applied as a diagnostic tool to 42 students of Chemistry and Bachelor of Natural Science and Environmental Education of the Universidad Pedagógica y Tecnológica de Colombia, (UPTC the perception of this topic becomes a field that allows to explain the natural phenomena and its accurate explanation allows, on one hand, to avoid the students adapt conceptual mistakes, and on the other, foster meaningful learning in them.

  18. Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).

    Science.gov (United States)

    Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan

    2016-02-01

    The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).

  19. Boride ceramics covalent functionalization and its effect on the thermal conductivity of epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhi-Qiang, E-mail: yuzhiqiang@fudan.edu.cn [Department of Materials Science, Fudan University, 200433 Shanghai (China); Wu, Yicheng [Department of Materials Science, Fudan University, 200433 Shanghai (China); Wei, Bin; Baier, Horst [Institute of Lightweight Structures, Technical University Munich (TUM), Boltzmannstr. 15, D-85747 Garching (Germany)

    2015-08-15

    Zirconium diboride/aluminium oxide (ZrB{sub 2}/Al{sub 2}O{sub 3}) composite particles were functionalized with epoxide functionalized γ-glycidoxypropyltrimethoxysilane by the covalent bonding approach to improve the interfacial compatibility of composite particles in epoxy matrix. The composites of epoxy resin filled with functionalized ZrB{sub 2}/Al{sub 2}O{sub 3} were prepared by in situ bulk condensation polymerization of bisphenol A and epichlorohydrin in the presence of ZrB{sub 2}/Al{sub 2}O{sub 3}. The heat-conducting properties of composites were investigated by the finite element method (FEM) and the thermal conductivity test. The finite-element program ANSYS was used for this numerical analysis, and three-dimensional spheres-in-cube lattice array models were built to simulate the microstructure of composite materials for different filler contents. The thermal conductivity of composites was determined by laser flash method (LFA447 Nanoflash), using the measured heat capacity and thermal diffusivity, with separately entered density data. The results show that the effective chemical bonds are formed between ZrB{sub 2}/Al{sub 2}O{sub 3} and γ-glycidoxypropyltrimethoxysilane after the surface functionalization. The interfacial compatibility and bonding of modified particles with the epoxy matrix are improved. The thermal conductivities of functionalized composites with 3 vol% and 5 vol% loading are increased by 8.3% and 12.5% relative to the unmodified composites, respectively. Comparison of experimental values and calculated values of the thermal conductivity, the average relative differences are under 5%. The predictive values of thermal conductivity of epoxy composites are in reasonable agreement with the experimental values. - Highlights: • The surfaces of ZrB{sub 2}/Al{sub 2}O{sub 3} were functionalized by silane coupling agents. • The thermal conductivity (TC) of modified epoxy composites is improved significantly. • The FEM values of TC are in

  20. Covalent microcontact printing of proteins fro cell patterning

    NARCIS (Netherlands)

    Rozkiewicz, D.I.; Kraan, Yvonne M.; Werten, Marc W.T.; de Wolf, Frits A.; Subramaniam, Vinod; Ravoo, B.J.; Reinhoudt, David

    2006-01-01

    We describe a straightforward approach to the covalent immobilization of cytophilic proteins by microcontact printing, which can be used to pattern cells on substrates. Cytophilic proteins are printed in micropatterns on reactive self-assembled monolayers by using imine chemistry. An