WorldWideScience

Sample records for coupling state-of-the-science subsurface

  1. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad; Hoteit, Ibrahim; Valstar, Johan R.

    2013-01-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data

  2. Subsurface Science Program Bibliography, 1985--1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Subsurface Science Program sponsors long-term basic research on (1) the fundamental physical, chemical, and biological mechanisms that control the reactivity, mobilization, stability, and transport of chemical mixtures in subsoils and ground water; (2) hydrogeology, including the hydraulic, microbiological, and geochemical properties of the vadose and saturated zones that control contaminant mobility and stability, including predictive modeling of coupled hydraulic-geochemical-microbial processes; and (3) the microbiology of deep sediments and ground water. TWs research, focused as it is on the natural subsurface environments that are most significantly affected by the more than 40 years of waste generation and disposal at DOE sites, is making important contributions to cleanup of DOE sites. Past DOE waste-disposal practices have resulted in subsurface contamination at DOE sites by unique combinations of radioactive materials and organic and inorganic chemicals (including heavy metals), which make site cleanup particularly difficult. The long- term (10- to 30-year) goal of the Subsurface Science Program is to provide a foundation of fundamental knowledge that can be used to reduce environmental risks and to provide a sound scientific basis for cost-effective cleanup strategies. The Subsurface Science Program is organized into nine interdisciplinary subprograms, or areas of basic research emphasis. The subprograms currently cover the areas of Co-Contaminant Chemistry, Colloids/Biocolloids, Multiphase Fluid Flow, Biodegradation/ Microbial Physiology, Deep Microbiology, Coupled Processes, Field-Scale (Natural Heterogeneity and Scale), and Environmental Science Research Center

  3. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad

    2013-10-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the

  4. Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-03-01

    The subsurface environment, which encompasses the vadose and saturated zones, is a heterogeneous, geologically complex domain. Believed to contain a large percentage of Earth's biomass in the form of microorganisms, the subsurface is a dynamic zone where important biogeochemical cycles work to sustain life. Actively linked to the atmosphere and biosphere through the hydrologic and carbon cycles, the subsurface serves as a storage location for much of Earth's fresh water. Coupled hydrological, microbiological, and geochemical processes occurring within the subsurface environment cause the local and regional natural chemical fluxes that govern water quality. These processes play a vital role in the formation of soil, economically important fossil fuels, mineral deposits, and other natural resources. Cleaning up Department of Energy (DOE) lands impacted by legacy wastes and using the subsurface for carbon sequestration or nuclear waste isolation require a firm understanding of these processes and the documented means to characterize the vertical and spatial distribution of subsurface properties directing water, nutrient, and contaminant flows. This information, along with credible, predictive models that integrate hydrological, microbiological, and geochemical knowledge over a range of scales, is needed to forecast the sustainability of subsurface water systems and to devise ways to manage and manipulate dynamic in situ processes for beneficial outcomes. Predictive models provide the context for knowledge integration. They are the primary tools for forecasting the evolving geochemistry or microbial ecology of groundwater under various scenarios and for assessing and optimizing the potential effectiveness of proposed approaches to carbon sequestration, waste isolation, or environmental remediation. An iterative approach of modeling and experimentation can reveal powerful insights into the behavior of subsurface systems. State-of-science understanding codified

  5. Complex Systems Science for Subsurface Fate and Transport Report from the August 2009 Workshop

    International Nuclear Information System (INIS)

    2010-01-01

    The subsurface environment, which encompasses the vadose and saturated zones, is a heterogeneous, geologically complex domain. Believed to contain a large percentage of Earth's biomass in the form of microorganisms, the subsurface is a dynamic zone where important biogeochemical cycles work to sustain life. Actively linked to the atmosphere and biosphere through the hydrologic and carbon cycles, the subsurface serves as a storage location for much of Earth's fresh water. Coupled hydrological, microbiological, and geochemical processes occurring within the subsurface environment cause the local and regional natural chemical fluxes that govern water quality. These processes play a vital role in the formation of soil, economically important fossil fuels, mineral deposits, and other natural resources. Cleaning up Department of Energy (DOE) lands impacted by legacy wastes and using the subsurface for carbon sequestration or nuclear waste isolation require a firm understanding of these processes and the documented means to characterize the vertical and spatial distribution of subsurface properties directing water, nutrient, and contaminant flows. This information, along with credible, predictive models that integrate hydrological, microbiological, and geochemical knowledge over a range of scales, is needed to forecast the sustainability of subsurface water systems and to devise ways to manage and manipulate dynamic in situ processes for beneficial outcomes. Predictive models provide the context for knowledge integration. They are the primary tools for forecasting the evolving geochemistry or microbial ecology of groundwater under various scenarios and for assessing and optimizing the potential effectiveness of proposed approaches to carbon sequestration, waste isolation, or environmental remediation. An iterative approach of modeling and experimentation can reveal powerful insights into the behavior of subsurface systems. State-of-science understanding codified in models

  6. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  7. COUPLING STATE-OF-THE-SCIENCE SUBSURFACE SIMULATION WITH ADVANCED USER INTERFACE AND PARALLEL VISUALIZATION: SBIR Phase I Final Report

    International Nuclear Information System (INIS)

    Hardeman, B.; Swenson, D.; Finsterle, S.; Zhou, Q.

    2008-01-01

    This is a Phase I report on a project to significantly enhance existing subsurface simulation software using leadership-class computing resources, allowing researchers to solve problems with greater speed and accuracy. Subsurface computer simulation is used for monitoring the behavior of contaminants around nuclear waste disposal and storage areas, groundwater flow, environmental remediation, carbon sequestration, methane hydrate production, and geothermal energy reservoir analysis. The Phase I project was a collaborative effort between Thunderhead Engineering (project lead and developers of a commercial pre- and post-processor for the TOUGH2 simulator) and Lawrence Berkeley National Laboratory (developers of the TOUGH2 simulator for subsurface flow). The Phase I project successfully identified the technical approaches to be implemented in Phase II.

  8. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Heiser, J.; Stewart, W.

    1996-01-01

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification

  9. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    Heiser, J.; Dwyer, B.

    1995-01-01

    The primary objective of this project is to develop and demonstrate a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper will discuss the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration will take place at a cold site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington

  10. Coupled modelling of subsurface water flux for an integrated flood risk management

    Directory of Open Access Journals (Sweden)

    T. Sommer

    2009-07-01

    Full Text Available Flood events cause significant damage not only on the surface but also underground. Infiltration of surface water into soil, flooding through the urban sewer system and, in consequence, rising groundwater are the main causes of subsurface damage. The modelling of flooding events is an important part of flood risk assessment. The processes of subsurface discharge of infiltrated water necessitate coupled modelling tools of both, surface and subsurface water fluxes. Therefore, codes for surface flooding, for discharge in the sewerage system and for groundwater flow were coupled with each other. A coupling software was used to amalgamate the individual programs in terms of mapping between the different model geometries, time synchronization and data exchange. The coupling of the models was realized on two scales in the Saxon capital of Dresden (Germany. As a result of the coupled modelling it could be shown that surface flooding dominates processes of any flood event. Compared to flood simulations without coupled modelling no substantial changes of the surface inundation area could be determined. Regarding sewerage, the comparison between the influx of groundwater into sewerage and the loading due to infiltration by flood water showed infiltration of surface flood water to be the main reason for sewerage overloading. Concurrent rainfalls can intensify the problem. The infiltration of the sewerage system by rising groundwater contributes only marginally to the loading of the sewerage and the distribution of water by sewerage has only local impacts on groundwater rise. However, the localization of risk areas due to rising groundwater requires the consideration of all components of the subsurface water fluxes. The coupled modelling has shown that high groundwater levels are the result of a multi-causal process that occurs before and during the flood event.

  11. EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Gordon E.; Chaka, Anne; Shuh, David K.; Roden, Eric E.; Werth, Charles J.; Hess, Nancy J.; Felmy, Andrew R.; Rosso, Kevin M.; Baer, Donald R.; Bailey, Vanessa L.; Bowden, Mark E.; Grate, Jay W.; Hoyt, David W.; Kuprat, Laura R.; Lea, Alan S.; Mueller, Karl T.; Oostrom, Martinus; Orr, Galya; Pasa-Tolic, Ljiljana; Plata, Charity; Robinson, E. W.; Teller, Raymond G.; Thevuthasan, Suntharampillai; Wang, Hongfei; Wiley, H. S.; Wilkins, Michael J.

    2011-08-01

    This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussions successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells.

  12. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  13. A-TOUGH: A multimedia fluid-flow/energy-transport model for fully- coupled atmospheric-subsurface interactions

    International Nuclear Information System (INIS)

    Montazer, P.; Hammermeister, D.; Ginanni, J.

    1994-01-01

    The long-term effect of changes in atmospheric climatological conditions on subsurface hydrological conditions in the unsaturated zone in and environments is an important factor in defining the performance of a high-level and low-level radioactive waste repositories in geological environment. Computer simulation coupled with paleohydrological studies can be used to understand and quantify the potential impact of future climatological conditions on repository performance. A-TOUGH efficiently simulates (given current state-of-the-art technology) the physical processes involved in the near-surface atmosphere and its effect on subsurface conditions. This efficiency is due to the numerical techniques used in TOUGH and the efficient computational techniques used in V-TOUGH to solve non-linear thermodynamic equations that govern the flux of vapor and energy within subsurface porous and fractured media and between these media and the atmosphere

  14. Full Coupling Between the Atmosphere, Surface, and Subsurface for Integrated Hydrologic Simulation

    Science.gov (United States)

    Davison, Jason Hamilton; Hwang, Hyoun-Tae; Sudicky, Edward A.; Mallia, Derek V.; Lin, John C.

    2018-01-01

    An ever increasing community of earth system modelers is incorporating new physical processes into numerical models. This trend is facilitated by advancements in computational resources, improvements in simulation skill, and the desire to build numerical simulators that represent the water cycle with greater fidelity. In this quest to develop a state-of-the-art water cycle model, we coupled HydroGeoSphere (HGS), a 3-D control-volume finite element surface and variably saturated subsurface flow model that includes evapotranspiration processes, to the Weather Research and Forecasting (WRF) Model, a 3-D finite difference nonhydrostatic mesoscale atmospheric model. The two-way coupled model, referred to as HGS-WRF, exchanges the actual evapotranspiration fluxes and soil saturations calculated by HGS to WRF; conversely, the potential evapotranspiration and precipitation fluxes from WRF are passed to HGS. The flexible HGS-WRF coupling method allows for unique meshes used by each model, while maintaining mass and energy conservation between the domains. Furthermore, the HGS-WRF coupling implements a subtime stepping algorithm to minimize computational expense. As a demonstration of HGS-WRF's capabilities, we applied it to the California Basin and found a strong connection between the depth to the groundwater table and the latent heat fluxes across the land surface.

  15. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    International Nuclear Information System (INIS)

    Wang, Yifeng; Papenguth, Hans W.

    2000-01-01

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation

  16. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    WANG,YIFENG; PAPENGUTH,HANS W.

    2000-05-04

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation.

  17. Coupling of Processes and Data in PennState Integrated Hydrologic Modeling (PIHM) System

    Science.gov (United States)

    Kumar, M.; Duffy, C.

    2007-12-01

    Full physical coupling, "natural" numerical coupling and parsimonious but accurate data coupling is needed to comprehensively and accurately capture the interaction between different components of a hydrologic continuum. Here we present a physically based, spatially distributed hydrologic model that incorporates all the three coupling strategies. Physical coupling of interception, snow melt, transpiration, overland flow, subsurface flow, river flow, macropore based infiltration and stormflow, flow through and over hydraulic structures likes weirs and dams, and evaporation from interception, ground and overland flow is performed. All the physically coupled components are numerically coupled through semi-discrete form of ordinary differential equations, that define each hydrologic process, using Finite-Volume based approach. The fully implicit solution methodology using CVODE solver solves for all the state variables simultaneously at each adaptive time steps thus providing robustness, stability and accuracy. The accurate data coupling is aided by use of constrained unstructured meshes, flexible data model and use of PIHMgis. The spatial adaptivity of decomposed domain and temporal adaptivity of the numerical solver facilitates capture of varied spatio-temporal scales that are inherent in hydrologic process interactions. The implementation of the model has been performed on a meso-scale Little-Juniata Watershed. Model results are validated by comparison of streamflow at multiple locations. We discuss some of the interesting hydrologic interactions between surface, subsurface and atmosphere witnessed during the year long simulation such as a) inverse relationship between evaporation from interception storage and transpiration b) relative influence of forcing (precipitation, temperature and radiation) and source (soil moisture and overland flow) on evaporation c) influence of local topography on gaining, loosing or "flow-through" behavior of river-aquifer interactions

  18. KINETIC CONTROL OF OXIDATION STATE AT THERMODYNAMICALLY BUFFERED POTENTIALS IN SUBSURFACE WATERS

    Science.gov (United States)

    Dissolved oxygen (DO) and organic carbon (Corg) are among the highest- and lowest-potential reactants, respectively, of redox couples in natural waters. When DO and Corg are present in subsurface settings, other couples are drawn toward potentials imposed by them, generating a b...

  19. Patterns in coupled water and energy cycle: Modeling, synthesis with observations, and assessing the subsurface-landsurface interactions

    Science.gov (United States)

    Rahman, A.; Kollet, S. J.; Sulis, M.

    2013-12-01

    In the terrestrial hydrological cycle, the atmosphere and the free groundwater table act as the upper and lower boundary condition, respectively, in the non-linear two-way exchange of mass and energy across the land surface. Identifying and quantifying the interactions among various atmospheric-subsurface-landsurface processes is complicated due to the diverse spatiotemporal scales associated with these processes. In this study, the coupled subsurface-landsurface model ParFlow.CLM was applied over a ~28,000 km2 model domain encompassing the Rur catchment, Germany, to simulate the fluxes of the coupled water and energy cycle. The model was forced by hourly atmospheric data from the COSMO-DE model (numerical weather prediction system of the German Weather Service) over one year. Following a spinup period, the model results were synthesized with observed river discharge, soil moisture, groundwater table depth, temperature, and landsurface energy flux data at different sites in the Rur catchment. It was shown that the model is able to reproduce reasonably the dynamics and also absolute values in observed fluxes and state variables without calibration. The spatiotemporal patterns in simulated water and energy fluxes as well as the interactions were studied using statistical, geostatistical and wavelet transform methods. While spatial patterns in the mass and energy fluxes can be predicted from atmospheric forcing and power law scaling in the transition and winter months, it appears that, in the summer months, the spatial patterns are determined by the spatially correlated variability in groundwater table depth. Continuous wavelet transform techniques were applied to study the variability of the catchment average mass and energy fluxes at varying time scales. From this analysis, the time scales associated with significant interactions among different mass and energy balance components were identified. The memory of precipitation variability in subsurface hydrodynamics

  20. Upscaling the Coupled Water and Heat Transport in the Shallow Subsurface

    Science.gov (United States)

    Sviercoski, R. F.; Efendiev, Y.; Mohanty, B. P.

    2018-02-01

    Predicting simultaneous movement of liquid water, water vapor, and heat in the shallow subsurface has many practical interests. The demand for multidimensional multiscale models for this region is important given: (a) the critical role that these processes play in the global water and energy balances, (b) that more data from air-borne and space-borne sensors are becoming available for parameterizations of modeling efforts. On the other hand, numerical models that consider spatial variations of the soil properties, termed here as multiscale, are prohibitively expensive. Thus, there is a need for upscaled models that take into consideration these features, and be computationally affordable. In this paper, a multidimensional multiscale model coupling the water flow and heat transfer and its respective upscaled version are proposed. The formulation is novel as it describes the multidimensional and multiscale tensorial versions of the hydraulic conductivity and the vapor diffusivity, taking into account the tortuosity and porosity properties of the medium. It also includes the coupling with the energy balance equation as a boundary describing atmospheric influences at the shallow subsurface. To demonstrate the accuracy of both models, comparisons were made between simulation and field experiments for soil moisture and temperature at 2, 7, and 12 cm deep, during 11 days. The root-mean-square errors showed that the upscaled version of the system captured the multiscale features with similar accuracy. Given the good matching between simulated and field data for near-surface soil temperature, the results suggest that it can be regarded as a 1-D variable.

  1. Quantifying the surface subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies

    Science.gov (United States)

    Boyd, Philip W.; Gall, Mark P.; Silver, Mary W.; Coale, Susan L.; Bidigare, Robert R.; Bishop, James L. K. B.

    2008-07-01

    A central question addressed by the VERtical Transport In the Global Ocean (VERTIGO) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size partitioning of net primary production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, Fv/ Fm (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m -2 d -1 at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2×export flux at 150 m ( E150). At K2, export was 111 mg C m -2 d -1 (21% NPP (0-50 m); 1.8× E150) and 33 mg POC m -2 d -1 (11% NPP, 0-55 m); 1.4× E150) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E150. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 and 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly influence to what extent sinking particles are further broken down in the

  2. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    Science.gov (United States)

    Singha, Kaminit; Day-Lewis, Frederick D.; Johnson, Tim B.; Slater, Lee D.

    2015-01-01

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  3. Insights in time dependent cross compartment sensitivities from ensemble simulations with the fully coupled subsurface-land surface-atmosphere model TerrSysMP

    Science.gov (United States)

    Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens

    2017-04-01

    Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.

  4. Subsurface flow pathway dynamics in the active layer of coupled permafrost-hydrogeological systems under seasonal and annual temperature variability.

    Science.gov (United States)

    Frampton, Andrew

    2017-04-01

    There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic

  5. Quantifying the surface-subsurface biogeochemical coupling during the VERTIGO ALOHA and K2 studies

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, P.W.; Gall, M.P.; Silver, M.W.; Bishop, J.K.B.; Coale, Susan L.; Bidigare, Robert R.

    2008-02-25

    A central question addressed by the VERTIGO (VERtical Transport In the Global Ocean) study was 'What controls the efficiency of particle export between the surface and subsurface ocean'? Here, we present data from sites at ALOHA (N Central Pacific Gyre) and K2 (NW subarctic Pacific) on phytoplankton processes, and relate them via a simple planktonic foodweb model, to subsurface particle export (150-500 m). Three key factors enable quantification of the surface-subsurface coupling: a sampling design to overcome the temporal lag and spatial displacement between surface and subsurface processes; data on the size-partitioning of Net Primary Production (NPP) and subsequent transformations prior to export; estimates of the ratio of algal- to faecal-mediated vertical export flux. At ALOHA, phytoplankton were characterized by low stocks, NPP, F{sub v}/F{sub m} (N-limited), and were dominated by picoplankton. The HNLC waters at K2 were characterized by both two-fold changes in NPP and floristic shifts (high to low proportion of diatoms) between deployment 1 and 2. Prediction of export exiting the euphotic zone was based on size-partitioning of NPP, a copepod-dominated foodweb and a ratio of 0.2 (ALOHA) and 0.1 (K2) for algal:faecal particle flux. Predicted export was 20-22 mg POC m{sup -2} d{sup -1} at ALOHA (i.e. 10-11% NPP (0-125 m); 1.1-1.2 x export flux at 150 m (E{sub 150}). At K2, export was 111 mg C m{sup -2} d{sup -1} (21% NPP (0-50 m); 1.8 x E{sub 150}) and 33 mg POC m{sup -2} d{sup -1} (11% NPP, 0-55 m); 1.4 x E{sub 150}) for deployments 1 and 2, respectively. This decrease in predicted export at K2 matches the observed trend for E{sub 150}. Also, the low attenuation of export flux from 60 to 150 m is consistent with that between 150 to 500 m. This strong surface-subsurface coupling suggests that phytoplankton productivity and floristics play a key role at K2 in setting export flux, and moreover that pelagic particle transformations by grazers strongly

  6. Development of a cement-polymer close-coupled subsurface barrier technology

    International Nuclear Information System (INIS)

    Dwyer, B.P.; Heiser, J.; Stewart, W.; Phillips, S.

    1997-01-01

    The primary objective of this project was to further develop close-coupled barrier technology for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and chemically resistant polymer layer. The technology has matured from a regulatory investigation of issues concerning barriers and barrier materials to a pilot-scale, multiple individual column injections at Sandia National Labs (SNL) to full scale demonstration. The feasibility of this barrier concept was successfully proven in a full scale ''cold site'' demonstration at Hanford, WA. Consequently, a full scale deployment of the technology was conducted at an actual environmental restoration site at Brookhaven National Lab (BNL), Long Island, NY. This paper discusses the installation and performance of a technology deployment implemented at OU-1 an Environmental Restoration Site located at BNL

  7. Development of a cement-polymer close-coupled subsurface barrier technology

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, B.P. [Sandia National Labs., Albuquerque, NM (United States); Heiser, J. [Brookhaven National Lab., Upton, NY (United States); Stewart, W.; Phillips, S. [Applied Geotechnical Engineering and Construction, Inc., Richland, WA (United States)

    1997-02-01

    The primary objective of this project was to further develop close-coupled barrier technology for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and chemically resistant polymer layer. The technology has matured from a regulatory investigation of issues concerning barriers and barrier materials to a pilot-scale, multiple individual column injections at Sandia National Labs (SNL) to full scale demonstration. The feasibility of this barrier concept was successfully proven in a full scale ``cold site`` demonstration at Hanford, WA. Consequently, a full scale deployment of the technology was conducted at an actual environmental restoration site at Brookhaven National Lab (BNL), Long Island, NY. This paper discusses the installation and performance of a technology deployment implemented at OU-1 an Environmental Restoration Site located at BNL.

  8. Acrolein coupling on reduced TiO 2(1 1 0): The effect of surface oxidation and the role of subsurface defects

    Science.gov (United States)

    Benz, Lauren; Haubrich, Jan; Quiller, Ryan G.; Friend, Cynthia M.

    2009-04-01

    Reactions of acrolein, water, and oxygen with the vacuum-reduced surface of TiO 2(1 1 0) are reported in a temperature programmed reaction study of the interaction of an aldehydic pollutant with a reducible metal oxide. A total of 25% of the acrolein that binds to the surface is converted to products. Notably, carbon-carbon coupling occurs with 86% selectivity for formation of C 6 products: C 6H 8, identified as 1,3-cyclohexadiene, in a peak at 500 K and benzene immediately thereafter at 530 K. Acrolein is evolved from the surface in three peaks: a peak independent of coverage at 495 K, attributed to decomposition of an intermediate that is partly converted to C 6H 8; a coverage-dependent peak that shifts from 370 K (low coverage) to 260 K (high coverage), which is attributed to adsorption at 5-fold coordinated Ti sites; and a multilayer state at 160 K. Water and acrolein compete for 5-fold coordinated titanium sites when dosed sequentially. The addition of water also opens a new reaction pathway, leading to the hydrogenation of acrolein to form propanal. Water has no effect on the yield of 1,3-cyclohexadiene. Exposure of the surface to oxygen prior to acrolein dosing quenches the evolution of acrolein at 495 K and concurrently eliminates the coupling. From these results, we propose that reduced subsurface defects such as titanium ion interstitials play a role in the reactions observed here. The notion that subsurface defects may contribute to the reactivity of organic molecules over reducible oxide substrates may prove to be general.

  9. Data inversion in coupled subsurface flow and geomechanics models

    International Nuclear Information System (INIS)

    Iglesias, Marco A; McLaughlin, Dennis

    2012-01-01

    We present an inverse modeling approach to estimate petrophysical and elastic properties of the subsurface. The aim is to use the fully coupled geomechanics-flow model of Girault et al (2011 Math. Models Methods Appl. Sci. 21 169–213) to jointly invert surface deformation and pressure data from wells. We use a functional-analytic framework to construct a forward operator (parameter-to-output map) that arises from the geomechanics-flow model of Girault et al. Then, we follow a deterministic approach to pose the inverse problem of finding parameter estimates from measurements of the output of the forward operator. We prove that this inverse problem is ill-posed in the sense of stability. The inverse problem is then regularized with the implementation of the Newton-conjugate gradient (CG) algorithm of Hanke (1997 Numer. Funct. Anal. Optim. 18 18–971). For a consistent application of the Newton-CG scheme, we establish the differentiability of the forward map and characterize the adjoint of its linearization. We provide assumptions under which the theory of Hanke ensures convergence and regularizing properties of the Newton-CG scheme. These properties are verified in our numerical experiments. In addition, our synthetic experiments display the capabilities of the proposed inverse approach to estimate parameters of the subsurface by means of data inversion. In particular, the added value of measurements of surface deformation in the estimation of absolute permeability is quantified with respect to the standard history matching approach of inverting production data with flow models. The proposed methodology can be potentially used to invert satellite geodetic data (e.g. InSAR and GPS) in combination with production data for optimal monitoring and characterization of the subsurface. (paper)

  10. Coupled assimilation for an intermediated coupled ENSO prediction model

    Science.gov (United States)

    Zheng, Fei; Zhu, Jiang

    2010-10-01

    The value of coupled assimilation is discussed using an intermediate coupled model in which the wind stress is the only atmospheric state which is slavery to model sea surface temperature (SST). In the coupled assimilation analysis, based on the coupled wind-ocean state covariance calculated from the coupled state ensemble, the ocean state is adjusted by assimilating wind data using the ensemble Kalman filter. As revealed by a series of assimilation experiments using simulated observations, the coupled assimilation of wind observations yields better results than the assimilation of SST observations. Specifically, the coupled assimilation of wind observations can help to improve the accuracy of the surface and subsurface currents because the correlation between the wind and ocean currents is stronger than that between SST and ocean currents in the equatorial Pacific. Thus, the coupled assimilation of wind data can decrease the initial condition errors in the surface/subsurface currents that can significantly contribute to SST forecast errors. The value of the coupled assimilation of wind observations is further demonstrated by comparing the prediction skills of three 12-year (1997-2008) hindcast experiments initialized by the ocean-only assimilation scheme that assimilates SST observations, the coupled assimilation scheme that assimilates wind observations, and a nudging scheme that nudges the observed wind stress data, respectively. The prediction skills of two assimilation schemes are significantly better than those of the nudging scheme. The prediction skills of assimilating wind observations are better than assimilating SST observations. Assimilating wind observations for the 2007/2008 La Niña event triggers better predictions, while assimilating SST observations fails to provide an early warning for that event.

  11. Demonstration of close-coupled barriers for subsurface containment of buried waste

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1996-05-01

    A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed waste remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system

  12. Mechanistic assessment of hillslope transpiration controls of diel subsurface flow: a steady-state irrigation approach

    Science.gov (United States)

    H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell

    2010-01-01

    Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...

  13. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    Science.gov (United States)

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  14. Quantifying Hyporheic Exchanges in a Large Scale River Reach Using Coupled 3-D Surface and Subsurface Computational Fluid Dynamics Simulations.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Bao, J; Huang, M; Hou, Z; Perkins, W; Harding, S; Titzler, S; Ren, H; Thorne, P; Suffield, S; Murray, C; Zachara, J

    2017-03-01

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheic exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y+ wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results

  15. Drilling on the Moon and Mars: Developing the Science Approach for Subsurface Exploration with Human Crews

    Science.gov (United States)

    Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.

    2010-01-01

    DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the

  16. Manipulation of natural subsurface processes: Field research and validation. Interim report

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Spane, F.A.; Amonette, J.E.

    1994-11-01

    Often the only alternative for treating deep subsurface contamination is in situ manipulation of natural processes to change the mobility or form of contaminants. However, the complex interactions of natural subsurface physical, chemical, and microbial processes limit the predictability of the system-wide impact of manipulation based on current knowledge. This report is a summary of research conducted to examine the feasibility of controlling the oxidation-reduction (redox) potential of the unconfined aquifer at the Hanford Site in southeastern Washington State by introducing chemical reagents and microbial nutrients. The experiment would allow the testing of concepts and hypotheses developed from fundamental research in the US Department of Energy's (DOE's) Subsurface Science Program. Furthermore, the achievement of such control is expected to have implications for in situ remediation of dispersed aqueous contaminants in the subsurface environment at DOE sites nationwide, and particularly at the Hanford Site. This interim report summarizes initial research that was conducted between July 1990 and October 1991

  17. Final Report Coupling in silico microbial models with reactive transport models to predict the fate of contaminants in the subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R.

    2012-10-31

    This project successfully accomplished its goal of coupling genome-scale metabolic models with hydrological and geochemical models to predict the activity of subsurface microorganisms during uranium bioremediation. Furthermore, it was demonstrated how this modeling approach can be used to develop new strategies to optimize bioremediation. The approach of coupling genome-scale metabolic models with reactive transport modeling is now well enough established that it has been adopted by other DOE investigators studying uranium bioremediation. Furthermore, the basic principles developed during our studies will be applicable to much broader investigations of microbial activities, not only for other types of bioremediation, but microbial metabolism in diversity of environments. This approach has the potential to make an important contribution to predicting the impact of environmental perturbations on the cycling of carbon and other biogeochemical cycles.

  18. Molecular-state close-coupling theory including continuum states. I. Derivation of close-coupled equations

    International Nuclear Information System (INIS)

    Thorson, W.R.; Bandarage, G.

    1988-01-01

    We formulate a close-coupling theory of slow ion-atom collisions based on molecular (adiabatic) electronic states, and including the electronic continuum. The continuum is represented by packet states spanning it locally and constructed explicitly from exact continuum states. Particular attention is given to two fundamental questions: (1) Unbound electrons can escape from the local region spanned by the packet states. We derive close-coupled integral equations correctly including the escape effects; the ''propagator'' generated by these integral equations does not conserve probability within the close-coupled basis. Previous molecular-state formulations including the continuum give no account of escape effects. (2) Nonadiabatic couplings of adiabatic continuum states with the same energy are singular, reflecting the fact that an adiabatic description of continuum behavior is not valid outside a local region. We treat these singularities explicitly and show that an accurate representation of nonadiabatic couplings within the local region spanned by a set of packet states is well behaved. Hence an adiabatic basis-set description can be used to describe close coupling to the continuum in a local ''interaction region,'' provided the effects of escape are included. In principle, the formulation developed here can be extended to a large class of model problems involving many-electron systems and including models for Penning ionization and collisional detachment processes

  19. Contaminant geochemistry. Interactions and transport in the subsurface environment

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Brian; Dror, Ishai; Yaron, Bruno [Weizmann Institute of Science, Rehovot (Israel). Dept. of Environmental Sciences and Energy Research

    2008-07-01

    This book combines earth science, subsurface hydrology and environmental geochemistry, providing a comprehensive background for specialists interested in the protection and sustainable management of the subsurface environment. The reader is introduced to the chemistry of contaminants, which usually disturb the natural equilibrium in the subsurface as a result of human activity. The major focus of the book is on contaminant reactions in soil solutions, groundwater and porous media solid phases, accounting for their persistence and transformation in the subsurface, as they are transported from the land surface into groundwater. Discussions on selected case studies are provided. (orig.)

  20. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CP v1.0

    Directory of Open Access Journals (Sweden)

    G. Bisht

    2017-12-01

    Full Text Available A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5 and a massively parallel multiphysics reactive transport model (PFLOTRAN. The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m over a 5-year period to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater–river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater–river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater–river-water exchange at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result

  1. Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream-aquifer-land interactions (CP v1.0)

    Science.gov (United States)

    Bisht, Gautam; Huang, Maoyi; Zhou, Tian; Chen, Xingyuan; Dai, Heng; Hammond, Glenn E.; Riley, William J.; Downs, Janelle L.; Liu, Ying; Zachara, John M.

    2017-12-01

    A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater-river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater-river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater-river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the

  2. Evaluation of SCS-CN method using a fully distributed physically based coupled surface-subsurface flow model

    Science.gov (United States)

    Shokri, Ali

    2017-04-01

    The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.

  3. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments

    Science.gov (United States)

    Holmes, Dawn E.; O'Neil, Regina A.; Vrionis, Helen A.; N'Guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll , Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.

    2007-01-01

    There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants.

  4. Modeling Subsurface Behavior at the System Level: Considerations and a Path Forward

    Science.gov (United States)

    Geesey, G.

    2005-12-01

    The subsurface is an obscure but essential resource to life on Earth. It is an important region for carbon production and sequestration, a source and reservoir for energy, minerals and metals and potable water. There is a growing need to better understand subsurface possesses that control the exploitation and security of these resources. Our best models often fail to predict these processes at the field scale because of limited understanding of 1) the processes and the controlling parameters, 2) how processes are coupled at the field scale 3) geological heterogeneities that control hydrological, geochemical and microbiological processes at the field scale and 4) lack of data sets to calibrate and validate numerical models. There is a need for experimental data obtained at scales larger than those obtained at the laboratory bench that take into account the influence of hydrodynamics, geochemical reactions including complexation and chelation/adsorption/precipitation/ion exchange/oxidation-reduction/colloid formation and dissolution, and reactions of microbial origin. Furthermore, the coupling of each of these processes and reactions needs to be evaluated experimentally at a scale that produces data that can be used to calibrate numerical models so that they accurately describe field scale system behavior. Establishing the relevant experimental scale for collection of data from coupled processes remains a challenge and will likely be process-dependent and involve iterations of experimentation and data collection at different intermediate scales until the models calibrated with the appropriate date sets achieve an acceptable level of performance. Assuming that the geophysicists will soon develop technologies to define geological heterogeneities over a wide range of scales in the subsurface, geochemists need to continue to develop techniques to remotely measure abiotic reactions, while geomicrobiologists need to continue their development of complementary technologies

  5. Modelling coupled microbial processes in the subsurface: Model development, verification, evaluation and application

    Science.gov (United States)

    Masum, Shakil A.; Thomas, Hywel R.

    2018-06-01

    To study subsurface microbial processes, a coupled model which has been developed within a Thermal-Hydraulic-Chemical-Mechanical (THCM) framework is presented. The work presented here, focuses on microbial transport, growth and decay mechanisms under the influence of multiphase flow and bio-geochemical reactions. In this paper, theoretical formulations and numerical implementations of the microbial model are presented. The model has been verified and also evaluated against relevant experimental results. Simulated results show that the microbial processes have been accurately implemented and their impacts on porous media properties can be predicted either qualitatively or quantitatively or both. The model has been applied to investigate biofilm growth in a sandstone core that is subjected to a two-phase flow and variable pH conditions. The results indicate that biofilm growth (if not limited by substrates) in a multiphase system largely depends on the hydraulic properties of the medium. When the change in porewater pH which occurred due to dissolution of carbon dioxide gas is considered, growth processes are affected. For the given parameter regime, it has been shown that the net biofilm growth is favoured by higher pH; whilst the processes are considerably retarded at lower pH values. The capabilities of the model to predict microbial respiration in a fully coupled multiphase flow condition and microbial fermentation leading to production of a gas phase are also demonstrated.

  6. GEOCHEMISTRY OF SUBSURFACE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    Reactive barriers that couple subsurface fluid flow with a passive chemical treatment zone are emerging, cost effective approaches for in-situ remediation of contaminated groundwater. Factors such as the build-up of surface precipitates, bio-fouling, and changes in subsurface tr...

  7. Considerations in the development of subsurface containment barrier performance standards

    International Nuclear Information System (INIS)

    Dunstan, S.; Zdinak, A.P.; Lodman, D.

    1997-01-01

    The U.S. Department of Energy (DOE) is supporting subsurface barriers as an alternative remedial option for management of contamination problems at their facilities. Past cleanup initiatives have sometimes proven ineffective or extremely expensive. Economic considerations coupled with changing public and regulatory philosophies regarding remediation techniques makes subsurface barriers a promising technology for future cleanup efforts. As part of the initiative to develop subsurface containment barriers as an alternative remedial option, DOE funded MSE Technology Applications, Inc. (MSE) to conduct a comprehensive review to identify performance considerations for the acceptability of subsurface barrier technologies as a containment method. Findings from this evaluation were intended to provide a basis for selection and application of containment technologies to address waste problems at DOE sites. Based on this study, the development of performance standards should consider: (1) sustainable low hydraulic conductivity; (2) capability to meet applicable regulations; (3) compatibility with subsurface environmental conditions; (4) durability and long-term stability; (5) repairability; and (6) verification and monitoring. This paper describes the approach for determining considerations for performance standards

  8. The State of Stress Beyond the Borehole

    Science.gov (United States)

    Johnson, P. A.; Coblentz, D. D.; Maceira, M.; Delorey, A. A.; Guyer, R. A.

    2015-12-01

    The state of stress controls all in-situ reservoir activities and yet we lack the quantitative means to measure it. This problem is important in light of the fact that the subsurface provides more than 80 percent of the energy used in the United States and serves as a reservoir for geological carbon sequestration, used fuel disposition, and nuclear waste storage. Adaptive control of subsurface fractures and fluid flow is a crosscutting challenge being addressed by the new Department of Energy SubTER Initiative that has the potential to transform subsurface energy production and waste storage strategies. Our methodology to address the above mentioned matter is based on a novel Advance Multi-Physics Tomographic (AMT) approach for determining the state of stress, thereby facilitating our ability to monitor and control subsurface geomechanical processes. We developed the AMT algorithm for deriving state-of-stress from integrated density and seismic velocity models and demonstrate the feasibility by applying the AMT approach to synthetic data sets to assess accuracy and resolution of the method as a function of the quality and type of geophysical data. With this method we can produce regional- to basin-scale maps of the background state of stress and identify regions where stresses are changing. Our approach is based on our major advances in the joint inversion of gravity and seismic data to obtain the elastic properties for the subsurface; and coupling afterwards the output from this joint-inversion with theoretical model such that strain (and subsequently) stress can be computed. Ultimately we will obtain the differential state of stress over time to identify and monitor critically stressed faults and evolving regions within the reservoir, and relate them to anthropogenic activities such as fluid/gas injection.

  9. A bioenergetics-kinetics coupled modeling study on subsurface microbial metabolism in a field biostimulation experiment

    Science.gov (United States)

    Jin, Q.; Zheng, Z.; Zhu, C.

    2006-12-01

    Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the

  10. Inter-state coupling and definitions of bright and dark states

    International Nuclear Information System (INIS)

    Mensik, Miroslav; Nespurek, Stanislav

    2007-01-01

    Contrary to a standard definition of diabatic states (i.e., those without momentum-dependent coupling), based on the construction from adiabatic ones, we defined diabatic states as bright and dark states of a given experiment. Namely, they are defined as states providing maximum, respectively, zero value of electronic transition dipole moments projected to a given polarization vector. Second, the state from (or to) which the optical transition is performed is not from the space of investigated electronic excited state manifold, but it is chosen by the observer. It is shown, for this case, that the inter-state coupling is a general function of vibrational coordinates. The explicit dependence of the inter-state coupling on vibrational coordinates is particularly important for system with strong Stokes shift. The role of exact definitions of bright and dark states as well as the inter-state coupling is discussed with respect to the coherent structure of electronic population observed in optical spectroscopy

  11. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  12. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  13. Chimera states: Effects of different coupling topologies

    Science.gov (United States)

    Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar; Perc, Matjaž

    2017-04-01

    Collective behavior among coupled dynamical units can emerge in various forms as a result of different coupling topologies as well as different types of coupling functions. Chimera states have recently received ample attention as a fascinating manifestation of collective behavior, in particular describing a symmetry breaking spatiotemporal pattern where synchronized and desynchronized states coexist in a network of coupled oscillators. In this perspective, we review the emergence of different chimera states, focusing on the effects of different coupling topologies that describe the interaction network connecting the oscillators. We cover chimera states that emerge in local, nonlocal and global coupling topologies, as well as in modular, temporal and multilayer networks. We also provide an outline of challenges and directions for future research.

  14. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  15. An innovative computationally efficient hydromechanical coupling approach for fault reactivation in geological subsurface utilization

    Science.gov (United States)

    Adams, M.; Kempka, T.; Chabab, E.; Ziegler, M.

    2018-02-01

    Estimating the efficiency and sustainability of geological subsurface utilization, i.e., Carbon Capture and Storage (CCS) requires an integrated risk assessment approach, considering the occurring coupled processes, beside others, the potential reactivation of existing faults. In this context, hydraulic and mechanical parameter uncertainties as well as different injection rates have to be considered and quantified to elaborate reliable environmental impact assessments. Consequently, the required sensitivity analyses consume significant computational time due to the high number of realizations that have to be carried out. Due to the high computational costs of two-way coupled simulations in large-scale 3D multiphase fluid flow systems, these are not applicable for the purpose of uncertainty and risk assessments. Hence, an innovative semi-analytical hydromechanical coupling approach for hydraulic fault reactivation will be introduced. This approach determines the void ratio evolution in representative fault elements using one preliminary base simulation, considering one model geometry and one set of hydromechanical parameters. The void ratio development is then approximated and related to one reference pressure at the base of the fault. The parametrization of the resulting functions is then directly implemented into a multiphase fluid flow simulator to carry out the semi-analytical coupling for the simulation of hydromechanical processes. Hereby, the iterative parameter exchange between the multiphase and mechanical simulators is omitted, since the update of porosity and permeability is controlled by one reference pore pressure at the fault base. The suggested procedure is capable to reduce the computational time required by coupled hydromechanical simulations of a multitude of injection rates by a factor of up to 15.

  16. Coupled Monitoring and Inverse Modeling to Investigate Surface - Subsurface Hydrological and Thermal Dynamics in the Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S. S.; Bisht, G.; Peterson, J.; Ulrich, C.; Romanovsky, V. E.; Kneafsey, T. J.; Wu, Y.

    2015-12-01

    Quantitative characterization of the soil surface-subsurface hydrological and thermal processes is essential as they are primary factors that control the biogeochemical processes, ecological landscapes and greenhouse gas fluxes. In the Artic region, the surface-subsurface hydrological and thermal regimes co-interact and are both largely influenced by soil texture and soil organic content. In this study, we present a coupled inversion scheme that jointly inverts hydrological, thermal and geophysical data to estimate the vertical profiles of clay, sand and organic contents. Within this inversion scheme, the Community Land Model (CLM4.5) serves as a forward model to simulate the land-surface energy balance and subsurface hydrological-thermal processes. Soil electrical conductivity (from electrical resistivity tomography), temperature and water content are linked together via petrophysical and geophysical models. Particularly, the inversion scheme accounts for the influences of the soil organic and mineral content on both of the hydrological-thermal dynamics and the petrophysical relationship. We applied the inversion scheme to the Next Generation Ecosystem Experiments (NGEE) intensive site in Barrow, AK, which is characterized by polygonal-shaped arctic tundra. The monitoring system autonomously provides a suite of above-ground measurements (e.g., precipitation, air temperature, wind speed, short-long wave radiation, canopy greenness and eddy covariance) as well as below-ground measurements (soil moisture, soil temperature, thaw layer thickness, snow thickness and soil electrical conductivity), which complement other periodic, manually collected measurements. The preliminary results indicate that the model can well reproduce the spatiotemporal dynamics of the soil temperature, and therefore, accurately predict the active layer thickness. The hydrological and thermal dynamics are closely linked to the polygon types and polygon features. The results also enable the

  17. State-of-stress in magmatic rift zones: Predicting the role of surface and subsurface topography

    Science.gov (United States)

    Oliva, S. J. C.; Ebinger, C.; Rivalta, E.; Williams, C. A.

    2017-12-01

    Continental rift zones are segmented along their length by large fault systems that form in response to extensional stresses. Volcanoes and crustal magma chambers cause fundamental changes to the density structure, load the plates, and alter the state-of-stress within the crust, which then dictates fracture orientation. In this study, we develop geodynamic models scaled to a structure, petrologic and thermodynamic studies constrain material densities, and seismicity and structural analyses constrain active and time-averaged kinematics. This area is an ideal test area because a 60º stress rotation is observed in time-averaged fault and magma intrusion, and in local seismicity, and because this was the site of a large volume dike intrusion and seismic sequence in 2007. We use physics-based 2D and 3D models (analytical and finite elements) constrained by data from active rift zones to quantify the effects of loading on state-of-stress. By modeling varying geometric arrangements, and density contrasts of topographic and subsurface loads, and with reasonable regional extensional forces, the resulting state-of-stress reveals the favored orientation for new intrusions. Although our models are generalized, they allow us to evaluate whether a magmatic system (surface and subsurface) can explain the observed stress rotation, and enable new intrusions, new faults, or fault reactivation with orientations oblique to the main border faults. Our results will improve our understanding of the different factors at play in these extensional regimes, as well as contribute to a better assessment of the hazards in the area.

  18. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  19. A size selective porous silicon grating-coupled Bloch surface and sub-surface wave biosensor.

    Science.gov (United States)

    Rodriguez, Gilberto A; Ryckman, Judson D; Jiao, Yang; Weiss, Sharon M

    2014-03-15

    A porous silicon (PSi) grating-coupled Bloch surface and sub-surface wave (BSW/BSSW) biosensor is demonstrated to size selectively detect the presence of both large and small molecules. The BSW is used to sense large immobilized analytes at the surface of the structure while the BSSW that is confined inside but near the top of the structure is used to sensitively detect small molecules. Functionality of the BSW and BSSW modes is theoretically described by dispersion relations, field confinements, and simulated refractive index shifts within the structure. The theoretical results are experimentally verified by detecting two different small chemical molecules and one large 40 base DNA oligonucleotide. The PSi-BSW/BSSW structure is benchmarked against current porous silicon technology and is shown to have a 6-fold higher sensitivity in detecting large molecules and a 33% improvement in detecting small molecules. This is the first report of a grating-coupled BSW biosensor and the first report of a BSSW propagating mode. © 2013 Published by Elsevier B.V.

  20. Biogeochemical Coupling of Fe and Tc Speciation in Subsurface Sediments: Implications to Long-Term Tc Immobilization

    International Nuclear Information System (INIS)

    Jim K. Fredrickson; C. I. Steefel; R. K. Kukkadapu; S. M. Heald

    2006-01-01

    The project has been focused on biochemical processes in subsurface sediments involving Fe that control the valence state, solubility, and effective mobility of 99Tc. Our goal has been to understand the Tc biogeochemistry as it may occur in suboxic and biostimulated subsurface environments. Two objectives have been pursued: (1) To determine the relative reaction rates of 99Tc(VII)O2(aq) with metal reducing bacteria and biogenic Fe(II); and to characterize the identity, structure, and molecular speciation of Tc(IV) products formed through reaction with both biotic and abiotic reductants. (2) To quantify the biogeochemical factors controlling the reaction rate of O2 with Tc(IV)O2?nH2O in sediment resulting from the direct enzymatic reduction of Tc(VII) by DIRB and/or the reaction of Tc(VII) with the various types of biogenic Fe(II) produced by DIRB

  1. Extracting subsurface fingerprints using optical coherence tomography

    CSIR Research Space (South Africa)

    Akhoury, SS

    2015-02-01

    Full Text Available Subsurface Fingerprints using Optical Coherence Tomography Sharat Saurabh Akhoury, Luke Nicholas Darlow Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract Physiologists have found... approach to extract the subsurface fingerprint representation using a high-resolution imaging technology known as Optical Coherence Tomography (OCT). ...

  2. Complete Subsurface Elemental Composition Measurements With PING

    Science.gov (United States)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  3. Overview of research and development in subsurface fate and transport modeling

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Chehata, M.

    1995-05-01

    The US Department of Energy is responsible for the remediation of over 450 different subsurface-contaminated sites. Contaminant plumes at these sites range in volume from several to millions of cubic yards. The concentration of contaminants also ranges over several orders of magnitude. Contaminants include hazardous wastes such as heavy metals and organic chemicals, radioactive waste including tritium, uranium, and thorium, and mixed waste, which is a combination of hazardous and radioactive wastes. The physical form of the contaminants includes solutes, nonaqueous phase liquids (NAPLs), and vapor phase contaminants such as volatilized organic chemicals and radon. The subject of contaminant fate and transport modeling is multi-disciplinary, involving hydrology, geology, microbiology, chemistry, applied mathematics, computer science, and other areas of expertise. It is an issue of great significance in the United States and around the world. As such, many organizations have substantial programs in this area. In gathering data to prepare this report, a survey was performed of research and development work that is funded by US government agencies to improve the understanding and mechanistic modeling of processes that control contaminant movement through subsurface systems. Government agencies which fund programs that contain fate and transport modeling components include the Environmental Protection Agency, Nuclear Regulatory Commission, Department of Agriculture, Department of Energy, National Science Foundation, Department of Defense, United States Geological Survey, and National Institutes of Health

  4. Photochemical oxidants: state of the science.

    Science.gov (United States)

    Kley, D; Kleinmann, M; Sanderman, H; Krupa, S

    1999-01-01

    Atmospheric photochemical processes resulting in the production of tropospheric ozone (O(3)) and other oxidants are described. The spatial and temporal variabilities in the occurrence of surface level oxidants and their relationships to air pollution meteorology are discussed. Models of photooxidant formation are reviewed in the context of control strategies and comparisons are provided of the air concentrations of O(3) at select geographic locations around the world. This overall oxidant (O(3)) climatology is coupled to human health and ecological effects. The discussion of the effects includes both acute and chronic responses, mechanisms of action, human epidemiological and plant population studies and briefly, efforts to establish cause-effect relationships through numerical modeling. A short synopsis is provided of the interactive effects of O(3) with other abiotic and biotic factors. The overall emphasis of the paper is on identifying the current uncertainties and gaps in our understanding of the state of the science and some suggestions as to how they may be addressed.

  5. Final Report: A Model Management System for Numerical Simulations of Subsurface Processes

    Energy Technology Data Exchange (ETDEWEB)

    Zachmann, David

    2013-10-07

    The DOE and several other Federal agencies have committed significant resources to support the development of a large number of mathematical models for studying subsurface science problems such as groundwater flow, fate of contaminants and carbon sequestration, to mention only a few. This project provides new tools to help decision makers and stakeholders in subsurface science related problems to select an appropriate set of simulation models for a given field application.

  6. Iron-based subsurface arsenic removal technologies by aeration: A review of the current state and future prospects.

    Science.gov (United States)

    Luong, Vu T; Cañas Kurz, Edgardo E; Hellriegel, Ulrich; Luu, Tran L; Hoinkis, Jan; Bundschuh, Jochen

    2018-04-15

    Arsenic contamination in groundwater is a critical issue and one that raises great concern around the world as the cause of many negative health impacts on the human body, including internal and external cancers. There are many ways to remove or immobilize arsenic, including membrane technologies, adsorption, sand filtration, ion exchange, and capacitive deionization. These exhibit many different advantages and disadvantages. Among these methods, in-situ subsurface arsenic immobilization by aeration and the subsequent removal of arsenic from the aqueous phase has shown to be very a promising, convenient technology with high treatment efficiency. In contrast to most of other As remediation technologies, in-situ subsurface immobilization offers the advantage of negligible waste production and hence has the potential of being a sustainable treatment option. This paper reviews the application of subsurface arsenic removal (SAR) technologies as well as current modeling approaches. Unlike subsurface iron removal (SIR), which has proven to be technically feasible in a variety of hydrogeochemical settings for many years, SAR is not yet an established solution since it shows vulnerability to diverse geochemical conditions such as pH, Fe:As ratio, and the presence of co-ions. In some situations, this makes it difficult to comply with the stringent guideline value for drinking water recommended by the WHO (10 μg L -1 ). In order to overcome its limitations, more theoretical and experimental studies are needed to show long-term application achievements and help the development of SAR processes into state-of-the-art technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology

    Science.gov (United States)

    Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.

    2006-01-01

    This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.

  8. Predictability of Subsurface Temperature and the AMOC

    Science.gov (United States)

    Chang, Y.; Schubert, S. D.

    2013-12-01

    GEOS 5 coupled model is extensively used for experimental decadal climate prediction. Understanding the limits of decadal ocean predictability is critical for making progress in these efforts. Using this model, we study the subsurface temperature initial value predictability, the variability of the Atlantic meridional overturning circulation (AMOC) and its impacts on the global climate. Our approach is to utilize the idealized data assimilation technology developed at the GMAO. The technique 'replay' allows us to assess, for example, the impact of the surface wind stresses and/or precipitation on the ocean in a very well controlled environment. By running the coupled model in replay mode we can in fact constrain the model using any existing reanalysis data set. We replay the model constraining (nudging) it to the MERRA reanalysis in various fields from 1948-2012. The fields, u,v,T,q,ps, are adjusted towards the 6-hourly analyzed fields in atmosphere. The simulated AMOC variability is studied with a 400-year-long segment of replay integration. The 84 cases of 10-year hindcasts are initialized from 4 different replay cycles. Here, the variability and predictability are examined further by a measure to quantify how much the subsurface temperature and AMOC variability has been influenced by atmospheric forcing and by ocean internal variability. The simulated impact of the AMOC on the multi-decadal variability of the SST, sea surface height (SSH) and sea ice extent is also studied.

  9. Mapping the Upper Subsurface of MARS Using Radar Polarimetry

    Science.gov (United States)

    Carter, L. M.; Rincon, R.; Berkoski, L.

    2012-01-01

    Future human exploration of Mars will require detailed knowledge of the surface and upper several meters of the subsurface in potential landing sites. Likewise, many of the Planetary Science Decadal Survey science goals, such as understanding the history of Mars climate change, determining how the surface was altered through processes like volcanism and fluvial activity, and locating regions that may have been hospitable to life in the past, would be significantly advanced through mapping of the upper meters of the surface. Synthetic aperture radar (SAR) is the only remote sensing technique capable of penetrating through meters of material and imaging buried surfaces at high (meters to tens-of-meters) spatial resolution. SAR is capable of mapping the boundaries of buried units and radar polarimetry can provide quantitative information about the roughness of surface and subsurface units, depth of burial of stratigraphic units, and density of materials. Orbital SAR systems can obtain broad coverage at a spatial scale relevant to human and robotic surface operations. A polarimetric SAR system would greatly increase the safety and utility of future landed systems including sample caching.

  10. The role of meltwater-induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Esther C.; Otto-Bliesner, Bette L. [National Center for Atmospheric Research, Boulder, CO (United States)

    2011-10-15

    The Community Climate System Model version 3, (CCSM3) is used to investigate the effect of the high latitude North Atlantic subsurface ocean temperature response in idealized freshwater hosing experiments on the strength of the Atlantic meridional overturning circulation (AMOC). The hosing experiments covered a range of input magnitudes at two locations in a glacial background state. Subsurface subpolar ocean warms when freshwater is added to the high latitude North Atlantic (NATL cases) and weakly cools when freshwater is added to the Gulf of Mexico (GOM cases). All cases show subsurface ocean warming in the Southern Hemisphere (SH). The sensitivity of the AMOC response to the location and magnitude of hosing is related to the induced subsurface temperature response, which affects the magnitude of the large-scale meridional pressure gradient at depth through the effect on upper ocean density. The high latitude subsurface warming induced in the NATL cases lowers the upper ocean density in the deepwater formation region enhancing a density reduction by local freshening. In the GOM cases the effect of SH warming partially offsets the effect of the high latitude freshening on the meridional density gradient. Following the end of hosing, a brief convective event occurs in the largest NATL cases which flushes some of the heat stored in the subsurface layers. This fuels a rapid rise in AMOC that lasts less than a couple of decades before subsequent freshening from increases in precipitation and sea ice melt reverses the initial increase in the meridional density gradient. Thereafter AMOC recovery slows to the rate found in comparable GOM cases. The result for these glacial transient hosing experiments is that the pace of the longer recovery is not sensitive to location of the imposed freshwater forcing. (orig.)

  11. Component-based framework for subsurface simulations

    International Nuclear Information System (INIS)

    Palmer, B J; Fang, Yilin; Hammond, Glenn; Gurumoorthi, Vidhya

    2007-01-01

    Simulations in the subsurface environment represent a broad range of phenomena covering an equally broad range of scales. Developing modelling capabilities that can integrate models representing different phenomena acting at different scales present formidable challenges both from the algorithmic and computer science perspective. This paper will describe the development of an integrated framework that will be used to combine different models into a single simulation. Initial work has focused on creating two frameworks, one for performing smooth particle hydrodynamics (SPH) simulations of fluid systems, the other for performing grid-based continuum simulations of reactive subsurface flow. The SPH framework is based on a parallel code developed for doing pore scale simulations, the continuum grid-based framework is based on the STOMP (Subsurface Transport Over Multiple Phases) code developed at PNNL Future work will focus on combining the frameworks together to perform multiscale, multiphysics simulations of reactive subsurface flow

  12. Lessons Learned from Assimilating Altimeter Data into a Coupled General Circulation Model with the GMAO Augmented Ensemble Kalman Filter

    Science.gov (United States)

    Keppenne, Christian; Vernieres, Guillaume; Rienecker, Michele; Jacob, Jossy; Kovach, Robin

    2011-01-01

    Satellite altimetry measurements have provided global, evenly distributed observations of the ocean surface since 1993. However, the difficulties introduced by the presence of model biases and the requirement that data assimilation systems extrapolate the sea surface height (SSH) information to the subsurface in order to estimate the temperature, salinity and currents make it difficult to optimally exploit these measurements. This talk investigates the potential of the altimetry data assimilation once the biases are accounted for with an ad hoc bias estimation scheme. Either steady-state or state-dependent multivariate background-error covariances from an ensemble of model integrations are used to address the problem of extrapolating the information to the sub-surface. The GMAO ocean data assimilation system applied to an ensemble of coupled model instances using the GEOS-5 AGCM coupled to MOM4 is used in the investigation. To model the background error covariances, the system relies on a hybrid ensemble approach in which a small number of dynamically evolved model trajectories is augmented on the one hand with past instances of the state vector along each trajectory and, on the other, with a steady state ensemble of error estimates from a time series of short-term model forecasts. A state-dependent adaptive error-covariance localization and inflation algorithm controls how the SSH information is extrapolated to the sub-surface. A two-step predictor corrector approach is used to assimilate future information. Independent (not-assimilated) temperature and salinity observations from Argo floats are used to validate the assimilation. A two-step projection method in which the system first calculates a SSH increment and then projects this increment vertically onto the temperature, salt and current fields is found to be most effective in reconstructing the sub-surface information. The performance of the system in reconstructing the sub-surface fields is particularly

  13. An improved coupled-states approximation including the nearest neighbor Coriolis couplings for diatom-diatom inelastic collision

    Science.gov (United States)

    Yang, Dongzheng; Hu, Xixi; Zhang, Dong H.; Xie, Daiqian

    2018-02-01

    Solving the time-independent close coupling equations of a diatom-diatom inelastic collision system by using the rigorous close-coupling approach is numerically difficult because of its expensive matrix manipulation. The coupled-states approximation decouples the centrifugal matrix by neglecting the important Coriolis couplings completely. In this work, a new approximation method based on the coupled-states approximation is presented and applied to time-independent quantum dynamic calculations. This approach only considers the most important Coriolis coupling with the nearest neighbors and ignores weaker Coriolis couplings with farther K channels. As a result, it reduces the computational costs without a significant loss of accuracy. Numerical tests for para-H2+ortho-H2 and para-H2+HD inelastic collision were carried out and the results showed that the improved method dramatically reduces the errors due to the neglect of the Coriolis couplings in the coupled-states approximation. This strategy should be useful in quantum dynamics of other systems.

  14. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J [Purdue Univ., West Lafayette, IN (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Pietraß, Tanja [USDOE Office of Science, Washington, DC (United States)

    2015-05-22

    . In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis

  15. Association between mean and interannual equatorial Indian Ocean subsurface temperature bias in a coupled model

    Science.gov (United States)

    Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant

    2018-03-01

    In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily

  16. Hadronic couplings of open beauty states

    International Nuclear Information System (INIS)

    Ram, S.N.; Singh, C.P.

    1982-08-01

    Strong interaction coupling parameters of particles with beauty quantum number are obtained using dispersion sum rules in various forms, e.g. current algebra sum rules, superconvergence sum rules and finite energy sum rules etc. These sum rules lead to a set of algebraic relations among masses and coupling constants. We compare the hadronic couplings of beautiful particles as obtained from various techniques and discuss their implications on the hadronic production of these states. (author)

  17. Chimera states in two-dimensional networks of locally coupled oscillators

    Science.gov (United States)

    Kundu, Srilena; Majhi, Soumen; Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2018-02-01

    Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera

  18. Fulde-Ferrell-Like Molecular States in Spin-Orbit Coupled Ultracold Fermi Gases

    Science.gov (United States)

    Ye, Chong; Fu, Li-Bin

    2017-08-01

    We study the molecular state in three-component Fermi gases with a single impurity of 6 Li immersing in a no-interacting Fermi sea of 40 K in the presence of an equal weight combination of Rashba-type and Dresselhaus-type spin-orbit coupling. In the region where the Fermi sea has two disjointed Fermi surfaces, we find that there are two Fulde-Ferrell-like molecular states with dominating contributions from the lower helicity branch. Decreasing the scattering length or the spin-orbit coupled Fermi energy, we find the Fulde-Ferrell-like molecular state with small center-of-mass momentum is always energy favored and the other one will suddenly disappear. Supported by the National Basic Research Program of China (973 Program) under Grant Nos. 2013CBA01502, 2013CB834100, and the National Natural Science Foundation of China under Grant Nos. 11374040, 11475027, 11575027, 11274051, and 11075020

  19. Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach.

    Science.gov (United States)

    Yang, Jie; Graf, Thomas; Herold, Maria; Ptak, Thomas

    2013-06-01

    Coastal aquifers are complex hydrologic systems because many physical processes interact: (i) variably saturated flow, (ii) spatial-temporal fluid density variations, (iii) tidal fluctuations, (iv) storm surges overtopping dykes, and (v) surface runoff of storm water. The HydroGeoSphere model is used to numerically simulate coastal flow dynamics, assuming a fully coupled surface-subsurface approach, accounting for all processes listed above. The diffusive wave approximation of the St. Venant equation is used to describe surface flow. Surface flow and salt transport are fully coupled with subsurficial variably saturated, variable-density flow and salt transport through mathematical terms that represent exchange of fluid mass and solute mass, respectively. Tides and storm surges induce a time-variant head that is applied to nodes of the surface domain. The approach is applied to real cases of tide and storm surge events. Tide simulation results confirm the existence of a recirculating zone, forming beneath the upper part of the intertidal zone. By monitoring the exchange fluid flux rates through the beach, it was found that the major inflow to the aquifer takes place at the upper part of the intertidal zone, which explains the formation of the recirculating zone. The recirculating zone is forming particularly during rising tide. Results from a storm surge simulation show that plume fingers develop below the flooded land surface. Natural remediation by seaward flowing freshwater is relatively slow, such that reducing the salt concentration in the aquifer down to drinking water standards takes up to 10 years. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Coupled Flow and Mechanics in Porous and Fractured Media*

    Science.gov (United States)

    Martinez, M. J.; Newell, P.; Bishop, J.

    2012-12-01

    effective hydraulic aperture, which is a non-linear function of effective normal stress. The dynamically evolving aperture field updates the effective, anisotropic permeability tensor, thus resulting in a highly coupled multiphysics problem. Two models of geomechanical damage are discussed: critical shear-slip criteria and a sub-grid joint model. Leakage rates through the caprock resulting from the joint model are compared to those assuming intact material, allowing a correlation between potential for leakage and injection rates/pressures, for various in-situ stratigraphies. *This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  1. Nitrate-nitrogen losses through subsurface drainage under various agricultural land covers.

    Science.gov (United States)

    Qi, Zhiming; Helmers, Matthew J; Christianson, Reid D; Pederson, Carl H

    2011-01-01

    Nitrate-nitrogen (NO₃-N) loading to surface water bodies from subsurface drainage is an environmental concern in the midwestern United States. The objective of this study was to investigate the effect of various land covers on NO₃-N loss through subsurface drainage. Land-cover treatments included (i) conventional corn ( L.) (C) and soybean [ (L.) Merr.] (S); (ii) winter rye ( L.) cover crop before corn (rC) and before soybean (rS); (iii) kura clover ( M. Bieb.) as a living mulch for corn (kC); and (iv) perennial forage of orchardgrass ( L.) mixed with clovers (PF). In spring, total N uptake by aboveground biomass of rye in rC, rye in rS, kura clover in kC, and grasses in PF were 14.2, 31.8, 87.0, and 46.3 kg N ha, respectively. Effect of land covers on subsurface drainage was not significant. The NO₃-N loss was significantly lower for kC and PF than C and S treatments (p rye cover crop did not reduce NO₃-N loss, but NO₃-N concentration was significantly reduced in rC during March to June and in rS during July to November (p rye cover crop on NO-N loss reduction needs further investigation under conditions of different N rates, wider weather patterns, and fall tillage. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Climate state: Science-state struggles and the formation of climate science in the US from the 1930s to 1960s.

    Science.gov (United States)

    Baker, Zeke

    2017-12-01

    This article has two aims: first, to understand the co-production of climate science and the state, and second, to provide a test case for Pierre Bourdieu's field theory. To these ends, the article reconstructs the historical formation of a US climate science field, with an analytic focus on inter-field dynamics and heterogeneous networking practices. Drawing from primary- and secondary-source materials, the historical analysis focuses on relations between scientists and state actors from the 1930s to the 1960s. The account shows how actors with positions linking scientific and bureaucratic fields constructed critical nodes and 'hinges' that co-produced war-making and state expansion on the one hand, and a relatively autonomous climate science field on the other. The analysis explains the emergence of climate science by focusing on the WWII-era transformation of meteorology and oceanography into distinct disciplines, the emergence of 'basic' research as a central principle of post-war government, and the formation of a climate science field by the 1960s centered on computerized modeling and populated by an interdisciplinary scientific elite. The article concludes by indicating how these processes led to the subsequent development of climate change as a science-state conundrum that has reorganized the climate science field in recent decades.

  3. THE TERMINOLOGY OF LIBRARY SCIENCE

    OpenAIRE

    Љиљана Матић

    2014-01-01

    The master’s thesis entitled The Terminology of Library Science presents the general state of the terminology of library science in the Serbian language and analyses the terminological system which was formed in the last couple of decades in relation to library and information science. The terminology of library science is seen as a characteristic of professional language. The research is conducted on a corpus which excludes sources relating extremely to either library science or information ...

  4. Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model

    Science.gov (United States)

    Gnanaseelan, C.; Deshpande, Aditi

    2018-03-01

    The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels

  5. Agriculture and wildlife: ecological implications of subsurface irrigation drainage

    Science.gov (United States)

    A. Dennis Lemly

    1994-01-01

    Subsurface agricultural irrigation drainage is a wastewater with the potential to severely impact wetlands and wildlife populations. Widespread poisoning of migratory birds by drainwater contaminants has occurred in the western United States and waterfowl populations are threatened in the Pacific and Central flyways. Irrigated agriculture could produce subsurface...

  6. A multi-modal geological investigation framework for subsurface modeling and kinematic monitoring of a slow-moving landslide complex in Colorado, United States

    Science.gov (United States)

    Lowry, B. W.; Zhou, W.; Smartgeo

    2010-12-01

    The Muddy Creek landslide complex is a large area of active and reactivating landslides that impact the operation of both a state highway and Paonia Reservoir in Gunnison County, Colorado, United States. Historically, the monitoring of this slide has been investigated using disparate techniques leading to protracted analysis and project knowledge attrition. We present an integrated, data-driven investigation framework that supports continued kinematic monitoring, document cataloging, and subsurface modeling of the landslide complex. A geospatial information system (GIS) was integrated with a visual programming based subsurface model to facilitate modular integration of monitoring data with borehole information. Subsurface modeling was organized by material type and activity state based on multiple sources of kinematic measurement. The framework is constructed to modularly integrate remotely sensed imagery and other spatial datasets such as ASTER, InSAR, and LiDAR derived elevation products as more precise datasets become available. The framework allows for terrestrial LiDAR survey error estimation, borehole siting, and placement of wireless sensor (GPS, accelerometers, geophysical ) networks for optimized spatial relevance and utility. Coordinated spatial referencing within the GIS facilitates geotechnical and hydrogeological modeling input generation and common display of modeling outputs. Kinematic data fusion techniques are accomplished with integration of instrumentation, surficial feature tracking, subsurface classification, and 3D interpolation. The framework includes dynamic decision support including landslide dam failure estimates, back-flooding scenario planning that can be accessed by multiple agencies and stakeholders.

  7. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model

    Directory of Open Access Journals (Sweden)

    K. R. Prakash

    2018-04-01

    Full Text Available A coupled atmosphere–ocean–wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB during 10–14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere–ocean–wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere–ocean–wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave–current interaction and nonlinear wave–wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  8. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model

    Science.gov (United States)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh

    2018-04-01

    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  9. Impact disruption and recovery of the deep subsurface biosphere

    Science.gov (United States)

    Cockell, Charles S.; Voytek, Mary A.; Gronstal, Aaron L.; Finster, Kai; Kirshtein, Julie D.; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S.; Sanford, Ward E.; Horton, J. Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S.

    2012-01-01

    Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ~35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ~35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.

  10. The Role of Interdisciplinary Earth Science in the Assessment of Regional Land Subsidence Hazards: Toward Sustainable Management of Global Land and Subsurface-Fluid Resources

    Science.gov (United States)

    Galloway, D. L.

    2012-12-01

    Land-level lowering or land subsidence is a consequence of many local- and regional-scale physical, chemical or biologic processes affecting soils and geologic materials. The principal processes can be natural or anthropogenic, and include consolidation or compaction, karst or pseudokarst, hydrocompaction of collapsible soils, mining, oxidation of organic soils, erosive piping, tectonism, and volcanism. In terms of affected area, there are two principal regional-scale anthropogenic processes—compaction of compressible subsurface materials owing to the extraction of subsurface fluids (principally groundwater, oil and gas) and oxidation and compaction accompanying drainage of organic soils—which cause significant hazards related to flooding and infrastructure damage that are amenable to resource management measures. The importance of even small magnitude (analysis techniques, such as Global Positioning System (GPS), Light Detection and Ranging (LiDAR) and Interferometric Synthetic Aperture Radar (InSAR), which have advanced our capabilities to detect, measure and monitor land-surface motion at multiple scales. Improved means for simulating aquifer-system and hydrocarbon-reservoir deformation, and the oxidation and compaction of organic soils are leading to refined predictive capabilities. The role of interdisciplinary earth science in improving the characterization of land subsidence attributed to subsurface fluid withdrawals and the oxidation and compaction of organic soils is examined. How these improved capabilities are translating into improved sustainable management of regional land and water resources in a few select areas worldwide are presented. The importance of incorporating these improved capabilities in coherent resource management strategies to control the depletion of resources and attendant hazards also are discussed.

  11. Chimera states and the interplay between initial conditions and non-local coupling

    Science.gov (United States)

    Kalle, Peter; Sawicki, Jakub; Zakharova, Anna; Schöll, Eckehard

    2017-03-01

    Chimera states are complex spatio-temporal patterns that consist of coexisting domains of coherent and incoherent dynamics. We study chimera states in a network of non-locally coupled Stuart-Landau oscillators. We investigate the impact of initial conditions in combination with non-local coupling. Based on an analytical argument, we show how the coupling phase and the coupling strength are linked to the occurrence of chimera states, flipped profiles of the mean phase velocity, and the transition from a phase- to an amplitude-mediated chimera state.

  12. Model Comparison in Subsurface Science: The DECOVALEX and Sim-SEQ Initiatives (Invited)

    Science.gov (United States)

    Birkholzer, J. T.; Mukhopadhyay, S.; Rutqvist, J.; Tsang, C.

    2013-12-01

    Building predictive model for flow and transport processes in the subsurface is a challenging task, even more so if these processes are coupled to geomechanical and/or geochemical effects. Modelers must take into consideration a multiplicity of length scales, a wide range of time scales, the coupling between processes, different model components, and the spatial variability in the value of most model input parameters (and often limited knowledge about them). Consequently, modelers have to make choices while developing their conceptual models. Such model choices may cause a wide range in the predictions made by different models and different modeling groups, even if each of the underlying simulators has been perfectly verified against appropriate benchmarks. In other words, the modeling activity itself is prone to uncertainty and bias. This uncertainty, referred to here as model selection uncertainty, forms one of the greatest sources of uncertainty for predictive modeling. In this paper, we discuss two examples of model intercomparison exercises that are currently undertaken to better understand model selection uncertainty, elucidate system behavior, inform needs for data collection and better physics parameterizations, and enhance community understanding of capabilities. The first example is the international DECOVALEX project, which was launched in 1992 by a group of countries dealing with modeling issues related to geologic disposal of radioactive waste. DECOVALEX is an acronym for DEvelopment of COupled THM models and their VALidation against Experiments. To date, the project has progressed successfully through five stages, each of which featuring a small number of test cases for model comparison related to coupled thermo-hydro-mechanical (THM) processes in geologic systems. The test cases are proposed and developed by the organizations participating in DECOVALEX; they typically involve results from major field and laboratory experiments. Over the past decades

  13. Characterization of DNA-repair potential in deep subsurface bacteria challenged by UV light, hydrogen peroxide, and gamma radiation

    OpenAIRE

    Arrage, Andrew Anthony

    1991-01-01

    Subsurface bacterial isolates obtained through the DOE Subsurface Science Program were tested for resistance to UV light, gamma radiation and H202. Some deep subsurface bacteria were resistant to UV light, demonstrating â ¥1.0% survival at fluences which resulted in a 0.0001% survival level of E. coli B. The percentage of UV resistant aerobic subsurface bacteria and surface soil bacteria were similar; 30.8% and 25.8% respectively. All of the microaerophilic subsurface isolates ...

  14. Basin stability measure of different steady states in coupled oscillators

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  15. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    Science.gov (United States)

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  16. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  17. The effect of time-dependent coupling on non-equilibrium steady states

    DEFF Research Database (Denmark)

    Cornean, Horia; Neidhardt, Hagen; Zagrebnov, Valentin A.

    2009-01-01

    Consider (for simplicity) two one-dimensional semi-infinite leads coupled to a quantum well via time dependent point interactions. In the remote past the system is decoupled, and each of its components is at thermal equilibrium. In the remote future the system is fully coupled. We define...... and compute the non equilibrium steady state (NESS) generated by this evolution. We show that when restricted to the subspace of absolute continuity of the fully coupled system, the state does not depend at all on the switching. Moreover, we show that the stationary charge current has the same invariant...

  18. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    Science.gov (United States)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  19. Thematic survey of subsurface drainage systems in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Tlapáková, L.; Žaloudík, Jiří; Kolejka, Jaromír

    2017-01-01

    Roč. 13, č. 2 (2017), s. 55-65 ISSN 1744-5647 Institutional support: RVO:60077344 ; RVO:68145535 Keywords : subsurface drainage system * remote sensing * image interpretation * drainage recognition and mapping Subject RIV: DJ - Water Pollution ; Quality; DE - Earth Magnetism, Geodesy, Geography (UGN-S) OBOR OECD: Environmental sciences (social aspects to be 5.7); Physical geography (UGN-S) Impact factor: 2.174, year: 2016

  20. Ultrafast switching of the magnetic ground state in d1 titanates though nonlinear phononic coupling

    Science.gov (United States)

    Gu, Mingqiang; Rondinelli, James M.

    LaTiO3 and YTiO3 are isostructure d1 titanates, which exhibit distinct magnetic and orbital properties: The former is a G-type antiferromagnet with a 150 K Neel temperature whereas the latter is a rare ferromagnetic (FM) insulator with a 30 K Curie temperature. With first-principles density functional theory calculations, we identify the local structural origin of the magnetic order difference in these orthorhombic perovskites. By increasing the tilt and rotation angles in LaTiO3, respectively, LaTiO3 is predicted to undergo a magnetic phase transition to an FM state. Similarly, decreasing the tilt and rotation angles in YTiO3 leads to a FM-to-AFM phase transition. The underlying physics is attributed to the change in the superexchange coupling between Ti-sites. Last, we propose a route to switch the magnetism in the titanates by controlling the octahedral distortions through dynamical nonlinear phononic coupling. The proposed experiment requires the use of static strain to position the crystal structure in proximity to the structural transition combined with readily achievable fluencies in an ultrafast optical pump-probe geometry The theory work is supported by the U.S Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012375.

  1. Quantum correlations dynamics of three-qubit states coupled to an XY spin chain: Role of coupling strengths

    International Nuclear Information System (INIS)

    Yin Shao-Ying; Song Jie; Xu Xue-Xin; Zhou Ke-Ya; Liu Shu-Tian; Liu Qing-Xin

    2017-01-01

    We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit’s coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings. (paper)

  2. Scenario simulation based assessment of subsurface energy storage

    Science.gov (United States)

    Beyer, C.; Bauer, S.; Dahmke, A.

    2014-12-01

    Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC

  3. Ma_MISS on ExoMars: Mineralogical Characterization of the Martian Subsurface

    Science.gov (United States)

    De Sanctis, Maria Cristina; Altieri, Francesca; Ammannito, Eleonora; Biondi, David; De Angelis, Simone; Meini, Marco; Mondello, Giuseppe; Novi, Samuele; Paolinetti, Riccardo; Soldani, Massimo; Mugnuolo, Raffaele; Pirrotta, Simone; Vago, Jorge L.; Ma_MISS Team

    2017-07-01

    The Ma_MISS (Mars Multispectral Imager for Subsurface Studies) experiment is the visible and near infrared (VNIR) miniaturized spectrometer hosted by the drill system of the ExoMars 2020 rover. Ma_MISS will perform IR spectral reflectance investigations in the 0.4-2.2 μm range to characterize the mineralogy of excavated borehole walls at different depths (between 0 and 2 m). The spectral sampling is about 20 nm, whereas the spatial resolution over the target is 120 μm. Making use of the drill's movement, the instrument slit can scan a ring and build up hyperspectral images of a borehole. The main goal of the Ma_MISS instrument is to study the martian subsurface environment. Access to the martian subsurface is crucial to our ability to constrain the nature, timing, and duration of alteration and sedimentation processes on Mars, as well as habitability conditions. Subsurface deposits likely host and preserve H2O ice and hydrated materials that will contribute to our understanding of the H2O geochemical environment (both in the liquid and in the solid state) at the ExoMars 2020 landing site. The Ma_MISS spectral range and sampling capabilities have been carefully selected to allow the study of minerals and ices in situ before the collection of samples. Ma_MISS will be implemented to accomplish the following scientific objectives: (1) determine the composition of subsurface materials, (2) map the distribution of subsurface H2O and volatiles, (3) characterize important optical and physical properties of materials (e.g., grain size), and (4) produce a stratigraphic column that will inform with regard to subsurface geological processes. The Ma_MISS findings will help to refine essential criteria that will aid in our selection of the most interesting subsurface formations from which to collect samples.

  4. Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models

    KAUST Repository

    El Gharamti, Mohamad; Hoteit, Ibrahim

    2014-01-01

    The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.

  5. Complex step-based low-rank extended Kalman filtering for state-parameter estimation in subsurface transport models

    KAUST Repository

    El Gharamti, Mohamad

    2014-02-01

    The accuracy of groundwater flow and transport model predictions highly depends on our knowledge of subsurface physical parameters. Assimilation of contaminant concentration data from shallow dug wells could help improving model behavior, eventually resulting in better forecasts. In this paper, we propose a joint state-parameter estimation scheme which efficiently integrates a low-rank extended Kalman filtering technique, namely the Singular Evolutive Extended Kalman (SEEK) filter, with the prominent complex-step method (CSM). The SEEK filter avoids the prohibitive computational burden of the Extended Kalman filter by updating the forecast along the directions of error growth only, called filter correction directions. CSM is used within the SEEK filter to efficiently compute model derivatives with respect to the state and parameters along the filter correction directions. CSM is derived using complex Taylor expansion and is second order accurate. It is proven to guarantee accurate gradient computations with zero numerical round-off errors, but requires complexifying the numerical code. We perform twin-experiments to test the performance of the CSM-based SEEK for estimating the state and parameters of a subsurface contaminant transport model. We compare the efficiency and the accuracy of the proposed scheme with two standard finite difference-based SEEK filters as well as with the ensemble Kalman filter (EnKF). Assimilation results suggest that the use of the CSM in the context of the SEEK filter may provide up to 80% more accurate solutions when compared to standard finite difference schemes and is competitive with the EnKF, even providing more accurate results in certain situations. We analyze the results based on two different observation strategies. We also discuss the complexification of the numerical code and show that this could be efficiently implemented in the context of subsurface flow models. © 2013 Elsevier B.V.

  6. Subsurface microbial habitats on Mars

    Science.gov (United States)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  7. #2) Sensor Technology-State of the Science | Science ...

    Science.gov (United States)

    Establish market surveys of commercially-available air quality sensorsConduct an extensive literature survey describing the state of sensor technologiesInvestigate emerging technologies and their potential to meet future air quality monitoring needs for the Agency as well as other partners/stakeholders Develop sensor user guidesEducate sensor developers/sensors users on the state of low cost censorsFacilitate knowledge transfer to Federal/Regional/State air quality associatesWork directly with sensor developers to dramatically speed up the development of next generation air monitoring Support ORD’s Sensor Roadmap by focusing on areas of highest priority (NAAQS, Air Toxics, Citizen Science)Establish highly integrated research efforts across ORD and its partners (internal/external) to ensure consistent The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose.

  8. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    Science.gov (United States)

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  9. Multiple-state Feshbach resonances mediated by high-order couplings

    International Nuclear Information System (INIS)

    Hemming, Christopher J.; Krems, Roman V.

    2008-01-01

    We present a study of multistate Feshbach resonances mediated by high-order couplings. Our analysis focuses on a system with one open scattering state and multiple bound states. The scattering state is coupled to one off-resonant bound state and multiple Feshbach resonances are induced by a sequence of indirect couplings between the closed channels. We derive a general recursive expression that can be used to fit the experimental data on multistate Feshbach resonances involving one continuum state and several bound states and present numerical solutions for several model systems. Our results elucidate general features of multistate Feshbach resonances induced by high-order couplings and suggest mechanisms for controlling collisions of ultracold atoms and molecules with external fields

  10. Subsurface pH and carbonate saturation state of aragonite on the Chinese side of the North Yellow Sea: seasonal variations and controls

    Science.gov (United States)

    Zhai, W.-D.; Zheng, N.; Huo, C.; Xu, Y.; Zhao, H.-D.; Li, Y.-W.; Zang, K.-P.; Wang, J.-Y.; Xu, X.-M.

    2014-02-01

    Based upon eight field surveys conducted between May 2011 and May 2012, we investigated seasonal variations in pH, carbonate saturation state of aragonite (Ωarag), and ancillary data on the Chinese side of the North Yellow Sea, a western North Pacific continental margin of major economic importance. Subsurface waters were CO2-undersaturated in May and nearly in equilibrium with atmospheric CO2 in June. From July to October, the fugacity of CO2 (fCO2) of bottom water gradually increased from 438 ± 44 μatm to 630 ± 84 μatm, and pHT decreased from 8.02 ± 0.04 to 7.88 ± 0.06 due to local aerobic remineralization of primary-production-induced biogenic particles. The subsurface community respiration rates in summer and autumn were estimated to be from 0.80 to 1.08 μmol-O2 kg-1 d-1 within a relatively high salinity range of 31.63 to 32.25. From November to May in the next year, however, subsurface fCO2 gradually decreased and pH increased due to cooling and water column ventilation. The corresponding bottom water Ωarag was 1.85 ± 0.21 (May), 1.79 ± 0.24 (June), 1.75 ± 0.27 (July), 1.76 ± 0.29 (August), 1.45 ± 0.31 (October), 1.52 ± 0.25 (November), and 1.41 ± 0.12 (January). Extremely low Ωarag values (from 1.13 to 1.40) were observed mainly in subsurface waters within the high salinity range of 31.63 to 32.25, which covered a major fraction of the study area in October and November. Of the China seas, the North Yellow Sea represents one of the systems most vulnerable to the potential negative effects of ocean acidification.

  11. Integrated Surface/subsurface flow modeling in PFLOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Painter, Scott L [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    Understanding soil water, groundwater, and shallow surface water dynamics as an integrated hydrological system is critical for understanding the Earth’s critical zone, the thin outer layer at our planet’s surface where vegetation, soil, rock, and gases interact to regulate the environment. Computational tools that take this view of soil moisture and shallow surface flows as a single integrated system are typically referred to as integrated surface/subsurface hydrology models. We extend the open-source, highly parallel, subsurface flow and reactive transport simulator PFLOTRAN to accommodate surface flows. In contrast to most previous implementations, we do not represent a distinct surface system. Instead, the vertical gradient in hydraulic head at the land surface is neglected, which allows the surface flow system to be eliminated and incorporated directly into the subsurface system. This tight coupling approach leads to a robust capability and also greatly simplifies implementation in existing subsurface simulators such as PFLOTRAN. Successful comparisons to independent numerical solutions build confidence in the approximation and implementation. Example simulations of the Walker Branch and East Fork Poplar Creek watersheds near Oak Ridge, Tennessee demonstrate the robustness of the approach in geometrically complex applications. The lack of a robust integrated surface/subsurface hydrology capability had been a barrier to PFLOTRAN’s use in critical zone studies. This work addresses that capability gap, thus enabling PFLOTRAN as a community platform for building integrated models of the critical zone.

  12. Summary report on close-coupled subsurface barrier technology: Initial field trials to full-scale demonstration

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1997-09-01

    The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained

  13. Modeling subsurface stormflow initiation in low-relief landscapes

    Science.gov (United States)

    Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.

    2015-04-01

    Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition

  14. Chimera states in Gaussian coupled map lattices

    Science.gov (United States)

    Li, Xiao-Wen; Bi, Ran; Sun, Yue-Xiang; Zhang, Shuo; Song, Qian-Qian

    2018-04-01

    We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

  15. Subsurface temperatures and surface heat flow in the Michigan Basin and their relationships to regional subsurface fluid movement

    Science.gov (United States)

    Vugrinovich, R.

    1989-01-01

    Linear regression of 405 bottomhole temperature (BHT) measurements vs. associated depths from Michigan's Lower Peninsula results in the following equation relating BHT and depth: BHT(??C) = 14.5 + 0.0192 ?? depth(m) Temperature residuals, defined as (BHT measured)-(BHT calculated), were determined for each of the 405 BHT's. Areas of positive temperature residuals correspond to areas of regional groundwater discharge (determined from maps of equipotential surface) while areas of negative temperature residuals correspond to areas of regional groundwater recharge. These relationships are observed in the principal aquifers in rocks of Devonian and Ordovician age and in a portion of the principal aquifer in rocks of Silurian age. There is a similar correspondence between high surface heat flow (determined using the silica geothermometer) and regional groundwater discharge areas and low surface heat flow and regional groundwater recharge areas. Post-Jurassic depositional and tectonic histories suggest that the observed coupling of subsurface temperature and groundwater flow systems may have persisted since Jurassic time. Thus the higher subsurface palaeotemperatures (and palaeogeothermal gradients) indicated by recent studies most likely pre-date the Jurassic. ?? 1989.

  16. A Finite Difference, Semi-implicit, Equation-of-State Efficient Algorithm for the Compositional Flow Modeling in the Subsurface: Numerical Examples

    KAUST Repository

    Saavedra, Sebastian

    2012-07-01

    The mathematical model that has been recognized to have the more accurate approximation to the physical laws govern subsurface hydrocarbon flow in reservoirs is the Compositional Model. The features of this model are adequate to describe not only the performance of a multiphase system but also to represent the transport of chemical species in a porous medium. Its importance relies not only on its current relevance to simulate petroleum extraction processes, such as, Primary, Secondary, and Enhanced Oil Recovery Process (EOR) processes but also, in the recent years, carbon dioxide (CO2) sequestration. The purpose of this study is to investigate the subsurface compositional flow under isothermal conditions for several oil well cases. While simultaneously addressing computational implementation finesses to contribute to the efficiency of the algorithm. This study provides the theoretical framework and computational implementation subtleties of an IMplicit Pressure Explicit Composition (IMPEC)-Volume-balance (VB), two-phase, equation-of-state, approach to model isothermal compositional flow based on the finite difference scheme. The developed model neglects capillary effects and diffusion. From the phase equilibrium premise, the model accounts for volumetric performances of the phases, compressibility of the phases, and composition-dependent viscosities. The Equation of State (EoS) employed to approximate the hydrocarbons behaviour is the Peng Robinson Equation of State (PR-EOS). Various numerical examples were simulated. The numerical results captured the complex physics involved, i.e., compositional, gravitational, phase-splitting, viscosity and relative permeability effects. Regarding the numerical scheme, a phase-volumetric-flux estimation eases the calculation of phase velocities by naturally fitting to phase-upstream-upwinding. And contributes to a faster computation and an efficient programming development.

  17. Geophysical Monitoring of Coupled Microbial and Geochemical Processes During Stimulated Subsurface Bioremediation

    International Nuclear Information System (INIS)

    Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.; Druhan, Jennifer L.; Arntzen, Evan V.; N'Guessan, A. Lucie; Long, Philip E.; Hubbard, Susan S.; Banfield, Jillian F.

    2009-01-01

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1 Hz) and was dependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation

  18. Introduction: energy and the subsurface

    Science.gov (United States)

    Viswanathan, Hari S.

    2016-01-01

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597784

  19. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which

  20. A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs

    Science.gov (United States)

    Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.

    2018-01-01

    In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.

  1. Distinct collective states due to trade-off between attractive and repulsive couplings

    Science.gov (United States)

    Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.

    2018-03-01

    We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.

  2. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  3. Low temperature monitoring system for subsurface barriers

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  4. Finite-element analysis of elastic sound-proof coupling thermal state

    Science.gov (United States)

    Tsyss, V. G.; Strokov, I. M.; Sergaeva, M. Yu

    2018-01-01

    The aim is in calculated determining of the elastic rubber-metal element thermal state of soundproof coupling ship shafting under variable influence during loads in time. Thermal coupling calculation is performed with finite element method using NX Simens software with Nastran solver. As a result of studies, the following results were obtained: - a volumetric picture of the temperature distribution over the array of the deformed coupling body is obtained; - time to reach steady-state thermal coupling mode has been determined; - dependences of maximum temperature and time to reach state on the established operation mode on rotation frequency and ambient temperature are determined. The findings prove the conclusion that usage of finite element analysis modern software can significantly speed up problem solving.

  5. Rabi oscillation between states of a coupled harmonic oscillator

    International Nuclear Information System (INIS)

    Park, Tae Jun

    2003-01-01

    Rabi oscillation between bound states of a single potential is well known. However the corresponding formula between the states of two different potentials has not been obtained yet. In this work, we derive Rabi formula between the states of a coupled harmonic oscillator which may be used as a simple model for the electron transfer. The expression is similar to typical Rabi formula for a single potential. This result may be used to describe transitions between coupled diabatic potential curves

  6. The Serpentinite Subsurface Microbiome

    Science.gov (United States)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  7. Techniques for assessing the performance of in situ bioreduction and immobilization of metals and radionuclides in contaminated subsurface environments

    Energy Technology Data Exchange (ETDEWEB)

    Jardine, P.M.; Watson, D.B.; Blake, D.A.; Beard, L.P.; Brooks, S.C.; Carley, J.M.; Criddle, C.S.; Doll, W.E.; Fields, M.W.; Fendorf, S.E.; Geesey, G.G.; Ginder-Vogel, M.; Hubbard, S.S.; Istok, J.D.; Kelly, S.; Kemner, K.M.; Peacock, A.D.; Spalding, B.P.; White, D.C.; Wolf, A.; Wu, W.; Zhou, J.

    2004-11-14

    Department of Energy (DOE) facilities within the weapons complex face a daunting challenge of remediating huge below inventories of legacy radioactive and toxic metal waste. More often than not, the scope of the problem is massive, particularly in the high recharge, humid regions east of the Mississippi river, where the off-site migration of contaminants continues to plague soil water, groundwater, and surface water sources. As of 2002, contaminated sites are closing rapidly and many remediation strategies have chosen to leave contaminants in-place. In situ barriers, surface caps, and bioremediation are often the remedial strategies of chose. By choosing to leave contaminants in-place, we must accept the fact that the contaminants will continue to interact with subsurface and surface media. Contaminant interactions with the geosphere are complex and investigating long term changes and interactive processes is imperative to verifying risks. We must be able to understand the consequences of our action or inaction. The focus of this manuscript is to describe recent technical developments for assessing the performance of in situ bioremediation and immobilization of subsurface metals and radionuclides. Research within DOE's NABIR and EMSP programs has been investigating the possibility of using subsurface microorganisms to convert redox sensitive toxic metals and radionuclides (e.g. Cr, U, Tc, Co) into a less soluble, less mobile forms. Much of the research is motivated by the likelihood that subsurface metal-reducing bacteria can be stimulated to effectively alter the redox state of metals and radionuclides so that they are immobilized in situ for long time periods. The approach is difficult, however, since subsurface media and waste constituents are complex with competing electron acceptors and hydrogeological conditions making biostimulation a challenge. Performance assessment of in situ biostimulation strategies is also difficult and typically requires detailed

  8. State-level marriage equality and the health of same-sex couples.

    Science.gov (United States)

    Kail, Ben Lennox; Acosta, Katie L; Wright, Eric R

    2015-06-01

    We assessed the association between the health of people in same-sex relationships and the degree and nature of the legal recognition of same-sex relationships offered in the states in which they resided. We conducted secondary data analyses on the 2010 to 2013 Current Population Survey and publicly available data from Freedom to Marry, Inc. We estimated ordered logistic regression models in a 4-level framework to assess the impact of states' legal stances toward same-sex marriage on self-assessed health. Our findings indicated, relative to states with antigay constitutional amendments, that same-sex couples living in states with legally sanctioned marriage reported higher levels of self-assessed health. Our findings suggested that full legal recognition of same-sex relationships through marriage might be an important legal and policy strategy for improving the health of same-sex couples.

  9. Modeling Phosphorus Losses through Surface Runoff and Subsurface Drainage Using ICECREAM.

    Science.gov (United States)

    Qi, Hongkai; Qi, Zhiming; Zhang, T Q; Tan, C S; Sadhukhan, Debasis

    2018-03-01

    Modeling soil phosphorus (P) losses by surface and subsurface flow pathways is essential in developing successful strategies for P pollution control. We used the ICECREAM model to simultaneously simulate P losses in surface and subsurface flow, as well as to assess effectiveness of field practices in reducing P losses. Monitoring data from a mineral-P-fertilized clay loam field in southwestern Ontario, Canada, were used for calibration and validation. After careful adjustment of model parameters, ICECREAM was shown to satisfactorily simulate all major processes of surface and subsurface P losses. When the calibrated model was used to assess tillage and fertilizer management scenarios, results point to a 10% reduction in total P losses by shifting autumn tillage to spring, and a 25.4% reduction in total P losses by injecting fertilizer rather than broadcasting. Although the ICECREAM model was effective in simulating surface and subsurface P losses when thoroughly calibrated, further testing is needed to confirm these results with manure P application. As illustrated here, successful use of simulation models requires careful verification of model routines and comprehensive calibration to ensure that site-specific processes are accurately represented. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Persistent chimera states in nonlocally coupled phase oscillators

    OpenAIRE

    Suda, Yusuke; Okuda, Koji

    2015-01-01

    Chimera states in the systems of nonlocally coupled phase oscillators are considered stable in the continuous limit of spatially distributed oscillators. However, it is reported that in the numerical simulations without taking such limit, chimera states are chaotic transient and finally collapse into the completely synchronous solution. In this Rapid Communication, we numerically study chimera states by using the coupling function different from the previous studies and obtain the result that...

  11. Molecular states of HeH+. Energies and dynamical couplings

    International Nuclear Information System (INIS)

    Macias, A.; Riera, A.; Yanez, M.

    1983-01-01

    We complete the molecular results reported in a previous paper by presenting additional energies (for /sup 1,3/μ states) and radial couplings (between 'μ states) of the HeH + system. These results are needed to treat elastic and inelastic charge-exchange processes when full account is taken of momentum-transfer problems. We also present a formalism to calculate radial couplings between wave functions computed with the use of different variational methods and basis sets. The detailed form of the radial couplings is discussed and related to the Barat-Lichten correlation diagram. The effect of using finite basis sets in calculatig degenerate molecular energies is also discussed

  12. Microbial activity in the terrestrial subsurface

    International Nuclear Information System (INIS)

    Kaiser, J.P.; Bollag, J.M.

    1990-01-01

    Little is known about the layers under the earth's crust. Only in recent years have techniques for sampling the deeper subsurface been developed to permit investigation of the subsurface environment. Prevailing conditions in the subsurface habitat such as nutrient availability, soil composition, redox potential, permeability and a variety of other factors can influence the microflora that flourish in a given environment. Microbial diversity varies between geological formations, but in general sandy soils support growth better than soils rich in clay. Bacteria predominate in subsurface sediments, while eukaryotes constitute only 1-2% of the microorganisms. Recent investigations revealed that most uncontaminated subsurface soils support the growth of aerobic heteroorganotrophic bacteria, but obviously anaerobic microorganisms also exist in the deeper subsurface habitat. The microorganisms residing below the surface of the earth are capable of degrading both natural and xenobiotic contaminants and can thereby adapt to growth under polluted conditions. (author) 4 tabs, 77 refs

  13. Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States

    Science.gov (United States)

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2009-01-01

    Channel water balances of contiguous reaches along streams represent a poorly understood scale of stream-subsurface interaction. We measured reach water balances along a headwater stream in Montana, United States, during summer base flow recessions. Reach water balances were estimated from series of tracer tests in 13 consecutive reaches delineated evenly along a 2.6-...

  14. Experimental multistable states for small network of coupled pendula

    Science.gov (United States)

    Dudkowski, Dawid; Grabski, Juliusz; Wojewoda, Jerzy; Perlikowski, Przemyslaw; Maistrenko, Yuri; Kapitaniak, Tomasz

    2016-07-01

    Chimera states are dynamical patterns emerging in populations of coupled identical oscillators where different groups of oscillators exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Although these states are typically observed in the large ensembles of oscillators, recently it has been shown that so-called weak chimera states may occur in the systems with small numbers of oscillators. Here, we show that similar multistable states demonstrating partial frequency synchronization, can be observed in simple experiments with identical mechanical oscillators, namely pendula. The mathematical model of our experiment shows that the observed multistable states are controlled by elementary dynamical equations, derived from Newton’s laws that are ubiquitous in many physical and engineering systems. Our finding suggests that multistable chimera-like states are observable in small networks relevant to various real-world systems.

  15. Effects of ocean initial perturbation on developing phase of ENSO in a coupled seasonal prediction model

    Science.gov (United States)

    Lee, Hyun-Chul; Kumar, Arun; Wang, Wanqiu

    2018-03-01

    Coupled prediction systems for seasonal and inter-annual variability in the tropical Pacific are initialized from ocean analyses. In ocean initial states, small scale perturbations are inevitably smoothed or distorted by the observational limits and data assimilation procedures, which tends to induce potential ocean initial errors for the El Nino-Southern Oscillation (ENSO) prediction. Here, the evolution and effects of ocean initial errors from the small scale perturbation on the developing phase of ENSO are investigated by an ensemble of coupled model predictions. Results show that the ocean initial errors at the thermocline in the western tropical Pacific grow rapidly to project on the first mode of equatorial Kelvin wave and propagate to the east along the thermocline. In boreal spring when the surface buoyancy flux weakens in the eastern tropical Pacific, the subsurface errors influence sea surface temperature variability and would account for the seasonal dependence of prediction skill in the NINO3 region. It is concluded that the ENSO prediction in the eastern tropical Pacific after boreal spring can be improved by increasing the observational accuracy of subsurface ocean initial states in the western tropical Pacific.

  16. Reductive immobilization of U(VI) in Fe(III) oxide-reducing subsurface sediments: Analysis of coupled microbial-geochemical processes in experimental reactive transport systems. Final Scientific/Technical Report-EMSP 73914

    International Nuclear Information System (INIS)

    Eric E. Roden Matilde M. Urrutia Mark O. Barnett Clifford R. Lange

    2005-01-01

    The purpose of this research was to provide information to DOE on microbiological and geochemical processes underlying the potential use of dissimilatory metal-reducing bacteria (DMRB) to create subsurface redox barriers for immobilization of uranium and other redox-sensitive metal/radionuclide contaminants that were released to the environment in large quantities during Cold War nuclear weapons manufacturing operations. Several fundamental scientific questions were addressed in order to understand and predict how such treatment procedures would function under in situ conditions in the subsurface. These questions revolved the coupled microbial-geochemical phenomena which are likely to occur within a redox barrier treatment zone, and on the dynamic interactions between hydrologic flux and biogeochemical process rates. First, we assembled a robust conceptual understanding and numerical framework for modeling the kinetics of microbial Fe(III) oxide reduction and associated DMRB growth in sediments. Development of this framework is a critical prerequisite for predicting the potential effectiveness of DMRB-promoted subsurface bioremediation, since Fe(III) oxides are expected to be the primary source of electron-accepting capacity for growth and maintenance of DMRB in subsurface environments. We also defined in detail the kinetics of microbial (enzymatic) versus abiotic, ferrous iron-promoted reduction of U(VI) in the presence and absence of synthetic and natural Fe(III) oxide materials. The results of these studies suggest that (i) the efficiency of dissolved U(VI) scavenging may be influenced by the kinetics of enzymatic U(VI) reduction in systems with relative short fluid residence times; (2) association of U(VI) with diverse surface sites in natural soils and sediments has the potential to limit the rate and extent of microbial U(VI) reduction, and in turn modulate the effectiveness of in situ U(VI) bioremediation; and (3) abiotic, ferrous iron (Fe(II)) drive n U

  17. Recovery Act: Web-based CO{sub 2} Subsurface Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Paolini, Christopher; Castillo, Jose

    2012-11-30

    The Web-based CO{sub 2} Subsurface Modeling project focused primarily on extending an existing text-only, command-line driven, isothermal and isobaric, geochemical reaction-transport simulation code, developed and donated by Sienna Geodynamics, into an easier-to-use Web-based application for simulating long-term storage of CO{sub 2} in geologic reservoirs. The Web-based interface developed through this project, publically accessible via URL http://symc.sdsu.edu/, enables rapid prototyping of CO{sub 2} injection scenarios and allows students without advanced knowledge of geochemistry to setup a typical sequestration scenario, invoke a simulation, analyze results, and then vary one or more problem parameters and quickly re-run a simulation to answer what-if questions. symc.sdsu.edu has 2x12 core AMD Opteron™ 6174 2.20GHz processors and 16GB RAM. The Web-based application was used to develop a new computational science course at San Diego State University, COMP 670: Numerical Simulation of CO{sub 2} Sequestration, which was taught during the fall semester of 2012. The purpose of the class was to introduce graduate students to Carbon Capture, Use and Storage (CCUS) through numerical modeling and simulation, and to teach students how to interpret simulation results to make predictions about long-term CO{sub 2} storage capacity in deep brine reservoirs. In addition to the training and education component of the project, significant software development efforts took place. Two computational science doctoral and one geological science masters student, under the direction of the PIs, extended the original code developed by Sienna Geodynamics, named Sym.8. New capabilities were added to Sym.8 to simulate non-isothermal and non-isobaric flows of charged aqueous solutes in porous media, in addition to incorporating HPC support into the code for execution on many-core XSEDE clusters. A successful outcome of this project was the funding and training of three new computational

  18. Subsurface Nitrogen-Cycling Microbial Communities at Uranium Contaminated Sites in the Colorado River Basin

    Science.gov (United States)

    Cardarelli, E.; Bargar, J.; Williams, K. H.; Dam, W. L.; Francis, C.

    2015-12-01

    Throughout the Colorado River Basin (CRB), uranium (U) persists as a relic contaminant of former ore processing activities. Elevated solid-phase U levels exist in fine-grained, naturally-reduced zone (NRZ) sediments intermittently found within the subsurface floodplain alluvium of the following Department of Energy-Legacy Management sites: Rifle, CO; Naturita, CO; and Grand Junction, CO. Coupled with groundwater fluctuations that alter the subsurface redox conditions, previous evidence from Rifle, CO suggests this resupply of U may be controlled by microbially-produced nitrite and nitrate. Nitrification, the two-step process of archaeal and bacterial ammonia-oxidation followed by bacterial nitrite oxidation, generates nitrate under oxic conditions. Our hypothesis is that when elevated groundwater levels recede and the subsurface system becomes anoxic, the nitrate diffuses into the reduced interiors of the NRZ and stimulates denitrification, the stepwise anaerobic reduction of nitrate/nitrite to dinitrogen gas. Denitrification may then be coupled to the oxidation of sediment-bound U(IV) forming mobile U(VI), allowing it to resupply U into local groundwater supplies. A key step in substantiating this hypothesis is to demonstrate the presence of nitrogen-cycling organisms in U-contaminated, NRZ sediments from the upper CRB. Here we investigate how the diversity and abundances of nitrifying and denitrifying microbial populations change throughout the NRZs of the subsurface by using functional gene markers for ammonia-oxidation (amoA, encoding the α-subunit of ammonia monooxygenase) and denitrification (nirK, nirS, encoding nitrite reductase). Microbial diversity has been assessed via clone libraries, while abundances have been determined through quantitative polymerase chain reaction (qPCR), elucidating how relative numbers of nitrifiers (amoA) and denitrifiers (nirK, nirS) vary with depth, vary with location, and relate to uranium release within NRZs in sediment

  19. The current state of science in radiation protection

    International Nuclear Information System (INIS)

    Kaul, A.

    1985-01-01

    The qualification 'according to the current state of science and technology' is regularly found in radiation protection laws. It is assumed that the state of science and technology is codified in the publications of ICRP and ICRU, the International Comissions on Radiological Protection and - Units respectively, and in the UN publication USCEAR. An investigation is made on the extent the regulations of FRD comply with this requirement. Stochastic and non-stochastic damages are differentiated and the problem of assigning equivalent whole-body doses to exposures of specific body organs is considered. (G.Q.)

  20. Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states

    Science.gov (United States)

    Nori, Franco; Ashhab, Sahel

    2011-03-01

    We consider a system composed of a two-level system (i.e. a qubit) and a harmonic oscillator in the ultrastrong-coupling regime, where the coupling strength is comparable to the qubit and oscillator energy scales. We explore the possibility of preparing nonclassical states in this system, especially in the ground state of the combined system. The nonclassical states that we consider include squeezed states, Schrodinger-cat states and entangled states. We also analyze the nature of the change in the ground state as the coupling strength is increased, going from a separable ground state in the absence of coupling to a highly entangled ground state in the case of very strong coupling. Reference: S. Ashhab and F. Nori, Phys. Rev. A 81, 042311 (2010). We thank support from DARPA, AFOSR, NSA, LPS, ARO, NSF, MEXT, JSPS, FIRST, and JST.

  1. Integrating surrogate models into subsurface simulation framework allows computation of complex reactive transport scenarios

    Science.gov (United States)

    De Lucia, Marco; Kempka, Thomas; Jatnieks, Janis; Kühn, Michael

    2017-04-01

    Reactive transport simulations - where geochemical reactions are coupled with hydrodynamic transport of reactants - are extremely time consuming and suffer from significant numerical issues. Given the high uncertainties inherently associated with the geochemical models, which also constitute the major computational bottleneck, such requirements may seem inappropriate and probably constitute the main limitation for their wide application. A promising way to ease and speed-up such coupled simulations is achievable employing statistical surrogates instead of "full-physics" geochemical models [1]. Data-driven surrogates are reduced models obtained on a set of pre-calculated "full physics" simulations, capturing their principal features while being extremely fast to compute. Model reduction of course comes at price of a precision loss; however, this appears justified in presence of large uncertainties regarding the parametrization of geochemical processes. This contribution illustrates the integration of surrogates into the flexible simulation framework currently being developed by the authors' research group [2]. The high level language of choice for obtaining and dealing with surrogate models is R, which profits from state-of-the-art methods for statistical analysis of large simulations ensembles. A stand-alone advective mass transport module was furthermore developed in order to add such capability to any multiphase finite volume hydrodynamic simulator within the simulation framework. We present 2D and 3D case studies benchmarking the performance of surrogates and "full physics" chemistry in scenarios pertaining the assessment of geological subsurface utilization. [1] Jatnieks, J., De Lucia, M., Dransch, D., Sips, M.: "Data-driven surrogate model approach for improving the performance of reactive transport simulations.", Energy Procedia 97, 2016, p. 447-453. [2] Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Chabab [Tillner], E., Kühn, M

  2. Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls

    Science.gov (United States)

    Risk, D.; Kellman, L.; Beltrami, H.

    Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.

  3. Chimera and phase-cluster states in populations of coupled chemical oscillators

    Science.gov (United States)

    Tinsley, Mark R.; Nkomo, Simbarashe; Showalter, Kenneth

    2012-09-01

    Populations of coupled oscillators may exhibit two coexisting subpopulations, one with synchronized oscillations and the other with unsynchronized oscillations, even though all of the oscillators are coupled to each other in an equivalent manner. This phenomenon, discovered about ten years ago in theoretical studies, was then further characterized and named the chimera state after the Greek mythological creature made up of different animals. The highly counterintuitive coexistence of coherent and incoherent oscillations in populations of identical oscillators, each with an equivalent coupling structure, inspired great interest and a flurry of theoretical activity. Here we report on experimental studies of chimera states and their relation to other synchronization states in populations of coupled chemical oscillators. Our experiments with coupled Belousov-Zhabotinsky oscillators and corresponding simulations reveal chimera behaviour that differs significantly from the behaviour found in theoretical studies of phase-oscillator models.

  4. Cultivating the Deep Subsurface Microbiome

    Science.gov (United States)

    Casar, C. P.; Osburn, M. R.; Flynn, T. M.; Masterson, A.; Kruger, B.

    2017-12-01

    Subterranean ecosystems are poorly understood because many microbes detected in metagenomic surveys are only distantly related to characterized isolates. Cultivating microorganisms from the deep subsurface is challenging due to its inaccessibility and potential for contamination. The Deep Mine Microbial Observatory (DeMMO) in Lead, SD however, offers access to deep microbial life via pristine fracture fluids in bedrock to a depth of 1478 m. The metabolic landscape of DeMMO was previously characterized via thermodynamic modeling coupled with genomic data, illustrating the potential for microbial inhabitants of DeMMO to utilize mineral substrates as energy sources. Here, we employ field and lab based cultivation approaches with pure minerals to link phylogeny to metabolism at DeMMO. Fracture fluids were directed through reactors filled with Fe3O4, Fe2O3, FeS2, MnO2, and FeCO3 at two sites (610 m and 1478 m) for 2 months prior to harvesting for subsequent analyses. We examined mineralogical, geochemical, and microbiological composition of the reactors via DNA sequencing, microscopy, lipid biomarker characterization, and bulk C and N isotope ratios to determine the influence of mineralogy on biofilm community development. Pre-characterized mineral chips were imaged via SEM to assay microbial growth; preliminary results suggest MnO2, Fe3O4, and Fe2O3 were most conducive to colonization. Solid materials from reactors were used as inoculum for batch cultivation experiments. Media designed to mimic fracture fluid chemistry was supplemented with mineral substrates targeting metal reducers. DNA sequences and microscopy of iron oxide-rich biofilms and fracture fluids suggest iron oxidation is a major energy source at redox transition zones where anaerobic fluids meet more oxidizing conditions. We utilized these biofilms and fluids as inoculum in gradient cultivation experiments targeting microaerophilic iron oxidizers. Cultivation of microbes endemic to DeMMO, a system

  5. Robustness of spin-coupling distributions for perfect quantum state transfer

    International Nuclear Information System (INIS)

    Zwick, Analia; Alvarez, Gonzalo A.; Stolze, Joachim; Osenda, Omar

    2011-01-01

    The transmission of quantum information between different parts of a quantum computer is of fundamental importance. Spin chains have been proposed as quantum channels for transferring information. Different configurations for the spin couplings were proposed in order to optimize the transfer. As imperfections in the creation of these specific spin-coupling distributions can never be completely avoided, it is important to find out which systems are optimally suited for information transfer by assessing their robustness against imperfections or disturbances. We analyze different spin coupling distributions of spin chain channels designed for perfect quantum state transfer. In particular, we study the transfer of an initial state from one end of the chain to the other end. We quantify the robustness of different coupling distributions against perturbations and we relate it to the properties of the energy eigenstates and eigenvalues. We find that the localization properties of the systems play an important role for robust quantum state transfer.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Rajeev Ranjan Kumar. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1177-1184. Modelling near subsurface temperature with mixed type boundary condition for transient air temperature and vertical groundwater flow.

  7. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Joel E. [Florida State Univ., Tallahassee, FL (United States); Prakash, Om [Florida State Univ., Tallahassee, FL (United States); Green, Stefan J. [Florida State Univ., Tallahassee, FL (United States); Akob, Denise [Florida State Univ., Tallahassee, FL (United States); Jasrotia, Puja [Florida State Univ., Tallahassee, FL (United States); Kerkhof, Lee [Rutgers Univ., New Brunswick, NJ (United States); Chin, Kuk-Jeong [Georgia State Univ., Atlanta, GA (United States); Sheth, Mili [Georgia State Univ., Atlanta, GA (United States); Keller, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Venkateswaran, Amudhan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Elkins, James G. [Univ. of Illinois, Urbana-Champaign, IL (United States); Stucki, Joseph W. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. The ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).

  8. Synchronization of chaotic neural networks via output or state coupling

    International Nuclear Information System (INIS)

    Lu Hongtao; Leeuwen, C. van

    2006-01-01

    We consider the problem of global exponential synchronization between two identical chaotic neural networks that are linearly and unidirectionally coupled. We formulate a general framework for the synchronization problem in which one chaotic neural network, working as the driving system (or master), sends its output or state values to the other, which serves as the response system (or slave). We use Lyapunov functions to establish general theoretical conditions for designing the coupling matrix. Neither symmetry nor negative (positive) definiteness of the coupling matrix are required; under less restrictive conditions, the two coupled chaotic neural networks can achieve global exponential synchronization regardless of their initial states. Detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws

  9. Microbial redox processes in deep subsurface environments and the potential application of (perchlorate in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Martin G Liebensteiner

    2014-09-01

    Full Text Available The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese- and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (perchlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (perchlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (perchlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (metagenome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (perchlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (perchlorate for bioremediation, souring control and microbial enhanced oil recovery are addressed.

  10. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    Science.gov (United States)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  11. Parallel heater system for subsurface formations

    Science.gov (United States)

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  12. Chimera states in a multilayer network of coupled and uncoupled neurons

    Science.gov (United States)

    Majhi, Soumen; Perc, Matjaž; Ghosh, Dibakar

    2017-07-01

    We study the emergence of chimera states in a multilayer neuronal network, where one layer is composed of coupled and the other layer of uncoupled neurons. Through the multilayer structure, the layer with coupled neurons acts as the medium by means of which neurons in the uncoupled layer share information in spite of the absence of physical connections among them. Neurons in the coupled layer are connected with electrical synapses, while across the two layers, neurons are connected through chemical synapses. In both layers, the dynamics of each neuron is described by the Hindmarsh-Rose square wave bursting dynamics. We show that the presence of two different types of connecting synapses within and between the two layers, together with the multilayer network structure, plays a key role in the emergence of between-layer synchronous chimera states and patterns of synchronous clusters. In particular, we find that these chimera states can emerge in the coupled layer regardless of the range of electrical synapses. Even in all-to-all and nearest-neighbor coupling within the coupled layer, we observe qualitatively identical between-layer chimera states. Moreover, we show that the role of information transmission delay between the two layers must not be neglected, and we obtain precise parameter bounds at which chimera states can be observed. The expansion of the chimera region and annihilation of cluster and fully coherent states in the parameter plane for increasing values of inter-layer chemical synaptic time delay are illustrated using effective range measurements. These results are discussed in the light of neuronal evolution, where the coexistence of coherent and incoherent dynamics during the developmental stage is particularly likely.

  13. Microbiological Transformations of Radionuclides in the Subsurface

    International Nuclear Information System (INIS)

    Marshall, Matthew J.; Beliaev, Alex S.; Fredrickson, Jim K.

    2010-01-01

    Microorganisms are ubiquitous in subsurface environments although their populations sizes and metabolic activities can vary considerably depending on energy and nutrient inputs. As a result of their metabolic activities and the chemical properties of their cell surfaces and the exopolymers they produce, microorganisms can directly or indirectly facilitate the biotransformation of radionuclides, thus altering their solubility and overall fate and transport in the environment. Although biosorption to cell surfaces and exopolymers can be an important factor modifying the solubility of some radionuclides under specific conditions, oxidation state is often considered the single most important factor controlling their speciation and, therefore, environmental behavior.

  14. Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings

    International Nuclear Information System (INIS)

    Savovic, S.; Djordjevich, A.; Ristic, G.

    2012-01-01

    A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required. (authors)

  15. Intelligent SUBsurface Quality : Intelligent use of subsurface infrastructure for surface quality

    NARCIS (Netherlands)

    Hooimeijer, F.L.; Kuzniecow Bacchin, T.; Lafleur, F.; van de Ven, F.H.M.; Clemens, F.H.L.R.; Broere, W.; Laumann, S.J.; Klaassen, R.G.; Marinetti, C.

    2016-01-01

    This project focuses on the urban renewal of (delta) metropolises and concentrates on the question how to design resilient, durable (subsurface) infrastructure in urban renewal projects using parameters of the natural system – linking in an efficient way (a) water cycle, (b) soil and subsurface

  16. Symposium Connects Government Problems with State of the Art Network Science Research

    Science.gov (United States)

    2015-10-16

    Symposium Connects Government Problems with State-of-the- Art Network Science Research By Rajmonda S. Caceres and Benjamin A. Miller Network...the US Gov- ernment, and match these with the state-of-the- art models and techniques developed in the network science research community. Since its... science has grown significantly in the last several years as a field at the intersec- tion of mathematics, computer science , social science , and engineering

  17. Molecular states of HeH/sup +/. Energies and dynamical couplings

    Energy Technology Data Exchange (ETDEWEB)

    Macias, A.; Riera, A.; Yanez, M.

    1983-01-01

    We complete the molecular results reported in a previous paper by presenting additional energies (for /sup 1,3/..sigma.. states) and radial couplings (between '..sigma.. states) of the HeH/sup +/ system. These results are needed to treat elastic and inelastic charge-exchange processes when full account is taken of momentum-transfer problems. We also present a formalism to calculate radial couplings between wave functions computed with the use of different variational methods and basis sets. The detailed form of the radial couplings is discussed and related to the Barat-Lichten correlation diagram. The effect of using finite basis sets in calculatig degenerate molecular energies is also discussed.

  18. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Suresh Chandra Kandpal. Articles written in Journal of Earth System Science. Volume 120 Issue 5 October 2011 pp 873-883. Subsurface signatures and timing of extreme wave events along the southeast Indian coast · Rajesh R Nair Madhav K Murari C S Vijaya Lakshmi ...

  19. Multi-step heater deployment in a subsurface formation

    Science.gov (United States)

    Mason, Stanley Leroy [Allen, TX

    2012-04-03

    A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

  20. Improving the biodegradative capacity of subsurface bacteria

    International Nuclear Information System (INIS)

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates

  1. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    Science.gov (United States)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  2. Rainfall: State of the Science

    Science.gov (United States)

    Testik, Firat Y.; Gebremichael, Mekonnen

    Rainfall: State of the Science offers the most up-to-date knowledge on the fundamental and practical aspects of rainfall. Each chapter, self-contained and written by prominent scientists in their respective fields, provides three forms of information: fundamental principles, detailed overview of current knowledge and description of existing methods, and emerging techniques and future research directions. The book discusses • Rainfall microphysics: raindrop morphodynamics, interactions, size distribution, and evolution • Rainfall measurement and estimation: ground-based direct measurement (disdrometer and rain gauge), weather radar rainfall estimation, polarimetric radar rainfall estimation, and satellite rainfall estimation • Statistical analyses: intensity-duration-frequency curves, frequency analysis of extreme events, spatial analyses, simulation and disaggregation, ensemble approach for radar rainfall uncertainty, and uncertainty analysis of satellite rainfall products The book is tailored to be an indispensable reference for researchers, practitioners, and graduate students who study any aspect of rainfall or utilize rainfall information in various science and engineering disciplines.

  3. A study of vibronic coupling in the tilde C state of CO2+

    International Nuclear Information System (INIS)

    Roy, P.; Ferrett, T.A.; Schmidt, V.; Parr, A.C.; Southworth, S.H.; Hardis, J.E.; Bartlett, R.; Trela, W.; Dehmer, J.L.

    1987-01-01

    We have studied vibronic coupling in vibrationally resolved photoionization to the fourth electronic state of CO 2 + , C( 2 Σ/sub g/ + ), in the photon-energy range h nu = 20 to 28.5 eV. The measurements utilize high-resolution hemispherical electron analyzers, equipped with area detectors, and the SURF-II synchrotron radiation source at the National Bureau of Standards. The angular distribution asymmetry-parameters (β) for the allowed C(0,0,0) and forbidden C(1,0,1) (19.747 eV binding energy) peaks are found to be quite different. However, similarities between the C(1,0,1) β curve and that for the B state suggest that vibronic coupling to the B( 2 Σ/sub u/ + ) state of CO 2 + is the explanation for the intensity of the C state forbidden band in the first 8 eV above threshold

  4. Chimera states in nonlocally coupled phase oscillators with biharmonic interaction

    Science.gov (United States)

    Cheng, Hongyan; Dai, Qionglin; Wu, Nianping; Feng, Yuee; Li, Haihong; Yang, Junzhong

    2018-03-01

    Chimera states, which consist of coexisting domains of coherent and incoherent parts, have been observed in a variety of systems. Most of previous works on chimera states have taken into account specific form of interaction between oscillators, for example, sinusoidal coupling or diffusive coupling. Here, we investigate chimera dynamics in nonlocally coupled phase oscillators with biharmonic interaction. We find novel chimera states with features such as that oscillators in the same coherent cluster may split into two groups with a phase difference around π/2 and that oscillators in adjacent coherent clusters may have a phase difference close to π/2. The different impacts of the coupling ranges in the first and the second harmonic interactions on chimera dynamics are investigated based on the synchronous dynamics in globally coupled phase oscillators. Our study suggests a new direction in the field of chimera dynamics.

  5. 3D Geological Mapping - uncovering the subsurface to increase environmental understanding

    Science.gov (United States)

    Kessler, H.; Mathers, S.; Peach, D.

    2012-12-01

    Geological understanding is required for many disciplines studying natural processes from hydrology to landscape evolution. The subsurface structure of rocks and soils and their properties occupies three-dimensional (3D) space and geological processes operate in time. Traditionally geologists have captured their spatial and temporal knowledge in 2 dimensional maps and cross-sections and through narrative, because paper maps and later two dimensional geographical information systems (GIS) were the only tools available to them. Another major constraint on using more explicit and numerical systems to express geological knowledge is the fact that a geologist only ever observes and measures a fraction of the system they study. Only on rare occasions does the geologist have access to enough real data to generate meaningful predictions of the subsurface without the input of conceptual understanding developed from and knowledge of the geological processes responsible for the deposition, emplacement and diagenesis of the rocks. This in turn has led to geology becoming an increasingly marginalised science as other disciplines have embraced the digital world and have increasingly turned to implicit numerical modelling to understand environmental processes and interactions. Recent developments in geoscience methodology and technology have gone some way to overcoming these barriers and geologists across the world are beginning to routinely capture their knowledge and combine it with all available subsurface data (of often highly varying spatial distribution and quality) to create regional and national geological three dimensional geological maps. This is re-defining the way geologists interact with other science disciplines, as their concepts and knowledge are now expressed in an explicit form that can be used downstream to design process models structure. For example, groundwater modellers can refine their understanding of groundwater flow in three dimensions or even directly

  6. Bunched soliton states in weakly coupled sine-Gordon systems

    DEFF Research Database (Denmark)

    Grønbech-Jensen, N.; Samuelsen, Mogens Rugholm; Lomdahl, P. S.

    1990-01-01

    The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results.......The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results....

  7. Solvable model for chimera states of coupled oscillators.

    Science.gov (United States)

    Abrams, Daniel M; Mirollo, Rennie; Strogatz, Steven H; Wiley, Daniel A

    2008-08-22

    Networks of identical, symmetrically coupled oscillators can spontaneously split into synchronized and desynchronized subpopulations. Such chimera states were discovered in 2002, but are not well understood theoretically. Here we obtain the first exact results about the stability, dynamics, and bifurcations of chimera states by analyzing a minimal model consisting of two interacting populations of oscillators. Along with a completely synchronous state, the system displays stable chimeras, breathing chimeras, and saddle-node, Hopf, and homoclinic bifurcations of chimeras.

  8. Final Technical Report. Origins of subsurface microorganisms: Relating laboratory microcosm studies to a geologic time scale; FINAL

    International Nuclear Information System (INIS)

    Kieft, Thomas; Amy, Penny S.; Phillips, Fred M.

    1998-01-01

    This project was conducted as part of the Department of Energy's Deep Subsurface Science Program. It was part of a larger effort to determine the origins of subsurface microorganisms. Two hypotheses have been suggested for the origins of subsurface microorganisms: (1) microorganisms were deposited at the time of (or shortly after) geologic deposition of rocks and sediments (the in situ survival hypothesis), and (2) microorganisms have been transported from surface environments to subsurface rocks and sediments since the time of geologic deposition (transport hypothesis). These two hypotheses are not mutually exclusive. Depending on the geological setting, either one or both of these hypotheses may best explain microbial origins. Our project focused on the in situ survival hypothesis. We tested the hypothesis that microorganisms (individuals populations and communities) can survive long-term sequestration within subsurface sediments. Other objectives were to identify geologic conditions that favor long-term survival, identify physiological traits of microorganisms that favor long-term survival, and determine which groups of microorganisms are most likely to survive long-term sequestration in subsurface sediments. We tested this hypothesis using a combination of pure culture techniques in laboratory microcosms under controlled conditions and field experiments with buried subsurface sediments

  9. Mode-mode coupling theory of itinerant electron antiferromagnetism in superconducting state

    International Nuclear Information System (INIS)

    Fujimoto, Yukinobu; Miyake, Kazumasa

    2012-01-01

    It has been considered since the first discovery of a high-T c cuprate that an antiferromagnetic (AF) state and a superconducting (SC) state are separated in it. However, it is very intriguing that the coexistence of the AF and SC states has recently been observed in HgBa 2 Ca 4 Cu 5 O 12+ (Hg-1245). Moreover, it is very novel that this coexistence of these two states appears if the SC-transition temperature T c is higher than the AF-transition temperature T N . The mode-mode coupling theory can provide a clear elucidation of this novel phenomenon. A key point of this theory is that the AF susceptibility consists of the random-phase-approximation (RPA) term and the mode-mode coupling one. The RPA term works to make a positive contribution to the emergence of the antiferromagnetic critical point (AF-CP). In contrast, the mode-mode coupling term works to make a negative contribution to the emergence of the AF-CP. However, the growth of the SC-gap function in the d x 2 -y 2 -wave SC state works to suppress the negative contribution of the mode-mode coupling term to the emergence of the AF-CP. Moreover, the effect of SC fluctuations near the SC-transition temperature T c suppresses the mode-mode coupling term of the AF susceptibility that works to hinder the AF ordering. For these two reasons, there is a possibility that the d x 2 -y 2 -wave SC state is likely to promote the emergence of the AF-CP. Namely, the appearance of the above-mentioned novel coexistence of the AF and SC states observed in Hg-1245 can be explained qualitatively on the basis of this idea.

  10. Subsurface microbial communities and degradative capacities during trichloroethylene bioremediation

    International Nuclear Information System (INIS)

    Pfiffner, S.M.; Ringelberg, D.B.; Hedrick, D.B.; Phelps, T.J.; Palumbo, A.V.

    1995-01-01

    Subsurface amendments of air, methane, and nutrients were investigated for the in situ stimulation of trichloroethylene- degrading microorganisms at the US DOE Savannah River Integrated Demonstration. Amendments were injected into a lower horizontal well coupled with vacuum extraction from the vadose zone horizontal well. The amendments were sequenced to give increasingly more aggressive treatments. Microbial populations and degradative capacities were monitored in groundwaters samples bimonthly

  11. A Novel Coupling Pattern in Computational Science and Engineering Software

    Science.gov (United States)

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization, existing CSE software may need to integrate other CSE software systems developed by different groups of experts. The coupling problem is one of the challenges...

  12. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    International Nuclear Information System (INIS)

    Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.

    2015-01-01

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH 4 , NH 3 , H 2 O, SiH 4 , PH 3 , SH 2 , C 2 H 2 , C 2 H 4 , and C 2 H 6 . The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states

  13. The present state of social science research in Asia

    NARCIS (Netherlands)

    Lieten, G.K.

    2014-01-01

    The first pan-Asia conference ‘Status and Role of Social Science Research in Asia, Emerging Challenges and Policy Issues’ (New Delhi, 13-15 March 2014), with representatives from 24 countries in Asia and some non-Asian countries, was intended to assess the present state of social science research in

  14. Quantifying Subsurface Water and Heat Distribution and its Linkage with Landscape Properties in Terrestrial Environment using Hydro-Thermal-Geophysical Monitoring and Coupled Inverse Modeling

    Science.gov (United States)

    Dafflon, B.; Tran, A. P.; Wainwright, H. M.; Hubbard, S. S.; Peterson, J.; Ulrich, C.; Williams, K. H.

    2015-12-01

    parameters, thaw layer thickness and vegetation distribution. Overall, results of these efforts demonstrate the value of coupling various datasets at high spatial and temporal resolution to improve predictive understanding of subsurface and surface dynamics.

  15. Constructing Relationships between Science and Practice in the Written Science Communication of the Washington State Wine Industry

    Science.gov (United States)

    Szymanski, Erika Amethyst

    2016-01-01

    Even as deficit model science communication falls out of favor, few studies question how written science communication constructs relationships between science and industry. Here, I investigate how textual microprocesses relate scientific research to industry practice in the Washington State wine industry, helping (or hindering) winemakers and…

  16. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-09-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program’s Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  17. Characterization of microbial communities in subsurface nuclear blast cavities of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Duane P; Czerwinski, Ken; Russell, Charles E; Zavarin, Mavrik

    2010-07-13

    This US Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H2 and SO42- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  18. Characterization of Microbial Communities in Subsurface Nuclear Blast Cavities of the Nevada Test Site

    International Nuclear Information System (INIS)

    Moser, Duane P.; Bruckner, Jim; Fisher, Jen; Czerwinski, Ken; Russell, Charles E.; Zavarin, Mavrik

    2010-01-01

    This U.S. Department of Energy (DOE) Environmental Remediation Sciences Project (ERSP) was designed to test fundamental hypotheses concerning the existence and nature of indigenous microbial populations of Nevada Test Site subsurface nuclear test/detonation cavities. Now called Subsurface Biogeochemical Research (SBR), this program's Exploratory Research (ER) element, which funded this research, is designed to support high risk, high potential reward projects. Here, five cavities (GASCON, CHANCELLOR, NASH, ALEMAN, and ALMENDRO) and one tunnel (U12N) were sampled using bailers or pumps. Molecular and cultivation-based techniques revealed bacterial signatures at five sites (CHANCELLOR may be lifeless). SSU rRNA gene libraries contained diverse and divergent microbial sequences affiliated with known metal- and sulfur-cycling microorganisms, organic compound degraders, microorganisms from deep mines, and bacteria involved in selenate reduction and arsenite oxidation. Close relatives of Desulforudis audaxviator, a microorganism thought to subsist in the terrestrial deep subsurface on H 2 and SO 4 2- produced by radiochemical reactions, was detected in the tunnel waters. NTS-specific media formulations were used to culture and quantify nitrate-, sulfate-, iron-reducing, fermentative, and methanogenic microorganisms. Given that redox manipulations mediated by microorganisms can impact the mobility of DOE contaminants, our results should have implications for management strategies at this and other DOE sites.

  19. Imaging subsurface geology and volatile organic compound plumes

    International Nuclear Information System (INIS)

    Qualheim, B.J.; Daley, P.F.; Johnson, V.; McPherrin, R.V.; Laguna, G.

    1992-03-01

    Lawrence Livermore National Laboratory (LLNL) (Fig. 1) is in the final stages of the Superfund decisionmaking process for site remediation and restoration. In the process of characterizing the subsurface of the LLNL site, we have developed unique methods of collecting, storing, retrieving, and imaging geologic and chemical data from more than 350 drill holes. The lateral and vertical continuity of subsurface paleostream channels were mapped for the entire LLNL site using geologic descriptions from core samples, cuttings, and interpretations from geophysical logs. A computer-aided design and drafting program, SLICE, written at LLNL, was used to create two-dimensional maps of subsurface sediments, and state-of-the-art software produced three-dimensional images of the volatile organic compound (VOC) plumes using data from water and core fluid analyses

  20. Method of imaging the electrical conductivity distribution of a subsurface

    Science.gov (United States)

    Johnson, Timothy C.

    2017-09-26

    A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.

  1. Mixed coherent states in coupled chaotic systems: Design of secure wireless communication

    Science.gov (United States)

    Vigneshwaran, M.; Dana, S. K.; Padmanaban, E.

    2016-12-01

    A general coupling design is proposed to realize a mixed coherent (MC) state: coexistence of complete synchronization, antisynchronization, and amplitude death in different pairs of similar state variables of the coupled chaotic system. The stability of coupled system is ensured by the Lyapunov function and a scaling of each variable is also separately taken care of. When heterogeneity as a parameter mismatch is introduced in the coupled system, the coupling function facilitates to retain its coherence and displays the global stability with renewed scaling factor. Robust synchronization features facilitated by a MC state enable to design a dual modulation scheme: binary phase shift key (BPSK) and parameter mismatch shift key (PMSK), for secure data transmission. Two classes of decoders (coherent and noncoherent) are discussed, the noncoherent decoder shows better performance over the coherent decoder, mostly a noncoherent demodulator is preferred in biological implant applications. Both the modulation schemes are demonstrated numerically by using the Lorenz oscillator and the BPSK scheme is demonstrated experimentally using radio signals.

  2. Some Aspects of the State-of-the-Arts in Biomedical Science ...

    African Journals Online (AJOL)

    Summary: In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a ...

  3. Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0

    Directory of Open Access Journals (Sweden)

    G. Bisht

    2018-01-01

    Full Text Available Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0. Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively. The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ∼ 10 cm shallower and  ∼ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ∼ 3 cm. Our integration of three-dimensional subsurface hydrologic and

  4. A new model of equilibrium subsurface hydration on Mars

    Science.gov (United States)

    Hecht, M. H.

    2011-12-01

    One of the surprises of the Odyssey mission was the discovery by the Gamma Ray Spectrometer (GRS) suite of large concentrations of water-equivalent hydrogen (WEH) in the shallow subsurface at low latitudes, consistent with 5-7% regolith water content by weight (Mitrofanov et al. Science 297, p. 78, 2002; Feldman et al. Science 297, p. 75, 2002). Water at low latitudes on Mars is generally believed to be sequestered in the form of hydrated minerals. Numerous attempts have been made to relate the global map of WEH to specific mineralogy. For example Feldman et al. (Geophys. Res. Lett., 31, L16702, 2004) associated an estimated 10% sulfate content of the soil with epsomite (51% water), hexahydrite (46% water) and kieserite (13% water). In such studies, stability maps have been created by assuming equilibration of the subsurface water vapor density with a global mean annual column mass vapor density. Here it is argued that this value significantly understates the subsurface humidity. Results from the Phoenix mission are used to suggest that the midday vapor pressure measured just above the surface is a better proxy for the saturation vapor pressure of subsurface hydrous minerals. The measured frostpoint at the Phoenix site was found to be equal to the surface temperature by night and the modeled temperature at the top of the ice table by day (Zent et al. J. Geophys. Res., 115, E00E14, 2010). It was proposed by Hecht (41st LPSC abstract #1533, 2010) that this phenomenon results from water vapor trapping at the coldest nearby surface. At night, the surface is colder than the surface of the ice table; by day it is warmer. Thus, at night, the subsurface is bounded by a fully saturated layer of cold water frost or adsorbed water at the surface, not by the dry boundary layer itself. This argument is not strongly dependent on the particular saturation vapor pressure (SVP) of ice or other subsurface material, only on the thickness of the dry layer. Specifically, the diurnal

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... have a great influence on the accuracy of the migrated image in anisotropic media, and ignoring any one ... can obtain more accurate seismic images of subsurface structures in anisotropic media. ... Journal of Earth System Science | News.

  6. Partially coherent twisted states in arrays of coupled phase oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Omel' chenko, Oleh E.; Wolfrum, Matthias [Weierstrass Institute, Mohrenstrasse 39, 10117 Berlin (Germany); Laing, Carlo R. [INMS, Massey University, Private Bag 102-904 NSMC, Auckland (New Zealand)

    2014-06-15

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system.

  7. Partially coherent twisted states in arrays of coupled phase oscillators

    International Nuclear Information System (INIS)

    Omel'chenko, Oleh E.; Wolfrum, Matthias; Laing, Carlo R.

    2014-01-01

    We consider a one-dimensional array of phase oscillators with non-local coupling and a Lorentzian distribution of natural frequencies. The primary objects of interest are partially coherent states that are uniformly “twisted” in space. To analyze these, we take the continuum limit, perform an Ott/Antonsen reduction, integrate over the natural frequencies, and study the resulting spatio-temporal system on an unbounded domain. We show that these twisted states and their stability can be calculated explicitly. We find that stable twisted states with different wave numbers appear for increasing coupling strength in the well-known Eckhaus scenario. Simulations of finite arrays of oscillators show good agreement with results of the analysis of the infinite system

  8. On the truncation of the number of excited states in density functional theory sum-over-states calculations of indirect spin spin coupling constants

    Energy Technology Data Exchange (ETDEWEB)

    Zarycz, M. Natalia C., E-mail: mnzarycz@gmail.com; Provasi, Patricio F., E-mail: patricio@unne.edu.ar [Department of Physics, University of Northeastern - CONICET, Av. Libertad 5500, Corrientes W3404AAS (Argentina); Sauer, Stephan P. A., E-mail: sauer@kiku.dk [Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø (Denmark)

    2015-12-28

    It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH{sub 4}, NH{sub 3}, H{sub 2}O, SiH{sub 4}, PH{sub 3}, SH{sub 2}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.

  9. Subsurface Contamination Control

    Energy Technology Data Exchange (ETDEWEB)

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the

  10. Field application of farmstead runoff to vegetated filter strips: surface and subsurface water quality assessment.

    Science.gov (United States)

    Larson, Rebecca A; Safferman, Steven I

    2012-01-01

    Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively. Copyright © by the American Society of Agronomy, Crop Science

  11. Norfolk State University Research Experience in Earth System Science

    Science.gov (United States)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  12. Chimeralike states in networks of bistable time-delayed feedback oscillators coupled via the mean field.

    Science.gov (United States)

    Ponomarenko, V I; Kulminskiy, D D; Prokhorov, M D

    2017-08-01

    We study the collective dynamics of oscillators in a network of identical bistable time-delayed feedback systems globally coupled via the mean field. The influence of delay and inertial properties of the mean field on the collective behavior of globally coupled oscillators is investigated. A variety of oscillation regimes in the network results from the presence of bistable states with substantially different frequencies in coupled oscillators. In the physical experiment and numerical simulation we demonstrate the existence of chimeralike states, in which some of the oscillators in the network exhibit synchronous oscillations, while all other oscillators remain asynchronous.

  13. Coupling genetic and chemical microbiome profiling reveals heterogeneity of archaeome and bacteriome in subsurface biofilms that are dominated by the same archaeal species.

    Directory of Open Access Journals (Sweden)

    Alexander J Probst

    Full Text Available Earth harbors an enormous portion of subsurface microbial life, whose microbiome flux across geographical locations remains mainly unexplored due to difficult access to samples. Here, we investigated the microbiome relatedness of subsurface biofilms of two sulfidic springs in southeast Germany that have similar physical and chemical parameters and are fed by one deep groundwater current. Due to their unique hydrogeological setting these springs provide accessible windows to subsurface biofilms dominated by the same uncultivated archaeal species, called SM1 Euryarchaeon. Comparative analysis of infrared imaging spectra demonstrated great variations in archaeal membrane composition between biofilms of the two springs, suggesting different SM1 euryarchaeal strains of the same species at both aquifer outlets. This strain variation was supported by ultrastructural and metagenomic analyses of the archaeal biofilms, which included intergenic spacer region sequencing of the rRNA gene operon. At 16S rRNA gene level, PhyloChip G3 DNA microarray detected similar biofilm communities for archaea, but site-specific communities for bacteria. Both biofilms showed an enrichment of different deltaproteobacterial operational taxonomic units, whose families were, however, congruent as were their lipid spectra. Consequently, the function of the major proportion of the bacteriome appeared to be conserved across the geographic locations studied, which was confirmed by dsrB-directed quantitative PCR. Consequently, microbiome differences of these subsurface biofilms exist at subtle nuances for archaea (strain level variation and at higher taxonomic levels for predominant bacteria without a substantial perturbation in bacteriome function. The results of this communication provide deep insight into the dynamics of subsurface microbial life and warrant its future investigation with regard to metabolic and genomic analyses.

  14. Geochemical characterization of subsurface sediments in the Netherlands

    NARCIS (Netherlands)

    Huisman, D.J.

    1998-01-01

    Traditionally, the Netherlands' subsurface is mainly used to obtain good quality drinking and industrial waters from the different aquifers. Due to the lack of space on the surface, increasing environmental problems and demand for energy, the subsurface will be used increasingly for other

  15. Coupled Land Surface-Subsurface Hydrogeophysical Inverse Modeling to Estimate Soil Organic Carbon Content in an Arctic Tundra

    Science.gov (United States)

    Tran, A. P.; Dafflon, B.; Hubbard, S.

    2017-12-01

    Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content

  16. Collective spin correlations and entangled state dynamics in coupled quantum dots

    Science.gov (United States)

    Maslova, N. S.; Arseyev, P. I.; Mantsevich, V. N.

    2018-02-01

    Here we demonstrate that the dynamics of few-electron states in a correlated quantum-dot system coupled to an electronic reservoir is governed by the symmetry properties of the total system leading to the collective behavior of all the electrons. Time evolution of two-electron states in a correlated double quantum dot after coupling to the reservoir has been analyzed by means of kinetic equations for pseudoparticle occupation numbers with constraint on possible physical states. It was revealed that the absolute value of the spin correlation function and the degree of entanglement for two-electron states could considerably increase after coupling to the reservoir. The obtained results demonstrate the possibility of a controllable tuning of both the spin correlation function and the concurrence value in a coupled quantum-dot system by changing of the gate voltage applied to the barrier separating the dots.

  17. A Tower-based Prototype VHF/UHF Radar for Subsurface Sensing: System Description and Data Inversion Results

    Science.gov (United States)

    Moghaddam, Mahta; Pierce, Leland; Tabatabaeenejad, Alireza; Rodriguez, Ernesto

    2005-01-01

    Knowledge of subsurface characteristics such as permittivity variations and layering structure could provide a breakthrough in many terrestrial and planetary science disciplines. For Earth science, knowledge of subsurface and subcanopy soil moisture layers can enable the estimation of vertical flow in the soil column linking surface hydrologic processes with that in the subsurface. For planetary science, determining the existence of subsurface water and ice is regarded as one of the most critical information needs for the study of the origins of the solar system. The subsurface in general can be described as several near-parallel layers with rough interfaces. Each homogenous rough layer can be defined by its average thickness, permittivity, and rms interface roughness assuming a known surface spectral distribution. As the number and depth of layers increase, the number of measurements needed to invert for the layer unknowns also increases, and deeper penetration capability would be required. To nondestructively calculate the characteristics of the rough layers, a multifrequency polarimetric radar backscattering approach can be used. One such system is that we have developed for data prototyping of the Microwave Observatory of Subcanopy and Subsurface (MOSS) mission concept. A tower-mounted radar makes backscattering measurements at VHF, UHF, and L-band frequencies. The radar is a pulsed CW system, which uses the same wideband antenna to transmit and receive the signals at all three frequencies. To focus the beam at various incidence angles within the beamwidth of the antenna, the tower is moved vertically and measurements made at each position. The signals are coherently summed to achieve focusing and image formation in the subsurface. This requires an estimate of wave velocity profiles. To solve the inverse scattering problem for subsurface velocity profile simultaneously with radar focusing, we use an iterative technique based on a forward numerical solution of

  18. Feasibility study of tank leakage mitigation using subsurface barriers. Revision 1

    International Nuclear Information System (INIS)

    Treat, R.L.; Peters, B.B.; Cameron, R.J.

    1995-01-01

    This document reflects the evaluations and analyses performed in response to Tri-Party Agreement Milestone M-45-07A - open-quotes Complete Evaluation of Subsurface Barrier Feasibilityclose quotes (September 1994). In addition, this feasibility study was revised reflecting ongoing work supporting a pending decision by the DOE Richland Operations Office, the Washington State Department of Ecology, and the US Environmental Protection Agency regarding further development of subsurface barrier options for SSTs and whether to proceed with demonstration plans at the Hanford Site (Tri-Party Agreement Milestone M-45-07B). Analyses of 14 integrated SST tank farm remediation alternatives were conducted in response to the three stated objectives of Tri-Party Agreement Milestone M-45-07A. The alternatives include eight with subsurface barriers and six without. Technologies used in the alternatives include three types of tank waste retrieval, seven types of subsurface barriers, a method of stabilizing the void space of emptied tanks, two types of in situ soil flushing, one type of surface barrier, and a clean-closure method. A no-action alternative and a surface-barrier-only alternative were included as nonviable alternatives for comparison. All other alternatives were designed to result in closure of SST tank farms as landfills or in clean-closure. Revision 1 incorporates additional analyses of worker safety, large leak scenarios, and sensitivity to the leach rates of risk controlling constituents. The additional analyses were conducted to support TPA Milestone M-45-07B

  19. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    Science.gov (United States)

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  20. A Mobile Acoustic Subsurface Sensing (MASS) system for rapid roadway assessment.

    Science.gov (United States)

    Lu, Yifeng; Zhang, Yi; Cao, Yinghong; McDaniel, J Gregory; Wang, Ming L

    2013-05-08

    Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW) has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/ processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test.

  1. A Mobile Acoustic Subsurface Sensing (MASS System for Rapid Roadway Assessment

    Directory of Open Access Journals (Sweden)

    Ming L. Wang

    2013-05-01

    Full Text Available Surface waves are commonly used for vibration-based nondestructive testing for infrastructure. Spectral Analysis of Surface Waves (SASW has been used to detect subsurface properties for geologic inspections. Recently, efforts were made to scale down these subsurface detection approaches to see how they perform on small-scale structures such as concrete slabs and pavements. Additional efforts have been made to replace the traditional surface-mounted transducers with non-contact acoustic transducers. Though some success has been achieved, most of these new approaches are inefficient because they require point-to-point measurements or off-line signal analysis. This article introduces a Mobile Acoustic Subsurface Sensing system as MASS, which is an improved surface wave based implementation for measuring the subsurface profile of roadways. The compact MASS system is a 3-wheeled cart outfitted with an electromagnetic impact source, distance register, non-contact acoustic sensors and data acquisition/ processing equipment. The key advantage of the MASS system is the capability to collect measurements continuously at walking speed in an automatic way. The fast scan and real-time analysis advantages are based upon the non-contact acoustic sensing and fast air-coupled surface wave analysis program. This integration of hardware and software makes the MASS system an efficient mobile prototype for the field test.

  2. Channel coupling and distortion effects in the excitation of the 02+ state in 12C by alpha scattering

    International Nuclear Information System (INIS)

    Bauhoff, W.

    1983-01-01

    The excitation of the 0 2 + (7.65 MeV) state in 12 C by inelastic alpha scattering is investigated using microscopic resonating-group wave-functions in a coupled channel folding model. The importance of coupling to other states and the influence of varying the optical potential in the excited states is studied. Both effects must be taken into account for a quantitative description

  3. Science standards: The foundation of evolution education in the United States

    Directory of Open Access Journals (Sweden)

    Elizabeth Watts

    2016-12-01

    Full Text Available Science standards and textbooks have a huge impact on the manner in which evolution is taught in American classrooms. Standards dictate how much time and what points have to be dedicated to the subject in order to prepare students for state-wide assessments, while the textbooks will largely determine how the subject is presented in the classroom. In the United States both standards and textbooks are determined at the state-level through a political process. Currently there is a tremendous amount of pressure arising from anti-evolutionists in the United States to weaken or omit the teaching of evolution despite recommendations from central institutions such as the National Academy of Science. Results from the Program for International Student Assessment (PISA showed that not only are American students performing below average, but also that their performance is declining as they scored worse in 2012 than they did in 2010. Interestingly PISA also found that the internal variation within a country is often greater than between countries with a variation of up to 300 points, which is equivalent to seven years of education pointing to the extreme heterogeneous quality of education within a country (OECD, 2012. An implementation of strong standards would not only help to increase the average performance of American students but could also alleviate the vast discrepancy between the highest and lowest scoring groups of American students. Although the Next Generation Science Standards have been in existence since 2013 and A Framework for K-12 Science Education has been available to the public since 2011 many American states still continue to create their own standards that, according to the Fordham study, are well below par (Lerner et al., 2012. Due to the political nature of the adoption procedure of standards and textbooks, there are many opportunities for interested individuals to get involved in the process of improving these fundamental elements of

  4. subsurface sequence delineation and saline water mapping of lagos

    African Journals Online (AJOL)

    A subsurface sequence delineation and saline water mapping of Lagos State was carried out. Ten (10) deep boreholes with average depth of 300 m were drilled within the sedimentary basin. The boreholes were lithologically and geophysically logged. The driller's lithological logs aided by gamma and resistivity logs, ...

  5. An Estimation Of The Geoelectric Features Of Planetary Shallow Subsurfaces With TAPIR Antennae

    Science.gov (United States)

    Le Gall, A.; Reineix, A.; Ciarletti, V.; Jean-Jacques, B.; Ney, R.; Dolon, F.; Corbel, C.

    2005-12-01

    will analytically prove the sensitivity of TAPIR antennae to subsurface nature. Besides, a numerical code, based on the FDTD method, has been built to simulate with accuracy radar operation and its coupling with the environment. Results from simulations will be then compared to in-situ measurements collected in three different sites. Eventually, we will see that the inferred geoelectrical values characterize only a thin layer of the subsurface.

  6. Big science transformed science, politics and organization in Europe and the United States

    CERN Document Server

    Hallonsten, Olof

    2016-01-01

    This book analyses the emergence of a transformed Big Science in Europe and the United States, using both historical and sociological perspectives. It shows how technology-intensive natural sciences grew to a prominent position in Western societies during the post-World War II era, and how their development cohered with both technological and social developments. At the helm of post-war science are large-scale projects, primarily in physics, which receive substantial funds from the public purse. Big Science Transformed shows how these projects, popularly called 'Big Science', have become symbols of progress. It analyses changes to the political and sociological frameworks surrounding publicly-funding science, and their impact on a number of new accelerator and reactor-based facilities that have come to prominence in materials science and the life sciences. Interdisciplinary in scope, this book will be of great interest to historians, sociologists and philosophers of science.

  7. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    Science.gov (United States)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  8. Jahn-Teller effect in Rydberg series: A multi-state vibronic coupling problem

    International Nuclear Information System (INIS)

    Staib, A.; Domcke, W.; Sobolewski, A.L.

    1990-01-01

    Two simple limiting cases of Jahn-Teller (JT) coupling in Rydberg states of polyatomic molecules are considered, namely (i) JT coupling in Rydberg orbitals as well as in the ionization continuum (nondegenerate ion core, degenerate Rydberg series) and (ii) JT coupling in the ion core (degenerate ion core, nondegenerate Rydberg series). For both models simple and efficient algorithms for the computation of spectra (dynamical JT effect) are developed. The orbital JT effect is shown to represent a novel type of multi-state vibronic coupling, giving rise to interesting spectroscopic phenomena, among them resonant inter-Rydberg perturbations and JT induced autoionization. Particular attention is paid to the demonstration of the characteristic spectroscopic signatures of the two types of JT coupling in Rydberg states. (orig.)

  9. Aviation Noise Impacts: State of the Science

    Directory of Open Access Journals (Sweden)

    Mathias Basner

    2017-01-01

    Full Text Available Noise is defined as “unwanted sound.” Aircraft noise is one, if not the most detrimental environmental effect of aviation. It can cause community annoyance, disrupt sleep, adversely affect academic performance of children, and could increase the risk for cardiovascular disease of people living in the vicinity of airports. In some airports, noise constrains air traffic growth. This consensus paper was prepared by the Impacts of Science Group of the Committee for Aviation Environmental Protection of the International Civil Aviation Organization and summarizes the state of the science of noise effects research in the areas of noise measurement and prediction, community annoyance, children’s learning, sleep disturbance, and health. It also briefly discusses civilian supersonic aircraft as a future source of aviation noise.

  10. Subsurface Facility System Description Document

    International Nuclear Information System (INIS)

    Eric Loros

    2001-01-01

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation

  11. Mechanisms of appearance of amplitude and phase chimera states in ensembles of nonlocally coupled chaotic systems

    Science.gov (United States)

    Bogomolov, Sergey A.; Slepnev, Andrei V.; Strelkova, Galina I.; Schöll, Eckehard; Anishchenko, Vadim S.

    2017-02-01

    We explore the bifurcation transition from coherence to incoherence in ensembles of nonlocally coupled chaotic systems. It is firstly shown that two types of chimera states, namely, amplitude and phase, can be found in a network of coupled logistic maps, while only amplitude chimera states can be observed in a ring of continuous-time chaotic systems. We reveal a bifurcation mechanism by analyzing the evolution of space-time profiles and the coupling function with varying coupling coefficient and formulate the necessary and sufficient conditions for realizing the chimera states in the ensembles.

  12. Peroxidase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qingguo; Weber, Walter J., Jr.

    2003-03-26

    This study focuses on elucidation of the reaction behaviors of peroxidase-mediated phenol coupling in the presence of soil/sediment materials. Our goal is a mechanistic understanding of the influences of geosorbent materials on enzymatic coupling reactions in general and the development of methods for predicting such influences. Extensive experimental investigations of coupling reactions were performed under strategically selected conditions in systems containing model geosorbents having different properties and chemical characteristics. The geosorbents tested were found to influence peroxidase-mediated phenol coupling through one or both of two principal mechanisms; i.e., (1) mitigation of enzyme inactivation and/or (2) participation in cross-coupling reactions. Such influences were found to correlate with the chemical characteristics of the sorbent materials and to be simulated well by a modeling approach designed in this paper. The results of the study have important implications for potential engineering implementation and enhancement of enzymatic coupling reactions in soil/subsurface remediation practice.

  13. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  14. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  15. Exactly solvable quantum state reduction models with time-dependent coupling

    International Nuclear Information System (INIS)

    Brody, Dorje C; Constantinou, Irene C; Dear, James D C; Hughston, Lane P

    2006-01-01

    A closed-form solution to the energy-based stochastic Schroedinger equation with a time-dependent coupling is obtained. The solution is algebraic in character, and is expressed directly in terms of independent random data. The data consist of (i) a random variable H which has the distribution P(H=E i ) = π i , where π i is the transition probability vertical bar (ψ 0 vertical bar Φ i ) vertical bar 2 from the initial state vertical bar ψ 0 ) to the Lueders state vertical bar Φ i ) with energy E i , and (ii) an independent P-Brownian motion, where P is the physical probability measure associated with the dynamics of the reduction process. When the coupling is time independent, it is known that state reduction occurs asymptotically-that is to say, over an infinite time horizon. In the case of a time-dependent coupling, we show that if the magnitude of the coupling decreases sufficiently rapidly, then the energy variance will be reduced under the dynamics, but the state need not reach an energy eigenstate. This situation corresponds to the case of a 'partial' or 'incomplete' measurement of the energy. We also construct an example of a model where the opposite situation prevails, in which complete state reduction is achieved after the passage of a finite period of time

  16. Energy as a Constraint on Habitability in the Subsurface

    Science.gov (United States)

    Hoehler, T.

    2008-12-01

    All living things must obtain energy from the environment to grow, to maintain a metabolic steady state, or simply to preserve viability. The availability of energy sources in the environment thus represents a key factor in determining the size, distribution, and activity of biological populations, and ultimately constrains the possibility for life itself. Lacking the abundant energy provided by solar radiation or the products of oxygenic photosynthesis, life in subsurface environments may be limited by energy availability as much as any other factor. The biological requirement for energy is expressed in two dimensions - analogous to the power and voltage requirements of electrical devices - and consideration and quantification of these requirements establishes quantitative boundary conditions on subsurface habitability. The magnitude of these requirements depends significantly on physicochemical environment, as does the provision of biologically-accessible energy from subsurface sources. With this conceptual basis, we are developing an 'energy balance' model that is designed to ultimately predict the habitability of a given environment, with respect to a given metabolism, in quantitative terms (as 'biomass density potential'). The model will develop from conceptual to quantitative as experimental and observational work constrains and quantifies, in natural populations adapted to low energy conditions, the magnitude of the biological energy requirements and the impacts of physicochemical environmental conditions on energy demand and supply.

  17. Site Recommendation Subsurface Layout

    International Nuclear Information System (INIS)

    C.L. Linden

    2000-01-01

    The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M andO 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M andO 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU

  18. A new high-resolution electromagnetic method for subsurface imaging

    Science.gov (United States)

    Feng, Wanjie

    For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am 2) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a

  19. Evolution: Its Treatment in K-12 State Science Curriculum Standards

    Science.gov (United States)

    Lerner, L. S.

    2001-12-01

    State standards are the basis upon which states and local schools build curricula. Usually taking the form of lists of what students are expected to learn at specified grades or clusters of grades, they influence statewide examinations, textbooks, teacher education and credentialing, and other areas in which states typically exercise control over local curriculum development. State science standards vary very widely in overall quality.1,2 This is especially true in their treatment of evolution, both in the life sciences and to a somewhat lesser extent in geology and astronomy. Not surprisingly, a detailed evaluation of the treatment of evolution in state science standards3 has evoked considerably more public interest than the preceding studies of overall quality. We here consider the following questions: What constitutes a good treatment of evolution in science standards and how does one evaluate the standards? Which states have done well, and which less well? What nonscientific influences have been brought to bear on standards, for what reasons, and by whom? What strategies have been used to obscure or distort the role of evolution as the central organizing principle of the historical sciences? What are the effects of such distortions on students' overall understanding of science? What can the scientific community do to assure the publication of good science standards and to counteract attacks on good science teaching? 1. Lerner, L. S., State Science Standards: An Appraisal of Science Standards in 36 States, The Thomas B. Fordham Foundation, Washington, D.C., March 1998. 2. Lerner, L. S. et al ., The State of State Standards 2000, ibid., January 2000. 3. Lerner, L. S., Good Science, Bad Science: Teaching Evolution In the States, ibid., September 2000.

  20. Seismoelectric Effects based on Spectral-Element Method for Subsurface Fluid Characterization

    Science.gov (United States)

    Morency, C.

    2017-12-01

    Present approaches for subsurface imaging rely predominantly on seismic techniques, which alone do not capture fluid properties and related mechanisms. On the other hand, electromagnetic (EM) measurements add constraints on the fluid phase through electrical conductivity and permeability, but EM signals alone do not offer information of the solid structural properties. In the recent years, there have been many efforts to combine both seismic and EM data for exploration geophysics. The most popular approach is based on joint inversion of seismic and EM data, as decoupled phenomena, missing out the coupled nature of seismic and EM phenomena such as seismoeletric effects. Seismoelectric effects are related to pore fluid movements with respect to the solid grains. By analyzing coupled poroelastic seismic and EM signals, one can capture a pore scale behavior and access both structural and fluid properties.Here, we model the seismoelectric response by solving the governing equations derived by Pride and Garambois (1994), which correspond to Biot's poroelastic wave equations and Maxwell's electromagnetic wave equations coupled electrokinetically. We will show that these coupled wave equations can be numerically implemented by taking advantage of viscoelastic-electromagnetic mathematical equivalences. These equations will be solved using a spectral-element method (SEM). The SEM, in contrast to finite-element methods (FEM) uses high degree Lagrange polynomials. Not only does this allow the technique to handle complex geometries similarly to FEM, but it also retains exponential convergence and accuracy due to the use of high degree polynomials. Finally, we will discuss how this is a first step toward full coupled seismic-EM inversion to improve subsurface fluid characterization. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Coupling Strategies Investigation of Hybrid Atomistic-Continuum Method Based on State Variable Coupling

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2017-01-01

    Full Text Available Different configurations of coupling strategies influence greatly the accuracy and convergence of the simulation results in the hybrid atomistic-continuum method. This study aims to quantitatively investigate this effect and offer the guidance on how to choose the proper configuration of coupling strategies in the hybrid atomistic-continuum method. We first propose a hybrid molecular dynamics- (MD- continuum solver in LAMMPS and OpenFOAM that exchanges state variables between the atomistic region and the continuum region and evaluate different configurations of coupling strategies using the sudden start Couette flow, aiming to find the preferable configuration that delivers better accuracy and efficiency. The major findings are as follows: (1 the C→A region plays the most important role in the overlap region and the “4-layer-1” combination achieves the best precision with a fixed width of the overlap region; (2 the data exchanging operation only needs a few sampling points closer to the occasions of interactions and decreasing the coupling exchange operations can reduce the computational load with acceptable errors; (3 the nonperiodic boundary force model with a smoothing parameter of 0.1 and a finer parameter of 20 can not only achieve the minimum disturbance near the MD-continuum interface but also keep the simulation precision.

  2. Inhalation Injury: State of the Science 2016.

    Science.gov (United States)

    Foster, Kevin N; Holmes, James H

    This article summarizes research conducted over the last decade in the field of inhalation injury in thermally injured patients. This includes brief summaries of the findings of the 2006 State of the Science meeting with regard to inhalation injury, and of the subsequent 2007 Inhalation Injury Consensus Conference. The reviewed studies are categorized in to five general areas: diagnosis and grading; mechanical ventilation; systemic and inhalation therapy; mechanistic alterations; and outcomes.

  3. Geosystem services:A concept in support of sustainable development of the subsurface

    NARCIS (Netherlands)

    van Ree, C.C.D.F.; van Beukering, P.J.H.

    2016-01-01

    Because functions of the subsurface are hidden from view, its important role in society is often taken for granted. Underground use in cities and subsurface resource extraction rapidly increase. Ensuring sustainability of the subsurface role requires balancing between exploitation and conservation,

  4. Controlled Population of Floquet-Bloch States via Coupling to Bose and Fermi Baths

    Directory of Open Access Journals (Sweden)

    Karthik I. Seetharam

    2015-12-01

    Full Text Available External driving is emerging as a promising tool for exploring new phases in quantum systems. The intrinsically nonequilibrium states that result, however, are challenging to describe and control. We study the steady states of a periodically driven one-dimensional electronic system, including the effects of radiative recombination, electron-phonon interactions, and the coupling to an external fermionic reservoir. Using a kinetic equation for the populations of the Floquet eigenstates, we show that the steady-state distribution can be controlled using the momentum and energy relaxation pathways provided by the coupling to phonon and Fermi reservoirs. In order to utilize the latter, we propose to couple the system and reservoir via an energy filter which suppresses photon-assisted tunneling. Importantly, coupling to these reservoirs yields a steady state resembling a band insulator in the Floquet basis. The system exhibits incompressible behavior, while hosting a small density of excitations. We discuss transport signatures and describe the regimes where insulating behavior is obtained. Our results give promise for realizing Floquet topological insulators.

  5. Linking deposit morphology and clogging in subsurface remediation: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Mays, David C. [University of Colorado Denver

    2013-12-11

    Groundwater is a crucial resource for water supply, especially in arid and semiarid areas of the United States west of the 100th meridian. Accordingly, remediation of contaminated groundwater is an important application of science and technology, particularly for the U.S. Department of Energy (DOE), which oversees a number of groundwater remediation sites from Cold War era mining. Groundwater remediation is complex, because it depends on identifying, locating, and treating contaminants in the subsurface, where remediation reactions depend on interacting geological, hydrological, geochemical, and microbiological factors. Within this context, permeability is a fundamental concept, because it controls the rates and pathways of groundwater flow. Colloid science is intimately related to permeability, because when colloids are present (particles with equivalent diameters between 1 nanometer and 10 micrometers), changes in hydrological or geochemical conditions can trigger a detrimental reduction in permeability called clogging. Accordingly, clogging is a major concern in groundwater remediation. Several lines of evidence suggest that clogging by colloids depends on (1) colloid deposition, and (2) deposit morphology, that is, the structure of colloid deposits, which can be quantified as a fractal dimension. This report describes research, performed under a 2-year, exploratory grant from the DOE’s Subsurface Biogeochemical Research (SBR) program. This research employed a novel laboratory technique to simultaneously measure flow, colloid deposition, deposit morphology, and permeability in a flow cell, and also collected field samples from wells at the DOE’s Old Rifle remediation site. Field results indicate that suspended solids at the Old Rifle site have fractal structures. Laboratory results indicate that clogging is associated with colloid deposits with smaller fractal dimensions, in accordance with previous studies on initially clean granular media. Preliminary

  6. On the absence of pentaquark states from dynamics in strongly coupled lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Petrus Henrique Ribeiro dos [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Veiga, Paulo Afonso Faria da; O' Carroll, Michael [Universidade de Sao Paulo (USP), SP (Brazil); Francisco Neto, Antonio [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2011-07-01

    Full text: We consider an imaginary time functional integral formulation of a two-flavor, 3 + 1 lattice QCD model with Wilson's action and in the strong coupling regime (with a small hopping parameter, {kappa}0, and a much smaller plaquette coupling, {beta} = 1/g{sub 0}{sup 2}, so that the quarks and glueballs are heavy). The model has local SU(3){sub c} gauge and global SU(2){sub f} flavor symmetries, and incorporates the corresponding part of the eightfold way particles: baryons (mesons) of asymptotic mass -3ln{kappa}(-2 ln {kappa}). We search for pentaquark states as meson-baryon bound states in the energy-momentum spectrum of the model, using a lattice Bethe-Salpeter equation. This equation is solved within a ladder approximation, given by the lowest nonvanishing order in {kappa} and {beta} of the Bethe-Salpeter kernel. It includes order 2 contributions with a q-barq exchange potential together with a contribution that is a local-in-space, energy-dependent potential. The attractive or repulsive nature of the exchange interaction depends on the spin of the meson-baryon states. The Bethe-Salpeter equation presents integrable singularities, forcing the couplings to be above a threshold value for the meson and the baryon to bind in a pentaquark. We analyzed all the total isospin sectors, I = 1/2/3/2/ 5/2, for the system. For all I, the net attraction resulting from the two sources of interaction is not strong enough for the meson and the baryon to bind. Thus, within our approximation, these pentaquark states are not present up to near the free meson-baryon energy threshold of - 5 ln{kappa}. This result is to be contrasted with the spinless case for which our method detects meson-baryon bound states, as well as for Yukawa effective baryon and meson field models. A physical interpretation of our results emerges from an approximate correspondence between meson-baryon bound states and negative energy states of a one-particle lattice Schroedinger Hamiltonian

  7. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators

    Science.gov (United States)

    Premalatha, K.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2018-03-01

    We investigate the occurrence of collective dynamical states such as transient amplitude chimera, stable amplitude chimera, and imperfect breathing chimera states in a locally coupled network of Stuart-Landau oscillators. In an imperfect breathing chimera state, the synchronized group of oscillators exhibits oscillations with large amplitudes, while the desynchronized group of oscillators oscillates with small amplitudes, and this behavior of coexistence of synchronized and desynchronized oscillations fluctuates with time. Then, we analyze the stability of the amplitude chimera states under various circumstances, including variations in system parameters and coupling strength, and perturbations in the initial states of the oscillators. For an increase in the value of the system parameter, namely, the nonisochronicity parameter, the transient chimera state becomes a stable chimera state for a sufficiently large value of coupling strength. In addition, we also analyze the stability of these states by perturbing the initial states of the oscillators. We find that while a small perturbation allows one to perturb a large number of oscillators resulting in a stable amplitude chimera state, a large perturbation allows one to perturb a small number of oscillators to get a stable amplitude chimera state. We also find the stability of the transient and stable amplitude chimera states and traveling wave states for an appropriate number of oscillators using Floquet theory. In addition, we also find the stability of the incoherent oscillation death states.

  8. The influence of subsurface porosity and bedrock composition on ecosystem productivity and drought resilience in the Sierra Nevada Batholith, California

    Science.gov (United States)

    Riebe, C. S.; Callahan, R. P.; Goulden, M.; Pasquet, S.; Flinchum, B. A.; Taylor, N. J.; Holbrook, W. S.

    2017-12-01

    The availability of water and nutrients in soil and weathered rock influences the distribution of Earth's terrestrial life and regulates ecosystem vulnerability to land use and climate change. We explored these relationships by combining geochemical and geophysical measurements at three mid-elevation sites in the Sierra Nevada, California. Forest cover correlates strongly with bedrock composition across the sites, implying strong lithologic control on the ecosystem. We evaluated two hypotheses about bedrock-ecosystem connections: 1) that bedrock composition influences vegetation by moderating plant-essential nutrient supply; and 2) that bedrock composition influences the degree of subsurface weathering, which influences vegetation by controlling subsurface water-storage capacity. To quantify subsurface water-holding capacity, we used seismic refraction surveys to infer gradients in P and S-wave velocity structure, which reveal variations in porosity when coupled together in a Hertz-Mindlin rock-physics model. We combined the geophysical data on porosity with bedrock bulk geochemistry measured in previous work to evaluate the influence of water-holding capacity and nutrient supply on ecosystem productivity, which we quantified using remote sensing. Our results show that more than 80% of the variance in ecosystem productivity can be explained by differences in bedrock phosphorus concentration and subsurface porosity, with phosphorus content being the dominant explanatory variable. This suggests that bedrock composition exerts a strong bottom-up control on ecosystem productivity through its influence on nutrient supply and weathering susceptibility, which in turn influences porosity. We show that vegetation vulnerability to drought stress and mortality can be explained in part by variations in subsurface water-holding capacity and rock-derived nutrient supply.

  9. Breathing multichimera states in nonlocally coupled phase oscillators

    Science.gov (United States)

    Suda, Yusuke; Okuda, Koji

    2018-04-01

    Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.

  10. Self-organized emergence of multilayer structure and chimera states in dynamical networks with adaptive couplings

    Science.gov (United States)

    Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I.

    2017-12-01

    We report the phenomenon of self-organized emergence of hierarchical multilayered structures and chimera states in dynamical networks with adaptive couplings. This process is characterized by a sequential formation of subnetworks (layers) of densely coupled elements, the size of which is ordered in a hierarchical way, and which are weakly coupled between each other. We show that the hierarchical structure causes the decoupling of the subnetworks. Each layer can exhibit either a two-cluster state, a periodic traveling wave, or an incoherent state, and these states can coexist on different scales of subnetwork sizes.

  11. Application of the stabilization method to the molecular states of LiHe3+: Energies and radial couplings

    International Nuclear Information System (INIS)

    Macias, A.; Mendizabal, R.; Pelayo, F.; Riera, A.; Yaez, M.

    1986-01-01

    We have used the stabilization method to perform calculations on autoionizing states of the LiHe 3+ system which are involved in Li 3+ +He collisions. The molecular energies and radial couplings are calculated with use of programs developed at our laboratory. For both short and large internuclear distances, the stabilization treatment is complemented by block-diagonalization techniques. Our calculations allow us to draw conclusions on the conditions under which these methods can be used to calculate energy positions and radial couplings for states that lie in an ionization continuum

  12. Application of the stabilization method to the molecular states of LiHeT : Energies and radial couplings

    Energy Technology Data Exchange (ETDEWEB)

    Macias, A.; Mendizabal, R.; Pelayo, F.; Riera, A.; Yaez, M.

    1986-01-01

    We have used the stabilization method to perform calculations on autoionizing states of the LiHeT system which are involved in LiT +He collisions. The molecular energies and radial couplings are calculated with use of programs developed at our laboratory. For both short and large internuclear distances, the stabilization treatment is complemented by block-diagonalization techniques. Our calculations allow us to draw conclusions on the conditions under which these methods can be used to calculate energy positions and radial couplings for states that lie in an ionization continuum.

  13. Surface and subsurface continuous gravimetric monitoring of groundwater recharge processes through the karst vadose zone at Rochefort Cave (Belgium)

    Science.gov (United States)

    Watlet, A.; Van Camp, M. J.; Francis, O.; Poulain, A.; Hallet, V.; Triantafyllou, A.; Delforge, D.; Quinif, Y.; Van Ruymbeke, M.; Kaufmann, O.

    2017-12-01

    Ground-based gravimetry is a non-invasive and integrated tool to characterize hydrological processes in complex environments such as karsts or volcanoes. A problem in ground-based gravity measurements however concerns the lack of sensitivity in the first meters below the topographical surface, added to limited infiltration below the gravimeter building (umbrella effect). Such limitations disappear when measuring underground. Coupling surface and subsurface gravity measurements therefore allow isolating hydrological signals occurring in the zone between the two gravimeters. We present a coupled surface/subsurface continuous gravimetric monitoring of 2 years at the Rochefort Cave Laboratory (Belgium). The gravity record includes surface measurements of a GWR superconducting gravimeter and subsurface measurements of a Micro-g LaCoste gPhone gravimeter, installed in a cave 35 m below the surface station. The recharge of karstic aquifers is extremely complex to model, mostly because karst hydrological systems are composed of strongly heterogeneous flows. Most of the problem comes from the inadequacy of conventional measuring tools to correctly sample such heterogeneous media, and particularly the existence of a duality of flow types infiltrating the vadose zone: from rapid flows via open conduits to slow seepage through porous matrix. Using the surface/subsurface gravity difference, we were able to identify a significant seasonal groundwater recharge within the karst vadose zone. Seasonal or perennial perched reservoirs have already been proven to exist in several karst areas due to the heterogeneity of the porosity and permeability gradient in karstified carbonated rocks. Our gravimetric experiment allows assessing more precisely the recharge processes of such reservoirs. The gravity variations were also compared with surface and in-cave hydrogeological monitoring (i.e. soil moisture, in-cave percolating water discharges, water levels of the saturated zone). Combined

  14. Quantifying induced effects of subsurface renewable energy storage

    Science.gov (United States)

    Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas

    2015-04-01

    New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry

  15. Subsurface arrangement constraints and selection criteria SOW, 4.5.1.2.1: Technical report, Revision 0

    International Nuclear Information System (INIS)

    1984-12-01

    The United States Department of Energy has the responsibility to develop an underground geological repository for the storage and isolation of nuclear waste. This report identifies design constraints and subsurface arrangement selection criteria for the subsurface portion of a repository in salt. These criteria provide a base from which subsurface layout will be selected for approval by the Department of Energy. This document provides the basic criteria for the architect/engineer to select the subsurface layout. While this document does not address site-specific criteria, it does act as a guideline for subsurface design allowing for exploration of any reasonable option of that design. The criteria developed in this report address specific areas and concerns within a subsurface layout plan. The subsurface layout selection criteria were developed from industry standards, federal regulations, and quality assurance standards. 18 refs., 7 figs., 5 tabs

  16. 3D modelling of the shallow subsurface of Zeeland, the Netherlands

    NARCIS (Netherlands)

    Stafleu, J.; Busschers, F.S.; Maljers, D.; Menkovic, A.

    2011-01-01

    The Geological Survey of the Netherlands aims at building a 3D geological voxel model of the upper 30 m of the subsurface of the Netherlands in order to provide a sound basis for subsurface related questions on, amongst others, groundwater extraction and management, land subsidence studies,

  17. Drawing the subsurface : an integrative design approach

    NARCIS (Netherlands)

    Hooimeijer, F.L.; Lafleur, F.; Trinh, T.T.; Gogu, Constantin Radu; Campbell, Diarmad; de Beer, Johannes

    2017-01-01

    The sub-surface, with its man-made and natural components, plays an important, if not crucial, role in the urban climate and global energy transition. On the one hand, the sub-surface is associated with a variety of challenges such as subsidence, pollution, damage to infrastructure and shortages of

  18. The Lusi eruption site: insights from surface and subsurface investigations

    Science.gov (United States)

    Mazzini, A.

    2017-12-01

    The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system (WFS) that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date Lusi is still active and an area of 7 km2is covered by mud. Since its birth Lusi erupted with a pulsating behaviour. In the framework of the ERC grant "Lusi Lab" we conducted several years of monitoring and regional investigations coupling surface sampling and subsurface imaging in the region around Lusi. Ambient noise tomography studies, obtained with a local network of 31 stations, revealed for the first time subsurface images of the Lusi region and the adjacent Arjuno-Welirang (AW) volcanic complex. Results show that below the AW volcanic complex are present 5km deep magma chambers that are connected, through a defined corridor, with the roots of the Lusi eruption site. The Lusi subsurface shows the presence of a defined vertical hydrothermal plume that extends to at least 5km. Chemical analyses of the seeping fluids sampled from 1) the Lusi plume (using a specifically designed drone), 2) the region around Lusi, and 3) the fumaroles and the hydro thermal springs of AW, revealed striking similarities. More specifically a mantellic signature of the Lusi fluids confirms the scenario that Lusi represents a magmatic-driven hydrothermal system hosted in sedimentary basin. Seismic profiles interpretation, surface mapping, and fluid sampling show that the WFS, connecting AW and extending towards the NE of Java, acted as a preferential pathway for the igneous intrusion and fluids migration towards the subsurface. Petrography and dating of the clasts erupted at Lusi record high temperatures and indicate that the roots of the active conduit extend to at least 5km

  19. Peeking Beneath the Caldera: Communicating Subsurface Knowledge of Newberry Volcano

    Science.gov (United States)

    Mark-Moser, M.; Rose, K.; Schultz, J.; Cameron, E.

    2016-12-01

    "Imaging the Subsurface: Enhanced Geothermal Systems and Exploring Beneath Newberry Volcano" is an interactive website that presents a three-dimensional subsurface model of Newberry Volcano developed at National Energy Technology Laboratory (NETL). Created using the Story Maps application by ArcGIS Online, this format's dynamic capabilities provide the user the opportunity for multimedia engagement with the datasets and information used to build the subsurface model. This website allows for an interactive experience that the user dictates, including interactive maps, instructive videos and video capture of the subsurface model, and linked information throughout the text. This Story Map offers a general background on the technology of enhanced geothermal systems and the geologic and development history of Newberry Volcano before presenting NETL's modeling efforts that support the installation of enhanced geothermal systems. The model is driven by multiple geologic and geophysical datasets to compare and contrast results which allow for the targeting of potential EGS sites and the reduction of subsurface uncertainty. This Story Map aims to communicate to a broad audience, and provides a platform to effectively introduce the model to researchers and stakeholders.

  20. Interdisciplinary Science Courses for College General Education Requirements: Perspectives of Faculty at a State University.

    Science.gov (United States)

    Dass, Pradeep Maxwell

    Science educators have been advocating a broader role for science education--that of helping all students see the relevance of science to their own lives. Yet the only experience with post-secondary science that non-science majors get is through a couple of science courses which are part of the general education requirements (GERs) for a liberal…

  1. Synchronization states and multistability in a ring of periodic oscillators: Experimentally variable coupling delays

    Science.gov (United States)

    Williams, Caitlin R. S.; Sorrentino, Francesco; Murphy, Thomas E.; Roy, Rajarshi

    2013-12-01

    We experimentally study the complex dynamics of a unidirectionally coupled ring of four identical optoelectronic oscillators. The coupling between these systems is time-delayed in the experiment and can be varied over a wide range of delays. We observe that as the coupling delay is varied, the system may show different synchronization states, including complete isochronal synchrony, cluster synchrony, and two splay-phase states. We analyze the stability of these solutions through a master stability function approach, which we show can be effectively applied to all the different states observed in the experiment. Our analysis supports the experimentally observed multistability in the system.

  2. Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration

    Science.gov (United States)

    Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel

    2005-01-01

    Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important

  3. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  4. Reply to 'Comment on kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' by J. Griffioen

    Science.gov (United States)

    Hunter, K. S.; Van Cappellen, P.

    2000-01-01

    Our paper, 'Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry' (Hunter et al., 1998), presents a theoretical exploration of biogeochemical reaction networks and their importance to the biogeochemistry of groundwater systems. As with any other model, the kinetic reaction-transport model developed in our paper includes only a subset of all physically, biologically and chemically relevant processes in subsurface environments. It considers aquifer systems where the primary energy source driving microbial activity is the degradation of organic matter. In addition to the primary biodegradation pathways of organic matter (i.e. respiration and fermentation), the redox chemistry of groundwaters is also affected by reactions not directly involving organic matter oxidation. We refer to the latter as secondary reactions. By including secondary redox reactions which consume reduced reaction products (e.g., Mn2+, FeS, H2S), and in the process compete with microbial heterotrophic populations for available oxidants (i.e. O2, NO3-, Mn(IV), Fe(III), SO42-), we predict spatio-temporal distributions of microbial activity which differ significantly from those of models which consider only the biodegradation reactions. That is, the secondary reactions have a significant impact on the distributions of the rates of heterotrophic and chemolithotrophic metabolic pathways. We further show that secondary redox reactions, as well as non-redox reactions, significantly influence the acid-base chemistry of groundwaters. The distributions of dissolved inorganic redox species along flowpaths, however, are similar in simulations with and without secondary reactions (see Figs. 3(b) and 7(b) in Hunter et al., 1998), indicating that very different biogeochemical reaction dynamics may lead to essentially the same chemical redox zonation of a groundwater system.

  5. Emotional Intelligence and the Conflict Resolution Repertoire of Couples in Tertiary Institutions in Imo State

    Science.gov (United States)

    Nnodum, B. I.; Ugwuegbulam, C. N.; Agbaenyi, I. G.

    2016-01-01

    This study is a descriptive survey that investigated the relationship between emotional intelligence and conflict resolution repertoire of couples in tertiary institutions. A sample of 250 married people were drawn from the population of couples in tertiary institutions in Imo State. Two researcher made and validated instruments were used in…

  6. TEAM Science Advances STEM through Experiential Learning about Karst Geology at the Ozark Underground Laboratory.

    Science.gov (United States)

    Haskins, M. F.; Patterson, J. D.; Ruckman, B.; Keith, N.; Aley, C.; Aley, T.

    2017-12-01

    Carbonate karst represents approximately 14% of the world's land area and 20-25% of the land area in the United States. Most people do not understand this three dimensional landscape because they lack direct experience with this complicated geology. For the last 50 years, Ozark Underground Laboratory (OUL), located in Protem, MO, has been a pioneer in the research of karst geology and its influence on groundwater. OUL has also provided surface and sub-surface immersion experiences to over 40,000 individuals including students, educators, and Department of Transportation officials helping those individuals better understand the challenges associated with karst. Rockhurst University has incorporated OUL field trips into their educational programming for the last 30 years, thus facilitating individual understanding of karst geology which comprises approximately 60% of the state. Technology and Educators Advancing Missouri Science (TEAM Science) is a grant-funded professional development institute offered through Rockhurst University. The institute includes an immersion experience at OUL enabling in-service teachers to better understand natural systems, the interplay between the surface, sub-surface, and cave fauna, as well as groundwater and energy dynamics of karst ecosystems. Educating elementary teachers about land formations is especially important because elementary teachers play a foundational role in developing students' interest and aptitude in STEM content areas. (Funding provided by the U.S. Department of Education's Math-Science Partnership Program through the Missouri Department of Elementary and Secondary Education.)

  7. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 122; Issue 5. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR). Nishant Gupta Tajdarul H Syed Ashiihrii Athiphro. Volume 122 Issue 5 October 2013 pp 1249- ...

  8. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  9. Ground State of Bosons in Bose-Fermi Mixture with Spin-Orbit Coupling

    Science.gov (United States)

    Sakamoto, Ryohei; Ono, Yosuke; Hatsuda, Rei; Shiina, Kenta; Arahata, Emiko; Mori, Hiroyuki

    2017-07-01

    We study an effect of spin-1/2 fermions on the ground state of a Bose system with equal Rashba and Dresselhaus spin-orbit coupling. By using mean-field and tight-binding approximations, we show the ground state phase diagram of the Bose system in the spin-orbit coupled Bose-Fermi mixture and find that the characteristic phase domain, where a spin current of fermions may be induced, can exist even in the presence of a significantly large number of fermions.

  10. Channel coupling in heavy quarkonia: Energy levels, mixing, widths, and new states

    International Nuclear Information System (INIS)

    Danilkin, I. V.; Simonov, Yu. A.

    2010-01-01

    The mechanism of channel coupling via decay products is used to study energy shifts, level mixing as well as the possibility of new near-threshold resonances in cc, bb systems. The Weinberg eigenvalue method is formulated in the multichannel problems, which allows one to describe coupled-channel resonances and wave functions in a unitary way, and to predict new states due to channel coupling. Realistic wave functions for all single-channel states and decay matrix elements computed earlier are exploited, and no new fitting parameters are involved. Examples of level shifts, widths, and mixings are presented; the dynamical origin of X(3872) and the destiny of the single-channel 2 3 P 1 (cc) state are clarified. As a result a sharp and narrow peak in the state with quantum numbers J PC =1 ++ is found at 3.872 GeV, while the single-channel resonance originally around 3.940 GeV becomes increasingly broad and disappears with growing coupling to open channels.

  11. Subsurface chlorophyll maxima in the north-western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Aswanikumar, V.

    of thermocline suggests that the formation of the subsurface maximum is influencEd. by the presence of seasonal thermocline. Further the subsurface chlorophyll maximum is noticed within the depth ranges of ammonium maximum and nitracline, suggesting...

  12. Description of intruded states in a weak-coupling basis

    International Nuclear Information System (INIS)

    Arenas Peris, G.E.

    1989-01-01

    The systematics of intruder states is described in terms of a particle-hole weak-coupling basis, the first-order correction being then reduced to the monopole component of the interaction. The necessary matrix elements can be obtained from experimental data by using a model-consistent method. Calculations are performed for intruder states in the lead region as well as for the Zr isotopes. The agreement with the experimental data is striking in both cases. (Author) [es

  13. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Randle, D.C.

    2000-01-01

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I andC) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I andC and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I andC systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I andC systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored

  14. Developing science policy capacity at the state government level: Planning a science and technology policy fellowship program for Colorado and beyond

    Science.gov (United States)

    Druckenmiller, M. L.

    2017-12-01

    There is growing recognition of the potential to advance science policy capacity within state legislatures, where there is most often a shortage of professional backgrounds in the natural sciences, technology, engineering, and medicine. Developing such capacity at the state level should be considered a vital component of any comprehensive national scale strategy to strengthen science informed governance. Toward this goal, the Center for Science and Technology Policy Research at the University of Colorado Boulder is leading a strategic planning process for a Science and Technology Policy Fellowship Program within the Colorado state legislature and executive branch agencies. The intended program will place PhD-level scientists and engineers in one-year placements with decision-makers to provide an in-house resource for targeted policy-relevant research. Fellows will learn the intricacies of the state policymaking process, be exposed to opportunities for science to inform decisions, and develop a deeper understanding of key science and technology topics in Colorado, including water resources, wildfire management, and energy. The program's ultimate goals are to help foster a decision-making arena informed by evidence-based information, to develop new leaders adept at bridging science and policymaking realms, and to foster governance that champions the role of science in society. Parallel to efforts in Colorado, groups from nine other states are preparing similar plans, providing opportunities to share approaches across states and to set the stage for increased science and technology input to state legislative agendas nationwide. Importantly, highly successful and sustainable models exist; the American Association for the Advancement of Science (AAAS) has implemented a federally based fellowship program for over 43 years and the California Council for Science and Technology (CCST) has directed a fellowship program for their state's legislature since 2009. AAAS and CCST

  15. Combining symmetry collective states with coupled-cluster theory: Lessons from the Agassi model Hamiltonian

    Science.gov (United States)

    Hermes, Matthew R.; Dukelsky, Jorge; Scuseria, Gustavo E.

    2017-06-01

    The failures of single-reference coupled-cluster theory for strongly correlated many-body systems is flagged at the mean-field level by the spontaneous breaking of one or more physical symmetries of the Hamiltonian. Restoring the symmetry of the mean-field determinant by projection reveals that coupled-cluster theory fails because it factorizes high-order excitation amplitudes incorrectly. However, symmetry-projected mean-field wave functions do not account sufficiently for dynamic (or weak) correlation. Here we pursue a merger of symmetry projection and coupled-cluster theory, following previous work along these lines that utilized the simple Lipkin model system as a test bed [J. Chem. Phys. 146, 054110 (2017), 10.1063/1.4974989]. We generalize the concept of a symmetry-projected mean-field wave function to the concept of a symmetry projected state, in which the factorization of high-order excitation amplitudes in terms of low-order ones is guided by symmetry projection and is not exponential, and combine them with coupled-cluster theory in order to model the ground state of the Agassi Hamiltonian. This model has two separate channels of correlation and two separate physical symmetries which are broken under strong correlation. We show how the combination of symmetry collective states and coupled-cluster theory is effective in obtaining correlation energies and order parameters of the Agassi model throughout its phase diagram.

  16. Constraints of the variation of fundamental couplings and sensitivity of the equation of state of dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, M. Angeles, E-mail: mperezga@usal.es [Departamento de Fisica Fundamental and IUFFyM, Universidad de Salamanca, E-37008 Salamanca (Spain); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2012-12-05

    We discuss the coupled variations of the gravitational, strong and electroweak coupling constants and the current knowledge of the nuclear equation of state based on heavy ion collision experiments and neutron star mass-radius relationship. In particular we focus in our description on phenomenological parameters, R, relating variations in the quantum chromodynamics scale {Lambda}{sub QCD} and the fine structure constant {alpha}, and S, relating variations of v, the Higgs vacuum expectation value and the Yukawa couplings, h, in the quark sector. This parametrization is valid for any model where gauge coupling unification occurs at some (unspecified) high energy scale. From a physically motivated set of equations of state for dense matter we obtain the constrained parameter phase space (R,S) in high density nuclear environments. This procedure is complementary to (although currently less powerful than) those used in low-density conditions. For variations of {Delta}{alpha}/{alpha}=0.005 we find that the obtained constrained parameter lies on a strip region in the (R,S) plane that partially overlaps some of the allowed values of parameters derived from primordial abundances. This may be of interest in the context of unification scenarios where a dense phase of the universe may have existed at early times.

  17. 76 FR 40736 - NIH State-of-the-Science Conference on the Role of Active Surveillance in the Management of Men...

    Science.gov (United States)

    2011-07-11

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health NIH State-of-the-Science...: Notice. Notice is hereby given of the National Institutes of Health (NIH), ``State-of-the-Science... Research will culminate in a State-of-the-Science Conference December 5-7, 2011, that focuses on these key...

  18. Description of a stable scheme for steady-state coupled Monte Carlo–thermal–hydraulic calculations

    International Nuclear Information System (INIS)

    Dufek, Jan; Eduard Hoogenboom, J.

    2014-01-01

    Highlights: • A stable coupling scheme for steady-state MC–TH calculations is described. • The coupling scheme is based on the stochastic approximation method. • The neutron flux (or power) distribution is relaxed using a variable step-size. - Abstract: We provide a detailed description of a numerically stable and efficient coupling scheme for steady-state Monte Carlo neutronic calculations with thermal–hydraulic feedback. While we have previously derived and published the stochastic approximation based method for coupling the Monte Carlo criticality and thermal–hydraulic calculations, its possible implementation has not been described in a step-by-step manner. As the simple description of the coupling scheme was repeatedly requested from us, we have decided to make it available via this note

  19. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.

    2002-01-01

    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  20. Subsurface bio-mediated reduction of higher-valent uranium and plutonium

    International Nuclear Information System (INIS)

    Reed, Donald T.; Pepper, Sarah E.; Richmann, Michael K.; Smith, Geof; Deo, Randhir; Rittmann, Bruce E.

    2007-01-01

    Bio-mediated reduction of multivalent actinide contaminants plays an important role in their fate and transport in the subsurface. To initiate the process of extending recent progress in uranium biogeochemistry to plutonium, a side-by-side comparison of the bioreduction of uranyl and plutonyl species was conducted with Shewanella alga BrY, a facultative metal-reducing bacterium that is known to enzymatically reduce uranyl. Uranyl was reduced in our system, consistent with literature reports, but we have noted a strong coupling between abiotic and biotic processes and observe that non-reductive pathways to precipitation typically exist. Additionally, a key role of biogenic Fe 2+ , which is known to reduce uranyl at low pH, is suggested. In contrast, residual organics, present in biologically active systems, reduce Pu(VI) species to Pu(V) species at near-neutral pH. The predominance of relatively weak complexes of PuO 2 + is an important difference in how the uranyl and plutonyl species interacted with S. alga. Pu(V) also led to increased toxicity towards S. alga and is also more easily reduced by microbial activity. Biogenic Fe 2+ , produced by S. alga when Fe(III) is present as an electron acceptor, also played a key role in understanding redox controls and pathways in this system. Overall, the bioreduction of plutonyl is observed under anaerobic conditions, which favors its immobilization in the subsurface. Understanding the mechanism by which redox control is established in biologically active systems is a key aspect of remediation and immobilization strategies for actinides when they are present as subsurface contaminants

  1. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    KAUST Repository

    Ait-El-Fquih, Boujemaa; El Gharamti, Mohamad; Hoteit, Ibrahim

    2016-01-01

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface ground-water models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model's state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKF(OSA). Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25% more accurate state and parameter estimations than the joint and dual approaches.

  2. A Bayesian consistent dual ensemble Kalman filter for state-parameter estimation in subsurface hydrology

    KAUST Repository

    Ait-El-Fquih, Boujemaa

    2016-08-12

    Ensemble Kalman filtering (EnKF) is an efficient approach to addressing uncertainties in subsurface ground-water models. The EnKF sequentially integrates field data into simulation models to obtain a better characterization of the model\\'s state and parameters. These are generally estimated following joint and dual filtering strategies, in which, at each assimilation cycle, a forecast step by the model is followed by an update step with incoming observations. The joint EnKF directly updates the augmented state-parameter vector, whereas the dual EnKF empirically employs two separate filters, first estimating the parameters and then estimating the state based on the updated parameters. To develop a Bayesian consistent dual approach and improve the state-parameter estimates and their consistency, we propose in this paper a one-step-ahead (OSA) smoothing formulation of the state-parameter Bayesian filtering problem from which we derive a new dual-type EnKF, the dual EnKF(OSA). Compared with the standard dual EnKF, it imposes a new update step to the state, which is shown to enhance the performance of the dual approach with almost no increase in the computational cost. Numerical experiments are conducted with a two-dimensional (2-D) synthetic groundwater aquifer model to investigate the performance and robustness of the proposed dual EnKFOSA, and to evaluate its results against those of the joint and dual EnKFs. The proposed scheme is able to successfully recover both the hydraulic head and the aquifer conductivity, providing further reliable estimates of their uncertainties. Furthermore, it is found to be more robust to different assimilation settings, such as the spatial and temporal distribution of the observations, and the level of noise in the data. Based on our experimental setups, it yields up to 25% more accurate state and parameter estimations than the joint and dual approaches.

  3. Indian Academy of Sciences Conference Series | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Indian Academy of Sciences Conference Series. JOYDEEP SINGHA. Articles written in Indian Academy of Sciences Conference Series. Volume 1 Issue 1 December 2017 pp 195-203 Proceedings of the Conference on Perspectives in Nonlinear Dynamics - 2016. Spatial splay states in coupled map lattices ...

  4. Plutonium in the environment. Can we predict its subsurface behavior?

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie [Glenn T. Seaborg Institute, Lawrence Livermore National Laborartory, CA (United States)

    2015-07-01

    There is an acute need to expedite progress toward a permanent storage facility that can safely isolated long-lived radionuclides from the biosphere. Significant uncertainty remains on how to safely store long-lived radionuclides that will make up the majority of the dose after a few hundred years.Plutonium (Pu) is of particular interest because of its high toxicity and long half life (t1/2 239Pu 2.4 x104 yrs). The chemical interactions of Pu are dependent on its oxidation state, which in turn control its stability and solubility. Understanding the interplay (the bio-geo-chemistry) between Pu and the repository environment is necessary to predict the conditions for which Pu will either migrate or remain immobile. A mechanistic understanding of the surface structure and reactivity of coupled Pu*mineral, Pu*organic ligand, and Pu*microbe interfacial processes is needed to advance our understanding Pu. To elucidate the mechanisms controlling Pu transport, we have investigated Pu desorption rates from montmorillonite and other mineral colloids. These data suggest that Pu desorption rates are slow enough that colloid-facilitated transport of adsorbed Pu is possible at the field scale (km distances and decade timescales). Additional experiments show that the presence of organic matter plays an important role in stabilizing Pu both in solution and on mineral surfaces. Our experiments are helping to develop a conceptual model of Pu subsurface behavior.

  5. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    Science.gov (United States)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  6. Indian Academy of Sciences Conference Series | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Indian Academy of Sciences Conference Series; Volume 1; Issue 1. Chimera-like states generated by large perturbation of synchronous state of coupled metronomes. SERGEY BREZETSKIY DAWID DUDKOWSKI PATRYCJA JAROS JERZY WOJEWODA KRZYSZTOF CZOLCZYNSKI YURI MAISTRENKO ...

  7. Dynamics and non-equilibrium steady state in a system of coupled harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Ghesquière, Anne, E-mail: Anne.Ghesquiere@nithep.ac.za; Sinayskiy, Ilya, E-mail: sinayskiy@ukzn.ac.za; Petruccione, Francesco, E-mail: petruccione@ukzn.ac.za

    2013-10-15

    A system of two coupled oscillators, each of them coupled to an independent reservoir, is analysed. The analytical solution of the non-rotating wave master equation is obtained in the high-temperature and weak coupling limits. No thermal entanglement is found in the high-temperature limit. In the weak coupling limit the system converges to an entangled non-equilibrium steady state. A critical temperature for the appearance of quantum correlations is found.

  8. PHYTOREMEDIATION: STATE OF THE SCIENCE CONFERENCE AND OTHER DEVELOPMENTS

    Science.gov (United States)

    It is a pleasure to present six papers in this issue, selected from presentations at the USEPA conference, Phytoremediation: State of the Science, 5/1-2/2000, Boston, MA. These papers highlight some of the many advances reported in representative areas of phytoremediation. In add...

  9. The design of long wavelength planetary SAR sensor and its applications for monitoring shallow sub-surface of Moon and planets.

    Science.gov (United States)

    Kim, K.

    2015-12-01

    SAR observations over planetary surface have been conducted mainly in two ways. The first is the subsurface sounding, for example Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) and Shallow Surface Radar (SHARAD), using ground penetration capability of long wavelength electromagnetic waves. On the other hand, imaging SAR sensors using burst mode design have been employed to acquire surface observations in the presence of opaque atmospheres such as in the case of Venus and Titan. We propose a lightweight SAR imaging system with P/L band wavelength to cover the vertical observation gap of these planetary radar observation schemes. The sensor is for investigating prominent surface and near-subsurface geological structures and physical characteristics. Such measurements will support landers and rover missions as well as future manned missions. We evaluate required power consumption, and estimate mass and horizontal resolution, which can be as good as 3-7 meters. Initial specifications for P/L dual band SARs for the lunar case at 130 km orbital altitude were designed already based on a assumptions that sufficient size antenna (>3m width diameter or width about 3m and >10kg weight) can be equipped. Useful science measurements to be obtained include: (1) derivation of subsurface regolith depth; 2) Surface and shallow subsurface radar imaging, together with radar ranging techniques such as radargrammetry and inteferometry. The concepts in this study can be used as an important technical basis for the future solid plant/satellite missions and already proposed for the 2018 Korean Lunar mission.

  10. Generation of maximally entangled mixed states of two atoms via on-resonance asymmetric atom-cavity couplings

    International Nuclear Information System (INIS)

    Li, Shang-Bin

    2007-01-01

    A scheme for generating the maximally entangled mixed state of two atoms on-resonance asymmetrically coupled to a single mode optical cavity field is presented. The part frontier of both maximally entangled mixed states and maximal Bell violating mixed states can be approximately reached by the evolving reduced density matrix of two atoms if the ratio of coupling strengths of two atoms is appropriately controlled. It is also shown that exchange symmetry of global maximal concurrence is broken if and only if coupling strength ratio lies between (√(3)/3) and √(3) for the case of one-particle excitation and asymmetric coupling, while this partial symmetry breaking cannot be verified by detecting maximal Bell violation

  11. High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics

    KAUST Repository

    Bao, Kai

    2015-10-26

    The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems. In this framework, a parallel reservoir simulator, reservoir-simulation toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, whereas the MD simulations are performed to provide the required physical parameters. Technologies from several different fields are used to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large-scale CO2 sequestration for long-term storage in subsurface geological formations, such as depleted oil and gas reservoirs and deep saline aquifers, which has been proposed as one of the few attractive and practical solutions to reduce CO2 emissions and address the global-warming threat. Fine grids and accurate prediction of the properties of fluid mixtures under geological conditions are essential for accurate simulations. In this work, CO2 sequestration is presented as a first example for coupling reservoir simulation and MD, although the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical processes in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability is observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well-demonstrated with several experiments with hundreds of millions to one billion cells. To the best of our knowledge, the present work represents the first attempt to couple reservoir simulation and molecular simulation for large-scale modeling. Because of the complexity of

  12. High-performance modeling of CO2 sequestration by coupling reservoir simulation and molecular dynamics

    KAUST Repository

    Bao, Kai

    2013-01-01

    The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems

  13. Evidence of system: A network model case-study of seventh grade science assessment practices from classrooms to the state test

    Science.gov (United States)

    Piety, Philip John

    With science education in the United States entering a period of greater accountability, this study investigated how student learning in science was assessed by educators within one state, asking what systemic assessment approaches existed and how the information from them was used. Conducted during the 20o6-2007 school year, this research developed and piloted a network-model case study design that included teachers, principals, administrators, and the state test development process, as well as several state-level professional associations. The data analyzed included observations, interviews, surveys, and both public and private documents. Some data were secondary. This design produced an empirical depiction of practice with a web of related cases. The network model expands on the hierarchical (nested) models often assumed in the growing literature on how information is used in educational contexts by showing multiple ways in which individuals are related through organizational structures. Seven case study teachers, each employing assessment methods largely unique and invisible to others in their schools, illustrate one set of assessment practices. The only alternative to classroom assessments that could be documented was the annual state accountability test. These two assessment species were neither tightly coupled nor distinct. Some teachers were partners in developing state test instruments, and in some cases the annual test could be seen as a school management resource. Boundary practices---activities where these two systems connected---were opportunities to identify challenges to policy implementation in science education. The challenges include standards, cognition, vocabulary, and classroom equipment. The boundary practices, along with the web of connections, provide the outlines of potential (and often unrealized) synergistic relationships. This model shows diverse indigenous practices and adaptations by actors responding to pressures of change and

  14. Revolutionizing Earth System Science Education for the 21st Century: Report and Recommendations from a 50-State Analysis of Earth Science Education Standards

    Science.gov (United States)

    Hoffman, Martos; Barstow, Daniel

    2007-01-01

    The National Oceanic and Atmospheric Administration (NOAA) commissioned TERC to complete a review of science education standards for all 50 states. The study analyzed K-12 Earth science standards to determine how well each state addresses key Earth-science content, concepts and skills. This report reveals that few states have thoroughly integrated…

  15. Mars Analog Research and Technology Experiment (MARTE): A Simulated Mars Drilling Mission to Search for Subsurface Life at the Rio Tinto, Spain

    Science.gov (United States)

    Stoker, Carol; Lemke, Larry; Mandell, Humboldt; McKay, David; George, Jeffrey; Gomez-Alvera, Javier; Amils, Ricardo; Stevens, Todd; Miller, David

    2003-01-01

    The MARTE (Mars Astrobiology Research and Technology Experiment) project was selected by the new NASA ASTEP program, which supports field experiments having an equal emphasis on Astrobiology science and technology development relevant to future Astrobiology missions. MARTE will search for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Tinto River in southwestern Spain while also demonstrating technology needed to search for a subsurface biosphere on Mars. The experiment is informed by the strategy for searching for life on Mars.

  16. Quantum state transfer with untunable couplings

    International Nuclear Information System (INIS)

    Gagnebin, P. K.; Skinner, S. R.; Behrman, E. C.; Steck, J. E.

    2007-01-01

    We present a general scheme for implementing bidirectional quantum state transfer in a quantum swapping channel. Unlike many other schemes for quantum computation and communication, our method does not require qubit couplings to be switched on and off. The only control variable is the bias acting on individual qubits. We show how to derive the parameters of the system (fixed and variable) such that perfect state transfer can be achieved. Since these parameters vary linearly with the pulse width, our scheme allows flexibility in the time scales under which qubits evolve. Unlike quantum spin networks, our scheme allows the transmission of several quantum states at a time, requiring only a two qubit separation between quantum states. By pulsing the biases of several qubits at the same time, we show that only eight bias control lines are required to achieve state transfer along a channel of arbitrary length. Furthermore, when the information to be transferred is purely classical in nature, only three bias control lines are required, greatly simplifying the circuit complexity

  17. Nonreciprocal optical tunnelling through evanescently coupled Tamm states in magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yun-Tuan [Jiangsu Univ., Zhenjiang (China). School of Computer Science and Telecommunication Engineering; Han, Ling [The Second Military Medical Univ., Shanghai (China). Dept. of Radiation Medicine; Gao, Yong-Feng [Jiangsu Univ., Zhenjiang (China). School of Mechanical Engineering

    2015-07-01

    Evanescently coupled Tamm states are achieved through two magnetophotonic crystals (MPCs) with a pair of coupling prisms. At the wavelengths of coupled Tamm states, a double of nonreciprocal optical tunnelling channels is found through the transmission spectra obtained from a developed transfer matrix method. The nonreciprocal tunnelling wavelength and the interval between two nonreciprocal channels can be adjusted depending on the width of the air gap between two MPCs or the scale invariant of a PC. The nonreciprocal tunnelling is demonstrated through electromagnetic field distribution simulations based on finite element software. Such theoretical results may provide a new method to design tunable optical isolators with a double of channels.

  18. Interaction of chimera states in a multilayered network of nonlocally coupled oscillators

    Science.gov (United States)

    Goremyko, M. V.; Maksimenko, V. A.; Makarov, V. V.; Ghosh, D.; Bera, B.; Dana, S. K.; Hramov, A. E.

    2017-08-01

    The processes of formation and evolution of chimera states in the model of a multilayered network of nonlinear elements with complex coupling topology are studied. A two-layered network of nonlocally intralayer-coupled Kuramoto-Sakaguchi phase oscillators is taken as the object of investigation. Different modes implemented in this system upon variation of the degree of interlayer interaction are demonstrated.

  19. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-06-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  20. Defining the Post-Machined Sub-surface in Austenitic Stainless Steels

    Science.gov (United States)

    Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.

    2018-04-01

    Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.

  1. Hyperfine coupling of the iodine {\\boldsymbol{D}}{0}_{{\\boldsymbol{u}}}^{+} and β1 g ion-pair states

    Science.gov (United States)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.

    2018-05-01

    Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.

  2. Hydraulic characterization of rocky subsurface using field infiltrometer measurements coupled with hydrogeophysical investigations

    Science.gov (United States)

    Caputo, M. C.; de Carlo, L.; de Benedictis, F.; Vurro, M.

    2009-04-01

    The shallow and/or karstic and fractured aquifers are among the most important water resources. At the same time, they are particularly vulnerable to contamination. A detailed scientific knowledge of the behavior of these aquifers is essential for the development of sustainable groundwater management. Different investigation methods have been developed with the aim to characterize the subsurface and to monitor the flow and solute transport in these hydrogeology systems. This study presents the results of an investigation method, that combine large infiltrometer measurements with elettrical resistivity profiles, carried out in two different experimental sites characterized by different hydrogeology systems. One site, close to Altamura a city in the South of Italy, is represented from karstic and fractured limestone that overlays the deep aquifer. This area has been affected by sludge waste deposits derived from municipal and industrial wastewater treatment plants. The second site, close to San Pancrazio Salentino town in Southern Italy also, is represented from a quarry of calcarenite that has been used as a dump of sludge of mycelium producted from pharmaceutical industry. In both these cases the waste disposal have caused soil-subsoil contamination. Knowledge of the flow rate of the unsaturated zone percolation is needed to investigate the vertical migration of pollutants and the vulnerability of the aquifers. In this study, subsurface electrical resistivity measurements were used to visualize the infiltration of water in the subsoil due to unsaturated water flow. Simultaneously, the vertical flow was investigated by measuring water levels during infiltrometer tests carried out using a large adjustable ring infiltrometer, designed to be installed in the field directly on the outcrop of rock. In addition electrical resistivity azimuthal surveys have been conducted to detect principal fractures strike directions that cause preferential flow. The results obtained

  3. Earth Science Research in DUSEL; a Deep Underground Science and Engineering Laboratory in the United States

    Science.gov (United States)

    Fairhurst, C.; Onstott, T. C.; Tiedje, J. M.; McPherson, B.; Pfiffner, S. M.; Wang, J. S.

    2004-12-01

    A summary of efforts to create one or more Deep Underground Science and Engineering Laboratories (DUSEL) in the United States is presented. A workshop in Berkeley, August 11-14, 2004, explored the technical requirements of DUSEL for research in basic and applied geological and microbiological sciences, together with elementary particle physics and integrated education and public outreach. The workshop was organized by Bernard Sadoulet, an astrophysicist and the principal investigator (PI) of a community-wide DUSEL program evolving in coordination with the National Science Foundation. The PI team has three physicists (in nuclear science, high-energy physics, and astrophysics) and three earth scientists (in geoscience, biology and engineering). Presentations, working group reports, links to previous workshop/meeting talks, and information about DUSEL candidate sites, are presented in http://neutrino.lbl.gov/DUSELS-1. The Berkeley workshop is a continuation of decades of efforts, the most recent including the 2001 Underground Science Conference's earth science and geomicrobiology workshops, the 2002 International Workshop on Neutrino and Subterranean Science, and the 2003 EarthLab Report. This perspective (from three earth science co-PIs, the lead author of EarthLab report, the lead scientist of education/outreach, and the local earth science organizer) is to inform the community on the status of this national initiative, and to invite their active support. Having a dedicated facility with decades-long, extensive three-dimensional underground access was recognized as the most important single attribute of DUSEL. Many research initiatives were identified and more are expected as the broader community becomes aware of DUSEL. Working groups were organized to evaluate hydrology and coupled processes; geochemistry; rock mechanics/seismology; applications (e.g., homeland security, environment assessment, petroleum recovery, and carbon sequestration); geomicrobiology and

  4. Equation of state of strongly coupled plasma mixtures

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1984-01-01

    Thermodynamic properties of strongly coupled (high density) plasmas of mixtures of light elements have been obtained by Monte Carlo simulations. For an assumed uniform charge background the equation of state of ionic mixtures is a simple extension of the one-component plasma EOS. More realistic electron screening effects are treated in linear response theory and with an appropriate electron dielectric function. Results have been obtained for the ionic pair distribution functions, and for the electric microfield distribution

  5. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 2, Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    Grove, L.K. [ed.; Wildung, R.E.

    1993-03-01

    The 1992 Annual Report from Pacific Northwest Laboratory (PNL) to the US Department of Energy (DOE) describes research in environment and health conducted during fiscal year 1992. This report consists of four volumes oriented to particular segments of the PNL program, describing research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. The parts of the 1992 Annual Report are: Biomedical Sciences; Environmental Sciences; Atmospheric Sciences; and Physical Sciences. This Report is Part 2: Environmental Sciences. Included in this report are developments in Subsurface Science, Terrestrial Science, Laboratory-Directed Research and Development, Interactions with Educational Institutions, Technology Transfer, Publications, and Presentations. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. The Technology Transfer section of this report describes a number of examples in which fundamental research is laying the groundwork for the technology needed to resolve important environmental problems. The Interactions with Educational Institutions section of the report illustrates the results of a long-term, proactive program to make PNL facilities available for university and preuniversity education and to involve educational institutions in research programs. The areas under investigation include the effect of geochemical and physical phenomena on the diversity and function of microorganisms in deep subsurface environments, ways to address subsurface heterogeneity, and ways to determine the key biochemical and physiological pathways (and DNA markers) that control nutrient, water, and energy dynamics in arid ecosystems and the response of these systems to disturbance and climatic change.

  6. Cluster synchronization modes in an ensemble of coupled chaotic oscillators

    DEFF Research Database (Denmark)

    Belykh, Vladimir N.; Belykh, Igor V.; Mosekilde, Erik

    2001-01-01

    Considering systems of diffusively coupled identical chaotic oscillators, an effective method to determine the possible states of cluster synchronization and ensure their stability is presented. The method, which may find applications in communication engineering and other fields of science...

  7. Network optimization including gas lift and network parameters under subsurface uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Riegert, R.; Baffoe, J.; Pajonk, O. [SPT Group GmbH, Hamburg (Germany); Badalov, H.; Huseynov, S. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Trick, M. [SPT Group, Calgary, AB (Canada)

    2013-08-01

    Optimization of oil and gas field production systems poses a great challenge to field development due to complex and multiple interactions between various operational design parameters and subsurface uncertainties. Conventional analytical methods are capable of finding local optima based on single deterministic models. They are less applicable for efficiently generating alternative design scenarios in a multi-objective context. Practical implementations of robust optimization workflows integrate the evaluation of alternative design scenarios and multiple realizations of subsurface uncertainty descriptions. Production or economic performance indicators such as NPV (Net Present Value) are linked to a risk-weighted objective function definition to guide the optimization processes. This work focuses on an integrated workflow using a reservoir-network simulator coupled to an optimization framework. The work will investigate the impact of design parameters while considering the physics of the reservoir, wells, and surface facilities. Subsurface uncertainties are described by well parameters such as inflow performance. Experimental design methods are used to investigate parameter sensitivities and interactions. Optimization methods are used to find optimal design parameter combinations which improve key performance indicators of the production network system. The proposed workflow will be applied to a representative oil reservoir coupled to a network which is modelled by an integrated reservoir-network simulator. Gas-lift will be included as an explicit measure to improve production. An objective function will be formulated for the net present value of the integrated system including production revenue and facility costs. Facility and gas lift design parameters are tuned to maximize NPV. Well inflow performance uncertainties are introduced with an impact on gas lift performance. Resulting variances on NPV are identified as a risk measure for the optimized system design. A

  8. The development of a virtual science museum for the public understanding of science in eastern China and in the United States

    Science.gov (United States)

    Delello, Julie Anne

    2009-12-01

    In 1999, the Chinese Academy of Sciences realized that there was a need for a better public understanding of science. For the public to have better accessibility and comprehension of China's significance to the world, the Computer Network Information Center (CNIC), under the direction of the Chinese Academy of Sciences, combined resources from thousands of experts across the world to develop online science exhibits housed within the Virtual Science Museum of China. Through an analysis of historical documents, this descriptive dissertation presents a research project that explores a dimension of the development of the Giant Panda Exhibit. This study takes the reader on a journey, first to China and then to a classroom within the United States, in order to answer the following questions: (1) What is the process of the development of a virtual science exhibit; and, (2) What role do public audiences play in the design and implementation of virtual science museums? The creation of a virtual science museum exhibition is a process that is not completed with just the building and design, but must incorporate feedback from public audiences who utilize the exhibit. To meet the needs of the museum visitors, the designers at CNIC took a user-centered approach and solicited feedback from six survey groups. To design a museum that would facilitate a cultural exchange of scientific information, the CNIC looked at the following categories: visitor insights, the usability of the technology, the educational effectiveness of the museum exhibit, and the cultural nuances that existed between students in China and in the United States. The findings of this study illustrate that the objectives of museum designers may not necessarily reflect the needs of the visitors and confirm previous research studies which indicate that museum exhibits need a more constructivist approach that fully engages the visitor in an interactive, media-rich environment. Even though the world has moved forwards

  9. Layering extraction from subsurface radargrams over Greenland and the Martian NPLD by combining wavelet analysis with Hough transforms

    Science.gov (United States)

    Xiong, Si-Ting; Muller, Jan-Peter

    2017-04-01

    Extracting lines from an imagery is a solved problem in the field of edge detection. Different to images taken by camera, radargrams are a set of radar echo profiles, which record wave energy reflected by subsurface reflectors, at each location of a radar footprint along the satellite's ground track. The radargrams record where there is a dielectric contrast caused by different deposits, and other subsurface features, such as facies, and internal distributions like porosity and fluids. Among the subsurface features, layering is an important one which reflect the sequence of seasonal or yearly deposits on the ground [1-2]. In the field of image processing, line detection methods, such as the Radon Transform or Hough Transform, are able to extract these subsurface layers from rasterised versions of the echograms. However, due to the attenuation of radar waves whilst propagating through geological media, radargrams sometimes suffer from gradient and high background noise. These attributes of radargrams cause errors in detection when conventional line detection methods are directly applied. In this study, we have developed a continuous wavelet analysis technique to be applied directly to the radar echo profiles in a radargram in order to detect segmented lines, and then a conventional line detection method, such as a Hough transform can be applied to connect these segmented lines. This processing chain is tested by using datasets from a radargram acquired by the Multi-channel Coherent Radar Depth Sounder (MCoRDS) on an airborne platform in Greenland and a radargram acquired by the SHAllow RADar (SHARAD) on board the Mars Reconnaissance Orbiter (MRO) [3] over Martian North Polar Layered Deposits (NPLD). Keywords: Subsurface mapping, Radargram, SHARAD, Greenland, Martian NPLD, Subsurface layering, line detection References: [1] Phillips, R. J., et al. "Mars north polar deposits: Stratigraphy, age, and geodynamical response." Science 320.5880 (2008): 1182-1185. [2] Cutts

  10. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas

    2013-01-01

    wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...... algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control...

  11. Contaminated environments in the subsurface and bioremediation: organic contaminants

    OpenAIRE

    Holliger, Christof; Gaspard, Sarra; Glod, Guy; Heijman, Cornelis; Schumacher, Wolfram; Schwarzenbach, René P.; Vazquez, Francisco

    2017-01-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low ...

  12. Masses and couplings of open beauty states in QCD

    International Nuclear Information System (INIS)

    Rubinstein, H.R.; Reinders, L.J.; Yazaki, S.

    1981-05-01

    Masses and couplings of open beauty states (strange and non-strange) with Jsup(PC) = 0 ++ , 0 -+ , 1 -- . and 1 ++ are calculated using the QCD sum rule formalism. Non-perturbative effects due to quark and gluon condensate operators are shown to be important, confirming earlier calculations for equal quark mass systems. (author)

  13. The new science of moral cognition: the state of the art

    Directory of Open Access Journals (Sweden)

    Antonio Olivera La Rosa

    2014-10-01

    Full Text Available The need for multidisciplinary approaches to the scientific study of human nature is a widely supported academic claim. This assumption has proved to be especially successful in the field of moral psychology. Although studies of moral topics have been ubiquitous in both humanities and social sciences, it is not until the integration of different scientific disciplines in the convergent science of moral psychology that the study of morality seems to start its flourishing age. Thus, in the last ten years, a growing body of research from cognitive sciences, experimental philosophy, primatology, clinical and developmental psychology, economy and anthropology have made possible a "new era" on the study of morality. In this paper, we review the most striking findings that constitute the "state of the art' of moral psychology, with the aim to facilitate a better understanding of how the mind functions in the moral domain.

  14. Acculturation: state of the science in nursing.

    Science.gov (United States)

    Buscemi, Charles P

    2011-01-01

    With the onset of global migration, nurses are faced with dealing with cultures from around the world. Having an understanding of transcultural nursing concepts and translating them to practice will be key to nurses meeting the needs of an ever changing patient population. Acculturation is one example of how transcultural nursing concepts need to be better understood. The purpose of this paper is to describe the state of the science of acculturation in terms of the nursing discipline. It offers a historical review and evolution of acculturation, uses in nursing theory, and clinical implications.

  15. Optimal Electromagnetic (EM) Geophysical Techniques to Map the Concentration of Subsurface Ice and Adsorbed Water on Mars and the Moon

    Science.gov (United States)

    Stillman, D. E.; Grimm, R. E.

    2013-12-01

    Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected

  16. Contribution to the heavy-ion optical potential from coupling to vibrational states

    Energy Technology Data Exchange (ETDEWEB)

    Donangelo, R; Canto, L F; Hussein, M S

    1978-11-01

    The component of the optical potential in the elastic channel due to the coupling to vibrational states in Coulomb excitation is derived using a previously developed semiclassical method. Several numerical examples are worked out.

  17. Subsurface Examination of a Foliar Biofilm Using Scanning Electron- and Focused-Ion-Beam Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Patricia K.; Arey, Bruce W.; Mahaffee, Walt F.

    2011-08-01

    The dual beam scanning electron microscope, equipped with both a focused ion- and scanning electron- beam (FIB SEM) is a novel tool for the exploration of the subsurface structure of biological tissues. The FIB can remove a predetermined amount of material from a selected site to allow for subsurface exploration and when coupled with SEM or scanning ion- beam microscopy (SIM) could be suitable to examine the subsurface structure of bacterial biofilms on the leaf surface. The suitability of chemical and cryofixation was examined for use with the FIB SEM to examine bacterial biofilms on leaf surfaces. The biological control agent, Burkholderia pyroccinia FP62, that rapidly colonizes the leaf surface and forms biofilms, was inoculated onto geranium leaves and incubated in a greenhouse for 7 or 14 days. Cryofixation was not suitable for examination of leaf biofilms because it created a frozen layer over the leaf surface that cracked when exposed to the electron beam and the protective cap required for FIB milling could not be accurately deposited. With chemically fixed samples, it was possible to precisely FIB mill a single cross section (5 µm) or sequential cross sections from a single site without any damage to the surrounding surface. Biofilms, 7 days post-inoculation (DPI), were composed of 2 to 5 bacterial cell layers while biofilms 14 DPI ranged from 5 to greater than 30 cell layers. Empty spaces between bacteria cells in the subsurface structure were observed in biofilms 7- and 14-DPI. Sequential cross sections inferred that the empty spaces were often continuous between FP62 cells and could possibly make up a network of channels throughout the biofilm. FIB SEM was a useful tool to observe the subsurface composition of a foliar biofilm.

  18. Contribution of thermal infrared images on the understanding of the subsurface/atmosphere exchanges on Earth.

    Science.gov (United States)

    Lopez, Teodolina; Antoine, Raphaël; Baratoux, David; Rabinowicz, Michel

    2017-04-01

    High temporal resolution of space-based thermal infrared images (METEOSAT, MODIS) and the development of field thermal cameras have permitted the development of thermal remote sensing in Earth Sciences. Thermal images are influenced by many factors such as atmosphere, solar radiation, topography and physico-chemical properties of the surface. However, considering these limitations, we have discovered that thermal images can be used in order to better understand subsurface hydrology. In order to reduce as much as possible the impact of these perturbing factors, our approach combine 1) field observations and 2) numerical modelling of surface/subsurface thermal processes. Thermal images of the Piton de la Fournaise volcano (Réunion Island), acquired by hand, show that the Formica Leo inactive scoria cone and some fractures close to the Bory-Dolomieu caldera are always warmer, inducing a thermal difference with the surrounding of at least 5°C and a Self-Potential anomaly [1, 2]. Topography cannot explain this thermal behaviour, but Piton de la Fournaise is known as highly permeable. This fact allows the development of an air convection within the whole permeable structure volcanic edifice [2]. Cold air enters the base of the volcano, and exits warmer upslope, as the air is warmed by the geothermal flow [1,2]. Then, we have decided to understand the interaction between subsurface hydrogeological flows and the humidity in the atmosphere. In the Lake Chad basin, regions on both sides of Lake Chad present a different thermal behaviour during the diurnal cycle and between seasons [3]. We propose that this thermal behaviour can only be explained by lateral variations of the surface permeability that directly impact the process of evaporation/condensation cycle. These studies bring new highlights on the understanding of the exchanges between subsurface and the atmosphere, as the presence of a very permeable media and/or variations of the surface permeability may enhance or

  19. Hybrid Light-Matter States in a Molecular and Material Science Perspective.

    Science.gov (United States)

    Ebbesen, Thomas W

    2016-11-15

    The notion that light and matter states can be hybridized the way s and p orbitals are mixed is a concept that is not familiar to most chemists and material scientists. Yet it has much potential for molecular and material sciences that is just beginning to be explored. For instance, it has already been demonstrated that the rate and yield of chemical reactions can be modified and that the conductivity of organic semiconductors and nonradiative energy transfer can be enhanced through the hybridization of electronic transitions. The hybridization is not limited to electronic transitions; it can be applied for instance to vibrational transitions to selectively perturb a given bond, opening new possibilities to change the chemical reactivity landscape and to use it as a tool in (bio)molecular science and spectroscopy. Such results are not only the consequence of the new eigenstates and energies generated by the hybridization. The hybrid light-matter states also have unusual properties: they can be delocalized over a very large number of molecules (up to ca. 10 5 ), and they become dispersive or momentum-sensitive. Importantly, the hybridization occurs even in the absence of light because it is the zero-point energies of the molecular and optical transitions that generate the new light-matter states. The present work is not a review but rather an Account from the author's point of view that first introduces the reader to the underlying concepts and details of the features of hybrid light-matter states. It is shown that light-matter hybridization is quite easy to achieve: all that is needed is to place molecules or a material in a resonant optical cavity (e.g., between two parallel mirrors) under the right conditions. For vibrational strong coupling, microfluidic IR cells can be used to study the consequences for chemistry in the liquid phase. Examples of modified properties are given to demonstrate the full potential for the molecular and material sciences. Finally an

  20. Developmental Programming: State-of-the-Science and Future Directions

    Science.gov (United States)

    Sutton, Elizabeth F.; Gilmore, L. Anne; Dunger, David B.; Heijmans, Bas T.; Hivert, Marie-France; Ling, Charlotte; Martinez, J. Alfredo; Ozanne, Susan E.; Simmons, Rebecca A.; Szyf, Moshe; Waterland, Robert A.; Redman, Leanne M.; Ravussin, Eric

    2016-01-01

    Objective On December 8–9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current scientific advances in animal models, population-based cohort studies and human clinical trials, (ii) the state-of-the-science of epigenetic-based research, and (iii) considerations for future studies. Results The overarching goal was to provide a comprehensive assessment of the state of the scientific field, to identify research gaps and opportunities for future research in order to identify and understand the mechanisms contributing to the developmental programming of health and disease. Conclusions Identifying the mechanisms which cause or contribute to developmental programming of future generations will be invaluable to the scientific and medical community. The ability to intervene during critical periods of prenatal and early postnatal life to promote lifelong health is the ultimate goal. Considerations for future research including the use of animal models, the study design in human cohorts with considerations about the timing of the intrauterine exposure and the resulting tissue specific epigenetic signature were extensively discussed and are presented in this meeting summary. PMID:27037645

  1. Coupled SU(3) models of rotational states in nuclei and quasi-dynamical symmetry

    International Nuclear Information System (INIS)

    Thiamova, G.; Rowe, D. J.

    2007-01-01

    This contribution reports a first step towards the development of a model of low-lying nuclear collective states based on the progression from weak to strong coupling of a combination of systems in multiple SU(3) irreps. The motivation for such a model comes partly from the remarkable persistence of rotational structure observed experimentally and in many model calculations. This work considers the spectra obtainable by coupling just two SU(3) irreps by means of a quadrupole-quadrupole interaction. For a particular value of this interaction, the two irreps combine to form strongly-coupled irreps while for zero interaction the weakly-coupled results are mixtures of many such strongly-coupled irreps. A notable result is the persistence of the rotor character of the low-energy states for a wide range of the interaction strength. Also notable is the fact that, for very weak interaction strengths, the energy levels of the yrast band resemble those of a vibrational sequence while the B(E2) transition strengths remain close to those of an axially symmetric rotor, as observed in many nuclei. (Author)

  2. Dislocation Coupling-Induced Transition of Synchronization in Two-Layer Neuronal Networks

    International Nuclear Information System (INIS)

    Qin Hui-Xin; Ma Jun; Wang Chun-Ni; Jin Wu-Yin

    2014-01-01

    The mutual coupling between neurons in a realistic neuronal system is much complex, and a two-layer neuronal network is designed to investigate the transition of electric activities of neurons. The Hindmarsh—Rose neuron model is used to describe the local dynamics of each neuron, and neurons in the two-layer networks are coupled in dislocated type. The coupling intensity between two-layer networks, and the coupling ratio (Pro), which defines the percentage involved in the coupling in each layer, are changed to observe the synchronization transition of collective behaviors in the two-layer networks. It is found that the two-layer networks of neurons becomes synchronized with increasing the coupling intensity and coupling ratio (Pro) beyond certain thresholds. An ordered wave in the first layer is useful to wake up the rest state in the second layer, or suppress the spatiotemporal state in the second layer under coupling by generating target wave or spiral waves. And the scheme of dislocation coupling can be used to suppress spatiotemporal chaos and excite quiescent neurons. (interdisciplinary physics and related areas of science and technology)

  3. Subsurface Transport Over Reactive Multiphases (STORM): A general, coupled, nonisothermal multiphase flow, reactive transport, and porous medium alteration simulator, Version 2 user's guide

    International Nuclear Information System (INIS)

    Bacon, D.H.; White, M.D.; McGrail, B.P.

    2000-01-01

    The Hanford Site, in southeastern Washington State, has been used extensively to produce nuclear materials for the US strategic defense arsenal by the Department of Energy (DOE) and its predecessors, the US Atomic Energy Commission and the US Energy Research and Development Administration. A large inventory of radioactive and mixed waste has accumulated in 177 buried single- and double shell tanks. Liquid waste recovered from the tanks will be pretreated to separate the low-activity fraction from the high-level and transuranic wastes. Vitrification is the leading option for immobilization of these wastes, expected to produce approximately 550,000 metric tons of Low Activity Waste (LAW) glass. This total tonnage, based on nominal Na 2 O oxide loading of 20% by weight, is destined for disposal in a near-surface facility. Before disposal of the immobilized waste can proceed, the DOE must approve a performance assessment, a document that described the impacts, if any, of the disposal facility on public health and environmental resources. Studies have shown that release rates of radionuclides from the glass waste form by reaction with water determine the impacts of the disposal action more than any other independent parameter. This report describes the latest accomplishments in the development of a computational tool, Subsurface Transport Over Reactive Multiphases (STORM), Version 2, a general, coupled non-isothermal multiphase flow and reactive transport simulator. The underlying mathematics in STORM describe the rate of change of the solute concentrations of pore water in a variably saturated, non-isothermal porous medium, and the alteration of waste forms, packaging materials, backfill, and host rocks

  4. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 2: Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.

  5. Steady-State Anderson Accelerated Coupling of Lattice Boltzmann and Navier–Stokes Solvers

    KAUST Repository

    Atanasov, Atanas

    2016-10-17

    We present an Anderson acceleration-based approach to spatially couple three-dimensional Lattice Boltzmann and Navier–Stokes (LBNS) flow simulations. This allows to locally exploit the computational features of both fluid flow solver approaches to the fullest extent and yields enhanced control to match the LB and NS degrees of freedom within the LBNS overlap layer. Designed for parallel Schwarz coupling, the Anderson acceleration allows for the simultaneous execution of both Lattice Boltzmann and Navier–Stokes solver. We detail our coupling methodology, validate it, and study convergence and accuracy of the Anderson accelerated coupling, considering three steady-state scenarios: plane channel flow, flow around a sphere and channel flow across a porous structure. We find that the Anderson accelerated coupling yields a speed-up (in terms of iteration steps) of up to 40% in the considered scenarios, compared to strictly sequential Schwarz coupling.

  6. State of the Science Meeting: Burn Care: Goals for Treatment and Research

    National Research Council Canada - National Science Library

    Palmieri, Tina L

    2006-01-01

    The Burn State of the Science Research Conference achieved its stated purpose: the identification and prioritization of burn research goals for the next decade and the delineation of the resources needed to achieve those goals...

  7. Bunched soliton states in weakly coupled sine-Gordon systems

    International Nuclear Information System (INIS)

    Gronbech-Jensen, N.; Samuelsen, M.R.; Lomdahl, P.S.; Blackburn, J.A.

    1990-01-01

    The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In particular, the stability of bunched states is investigated, and perturbation results are compared with numerical results

  8. Multiple climate and sea ice states on a coupled Aquaplanet

    Science.gov (United States)

    Rose, B.; Ferreira, D.; Marshall, J.

    2010-12-01

    A fully coupled atmosphere-ocean-sea ice GCM is used to explore the climates of Earth-like planets with no continents and idealized ocean basin geometries. We find three qualitatively different stable equilibria under identical external forcing: an equable ice-free climate, a cold climate with ice caps extending into mid-latitudes, and a completely ice-covered "Snowball" state. These multiple states persist for millennia with no drift despite a full seasonal cycle and vigorous internal variability of the system on all time scales. The behavior of the coupled system is rationalized through an extension of the Budyko-Sellers model to include explicit ocean heat transport (OHT), and the insulation of the ice-covered sea surface. Sensitivity tests are also conducted with a slab ocean GCM with prescribed OHT. From these we conclude that albedo feedback and ocean circulation both play essential roles in the maintenance of the multiple states. OHT in the coupled system is dominated by a wind-driven subtropical cell carrying between 2 and 3 PW of thermal energy out of the deep tropics, most of which converges in the subtropics to lower mid-latitudes. This convergence pattern (similar to modern Earth) is robust to changes in the ocean basin geometry, and is directly responsible for the stabilization of the large ice cap. OHT also plays an essential but indirect role in the maintenance of the ice-free pole in the warm states, by driving an enhanced poleward atmospheric latent heat flux. The hysteresis loop for transitions between the warm and large ice cap states spans a much smaller range of parameter space (e.g. ±1.8% variations in solar constant) than the transitions in and out of the Snowball. Three qualitatively different climate states for the same external forcing in a coupled GCM: ice-free, large ice cap, and Snowball. SST and sea ice thickness are plotted. Similar results are found in a pure Aquaplanet (lower) and a "RidgeWorld" with a global-scale ocean basin

  9. Dune advance into a coastal forest, equatorial Brazil: A subsurface perspective

    Science.gov (United States)

    Buynevich, Ilya V.; Filho, Pedro Walfir M. Souza; Asp, Nils E.

    2010-06-01

    A large active parabolic dune along the coast of Pará State, northern Brazil, was analyzed using aerial photography and imaged with high-resolution ground-penetrating radar (GPR) to map the subsurface facies architecture and point-source anomalies. Most high-amplitude (8-10 dB) subsurface anomalies are correlated with partially buried mangrove trees along the leading edge (slipface) of the advancing dune. Profiles along a 200-m long basal stoss side of the dune reveal 66 targets, most of which lie below the water table and are thus inaccessible by other methods. Signal amplitudes of point-source anomalies are substantially higher than those associated with the reflections from continuous subsurface features (water table, sedimentary layers). When complemented with exposures and excavations, GPR provides the best means of rapid continuous imaging of the geological record of complex interactions between vegetation and aeolian deposition.

  10. Subsurface metals fatigue cracking without and with crack tip

    Directory of Open Access Journals (Sweden)

    Andrey Shanyavskiy

    2013-07-01

    Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.

  11. Spiral wave chimera states in large populations of coupled chemical oscillators

    Science.gov (United States)

    Totz, Jan Frederik; Rode, Julian; Tinsley, Mark R.; Showalter, Kenneth; Engel, Harald

    2018-03-01

    The coexistence of coherent and incoherent dynamics in a population of identically coupled oscillators is known as a chimera state1,2. Discovered in 20023, this counterintuitive dynamical behaviour has inspired extensive theoretical and experimental activity4-15. The spiral wave chimera is a particularly remarkable chimera state, in which an ordered spiral wave rotates around a core consisting of asynchronous oscillators. Spiral wave chimeras were theoretically predicted in 200416 and numerically studied in a variety of systems17-23. Here, we report their experimental verification using large populations of nonlocally coupled Belousov-Zhabotinsky chemical oscillators10,18 in a two-dimensional array. We characterize previously unreported spatiotemporal dynamics, including erratic motion of the asynchronous spiral core, growth and splitting of the cores, as well as the transition from the chimera state to disordered behaviour. Spiral wave chimeras are likely to occur in other systems with long-range interactions, such as cortical tissues24, cilia carpets25, SQUID metamaterials26 and arrays of optomechanical oscillators9.

  12. Subsurface phosphorus transport through a no-till field in the semi arid Palouse region

    Science.gov (United States)

    Norby, J. C.; Brooks, E. S.; Strawn, D. G.

    2017-12-01

    Excess application of fertilizers containing nitrogen and phosphorus for farming use has led to ongoing water quality issues in the United States. When these nutrients leave agronomic systems, and enter water bodies in large quantities, algal bloom and eutrophication can occur. Extensive studies focusing on phosphorus as a pollutant from agronomic systems have been conducted in the many regions of the United States; however, there has been a lack of studies completed in the semiarid Palouse region of eastern Washington and western Idaho. The goal of this research study was to better understand how no-till farm management has altered soil P temporally and the current availability for off-site transport of P throughout an artificially drained catchment at the Cook Agronomy Farm in Pullman, WA. We also attempted to determine the processes responsible for subsurface flow of phosphorus, specifically through preferential flow pathways. Dissolved reactive P (DRP)concentrations of subsurface drainage from a artificial drain exceeded TMDL threshold concentrations during numerous seasonal high flow events over the two-year study time frame. Soil analyses show a highly variable distribution of water-extractable P across the sub-catchment area and initial results suggest a translocation of P species deeper into the soil profile after implementing no-till practices in 1998. We hypothesized that a greater network of macropores from lack of soil disturbance allow for preferential flow of nutrient-laden water deeper into the subsurface and to the artificial drain system. Simulated flow experiments on soil cores from the study site showed large-scale macropore development, extreme variability in soil conductivity, and high P adsorption potential for the soils, suggesting a disconnect between P movement through macropore soil and subsurface drainage water rich in DRP at the artificial drain line outlet.

  13. Experimental observation of chimera and cluster states in a minimal globally coupled network

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Joseph D. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Bansal, Kanika [Department of Mathematics, University at Buffalo, SUNY Buffalo, New York 14260 (United States); US Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005 (United States); Murphy, Thomas E. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Roy, Rajarshi [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

    2016-09-15

    A “chimera state” is a dynamical pattern that occurs in a network of coupled identical oscillators when the symmetry of the oscillator population is broken into synchronous and asynchronous parts. We report the experimental observation of chimera and cluster states in a network of four globally coupled chaotic opto-electronic oscillators. This is the minimal network that can support chimera states, and our study provides new insight into the fundamental mechanisms underlying their formation. We use a unified approach to determine the stability of all the observed partially synchronous patterns, highlighting the close relationship between chimera and cluster states as belonging to the broader phenomenon of partial synchronization. Our approach is general in terms of network size and connectivity. We also find that chimera states often appear in regions of multistability between global, cluster, and desynchronized states.

  14. Modelling and analysis of transient state during improved coupling procedure with the grid for DFIG based wind turbine generator

    Science.gov (United States)

    Kammoun, Soulaymen; Sallem, Souhir; Ben Ali Kammoun, Mohamed

    2017-11-01

    The aim of this study is to enhance DFIG based Wind Energy Conversion Systems (WECS) dynamics during grid coupling. In this paper, a system modelling and a starting/coupling procedure for this generator to the grid are proposed. The proposed non-linear system is a variable structure system (VSS) and has two different states, before and after coupling. So, two different state models are given to the system to analyse transient stability during the coupling. The given model represents well the transient state of the machine, through which, a behaviour assessment of the generator before, during and after connection is given based on simulation results. For this, a 300 kW DFIG based wind generation system model was simulated on the Matlab/SIMULINK environment. We judge the proposed procedure to be practical, smooth and stability improved.

  15. Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases.

    Science.gov (United States)

    Zhou, Tao; Gao, Yi; Wang, Z D

    2014-06-11

    We study superconducting states in the presence of spin-orbital coupling and Zeeman field. It is found that a phase transition from a Fulde-Ferrell-Larkin-Ovchinnikov state to the topological superconducting state occurs upon increasing the spin-orbital coupling. The nature of this topological phase transition and its critical property are investigated numerically. Physical properties of the topological superconducting phase are also explored. Moreover, the local density of states is calculated, through which the topological feature may be tested experimentally.

  16. Electron spin control and spin-libration coupling of a levitated nanodiamond

    Science.gov (United States)

    Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang

    2017-04-01

    Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.

  17. Study of doubly excited states of H- and He in the coupled-channel hypersperical adiabatic approach

    International Nuclear Information System (INIS)

    Abrashkevich, A.G.; Abrashkevich, D.G.; Vinitskij, S.I.; Kaschiev, M.S.; Puzynin, I.V.

    1989-01-01

    Doubly excited states (DES) of H - and He are investigated within the coupled-channel hyperspherical adiabatic (HSA) approach. Influence of the angular and radial electron correlations on the rate of convergence of the values of the potential curves and matrix elements of radial coupling is studied numerically. The scheme based on molecular classification of the HSA basis states is used for the classification of DES. The results of the multichannel calculations of 1 S e and 1 P 0 DES of H - and He below the second threshold are presented. The obtained results are compared with other calculations and experiment. The region of applicability of the adiabatic approximation is discussed. 75 refs.; 10 tabs

  18. Is Information Science an Anomalous State of Knowledge

    DEFF Research Database (Denmark)

    Hollnagel, E.

    1980-01-01

    it is not necessary for sciences which concern themselves with behavioral phenomena which have a prior description in natural language. It is further argued that information science should be more interested in uncertainty than in information, and it is shown how the Anomalous State of Knowledge (ASK) paradigm may......This paper looks at some of the problems in information science from the experience with similar problems in psycho logy. The apparent need for a set of rigorous definitions of the basic concepts is discussed, and it is argued that although this is necessary for the natural sciences...... be used to describe itself, hence also informa tion science. It is finally concluded that by turning to problems of uncertainty and lack of information, rather than information, information science may avoid many of the mistakes made by psychology....

  19. Spectroscopy of particle-phonon coupled states in $^{133}$Sb by the cluster transfer reaction of $^{132}$Sn on $^{7}$Li

    CERN Multimedia

    We propose to investigate, with MINIBALL coupled to T-REX, the one-valence-proton $^{133}$Sb nucleus by the cluster transfer reaction of $^{132}$Sn on $^{7}$Li. The excited $^{133}$Sb will be populated by transfer of a triton into $^{132}$Sn, followed by the emission of an $\\alpha$-particle (detected in T-REX) and 2 neutrons. The aim of the experiment is to locate states arising from the coupling of the valence proton of $^{133}$Sb to the collective low-lying phonon excitations of $^{132}$Sn (in particular the 3$^−$). According to calculations in the weak-coupling approach, these states lie in the 4$\\, - \\,$5 MeV excitation energy region and in the spin interval 1/2$\\, - \\,$ 19/2, i.e., in the region populated by the cluster transfer reaction. The results will be used to perform advanced tests of different types of nuclear interactions, usually employed in the description of particle-phonon coupled excitations. States arising from couplings of the proton with simpler core excitations, involving few nucleons...

  20. Urban heat islands in the subsurface of German cities

    Science.gov (United States)

    Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.

    2012-04-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a

  1. Evaluation and analysis of polished fused silica subsurface quality by the nanoindenter technique

    International Nuclear Information System (INIS)

    Ma Bin; Shen Zhengxiang; He Pengfei; Sha Fei; Wang Chunliang; Wang Bin; Ji Yiqin; Liu Huasong; Li Weihao; Wang Zhanshan

    2011-01-01

    We evaluate the subsurface quality of polished fused silica samples using the nanoindenter technique. Two kinds of samples, consisting of hundreds of nanometers and micrometers of subsurface damage layers, are fabricated by controlling the grinding and polishing processes, and the subsurface quality has been verified by the chemical etching method. Then several nanoindentation experiments are performed using the Berkovich tip to investigate the subsurface quality. Some differences are found by relative measurements in terms of the relationship between the total penetration and the peak load on the surfaces, the modulus calculated over the defined depths and from unload, and the indented morphology at a constant load near the surface collapse threshold. Finally, the capabilities of such a mechanical method for detecting subsurface flaws are discussed and analyzed.

  2. The importance of spin-orbit coupling and electron correlation in the rationalization of the ground state of the CUO molecule

    NARCIS (Netherlands)

    Infante, I.A.C.; Visscher, L.

    2004-01-01

    The importance of electron correlation and spin-orbit coupling in the rationalization of the ground state of the CUO molecule is discussed. It was observed that SOC gave a consistent energy splitting of the triplet state contribution that does not depend much on the method used to compute a

  3. Does Aspartic Acid Racemization Constrain the Depth Limit of the Subsurface Biosphere?

    Science.gov (United States)

    Onstott, T C.; Magnabosco, C.; Aubrey, A. D.; Burton, A. S.; Dworkin, J. P.; Elsila, J. E.; Grunsfeld, S.; Cao, B. H.; Hein, J. E.; Glavin, D. P.; hide

    2013-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of approximately 89 years for 1 km depth and 27 C and 1-2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  4. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    Science.gov (United States)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  5. Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes

    International Nuclear Information System (INIS)

    Scheibe, T D; Tartakovsky, A M; Tartakovsky, D M; Redden, G D; Meakin, P

    2007-01-01

    Many subsurface flow and transport problems of importance today involve coupled non-linear flow, transport, and reaction in media exhibiting complex heterogeneity. In particular, problems involving biological mediation of reactions fall into this class of problems. Recent experimental research has revealed important details about the physical, chemical, and biological mechanisms involved in these processes at a variety of scales ranging from molecular to laboratory scales. However, it has not been practical or possible to translate detailed knowledge at small scales into reliable predictions of field-scale phenomena important for environmental management applications. A large assortment of numerical simulation tools have been developed, each with its own characteristic scale. Important examples include 1. molecular simulations (e.g., molecular dynamics); 2. simulation of microbial processes at the cell level (e.g., cellular automata or particle individual-based models); 3. pore-scale simulations (e.g., lattice-Boltzmann, pore network models, and discrete particle methods such as smoothed particle hydrodynamics); and 4. macroscopic continuum-scale simulations (e.g., traditional partial differential equations solved by finite difference or finite element methods). While many problems can be effectively addressed by one of these models at a single scale, some problems may require explicit integration of models across multiple scales. We are developing a hybrid multi-scale subsurface reactive transport modeling framework that integrates models with diverse representations of physics, chemistry and biology at different scales (sub-pore, pore and continuum). The modeling framework is being designed to take advantage of advanced computational technologies including parallel code components using the Common Component Architecture, parallel solvers, gridding, data and workflow management, and visualization. This paper describes the specific methods/codes being used at each

  6. Feasibility of a subsurface storage

    International Nuclear Information System (INIS)

    1998-11-01

    This report analyses the notion of subsurface storage under the scientifical, technical and legal aspects. This reflection belongs to the studies about long duration storage carried out in the framework of the axis 3 of the December 30, 1991 law. The report comprises 3 parts. The first part is a synthesis of the complete subsurface storage study: definitions, aim of the report, very long duration storage paradigm, description files of concepts, thematic synthesis (legal aspects, safety, monitoring, sites, seismicity, heat transfers, corrosion, concretes, R and works, handling, tailings and dismantlement, economy..), multi-criteria/multi-concept cross-analysis. The second part deals with the technical aspects of the subsurface storage: safety approach (long duration impact, radiation protection, mastery of effluents), monitoring strategy, macroscopic inventory of B-type waste packages, inventory of spent fuels, glasses, hulls and nozzles, geological contexts in the French territory (sites selection and characterization), on-site activities, hydrogeological and geochemical aspects, geo-technical works and infrastructures organization, subsurface seismic effects, cooling modes (ventilation, heat transfer with the geologic environment), heat transfer research programs (convection, poly-phase cooling in porous media), handling constraints, concretes (use, behaviour, durability), corrosion of metallic materials, technical-economical analysis, international context (experience feedback from Sweden (CLAB) and the USA (Yucca Mountain), other European and French facilities). The last part of the report is a graphical appendix with 3-D views and schemes of the different concepts. (J.S.)

  7. On the theoretical description of nuclear quadrupole coupling in Π states of small molecules

    Czech Academy of Sciences Publication Activity Database

    Fišer, J.; Polák, Rudolf

    2013-01-01

    Roč. 425, NOV 2013 (2013), s. 126-133 ISSN 0301-0104 Institutional support: RVO:61388955 Keywords : Π States * Nuclear quadrupole coupling constant * Electric dipole moment Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.028, year: 2013

  8. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    Science.gov (United States)

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  9. Simulation for ground penetrating radar (GPR) study of the subsurface structure of the Moon

    Science.gov (United States)

    Fa, Wenzhe

    2013-12-01

    Ground penetrating radar (GPR) is currently within the scope of China's Chang-E 3 lunar mission, to study the shallow subsurface of the Moon. In this study, key factors that could affect a lunar GPR performance, such as frequency, range resolution, and antenna directivity, are discussed firstly. Geometrical optics and ray tracing techniques are used to model GPR echoes, considering the transmission, attenuation, reflection, geometrical spreading of radar waves, and the antenna directivity. The influence on A-scope GPR echoes and on the simulated radargrams for the Sinus Iridum region by surface and subsurface roughness, dielectric loss of the lunar regolith, radar frequency and bandwidth, and the distance between the transmit and receive antennas are discussed. Finally, potential scientific return about lunar subsurface properties from GPR echoes is also discussed. Simulation results suggest that subsurface structure from several to hundreds of meters can be studied from GPR echoes at P and VHF bands, and information about dielectric permittivity and thickness of subsurface layers can be estimated from GPR echoes in combination with regolith composition data.

  10. The Mojave Subsurface Bio-Geochemistry Explorer (MOSBE)

    Science.gov (United States)

    Guerrero, J.; Beegle, L.; Abbey, W.; Bhartia, R.; Kounaves, S.; Russell, M.; Towles, D.

    2012-01-01

    The MOSBE Team has developed a terrestrial field campaign to explore two subsurface biological habitats under the Mojave Desert. This field campaign will not only help us understand terrestrial desert biology, but also will develop methodologies and strategies for potential future Mars missions that would seek to explore the Martian subsurface. We have proposed to the ASTEP program to integrate a suite of field demonstrated instruments with a 20 m subsurface drill as a coherent unit, the Mojave Subsurface Bio-geochemistry Explorer. The ATK Space Modular Planetary Drill System (MPDS) requires no drilling fluid, which allows aseptic sampling, can penetrate lithic ground up to 20 meters of depth, and utilizes less than 100 Watts throughout the entire depth. The drill has been developed and demonstrated in field testing to a depth of 10 meters in Arizona, December 2002. In addition to caching a continuous core throughout the drilling depth, it also generates and caches cuttings and fines that are strata-graphically correlated with the core. As a core segment is brought to the surface, it will be analyzed for texture and structure by a color microscopic imager and for relevant chemistry and mineralogy with a UV fluorescence/Raman spectrometer. Organic and soluble ionic species will be identified through two instruments -- a microcapillary electrophoresis, and an ion trap mass spectrometer that have been developed under PIDDP, ASTID and MIDP funding.

  11. The National Science Foundation's Coupling, Energetics and Dynamics of Atmospheric Regions (CEDAR) Student Community

    Science.gov (United States)

    Sox, L.; Duly, T.; Emery, B.

    2014-12-01

    The National Science Foundation sponsors Coupling, Energetics, and Dynamics of Atmospheric Regions (CEDAR) Workshops, which have been held every summer, for the past 29 years. CEDAR Workshops are on the order of a week long and at various locations with the goal of being close to university campuses where CEDAR type scientific research is done. Although there is no formal student group within the CEDAR community, the workshops are very student-focused. Roughly half the Workshop participants are students. There are two Student Representatives on the CEDAR Science Steering Committee (CSSC), the group of scientists who organize the CEDAR Workshops. Each Student Representative is nominated by his or her peers, chosen by the CSSC and then serves a two year term. Each year, one of the Student Representatives is responsible for organizing and moderating a day-long session targeted for students, made up of tutorial talks, which aim to prepare both undergraduate and graduate students for the topics that will be discussed in the main CEDAR Workshop. The theme of this session changes every year. Past themes have included: upper atmospheric instrumentation, numerical modeling, atmospheric waves and tides, magnetosphere-ionosphere coupling, equatorial aeronomy and many others. Frequently, the Student Workshop has ended with a panel of post-docs, researchers and professors who discuss pressing questions from the students about the next steps they will take in their careers. As the present and past CSSC Student Representatives, we will recount a brief history of the CEDAR Workshops, our experiences serving on the CSSC and organizing the Student Workshop, a summary of the feedback we collected about the Student Workshops and what it's like to be student in the CEDAR community.

  12. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  13. Facial soft-tissue fillers conference: assessing the state of the science.

    Science.gov (United States)

    Rohrich, Rod J; Hanke, C William; Busso, Mariano; Carruthers, Alastair; Carruthers, Jean; Fagien, Steven; Fitzgerald, Rebecca; Glogau, Richard; Greenberger, Phyllis E; Lorenc, Z Paul; Marmur, Ellen S; Monheit, Gary D; Pusic, Andrea; Rubin, Mark G; Rzany, Berthold; Sclafani, Anthony; Taylor, Susan; Weinkle, Susan; McGuire, Michael F; Pariser, David M; Casas, Laurie A; Collishaw, Karen J; Dailey, Roger A; Duffy, Stephen C; Edgar, Elizabeth Jan; Greenan, Barbara L; Haenlein, Kelly; Henrichs, Ronald A; Hume, Keith M; Lum, Flora; Nielsen, David R; Poulsen, Lisle; Shoaf, Lori; Schoaf, Lori; Seward, William; Begolka, Wendy Smith; Stanton, Robert G; Svedman, Katherine J; Thomas, J Regan; Sykes, Jonathan M; Wargo, Carol; Weiss, Robert A

    2011-04-01

    : The American Society of Plastic Surgeons and the American Academy of Dermatology, with the support of other sister societies, conducted the Facial Soft-Tissue Fillers: Assessing the State of the Science conference in December of 2009. The American Society of Plastic Surgeons and the American Academy of Dermatology established a panel of leading experts in the field of soft-tissue fillers-from researchers to clinicians-and other stakeholders for the conference to examine and discuss issues of patient safety, efficacy, and effectiveness in relation to the approved and off-label use of soft-tissue fillers, and other factors, including the training and level of experience of individuals administering fillers. This report represents the systematic literature review that examines comprehensively the available evidence and gaps in the evidence related to soft-tissue fillers, to inform and support the work of the state-of-the-science conference panel. This evidence-based medicine review will serve as the foundation for future evidence-based medicine reports in this growing field.

  14. Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface

    International Nuclear Information System (INIS)

    Wu, Weimin; Carley, Jack M.; Green, Stefan; Luo, Jian; Kelly, Shelly D.; Van Nostrand, Joy; Lowe, Kenneth Alan; Mehlhorn, Tonia L.; Carroll, Sue L.; Boonchayanant, Benjaporn; Loeffler, Frank E.; Jardine, Philip M.; Criddle, Craig

    2010-01-01

    The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H 2 S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 μM.

  15. Subsurface temperature of the onshore Netherlands: new temperature dataset and modelling

    NARCIS (Netherlands)

    Bonté, D.; Wees, J.-D. van; Verweij, J.M.

    2012-01-01

    Subsurface temperature is a key parameter for geothermal energy prospection in sedimentary basins. Here, we present the results of a 3D temperature modelling using a thermal-tectonic forward modelling method, calibrated with subsurface temperature measurements in the Netherlands. The first step

  16. Current status of investigations in the field of solid state science in central Kazakstan region

    International Nuclear Information System (INIS)

    Kuketaev, T.A.

    1999-01-01

    Investigations in the field of solid state science were initiated together with foundation of University in Karaganda. Historically general investigations in this field were conducted for scientific directions related to optical, luminescent and radiation properties of wide gap insulator. This activity was carried out according to appropriate plans of coordination counsels en-gaged in the physics of insulators, luminescent and radiation physics at the Academy of Science USSR and in the Committee on sciences and engineering of the Counsel of Ministers of the USSR. A number of works were coordinated by the Academy of Sciences of Kazakhstan Republic. Investigations in the field of solid state science, con-ducted in the Central Kazakstan and coordinated by the Institute of Physics and Engineering of Kazakhstan National Academy of Sciences, can be currently distinguished according to scientific directions. Currently, the following scientific directions in the field of solid state science exist in the Central Kazakstan: influence of polymorph phase transitions on electron excitation in wide-gap crystals, radiation malformation and recombination, dielectric spectroscopy of crystals with hydrogen link, spectral and luminescent properties and energy migration processes in disordered and partly ordered systems of organic molecules. It is necessary to note that all investigated objects, described in this report, were recovered by investigators. That is, the relevant hardware is available

  17. Thermal healing of the sub-surface damage layer in sapphire

    International Nuclear Information System (INIS)

    Pinkas, Malki; Lotem, Haim; Golan, Yuval; Einav, Yeheskel; Golan, Roxana; Chakotay, Elad; Haim, Avivit; Sinai, Ela; Vaknin, Moshe; Hershkovitz, Yasmin; Horowitz, Atara

    2010-01-01

    The sub-surface damage layer formed by mechanical polishing of sapphire is known to reduce the mechanical strength of the processed sapphire and to degrade the performance of sapphire based components. Thermal annealing is one of the methods to eliminate the sub-surface damage layer. This study focuses on the mechanism of thermal healing by studying its effect on surface topography of a- and c-plane surfaces, on the residual stresses in surface layers and on the thickness of the sub-surface damage layer. An atomically flat surface was developed on thermally annealed c-plane surfaces while a faceted roof-top topography was formed on a-plane surfaces. The annealing resulted in an improved crystallographic perfection close to the sample surface as was indicated by a noticeable decrease in X-ray rocking curve peak width. Etching experiments and surface roughness measurements using white light interferometry with sub-nanometer resolution on specimens annealed to different extents indicate that the sub-surface damage layer of the optically polished sapphire is less than 3 μm thick and it is totally healed after thermal treatment at 1450 deg. C for 72 h.

  18. Is the genetic landscape of the deep subsurface biosphere affected by viruses?

    Science.gov (United States)

    Anderson, Rika E; Brazelton, William J; Baross, John A

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

  19. Final Technical Report: Viral Infection of Subsurface Microorganisms and Metal/Radionuclide Transport

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Karrie A.; Bender, Kelly S.; Li, Yusong

    2013-09-28

    Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and the formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron acceptor

  20. Performance and risk assessment of subsurface barriers for single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Cruse, J.M.; Hampsten, K.L. [Westinghouse Hanford Co., Richland, WA (United States); Treat, R.L.

    1995-02-01

    Subsurface barriers are among various alternatives under evaluation to mitigate the threat of leakage from the Hanford Site`s 149 single-shell high-level radioactive waste tanks. The Tank Waste Remediation System (TWRS) division of Westinghouse Hanford Company is conducting this evaluation of subsurface barriers and other alternatives, focusing on risk and cost as performance measures. A number of alternative retrieval/closure approaches were evaluated in terms of risks (carcinogenic and toxicological) to a postulated maximally exposed individual. In addition, worker and accident risks were evaluated and factors developed for each alternative on a relative basis. The work performed to date indicates the use of subsurface barriers may potentially reduce public risk by limiting contamination of groundwater below the Hanford Site; however, the cost in terms of actual funding and in elevated worker risk is significant. The analyses also assume certain performance levels for technologies that have not been demonstrated in field conditions similar to Hanford Site tank farms. The evaluations summarized herein are being used to support a decision by representatives of the US Department of Energy, Richland Operations Office, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) regarding potential further development of subsurface barrier technology.

  1. Performance and risk assessment of subsurface barriers for single-shell tank waste retrieval

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Cruse, J.M.; Hampsten, K.L.; Treat, R.L.

    1995-02-01

    Subsurface barriers are among various alternatives under evaluation to mitigate the threat of leakage from the Hanford Site's 149 single-shell high-level radioactive waste tanks. The Tank Waste Remediation System (TWRS) division of Westinghouse Hanford Company is conducting this evaluation of subsurface barriers and other alternatives, focusing on risk and cost as performance measures. A number of alternative retrieval/closure approaches were evaluated in terms of risks (carcinogenic and toxicological) to a postulated maximally exposed individual. In addition, worker and accident risks were evaluated and factors developed for each alternative on a relative basis. The work performed to date indicates the use of subsurface barriers may potentially reduce public risk by limiting contamination of groundwater below the Hanford Site; however, the cost in terms of actual funding and in elevated worker risk is significant. The analyses also assume certain performance levels for technologies that have not been demonstrated in field conditions similar to Hanford Site tank farms. The evaluations summarized herein are being used to support a decision by representatives of the US Department of Energy, Richland Operations Office, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) regarding potential further development of subsurface barrier technology

  2. Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

    Directory of Open Access Journals (Sweden)

    D. Andrew Golter

    2016-12-01

    Full Text Available The emerging field of quantum acoustics explores interactions between acoustic waves and artificial atoms and their applications in quantum information processing. In this experimental study, we demonstrate the coupling between a surface acoustic wave (SAW and an electron spin in diamond by taking advantage of the strong strain coupling of the excited states of a nitrogen vacancy center while avoiding the short lifetime of these states. The SAW-spin coupling takes place through a Λ-type three-level system where two ground spin states couple to a common excited state through a phonon-assisted as well as a direct dipole optical transition. Both coherent population trapping and optically driven spin transitions have been realized. The coherent population trapping demonstrates the coupling between a SAW and an electron spin coherence through a dark state. The optically driven spin transitions, which resemble the sideband transitions in a trapped-ion system, can enable the quantum control of both spin and mechanical degrees of freedom and potentially a trapped-ion-like solid-state system for applications in quantum computing. These results establish an experimental platform for spin-based quantum acoustics, bridging the gap between spintronics and quantum acoustics.

  3. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    Science.gov (United States)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  4. Impact of including surface currents on simulation of Indian Ocean variability with the POAMA coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Mei; Wang, Guomin; Hendon, Harry H.; Alves, Oscar [Bureau of Meteorology, Centre for Australian Weather and Climate Research, Melbourne (Australia)

    2011-04-15

    Impacts on the coupled variability of the Indo-Pacific by including the effects of surface currents on surface stress are explored in four extended integrations of an experimental version of the Bureau of Meteorology's coupled seasonal forecast model POAMA. The first pair of simulations differs only in their treatment of momentum coupling: one version includes the effects of surface currents on the surface stress computation and the other does not. The version that includes the effect of surface currents has less mean-state bias in the equatorial Pacific cold tongue but produces relatively weak coupled variability in the Tropics, especially that related to the Indian Ocean dipole (IOD) and El Nino/Southern Oscillation (ENSO). The version without the effects of surface currents has greater bias in the Pacific cold tongue but stronger IOD and ENSO variability. In order to diagnose the role of changes in local coupling from changes in remote forcing by ENSO for causing changes in IOD variability, a second set of simulations is conducted where effects of surface currents are included only in the Indian Ocean and only in the Pacific Ocean. IOD variability is found to be equally reduced by inclusion of the local effects of surface currents in the Indian Ocean and by the reduction of ENSO variability as a result of including effects of surface currents in the Pacific. Some implications of these results for predictability of the IOD and its dependence on ENSO, and for ocean subsurface data assimilation are discussed. (orig.)

  5. A morphing approach to couple state-based peridynamics with classical continuum mechanics

    KAUST Repository

    Han, Fei

    2016-01-04

    A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.

  6. A morphing approach to couple state-based peridynamics with classical continuum mechanics

    KAUST Repository

    Han, Fei; Lubineau, Gilles; Azdoud, Yan; Askari, Abe

    2016-01-01

    A local/nonlocal coupling technique called the morphing method is developed to couple classical continuum mechanics with state-based peridynamics. State-based peridynamics, which enables the description of cracks that appear and propagate spontaneously, is applied to the key domain of a structure, where damage and fracture are considered to have non-negligible effects. In the rest of the structure, classical continuum mechanics is used to reduce computational costs and to simultaneously satisfy solution accuracy and boundary conditions. Both models are glued by the proposed morphing method in the transition region. The morphing method creates a balance between the stiffness tensors of classical continuum mechanics and the weighted coefficients of state-based peridynamics through the equivalent energy density of both models. Linearization of state-based peridynamics is derived by Taylor approximations based on vector operations. The discrete formulation of coupled models is also described. Two-dimensional numerical examples illustrate the validity and accuracy of the proposed technique. It is shown that the morphing method, originally developed for bond-based peridynamics, can be successfully extended to state-based peridynamics through the original developments presented here.

  7. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SUBSURFACE EXPLORATORY STUDIES FACILITY

    International Nuclear Information System (INIS)

    Clark, W.J.

    1999-01-01

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), the Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift Starter Tunnel (to approximate ECRB Station 0+26 m), and ancillary test and operation support areas in the TS Loop. This evaluation applies to the construction, operation, and maintenance of these excavations. A more detailed description of these items is provided in Section 6.0. Testing activities are not evaluated in this DIE. Certain construction activities with respect to testing activities are evaluated; but the testing activities themselves are not evaluated. The DIE for ESF Subsurface Testing Activities (BAJ3000000-01717-2200-000111) (CRWMS M and O 1998a) evaluates Subsurface ESF Testing activities. The construction, operation, and maintenance of the TS Loop niches and alcove slot cuts is evaluated herein and is also discussed in CRWMS M and O 1998a. The construction, operation, and maintenance of the Busted Butte subsurface test area in support of the Unsaturated Zone (UZ) Transport Test is evaluated in CRWMS M and O 1998a. Potential test-to-test interference and the waste isolation impacts of testing activities are evaluated in the ESF Subsurface Testing Activities DIE and other applicable evaluation(s) for the Job Package (JP), Test Planning Package (TPP), and/or Field Work Package (FWP). The objectives of this DIE are to determine whether the Subsurface ESF TS Loop and associated excavations, including activities associated with their construction and operation, potentially impact site characterization testing or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified. The validity and veracity of the individual tests, including data collection, are the

  8. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SUBSURFACE EXPORATORY STUDIES FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    W.J. Clark

    1999-06-28

    This Determination of Importance Evaluation (DIE) applies to the Subsurface Exploratory Studies Facility (ESF), encompassing the Topopah Spring (TS) Loop from Station 0+00 meters (m) at the North Portal to breakthrough at the South Portal (approximately 78+77 m), the Enhanced Characterization of the Repository Block (ECRB) East-West Cross Drift Starter Tunnel (to approximate ECRB Station 0+26 m), and ancillary test and operation support areas in the TS Loop. This evaluation applies to the construction, operation, and maintenance of these excavations. A more detailed description of these items is provided in Section 6.0. Testing activities are not evaluated in this DIE. Certain construction activities with respect to testing activities are evaluated; but the testing activities themselves are not evaluated. The DIE for ESF Subsurface Testing Activities (BAJ3000000-01717-2200-00011 Rev 01) (CRWMS M&O 1998a) evaluates Subsurface ESF Testing activities. The construction, operation, and maintenance of the TS Loop niches and alcove slot cuts is evaluated herein and is also discussed in CRWMS M&O 1998a. The construction, operation, and maintenance of the Busted Butte subsurface test area in support of the Unsaturated Zone (UZ) Transport Test is evaluated in CRWMS M&O 1998a. Potential test-to-test interference and the waste isolation impacts of testing activities are evaluated in the ESF Subsurface Testing Activities DIE and other applicable evaluation(s) for the Job Package (JP), Test Planning Package (TPP), and/or Field Work Package (FWP). The objectives of this DIE are to determine whether the Subsurface ESF TS Loop and associated excavations, including activities associated with their construction and operation, potentially impact site characterization testing or the waste isolation capabilities of the site. Controls needed to limit any potential impacts are identified. The validity and veracity of the individual tests, including data collection, are the responsibility

  9. Investigation of science faculty with education specialties within the largest university system in the United States.

    Science.gov (United States)

    Bush, Seth D; Pelaez, Nancy J; Rudd, James A; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy S

    2011-01-01

    Efforts to improve science education include university science departments hiring Science Faculty with Education Specialties (SFES), scientists who take on specialized roles in science education within their discipline. Although these positions have existed for decades and may be growing more common, few reports have investigated the SFES approach to improving science education. We present comprehensive data on the SFES in the California State University (CSU) system, the largest university system in the United States. We found that CSU SFES were engaged in three key arenas including K-12 science education, undergraduate science education, and discipline-based science education research. As such, CSU SFES appeared to be well-positioned to have an impact on science education from within science departments. However, there appeared to be a lack of clarity and agreement about the purpose of these SFES positions. In addition, formal training in science education among CSU SFES was limited. Although over 75% of CSU SFES were fulfilled by their teaching, scholarship, and service, our results revealed that almost 40% of CSU SFES were seriously considering leaving their positions. Our data suggest that science departments would likely benefit from explicit discussions about the role of SFES and strategies for supporting their professional activities.

  10. Characterization of accumulated precipitates during subsurface iron removal

    International Nuclear Information System (INIS)

    Halem, Doris van; Vet, Weren de; Verberk, Jasper; Amy, Gary; Dijk, Hans van

    2011-01-01

    Research highlights: → Accumulated iron was not found to clog the well or aquifer after 12 years of subsurface iron removal. → 56-100% of accumulated iron hydroxides were found to be crystalline. → Subsurface iron removal favoured certain soil layers, either due to hydraulics or mineralogy. → Other groundwater constituents, such as manganese and arsenic were found to co-accumulate with iron. - Abstract: The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O 2 -rich water oxidizes adsorbed Fe 2+ , creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO 3 , showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in

  11. Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiaolong; Liu, Ying, E-mail: liuychch@ustc.edu.cn; Liu, Zhengkun; Qiu, Keqiang; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2015-11-15

    Highlights: • SSD layer of fused silica is removed by ICP etch with surface roughness of 0.23 nm. • Metal contamination is successfully avoided by employing an isolation device. • Unique low-density plasma induced pitting damage is discovered and eliminated. • Lateral etching of SSD is avoided due to the improvement of etching anisotropy. - Abstract: In this work, we introduce an optimum ICP etching technique that successfully removes the subsurface damage (SSD) layer of fused silica without causing plasma induced surface damage (PISD) or lateral etching of SSD. As one of the commonest PISD initiators, metal contamination from reactor chamber is prevented by employing a simple isolation device. Based on this device, a unique low-density pitting damage is discovered and subsequently eliminated by optimizing the etching parameters. Meanwhile etching anisotropy also improves a lot, thus preventing the lateral etching of SSD. Using this proposed technique, SSD layer of fused silica is successfully removed with a surface roughness of 0.23 nm.

  12. Chimera states in an ensemble of linearly locally coupled bistable oscillators

    Science.gov (United States)

    Shchapin, D. S.; Dmitrichev, A. S.; Nekorkin, V. I.

    2017-11-01

    Chimera states in a system with linear local connections have been studied. The system is a ring ensemble of analog bistable self-excited oscillators with a resistive coupling. It has been shown that the existence of chimera states is not due to the nonidentity of oscillators and noise, which is always present in real experiments, but is due to the nonlinear dynamics of the system on invariant tori with various dimensions.

  13. Emergence of a super-synchronized mobbing state in a large population of coupled chemical oscillators

    Science.gov (United States)

    Ghoshal, Gourab; Muñuzuri, Alberto P.; Pérez-Mercader, Juan

    2016-01-01

    Oscillatory phenomena are ubiquitous in Nature. The ability of a large population of coupled oscillators to synchronize constitutes an important mechanism to express information and establish communication among members. To understand such phenomena, models and experimental realizations of globally coupled oscillators have proven to be invaluable in settings as varied as chemical, biological and physical systems. A variety of rich dynamical behavior has been uncovered, although usually in the context of a single state of synchronization or lack thereof. Through the experimental and numerical study of a large population of discrete chemical oscillators, here we report on the unexpected discovery of a new phenomenon revealing the existence of dynamically distinct synchronized states reflecting different degrees of communication. Specifically, we discover a novel large-amplitude super-synchronized state separated from the conventionally reported synchronized and quiescent states through an unusual sharp jump transition when sampling the strong coupling limit. Our results assume significance for further elucidating globally coherent phenomena, such as in neuropathologies, bacterial cell colonies, social systems and semiconductor lasers.

  14. Coupled processes and the tropical climatology : part III : instabilities of the fully coupled climatology

    NARCIS (Netherlands)

    Dijkstra, H.A.; Neelin, J.D.

    1998-01-01

    Coupled processes between the equatorial ocean and atmosphere control the spatial structure of the annual mean state in the Pacific region,in particular the warm-pool/cold- tongue structure.At the same time,coupled processes are known to be responsible for the variability about this mean state,in

  15. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    Science.gov (United States)

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  16. A History of Soil Science Education in the United States

    Science.gov (United States)

    Brevik, Eric C.

    2017-04-01

    The formal study of soil science is a fairly recent undertaking in academics. Fields like biology, chemistry, and physics date back hundreds of years, but the scientific study of soils only dates to the late 1800s. Academic programs to train students in soil science are even more recent, with the first such programs only developing in the USA in the early 1900s. Some of the first schools to offer soil science training at the university level included the University of North Carolina (UNC), Earlham College (EC), and Cornell University. The first modern soil science textbook published in the United States was "Soils, Their Properties and Management" by Littleton Lyon, Elmer Fippin and Harry Buckman in 1909. This has evolved over time into the popular modern textbook "The Nature and Properties of Soils", most recently authored by Raymond Weil and Nyle Brady. Over time soil science education moved away from liberal arts schools such as UNC and EC and became associated primarily with land grant universities in their colleges of agriculture. There are currently about 71 colleges and universities in the USA that offer bachelors level soil science degree programs, with 54 of these (76%) being land grant schools. In the 1990s through the early 2000s enrollment in USA soil science programs was on the decline, even as overall enrollment at USA colleges and universities increased. This caused considerable concern in the soil science community. More recently there is evidence that soil science student numbers may be increasing, although additional information on this potential trend is desirable. One challenge soil science faces in the modern USA is finding an academic home, as soils are taught by a wide range of fields and soils classes are taken by students in many fields of study, including soil science, a range of agricultural programs, environmental science, environmental health, engineering, geology, geography, and others.

  17. State-space modeling of the radio frequency inductively-coupled plasma generator

    International Nuclear Information System (INIS)

    Dewangan, Rakesh Kumar; Punjabi, Sangeeta B; Mangalvedekar, H A; Lande, B K; Joshi, N K; Barve, D N

    2010-01-01

    Computational fluid dynamics models of RF-ICP are useful in understanding the basic transport phenomenon in an ICP torch under a wide variety of operating conditions. However, these models lack the ability to evaluate the effects of the plasma condition on the RF generator. In this paper, simulation of an induction plasma generator has been done using state space modelling by considering inductively coupled plasma as a part of RF network .The time dependent response of the RF-ICP generator circuit to given input excitation has been computed by extracting the circuit's state-space variables and their constraint matrices. MATLAB 7.1 software has been used to solve the state equations. The values of RF coil current, frequency and plasma power has been measured experimentally also at different plate bias voltage. The simulated model is able to predict RF coil current, frequency, plasma power, overall efficiency of the generator. The simulated and measured values are in agreement with each other. This model can prove useful as a design tool for the Induction plasma generator.

  18. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    C.J. Fernado

    1998-01-01

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I andC) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I andC and will typically be integrated over a data communication network. The subsurface I andC systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures

  19. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  20. SUBSURFACE CONSTRUCTION AND DEVELOPMENT ANALYSIS

    International Nuclear Information System (INIS)

    N.E. Kramer

    1998-01-01

    The purpose of this analysis is to identify appropriate construction methods and develop a feasible approach for construction and development of the repository subsurface facilities. The objective of this analysis is to support development of the subsurface repository layout for License Application (LA) design. The scope of the analysis for construction and development of the subsurface Repository facilities covers: (1) Excavation methods, including application of knowledge gained from construction of the Exploratory Studies Facility (ESF). (2) Muck removal from excavation headings to the surface. This task will examine ways of preventing interference with other subsurface construction activities. (3) The logistics and equipment for the construction and development rail haulage systems. (4) Impact of ground support installation on excavation and other construction activities. (5) Examination of how drift mapping will be accomplished. (6) Men and materials handling. (7) Installation and removal of construction utilities and ventilation systems. (8) Equipping and finishing of the emplacement drift mains and access ramps to fulfill waste emplacement operational needs. (9) Emplacement drift and access mains and ramps commissioning prior to handover for emplacement operations. (10) Examination of ways to structure the contracts for construction of the repository. (11) Discussion of different construction schemes and how to minimize the schedule risks implicit in those schemes. (12) Surface facilities needed for subsurface construction activities

  1. Influence of surface nudging on climatological mean and ENSO feedbacks in a coupled model

    Science.gov (United States)

    Zhu, Jieshun; Kumar, Arun

    2018-01-01

    Studies have suggested that surface nudging could be an efficient way to reconstruct the subsurface ocean variability, and thus a useful method for initializing climate predictions (e.g., seasonal and decadal predictions). Surface nudging is also the basis for climate models with flux adjustments. In this study, however, some negative aspects of surface nudging on climate simulations in a coupled model are identified. Specifically, a low-resolution version of the NCEP Climate Forecast System, version 2 (CFSv2L) is used to examine the influence of nudging on simulations of climatological mean and on the coupled feedbacks during ENSO. The effect on ENSO feedbacks is diagnosed following a heat budget analysis of mixed layer temperature anomalies. Diagnostics of the climatological mean state indicates that, even though SST biases in all ocean basins, as expected, are eliminated, the fidelity of climatological precipitation, surface winds and subsurface temperature (or the thermocline depth) could be highly ocean basin dependent. This is exemplified by improvements in the climatology of these variables in the tropical Atlantic, but degradations in the tropical Pacific. Furthermore, surface nudging also distorts the dynamical feedbacks during ENSO. For example, while the thermocline feedback played a critical role during the evolution of ENSO in a free simulation, it only played a minor role in the nudged simulation. These results imply that, even though the simulation of surface temperature could be improved in a climate model with surface nudging, the physics behind might be unrealistic.

  2. Exploration of a Subsurface Biosphere in a Volcanic Massive Sulfide: Results of the Mars Analog Rio Tinto Drilling Experiment

    Science.gov (United States)

    Stoker, C. R.; Stevens, T.; Amils, R.; Fernandez, D.

    2005-12-01

    Biological systems on Earth require three key ingredients-- liquid water, an energy source, and a carbon source, that are found in very few extraterrestrial environments. Previous examples of independent subsurface ecosystems have been found only in basalt aquifers. Such lithotrophic microbial ecosystems (LME) have been proposed as models for steps in the early evolution of Earth's biosphere and for potential biospheres on other planets where the surface is uninhabitable, such as Mars and Europa.. The Mars Analog Rio Tinto Experiment (MARTE) has searched in a volcanic massive sulfide deposit in Rio Tinto Spain for a subsurface biosphere capable of living without sunlight or oxygen and found a subsurface ecosystem driven by the weathering of the massive sulfide deposit (VMS) in which the rock matrix provides sufficient resources to support microbial metabolism, including the vigorous production of H2 by water-rock interactions. Microbial production of methane and sulfate occurred in the sulfide orebody and microbial production of methane and hydrogen sulfide continued in an anoxic plume downgradient from the sulfide ore. Organic carbon concentrations in the parent rock were too low to support microbes. The Rio Tinto system thus represents a new type of subsurface ecosystem with strong relevance for exobiological studies. Commercial drilling was used to reach the aquifer system at 100 m depth and conventional laboratory techniques were used to identify and characterize the biosphere. Then, the life search strategy that led to successful identification of this biosphere was applied to the development of a robotic drilling, core handling, inspection, subsampling, and life detection system built on a prototype planetary lander that was deployed in Rio Tinto Spain in September 2005 to test the capability of a robotic drilling system to search for subsurface life. A remote science team directed the simulation and analyzed the data from the MARTE robotic drill. The results

  3. Coupling of the electrocaloric and electromechanical effects for solid-state refrigeration

    Science.gov (United States)

    Bradeško, A.; Juričić, Äń.; Santo Zarnik, M.; Malič, B.; Kutnjak, Z.; Rojac, T.

    2016-10-01

    Electrocaloric (EC) materials have shown the potential to replace some of the technologies in current commercial refrigeration systems. The key problem when fabricating an efficient EC refrigerator is the small adiabatic temperature change that current bulk materials can achieve. Therefore, such a solid-state EC refrigerator should be engineered to enhance the EC temperature change by rectifying the induced EC heat flow. Here, we present a numerical study of a device that couples the EC and electromechanical (EM) effects in a single active material. The device consists of several elements made from a functional material with coupled EC and EM properties, allowing the elements to bend and change their temperature with the application of an electric field. The periodic excitation of these elements results in a temperature span across the device. By assuming heat exchange with the environment and a low thermal contact resistivity between the elements, we show that a device with 15 elements and an EC effect of 1.2 K achieves a temperature span between the hot and cold sides of the device equal to 12.6 K. Since the temperature span can be controlled by the number of elements in the device, the results suggest that in combination with the so-called "giant" EC effect (ΔTEC ≥ 10 K), a very large temperature span would be possible. The results of this work should motivate the development of efficient EC refrigeration systems based on a coupling of the EC and EM effects.

  4. Integrated geomechanical modelling for deep subsurface damage

    NARCIS (Netherlands)

    Wees, J.D. van; Orlic, B.; Zijl, W.; Jongerius, P.; Schreppers, G.J.; Hendriks, M.

    2001-01-01

    Government, E&P and mining industry increasingly demand fundamental insight and accurate predictions on subsurface and surface deformation and damage due to exploitation of subsurface natural resources, and subsurface storage of energy residues (e.g. CO2). At this moment deformation is difficult to

  5. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands.

    Science.gov (United States)

    Griffioen, Jasper; van Wensem, Joke; Oomes, Justine L M; Barends, Frans; Breunese, Jaap; Bruining, Hans; Olsthoorn, Theo; Stams, Alfons J M; van der Stoel, Almer E C

    2014-07-01

    In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to establish a conceptual overview of the technical issues related to sustainable management of the subsurface. Case studies on the exploitation of subsurface resources (including spatial use of the subsurface) were analysed, examining social relevance, environmental impact, pressure points and management solutions. The case studies ranged from constructing underground garages to geothermal exploitation. The following issues were identified for the technological/scientific aspects: site investigation, suitability, risk assessment, monitoring and measures in the event of failure. Additionally, the following general issues were identified for the administrative aspects: spatial planning, option assessment, precaution, transparency, responsibility and liability. These issues were explored on their technological implications within the framework of sustainable management of the subsurface. This resulted into the following key aspects: (1) sustainability assessment, (2) dealing with uncertainty and (3) policy instruments and governance. For all three aspects, different options were identified which might have a legal, economic or ethical background. The technological implications of these backgrounds have been identified. A set of recommendations for sustainable management of the subsurface resources (incl. space) was established: (1) management should be driven by scarcity, (2) always implement closed loop monitoring when the subsurface activities are high-risk, (3) when dealing with unknown features and heterogeneity, apply the precautionary principle, (4) responsibility and liability for damage must be set out in legislation and (5) sustainability should be incorporated in all

  6. "Application, evaluation and sensitivity analysis of the coupled WRF-CMAQ system from regional to urban scales"

    Science.gov (United States)

    Appel, W.; Gilliam, R. C.; Mathur, R.; Roselle, S. J.; Pleim, J. E.; Hogrefe, C.; Pouliot, G.

    2017-12-01

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science chemical transport model (CTM) capable of simulating the emission, transport and fate of numerous air pollutants. Similarly, the Weather Research and Forecasting (WRF) model is a state-of-the-science meteorological model capable of simulating meteorology at many scales (e.g. global to urban). The coupled WRF-CMAQ system integrates these two models in a "two-way" configuration which allows feedback effects between the chemical (e.g. aerosols) and physical (e.g. solar radiation) states of the atmosphere. In addition, the coupled modeling system allows for more frequent communication between the CTM and meteorological model than is typically done in uncoupled WRF-CMAQ simulations. The goal of this modeling exercise is to assess the ability of the coupled WRF-CMAQ system at fine-scales (e.g. 4km to 1km) through comparison with high space and time resolution field measurements, and comparing those results to the traditional regional scale (e.g. 12km) simulation. This work will specifically examine several fine-scale simulations over the Eastern United States and the Baltimore, MD/Washington D.C. region for 2011, with special emphasis on the period of the DISCOVERAQ field campaign. In addition to evaluating the model performance at the various scales, the impact of the more frequent time coupling of the CTM and meteorology, aerosol feedback effects and lightning generated NO at the finer spatial resolutions will be assessed. The effect of simulating sub-grid clouds using several different options (i.e. explicit, parameterized or assimilated) will also be examined, since clouds are particularly important as they can have a large impact on both the meteorology (beyond the clouds themselves) and air quality, and are notoriously difficult to simulate accurately.

  7. Subsurface geomicrobiology in a Mars terrestrial analogue, Río Tinto (SW, Spain)

    Science.gov (United States)

    Amils, R.; Fernández-Remolar, D.; Gómez, F.; González-Toril, E.; Rodríguez, N.; Prieto-Ballesteros, O.; Sanz, J. L.; Díaz, E.; Stoker, C.

    2008-09-01

    Since its discovery, only few years ago, subsurface geomicrobiology is a matter of growing interest [1]. From a fundamental point of view, it seeks to determine whether life can be sustained in the absence of radiation. From an astrobiological point of view, it is an interesting model for life in other planetary bodies, e.g., Mars, as well as early life on Earth. Río Tinto is an unusual extreme acidic environment due to its size (around 100 km), constant acidic pH (mean pH 2.3), high concentrations of heavy metals and high level of microbial diversity [2]. Río Tinto rises in the core of the Iberian Pyritic Belt, one of the biggest sulfidic ore deposits in the world [3]. Today it is well stablished that the extreme characteristics of Río Tinto are not due to acid mine drainage from mining activity, as has been suggested in the past. To explore the hypothesis that a continuous underground reactor of chemolithotrophic microorganisms thriving in the rich sulfidic minerals of the Iberian Pyritic Belt is responsible for the extreme conditions found in the system, a drilling project has been developed to detect evidence of subsurface microbial activity and potential resources to support these microbial communities in situ (MARTE project) [4]. Here we report a search for subsurface life in volcanically hosted massive sulfidic deposits from the Iberian Pyritic Belt. Aseptic core samples were obtained within and down-gradient from the massive sulfide deposits and formation water was sampled within the resulting bore holes. Microbial activity was detected in un-contaminated samples by culture-dependent and culture-independent methods. Aerobic iron- and sulfide- oxidizing bacteria, and anaerobic denitrifying thiosulfate-oxidizing bacteria, sulfate reducing bacteria and methanogenic archaea have been identified. Potential energy fluxes detected in the system include oxidation of reduced iron and sulfur, or hydrogen gas coupled to nitrite, sulfate, ferric iron, inorganic

  8. The evolution of the equatorial thermocline and the early Pliocene El Padre mean state

    Science.gov (United States)

    Ford, Heather L.; Ravelo, A. Christina; Dekens, Petra S.; LaRiviere, Jonathan P.; Wara, Michael W.

    2015-06-01

    The tropical Pacific thermocline strength, depth, and tilt are critical to tropical mean state and variability. During the early Pliocene (~3.5 to 4.5 Ma), the Eastern Equatorial Pacific (EEP) thermocline was deeper and the cold tongue was warmer than today, which resulted in a mean state with a reduced zonal sea surface temperature gradient or El Padre. However, it is unclear whether the deep thermocline was a local feature of the EEP or a basin-wide condition with global implications. Our measurements of Mg/Ca of Globorotalia tumida in a western equatorial Pacific site indicate Pliocene subsurface temperatures warmer than today; thus, El Padre included a basin-wide thermocline that was relatively warm, deep, and weakly tilted. At ~4 Ma, thermocline steepening was coupled to cooling of the cold tongue. Since ~4 Ma, the basin-wide thermocline cooled/shoaled gradually, with implications for thermocline feedbacks in tropical dynamics and the interpretation of TEX86-derived temperatures.

  9. Microbial structures in an Alpine Thermal Spring - Microscopic techniques for the examination of Biofilms in a Subsurface Environment

    Science.gov (United States)

    Dornmayr-Pfaffenhuemer, Marion; Pierson, Elisabeth; Janssen, Geert-Jan; Stan-Lotter, Helga

    2010-05-01

    The research into extreme environments hast important implications for biology and other sciences. Many of the organisms found there provide insights into the history of Earth. Life exists in all niches where water is present in liquid form. Isolated environments such as caves and other subsurface locations are of interest for geomicrobiological studies. And because of their "extra-terrestrial" conditions such as darkness and mostly extreme physicochemical state they are also of astrobiological interest. The slightly radioactive thermal spring at Bad Gastein (Austria) was therefore examined for the occurrence of subsurface microbial communities. The surfaces of the submerged rocks in this warm spring were overgrown by microbial mats. Scanning electron microscopy (SEM) performed by the late Dr. Wolfgang Heinen revealed an interesting morphological diversity in biofilms found in this environment (1, 2). Molecular analysis of the community structure of the radioactive subsurface thermal spring was performed by Weidler et al. (3). The growth of these mats was simulated using sterile glass slides which were exposed to the water stream of the spring. Those mats were analysed microscopically. Staining, using fluorescent dyes such as 4',6-Diamidino-2-phenylindol (DAPI), gave an overview of the microbial diversity of these biofilms. Additional SEM samples were prepared using different fixation protocols. Scanning confocal laser microscopy (SCLM) allowed a three dimensional view of the analysed biofilms. This work presents some electron micrographs of Dr. Heinen and additionally new microscopic studies of the biofilms formed on the glass slides. The appearances of the new SEM micrographs were compared to those of Dr. Heinen that were done several years ago. The morphology and small-scale distribution in the microbial mat was analyzed by fluorescence microscopy. The examination of natural biomats and biofilms grown on glass slides using several microscopical techniques

  10. Characterization of accumulated precipitates during subsurface iron removal

    KAUST Repository

    Van Halem, Doris

    2011-01-01

    The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O2-rich water oxidizes adsorbed Fe 2+, creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO3, showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in normal production wells. Other groundwater constituents, such as Mn, As and Sr were found to co-accumulate with Fe. Acid extraction and ESEM-EDX showed that Ca occurred together with Fe and by X-ray Powder Diffraction it was identified as calcite. © 2010 Elsevier Ltd. All rights reserved.

  11. Coupled states approximation for scattering of two diatoms

    International Nuclear Information System (INIS)

    Heil, T.G.; Green, S.; Kouri, D.J.

    1978-01-01

    The coupled states (CS) approximation is developed in detail for the general case of two colliding diatomic molecules. The high energy limit of the exact Lippmann-Schwinger equation is used to obtain the CS equations so that the sufficiency conditions of Kouri, Heil, and Shimoni apply. In addition, care is taken to ensure correct treatment of parity in the CS, as well as correct labeling of the CS by an effective orbital angular momentum. The analysis follows that given by Shimoni and Kouri for atom-diatom collisions where the coupled rotor angular momentum j 12 and projection lambda 12 replace the single diatom angular momentum j and projection lambda. The result is an expression for the differential scattering amplitude which is a generalization of the highly successful McGuire-Kouri differential scattering amplitude for atom-diatom collisions. Also, the opacity function is found to be a generalization of the Clebsch-Gordon weight atom-diatom expression of Shimoni and Kouri. The diatom-diatom CS body frame T matrix T/sup J/(j 1 'j 2 'j 12 'lambda 12 'vertical-bar j 1 j 2 j 12 lambda 12 ) is also found to be nondiagonal in lambda' 12 ,lambda 12 , just as in the atom-diatom case. The parity and identical molecule interchange symmetries are also considered in detail in both the exact close coupling and CS approximations. Symmetrized expressions for all relevant quantities are obtained, along with the symmetrized coupled equations one must solve. The properly labeled and symmetrized CS equations have not been derived before this present work. The present correctly labeled CS theory is tested computationally by applications to three different diatom-diatom potentials. First we carry out calculations for para-para, ortho-ortho, and ortho-para H 2 -H 2 collisions using the experimental potential of Farrar and Lee

  12. Subsurface Transport Over Reactive Multiphases (STORM): A Parallel, Coupled, Nonisothermal Multiphase Flow, Reactive Transport, and Porous Medium Alteration Simulator, Version 3.0

    International Nuclear Information System (INIS)

    Bacon, Diana H.; White, Mark D.; McGrail, B PETER

    2004-01-01

    The U.S. Department of Energy must approve a performance assessment (PA) to support the design, construction, approval, and closure of disposal facilities for immobilized low-activity waste (ILAW) currently stored in underground tanks at Hanford, Washington. A critical component of the PA is to provide quantitative estimates of radionuclide release rates from the engineered portion of the disposal facilities. Computer simulations are essential for this purpose because impacts on groundwater resources must be projected to periods of 10,000 years and longer. The computer code selected for simulating the radionuclide release rates is the Subsurface Transport Over Reactive Multiphases (STORM) simulator. The STORM simulator solves coupled conservation equations for component mass and energy that describe subsurface flow over aqueous and gas phases through variably saturated geologic media. The resulting flow fields are used to sequentially solve conservation equations for reactive aqueous phase transport through variably saturated geologic media. These conservation equations for component mass, energy, and solute mass are partial differential equations that mathematically describe flow and transport through porous media. The STORM simulator solves the governing-conservation equations and constitutive functions using numerical techniques for nonlinear systems. The partial differential equations governing thermal and fluid flow processes are solved by the integral volume finite difference method. These governing equations are solved simultaneously using Newton-Raphson iteration. The partial differential equations governing reactive solute transport are solved using either an operator split technique where geochemical reactions and solute transport are solved separately, or a fully coupled technique where these equations are solved simultaneously. The STORM simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards

  13. Geophysical data fusion for subsurface imaging

    International Nuclear Information System (INIS)

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ''data fusion,'' was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site

  14. Subsurface plasma in beam of continuous CO2-laser

    Science.gov (United States)

    Danytsikov, Y. V.; Dymshakov, V. A.; Lebedev, F. V.; Pismennyy, V. D.; Ryazanov, A. V.

    1986-03-01

    Experiments performed at the Institute of Atomic Energy established the conditions for formation of subsurface plasma in substances by laser radiation and its characteristics. A quasi-continuous CO2 laser emitting square pulses of 0.1 to 1.0 ms duration and 1 to 10 kW power as well as a continuous CO2 laser served as radiation sources. Radiation was focused on spots 0.1 to 0.5 mm in diameter and maintained at levels ensuring constant power density during the interaction time, while the temperature of the target surface was measured continuously. Metals, graphite and dielectric materials were tested with laser action taking place in air N2 + O2 mixtures, Ar or He atmosphere under pressures of 0.01 to 1.0 atm. Data on radiation intensity thresholds for evaporation and plasma formation were obtained. On the basis of these thresholds, combined with data on energy balance and the temperature profile in plasma layers, a universal state diagram was constructed for subsurface plasma with nonquantified surface temperature and radiation intensity coordinates.

  15. Ensemble Kalman Filtering with a Divided State-Space Strategy for Coupled Data Assimilation Problems

    KAUST Repository

    Luo, Xiaodong

    2014-12-01

    This study considers the data assimilation problem in coupled systems, which consists of two components (subsystems) interacting with each other through certain coupling terms. A straightforward way to tackle the assimilation problem in such systems is to concatenate the states of the subsystems into one augmented state vector, so that a standard ensemble Kalman filter (EnKF) can be directly applied. This work presents a divided state-space estimation strategy, in which data assimilation is carried out with respect to each individual subsystem, involving quantities from the subsystem itself and correlated quantities from other coupled subsystems. On top of the divided state-space estimation strategy, the authors also consider the possibility of running the subsystems separately. Combining these two ideas, a few variants of the EnKF are derived. The introduction of these variants is mainly inspired by the current status and challenges in coupled data assimilation problems and thus might be of interest from a practical point of view. Numerical experiments with a multiscale Lorenz 96 model are conducted to evaluate the performance of these variants against that of the conventional EnKF. In addition, specific for coupled data assimilation problems, two prototypes of extensions of the presented methods are also developed in order to achieve a trade-offbetween efficiency and accuracy.

  16. Ensemble Kalman Filtering with a Divided State-Space Strategy for Coupled Data Assimilation Problems

    KAUST Repository

    Luo, Xiaodong; Hoteit, Ibrahim

    2014-01-01

    This study considers the data assimilation problem in coupled systems, which consists of two components (subsystems) interacting with each other through certain coupling terms. A straightforward way to tackle the assimilation problem in such systems is to concatenate the states of the subsystems into one augmented state vector, so that a standard ensemble Kalman filter (EnKF) can be directly applied. This work presents a divided state-space estimation strategy, in which data assimilation is carried out with respect to each individual subsystem, involving quantities from the subsystem itself and correlated quantities from other coupled subsystems. On top of the divided state-space estimation strategy, the authors also consider the possibility of running the subsystems separately. Combining these two ideas, a few variants of the EnKF are derived. The introduction of these variants is mainly inspired by the current status and challenges in coupled data assimilation problems and thus might be of interest from a practical point of view. Numerical experiments with a multiscale Lorenz 96 model are conducted to evaluate the performance of these variants against that of the conventional EnKF. In addition, specific for coupled data assimilation problems, two prototypes of extensions of the presented methods are also developed in order to achieve a trade-offbetween efficiency and accuracy.

  17. Amplitude death induced by mixed attractive and repulsive coupling in the relay system

    Science.gov (United States)

    Zhao, Nannan; Sun, Zhongkui; Xu, Wei

    2018-01-01

    The amplitude death (AD) phenomenon is found in the relay system in the presence of the mixed couplings composed of attractive coupling and repulsive coupling. The generation mechanism of AD is revealed and shows that the middle oscillator achieving AD is a prerequisite to further suppress oscillation of the outermost oscillators for the paradigmatic Stuart-Landau and Rössler models. Moreover, regarding the Stuart-Landau relay system as a small motif of star network, we also observe that the mixed couplings can facilitate AD state of the whole network system. Particularly, the threshold of coupling strength is invariable with the change of network size. Our findings may shed a new insight to explore the effects of hybrid coupling on complex systems, also provide a new strategy to control dynamic behaviors in engineering science and neuroscience fields.

  18. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

    International Nuclear Information System (INIS)

    Wilson, T.; Novotny, R.

    1999-01-01

    The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES)

  19. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 2, Environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environmental Research in FY 1986. The program is focused on terrestrial, subsurface, and coastal marine systems, and this research forms the basis, in conjunction with remote sensing, for definition and quantification of processes leading to impacts at the global level. This report is organized into sections devoted to Detection and Management of Change in Terrestrial Systems, Biogeochemical Phenomena, Subsurface Microbiology and Transport, Marine Sciences, and Theoretical (Quantitative) Ecology. Separate abstracts have been prepared for individual projects.

  20. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands

    NARCIS (Netherlands)

    Griffioen, Jasper; van Wensem, Joke; Oomes, Justine L.M.; Barends, Frans; Breunese, Jaap; Bruining, Hans; Olsthoorn, Theo; Stams, Alfons J.M.; van der Stoel, Almer E.C.

    2014-01-01

    In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to

  1. A technical investigation on tools and concepts for sustainable management of the subsurface in The Netherlands.

    NARCIS (Netherlands)

    Griffioen, J.; Wensem, van J.; Oomes, J.L.; Barends, F.; Breunese, J.; Bruining, H.; Olsthoorn, T.; Stams, A.J.M.; Stoel, van der A.E.

    2014-01-01

    In response to increasing use of the subsurface, there is a need to modernise policies on sustainable use of the subsurface. This holds in particular for the densely populated Netherlands. We aimed to analyse current practice of subsurface management and the associated pressure points and to

  2. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology

    Science.gov (United States)

    Bland, Michael T.; Carol A. Raymond,; Schenk, Paul M.; Roger R. Fu,; Thomas Kneisl,; Hendrick Pasckert, Jan; Hiesinger, Harald; Frank Preusker,; Ryan S. Park,; Simone Marchi,; Scott King,; Castillo-Rogez, Julie C.; Christopher T. Russell,

    2016-01-01

    Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.

  3. Investigation of Science Faculty with Education Specialties within the Largest University System in the United States

    OpenAIRE

    Bush, Seth D; Pelaez, Nancy; Rudd, James A, II; Stevens, Michael T; Tanner, Kimberly D; Williams, Kathy, PhD

    2011-01-01

    Efforts to improve science education include university science departments hiring Science Faculty with Education Specialties (SFES), scientists who take on specialized roles in science education within their discipline. Although these positions have existed for decades and may be growing more common, few reports have investigated the SFES approach to improving science education. We present comprehensive data on the SFES in the California State University (CSU) system, the largest university ...

  4. Subsurface Shielding Source Term Specification Calculation

    International Nuclear Information System (INIS)

    S.Su

    2001-01-01

    The purpose of this calculation is to establish appropriate and defensible waste-package radiation source terms for use in repository subsurface shielding design. This calculation supports the shielding design for the waste emplacement and retrieval system, and subsurface facility system. The objective is to identify the limiting waste package and specify its associated source terms including source strengths and energy spectra. Consistent with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001, p. 15), the scope of work includes the following: (1) Review source terms generated by the Waste Package Department (WPD) for various waste forms and waste package types, and compile them for shielding-specific applications. (2) Determine acceptable waste package specific source terms for use in subsurface shielding design, using a reasonable and defensible methodology that is not unduly conservative. This calculation is associated with the engineering and design activity for the waste emplacement and retrieval system, and subsurface facility system. The technical work plan for this calculation is provided in CRWMS M and O 2001. Development and performance of this calculation conforms to the procedure, AP-3.12Q, Calculations

  5. Aseptically Sampled Organics in Subsurface Rocks From the Mars Analog Rio Tinto Experiment: An Analog For The Search for Deep Subsurface Life on Mars.}

    Science.gov (United States)

    Bonaccorsi, R.; Stoker, C. R.

    2005-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this

  6. Altered Coupling between Motion-Related Activation and Resting-State Brain Activity in the Ipsilesional Sensorimotor Cortex after Cerebral Stroke

    Directory of Open Access Journals (Sweden)

    Jianping Hu

    2017-07-01

    Full Text Available Functional connectivity maps using resting-state functional magnetic resonance imaging (rs-fMRI can closely resemble task fMRI activation patterns, suggesting that resting-state brain activity may predict task-evoked activation or behavioral performance. However, this conclusion was mostly drawn upon a healthy population. It remains unclear whether the predictive ability of resting-state brain activity for task-evoked activation would change under different pathological conditions. This study investigated dynamic changes of coupling between patterns of resting-state functional connectivity (RSFC and motion-related activation in different stages of cerebral stroke. Twenty stroke patients with hand motor function impairment were involved. rs-fMRI and hand motion-related fMRI data were acquired in the acute, subacute, and early chronic stages of cerebral stroke on a 3-T magnetic resonance (MR scanner. Sixteen healthy participants were enrolled as controls. For each subject, an activation map of the affected hand was first created using general linear model analysis on task fMRI data, and then an RSFC map was determined by seeding at the peak region of hand motion activation during the intact hand task. We then measured the extent of coupling between the RSFC maps and motion-related activation maps. Dynamic changes of the coupling between the two fMRI maps were estimated using one-way repeated measures analysis of variance across the three stages. Moreover, imaging parameters were correlated with motor performances. Data analysis showed that there were different coupling patterns between motion-related activation and RSFC maps associating with the affected motor regions during the acute, subacute, and early chronic stages of stroke. Coupling strengths increased as the recovery from stroke progressed. Coupling strengths were correlated with hand motion performance in the acute stage, while coupling recovery was negatively correlated with the recovery

  7. Variability of soil potential for biodegradation of petroleum hydrocarbons in a heterogeneous subsurface

    DEFF Research Database (Denmark)

    Kristensen, Andreas Houlberg; Poulsen, Tjalfe; Mortensen, Lars

    2010-01-01

    for biodegradation was highly variable, which from autoregressive state-space modeling was partly explained by changes in soil air-filled porosity and gravimetric water content. The results suggest considering biological heterogeneity when evaluating the fate of contaminants in the subsurface.......Quantifying the spatial variability of factors affecting natural attenuation of hydrocarbons in the unsaturated zone is important to (i) performing a reliable risk assessment and (ii) evaluating the possibility for bioremediation of petroleum-polluted sites. Most studies to date have focused...... on the shallow unsaturated zone. Based on a data set comprising analysis of about 100 soil samples taken in a 16-m-deep unsaturated zone polluted with volatile petroleum compounds, we statistically and geostatistically analyzed values of essential soil properties. The subsurface of the site was highly layered...

  8. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Mordensky, S. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Rabjohns, K. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Colwell, F. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Sciences

    2016-06-21

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO2 levels is a goal for many nations and carbon sequestration which traps CO2 in the Earth’s subsurface is one method to reduce atmospheric CO2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role in biogeochemistry and accordingly may determine how CO2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO2 sequestration could be most efficiently implemented.

  9. Obama Emphasizes Science and Innovation in State of the Union Address

    Science.gov (United States)

    Tretkoff, Ernie

    2011-02-01

    U.S. president Barack Obama emphasized innovation and competitiveness in his State of the Union address on 25 January. He also raised science and technology early in the hour-long speech, noting that nations like China and India are focusing on math and science education and investing in research and technology. To be competitive with those countries, “we need to out-innovate, out-educate, and out-build the rest of the world,” Obama said. “The first step in winning the future is encouraging American innovation.”

  10. Biodegradation of crude oil in Arctic subsurface water from the Disko Bay (Greenland) is limited

    DEFF Research Database (Denmark)

    Scheibye, Katrine; Christensen, Jan H.; Johnsen, Anders R.

    2017-01-01

    Biological degradation is the main process for oil degradation in a subsurface oil plume. There is, however, little information on the biodegradation potential of Arctic, marine subsurface environments. We therefore investigated oil biodegradation in microcosms at 2 °C containing Arctic subsurfac...... for the C1-naphthalenes. To conclude, the marine subsurface microorganisms from the Disko Bay had the potential for biodegradation of n-alkanes and isoprenoids while the metabolically complex and toxic PACs and their alkylated homologs remained almost unchanged.......Biological degradation is the main process for oil degradation in a subsurface oil plume. There is, however, little information on the biodegradation potential of Arctic, marine subsurface environments. We therefore investigated oil biodegradation in microcosms at 2 °C containing Arctic subsurface...... seawater from the Disko Bay (Greenland) and crude oil at three concentrations of 2.5-10 mg/L. Within 71 days, the total petroleum hydrocarbon concentration decreased only by 18 ± 18% for an initial concentration of 5 mg/L. The saturated alkanes nC13-nC30 and the isoprenoids iC18-iC21 were biodegraded...

  11. Ferromagnetism carried by highly delocalized hybrid states in Sc-doped ZnO thin films

    KAUST Repository

    Benali Kanoun, Mohammed

    2012-05-29

    We present first-principles results for Sc-doped ZnOthin films. Neighboring Sc atoms in the surface and/or subsurface layers are found to be coupled ferromagnetically, where only two of the possible configurations induce spin polarization. In the first configuration, the polarization is carried by the Sc d states as expected for transition metaldoping. However, there is a second configuration which is energetically favorable. It is governed by polarized hybrid states of the Zns, O p, and Sc d orbitals. Such highly delocalized states can be an important ingredient for understanding the magnetism of dopedZnOthin films.

  12. Strong Bulk-Edge Coupling in the Compressible Half-Filled Quantum Hall State

    International Nuclear Information System (INIS)

    Milovanovic, M.V.; Shimshoni, E.

    1999-01-01

    We studied analytically static correlators in the compressible half-filled quantum Hall state, which characterize the nature of charged excitations in the bulk and on the edge of the system. We employ a modified version of the plasma analogy - namely, a mapping to a classical two-dimensional system of interacting particles - similarly to what has been done in studies of the incompressible (Laughlin) states. However, the 'fake plasma' corresponding to the half-filled state is found to have anomalously weak screening properties. As a consequence, the correlations along the edge do not decay algebraically as in the incompressible case, thus indicating the breakdown of Wen's edge theory. On the other hand, the bulk correlator (which parallels the Girvin-MacDonald algebraic off-diagonal long range order) decays algebraically in a similar way as in the incompressible states, signifying the presence of some kind of bosonic order even in the compressible state. The above results suggest that due to the strong coupling between charged modes on the edge and the neutral Fermions (dipoles) in the bulk, the (attractive) correlation hole is not well defined on the edge. Hence, the system there can be modeled as a free Fermi gas of electrons (with an appropriate boundary condition). A possible experimental indication of a strong bulk-edge coupling at half-filling has been indeed observed in non-local resistance measurements [1]. We also suggest, that while our results contradict the validity of an effective one-dimensional description of the edge excitations on the static level, the dynamics may decouple the edge and bulk so as to recover the Laughlin-like behavior apparent in the experiment of Grayson et al

  13. Scheme for quantum state manipulation in coupled cavities

    Science.gov (United States)

    Lin, Jin-Zhong

    By controlling the parameters of the system, the effective interaction between different atoms is achieved in different cavities. Based on the interaction, scheme to generate three-atom Greenberger-Horne-Zeilinger (GHZ) is proposed in coupled cavities. Spontaneous emission of excited states and decay of cavity modes can be suppressed efficiently. In addition, the scheme is robust against the variation of hopping rate between cavities.

  14. Effect of state feedback coupling on the transient performance of voltage source inverters with LC filter

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michele; Antonio DeSouza Ribeiro, Luiz

    2016-01-01

    State feedback coupling between the capacitor voltage and inductor current deteriorates notably the performance during transients of voltage and current regulators in stand-alone systems based on voltage source inverters. A decoupling technique is proposed, considering the limitations introduced...

  15. Cotton, tomato, corn, and onion production with subsurface drip irrigation – a review

    Science.gov (United States)

    The usage of subsurface drip irrigation (SDI) has increased by 89% in the USA during the last ten years according to USDA NASS estimates and over 93% of the SDI land area is located in just ten states. Combining public entity and private industry perceptions of SDI in these ten states, the major cro...

  16. Investigation of the subsurface environment at the Idaho National Engineering Laboratory Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Russell, B.F.; Mizell, S.A.; Hull, L.C.; Smith, T.H.; Lewis, B.D.; Barraclough, J.T.; Humphrey, T.G.

    1984-01-01

    A comprehensive, 10-year plan to investigate radionuclide migration in the subsurface at the Radioactive Waste Management Complex (RWMC) has been prepared and initiated (in FY-84). The RWMC Subsurface Investigation is designed to address two objectives set forth by the DOE Idaho Operations Office: (1) determine the extent of radionuclide migration, if any, from the buried waste, and (2) develop and calibrate a computer model to simulate long-term radionuclide migration. At the RWMC, the Snake River Plain Aquifer underlies about 177 m of partially saturated, fractured basalts and thin sedimentary units. Three sedimentary units, accounting for no more than 20 m of the partially saturated thickness, appear to be continuous throughout the area. Thinner sedimentary units are discontinuous. Low-level waste and (prior to 1970) transuranic waste have been buried in the surficial sediments at the RWMC. The first burials took place in 1952. Due to the complicated disposal system, a comprehensive review of state-of-the-art vadose zone monitoring instrumentation and techniques, an analysis of conceptual migration pathways, and an evaluation of potential hazard from buried radionuclides were conducted to guide preparation of the investigation plan. The plan includes an overview of the RWMC facility, subsurface work conducted to date at the RWMC and other DOE laboratory facilities, an evaluation and selection of the methods and studies to be used, a radionuclide hazard evaluation, a cost analysis, and external peer review results. In addition, an Appendix contains the details for each method/study to be employed. 4 references, 5 figures, 1 table

  17. The state-of-the-art in research on Science teaching for deaf students

    Directory of Open Access Journals (Sweden)

    Ronaldo Santos Santana

    2018-05-01

    Full Text Available This study aimed to highlight the state-of-the-art in research on Science teaching for deaf students from 2012 to 2017, in order to outline an overview of the latest studies in the area, as well as their trends and main considerations. For that, a state-of-the-art research was carried out and, for the construction of the data corpus, abstracts of papers published in scientific journals, course conclusion papers, Masters thesis and Doctoral dissertations were used. From the data analysis, categories were elaborated and trends and challenges in the field were made explicit. The results demonstrate that research in this field is in imminent growth and they are being articulated to the theoretical frameworks that underpin the teaching of Science for hearing students.

  18. Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan

    Science.gov (United States)

    Fang, H. T.

    2015-12-01

    The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface

  19. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    Science.gov (United States)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a

  20. Subsurface structures of buried features in the lunar Procellarum region

    Science.gov (United States)

    Wang, Wenrui; Heki, Kosuke

    2017-07-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission unraveled numbers of features showing strong gravity anomalies without prominent topographic signatures in the lunar Procellarum region. These features, located in different geologic units, are considered to have complex subsurface structures reflecting different evolution processes. By using the GRAIL level-1 data, we estimated the free-air and Bouguer gravity anomalies in several selected regions including such intriguing features. With the three-dimensional inversion technique, we recovered subsurface density structures in these regions.

  1. Ferromagnetic pairing states on two-coupled chains

    International Nuclear Information System (INIS)

    Tanaka, Akinori

    2008-01-01

    We propose a concrete model which exhibits ferromagnetism and electron-pair condensation simultaneously. The model is defined on two chains and consists of the electron hopping term, the on-site Coulomb repulsion and a ferromagnetic interaction which describes ferromagnetic coupling between two electrons, one on a bond in a chain and the other on a site in the other chain. It is rigorously shown that the model has fully-polarized ferromagnetic pairing ground states. The higher dimensional version of the model is also presented

  2. Steady-State Core Temperature Prediction Based on GAMMA+/CAPP Coupling

    International Nuclear Information System (INIS)

    Tak, Nam-il; Lee, Hyun-Chul; Lim, Hong-Sik

    2015-01-01

    In spite of sizable applications of the GAMMA+ code for the thermo-fluid analysis and design of a prismatic VHTR, the existing works are limited to stand-alone calculations. In the stand-alone calculations, information from the neutronic analysis (e.g., reactor power density profile) was considered only once i.e., when the calculations get started. For the neutronic analysis and design of a VHTR, the CAPP code, which is also under development at KAERI, is used. The main objective of this paper is to investigate the capability of GAMMA+ and CAPP coupling and to examine the results of the coupled analysis. Based on the coupling of GAMMA+ and CAPP, the steady-state core temperature was investigated in this work. It is found that the communication of data was successful. And the results of the GAMMA+ and CAPP coupling are found to be reasonable. The design modification of PMR200 is required to satisfy the design limit for the hot spot fuel temperature

  3. Extensive theoretical study on the excited states of the PCl+ molecule including spin-orbit coupling

    Science.gov (United States)

    Zhang, Xiaomei; Zhai, Hongsheng; Liu, Siyuan; Liu, Yufang

    2017-07-01

    The entire 23 Λ-S states of the PCl+ molecule have been studied by using the high-level relativistic MRCI+Q method with full-electron aug-cc-pCVQZ-DK basis set. The potential energy curves(PECs) and wavefunctions of the states have been calculated. From the PECs, the spectroscopic constants of the bound states are also determined, and the good agreements could be found with the experiments. The high density region of states exhibits many PECs' crossings, which lead to complicated interaction of the states. Here, the interactions arising from the dipolar interaction and spin-orbit coupling (SOC) effect have been discussed in detail. Under the influence of the SOC effect, the A2Π state is perturbed by the 14Σ- state. Considering the SOC effect, total 45 Ω states are generated from the original 23 Λ-S states. The transition properties are also predicted, including the transition dipole moments, Franck-Condon factors, and radiative lifetimes. The lifetimes of the transitions A2Π1/2-X2Π1/2 and A2Π3/2-X2Π3/2 are determined to be 478.9 ns and 487.0 ns(v'=0), respectively.

  4. High school science teacher perceptions of the science proficiency testing as mandated by the State of Ohio Board of Education

    Science.gov (United States)

    Jeffery, Samuel Shird

    There is a correlation between the socioeconomic status of secondary schools and scores on the State of Ohio's mandated secondary science proficiency tests. In low scoring schools many reasons effectively explain the low test scores as a result of the low socioeconomics. For example, one reason may be that many students are working late hours after school to help with family finances; parents may simply be too busy providing family income to realize the consequences of the testing program. There are many other personal issues students face that may cause them to score poorly an the test. The perceptions of their teachers regarding the science proficiency test program may be one significant factor. These teacher perceptions are the topic of this study. Two sample groups ware established for this study. One group was science teachers from secondary schools scoring 85% or higher on the 12th grade proficiency test in the academic year 1998--1999. The other group consisted of science teachers from secondary schools scoring 35% or less in the same academic year. Each group of teachers responded to a survey instrument that listed several items used to determine teachers' perceptions of the secondary science proficiency test. A significant difference in the teacher' perceptions existed between the two groups. Some of the ranked items on the form include teachers' opinions of: (1) Teaching to the tests; (2) School administrators' priority placed on improving average test scores; (3) Teacher incentive for improving average test scores; (4) Teacher teaching style change as a result of the testing mandate; (5) Teacher knowledge of State curriculum model; (6) Student stress as a result of the high-stakes test; (7) Test cultural bias; (8) The tests in general.

  5. The significance of the subsurface in urban renewal

    NARCIS (Netherlands)

    Hooimeijer, F.L.; Maring, Linda

    2018-01-01

    The subsurface is a technical space, the “engine room of the city,” that incorporates the vital functions of water and energy supply, communication systems, sewers and drainage. Natural systems too – crucial for stable, dry, cool and nature inclusive cities – are also largely dependent on the

  6. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  7. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    International Nuclear Information System (INIS)

    D.W. Markman

    2001-01-01

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M andO 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M andO 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree

  8. Tree species composition within Kano State University of science ...

    African Journals Online (AJOL)

    The study accessed the tree species composition within the Kano State University of Science and Technology Wudil, Kano State, Nigeria with the view of providing information that will help in the management and conservation of tree species within the campus. The study area was stratified into four (4) sections from which ...

  9. A comparative analysis of Science-Technology-Society standards in elementary, middle and high school state science curriculum frameworks

    Science.gov (United States)

    Tobias, Karen Marie

    An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each

  10. Dual-earner couples' weekend recovery support, state of recovery, and work engagement: Work-linked relationship as a moderator.

    Science.gov (United States)

    Park, YoungAh; Haun, Verena C

    2017-10-01

    Despite growing recovery research, little is known about couple-dyadic processes of recovery from work. Given that dual-earner couples experience most of their recovery opportunities during nonwork times when they are together, partners in a couple relationship may substantially affect recovery and work engagement. In this study, we propose a couple-dyadic model in which weekend partner recovery support (reported by the recipient partner) is positively related to the recipient partner's state of recovery after the weekend which, in turn, increases the recipient's work engagement the following week (actor-actor mediation effect). We also test the effect of one's state of recovery on the partner's subsequent work engagement (partner effect). Additionally, work-linked relationship status is tested as a moderator of the partner effect. Actor-partner interdependence mediation modeling is used to analyze the data from 167 dual-earner couples who answered surveys on 4 measurement occasions. The results support the indirect effect of partner recovery support on work engagement through the postweekend state of recovery. Multigroup analysis results reveal that the partner effect of state of recovery on work engagement is significant for work-linked couples only and is absent for non-work-linked couples. Theoretical and practical implications, limitations, and future research directions are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. CRED Subsurface Temperature Recorder (STR); Alamagan, Commonwealth of the Northern Mariana Islands; Long: 145.81873, Lat: 17.58746 (WGS84); Sensor Depth: 7.01m; Data Date Range: 20090504-20110423.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  12. CRED Subsurface Temperature Recorder (STR); Saipan, Commonwealth of the Northern Mariana Islands; Long: 145.76970, Lat: 15.15611 (WGS84); Sensor Depth: 14.63m; Data Date Range: 20090420-20110408.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data from Coral Reef Ecosystem Division (CRED), NOAA Pacific Islands Fisheries Science Center (PIFSC) Subsurface Temperature Recorders (STR) provide a time series of...

  13. Effects of leaf area index on the coupling between water table, land surface energy fluxes, and planetary boundary layer at the regional scale

    Science.gov (United States)

    Lu, Y.; Rihani, J.; Langensiepen, M.; Simmer, C.

    2013-12-01

    Vegetation plays an important role in the exchange of moisture and energy at the land surface. Previous studies indicate that vegetation increases the complexity of the feedbacks between the atmosphere and subsurface through processes such as interception, root water uptake, leaf surface evaporation, and transpiration. Vegetation cover can affect not only the interaction between water table depth and energy fluxes, but also the development of the planetary boundary layer. Leaf Area Index (LAI) is shown to be a major factor influencing these interactions. In this work, we investigate the sensitivity of water table, surface energy fluxes, and atmospheric boundary layer interactions to LAI as a model input. We particularly focus on the role LAI plays on the location and extent of transition zones of strongest coupling and how this role changes over seasonal timescales for a real catchment. The Terrestrial System Modelling Platform (TerrSysMP), developed within the Transregional Collaborative Research Centre 32 (TR32), is used in this study. TerrSysMP consists of the variably saturated groundwater model ParFlow, the land surface model Community Land Model (CLM), and the regional climate and weather forecast model COSMO (COnsortium for Small-scale Modeling). The sensitivity analysis is performed over a range of LAI values for different vegetation types as extracted from the Moderate Resolution Imaging Spectroradiometer (MODIS) dataset for the Rur catchment in Germany. In the first part of this work, effects of vegetation structure on land surface energy fluxes and their connection to water table dynamics are studied using the stand-alone CLM and the coupled subsurface-surface components of TerrSysMP (ParFlow-CLM), respectively. The interconnection between LAI and transition zones of strongest coupling are investigated and analyzed through a subsequent set of subsurface-surface-atmosphere coupled simulations implementing the full TerrSysMP model system.

  14. Russian Science and Russian State: Image of a Scientist in Modern Russian Cinema

    Directory of Open Access Journals (Sweden)

    Svetlana M. Medvedeva

    2014-01-01

    Full Text Available The article analyses the image of a scientist represented in recent Russian movies. The article discusses two groups of questions: (1 nature and role of popular science in the life of society; (2 national features of scientific cultures. The article agues that popular science should not be conceived as a week copy of the real science. On the contrary, modern models of science communication assume that popular science have its own value and is able to influence scientific practices. Simultaneously we assume, that since popular science is less integrated with international scientific norms, it can easer reveal national traditions of scientific life. As a result, the analyze of recent Russian movies shows that the tradition established in Peter I times for Russian scientists to work out their self-identity in concern with Russian state still exists (scientist- state supporter/scientist- oppositionist. Actually the modern interpretation of dilemma between state patriotism and liberalism given by modern movies shows that Russian scientist don't have real choice, because they loose anyway whereas the state always wins. So owing to recent movies this representation of hopeless destiny of a scientist is becoming widespread in Russian public culture.

  15. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Science.gov (United States)

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  16. Dynamics of interacting qubits coupled to a common bath: Non-Markovian quantum-state-diffusion approach

    International Nuclear Information System (INIS)

    Zhao Xinyu; Jing Jun; Corn, Brittany; Yu Ting

    2011-01-01

    Non-Markovian dynamics is studied for two interacting qubits strongly coupled to a dissipative bosonic environment. We derive a non-Markovian quantum-state-diffusion (QSD) equation for the coupled two-qubit system without any approximations, and in particular, without the Markov approximation. As an application and illustration of our derived time-local QSD equation, we investigate the temporal behavior of quantum coherence dynamics. In particular, we find a strongly non-Markovian regime where entanglement generation is significantly modulated by the environmental memory. Additionally, we study residual entanglement in the steady state by analyzing the steady-state solution of the QSD equation. Finally, we discuss an approximate QSD equation.

  17. Initial time singularities and admissible initial states for a system of coupled scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Baacke, Juergen [Technische Univ. Dortmund (Germany). Fakultaet Physik; Kevlishvili, Nina [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); GAS, Tbilisi (Georgia). Andronikashvili Inst. of Physics

    2009-10-15

    We discuss the problem of initial states for a system of coupled scalar fields out of equilibrium in the one-loop approximation. The fields consist of classical background fields, taken constant in space, and quantum fluctuations. If the initial state is the adiabatic vacuum, i.e., the ground state of a Fock space of particle excitations that diagonalize the mass matrix, the energy-momentum tensor is infinite at t=0, its most singular part behaves as 1/t. When the system is coupled to gravity this presents a problem that we solve by a Bogoliubov transformation of the naive initial state. As a side result we also discuss the canonical formalism and the adiabatic particle number for such a system. Most of the formalism is presented for Minkowksi space. Embedding the system and its dynamics into a flat FRW universe is straightforward and we briefly address the essential modifications. (orig.)

  18. Initial time singularities and admissible initial states for a system of coupled scalar fields

    International Nuclear Information System (INIS)

    Baacke, Juergen; Kevlishvili, Nina; GAS, Tbilisi

    2009-10-01

    We discuss the problem of initial states for a system of coupled scalar fields out of equilibrium in the one-loop approximation. The fields consist of classical background fields, taken constant in space, and quantum fluctuations. If the initial state is the adiabatic vacuum, i.e., the ground state of a Fock space of particle excitations that diagonalize the mass matrix, the energy-momentum tensor is infinite at t=0, its most singular part behaves as 1/t. When the system is coupled to gravity this presents a problem that we solve by a Bogoliubov transformation of the naive initial state. As a side result we also discuss the canonical formalism and the adiabatic particle number for such a system. Most of the formalism is presented for Minkowksi space. Embedding the system and its dynamics into a flat FRW universe is straightforward and we briefly address the essential modifications. (orig.)

  19. How does subsurface retain and release stored water? An explicit estimation of young water fraction and mean transit time

    Science.gov (United States)

    Ameli, Ali; McDonnell, Jeffrey; Laudon, Hjalmar; Bishop, Kevin

    2017-04-01

    The stable isotopes of water have served science well as hydrological tracers which have demonstrated that there is often a large component of "old" water in stream runoff. It has been more problematic to define the full transit time distribution of that stream water. Non-linear mixing of previous precipitation signals that is stored for extended periods and slowly travel through the subsurface before reaching the stream results in a large range of possible transit times. It difficult to find tracers can represent this, especially if all that one has is data on the precipitation input and the stream runoff. In this paper, we explicitly characterize this "old water" displacement using a novel quasi-steady physically-based flow and transport model in the well-studied S-Transect hillslope in Sweden where the concentration of hydrological tracers in the subsurface and stream has been measured. We explore how subsurface conductivity profile impacts the characteristics of old water displacement, and then test these scenarios against the observed dynamics of conservative hydrological tracers in both the stream and subsurface. This work explores the efficiency of convolution-based approaches in the estimation of stream "young water" fraction and time-variant mean transit times. We also suggest how celerity and velocity differ with landscape structure

  20. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    Science.gov (United States)

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow

  1. Unambiguous discrimination of mixed states: A description based on system-ancilla coupling

    International Nuclear Information System (INIS)

    Zhou, Xiang-Fa; Zhang, Yong-Sheng; Guo, Guang-Can

    2007-01-01

    We propose a general description for the unambiguous discrimination of mixed states according to the system-environment coupling, and present a procedure to reduce this to a standard semidefinite programming problem. In the two-state case, we introduce the canonical vectors and partly simplify the problem to the case of discrimination between pairs of canonical vectors. By considering the positivity of the 2x2 matrices, we obtain a series of new upper bounds for the total success probability, which depends on both the prior probabilities and specific state structures

  2. Coupled state analysis of electron excitations in asymmetric collision systems

    International Nuclear Information System (INIS)

    Mehler, G.; Reus, T. de; Mueller, U.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1985-01-01

    A coupled channel formalism is presented, using relativistic basis states of the target atom. Screening effects are incorporated by means of an effective potential of Hartree-Fock-Slater type. Relativistic wave packets are employed for the description of the continuum. The impact parameter dependence of the K-hole production in p-Ag collisions is calculated, including quadrupole contributions of the projectile Coulomb potential. The results are compared with experimental data. (orig.)

  3. Subsurface barrier design alternatives for confinement and controlled advection flow

    International Nuclear Information System (INIS)

    Phillips, S.J.; Stewart, W.E.; Alexander, R.G.; Cantrell, K.J.; McLaughlin, T.J.

    1994-02-01

    Various technologies and designs are being considered to serve as subsurface barriers to confine or control contaminant migration from underground waste storage or disposal structures containing radioactive and hazardous wastes. Alternatives including direct-coupled flood and controlled advection designs are described as preconceptual examples. Prototype geotechnical equipment for testing and demonstration of these alternative designs tested at the Hanford Geotechnical Development and Test Facility and the Hanford Small-Tube Lysimeter Facility include mobile high-pressure injectors and pumps, mobile transport and pumping units, vibratory and impact pile drivers, and mobile batching systems. Preliminary laboratory testing of barrier materials and additive sequestering agents have been completed and are described

  4. First-arrival traveltime tomography for anisotropic media using the adjoint-state method

    KAUST Repository

    Waheed, Umair bin

    2016-05-27

    Traveltime tomography using transmission data has been widely used for static corrections and for obtaining near-surface models for seismic depth imaging. More recently, it is also being used to build initial models for full-waveform inversion. The classic traveltime tomography approach based on ray tracing has difficulties in handling large data sets arising from current seismic acquisition surveys. Some of these difficulties can be addressed using the adjoint-state method, due to its low memory requirement and numerical efficiency. By coupling the gradient computation to nonlinear optimization, it avoids the need for explicit computation of the Fréchet derivative matrix. Furthermore, its cost is equivalent to twice the solution of the forward-modeling problem, irrespective of the size of the input data. The presence of anisotropy in the subsurface has been well established during the past few decades. The improved seismic images obtained by incorporating anisotropy into the seismic processing workflow justify the effort. However, previous literature on the adjoint-state method has only addressed the isotropic approximation of the subsurface. We have extended the adjoint-state technique for first-arrival traveltime tomography to vertical transversely isotropic (VTI) media. Because δ is weakly resolvable from surface seismic alone, we have developed the mathematical framework and procedure to invert for vNMO and η. Our numerical tests on the VTI SEAM model demonstrate the ability of the algorithm to invert for near-surface model parameters and reveal the accuracy achievable by the algorithm.

  5. First-arrival traveltime tomography for anisotropic media using the adjoint-state method

    KAUST Repository

    Waheed, Umair bin; Flagg, Garret; Yarman, Can Evren

    2016-01-01

    Traveltime tomography using transmission data has been widely used for static corrections and for obtaining near-surface models for seismic depth imaging. More recently, it is also being used to build initial models for full-waveform inversion. The classic traveltime tomography approach based on ray tracing has difficulties in handling large data sets arising from current seismic acquisition surveys. Some of these difficulties can be addressed using the adjoint-state method, due to its low memory requirement and numerical efficiency. By coupling the gradient computation to nonlinear optimization, it avoids the need for explicit computation of the Fréchet derivative matrix. Furthermore, its cost is equivalent to twice the solution of the forward-modeling problem, irrespective of the size of the input data. The presence of anisotropy in the subsurface has been well established during the past few decades. The improved seismic images obtained by incorporating anisotropy into the seismic processing workflow justify the effort. However, previous literature on the adjoint-state method has only addressed the isotropic approximation of the subsurface. We have extended the adjoint-state technique for first-arrival traveltime tomography to vertical transversely isotropic (VTI) media. Because δ is weakly resolvable from surface seismic alone, we have developed the mathematical framework and procedure to invert for vNMO and η. Our numerical tests on the VTI SEAM model demonstrate the ability of the algorithm to invert for near-surface model parameters and reveal the accuracy achievable by the algorithm.

  6. Status of Safety Precautions in Science Laboratories in Enugu State ...

    African Journals Online (AJOL)

    This study was conducted to determine the status of safety precautions in science laboratories in Enugu State of Nigeria. Three research questions and two hypotheses guided the study. The research questions include: 1. What are the sources of hazards in school science laboratories? 2. What are the causes of accidents in ...

  7. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta

    Directory of Open Access Journals (Sweden)

    Paula Lindgren

    2010-07-01

    Full Text Available On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission’s payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian

  8. Particle hole excitations coupled to complex states in heavy-ion collisions

    International Nuclear Information System (INIS)

    Jolos, R.V.; Schmidt, R.

    1982-01-01

    The excitation of uncorrelated 1p-1h states in one nucleus due to the action of the time-dependent mean field of the other nucleus was studied earlier. No statistical assumptions or average procedures were made. Such a mechanism can be responsible for an appreciable excitation of the two nuclei during the short approach phase of the reaction (E* approximately> 100 MeV). The reversibility of the equations of motion leads to a deexcitation of the initially stored excitation energy into that of the relative motion for later times. This feedback behaviour of the internal excitation energy which results in particular to the deexcitation of high energetic 1p-1h pairs is probably not realistic due to the coupling of this states to more complex states with high density. It is studied the influence of this coupling due to the residual interaction between the nucleons on the dynamics of two colliding heavy ions

  9. Antibiotics in agroecosystems: state of the science “ARASOS” workshop summary

    Science.gov (United States)

    In August 2014, the Biosphere2 Conference Center in Oracle, Arizona was the site of a sunny three-day workshop on “Antibiotics in Agroecosystems: State of the Science.” Attended by 42 people, participants included scientists and others from academia, government agencies (including EPA and USDA), an...

  10. Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states

    Science.gov (United States)

    Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei

    2018-02-01

    The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.

  11. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods

    Directory of Open Access Journals (Sweden)

    Elahe Akbari

    2017-12-01

    Full Text Available Oceans/Seas are important components of Earth that are affected by global warming and climate change. Recent studies have indicated that the deeper oceans are responsible for climate variability by changing the Earth’s ecosystem; therefore, assessing them has become more important. Remote sensing can provide sea surface data at high spatial/temporal resolution and with large spatial coverage, which allows for remarkable discoveries in the ocean sciences. The deep layers of the ocean/sea, however, cannot be directly detected by satellite remote sensors. Therefore, researchers have examined the relationships between salinity, height, and temperature of the oceans/Seas to estimate their subsurface water temperature using dynamical models and model-based data assimilation (numerical based and statistical approaches, which simulate these parameters by employing remotely sensed data and in situ measurements. Due to the requirements of comprehensive perception and the importance of global warming in decision making and scientific studies, this review provides comprehensive information on the methods that are used to estimate ocean/sea subsurface water temperature from remotely and non-remotely sensed data. To clarify the subsurface processes, the challenges, limitations, and perspectives of the existing methods are also investigated.

  12. Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags

    Science.gov (United States)

    Choe, Chol-Ung; Kim, Ryong-Son; Ri, Ji-Song

    2017-09-01

    We consider a ring of phase oscillators with nonlocal coupling strength and heterogeneous phase lags. We analyze the effects of heterogeneity in the phase lags on the existence and stability of a variety of steady states. A nonlocal coupling with heterogeneous phase lags that allows the system to be solved analytically is suggested and the stability of solutions along the Ott-Antonsen invariant manifold is explored. We present a complete bifurcation diagram for stationary patterns including the uniform drift and modulated drift states as well as chimera state, which reveals that the stable modulated drift state and a continuum of metastable drift states could occur due to the heterogeneity of the phase lags. We verify our theoretical results using the direct numerical simulations of the model system.

  13. The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons

    Science.gov (United States)

    Baik, H.; Kim, J.

    2017-07-01

    The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.

  14. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    NARCIS (Netherlands)

    Wolthoorn, A.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the

  15. Contaminated environments in the subsurface and bioremediation: organic contaminants.

    Science.gov (United States)

    Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F

    1997-07-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.

  16. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  17. From Prescribed Curriculum to Classroom Practice: An Examination of the Implementation of the New York State Earth Science Standards

    Science.gov (United States)

    Contino, Julie; Anderson, O. Roger

    2013-01-01

    In New York State (NYS), Earth science teachers use the "National Science Education Standards" (NSES), the NYS "Learning Standards for Mathematics, Science and Technology" (NYS Standards), and the "Physical Setting/Earth Science Core Curriculum" (Core Curriculum) to create local curricula and daily lessons. In this…

  18. Building the capacity for public engagement with science in the United States.

    Science.gov (United States)

    Guston, David H

    2014-01-01

    This paper reviews efforts of the Center for Nanotechnology in Society at Arizona State University (CNS-ASU) to begin to build capacity for public engagement with science in the United States. First, the paper sets a context in the US of the current challenges to democracy and for science. It then reviews the literature on the accomplishments of the National Citizens' Technology Forum (NCTF) on nanotechnology and human enhancement, held in 2008, as well as some caveats that emerged from that enterprise. It concludes with a brief discussion of two kinds of activities - participation in the World Wide Views process organized by the Danish Board of Technology, and methodological innovations that include more concrete and experiential modes of engagement - that have spun off from the NCTF.

  19. Enhancements to and characterization of the very early time electromagnetic (VETEM) prototype instrument and applications to shallow subsurface imaging at sites in the DOE complex. 1998 annual progress report

    International Nuclear Information System (INIS)

    Chew, W.C.; Wright, D.L.

    1998-01-01

    'The objective of this project is to enhance the state-of-the-art of electromagnetic imaging of the shallow (0 to 5 m) subsurface in electrically conductive media where ground penetrating radar (GPR) provides insufficient penetration and time domain electromagnetic (TEM) systems provide insufficient resolution. This objective is being pursued by instrumentation enhancements to the existing very early time electromagnetic (VETEM) system coupled with physical and numerical modeling. Success in this endeavor will improve the speed and accuracy of waste pit and trench location and characterization, and could have additional applications to shallow DNAPL and LNAPL spill and cleanup monitoring, clay cap integrity assessment, and landfill stabilization monitoring. This could result in significant savings in time and money during characterization, remediation, and decommissioning of facilities. This report summarizes accomplishments after 8 months of a three-year project. The authors have focused mainly on instrumentation and numerical modeling during this time.'

  20. Communication: State mixing by spin-orbit coupling in the anionic chloroiodine dissociations

    Energy Technology Data Exchange (ETDEWEB)

    Xia, L.; Wang, X.-D.; Xuan, C.-J.; Zeng, X.-J.; Li, H.-K.; Tian, S. X., E-mail: sxtian@ustc.edu.cn, E-mail: kaichung@cityu.edu.hk [Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Pan, Y.; Lau, K.-C., E-mail: sxtian@ustc.edu.cn, E-mail: kaichung@cityu.edu.hk [Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-01-28

    Three spin-orbit states, 1{sup 2}Π{sub 1/2}, 2{sup 2}Π{sub 3/2}, and 2{sup 2}Π{sub 1/2}, of chloroiodine anion (ICl{sup −}) formed by low-energy electron attachment in the Franck-Condon region are associated with the dissociative limits of I{sup −} ({sup 1}S{sub 0}) and Cl ({sup 2}P{sub 3/2}) or Cl{sup *} ({sup 2}P{sub 1/2}) fragments. Within the adiabatic scheme, the presumptive Π-symmetry of the fragment angular distributions is dramatically changed to be the Π-Σ mixing symmetry, due to the significant spin-orbit interaction effect on the electronic state couplings of ICl{sup −}. The present experimental approach also enables us to separate the contributions of different electronic states from the mixed states, providing a crucial method for quantitatively evaluating the configuration-interaction wavefunctions.

  1. Molecular Basis of Clay Mineral Structure and Dynamics in Subsurface Engineering Applications

    Science.gov (United States)

    Cygan, R. T.

    2015-12-01

    Clay minerals and their interfaces play an essential role in many geochemical, environmental, and subsurface engineering applications. Adsorption, dissolution, precipitation, nucleation, and growth mechanisms, in particular, are controlled by the interplay of structure, thermodynamics, kinetics, and transport at clay mineral-water interfaces. Molecular details of these processes are typically beyond the sensitivity of experimental and analytical methods, and therefore require accurate models and simulations. Also, basal surfaces and interlayers of clay minerals provide constrained interfacial environments to facilitate the evaluation of these complex processes. We have developed and used classical molecular and quantum methods to examine the complex behavior of clay mineral-water interfaces and dynamics of interlayer species. Bulk structures, swelling behavior, diffusion, and adsorption processes are evaluated and compared to experimental and spectroscopic findings. Analysis of adsorption mechanisms of radionuclides on clay minerals provides a scientific basis for predicting the suitability of engineered barriers associated with nuclear waste repositories and the fate of contaminants in the environment. Similarly, the injection of supercritical carbon dioxide into geological reservoirs—to mitigate the impact of climate change—is evaluated by molecular models of multi-fluid interactions with clay minerals. Molecular dynamics simulations provide insights into the wettability of different fluids—water, electrolyte solutions, and supercritical carbon dioxide—on clay surfaces, and which ultimately affects capillary fluid flow and the integrity of shale caprocks. This work is supported as part of Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program

  2. Abnormal resting-state cortical coupling in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Langguth Berthold

    2009-02-01

    Full Text Available Abstract Background Subjective tinnitus is characterized by an auditory phantom perception in the absence of any physical sound source. Consequently, in a quiet environment, tinnitus patients differ from control participants because they constantly perceive a sound whereas controls do not. We hypothesized that this difference is expressed by differential activation of distributed cortical networks. Results The analysis was based on a sample of 41 participants: 21 patients with chronic tinnitus and 20 healthy control participants. To investigate the architecture of these networks, we used phase locking analysis in the 1–90 Hz frequency range of a minute of resting-state MEG recording. We found: 1 For tinnitus patients: A significant decrease of inter-areal coupling in the alpha (9–12 Hz band and an increase of inter-areal coupling in the 48–54 Hz gamma frequency range relative to the control group. 2 For both groups: an inverse relationship (r = -.71 of the alpha and gamma network coupling. 3 A discrimination of 83% between the patient and the control group based on the alpha and gamma networks. 4 An effect of manifestation on the distribution of the gamma network: In patients with a tinnitus history of less than 4 years, the left temporal cortex was predominant in the gamma network whereas in patients with tinnitus duration of more than 4 years, the gamma network was more widely distributed including more frontal and parietal regions. Conclusion In the here presented data set we found strong support for an alteration of long-range coupling in tinnitus. Long-range coupling in the alpha frequency band was decreased for tinnitus patients while long-range gamma coupling was increased. These changes discriminate well between tinnitus and control participants. We propose a tinnitus model that integrates this finding in the current knowledge about tinnitus. Furthermore we discuss the impact of this finding to tinnitus therapies using Transcranial

  3. Integrated geomechanical modelling at TNO for assessement of deep subsurface risks

    NARCIS (Netherlands)

    Orlic, B.; Fokker, P.; Zijl, W.; Scheffers, B.

    2001-01-01

    Public authorities, E & P and the mining industry increasingly demand fundamental insight and accurate predictions on subsurface and surface deformation and damage due to exploitation of subsurface natural resources, and subsurface storage of energy residues (e.g. CO2). At this moment deformation is

  4. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    Science.gov (United States)

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  5. Subsurface Flow Modeling in Single and Dual Continuum Anisotropic Porous Media using the Multipoint Flux Approximation Method

    KAUST Repository

    Negara, Ardiansyah

    2015-05-01

    Anisotropy of hydraulic properties of the subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that undergo during the longer geologic time scale. With respect to subsurface reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on driving forces like the pressure gradient and gravity but also on the principal directions of anisotropy. Therefore, there has been a great deal of motivation to consider anisotropy into the subsurface flow and transport models. In this dissertation, we present subsurface flow modeling in single and dual continuum anisotropic porous media, which include the single-phase groundwater flow coupled with the solute transport in anisotropic porous media, the two-phase flow with gravity effect in anisotropic porous media, and the natural gas flow in anisotropic shale reservoirs. We have employed the multipoint flux approximation (MPFA) method to handle anisotropy in the flow model. The MPFA method is designed to provide correct discretization of the flow equations for general orientation of the principal directions of the permeability tensor. The implementation of MPFA method is combined with the experimenting pressure field approach, a newly developed technique that enables the solution of the global problem breaks down into the solution of multitude of local problems. The numerical results of the study demonstrate the significant effects of anisotropy of the subsurface formations. For the single-phase groundwater flow coupled with the solute transport modeling in anisotropic porous media, the results shows the strong impact of anisotropy on the pressure field and the migration of the solute concentration. For the two-phase flow modeling with gravity effect in anisotropic porous media, it is observed that the buoyancy-driven flow, which emerges due to the density differences between the

  6. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers.

    Science.gov (United States)

    Clerkin, Eoin; O'Brien, Stephen; Amann, Andreas

    2014-03-01

    We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.

  7. Novel determination of radon-222 velocity in deep subsurface rocks, and the feasibility to using radon as an earthquake precursor

    Science.gov (United States)

    Zafrir, Hovav; Benhorin, Yochy; Malik, Uri; Chemo, Chaim

    2016-04-01

    An enhanced radon monitoring system was designed in order to study shallow versus deep subsurface processes affecting the appearance of radon anomalies. The method is based on the assumption that the climatic influence is limited since its energy decreases with the decrease in thickness of the geological cover whereby its effect is reduced to a negligible value at depth. Hence, lowering gamma and alpha detectors into deep boreholes and monitoring their temporal variations relative to a reference couple at shallow depths of 10-40 m eliminates the ambient thermal and pressure-induced contribution from the total radon time series. It allows highlighting the residual portion of the radon signals that might be associated with the geodynamic processes. The primary technological key is the higher sensitivity of the gamma detectors - in comparison to the solid-state alpha detectors, which are also suitable for threading into narrow boreholes in parallel to the narrow gamma detector (Zafrir et al., 2013*). The unique achievements of the novel system that was installed at the Sde Eliezer site close to the Hula Valley western border fault (HWBF) in northern Israel are: a) Determination, for the first time, of the radon movement velocity within rock layers at depths of several tens of meters, namely, 25 m per hour on average; b) Distinguishing between the diurnal periodical effect of the ambient temperature and the semi-diurnal effect of the ambient pressure on the radon temporal spectrum; c) Identification of a radon random pre-seismic anomaly preceding the Nuweiba, M 5.5 earthquake of 27 June 2015 that occurred within Dead Sea Fault Zone. * Zafrir, H., Barbosa, S.M. and Malik, U., 2013. Differentiation between the effect of temperature and pressure on radon within the subsurface geological media, Radiat. Meas., 49, 39-56. doi:10.1016/j.radmeas.2012.11.019.

  8. Unconventional energy resources in a crowded subsurface: Reducing uncertainty and developing a separation zone concept for resource estimation and deep 3D subsurface planning using legacy mining data.

    Science.gov (United States)

    Monaghan, Alison A

    2017-12-01

    Over significant areas of the UK and western Europe, anthropogenic alteration of the subsurface by mining of coal has occurred beneath highly populated areas which are now considering a multiplicity of 'low carbon' unconventional energy resources including shale gas and oil, coal bed methane, geothermal energy and energy storage. To enable decision making on the 3D planning, licensing and extraction of these resources requires reduced uncertainty around complex geology and hydrogeological and geomechanical processes. An exemplar from the Carboniferous of central Scotland, UK, illustrates how, in areas lacking hydrocarbon well production data and 3D seismic surveys, legacy coal mine plans and associated boreholes provide valuable data that can be used to reduce the uncertainty around geometry and faulting of subsurface energy resources. However, legacy coal mines also limit unconventional resource volumes since mines and associated shafts alter the stress and hydrogeochemical state of the subsurface, commonly forming pathways to the surface. To reduce the risk of subsurface connections between energy resources, an example of an adapted methodology is described for shale gas/oil resource estimation to include a vertical separation or 'stand-off' zone between the deepest mine workings, to ensure the hydraulic fracturing required for shale resource production would not intersect legacy coal mines. Whilst the size of such separation zones requires further work, developing the concept of 3D spatial separation and planning is key to utilising the crowded subsurface energy system, whilst mitigating against resource sterilisation and environmental impacts, and could play a role in positively informing public and policy debate. Copyright © 2017 British Geological Survey, a component institute of NERC. Published by Elsevier B.V. All rights reserved.

  9. What's down below? Current and potential future applications of geophysical techniques to identify subsurface permafrost conditions (Invited)

    Science.gov (United States)

    Douglas, T. A.; Bjella, K.; Campbell, S. W.

    2013-12-01

    For infrastructure design, operations, and maintenance requirements in the North the ability to accurately and efficiently detect the presence (or absence) of ground ice in permafrost terrains is a serious challenge. Ground ice features including ice wedges, thermokarst cave-ice, and segregation ice are present in a variety of spatial scales and patterns. Currently, most engineering applications use borehole logging and sampling to extrapolate conditions at the point scale. However, there is high risk of over or under estimating the presence of frozen or unfrozen features when relying on borehole information alone. In addition, boreholes are costly, especially for planning linear structures like roads or runways. Predicted climate warming will provide further challenges for infrastructure development and transportation operations where permafrost degradation occurs. Accurately identifying the subsurface character in permafrost terrains will allow engineers and planners to cost effectively create novel infrastructure designs to withstand the changing environment. There is thus a great need for a low cost rapidly deployable, spatially extensive means of 'measuring' subsurface conditions. Geophysical measurements, both terrestrial and airborne, have strong potential to revolutionize our way of mapping subsurface conditions. Many studies in continuous and discontinuous permafrost have used geophysical measurements to identify discrete features and repeatable patterns in the subsurface. The most common measurements include galvanic and capacitive coupled resistivity, ground penetrating radar, and multi frequency electromagnetic induction techniques. Each of these measurements has strengths, weaknesses, and limitations. By combining horizontal geophysical measurements, downhole geophysics, multispectral remote sensing images, LiDAR measurements, and soil and vegetation mapping we can start to assemble a holistic view of how surface conditions and standoff measurements

  10. Strong light-matter coupling from atoms to solid-state systems

    CERN Document Server

    2014-01-01

    The physics of strong light-matter coupling has been addressed in different scientific communities over the last three decades. Since the early eighties, atoms coupled to optical and microwave cavities have led to pioneering demonstrations of cavity quantum electrodynamics, Gedanken experiments, and building blocks for quantum information processing, for which the Nobel Prize in Physics was awarded in 2012. In the framework of semiconducting devices, strong coupling has allowed investigations into the physics of Bose gases in solid-state environments, and the latter holds promise for exploiting light-matter interaction at the single-photon level in scalable architectures. More recently, impressive developments in the so-called superconducting circuit QED have opened another fundamental playground to revisit cavity quantum electrodynamics for practical and fundamental purposes. This book aims at developing the necessary interface between these communities, by providing future researchers with a robust conceptu...

  11. Coulomb singularities in scattering wave functions of spin-orbit-coupled states

    International Nuclear Information System (INIS)

    Bogdanski, P.; Ouerdane, H.

    2011-01-01

    We report on our analysis of the Coulomb singularity problem in the frame of the coupled channel scattering theory including spin-orbit interaction. We assume that the coupling between the partial wave components involves orbital angular momenta such that Δl= 0, ±2. In these conditions, the two radial functions, components of a partial wave associated to two values of the angular momentum l, satisfy a system of two second-order ordinary differential equations. We examine the difficulties arising in the analysis of the behavior of the regular solutions near the origin because of this coupling. First, we demonstrate that for a singularity of the first kind in the potential, one of the solutions is not amenable to a power series expansion. The use of the Lippmann-Schwinger equations confirms this fact: a logarithmic divergence arises at the second iteration. To overcome this difficulty, we introduce two auxilliary functions which, together with the two radial functions, satisfy a system of four first-order differential equations. The reduction of the order of the differential system enables us to use a matrix-based approach, which generalizes the standard Frobenius method. We illustrate our analysis with numerical calculations of coupled scattering wave functions in a solid-state system.

  12. Measured lifetimes of states in 197Au and a critical comparison with the weak-coupling core-excitation model

    International Nuclear Information System (INIS)

    Bolotin, H.H.; Kennedy, D.L.; Linard, B.J.; Stuchbery, A.E.

    1979-01-01

    The lifetimes of five excited states in 197 Au up to an excitation energy of 885 keV were measured by the recoil-distance method (RDM). These levels were populated by Coulomb excitation using both 90 MeV 20 Ne and 120 MeV 35 Cl ion beams. The experimentally determined spectroscopy of the low-lying levels 3/2 + (ground state) and 1/2 + , (3/2) + 2 , 5/2 + and 7/2 + at 77.3, 268.8, 278.9, and 547.5 keV excitation energy, respectively, has been critically compared with the detailed predictions of the de-Shalit weak-coupling core-excitation model. When the model is taken to represent the case of a dsub(3/2) proton hole coupled to a 198 Hg core, the model parameters obtained are in accord with the criteria implicit for weak core coupling and, at the same time, are in remarkably good agreement with virtually all measured E2 and M1 transition rates. (Auth.)

  13. Cultivation Of Deep Subsurface Microbial Communities

    Science.gov (United States)

    Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.

    2018-01-01

    The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.

  14. Splay states in globally coupled Josephson arrays: Analytical prediction of Floquet multipliers

    International Nuclear Information System (INIS)

    Strogatz, S.H.; Mirollo, R.E.

    1993-01-01

    In recent numerical experiments on series arrays of overdamped Josephson junctions, Nichols and Wiesenfeld [Phys. Rev. A 45, 8430 (1992)] discovered that the periodic states known as splay states are neutrally stable in all but four directions in phase space. We present a theory that accounts for this enormous degree of neutral stability. The theory also predicts the four non-neutral Floquet multipliers to within 0.1% of their numerically computed values. The analytical approach used here may be appli- cable to other globally coupled systems of oscillators, such as multimode lasers, electronic oscillator circuits, and solid-state laser arrays

  15. Biogenic Carbon on Mars: A Subsurface Chauvinistic Viewpoint

    Science.gov (United States)

    Onstott, T. C.; Lau, C. Y. M.; Magnabosco, C.; Harris, R.; Chen, Y.; Slater, G.; Sherwood Lollar, B.; Kieft, T. L.; van Heerden, E.; Borgonie, G.; Dong, H.

    2015-12-01

    A review of 150 publications on the subsurface microbiology of the continental subsurface provides ~1,400 measurements of cellular abundances down to 4,800 meter depth. These data suggest that the continental subsurface biomass is comprised of ~1016-17 grams of carbon, which is higher than the most recent estimates of ~1015 grams of carbon (1 Gt) for the marine deep biosphere. If life developed early in Martian history and Mars sustained an active hydrological cycle during its first 500 million years, then is it possible that Mars could have developed a subsurface biomass of comparable size to that of Earth? Such a biomass would comprise a much larger fraction of the total known Martian carbon budget than does the subsurface biomass on Earth. More importantly could a remnant of this subsurface biosphere survive to the present day? To determine how sustainable subsurface life could be in isolation from the surface we have been studying subsurface fracture fluids from the Precambrian Shields in South Africa and Canada. In these environments the energetically efficient and deeply rooted acetyl-CoA pathway for carbon fixation plays a central role for chemolithoautotrophic primary producers that form the base of the biomass pyramid. These primary producers appear to be sustained indefinitely by H2 generated through serpentinization and radiolytic reactions. Carbon isotope data suggest that in some subsurface locations a much larger population of secondary consumers are sustained by the primary production of biogenic CH4 from a much smaller population of methanogens. These inverted biomass and energy pyramids sustained by the cycling of CH4 could have been and could still be active on Mars. The C and H isotopic signatures of Martian CH4 remain key tools in identifying potential signatures of an extant Martian biosphere. Based upon our results to date cavity ring-down spectroscopic technologies provide an option for making these measurements on future rover missions.

  16. Implicit Theories of Creativity in Computer Science in the United States and China

    Science.gov (United States)

    Tang, Chaoying; Baer, John; Kaufman, James C.

    2015-01-01

    To study implicit concepts of creativity in computer science in the United States and mainland China, we first asked 308 Chinese computer scientists for adjectives that would describe a creative computer scientist. Computer scientists and non-computer scientists from China (N = 1069) and the United States (N = 971) then rated how well those…

  17. Local control on precipitation in a fully coupled climate-hydrology model

    DEFF Research Database (Denmark)

    Larsen, Morten A. D.; Christensen, Jens H.; Drews, Martin

    2016-01-01

    simulations of precipitation often exhibit substantial biases that affect the reliability of future projections. Here we demonstrate how a regional climate model (RCM) coupled to a distributed hydrological catchment model that fully integrates water and energy fluxes between the subsurface, land surface...

  18. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  19. Lower-Temperature Subsurface Layout and Ventilation Concepts

    International Nuclear Information System (INIS)

    Christine L. Linden; Edward G. Thomas

    2001-01-01

    This analysis combines work scope identified as subsurface facility (SSF) low temperature (LT) Facilities System and SSF LT Ventilation System in the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001b, pp. 6 and 7, and pp. 13 and 14). In accordance with this technical work plan (TWP), this analysis is performed using AP-3.10Q, Analyses and Models. It also incorporates the procedure AP-SI.1Q, Software Management. The purpose of this analysis is to develop an overall subsurface layout system and the overall ventilation system concepts that address a lower-temperature operating mode for the Monitored Geologic Repository (MGR). The objective of this analysis is to provide a technical design product that supports the lower-temperature operating mode concept for the revision of the system description documents and to provide a basis for the system description document design descriptions. The overall subsurface layout analysis develops and describes the overall subsurface layout, including performance confirmation facilities (also referred to as Test and Evaluation Facilities) for the Site Recommendation design. This analysis also incorporates current program directives for thermal management

  20. Theoretical study on the low-lying excited states of the phosphorus monoiodide (PI) including the spin-orbit coupling

    Science.gov (United States)

    Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing

    2016-01-01

    The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E

  1. Subsurface contaminants focus area

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites

  2. Subsurface contaminants focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  3. Subsurface probing

    International Nuclear Information System (INIS)

    Lytle, R.J.

    1978-01-01

    Imaging techniques that can be used to translate seismic and electromagnetic wave signals into visual representation are briefly discussed. The application of these techniques is illustrated on the example of determining the subsurface structure of a proposed power plant. Imaging makes the wave signals intelligible to the non-geologists. R and D work needed in this area are tabulated

  4. Coupling-Induced Bipartite Pointer States in Arrays of Electron Billiards: Quantum Darwinism in Action?

    Science.gov (United States)

    Brunner, R.; Akis, R.; Ferry, D. K.; Kuchar, F.; Meisels, R.

    2008-07-01

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create “offspring” indicates that quantum Darwinism is in action.

  5. A Search for Life in the Subsurface At Rio Tinto Spain, An Analog To Searching For Life On Mars.

    Science.gov (United States)

    Stoker, C. R.

    2003-12-01

    . The MARTE project will simulate the search for subsurface life on Mars using a drilling system developed for future Mars flight to accomplish subsurface access. Augmenting the drill are robotic systems for extracting the cores from the drill head and performing analysis using a suite of instruments to understand the composition, mineralogy, presence of organics, and to search for life signatures in subsurface samples. A robotic bore-hole inspection system will characterize borehole properties in situ. A Mars drilling mission simulation including remote operation of the drilling, sample handling, and instruments and interpretation of results by a remote science team will be performed. This simulated mission will be augmented by manual methods of drilling, sample handling, and sample analysis to fully document the subsurface, prevent surface microbial contamination, identify subsurface biota, and compare what can be learned with robotically-operated instruments. The first drilling campaign in the MARTE project takes place in September 2003 and is focused on characterizing the microbiology of the subsurface at Rio Tinto using conventional drilling, sample handling and laboratory analysis techniques. Lessons learned from this "ground truth" drilling campaign will guide the development of robotic systems and instruments needed for searching for life underground on Mars.

  6. Subsurface transport program: Research summary

    International Nuclear Information System (INIS)

    1987-01-01

    DOE's research program in subsurface transport is designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biological mechanisms that contribute to the transport and long term fate of energy related contaminants in subsurface ecosystems can be understood. Understanding the physical and chemical mechanisms that control the transport of single and co-contaminants is the underlying concern of the program. Particular attention is given to interdisciplinary research and to geosphere-biosphere interactions. The scientific results of the program will contribute to resolving Departmental questions related to the disposal of energy-producing and defense wastes. The background papers prepared in support of this document contain additional information on the relevance of the research in the long term to energy-producing technologies. Detailed scientific plans and other research documents are available for high priority research areas, for example, in subsurface transport of organic chemicals and mixtures and in the microbiology of deep aquifers. 5 figs., 1 tab

  7. Space Sciences Education and Outreach Project of Moscow State University

    Science.gov (United States)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  8. Spin Quantum Tunneling via Entangled States in a Dimer of Exchange-Coupled Single-Molecule Magnets

    Science.gov (United States)

    Tiron, R.; Wernsdorfer, W.; Foguet-Albiol, D.; Aliaga-Alcalde, N.; Christou, G.

    2003-11-01

    A new family of supramolecular, antiferromagnetically exchange-coupled dimers of single-molecule magnets (SMMs) has recently been reported. Each SMM acts as a bias on its neighbor, shifting the quantum tunneling resonances of the individual SMMs. Hysteresis loop measurements on a single crystal of SMM dimers have now established quantum tunneling of the magnetization via entangled states of the dimer. This shows that the dimer really does behave as a quantum mechanically coupled dimer, and also allows the measurement of the longitudinal and transverse superexchange coupling constants.

  9. Subsurface low pH and carbonate saturation state of aragonite on China side of the North Yellow Sea: combined effects of global atmospheric CO2 increase, regional environmental changes, and local biogeochemical processes

    Science.gov (United States)

    Zhai, W.-D.; Zheng, N.; Huo, C.; Xu, Y.; Zhao, H.-D.; Li, Y.-W.; Zang, K.-P.; Wang, J.-Y.; Xu, X.-M.

    2013-02-01

    Based upon seven field surveys conducted between May 2011 and January 2012, we investigated pH, carbonate saturation state of aragonite (Ωarag), and ancillary parameters on the Chinese side of the North Yellow Sea, a western North Pacific continental margin of major economic importance. Subsurface waters were nearly in equilibrium with air in May and June. From July to October, the fugacity of CO2 (fCO2) of bottom water gradually increased to 697 ± 103 μatm and pH decreased to 7.83 ± 0.07 due to respiration/remineralization processes of primary production induced biogenic particles. In November and January, bottom water fCO2 decreased and pH gradually returned to an air-equilibrated level due to cooling enhanced vertical mixing. The corresponding bottom water Ωarag was 1.74 ± 0.17 (May), 1.77 ± 0.26 (June), 1.70 ± 0.26 (July), 1.72 ± 0.33 (August), 1.32 ± 0.31 (October), 1.50 ± 0.28 (November), and 1.41 ± 0.12 (January). Critically low Ωarag values of 1.0 to 1.2 were mainly observed in subsurface waters in a salinity range of 31.5-32.5 psu in October and November, accounting for ~ 10% of the North Yellow Sea area. Water mass derived from the adjacent Bohai Sea had a typical water salinity of 30.5-31.5 psu, and bottom water Ωarag values ranged mostly between 1.6 and 2.4. This study showed that the carbonate system in the North Yellow Sea was substantially influenced by global atmospheric CO2 increase. The community respiration/remineralization rates in typical North Yellow Sea bottom water mass were estimated at 0.55-1.0 μmol O2 kg-1 d-1 in warm seasons, leading to seasonal drops in subsurface pH and Ωarag. Outflow of the Bohai Sea water mass counteracted the subsurface Ωarag reduction in the North Yellow Sea.

  10. How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage

    International Nuclear Information System (INIS)

    Bloemendal, Martin; Olsthoorn, Theo; Boons, Frank

    2014-01-01

    A heat pump combined with Aquifer Thermal Energy Storage (ATES) has high potential in efficiently and sustainably providing thermal energy for space heating and cooling. This makes the subsurface, including its groundwater, of crucial importance for primary energy savings. The regulation of ATES systems is similar in many countries around the world. This paper seeks solutions for the institutional hindrances to the diffusion of ATES. The use of aquifers by individual ATES systems can be optimized to maximize their efficiency on the one hand, and to optimize the performance of the regional subsurface for energy storage on the other. The application of ATES in an aquifer has similar properties as other common resource pool problems. Only with detailed information and feedback about the actual subsurface status, a network of ATES systems can work towards an optimum for both the subsurface and buildings, instead of striving for a local optimum for individual buildings. Future governance of the subsurface may include the self-organization or self-governance. For that the ATES systems need a complementary framework; interpretation of interaction, feedback and adaptable and dynamic control interpretations are the key elements for the optimal and sustainable use of the subsurface. - Highlights: • We show that ATES systems are not using the subsurface optimally and sustainably. • We elaborate how current legislation will not be able to overcome this problem. • We present self-organization as a perspective for governance of ATES systems

  11. MSTS - Multiphase Subsurface Transport Simulator theory manual

    International Nuclear Information System (INIS)

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the open-quotes User's Guide and Referenceclose quotes companion document

  12. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt{sub 3}M (where M = 3d transition metals) alloy catalyst from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Eun [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, 120-749 Seoul (Korea, Republic of); Lim, Dong-Hee [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Environmental Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, Chungbuk 362-763 (Korea, Republic of); Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Hong, Seong-Ahn [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Department of Advanced Materials Chemistry, Korea University, Sejong-city 339-700 (Korea, Republic of); Soon, Aloysius, E-mail: aloysius.soon@yonsei.ac.kr, E-mail: hchahm@kist.re.kr [Global E3 Institute and Department of Materials Science and Engineering, Yonsei University, 120-749 Seoul (Korea, Republic of); Ham, Hyung Chul, E-mail: aloysius.soon@yonsei.ac.kr, E-mail: hchahm@kist.re.kr [Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Clean Energy and Chemical Engineering, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt{sub 3}M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt{sub 3}M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt{sub 3}M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt{sub 3}M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  13. A descriptive study of the reported effects of state-mandated testing on the instructional practices and beliefs of middle school science teachers

    Science.gov (United States)

    Font-Rivera, Miriam Josefa

    The purpose of this study was to investigate the effects of state-level testing on the instructional practices and beliefs of middle school science teachers. The study addressed four questions: (a) What are the beliefs of middle school science teachers regarding the pressure to improve their students' test scores? (b) What are the beliefs of middle school science teachers about how standardized tests influence their class time? (c) What are the attitudes of middle school science teachers toward state testing? and (d) What commonalities emerge from teachers' responses about the state tests? The sample was composed of 86 middle school science teachers from states that have state mandated testing programs in the area of science. Descriptive statistics and an inductive analysis were performed to answer the research questions. Teachers reported that they and their students were under a great amount of pressure to increase test scores from central office administrators and from the school principal. Teachers reported spending considerable time on certain test preparation activities throughout the school year. Teachers reported that the three strongest influences in instructional planning were reviewing the content and skills covered on the state tests prior to the test administration, having to prepare students for state tests, and adjusting the curriculum sequence based on the content tested by the state tests. Multiple-choice items were reported to be the most often used assessment strategy. Teachers reported that state-mandated tests were not very helpful because the test results presented an inaccurate picture of student learning. The categories formed from the teachers' written comments reflected the findings of the survey questions. Comments concentrated on the negative effects of the tests in the areas of pressure, overemphasis on the test, accountability, reduction of instructional time due to test preparation, and negative uses of state-mandated tests

  14. A rigorous nonorthogonal configuration interaction approach for the calculation of electronic couplings between diabatic states applied to singlet fission

    NARCIS (Netherlands)

    Wibowo, Meilani; Broer, Ria; Havenith, Remco W. A.

    2017-01-01

    For the design of efficient singlet fission chromophores, knowledge of the factors that govern the singlet fission rate is important. This rate is approximately proportional to the electronic coupling between the lowest (diabatic) spin singlet state that is populated following photoexcitation state

  15. The role of ligands on the equilibria between functional states of a G protein-coupled receptor.

    Science.gov (United States)

    Kim, Tae Hun; Chung, Ka Young; Manglik, Aashish; Hansen, Alexandar L; Dror, Ron O; Mildorf, Thomas J; Shaw, David E; Kobilka, Brian K; Prosser, R Scott

    2013-06-26

    G protein-coupled receptors exhibit a wide variety of signaling behaviors in response to different ligands. When a small label was incorporated on the cytosolic interface of transmembrane helix 6 (Cys-265), (19)F NMR spectra of the β2 adrenergic receptor (β2AR) reconstituted in maltose/neopentyl glycol detergent micelles revealed two distinct inactive states, an activation intermediate state en route to activation, and, in the presence of a G protein mimic, a predominant active state. Analysis of the spectra as a function of temperature revealed that for all ligands, the activation intermediate is entropically favored and enthalpically disfavored. β2AR enthalpy changes toward activation are notably lower than those observed with rhodopsin, a likely consequence of basal activity and the fact that the ionic lock and other interactions stabilizing the inactive state of β2AR are weaker. Positive entropy changes toward activation likely reflect greater mobility (configurational entropy) in the cytoplasmic domain, as confirmed through an order parameter analysis. Ligands greatly influence the overall changes in enthalpy and entropy of the system and the corresponding changes in population and amplitude of motion of given states, suggesting a complex landscape of states and substates.

  16. Synergistic Use of Spacecraft Telecom Links for Collection of Planetary Radar Science Data

    Science.gov (United States)

    Asmar, S.; Bell, D. J.; Chahat, N. E.; Decrossas, E.; Dobreva, T.; Duncan, C.; Ellliot, H.; Jin, C.; Lazio, J.; Miller, J.; Preston, R.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. Example spacecraft radar instruments are the 90 MHz CONSERT radar used to probe the interior of Comet 67P/Churyumov-Gerasimenko to a depth of 760m, the 20 MHz SHARAD instrument used to investigate Mars subsurface ice features from Mars orbit at depths of 300 to 3000 meters and the upcoming RIMFAX 150 MHz to 1200 MHz ground penetrating radar that will ride on the Mars 2020 rover investigating to a depth of 10m below the rover. In all of these applications, the radar frequency and signal structures were chosen to match science goals of desired depth of penetration and spatial resolution combined with the expected subsurface materials and structures below the surface. Recently, JPL investigators have proposed a new radar science paradigm, synergistic use of the telecom hardware and telecom links to collect bistatic or monostatic radar signatures. All JPL spacecraft employ telecom hardware that operates at UHF (400 MHz and 900 MHz), X-band (8 GHz) or Ka-band (32 GHz). Using existing open-loop record functions in these radios, the telecom hardware can be used to capture opportunistic radar signatures from telecom signals penetrating the surface and reflecting off of subsurface structures. This paper reports on telecom strategies, radar science applications and recent laboratory and field tests to demonstrate the effectiveness of telecom link based radar data collection.

  17. Magnetic coupling between liquid 3He and a solid state substrate: a new approach

    Science.gov (United States)

    Klochkov, Alexander V.; Naletov, Vladimir V.; Tayurskii, Dmitrii A.; Tagirov, Murat S.; Suzuki, Haruhiko

    2000-07-01

    We suggest a new approach for solving the long-standing problem of a magnetic coupling between liquid 3He and a solid state substrate at temperatures above the Fermi temperature. The approach is based on our previous careful investigations of the physical state of a solid substrate by means of several experimental methods (EPR, NMR, conductometry, and magnetization measurements). The developed approach allows, first, to get more detailed information about the magnetic coupling phenomenon by varying the repetition time in pulse NMR investigations of liquid 3He in contact with the solid state substrate and, second, to compare the obtained dependences and the data of NMR-cryoporometry and AFM-microscopy.

  18. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland

    DEFF Research Database (Denmark)

    Snaebjornsdottir, Sandra O.; Oelkers, Eric H.; Mesfin, Kiflom

    2017-01-01

    is supersaturated prior to and during the mixed gas injection and in the following months. In July 2013, the HN-04 fluid sampling pump broke down due to calcite precipitation, verifying the carbonation of the injected CO2. Mass balance calculations, based on the recovery of non-reactive tracers co......-gas mixture were sequentially injected into basaltic rocks at the CarbFix site at Hellisheidi, SW-Iceland from January to August 2012. This paper reports the chemistry and saturation states with respect to potential secondary minerals of sub-surface fluids sampled prior to, during, and after...

  19. The State of Bay–Delta Science 2016: An Introduction

    Directory of Open Access Journals (Sweden)

    Michael Healey

    2016-07-01

    Full Text Available doi: http://dx.doi.org/10.15447/sfews.2016v14iss2art5The State of Bay–Delta Science 2016 (SBDS is a collection of papers that summarizes the scientific understanding of the Sacramento–San Joaquin Delta, emphasizing progress made during the past decade.It builds on the first SBDS edition (Healey et al. 2008. Paper topics for this edition address the most relevant scientific issues in the Delta identified by senior scientists and managers. The topical papers cover issues ranging from contaminants in the Delta to levee stability, and from Delta food webs to recent discoveries about salmon migration. These papers are written for a scientific audience. Two additional papers, one describing the challenges of managing water and ecosystems in the Delta and another that discusses policy implications of the recent scientific findings, are written for a general audience. The papers will be published in at least two issues of San Francisco Estuary and Watershed Science and will be available as a set electronically.

  20. Time-Lapse Electrical Resistivity Investigations for Imaging the Grouting Injection in Shallow Subsurface Cavities

    Directory of Open Access Journals (Sweden)

    Muhammad Farooq

    2014-01-01

    Full Text Available The highway of Yongweol-ri, Muan-gun, south-western part of the South Korean Peninsula, is underlain by the abandoned of subsurface cavities, which were discovered in 2005. These cavities lie at shallow depths with the range of 5∼15 meters below the ground surface. Numerous subsidence events have repeatedly occurred in the past few years, damaging infrastructure and highway. As a result of continuing subsidence issues, the Korean Institute of Geosciences and Mineral Resources (KIGAM was requested by local administration to resolve the issue. The KIGAM used geophysical methods to delineate subsurface cavities and improve more refined understanding of the cavities network in the study area. Cement based grouting has been widely employed in the construction industry to reinforce subsurface ground. In this research work, time-lapse electrical resistivity surveys were accomplished to monitor the grouting injection in the subsurface cavities beneath the highway, which have provided a quasi-real-time monitoring for modifying the subsurface cavities related to ground reinforcement, which would be difficult with direct methods. The results obtained from time-lapse electrical resistivity technique have satisfactory imaged the grouting injection experiment in the subsurface cavities beneath the highway. Furthermore, the borehole camera confirmed the presence of grouting material in the subsurface cavities, and hence this procedure increases the mechanical resistance of subsurface cavities below the highway.

  1. Influence of Mean State Changes on the Structure of ENSO in a Tropical Coupled GCM.

    Science.gov (United States)

    Codron, Francis; Vintzileos, Augustin; Sadourny, Robert

    2001-03-01

    This study examines the response of the climate simulated by the Institut Pierre Simon Laplace tropical Pacific coupled general circulation model to two changes in parameterization: an improved coupling scheme at the coast, and the introduction of a saturation mixing ratio limiter in the water vapor advection scheme, which improves the rainfall distribution over and around orography. The main effect of these modifications is the suppression of spurious upwelling off the South American coast in Northern Hemisphere summer. Coupled feedbacks then extend this warming over the whole basin in an El Niño-like structure, with a maximum at the equator and in the eastern part of the basin. The mean precipitation pattern widens and moves equatorward as the trade winds weaken.This warmer mean state leads to a doubling of the standard deviation of interannual SST anomalies, and to a longer ENSO period. The structure of the ENSO cycle also shifts from westward propagation in the original simulation to a standing oscillation. The simulation of El Niño thus improves when compared to recent observed events. The study of ENSO spatial structure and lagged correlations shows that these changes of El Niño characteristics are caused by both the increase of amplitude and the modification of the spatial structure of the wind stress response to SST anomalies.These results show that both the mean state and variability of the tropical ocean can be very sensitive to biases or forcings, even geographically localized. They may also give some insight into the mechanisms responsible for the changes in ENSO characteristics due to decadal variability or climate change.

  2. Isolation and Characterization of Electrochemically Active Subsurface Delftia and Azonexus Species

    Science.gov (United States)

    Jangir, Yamini; French, Sarah; Momper, Lily M.; Moser, Duane P.; Amend, Jan P.; El-Naggar, Mohamed Y.

    2016-01-01

    Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET) is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, CA, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes (WEs) were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE) to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13) and Azonexus strain (designated WE2-4) were confirmed in electrochemical reactors using WEs poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical activity. While alternate

  3. Isolation and characterization of electrochemically active subsurface Delftia and Azonexus species

    Directory of Open Access Journals (Sweden)

    Yamini eJangir

    2016-05-01

    Full Text Available Continental subsurface environments can present significant energetic challenges to the resident microorganisms. While these environments are geologically diverse, potentially allowing energy harvesting by microorganisms that catalyze redox reactions, many of the abundant electron donors and acceptors are insoluble and therefore not directly bioavailable. Extracellular electron transfer (EET is a metabolic strategy that microorganisms can deploy to meet the challenges of interacting with redox-active surfaces. Though mechanistically characterized in a few metal-reducing bacteria, the role, extent, and diversity of EET in subsurface ecosystems remains unclear. Since this process can be mimicked on electrode surfaces, it opens the door to electrochemical techniques to enrich for and quantify the activities of environmental microorganisms in situ. Here, we report the electrochemical enrichment of microorganisms from a deep fractured-rock aquifer in Death Valley, California, USA. In experiments performed in mesocosms containing a synthetic medium based on aquifer chemistry, four working electrodes were poised at different redox potentials (272, 373, 472, 572 mV vs. SHE to serve as electron acceptors, resulting in anodic currents coupled to the oxidation of acetate during enrichment. The anodes were dominated by Betaproteobacteria from the families Comamonadaceae and Rhodocyclaceae. A representative of each dominant family was subsequently isolated from electrode-associated biomass. The EET abilities of the isolated Delftia strain (designated WE1-13 and Azonexus strain (designated WE2-4 were confirmed in electrochemical reactors using working electrodes poised at 522 mV vs. SHE. The rise in anodic current upon inoculation was correlated with a modest increase in total protein content. Both genera have been previously observed in mixed communities of microbial fuel cell enrichments, but this is the first direct measurement of their electrochemical

  4. Development of anomaly detection models for deep subsurface monitoring

    Science.gov (United States)

    Sun, A. Y.

    2017-12-01

    Deep subsurface repositories are used for waste disposal and carbon sequestration. Monitoring deep subsurface repositories for potential anomalies is challenging, not only because the number of sensor networks and the quality of data are often limited, but also because of the lack of labeled data needed to train and validate machine learning (ML) algorithms. Although physical simulation models may be applied to predict anomalies (or the system's nominal state for that sake), the accuracy of such predictions may be limited by inherent conceptual and parameter uncertainties. The main objective of this study was to demonstrate the potential of data-driven models for leakage detection in carbon sequestration repositories. Monitoring data collected during an artificial CO2 release test at a carbon sequestration repository were used, which include both scalar time series (pressure) and vector time series (distributed temperature sensing). For each type of data, separate online anomaly detection algorithms were developed using the baseline experiment data (no leak) and then tested on the leak experiment data. Performance of a number of different online algorithms was compared. Results show the importance of including contextual information in the dataset to mitigate the impact of reservoir noise and reduce false positive rate. The developed algorithms were integrated into a generic Web-based platform for real-time anomaly detection.

  5. Jackson State University (JSU)’s Center of Excellence in Science, Technology, Engineering, and Mathematics Education (CESTEME)

    Science.gov (United States)

    2016-01-08

    Actuarial Science Taylor, Triniti Lanier Alcorn State University Animal Science Tchounwou, Hervey Madison Central Jackson State University Computer...for Public Release; Distribution Unlimited Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering...Final Report: Jackson State University (JSU)’s Center of Excellence in Science , Technology, Engineering, and Mathematics Education (CESTEME) Report

  6. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.

    Directory of Open Access Journals (Sweden)

    Andrea Ciliberto

    2007-03-01

    Full Text Available In metabolic networks, metabolites are usually present in great excess over the enzymes that catalyze their interconversion, and describing the rates of these reactions by using the Michaelis-Menten rate law is perfectly valid. This rate law assumes that the concentration of enzyme-substrate complex (C is much less than the free substrate concentration (S0. However, in protein interaction networks, the enzymes and substrates are all proteins in comparable concentrations, and neglecting C with respect to S0 is not valid. Borghans, DeBoer, and Segel developed an alternative description of enzyme kinetics that is valid when C is comparable to S0. We extend this description, which Borghans et al. call the total quasi-steady state approximation, to networks of coupled enzymatic reactions. First, we analyze an isolated Goldbeter-Koshland switch when enzymes and substrates are present in comparable concentrations. Then, on the basis of a real example of the molecular network governing cell cycle progression, we couple two and three Goldbeter-Koshland switches together to study the effects of feedback in networks of protein kinases and phosphatases. Our analysis shows that the total quasi-steady state approximation provides an excellent kinetic formalism for protein interaction networks, because (1 it unveils the modular structure of the enzymatic reactions, (2 it suggests a simple algorithm to formulate correct kinetic equations, and (3 contrary to classical Michaelis-Menten kinetics, it succeeds in faithfully reproducing the dynamics of the network both qualitatively and quantitatively.

  7. Subsurface barrier verification technologies, informal report

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier's integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification

  8. Complex transitions between spike, burst or chaos synchronization states in coupled neurons with coexisting bursting patterns

    International Nuclear Information System (INIS)

    Gu Hua-Guang; Chen Sheng-Gen; Li Yu-Ye

    2015-01-01

    We investigated the synchronization dynamics of a coupled neuronal system composed of two identical Chay model neurons. The Chay model showed coexisting period-1 and period-2 bursting patterns as a parameter and initial values are varied. We simulated multiple periodic and chaotic bursting patterns with non-(NS), burst phase (BS), spike phase (SS), complete (CS), and lag synchronization states. When the coexisting behavior is near period-2 bursting, the transitions of synchronization states of the coupled system follows very complex transitions that begins with transitions between BS and SS, moves to transitions between CS and SS, and to CS. Most initial values lead to the CS state of period-2 bursting while only a few lead to the CS state of period-1 bursting. When the coexisting behavior is near period-1 bursting, the transitions begin with NS, move to transitions between SS and BS, to transitions between SS and CS, and then to CS. Most initial values lead to the CS state of period-1 bursting but a few lead to the CS state of period-2 bursting. The BS was identified as chaos synchronization. The patterns for NS and transitions between BS and SS are insensitive to initial values. The patterns for transitions between CS and SS and the CS state are sensitive to them. The number of spikes per burst of non-CS bursting increases with increasing coupling strength. These results not only reveal the initial value- and parameter-dependent synchronization transitions of coupled systems with coexisting behaviors, but also facilitate interpretation of various bursting patterns and synchronization transitions generated in the nervous system with weak coupling strength. (paper)

  9. Framework of Information Science in Japan − Introduction: Comparison with United States

    OpenAIRE

    加藤, 淳一; KATO, Junichi

    2008-01-01

    This report concisely explains the history of information science in the United States. The purpose of this report is to reconfirm the field framework of information science. The framework of information science of Japan is different from the information science that Machlup and Mansfield define, because it is a framework similar to informatics for Japan.

  10. From 50 Years Ago, the Birth of Modern Liquid-State Science.

    Science.gov (United States)

    Chandler, David

    2017-05-05

    The story told in this autobiographical perspective begins 50 years ago, at the 1967 Gordon Research Conference on the Physics and Chemistry of Liquids. It traces developments in liquid-state science from that time, including contributions from the author, and especially in the study of liquid water. It emphasizes the importance of fluctuations and the challenges of far-from-equilibrium phenomena.

  11. An all-silicon laser by coupling between electronic localized states and defect states of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Huang Weiqi, E-mail: WQHuang2001@yahoo.com [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Huang Zhongmei; Miao Xinjiang; Cai Chenlan; Liu Jiaxin; Lue Quan [Institute of Nanophotonic Physics, Key Laboratory of Photoelectron Technology and Application, Guizhou University, Guiyang 550025 (China); Liu Shirong, E-mail: Shirong@yahoo.com [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China); Qin Chaojian [State Key Laboratory of Ore Deposit Geochemistry Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003 (China)

    2012-01-15

    In a nano-laser of Si quantum dots (QD), the smaller QD fabricated by nanosecond pulse laser can form the pumping level tuned by the quantum confinement (QC) effect. Coupling between the active centers formed by localized states of surface bonds and the two-dimensional (2D) photonic crystal is used to select model in the nano-laser. The experimental demonstration is reported in which the peaks of stimulated emission at about 600 nm and 700 nm were observed on the Si QD prepared in oxygen after annealing which improves the stimulated emission. It is interesting to make a comparison between the localized electronic states in gap due to defect formed by surface bonds and the localized photonic states in gap of photonic band due to defect of 2D photonic crystal.

  12. Subsurface quality assurance practices

    International Nuclear Information System (INIS)

    1987-08-01

    This report addresses only the concept of applying Nuclear Quality Assurance (NQA) practices to repository shaft and subsurface design and construction; how NQA will be applied; and the level of detail required in the documentation for construction of a shaft and subsurface repository in contrast to the level of detail required in the documentation for construction of a traditional mine. This study determined that NQA practices are viable, attainable, as well as required. The study identified the appropriate NQA criteria and the repository's major structures, systems, items, and activities to which the criteria are applicable. A QA plan, for design and construction, and a list of documentation, for construction, are presented. 7 refs., 1 fig., 18 tabs

  13. Air-ground temperature coupling and subsurface propagation of annual temperature signals

    Czech Academy of Sciences Publication Activity Database

    Smerdon, J. E.; Pollack, H. N.; Čermák, Vladimír; Enz, J. W.; Krešl, Milan; Šafanda, Jan; Wehmiller, J. F.

    2004-01-01

    Roč. 109, D21 (2004), D21107/1-10 ISSN 0148-0227 R&D Projects: GA AV ČR KSK3046108; GA MŠk(CZ) 1P05ME778 Grant - others:NSF(US) ATM-0081864; NSF(US) EAR9315052; NASA (US) GWEC 0000 0132 Institutional research plan: CEZ:AV0Z3012916 Keywords : heat transport * air-ground temperature coupling * paleoclimate Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.839, year: 2004

  14. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    International Nuclear Information System (INIS)

    Cordes, Nikolaus L.; Seshadri, Srivatsan; Havrilla, George J.; Yuan, Xiaoli; Feser, Michael; Patterson, Brian M.

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  15. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Nikolaus L., E-mail: ncordes@lanl.gov [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Seshadri, Srivatsan, E-mail: srivatsan.seshadri@zeiss.com [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Havrilla, George J. [Chemical Diagnostics and Engineering, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Yuan, Xiaoli [Julius Kruttschnitt Mineral Research Centre, University of Queensland, Indooroopilly, Brisbane, QLD 4068 (Australia); Feser, Michael [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Patterson, Brian M. [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  16. Coupled prediction of flood response and debris flow initiation during warm and cold season events in the Southern Appalachians, USA

    Science.gov (United States)

    Tao, J.; Barros, A. P.

    2013-07-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are

  17. Application of in situ vitrification in the soil subsurface: Engineering-scale testing

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.

    1995-03-01

    Engineering-scale testing to evaluate the initiation and propagation of the in situ vitrification (ISV) process in the soil subsurface has been completed. Application of ISV in the soil subsurface both increases the applicable treatment depth (beyond a demonstrated 5 m) and allows treatment of local contamination, such as liquid seepage trenches (found on many US Department of Energy sites) that were designed to remove contamination at the bottom of the trench. The following observations and conclusions resulted from the test data: the ISV process can be initiated in the soil subsurface and propagated in both vertical directions, with the downward direction providing greater ease of operation; energy efficiency to process a kilogram of soil was 20% better than for an ISV melt initiated at the soil surface, increased efficiency was attributed to insulation from the soil overburden; the feasibility of initiating the process with a planar starter path was confirmed, thus increasing the number of options for initiating the process in the field; soil subsidence was pronounced and requires attention before field demonstration of subsurface ISV. Further field work at pilot-scale is recommended for this new ISV application. The key step will be the placement of starter material at depth to initiate the process

  18. Density of states and phase diagram of the antiferromagnetic spin chain with Dzyaloshinsky-Moriya interaction and spin-phonon coupling

    International Nuclear Information System (INIS)

    Wang Qin; Chen Hong; Zheng Hang

    2007-01-01

    The effects of DM interaction on the density-of-states, the dimerization and the phase diagram in the antiferromagnetic Heisenberg chain coupled with quantum phonons have been studied by a nonadiabatic analytical approach. The results show that the effect of the DM interaction is to increase the staggered antisymmetric spin exchange interaction order but to decrease the spin dimerization and their competitions result in the lattice dimerization ordering parameter to increase for large staggered DM interaction parameter β and decrease for small β. A crossover of β exists in which the dimerization ordering parameter changes non-monotonously. As the DM interaction parameter D increases, depending on the appropriate values of spin-phonon coupling, phonon frequency and β, the system undergoes phase transition from spin gapless state to gapped state or reversely and can even reenter between the two states. The relation between the phonon-staggered ordering parameter, the spin-dimer order parameter and the staggered DM interaction order parameter gives clearly their contributing weights to the lattice dimerization

  19. Subsurface Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    Logan, R.C.

    1999-01-01

    The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated

  20. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Science.gov (United States)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...