WorldWideScience

Sample records for coupled argon plasmas

  1. Development of a low-cost inductively coupled argon plasma

    International Nuclear Information System (INIS)

    Ripson, P.A.M.

    1983-01-01

    The aim of this investigation is to drastically reduce running costs of an inductively coupled plasma. This is done by reducing the argon consumption from 20 l/min to about 1 l/min. First, a sample introduction system operating on 0.1 l/min of carrier argon is described. This system ensures a high ratio of plasma argon and carrier argon even at the low total argon consumptions intended. Next, the developed low consumption plasma is presented. In the proposed design, air is blown perpendicularly against the outside of the torch. A different coil has been developed to make air-cooling efficient. Preliminary data on coupling efficiency for the air-cooled plasma are presented. A similarly low argon consumption has been achieved with water as an external coolant medium. It is concluded that a cheaper alternative to the current ICP has become available. (Auth.)

  2. Inductively coupled plasma--atomic emission spectroscopy: an evaluation of the use of nitrogen--argon admixtures as plasma discharge atmospheres

    International Nuclear Information System (INIS)

    Zalewski, J.C.

    1979-01-01

    The effects of the use of nitrogen in either the plasma coolant or aerosol carrier gas flows on the physical and spectrochemical properties of the inductively coupled plasma (ICP) were examined. While the plasma operated with nitrogen in the coolant flow exhibited a stability comparable to that of the argon plasma, the use of nitrogen in the aerosol carrier gas flow resulted in a plasma that was less stable. The detection limits obtained for the three plasmas exhibited a similar trend. In addition, the use of nitrogen--argon admixtures in the plasma coolant gas flow yielded an increase in both the net analyte and the background emission intensities when the corresponding argon and nitrogen--argon plasmas were operated under various conditions. Furthermore, the effect of aluminum on the Ca II (393.4 nm) spectral line was reported for the 1000/1 Al/Ca molar ratio. At an observation height of 15 mm, the signal depressions were 4 and 14% for the nitrogen--argon and the argon plasmas, respectively. The above experimental evidence suggested that the operation of the ICP with an Ar--N 2 coolant gas might be hotter than the argon plasma currently in use in this laboratory. The demountable plasma torch designed in collaboration with K. Olson yielded detection limits for 15 elements and 19 spectral lines that were approximately within a factor of two of those obtained with the torch of fused quartz design. The design also appeared to offer a more readily initiated plasma discharge. The experimental evidence presented supports the utilization of nitrogen--argon admixtures in the plasma coolant gas flow as alternate discharge atmospheres for inductively coupled plasma--atomic emission spectroscopy. In contrast, the experimental evidence shows that there is a deterioration in both physical and spectrochemical properties of plasmas operated with a nitrogen aerosol carrier gas

  3. Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Svec, H.J.; Fassel, V.A.

    1981-01-01

    Mass spectra have been obtained of species in the axial channel of an inductively coupled argon plasma by extracting ions from the inductively coupled plasma into a vacuum system housing a quadrupole mass spectrometer. Ionization temperatures (T/sub ion/) are obtained from relative count rates of m/z-resolved ions according to two general types of ionization equilibrium considerations: (a) the radio of doubly/singly charged ions of the same element, and (b) the ratio of singly charged ions from two elements of different ionization energy. The T/sub ion/ values derived from measurement of Ar +2 /Ar + , Ba +2 /Ba + , Sr +2 /Sr + , and Cd + /I + are all greater than those expected from excitation temperatures measured by other workers. The latter three values for T/sub ion/ are in reasonable agreement with values obtained by optical spectrometry for a variety of argon inductively coupled plasmas

  4. Effects of assistant anode on planar inductively coupled magnetized argon plasma in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, Deli; Chu, Paul K.

    2003-01-01

    The enhancement of planar radio frequency (RF) inductively coupled argon plasma is studied in the presence of an assistant anode and an external magnetic field at low pressure. The influence of the assistant anode and magnetic field on the efficiency of RF power absorption and plasma parameters is investigated. An external axial magnetic field is coupled into the plasma discharge region by an external electromagnetic coil outside the discharge chamber and an assistant cylindrical anode is inserted into the discharge chamber to enhance the plasma discharge. The plasma parameters and density profile are measured by an electrostatic Langmuir probe at different magnetic fields and anode voltages. The RF power absorption by the plasma can be effectively enhanced by the external magnetic field compared with the nonmagnetized discharge. The plasma density can be further increased by the application of a voltage to the assistant anode. Owing to the effective power absorption and enhanced plasma discharge by the assistant anode in a longitudinal magnetic field, the plasma density can be enhanced by more than a factor of two. Meanwhile, the nonuniformity of the plasma density is less than 10% and it can be achieved in a process chamber with a diameter of 600 mm

  5. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    International Nuclear Information System (INIS)

    Chin, O.H.; Jayapalan, K.K.; Wong, C.S.

    2014-01-01

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile. (author)

  6. Opacity measurements in shock-generated argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.

    1993-07-01

    Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.

  7. About the EDF formation in a capacitively coupled argon plasma

    International Nuclear Information System (INIS)

    Tatanova, M; Thieme, G; Basner, R; Hannemann, M; Golubovskii, Yu B; Kersten, H

    2006-01-01

    The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions

  8. About the EDF formation in a capacitively coupled argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tatanova, M [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Thieme, G [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Basner, R [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Hannemann, M [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany); Golubovskii, Yu B [Institute of Physics, Saint-Petersburg State University, ul. Ulianovskaja 1, 198504 Saint-Petersburg (Russian Federation); Kersten, H [Institut fur Niedertemperatur-Plasmaphysik, Friedrich-Ludwig-Jahn-Str 19, D-17489 Greifswald (Germany)

    2006-08-01

    The formation of the electron distribution function (EDF) in the bulk plasma of a capacitively coupled radio-frequency (rf) discharge in argon generated in the plasma-chemical reactor PULVA-INP is investigated experimentally and theoretically. Measurements of the EDF and internal plasma parameters were performed by means of a Langmuir probe at pressures of 0.5-100 Pa and discharge powers of 5-100 W. The observed EDFs have revealed a two-temperature behaviour at low pressures and evolved into a Maxwellian distribution at high gas pressures and large discharge powers. Theoretical determination of the EDF is based on the numerical solution of the Boltzmann kinetic equation in the local and non-local approaches under experimental conditions. The model includes elastic and inelastic electron-atom collisions and electron-electron interactions. Low electron temperatures and relatively high ionization degrees are the features of the PULVA-INP rf discharge. This leads to significant influence of the electron-electron collisions on the EDF formation. The modelled and measured distributions show good agreement in a wide range of discharge parameters, except for a range of low gas pressures, where the stochastic electron heating is intense. Additionally, mechanisms of the EDF formation in the dc and rf discharge were compared under similar discharge conditions.

  9. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    CERN Document Server

    Hebner, G A

    1999-01-01

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s sub 5 and 1s sub 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s sub 5 level is metastable and the 1s sub 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the disch...

  10. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    International Nuclear Information System (INIS)

    HEBNER, GREGORY A.; MILLER, PAUL A.

    1999-01-01

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s 5 and 1s 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s 5 level is metastable and the 1s 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s 5 and 1s 4 argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl 2 or BCl 3 increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl 2 or BCl 3 was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the

  11. Investigation of Capacitively Coupled Argon Plasma Driven by Dual-Frequency with Different Frequency Configurations

    International Nuclear Information System (INIS)

    Yu Yiqing; Xin Yu; Ning Zhaoyuan; Lu Wenqi

    2011-01-01

    Low pressure argon dual-frequency (DF) capacitively coupled plasma (CCP) is generated by using different frequency configurations, such as 13.56/2, 27/2, 41/2, and 60/2 MHz. Characteristics of the plasma are investigated by using a floating double electrical probe and optical emission spectroscopy (OES). It is shown that in the DF-CCPs, the electron temperature T e decreases with the increase in exciting frequency, while the onset of 2 MHz induces a sudden increase in T e and the electron density increases basically with the increase in low frequency (LF) power. The intensity of 750.4 nm emission line increases with the LF power in the case of 13.56/2 MHz, while different tendencies of line intensity with the LF power appear for other configurations. The reason for this is also discussed.

  12. Continuum radiation of argon plasma

    International Nuclear Information System (INIS)

    D'Yachkov, L.G.

    1995-01-01

    A simple completely analytical method of the calculation of radiative continuum of plasmas is derived and an analysis of experimental data on continuum radiation of argon plasma is made. The method is based on the semiclassical quantum defect theory. To calculate radial matrix elements of dipole transitions the asymptotic expansion in powers of E c /ω 2/3 , with an accuracy to the linear term, where E, is the arithmetic mean of the initial and final energies of the transition, is used. This expansion has the same form for free-free, free-bound and bound-bound transitions. If the quantum defects are also approximated by a linear function of energy, the integration over the electron energy (the Maxwell-Boltzmann distribution is assumed) can be performed in analytical form. For Rydberg states the sum of photoionization continua can be replaced by an integral. We have calculated the absorption coefficient pf argon plasma. The photoionization cross section is calculated for all the states of 4s, 5s, 6s, 4p, 5p, 3d, 4d, 4s', 5s', 6s', 4p', 5p', 3d' and 4d' configurations taking into account P-coupling and multiplet splitting (56 states). Other excited states are allowed for by the integral formula together with free-free transitions

  13. Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling

    Science.gov (United States)

    Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter

    2018-04-01

    The momentum coupled to a magnetized, ambient argon plasma from a high- β, laser-produced carbon plasma is examined in a collisionless, weakly coupled limit. The total electric field was measured by separately examining the induced component associated with the rapidly changing magnetic field of the high- β (kinetic β˜106), expanding plasma and the electrostatic component due to polarization of the expansion. Their temporal and spatial structures are discussed and their effect on the ambient argon plasma (thermal β˜10-2) is confirmed with a laser-induced fluorescence diagnostic, which directly probed the argon ion velocity distribution function. For the given experimental conditions, the electrostatic field is shown to dominate the interaction between the high- β expansion and the ambient plasma. Specifically, the expanding plasma couples energy and momentum into the ambient plasma by pulling ions inward against the flow direction.

  14. Argon plasma treatment to enhance the electrochemical reactivity of screen-printed carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F.; Luais, E. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Thobie-Gautier, C. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Tessier, P.-Y. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France); Universite de Nantes, Institut des Materiaux Jean Rouxel IMN - CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, Faculte des Sciences et des Techniques, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation (CEISAM), UMR CNRS no 6230, 2, rue de la Houssiniere, BP 92208, 44322 NANTES Cedex 3 (France)], E-mail: mohammed.boujtita@univ-nantes.fr

    2009-04-15

    Radiofrequency argon plasma was used for screen-printed carbon electrodes (SPCE) surface treatment. The cyclic voltammetry of ferri/ferrocyanide as redox couple showed a remarkable improvement of the electrochemical reactivity of the SPCE after the plasma treatment. The effect of the plasma growth conditions on the efficiency of the treatment procedure was evaluated in term of electrochemical reactivity of the SPCE surface. The electrochemical study showed that the electrochemical reactivity of the treated electrodes was strongly dependant on radiofrequency power, treatment time and argon gas pressure. X-ray photoelectron spectroscopy (XPS) analysis showed a considerable evolution on the surface chemistry of the treated electrodes. Our results clearly showed that the argon plasma treatment induces a significant increase in the C{sub sp2}/C{sub sp3} ratio. The scanning electron micrograph (SEM) also showed a drastic change on the surface morphology of the treated SPCEs.

  15. Role of metastable atoms in argon-diluted silane Rf plasmas

    International Nuclear Information System (INIS)

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.; Dorier, J.L.; Kroll, U.

    1994-01-01

    The evolution of the argon metastable density has been studied by absorption spectroscopy in power-modulated plasmas of argon and a mixture of 4% silane in argon. A small concentration of silane suppresses the argon metastable density by molecular quenching. This molecular quenching adds to the electronic collisional dissociation to increase the silane dissociation rate as compared with pure silane plasmas. Using time-resolved emission spectroscopy, the role of metastables in excitation to the argon 2P 2 state has been determined in comparison with production from the ground state. In silane plasmas, emission from SiH* is due essentially to electron impact dissociation of silane, whereas in 4% silane-in-argon plasmas, emission from SiH* seems to be due to electron impact excitation of the SiH ground state. These studies demonstrate that argon is not simply a buffer gas but has an influence on the dissociation rate in the plasma-assisted deposition of amorphous silicon using argon-diluted silane plasmas. (author) 7 figs., 30 refs

  16. Nanoparticle formation in a low pressure argon/aniline RF plasma

    Science.gov (United States)

    Pattyn, C.; Kovacevic, E.; Hussain, S.; Dias, A.; Lecas, T.; Berndt, J.

    2018-01-01

    The formation of nanoparticles in low temperature plasmas is of high importance for different fields: from astrophysics to microelectronics. The plasma based synthesis of nanoparticles is a complex multi-scale process that involves a great variety of different species and comprises timescales ranging from milliseconds to several minutes. This contribution focuses on the synthesis of nanoparticles in a low temperature, low pressure capacitively coupled plasma containing mixtures of argon and aniline. Aniline is commonly used for the production of polyaniline, a material that belongs to the family of conductive polymers, which has attracted increasing interest in the last few years due to the large number of potential applications. The nanoparticles which are formed in the plasma volume and levitate there due to the collection of negative charges are investigated in this contribution by means of in-situ FTIR spectroscopy. In addition, the plasma is analyzed by means of plasma (ion) mass spectroscopy. The experiments reveal the possibility to synthesize nanoparticles both in continuous wave and in pulsed discharges. The formation of particles in the plasma volume can be suppressed by pulsing the plasma in a specific frequency range. The in-situ FTIR analysis also reveals the influence of the argon plasma on the characteristics of the nanoparticles.

  17. Sulphate analysis in uranium leach iron(III) chloride solutions by inductively coupled argon plasma spectrometry

    International Nuclear Information System (INIS)

    Nirdosh, I.; Lakhani, S.; Yunus, M.Z.M.

    1993-01-01

    Inductively coupled Argon Plasma Spectrometry is used for the indirect determination of sulphate in iron(III) chloride leach solution of Elliot Lake uranium ores via addition of a known amount of barium ions and analyzing for excess of barium. The ore contains ∼ 7 wt% pyrite, FeS 2 , as the major mineral which oxidizes to generate sulphate during leaching with Fe(III). The effects of pH, the concentrations of Fe(III) and chloride ions and for presence of ethanol in the test samples on the accuracy of analysis are studied. It is found that unlike the Rhodizonate method, removal of iron(III) from or addition of ethanol to the test sample prior to analysis are not required. Linear calibration curves are obtained. (author)

  18. Laser-induced fluorescence measurements of argon ion velocities near the sheath boundary of an argon-xenon plasma

    International Nuclear Information System (INIS)

    Lee, Dongsoo; Severn, Greg; Oksuz, Lutfi; Hershkowitz, Noah

    2006-01-01

    The Bohm sheath criterion in single- and two-ion species plasma is studied with laser-induced fluorescence using a diode laser. Xenon is added to a low pressure unmagnetized dc hot filament argon discharge confined by surface multidipole magnetic fields. The Ar II transition at 668.614 nm is adopted for optical pumping to detect the fluorescence from the plasma and to measure the argon ion velocity distribution functions with respect to positions relative to a negatively biased boundary plate. The structures of the plasma sheath and presheath are measured by an emissive probe. The ion concentrations of the two-species in the bulk plasma are calculated from ion acoustic wave experiments. Results are compared with previous experiments of Ar-He plasmas in which the argon ions were the heavier ion species. Unlike the previous results, the argon speed is slower than its own Bohm velocity near the sheath-presheath boundary in the Ar-Xe plasma where argon ions are the lighter ion species. We argue that this result is consistent with the behaviour of the helium ion required by the generalized Bohm criterion in the previous experiments with Ar-He plasmas. Further, our results suggest that the measured argon ion speed approaches the ion sound speed of the system

  19. Characterization of DC argon plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Yan Jianhua; Ma Zengyi; Pan Xinchao; Cen Kefa; Bruno, C

    2006-01-01

    An original DC double anode plasma torch operating with argon at atmospheric pressure which provides a long time and highly stable plasma jet is analyzed through its electrical and optical signals. Effects of gas flow rate and current intensity on the arc dynamics behaviour are studied using standard diagnostic tools such as FFT and correlation function. An increasing current-voltage characteristic is reported for different argon flow rates. It is noted that the takeover mode is characteristic for argon plasma jet and arc fluctuations in our case are mainly induced by the undulation of torch power supply. Furthermore, the excitation temperatures and electron densities of the plasma jet inside and outside the arc chamber have been determined by means of optical emission spectroscopy (OES). The criteria for the existence of local thermodynamic equilibrium (LTE) in plasma is then discussed. The results show that argon plasma jet at atmospheric pressure under our experimental conditions is close to LTE. (authors)

  20. The determination of transition probabilities with an inductively-coupled plasma discharge

    International Nuclear Information System (INIS)

    Nieuwoudt, G.

    1984-03-01

    The 27 MHz inductively-coupled plasma discharge (ICP) is used for the determination of relative transition probabilities of the 451, 459 and 470 nm argon spectral lines. The temperature of the argon plasma is determined with hydrogen as thermometric specie, because of the accurate transition probabilities ( approximately 1% uncertainty) there of. The relative transition probabilities of the specific argon spectral lines were determined by substitution of the measured spectral radiances thereof, together with the hydrogen temperature, in the two-line equation of temperature measurement

  1. High-performance liquid chromatographic separation of biologically important arsenic species utilizing on-line inductively coupled argon plasma atomic emission spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Spall, W.D.; Lynn, J.G.; Andersen, J.L.; Valdez, J.G.; Gurley, L.R.

    1986-06-01

    An anion exchange, high-performance liquid chromatography technique using a 15-min linear gradient from water to 0.5 M ammonium carbonate to separate arsenite, arsenate, methylarsonic acid, and dimethylarsinic acid from neutral arsenic containing compounds was developed for application to a study of arsenic metabolism in cultured cell suspensions. Arsenic detection was accomplished by the direct coupling of the column effluent to an inductively coupled argon plasma atomic emission spectrometer (ICAP-AES) set to monitor the arsenic emission line at 197.19 nm. The analysis requires 20 min and is sensitive to as low as 60 ng of arsenic injected to the column.

  2. Studies on EOS of shock-generated argon plasmas

    International Nuclear Information System (INIS)

    Wang Fanhou; Jing Fuqian

    2001-01-01

    The equation of state for argon plasma, covering the thermodynamic states of 10000-30000 K in temperature and 0.0133-0.166 GPa in pressure, is computed using the Saha model and Debye-Huckel correction. Comparisons of the measured EOS with the calculated ones demonstrate the Saha model and Debye-Huckel correction can be used to well describe the essential behavior of argon plasma under the thermodynamic condition above-mentioned

  3. Dynamics of imploding argon plasmas

    International Nuclear Information System (INIS)

    Clark, W.; Richardson, R.; Brannon, J.; Wilkinson, M.; Katzenstein, J.

    1982-01-01

    The BLACKJACK 5 pulse generator has been used to implode annular argon plasmas to form dense Z pinches. Visible streak photography, framing photography, and laser shadowgraphy were used to observe the radial position and velocity of the plasmas as they imploded. The measured position and velocity of the imploding plasmas have been compared with the results of calculations based on a one-dimensional snowplow model. Good agreement is obtained between the snowplow calculations and the optical measurements. Empirically determined optimum implosion parameters are also found to agree with those predicted by the model

  4. Comparison study of nitrogen and argon processing in a plasma arc centrifugal treatment system

    International Nuclear Information System (INIS)

    Shuey, M.; Tsuji, Y.

    2000-01-01

    Recent testing performed at the plasma research center of Retech Services, Inc. compared nitrogen with argon as plasma gas in the processing of simulated wastes. The testing took place in a full-scale production PACT system under a cooperative research and development study between Retech Services Inc. and Toyo Engineering Corporation. This study shows that simulated waste can be processed by both nitrogen and argon plasmas. Heat losses to the torch nozzle were significantly lower with argon and should be studied further. Both argon and nitrogen plasma were able to process feeds containing both metals and oxides. Some of the drawbacks to using argon plasma are cost, higher volume flow rates, and dual mode torch nozzle erosion. (authors)

  5. Turbulence and transport in a magnetized argon plasma

    International Nuclear Information System (INIS)

    Pots, B.F.M.

    1979-01-01

    An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)

  6. Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge

    Science.gov (United States)

    Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.

    2018-01-01

    This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.

  7. Features of copper etching in chlorine-argon plasma

    International Nuclear Information System (INIS)

    Efremov, A.M.; Svettsov, V.I.

    1995-01-01

    Chlorine mixtures with inert gases including argon exhibit promise as plasma feed gases for etching metals and semiconductors in the microelectronics industry. It was shown that even strong dilution of reactive gas with an inert gas (up to 80-90% of the latter) has virtually no effect in decreasing the rate of plasma etching of materials such as silicon and gallium arsenide, compared to etching in pure chlorine. The principal reactive species responsible for etching these substrates are chlorine atoms therefore, a possible explanation of the effect is an increase in the rate of bulk generation of chlorine atoms in the presence of argon. In this work the authors studied the influence of argon on the rate of copper etching in chlorine, because copper, unlike the above substrates, reacts effectively not only with the atoms but with the ground-state molecules of chlorine

  8. Observations of acoustic-wave-induced superluminescence in an argon plasma

    International Nuclear Information System (INIS)

    Aramyan, A.R.

    2003-01-01

    It is shown that in an argon discharge plasma it is possible to obtain overpopulation of certain electronic levels of atomic argon under the influence of acoustic waves. When the specified threshold is exceeded, then a superluminescence (in the form of light flashes) from the overpopulated electronic levels of atomic argon is observed

  9. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    Science.gov (United States)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  10. Electrical and spectroscopic diagnostic of an atmospheric double arc argon plasma jet

    International Nuclear Information System (INIS)

    Tu, X; Cheron, B G; Yan, J H; Cen, K F

    2007-01-01

    An atmospheric argon plasma jet generated by an original dc double anode plasma torch has been investigated through its electrical and spectroscopic diagnostics. The arc instabilities and dynamic behavior of the argon plasma are analyzed using classical tools such as the statistical method, fast Fourier transform (FFT) and correlation function. The takeover mode is identified as the fluctuation characteristic of the double arc argon plasma jet in our experiment. The FFT and correlation analysis of electrical signals exhibit the only characteristic frequency of 150 Hz, which originates from the torch power and is independent of any change in the operating parameters. No high frequency fluctuations (1-15 kHz) are observed. This indicates that the nature of fluctuations in an argon plasma jet is induced mainly by the undulation of the tri-phase rectified power supply. It is found that each arc root attachment is diffused rather than located at a fixed position on the anode wall. Moreover, the emission spectroscopic technique is performed to determine the electron temperature and number density of the plasma jet inside and outside the arc chamber. Along the torch axis, the measured electron temperature and number density of the double arc argon plasma drop from 12 300 K and 7.6 x 10 22 m -3 at the divergent part of the first anode nozzle, to 10 500 K and 3.1 x 10 22 m -3 at the torch exit. In addition, the validity criteria of the local thermodynamic equilibrium (LTE) state in the plasma arc are examined. The results show that the measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the double arc argon plasma at atmospheric pressure is close to the LTE state under our experimental conditions

  11. Formation of carbon nanostructures using acetylene, argon-acetylene and argon-hydrogen-acetylene plasmas

    International Nuclear Information System (INIS)

    Marcinauskas, L.; Grigonis, A.; Minialga, V.; Marcinauskas, L.; Valincius, V.

    2013-01-01

    The films prepared in argon-acetylene plasma are attributed to graphite-like carbon films. Addition of the hydrogen decreases growth rate and the surface roughness of the films and lead to the formation of nanocrystalline graphite. The carbon nanotubes were formed at low (≤ 450°C; p = 40 Pa) temperature in pure acetylene plasma. (authors)

  12. Investigations on the pyrolysis of hydrocarbons in the inductive coupled RF-plasma and the deposited pyrocarbon

    International Nuclear Information System (INIS)

    Eisgruber, H.; Mazurkiewicz, M.; Nickel, H.

    1979-08-01

    The pyrocarbon coatings of the nuclear fuel particles for the High-Temperature Reactor (HTR) are produced by pyrolysis of hydrocarbons under high temperatures. The investigations of the inductive coupled argon or argon/hydrocarbon-plasma performed in the frame of this work deliver a contribution for the clarification of pyrolysis processes and the production of pyrolytic carbons in the plasma of an electric discharge. The argon-plasma, as high-temperature source, is diagnosed theoretically and emission-spectroscopically. To the pure argon-plasma the various hydrocarbons are added. Due to the thermal decomposition the carbon is separated in solid form. The structure of the deposited pyrocarbon is composed of different components. The depositions are characterised with the principles in use at the IRW and are assigned to the fluidized bed pyrocarbons as fas as possible. (orig.) [de

  13. The Efficiency of Quartz Particles Evaporation in the Argon Plasma Flow of the RF Inductively Coupled Plasma Torch

    Directory of Open Access Journals (Sweden)

    Yu. M. Grishin

    2017-01-01

    Full Text Available Owing to high-power density and high-purity plasma, a RF inductively coupled plasma torch (ICPT is widely used both in research laboratory and in industry. The potential RF ICPT application areas are powders spheroidisation, waste treatment, thermal spraying, etc.In the last decade the investigation was focused on the treatment processes of quartz into polycrystalline silicon. An analysis of these results has shown that the increasing productivity and producing high-purity silicon can be achieved only when using the electrodeless radio-frequency induction plasma torches and in case the optimum conditions for evaporation of SiO2solid particles are realized.Optimization of the RF ICPT design and power parameters calls for a wide range of computational studies. In spite of the fact that to date a large number of efforts to calculate the evaporation efficiency of powder materials have been made, a number of issues, as applied to the problem of obtaining silicon, require further research.In this paper, we present the results of a two-dimensional numerical simulation of the heating and evaporation of quartz particles in the RF ICPT channel with axial flow of gases. The main aim is to determine how the axial position of the central tube (through which the particles are injected into the discharge zone, the dispersion of the quartz powder, the amplitude of the discharge current (and, respectively, flow regimes impact on the evaporation efficiency of quartz particles.The paper presented the numerical modeling results of heating and evaporation processes of quartz particles supplied by transporting gas to the RF ICPT channel with axial gas flow (argon. Defined the impact of the axial position of the central tube, the plasma flow regime, the discharge current, the flow rate of transporting gas, and other parameters on the evaporation efficiency of quartz particles.It is shown that the evaporation efficiency of particles reaches its maximum when their

  14. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    International Nuclear Information System (INIS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -C=O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  15. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Basak, Ganesh C. [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India); Bandyopadhyay, Abhijit [Department of Polymer Science and Technology, University of Calcutta, Calcutta 700 009 (India); Neogi, Sudarsan [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Bhowmick, Anil K., E-mail: anilkb@rtc.iitkgp.ernet.in [Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302 (India)

    2011-01-15

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -C=O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  16. Calculation of high-pressure argon plasma parameters produced by excimer laser

    International Nuclear Information System (INIS)

    Tsuda, Norio; Yamada, Jun

    2000-01-01

    When a XeCl excimer laser light was focused in a high-pressure argon gas up to 150 atm, a dense plasma developed not only backward but also forward. It is important to study on the electron density and temperature of the laser-induced plasma in the high-pressure gas. The electron density and temperature in high-pressure argon plasma produced by XeCl excimer laser has been calculated and compared with the experimental data. (author)

  17. Study on electron density and average degree of ionization for the non-ideal argon plasmas

    International Nuclear Information System (INIS)

    Jing Ming; Huang Hua; Zhou Yisu; Wang Caixia

    2008-01-01

    Electron density and average degree of ionization of the non-ideal argon plasmas under different plasma temperature and density are calculated by using SHM model. It comes to a conclusion that the average degree of ionization is less than 0.5 for the non-ideal argon plasmas at temperature T=2.0eV and plasma density ρ=(0.01-0.5)g·cm -3 , and the average degree of ionization is reduced with the increase of plasma density ρ. This indicates that the non-ideal argon plasma has a very low degree of ionization so that most argon has not been ionized. In addition, the discussion on the ionization decrease with the increase of plasma density ρ is given. (authors)

  18. Plasma flow in a pressure pulsed argon cascade arc

    NARCIS (Netherlands)

    de Haas, J.C.M.; Bol, L.; Kroesen, G.M.W.; Timmermans, C.J.; Timmermans, C.J.

    1985-01-01

    Flowing thermal plasmas are frequently used e . g. in welding, cutting, plasma deposition and testing materials at high temperatures . In most of the applications the geometry is complex . In the cascade arc the argon plasma flows through a straight circular channel with a constant area. The study

  19. Precise measurements of neutral gas temperature using Fiber Bragg Grating sensor in Argon capacitively coupled plasmas

    Science.gov (United States)

    Han, Daoman; Liu, Zigeng; Liu, Yongxin; Peng, Wei; Wang, Younian

    2016-09-01

    Neutral gas temperature was measured using Fiber Bragg Grating sensor (FBGs) in capacitively coupled argon plasmas. Thermometry is based on the thermal equilibrium between the sensor and neutral gases, which is found to become faster with increasing pressure. It is also observed that the neutral gas temperature is higher than the room temperature by 10 120 °depending on the experiental conditions, and gas temperature shows significant non-uniformity in space. In addition, radial profiles of neutral temperature at different pressures, resemble these of ion density, obtained by a floating double probe. Specifically, at low pressure, neutral gas temperature and ion density peak at the center of the reactor, while the peak appears at the edge of the electrode at higher pressure. The neutral gas heating is mainly caused by the elastic collisions of Ar + with neutral gas atoms in the sheath region after Ar + gaining a certain energy. This work was supported by the National Natural Science Foundation of China (NSFC) (Grants No. 11335004, 11405018, and 61137005).

  20. Investigation into the behavior of metal-argon polyatomic ions (MAr+) in the extraction region of inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ebert, Chris H.; Witte, Travis M.; Houk, R.S.

    2012-01-01

    The abundances of metal-argon polyatomic ions (MAr + ) are determined in inductively coupled plasma-mass spectrometry (ICP-MS). The ratios of MAr + abundance to that for M + ions are measured experimentally. These ratios are compared to expected values, calculated for typical plasma conditions using spectroscopic data. For all metals studied (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn), the measured ratios are significantly lower than the calculated ratios. Increasing the plasma potential (and thereby increasing the ion kinetic energy) by means of a homemade guard electrode with a wide gap further reduces the MAr + /M + ratio. Implementing a skimmer cone designed for high transmission of light ions increases the MAr + abundance. Considering this evidence, the scarcity of MAr + ions is attributed to collision induced dissociation (CID), likely due to a shock wave at the tip of or in the throat of the skimmer cone. - Highlights: ► MAr + ions are less abundant in the mass spectrum than expected from the ICP. ► Increasing the plasma potential reduces their abundance further. ► The extraction lens voltage does not greatly affect the MAr + abundances. ► The weakly-bound MAr + ions are probably dissociated by collisions during extraction.

  1. Zinc, lead and copper in human teeth measured by induced coupled argon plasma atomic emission spectroscopy (ICP-AES)

    Energy Technology Data Exchange (ETDEWEB)

    Chew, L.T.; Bradley, D.A. E-mail: D.A.Bradley@exeter.ac.uk; Mohd, Y.; Jamil, M

    2000-11-15

    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 {mu}g (g tooth mass){sup -1} to 40.5 {mu}g (g tooth mass){sup -1}, with a median of 9.8 {mu}g (g tooth mass){sup -1}. A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 {mu}g (g tooth mass){sup -1} respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.

  2. Spectroscopic characterization of post-cluster argon plasmas during the blast wave expansion

    International Nuclear Information System (INIS)

    Chung, H.-K.; Fournier, K.B.; Edwards, M.J.; Scott, H.A.; Lee, R.W.; Cattolica, R.; Ditmire, T.

    2002-01-01

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 1017 W/cm deposits ∼ 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II-Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma

  3. Spectroscopic Characterization of Post-Cluster Argon Plasmas During the Blast Wave Expansion

    International Nuclear Information System (INIS)

    Ching, H-K.; Fournier, K.B.; Edwards, M.J.; Scott, H.A.; Cattolica, R.; Ditmire, T.; Lee, R.W.

    2002-01-01

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 10 17 W/cm 2 deposits ∼ 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II - Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma

  4. Double plasma system with inductively coupled source plasma and quasi-quiescent target plasma

    International Nuclear Information System (INIS)

    Massi, M.; Maciel, H.S.

    1995-01-01

    Cold plasmas have successfully been used in the plasma-assisted material processing industry. An understanding of the physicochemical mechanisms involved in the plasma-surface interaction is needed for a proper description of deposition and etching processes at material surfaces. Since these mechanisms are dependent on the plasma properties, the development of diagnostic techniques is strongly desirable for determination of the plasma parameters as well as the characterization of the electromagnetic behaviour of the discharge. In this work a dual discharge chamber, was specially designed to study the deposition of thin films via plasma polymerization process. In the Pyrex chamber an inductively coupled plasma can be excited either in the diffuse low density E-mode or in the high density H-mode. This plasma diffuses into the cylindrical stainless steel chamber which is covered with permanent magnets to produce a multidipole magnetic field configuration at the surface. By that means a double plasma is established consisting of a RF source plasma coupled to a quasi-quiescent target plasma. The preliminary results presented here refer to measurements of the profiles of plasma parameters along the central axis of the double plasma apparatus. Additionally a spectrum analysis performed by means of a Rogowski coil probe immersed into the source plasma is also presented. The discharge is made in argon with pressure varying from 10 -2 to 1 torr, and the rf from 10 to 150 W

  5. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  6. Gasdynamic structure of free argon plasma jet

    International Nuclear Information System (INIS)

    Dunder, J.

    1973-01-01

    The paper deals with the experimental results of research conducted on the argon plasma jet. Special miniaturized water cooled Pitot probes (1.45 and 2.5 mm. dia.) were used for the measurement of the total head. The results correlate the length of the arc chamber and other main parameters of the plasma generator with the length of the core and maximum values of the total pressure and velocity in the core of the jet. For the plasma generator used for the experiments the axial and radial distributions of the pressure as well as the generalized volt-ampere dependence were obtained. (author)

  7. Ion energy and angular distributions in inductively coupled Argon RF discharges

    International Nuclear Information System (INIS)

    Woodworth, J.R.; Riley, M.E.; Meister, D.C.

    1996-03-01

    We report measurements of the energies and angular distributions of positive ions in an inductively coupled argon plasma in a GEC reference cell. Use of two separate ion detectors allowed measurement of ion energies and fluxes as a function of position as well as ion angular distributions on the discharge centerline. The inductive drive on our system produced high plasma densities (up to 10 12 /cm 3 electron densities) and relatively stable plasma potentials. As a result, ion energy distributions typically consisted of a single feature well separated from zero energy. Mean ion energy was independent of rf power and varied inversely with pressure, decreasing from 29 eV to 12 eV as pressure increased form 2.4 m Torr to 50 mTorr. Half-widths of the ion angular distributions in these experiments varied from 5 degrees to 12.5 degrees, or equivalently, transverse temperatures varied form 0.2 to 0.5 eV with the distributions broadening as either pressure or RF power were increased

  8. Emission spectroscopy on a supersonically expanding argon/silane plasma

    NARCIS (Netherlands)

    Meeusen, G.J.; Ershov-Pavlov, E.A.; Meulenbroeks, R.F.G.; Sanden, van de M.C.M.; Schram, D.C.

    1992-01-01

    Results from emission spectroscopy measurements on an Ar/SiH/sub 4/ plasma jet which is used for fast deposition of amorphous hydrogenated silicon are presented. The jet is produced by allowing a thermal cascaded arc plasma in argon (I=60 A, V=80 V, Ar flow=60 scc/s and pressure 4*10/sup 4/ Pa) to

  9. A radio-frequency nonequilibrium atmospheric pressure plasma operating with argon and oxygen

    International Nuclear Information System (INIS)

    Moravej, M.; Yang, X.; Hicks, R.F.; Penelon, J.; Babayan, S.E.

    2006-01-01

    A capacitively coupled, atmospheric pressure plasma has been developed that produces a high concentration of reactive species at a gas temperature below 300 deg. C. The concentration of ground-state oxygen atoms produced by the discharge was measured by NO titration, and found to equal 1.2 vol %, or 1.2±0.4x10 17 cm -3 , using 6.0 vol % O 2 in argon at 150 W/cm 3 . The ozone concentration determined at the same conditions was 4.3±0.5x10 14 cm -3 . A model of the gas phase reactions was developed and yielded O atom and O 3 concentrations in agreement with experiment. This plasma source etched Kapton registered at 5.0 μm/s at 280 deg. C and an electrode-to-sample spacing of 1.5 cm. This fast etch rate is attributed to the high O atom flux generated by the plasma source

  10. Analysis of the expanding thermal argon-oxygen plasma gas phase

    NARCIS (Netherlands)

    Hest, van M.F.A.M.; Haartsen, J.R.; Weert, van M.H.M.; Schram, D.C.; Sanden, van de M.C.M.

    2003-01-01

    An expanding thermal argon plasma into which oxygen is injected has been analyzed by means of Langmuir and Pitot probe measurements. Information is obtained on the ion d. profile and the flow pattern in the downstream plasma. A combination of Langmuir and Pitot probe measurements provide information

  11. Analysis of the expanding thermal argon-oxygen plasma gas phase

    International Nuclear Information System (INIS)

    Hest, M F A M van; Haartsen, J R; Weert, M H M van; Schram, D C; Sanden, M C M van de

    2003-01-01

    An expanding thermal argon plasma into which oxygen is injected has been analysed by means of Langmuir and Pitot probe measurements. Information is obtained on the ion density profile and the flow pattern in the downstream plasma. A combination of Langmuir and Pitot probe measurements provide information on the total ion flux generated by the plasma source (cascaded arc). It has been found that the ion diffusion is mainly determined by the background pressure in the expansion vessel and the arc current. The ion density is determined by the total power input into the plasma as well as the gas flow in the plasma source. There is an optimum in the power transfer used for ionization from plasma source to the feed gas. Interaction of oxygen with the plasma results in a decrease in the argon ion density and the plasma beam radius. The recirculation pattern of the downstream plasma has been investigated experimentally using the Pitot probe. Due to the low downstream pressure (10-30 Pa), the conventional compressible Pitot probe theory no longer applies. It is concluded that viscous effects start to play an important role at these low pressures and should be taken into account in the analysis of the Pitot probe measurements

  12. Argon Shrouded Plasma Spraying of Tantalum over Titanium for Corrosion Protection in Fluorinated Nitric Acid Media

    Science.gov (United States)

    Vetrivendan, E.; Jayaraj, J.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2018-02-01

    Argon shrouded plasma spraying (ASPS) was used to deposit a Ta coating on commercially pure Ti (CP-Ti) under inert argon, for dissolver vessel application in the aqueous spent fuels reprocessing plant with high plutonium content. Oxidation during plasma spraying was minimized by shrouding argon system. Porosity and oxide content were controlled by optimizing the spraying parameters, to obtain a uniform and dense Ta coating. The Ta particle temperature and velocity were optimized by judiciously controlling the spray parameters, using a spray diagnostic charge-coupled device camera. The corrosion resistance of the Ta coatings developed by ASPS was investigated by electrochemical studies in 11.5 M HNO3 and 11.5 M HNO3 + 0.05 M NaF. Similarly, the durability of the ASPS Ta coating/substrate was evaluated as per ASTM A262 Practice-C test in boiling nitric acid and fluorinated nitric acid for 240 h. The ASPS Ta coating exhibited higher corrosion resistance than the CP-Ti substrate, as evident from electrochemical studies, and low corrosion rate with excellent coating stability in boiling nitric, and fluorinated nitric acid. The results of the present study revealed that tantalum coating by ASPS is a promising strategy for improving the corrosion resistance in the highly corrosive reprocessing environment.

  13. High efficiency nebulization for helium inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jorabchi, Kaveh; McCormick, Ryan; Levine, Jonathan A.; Liu Huiying; Nam, S.-H.; Montaser, Akbar

    2006-01-01

    A pneumatically-driven, high efficiency nebulizer is explored for helium inductively coupled plasma mass spectrometry. The aerosol characteristics and analyte transport efficiencies of the high efficiency nebulizer for nebulization with helium are measured and compared to the results obtained with argon. Analytical performance indices of the helium inductively coupled plasma mass spectrometry are evaluated in terms of detection limits and precision. The helium inductively coupled plasma mass spectrometry detection limits obtained with the high efficiency nebulizer at 200 μL/min are higher than those achieved with the ultrasonic nebulizer consuming 2 mL/min solution, however, precision is generally better with high efficiency nebulizer (1-4% vs. 3-8% with ultrasonic nebulizer). Detection limits with the high efficiency nebulizer at 200 μL/min solution uptake rate approach those using ultrasonic nebulizer upon efficient desolvation with a heated spray chamber followed by a Peltier-cooled multipass condenser

  14. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  15. Measurement of the argon plasma temperature by use of pyrometer

    International Nuclear Information System (INIS)

    Wang Fanhou; Jing Fuqian

    2002-01-01

    The author describes in detail how to use pyrometer to measure the plasma temperature. The temperatures of shock-generated argon plasmas are given in the present work. Measured results of temperature-pressure curve are compared with calculated results using Saha-Debye-Huckel model, which are in good agreement

  16. The influence of methane/argon plasma composition on the formation of the hydrogenated amorphous carbon films

    International Nuclear Information System (INIS)

    Chen, Hsin-Hung; Liao, Jiunn-Der; Weng, Chih-Chiang; Hsieh, Jui-Fu; Chang, Chia-Wei; Lin, Chao-Hsien; Cho, Ting-Pin

    2011-01-01

    The quality of the a-C:H films was particularly correlated with the mixed ratio of methane/argon plasma. For a constant supply of energy and flowing rate, the optical emission from H α intensity linearly increased with the addition of methane in argon plasma, while that from intensities of radiation of diatmoic radicals (CH*and C 2 *) exponentially decreased. For the a-C:H films, the added methane in argon plasma tended to raise the quantity of hydrogenated carbon or sp 3 C-H structure, which exponentially decreased the nano-hardness and friction coefficient of the films. In contrast, the electric resistance of the films enlarged dramatically with the increase of the methane content in argon plasma. It is therefore advantageous to balance the mechanical properties and electrical resistance of the a-C:H film by adjusting plasma composition in the course of the film-growing process.

  17. Contribution to the evaluation of diffusion coefficients in plasmas containing argon and fluorine

    International Nuclear Information System (INIS)

    Novakovic, N V

    2006-01-01

    The theoretical values of the numerical evaluation of the electron and ion diffusion coefficients in plasmas from mixtures of argon and fluorine are presented. The temperature dependence of the diffusion coefficients for low-pressure (from 0.1 to 1.0 kPa) and low-temperature (from 500 to 5000 K) argon plasmas with 20% and 30% of added fluorine are investigated. These values are results of the applications of the specific numerical model to the evaluation plasma composition and transport coefficients in argon plasma with fluorine as additive. It is assumed that the system is kept under constant pressure and that a corresponding state of local thermodynamical equilibrium (LTE) is attained. Since the LTE can be assumed, a Maxwellian electron distribution function will be adopted. The hypothesis of LTE, which is commonly used in most of the numerical evaluations, is analysed with the modified Debye radius r D *. The binary electron and ion diffusion coefficients are calculated with the equilibrium plasma composition and with the collision frequencies. Strictly speaking, Maxwellian distribution function (in the state LTE) is not valid for low pressure, but in this case with the aid of the modified Debye radius, a Maxwellian f e M is assumed correctly. It is shown that the electron diffusion coefficients are about four orders of magnitude larger than the corresponding overall diffusion coefficients of ions. Both diffusion coefficients are lower in argon plasma with 30% than with 20% of fluorine additives, in the whole temperature range examined

  18. Saturation spectroscopy of an optically opaque argon plasma

    Science.gov (United States)

    Eshel, Ben; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    A pure argon (Ar) plasma formed by a capacitively coupled radio-frequency discharge was analyzed using Doppler-free saturation spectroscopy. The expected line shape was a characteristic of sub-Doppler spectra in the presence of velocity-changing collisions, a narrow Lorentzian centered on a Doppler pedestal, but the observed line shapes contain a multi-peak structure, attributed to opacity of the medium. Laser absorption and inter-modulated fluorescence spectroscopy measurements were made to validate opacity as a driving factor of the observed line shapes. Spectral line shapes are further complicated by the spatial dependence of the pump laser, probe laser and of the absorbing medium, as well as the large absorbance of the transition under investigation. A numerical line shape was derived by accounting for the spatial variation of the pump and probe with a saturated line shape obtained from the rate equations for an equivalent two-level system. This simulated line shape shows good qualitative agreement with the trends observed in the data.

  19. Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma

    International Nuclear Information System (INIS)

    Yin Shiheng; Wang Yingjun; Ren Li; Zhao Lianna; Kuang Tongchun; Chen Hao; Qu Jia

    2008-01-01

    A fluorosilicone acrylate rigid gas permeable (RGP) contact lens was modified via argon plasma to improve surface hydrophilicity and resistance to protein deposition. The influence of plasma treatment on surface chemical structure, hydrophilicity and morphology of RGP lens was investigated by X-ray photoelectron spectrometer (XPS), contact angle measurements and scanning electron microscope (SEM), respectively. The contact angle results showed that the hydrophilicity of the contact lens was improved after plasma treatment. XPS results indicated that the incorporation of oxygen-containing groups on surface and the transformation of silicone into hydrophilic silicate after plasma treatment are the main reasons for the surface hydrophilicity improvement. SEM results showed that argon plasma with higher power could lead to surface etching

  20. E-H mode transition in low-pressure inductively coupled nitrogen-argon and oxygen-argon plasmas

    International Nuclear Information System (INIS)

    Lee, Young Wook; Lee, Hye Lan; Chung, T. H.

    2011-01-01

    This work investigates the characteristics of the E-H mode transition in low-pressure inductively coupled N 2 -Ar and O 2 -Ar discharges using rf-compensated Langmuir probe measurements and optical emission spectroscopy (OES). As the ICP power increases, the emission intensities from plasma species, the electron density, the electron temperature, and the plasma potential exhibit sudden changes. The Ar content in the gas mixture and total gas pressure have been varied in an attempt to fully characterize the plasma parameters. With these control parameters varying, the changes of the transition threshold power and the electron energy distribution function (EEDF) are explored. In N 2 -Ar and O 2 -Ar discharges at low-pressures of several millitorr, the transition thresholds are observed to decrease with Ar content and pressure. It is observed that in N 2 -Ar plasmas during the transition, the shape of the EEDF changes from an unusual distribution with a flat hole near the electron energy of 3 eV in the E mode to a Maxwellian distribution in the H mode. However, in O 2 -Ar plasmas, the EEDFs in the E mode at low Ar contents show roughly bi-Maxwellian distributions, while the EEDFs in the H mode are observed to be nearly Maxwellian. In the E and H modes of O 2 -Ar discharges, the dissociation fraction of O 2 molecules is estimated using optical emission actinometry. During the E-H mode transition, the dissociation fraction of molecules is also enhanced.

  1. Argon plasma jet continuum emission investigation by using different spectroscopic methods

    International Nuclear Information System (INIS)

    Dgheim, J

    2007-01-01

    Radiation and temperature fields of the continuum field are determined by using different spectroscopic methods based on the spectral emission of an argon plasma jet. An interferential filter of bandwidth 2.714 nm centred at a wavelength of 633 nm is used to observe only the continuum emission and to eliminate the self-absorption phenomenon. An optical multichannel analyser (OMA) of an MOS detector is used to measure argon plasma jet volumetric emissivity under atmospheric pressure and high temperatures. An emission spectroscopic method is used to measure the Stark broadening of the hydrogen line H β and to determine the electron density. The local thermodynamic equilibrium is established and its limit is stated. The local electron temperature is determined by two methods (the continuum emission relation and the LTE relations), and the total Biberman factor is measured. The results given by the OMA are compared with those given by the imagery method. At a given wavelength, the Biberman factor, which depends on the electron temperature and the electron density, may serve as an indicator to show where the LTE prevails along the argon plasma jet core length

  2. The calculation of electron density of the non-ideal argon plasma

    International Nuclear Information System (INIS)

    Jiang Ming; Cheng Xinlu; Yang Xiangdong

    2004-01-01

    By the screened hydrogenic model, the paper calculates the electron densities of shock-generated argon plasma with temperature T∼2.0 eV and density of plasma ρ∼0.01 g/cm 3 -0.49 g/cm 3 , and studies the influence on electron density caused by interparticle interaction at the different temperature and density of plasma. (author)

  3. Etching of Niobium in an Argon-Chlorine Capacitively Coupled Plasma

    Science.gov (United States)

    Radovanov, Svetlana; Samolov, Ana; Upadhyay, Janardan; Peshl, Jeremy; Popovic, Svetozar; Vuskovic, Leposava; Applied Materials, Varian Semiconductor Team; Old Dominion University Team

    2016-09-01

    Ion assisted etching of the inner surfaces of Nb superconducting radio frequency (SRF) cavities requires control of incident ion energies and fluxes to achieve the desired etch rate and smooth surfaces. In this paper, we combine numerical simulation and experiment to investigate Ar /Cl2 capacitively coupled plasma (CCP) in cylindrical reactor geometry. Plasma simulations were done in the CRTRS 2D/3D code that self-consistently solves for CCP power deposition and electrostatic potential. The experimental results are used in combination with simulation predictions to understand the dependence of plasma parameters on the operating conditions. Using the model we were able to determine the ion current and flux at the Nb substrate. Our simulations indicate the relative importance of the current voltage phase shift and displacement current at different pressures and powers. For simulation and the experiment we have used a test structure with a pillbox cavity filled with niobium ring-type samples. The etch rate of these samples was measured. The probe measurements were combined with optical emission spectroscopy in pure Ar for validation of the model. The authors acknowledge Dr Shahid Rauf for developing the CRTRS code. Support DE-SC0014397.

  4. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    Science.gov (United States)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a plasma thruster is explored, possibly for a low thrust, high specific impulse mode in a multi-mode helicon thruster. This work could also explain similar potential gradients in expanding helicon plasmas that are ascribed to double layer formation in the literature.

  5. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    International Nuclear Information System (INIS)

    Yin Yunpeng; Sawin, Herbert H.

    2008-01-01

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO 2 ), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide

  6. A simplified model for computing equation of state of argon plasma

    International Nuclear Information System (INIS)

    Wang Caixia; Tian Yangmeng

    2006-01-01

    The paper present a simplified new model of computing equation of state and ionization degree of Argon plasma, which based on Thomas-Fermi (TF) statistical model: the authors fitted the numerical results of the ionization potential calculated by Thomas-Fermi statistical model and gained the analytical function of the potential versus the degree of ionization, then calculated the ionization potential and the average degree of ionization for Argon versus temperature and density in local thermal equilibrium case at 10-1000 eV. The results calculated of this simplified model are basically in agreement with several sets of theory data and experimental data. This simplified model can be used to calculation of the equation of state of plasmas mixture and is expected to have a more wide use in the field of EML technology involving the strongly ionized plasmas. (authors)

  7. Theoretical and experimental comparisons of Gamble 2 argon gas puff experiments

    International Nuclear Information System (INIS)

    Thornhill, J.W.; Young, F.C.; Whitney, K.G.; Davis, J.; Stephanakis, S.J.

    1990-01-01

    A one-dimensional radiative MHD analysis of an imploding argon gas puff plasma is performed. The calculations are set up to approximate the conditions of a series of argon gas puff experiments that were carried out on the NRL Gamble II generator. Annular gas puffs (2.5 cm diameter) are imploded with a 1.2-MA peak driving current for different initial argon mass loadings. Comparisons are made with the experimental results for implosion times, K, L-shell x-ray emission, and energy coupled from the generator to the plasma load. The purpose of these calculations is to provide a foundation from which a variety of physical phenomena which influence the power and total energy of the x-ray emission can be analyzed. Comparisons with similar experimental and theoretical results for aluminum plasmas are discussed

  8. Hall effect in non-ideal plasma of argon and xenon

    International Nuclear Information System (INIS)

    Shilkin, N.S.; Dudin, S.V.; Gryaznov, V.K.; Mintsev, V.B.; Fortov, V.E.

    2003-01-01

    The first data on the measurement of the electron concentration (10 16 -10 20 cm -3 ) of the low-temperature (0.5-1 eV) non-ideal (0.01 -6 -10 -1 ) inert gases plasma are presented. The measurements of the Hall constant and electric conductivity in the non-ideal partially ionized plasma of argon and xenon are carried out through the sounding methods. The plasma generation was accomplished behind the shock waves front through the linear explosive generators. The obtained results are compared with a number of the plasma models [ru

  9. Electrical and spectroscopic characterization of a surgical argon plasma discharge

    International Nuclear Information System (INIS)

    Keller, Sandra; Neugebauer, Alexander; Bibinov, Nikita; Awakowicz, Peter

    2013-01-01

    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  10. Battery-powered pulsed high density inductively coupled plasma source for pre-ionization in laboratory astrophysics experiments.

    Science.gov (United States)

    Chaplin, Vernon H; Bellan, Paul M

    2015-07-01

    An electrically floating radiofrequency (RF) pre-ionization plasma source has been developed to enable neutral gas breakdown at lower pressures and to access new experimental regimes in the Caltech laboratory astrophysics experiments. The source uses a customized 13.56 MHz class D RF power amplifier that is powered by AA batteries, allowing it to safely float at 3-6 kV with the electrodes of the high voltage pulsed power experiments. The amplifier, which is capable of 3 kW output power in pulsed (<1 ms) operation, couples electrical energy to the plasma through an antenna external to the 1.1 cm radius discharge tube. By comparing the predictions of a global equilibrium discharge model with the measured scalings of plasma density with RF power input and axial magnetic field strength, we demonstrate that inductive coupling (rather than capacitive coupling or wave damping) is the dominant energy transfer mechanism. Peak ion densities exceeding 5 × 10(19) m(-3) in argon gas at 30 mTorr have been achieved with and without a background field. Installation of the pre-ionization source on a magnetohydrodynamically driven jet experiment reduced the breakdown time and jitter and allowed for the creation of hotter, faster argon plasma jets than was previously possible.

  11. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    NARCIS (Netherlands)

    Vries, de N.; Palomares, J.M.; Iordanova, E.I.; Veldhuizen, van E.M.; Mullen, van der J.J.A.M.

    2008-01-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined

  12. Enhanced Field Emission from Argon Plasma-Treated Ultra-sharp α-Fe2O3Nanoflakes

    Directory of Open Access Journals (Sweden)

    Zhang JX

    2009-01-01

    Full Text Available Abstract Hematite nanoflakes have been synthesized by a simple heat oxide method and further treated by Argon plasmas. The effects of Argon plasma on the morphology and crystal structures of nanoflakes were investigated. Significant enhancement of field-induced electron emission from the plasma-treated nanoflakes was observed. The transmission electron microscopy investigation shows that the plasma treatment effectively removes amorphous coating and creates plenty of sub-tips at the surface of the nanoflakes, which are believed to contribute the enhancement of emission. This work suggests that plasma treatment technique could be a direct means to improve field-emission properties of nanostructures.

  13. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    Science.gov (United States)

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  14. Characteristics of dust voids in a strongly coupled laboratory dusty plasma

    Science.gov (United States)

    Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.

    2018-05-01

    A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.

  15. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kozue; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of

  16. Effect of argon plasma treatment on the output performance of triboelectric nanogenerator

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Guang-Gui, E-mail: ggcheng@ujs.edu.cn [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Jiang, Shi-Yu; Li, Kai [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Zhang, Zhong-Qiang [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Wang, Ying; Yuan, Ning-Yi [Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Ding, Jian-Ning, E-mail: dingjn@ujs.edu.cn [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou (China); Zhang, Wei [Research Center of Micro/Nano Science and Technology, Jiangsu University, Zhenjiang (China)

    2017-08-01

    Highlights: • Two different kinds of PDMS films were prepared by spin-coated. • The PDMS surface was plasma treated with different power and time. • The output performance of TENG was significantly enhanced by plasma treatment. • Plasma treatment effect has time-efficient, the output declines with store time. - Abstract: Physical and chemical properties of the polymer surface play great roles in the output performance of triboelectric nanogenerator (TENG). Specific texture on the surface of polymer can enlarge the contact area and enhance the power output performance of TENG. In this paper, polydimethylsiloxane (PDMS) films with smooth and micro pillar arrays on the surface were prepared respectively. The surfaces were treated by argon plasma before testing their output performance. By changing treatment parameters such as treating time and plasma power, surfaces with different roughness and their relationship were achieved. The electrical output performances of the assembled TENG for each specimen showed that argon plasma treatment has a significant etching effect on the PDMS surface and greatly strengthen its output performance. The average surface roughness of PDMS film increases with the etching time from 5 mins to 15 mins when the argon plasma power is 60 W. Nevertheless, the average surface roughness is inversely proportional to the treatment time for the power of 90W. When treated with 90 W and 5 mins, many uniform micro pillars appeared on the both PDMS surface, and the output performance of the TENG for plasma treated smooth surface is 2.6 times larger than that before treatment. The output voltage increases from 42 V to 72 V, and the short circuit current increases from 4.2 μA to 8.3 μA after plasma treatment of the micro pillar array surface. However, this plasma treatment has time-efficient due to the hydrophobic recovery property of Ar plasma treated PDMS surface, both output voltage and short circuit current decrease significantly after 3

  17. Observation of Ω mode electron heating in dusty argon radio frequency discharges

    Energy Technology Data Exchange (ETDEWEB)

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany); Matyash, Konstantin [Universitätsrechenzentrum, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2013-08-15

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (α mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as Ω mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  18. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  19. Spatio-temporal dynamics of a pulsed microwave argon plasma: ignition and afterglow

    International Nuclear Information System (INIS)

    Carbone, Emile; Sadeghi, Nader; Vos, Erik; Hübner, Simon; Van Veldhuizen, Eddie; Van Dijk, Jan; Nijdam, Sander; Kroesen, Gerrit

    2015-01-01

    In this paper, a detailed investigation of the spatio-temporal dynamics of a pulsed microwave plasma is presented. The plasma is ignited inside a dielectric tube in a repetitively pulsed regime at pressures ranging from 1 up to 100 mbar with pulse repetition frequencies from 200 Hz up to 500 kHz. Various diagnostic techniques are employed to obtain the main plasma parameters both spatially and with high temporal resolution. Thomson scattering is used to obtain the electron density and mean electron energy at fixed positions in the dielectric tube. The temporal evolution of the two resonant and two metastable argon 4s states are measured by laser diode absorption spectroscopy. Nanosecond time-resolved imaging of the discharge allows us to follow the spatio-temporal evolution of the discharge with high temporal and spatial resolution. Finally, the temporal evolution of argon 4p and higher states is measured by optical emission spectroscopy. The combination of these various diagnostics techniques gives deeper insight on the plasma dynamics during pulsed microwave plasma operation from low to high pressure regimes. The effects of the pulse repetition frequency on the plasma ignition dynamics are discussed and the plasma-off time is found to be the relevant parameter for the observed ignition modes. Depending on the delay between two plasma pulses, the dynamics of the ionization front are found to be changing dramatically. This is also reflected in the dynamics of the electron density and temperature and argon line emission from the plasma. On the other hand, the (quasi) steady state properties of the plasma are found to depend only weakly on the pulse repetition frequency and the afterglow kinetics present an uniform spatio-temporal behavior. However, compared to continuous operation, the time-averaged metastable and resonant state 4s densities are found to be significantly larger around a few kHz pulsing frequency. (paper)

  20. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    Science.gov (United States)

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line.

  1. Urinary nickel: measurement of exposure by inductively coupled plasma argon emission spectrometry.

    Science.gov (United States)

    Koizumi, Chisato; Usuda, Kan; Hayashi, Satsuki; Dote, Tomotaro; Kono, Koichi

    2004-09-01

    Nickel is a rare earth metal and is widely used in modern industry. Its overexposure in human beings can provoke significant effects including lung, cardiovascular and kidney diseases. As an index of occupational exposure, urine is widely used for the monitoring of nickel concentration because it is a minimally invasive method. Recent studies have used atomic absorption spectrometry to measure nickel concentration. In this study, we introduced novel inductively coupled plasma argon emission spectrometry (ICPAES) which enables us to measure multiple elements simultaneously with smaller volume and with lower detection limits compared to conventional atomic absorption emission spectrometry, and we established the new measuring method by determining the appropriate wavelengths for nickel concentration. Furthermore, using the established new measuring method, we investigated the correlation between a single oral administration of nickel and urine elimination in rats. As a result, different concentrations of nickel standard solutions were measured by ICPAES, and among five specific wavelengths of nickel, 221.647 and 231.604 nm were chosen because they had the highest inclines of both signal to background ratio and emission intensity in simple linear regression analysis. Next, by using healthy human urine samples that had not been exposed to nickel, 231.604 nm was determined to be the most appropriate wavelength because it did not present abnormal intensity due to obstacle wavelength. Male Wistar rats received an oral administration of nickel ranging from 0.025 to 250 mg/kg, which is equivalent to 0.0015 - 15% of LD50, and during the following 24 h, urine samples were collected and the nickel concentration was measured by ICPAES. With a single oral administration of nickel, there was an increase in urine nickel concentration in a dose-dependent manner and the appropriate equation was developed. Acute renal failure was not observed in this dosage of oral nickel

  2. An investigation of non-equilibrium effects in thermal argon plasmas

    International Nuclear Information System (INIS)

    Rosado, R.J.

    1981-01-01

    This thesis deals with the study of the validity of the assumption of Local Thermal Equilibrium (LTE) in the description of the parameters of a thermal argon plasma. The aim is twofold. As the studied plasma is close to, but not completely in equilibrium, the author first attempts to obtain a simple description of the plasma in terms of an LTE model in which suitable corrections for the deviations of the plasma parameters from their LTE values is introduced. To this end the plasma parameters are studied by means of a diagnostic method in which the assumption of LTE is not made. The evaluation of the usefulness of this method is the second aim of this thesis. (Auth.)

  3. Numerical study of some operating characteristics for argon induction plasmas

    International Nuclear Information System (INIS)

    Ebihara, K.

    1978-01-01

    Some operating characteristics of argon induction plasmas at atmospheric pressure were obtained numerically by using magnetohydrodynamic equations. From these characteristics we can estimate the general dependency of plasma temperatures on operating conditions for induction plasmas. Calculated relationships between the sustaining electric field strength at the plasma surface and the electric power input show the existence of a minimum value of the field strength, the reason for which is revealed by detailed investigation of the calculated radial temperature distributions. Further, it was found that the minimum increases almost linearly with increasing frequency. In addition, characteristics of the Poynting vector and heat conduction loss at the plasma surface were obtained. Some characteristics obtained here give practical information on the electromagnetic field which is necessary to maintain the steady plasmas

  4. Effect of antenna size on electron kinetics in inductively coupled plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyo-Chang; Chung, Chin-Wook [Department of Electrical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2013-10-15

    Spatially resolved measurements of electron energy distribution functions (EEDFs) are investigated in inductively coupled plasmas with two planar antenna coils. When the plasma is sustained by the antenna with a diameter of 18 cm, the nonlocal kinetics is preserved in the argon gas pressure range from 2 mTorr to 20 mTorr. However, electron kinetics transit from nonlocal kinetics to local kinetics in discharge sustained by the antenna coil with diameter 34 cm. The results suggest that antenna size as well as chamber length are important parameters for the transition of the electron kinetics. Spatial variations of plasma potential, effective electron temperature, and EEDF in terms of total electron energy scale are also presented.

  5. Determination of rare-earth elements, yttrium and scandium in manganese nodules by inductively-coupled argon-plastma emission spectrometry

    Science.gov (United States)

    Fries, T.; Lamothe, P.J.; Pesek, J.J.

    1984-01-01

    A sequential-scanning, inductively-coupled argon plasma emission spectrometer is used for the determination of the rare-earth elements, plus yttrium and scandium, in manganese nodules. Wavelength selection is optimized to minimize spectral interferences from manganese nodule components. Samples are decomposed with mixed acids in a sealed polycarbonate vessel, and elements are quantified without further treatment. Results for U.S. Geological Survey manganese nodule standards A-1 and P-1 had average relative standard deviations of 6.8% and 8.1%, respectively, and results were in good agreement with those obtained by other methods. ?? 1984.

  6. Investigation of supercapacitors with carbon electrodes obtained from argon-acetylene arc plasma

    OpenAIRE

    Kavaliauskas, Žydrūnas

    2010-01-01

    The dissertation examines topics related to the formation of supercapacitors using plasma technology and their analysis. Plasma spray technology was used to form supercapacitors electrodes. Carbon was deposited on stainless steel surface using the atmospheric pressure argon-acetylene plasma. The deposition of nickel oxide on the surface of carbon electrodes was made using magnetron sputtering method. The influence of acetylene amount to the supercapacitors electrodes and the electrical charac...

  7. An argon–nitrogen–hydrogen mixed-gas plasma as a robust ionization source for inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Makonnen, Yoseif; Beauchemin, Diane, E-mail: diane.beauchemin@chem.queensu.ca

    2014-09-01

    Multivariate optimization of an argon–nitrogen–hydrogen mixed-gas plasma for minimum matrix effects, while maintaining analyte sensitivity as much as possible, was carried out in inductively coupled plasma mass spectrometry. In the presence of 0.1 M Na, the 33.9 ± 3.9% (n = 13 elements) analyte signal suppression on average observed in an all-argon plasma was alleviated with the optimized mixed-gas plasma, the average being − 4.0 ± 8.8%, with enhancement in several cases. An addition of 2.3% v/v N{sub 2} in the outer plasma gas, and 0.50% v/v H{sub 2} to the central channel, as a sheath around the nebulizer gas flow, was sufficient for this drastic increase in robustness. It also reduced the background from ArO{sup +} and Ar{sub 2}{sup +} as well as oxide levels by over an order of magnitude. On the other hand, the background from NO{sup +} and ArN{sup +} increased by up to an order of magnitude while the levels of doubly-charged ions increased to 7% (versus 2.7% in an argon plasma optimized for sensitivity). Furthermore, detection limits were generally degraded by 5 to 15 fold when using the mixed-gas plasma versus the argon plasma for matrix-free solution (although they were better for several elements in 0.1 M Na). Nonetheless, the drastically increased robustness allowed the direct quantitative multielement analysis of certified ore reference materials, as well as the determination of Mo and Cd in seawater, without using any matrix-matching or internal standardization. - Highlights: • Addition of N{sub 2} to the plasma gas and H{sub 2} as a sheath gas results in a very robust ICP. • ArO{sup +} and Ar{sub 2}{sup +} background and oxide levels are reduced by over an order of magnitude. • Multielement analysis of rock digests is possible with a simple external calibration. • No internal standardization or matrix-matching is required for accurate analysis. • Cd and Mo were accurately determined in undiluted seawater.

  8. A comparative study of carbon plasma emission in methane and argon atmospheres

    Science.gov (United States)

    Yousfi, H.; Abdelli-Messaci, S.; Ouamerali, O.; Dekhira, A.

    2018-04-01

    The interaction between laser produced plasma (LPP) and an ambient gas is largely investigated by Optical Emission Spectroscopy (OES). The analysis of carbon plasma produced by an excimer KrF laser was performed under controlled atmospheres of methane and argon. For each ambient gas, the features of produced species have been highlighted. Using the time of flight (TOF) analysis, we have observed that the C and C2 exhibit a triple and a double peaks respectively in argon atmosphere in contrast to the methane atmosphere. The evolution of the first peaks of C and C2 follows the plasma expansion, whereas the second peaks move backward, undergoing reflected shocks. It was found that the translational temperature, obtained by Shifted Maxwell Boltzmann distribution function is strongly affected by the nature of ambient gas. The dissociation of CH4 by electronic impact presents the principal approach for explaining the emission of CH radical in reactive plasma. Some chemical reactions have been proposed in order to explain the formation process of molecular species.

  9. Argon plasma sintering of inkjet printed silver tracks on polymer substrates

    NARCIS (Netherlands)

    Reinhold, I.; Hendriks, C.E.; Eckardt, R.; Kranenburg, J.M.; Perelaer, J.; Baumann, R.; Schubert, U.S.

    2009-01-01

    An alternative and selective sintering method for the fabrication of conductive silver tracks on common polymer substrates is presented, by exposure to low-pressure argon plasma. Inkjet printing has been used to pattern a silver nanoparticle ink. This resulted in conductive features with a

  10. Argon plasma treatment of silicon nitride (SiN) for improved antireflection coating on c-Si solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Hemanta; Mitra, Suchismita; Saha, Hiranmay; Datta, Swapan Kumar; Banerjee, Chandan, E-mail: chandanbanerjee74@gmail.com

    2017-01-15

    Highlights: • Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell. • The reduction in reflection due to the formation of a silicon oxynitride/silicon nitride double layer. • EQE reveals a relative increase of 2.72% in J{sub sc} and 4.46% in conversion efficiency. - Abstract: Antireflection properties of argon plasma treated silicon nitride layer and its effect on crystalline silicon solar cell is presented here. Hydrogenated silicon nitride (a-SiN:H) layer has been deposited on a silicon substrate by Plasma Enhanced Chemical Vapour Deposition (PECVD) using a mixture of silane (SiH{sub 4}), ammonia (NH{sub 3}) and hydrogen (H{sub 2}) gases followed by a argon plasma treatment. Optical analysis reveals a significant reduction in reflectance after argon plasma treatment of silicon nitride layer. While FESEM shows nanostructures on the surface of the silicon nitride film, FTIR reveals a change in Si−N, Si−O and N−H bonds. On the other hand, ellipsometry shows the variation of refractive index and formation of double layer. Finally, a c-Si solar cell has been fabricated with the said anti-reflection coating. External quantum efficiency reveals a relative increase of 2.72% in the short circuit current density and 4.46% in conversion efficiency over a baseline efficiency of 16.58%.

  11. Multi-chord fiber-coupled interferometry of supersonic plasma jets (invited)

    International Nuclear Information System (INIS)

    Merritt, Elizabeth C.; Lynn, Alan G.; Gilmore, Mark A.; Thoma, Carsten; Loverich, John; Hsu, Scott C.

    2012-01-01

    A multi-chord fiber-coupled interferometer is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment. The long coherence length of the laser (>10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which both positive and negative phase shift values are observed depending on the ionization fraction. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity (∼15–50 km/s), jet length (∼20–100 cm), and 3D expansion.

  12. Mechanism of the immobilization of surfactants on polymeric surfaces by means of an argon plasma treatment: Influence of UV radiation

    NARCIS (Netherlands)

    Lens, J.P.; Spaay, B.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, Jan

    1999-01-01

    The mechanism of the immobilization of the surfactant sodium 10-undecenoate (C11(:)) on poly(ethylene) (PE) by means of an argon plasma treatment has been investigated. In particular, the influence of the vacuum ultraviolet (UV) radiation emitted by the argon plasma on the immobilization was

  13. Photoionized argon plasmas induced with intense soft x-ray and extreme ultraviolet pulses

    Czech Academy of Sciences Publication Activity Database

    Bartnik, A.; Wachulak, P.; Fok, T.; Węgrzyński, L.; Fiedorowicz, H.; Skrzeczanowski, W.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Dudžák, Roman; Dostál, Jan; Krouský, Eduard; Skála, Jiří; Ullschmied, Jiří; Hřebíček, Jan; Medřík, Tomáš

    2016-01-01

    Roč. 58, č. 1 (2016), č. článku 014009. ISSN 0741-3335 R&D Projects: GA MŠk LM2010014 EU Projects: European Commission(XE) 284464 - LASERLAB-EUROPE Institutional support: RVO:61389021 ; RVO:68378271 Keywords : laser-plasma * plasma radiation * photoionization * Argon plasma * Nd:YAG laser * PALS iodine laser Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (FZU-D) Impact factor: 2.392, year: 2016 http://iopscience.iop.org/article/10.1088/0741-3335/58/1/014009

  14. Heat flux characteristics in an atmospheric double arc argon plasma jet

    International Nuclear Information System (INIS)

    Tu Xin; Yu Liang; Yan Jianhua; Cen Kefa; Cheron, Bruno

    2008-01-01

    In this study, the axial evolution of heat flux excited by a double arc argon plasma jet impinging on a flat plate is determined, while the nonstationary behavior of the heat flux is investigated by combined means of the fast Fourier transform, Wigner distribution, and short-time Fourier transform. Two frequency groups (<1 and 2-10 kHz) are identified in both the Fourier spectrum and the time-frequency distributions, which suggest that the nature of fluctuations in the heat flux is strongly associated with the dynamic behavior of the plasma arc and the engulfment of ambient air into different plasma jet regions

  15. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)], E-mail: pintu@ipr.res.in; Prasad, G.; Sen, A.; Kaw, P.K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2007-09-03

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO{sub 2} dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of {partial_derivative}{omega}/{partial_derivative}k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  16. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P.K.

    2007-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO 2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust-dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects

  17. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    Science.gov (United States)

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2007-09-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and MnO2 dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of ∂ω/∂k<0 are identified as signatures of dust dust correlations. In the high collisional regime dust neutral collisions produce a similar effect and prevent an unambiguous identification of strong coupling effects.

  18. Characterization of a rotating nanoparticle cloud in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Schulze, M; Keudell, A von; Awakowicz, P

    2006-01-01

    Carbon clusters with diameters in the range of 10 to 50 nm are produced by injecting pulses of acetylene into an inductively coupled plasma in argon and helium. The injection causes plasma instability, which becomes visible as an oscillation of the emission intensity. The frequency of this oscillation can be uniquely correlated to the particle diameter. Consequently, the measurement of the oscillation frequency represents a method to determine particle diameters in situ. The oscillation corresponds to the rotation of a localized plasmoid and a particle cloud around the symmetry axis of the reactor. It is assumed that this rotation is driven by the ion wind crossing the interface between the plasmoid and the particle cloud

  19. The influence of nitrogen entrainment on argon plasmas created by the 'Torche à Injection Axiale' (TIA)

    NARCIS (Netherlands)

    Jonkers, J.; Hartgers, A.; Selen, L.J.M.; Mullen, van der J.J.A.M.; Schram, D.C.

    1999-01-01

    When a plasma is sustained in the open air, nitrogen will diffuse into the plasma. Especially for plasmas sustained by the `Torche à Injection Axiale' (TIA) this appears to be the case, since this turbulent jet draws gases from the surroundings. In the argon plasma the entrained nitrogen is probably

  20. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    International Nuclear Information System (INIS)

    Vries, N de; Iordanova, E I; Van Veldhuizen, E M; Mullen, J J A M van der; Palomares, J M

    2008-01-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, n e , is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, T e , is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the n e values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) x 10 19 m -3 , whereas the n e value (2 ± 0.5) x 10 19 m -3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (∼10 20 m -3 ). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the T e values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  1. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vries, N de; Iordanova, E I; Van Veldhuizen, E M; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Palomares, J M [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)], E-mail: j.j.a.m.v.d.Mullen@tue.nl

    2008-10-21

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, n{sub e}, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, T{sub e}, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the n{sub e} values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 {+-} 0.5) x 10{sup 19} m{sup -3}, whereas the n{sub e} value (2 {+-} 0.5) x 10{sup 19} m{sup -3} obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high ({approx}10{sup 20} m{sup -3}). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the T{sub e} values obtained with TS are equal to 13 400 {+-} 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  2. Experimental observation of strong coupling effects on the dispersion of dust acoustic waves in a plasma

    OpenAIRE

    Bandyopadhyay, P.; Prasad, G.; Sen, A.; Kaw, P. K.

    2016-01-01

    The dispersion properties of low frequency dust acoustic waves in the strong coupling regime are investigated experimentally in an argon plasma embedded with a mixture of kaolin and $MnO_2$ dust particles. The neutral pressure is varied over a wide range to change the collisional properties of the dusty plasma. In the low collisional regime the turnover of the dispersion curve at higher wave numbers and the resultant region of $\\partial\\omega/\\partial k < 0$ are identified as signatures of du...

  3. Reduction of plyatomic ion interferences in indictively coupled plasma mass spectrometry with cryogenic desolvation

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Luis C. [Iowa State Univ., Ames, IA (United States)

    1993-09-01

    A desolvation scheme for introducing aqueous and organic samples into an argon inductively coupled plasma is described; the aerosol generated by nebulizer is heated (+140 C) and cooled (-80 C) repeatedly, and the dried aerosol is then injected into the mass spectrometer. Polyatomic ions are greatly suppressed. This scheme was validated with analysis of seawater and urine reference samples. Finally, the removal of organic solvents by cryogenic desolvation was studied.

  4. Computational study of plasma-solid interaction in DC glow discharge in argon plasma at medium pressures

    International Nuclear Information System (INIS)

    Havlickova, E; Bartos, P; Hrach, R

    2007-01-01

    In the presented contribution two groups of techniques of computational physics-fluid modelling and non self-consistent particle technique were used to study plasma-solid interaction in argon plasma. We focused both on the physical processes taking place in the sheath at various pressures and on the problems of computational physics. The attention was given to preparation of two-dimensional fluid models with realistic assumptions about physical processes taking place in plasma during the plasma-solid interaction, further to improvement of the non self-consistent technique of particle modelling, where the external electric field was obtained either from the fluid model or directly from the trajectories of charged particles and finally to efficiency of individual algorithms

  5. Deviation from local thermodynamic equilibrium in a cesium-seeded argon plasma

    International Nuclear Information System (INIS)

    Stefanov, B.; Zarkova, L.

    1985-11-01

    The possibility of deviations from local thermodynamic equilibrium of a cesium seeded argon plasma has been analyzed. A four level model of cesium has been employed. Overpopulations of the ground state and the first excited state as well as the corresponding reduction of the electron density are calculated for cylindrical discharge structures by solving stationary rate equations. Numerical results are presented. These results indicate that in a large regime of plasma conditions the LTE assumption is valid for electron temperatures larger than 3000 K. (orig.)

  6. Room-temperature atomic layer deposition of ZrO{sub 2} using tetrakis(ethylmethylamino)zirconium and plasma-excited humidified argon

    Energy Technology Data Exchange (ETDEWEB)

    Kanomata, K. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan); Tokoro, K.; Imai, T.; Pansila, P.; Miura, M.; Ahmmad, B.; Kubota, S.; Hirahara, K. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Hirose, F., E-mail: fhirose@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)

    2016-11-30

    Highlights: • RT-ALD of ZrO{sub 2} is developed using TEMAZ and plasma-excited humidified argon. • The plasma-excited humidified argon is effective in oxidizing the TEMAZ saturated ZrO{sub 2}. • We discuss the reaction mechanism of the RT-ZrO{sub 2} ALD. - Abstract: Room-temperature atomic layer deposition (ALD) of ZrO{sub 2} is developed with tetrakis(ethylmethylamino)zirconium (TEMAZ) and a plasma-excited humidified argon. A growth per cycle of 0.17 nm/cycle at room temperature is confirmed, and the TEMAZ adsorption and its oxidization on ZrO{sub 2} are characterized by IR absorption spectroscopy with a multiple internal reflection mode. TEMAZ is saturated on a ZrO{sub 2} surface with exposures exceeding ∼2.0 × 10{sup 5} Langmuir (1 Langmuir = 1.0 × 10{sup −6} Torr s) at room temperature, and the plasma-excited humidified argon is effective in oxidizing the TEMAZ-adsorbed ZrO{sub 2} surface. The IR absorption spectroscopy suggests that Zr-OH works as an adsorption site for TEMAZ. The reaction mechanism of room-temperature ZrO{sub 2} ALD is discussed in this paper.

  7. Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro

    International Nuclear Information System (INIS)

    Hoentsch, Maxi; Barbara Nebe, J; Von Woedtke, Thomas; Weltmann, Klaus-Dieter

    2012-01-01

    The application of physical plasma to living tissues is expected to promote wound healing by plasma disinfection and stimulation of tissue regeneration. However, the effects of plasma on healthy cells must be studied and understood. In our experiments we used an argon plasma jet (kINPen®09) to gain insights into time-dependent plasma effects on cell attachment, viability and tight junction formation in vitro. Murine epithelial cells mHepR1 were suspended in complete cell culture medium and were irradiated with argon plasma (direct approach) for 30, 60 and 120 s. Suspecting that physical plasma may exert its effect via the medium, cell culture medium alone was first treated with argon plasma (indirect approach) and immediately afterwards, cells were added and also cultured for 24 h. Cell morphology and vitality were verified using light microscopy and an enzyme-linked immunosorbent assay. Already after 30 s of treatment the mHepR1 cells lost their capability to adhere and the cell vitality decreased with increasing treatment time. Interestingly, the same inhibitory effect was observed in the indirect approach. Furthermore, the argon plasma-treated culture medium-induced large openings of the cell's tight junctions, were verified by the zonula occludens protein ZO-1, which we observed for the first time in confluently grown epithelial cells. (paper)

  8. Confluence or independence of microwave plasma bullets in atmospheric argon plasma jet plumes

    Science.gov (United States)

    Li, Ping; Chen, Zhaoquan; Mu, Haibao; Xu, Guimin; Yao, Congwei; Sun, Anbang; Zhou, Yuming; Zhang, Guanjun

    2018-03-01

    Plasma bullet is the formation and propagation of a guided ionization wave (streamer), normally generated in atmospheric pressure plasma jet (APPJ). In most cases, only an ionization front produces in a dielectric tube. The present study shows that two or three ionization fronts can be generated in a single quartz tube by using a microwave coaxial resonator. The argon APPJ plumes with a maximum length of 170 mm can be driven by continuous microwaves or microwave pulses. When the input power is higher than 90 W, two or three ionization fronts propagate independently at first; thereafter, they confluence to form a central plasma jet plume. On the other hand, the plasma bullets move independently as the lower input power is applied. For pulsed microwave discharges, the discharge images captured by a fast camera show the ionization process in detail. Another interesting finding is that the strongest lightening plasma jet plumes always appear at the shrinking phase. Both the discharge images and electromagnetic simulations suggest that the confluence or independent propagation of plasma bullets is resonantly excited by the local enhanced electric fields, in terms of wave modes of traveling surface plasmon polaritons.

  9. Plasma breakdown in a capacitively-coupled radiofrequency argon discharge

    Science.gov (United States)

    Smith, H. B.; Charles, C.; Boswell, R. W.

    1998-10-01

    Low pressure, capacitively-coupled rf discharges are widely used in research and commercial ventures. Understanding of the non-equilibrium processes which occur in these discharges during breakdown is of interest, both for industrial applications and for a deeper understanding of fundamental plasma behaviour. The voltage required to breakdown the discharge V_brk has long been known to be a strong function of the product of the neutral gas pressure and the electrode seperation (pd). This paper investigates the dependence of V_brk on pd in rf systems using experimental, computational and analytic techniques. Experimental measurements of V_brk are made for pressures in the range 1 -- 500 mTorr and electrode separations of 2 -- 20 cm. A Paschen-style curve for breakdown in rf systems is developed which has the minimum breakdown voltage at a much smaller pd value, and breakdown voltages which are significantly lower overall, than for Paschen curves obtained from dc discharges. The differences between the two systems are explained using a simple analytic model. A Particle-in-Cell simulation is used to investigate a similar pd range and examine the effect of the secondary emission coefficient on the rf breakdown curve, particularly at low pd values. Analytic curves are fitted to both experimental and simulation results.

  10. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  11. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Cohen, Samuel A.

    2009-01-01

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ∼ 200-300 λ D,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength

  12. Real-time control of electron density in a capacitively coupled plasma

    International Nuclear Information System (INIS)

    Keville, Bernard; Gaman, Cezar; Turner, Miles M.; Zhang Yang; Daniels, Stephen; Holohan, Anthony M.

    2013-01-01

    Reactive ion etching (RIE) is sensitive to changes in chamber conditions, such as wall seasoning, which have a deleterious effect on process reproducibility. The application of real time, closed loop control to RIE may reduce this sensitivity and facilitate production with tighter tolerances. The real-time, closed loop control of plasma density with RF power in a capacitively coupled argon plasma using a hairpin resonance probe as a sensor is described. Elementary control analysis shows that an integral controller provides stable and effective set point tracking and disturbance attenuation. The trade off between performance and robustness may be quantified in terms of one parameter, namely the position of the closed loop pole. Experimental results are presented, which are consistent with the theoretical analysis.

  13. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Cheol [Department of Nanoscale Semiconductor Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Kim, Hyun-Jun; Lee, Hyo-Chang; Chung, Chin-Wook, E-mail: joykang@hanyang.ac.kr [Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2015-12-15

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10% by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.

  14. Surface modification of ultra-high molecular weight polyethylene (UHMWPE) by argon plasma

    International Nuclear Information System (INIS)

    Liu Hengjun; Pei Yanan; Xie Dong; Deng Xingrui; Leng, Y.X.; Jin Yong; Huang Nan

    2010-01-01

    In this work, argon (Ar) plasma generated by microwave electron cyclotron resonance (MWECR) has been used to modify the UHMWPE in order to increase the wear resistance. The results showed that the wettability, anti-scratch and wear resistance of UHMWPE treated by the Ar plasma had been improved, comparing with native UHMWPE. The FTIR and XPS spectra indicated the improvement of wettability should come from the oxygen based functional groups generated on the surface of UHMWPE. The improvement of anti-scratch and wear resistance may come from the enhancement of crosslinking of UHMWPE by Ar plasma treatment.

  15. Role of recombination, ionization, diffusion and convection in a decaying argon plasma

    International Nuclear Information System (INIS)

    Gleizes, A.

    1981-01-01

    A theoretical study of a decaying argon arc plasma, at atmospheric pressure, has been performed to determine the plasma state during the decay. The method is based on the transport equations combined with the knowledge of the electron density previously measured. The comparison between calculated and experimental results allows the analysis of the main processes responsible for the particle density evolutions. It is shown that departures from LTE are important and that thermal equilibrium is not even achieved in the plasma. This result is due to the role of elastic collisions between electrons and heavy particles in the electron energy balance. (orig.)

  16. Some metals determination in beers by atomic emission spectrometry of induced argon plasma

    International Nuclear Information System (INIS)

    Matsushige, I.

    1990-01-01

    It was made the identification and determination of metals in brazilian bottled and canned beer, using atomic emission spectrometry with d.c. are and argon coupled plasma excitation sources. The elements Co, Cr, Cu, Fe, Pb and Zn were determined in beer samples, after treatment with HNO sub(3) conc. /H sub(2) O sub(2) (30%). In the determination of Co, Cr, Cu, Pb and Zn and alternative method using HNO sub(3) conc. /O sub(3) was proved be useful. The results obtained for Co, Cr, Cu, Fe, Pb and Zn were below the limits established by brazilian legislation, showing the good quality of the beer concerning the metals. The results of this work were requested by the previous Ministerio do Meio Ambiente e Urbanismo in order to contribute to review the brazilian legislation in foods and beverages about metals contents. (author)

  17. Fluid model of inductively coupled plasma etcher based on COMSOL

    International Nuclear Information System (INIS)

    Cheng Jia; Ji Linhong; Zhu Yu; Shi Yixiang

    2010-01-01

    Fluid dynamic models are generally appropriate for the investigation of inductively coupled plasmas. A commercial ICP etcher filled with argon plasma is simulated in this study. The simulation is based on a multiphysical software, COMSOL(TM), which is a partial differential equation solver. Just as with other plasma fluid models, there are drift-diffusion approximations for ions, the quasi-neutrality assumption for electrons movements, reduced Maxwell equations for electromagnetic fields, electron energy equations for electron temperatures and the Navier-Stokes equation for neutral background gas. The two-dimensional distribution of plasma parameters are shown at 200 W of power and 1.33 Pa (10 mTorr) of pressure. Then the profile comparison of the electron number density and temperature with respect to power is illustrated. Finally we believe that there might be some disagreement between the predicted values and the real ones, and the reasons for this difference would be the Maxwellian eedf assumption and the lack of the cross sections of collisions and the reaction rates. (semiconductor physics)

  18. Phenomenological modeling of argon Z-pinch implosions

    International Nuclear Information System (INIS)

    Whitney, K.G.; Thornhill, J.W.; Deeney, C.; LePell, P.D.; Coulter, M.C.

    1992-01-01

    The authors investigate some of the effects of plasma turbulence on the K-shell emission dynamics of argon gas puff Z-pinch implosions. The increases that turbulence produces in the plasma viscosity, heat conductivity, and electrical resistivity are modeled phenomenologically using multipliers for these quantities in the MHD calculations. The choice of multipliers was made by benchmarking a 1-D MHD simulation of a Physics International Inc. argon gas puff experiment against the inferred densities and temperatures achieved in the experiment. These multipliers were then used to study the parametric dependence of the K-shell emission on the energy input to the argon plasma for a fixed mass loading. Comparisons between turbulent and non-turbulent argon implosions are made

  19. Titanium oxidation by rf inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2014-01-01

    The development of titanium dioxide (TiO 2 ) films in the rutile and anatase phases is reported. The films have been obtained from an implantation/diffusion and sputtering process of commercially pure titanium targets, carried out in up to 500 W plasmas. The experimental outcome is of particular interest, in the case of anatase, for atmospheric pollution degradation by photocatalysis and, as to the rutile phase, for the production of biomaterials required by prosthesis and implants. The reactor employed consists in a cylindrical pyrex-like glass vessel inductively coupled to a 13.56 MHz RF source. The process takes place at a 5×10 −2 mbar pressure with the target samples being biased from 0 to -3000 V DC. The anatase phase films were obtained from sputtering the titanium targets over glass and silicon electrically floated substrates placed 2 cm away from the target. The rutile phase was obtained by implantation/diffusion on targets at about 700 °C. The plasma was developed from a 4:1 argon/oxygen mixture for ∼5 hour processing periods. The target temperature was controlled by means of the bias voltage and the plasma source power. The obtained anatase phases did not require annealing after the plasma oxidation process. The characterization of the film samples was conducted by means of x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy

  20. Energy loss of argon in a laser-generated carbon plasma.

    Science.gov (United States)

    Frank, A; Blazević, A; Grande, P L; Harres, K; Hessling, T; Hoffmann, D H H; Knobloch-Maas, R; Kuznetsov, P G; Nürnberg, F; Pelka, A; Schaumann, G; Schiwietz, G; Schökel, A; Schollmeier, M; Schumacher, D; Schütrumpf, J; Vatulin, V V; Vinokurov, O A; Roth, M

    2010-02-01

    The experimental data presented in this paper address the energy loss determination for argon at 4 MeV/u projectile energy in laser-generated carbon plasma covering a huge parameter range in density and temperature. Furthermore, a consistent theoretical description of the projectile charge state evolution via a Monte Carlo code is combined with an improved version of the CasP code that allows us to calculate the contributions to the stopping power of bound and free electrons for each projectile charge state. This approach gets rid of any effective charge description of the stopping power. Comparison of experimental data and theoretical results allows us to judge the influence of different plasma parameters.

  1. Relaxation rates studies in an argon cylindrical plasma

    International Nuclear Information System (INIS)

    Hernandez, M.A.; Dengra, A.; Colomer, V.

    1986-01-01

    The single Langmuir probe method has been used to determine the relaxation rates of the electron density and temperature in an argon afterglow dc cylindrical plasma. The ion-electron recombination was found to be the fundamental mechanism of density decay during the early afterglow while the ambipolar diffusion controlles the density decay for later afterglow. Electron temperature cooling curves have been interpreted via electron-neutral collisons. Measurements of the electron-ion recombination and the ambipolar diffusion coefficients have been made, as well as of the electron-neutral collision frequency and the momentum transfer cross sections. Good agreement is obtained with previously published data. (author)

  2. Electrical aspects of argon micro-cell plasma with applications in bio-medical technology

    NARCIS (Netherlands)

    Horiuchi, Y.; Dijk, van J.; Makabe, T.

    2003-01-01

    Argon micro-cell plasma (MCP) is believed to be a viable tool for performing micro-surgery. The non-thermal nature of the discharge allows an effective treatment of pathological tissue without causing thermal damage to its surroundings. This bio-medical application imposes a number of design

  3. Predictive modelling of the impact of argon injection on H-mode plasmas in JET with the RITM code

    International Nuclear Information System (INIS)

    Unterberg, B; Kalupin, D; Tokar', M Z; Corrigan, G; Dumortier, P; Huber, A; Jachmich, S; Kempenaars, M; Kreter, A; Messiaen, A M; Monier-Garbet, P; Ongena, J; Puiatti, M E; Valisa, M; Hellermann, M von

    2004-01-01

    Self-consistent modelling of energy and particle transport of the plasma background and impurities has been performed with the code RITM for argon seeded high density H-mode plasmas in JET. The code can reproduce both the profiles in the plasma core and the structure of the edge pedestal. The impact of argon on core transport is found to be small; in particular, no significant change in confinement is observed in both experimental and modelling results. The same transport model, which has been used to reproduce density peaking in the radiative improved mode in TEXTOR, reveals a flat density profile in Ar seeded JET H-mode plasmas in agreement with the experimental observations. This behaviour is attributed to the rather flat profile of the safety factor in the bulk of H-mode discharges

  4. Properties of hotspots in plasma focus discharges operating in hydrogen-argon mixtures

    International Nuclear Information System (INIS)

    Silva, P; Favre, M

    2002-01-01

    We have investigated the properties of hotspots formed in low energy plasma focus (PF) discharges operating in hydrogen-argon mixtures, at 140 kA current level. A combination of filtered pinhole and slit-wire camera is used to measure the hotspot size and temperature. The results show that the best conditions for reproducible and localized hotspot formation are obtained by adjusting the base pressure in such a way that the mass load allows the time of first radial collapse to coincide with peak current. When the PF is operated with 20% argon content, rather uniform hotspots, of 115 μm characteristic size and 300 eV characteristic temperature, are produced with a better than 80% reproducibility in their axial localization. The electron density in the hotspots is estimated to be ∼10 20 cm -3 . Calculations performed with a CRE code indicate that a significant fraction of the radiation is emitted in the 3.2 to 3.88 keV region, corresponding to K α emission from highly ionized argon

  5. Argon-plasma treatment in benign metastasizing leiomyoma of the lung: A case report

    Directory of Open Access Journals (Sweden)

    A. Bugalho

    2010-11-01

    Full Text Available Benign metastasizing leiomyomas of the lung are rare smooth muscle cells tumours. We report the case of a 48 year-old female who was evaluated due to persistent cough, progressive dyspnoea and constitutional symptoms. Chest computed tomography revealed a left endobronchial mass, multiple parenchyma nodules and a pleural effusion. Bronchial biopsy histological features were consistent with benign metastasizing leiomyoma. The patient was successfully treated with argon-plasma and mechanical debulking. There was no disease relapse in the last four years. Resumo: Os leiomiomas benignos metastizantes pulmonares são tumores raros de células musculares lisas. Uma doente de 48 anos foi avaliada devido a tosse persistente, dispneia progressiva e sintomas constitucionais. A tomografia computorizada do tórax revelou uma massa endobrônquica à esquerda, múltiplos nódulos do parênquima pulmonar e derrame pleural. As características histológicas da biopsia brônquica foram consistentes com o diagnóstico de leiomioma benigno metastizante. A doente foi submetida a coagulação árgon-plasma e desobstrução mecânica com eficácia terapêutica. Verificou-se estabilidade clínica nos últimos quatro anos. Keywords: Benign metastasizing leiomyoma, Lung neoplasms, Diagnosis, Bronchoscopy, Management, Argon-plasma treatment, Palavras-chave: Leiomioma benigno metastizante, Neoplasias pulmonares, Diagnóstico, Broncoscopia, Tratamento, Tratamento árgon-plasma

  6. Simulation of Main Plasma Parameters of a Cylindrical Asymmetric Capacitively Coupled Plasma Micro-Thruster using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Amelia eGreig

    2015-01-01

    Full Text Available Computational fluid dynamics (CFD simulations of a radio-frequency (13.56 MHz electro-thermal capacitively coupled plasma (CCP micro-thruster have been performed using the commercial CFD-ACE+ package. Standard operating conditions of a 10 W, 1.5 Torr argon discharge were used to compare with previously obtained experimental results for validation. Results show that the driving force behind plasma production within the thruster is ion-induced secondary electrons ejected from the surface of the discharge tube, accelerated through the sheath to electron temperatures up to 33.5 eV. The secondary electron coefficient was varied to determine the effect on the discharge, with results showing that full breakdown of the discharge did not occur for coefficients coefficients less than or equal to 0.01.

  7. Mass spectra and ionization temperatures in an argon-nitrogen inductively coupled plasma

    International Nuclear Information System (INIS)

    Houk, R.S.; Montaser, A.; Fassel, V.A.

    1983-01-01

    Positive ions were extracted from the axial channel of an inductively coupled plasma (ICP) in which the outer gas flow was Ar, N 2 , or a mixture of Ar and N 2 . Addition of N 2 to the outer gas decreases the electron number density (n/sub e/) in the axial channel. Ar +2 , O 2 + , and ArH + react with N-containing species in the plasma and/or during the ion extraction process. Ar + remains abundant even if there is no Ar in the outer gas, which indicates the probable occurrence of charge transfer reactions between N 2 + and Ar. The present work corroborates two general concepts upon which several theories of theorigin of suprathermal ionization in ICPs are based: (a) species are physically transported from the induction region to the axial channel; and (b) these species may react with a ionize neutral species in the axial channel. Ionization temperatures (T/sub ion/) measured from the ratio Cd + /I + were 5750 to 6700 K for a N 2 outer flow ICP a forward power of 1.2 kW. This T/sub ion/ range is significantly below that obtained for an Ar outer gas ICP under otherwise similar operating parameters

  8. Effect of the levitating microparticle cloud on radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Mitic, S.; Pustylnik, M. Y.; Klumov, B. A.; Morfill, G. E.

    2010-01-01

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  9. Theoretical investigation of thermophysical properties in two-temperature argon-helium thermal plasma

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip; Singh, Gurpreet

    2011-01-01

    The thermophysical properties of argon-helium thermal plasma have been studied in the temperature range from 5000 to 40 000 K at atmospheric pressure in local thermodynamic equilibrium and non-local thermodynamic equilibrium conditions. Two cases of thermal plasma considered are (i) ground state plasma in which all the atoms and ions are assumed to be in the ground state and (ii) excited state plasma in which atoms and ions are distributed over various possible excited states. The influence of electronic excitation and non-equilibrium parameter θ = T e /T h on thermodynamic properties (composition, degree of ionization, Debye length, enthalpy, and total specific heat) and transport properties (electrical conductivity, electron thermal conductivity, and thermal diffusion ratio) have been studied. Within the framework of Chapman-Enskog method, the higher-order contributions to transport coefficient and their convergence are studied. The influence of different molar compositions of argon-helium plasma mixture on convergence of higher-orders is investigated. Furthermore, the effect of different definitions of Debye length has also been examined for electrical conductivity and it is observed that electrical conductivity with the definition of Debye length (in which only electrons participate in screening) is less than that of the another definition (in which both the electrons and ions participate in screening) and this deviation increases with electron temperature. Finally, the effect of lowering of ionization energy is examined on electron number density, Debye length, and higher-order contribution to electrical conductivity. It is observed that the lowering of the ionization energy affects the electron transport-properties and consequently their higher-order contributions depending upon the value of the non-equilibrium parameter θ.

  10. Treatment of tracheal mucoepidermoid carcinoma by argon plasma coagulation during pregnancy.

    Science.gov (United States)

    Kesrouani, Assaad; Dabar, Georges; Rahal, Samir; Ghorra, Claude

    2015-05-01

    Mucoepidermoid carcinoma of the tracheobronchial tree is a rare airway tumor (cesarean section. We report the first case to be treated by Argon-Plasma Coagulation (APC) in pregnancy. A 35-year-old Caucasian woman G1P0, at 27 weeks of gestation was admitted to the emergency department because of hemoptysis and severe dyspnea. Bronchoscopy and biopsies diagnosed primary tracheal mucoepidermoid carcinoma. Following an episode of tracheal bleeding, she was intubated. After thorough explanations to the family and obtaining informed consent, therapeutic bronchoscopy, under general anesthesia using a rigid bronchoscope, was performed. The tumor was cored out with the tip of the bronchoscope and removed with an alligator forceps. The tumor bed was coagulated with APC. The obstetrical team was ready to intervene in case of maternal emergency. Immediate follow-up was good, and she left the hospital 4 days later. She delivered at 39 weeks of gestation by cesarean section because of dystocia. Five years later, the patient is doing well without any signs or symptoms of recurrence. Pediatric follow-up is normal. Argon Plasma Coagulation for treatment of mucoepidermoid tracheal carcinoma is feasible during pregnancy. Reporting this case could lead to less aggressive management of mucoepidermoid carcinoma in pregnant patients.

  11. Characterization of an Atmospheric-Pressure Argon Plasma Generated by 915 MHz Microwaves Using Optical Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Robert Miotk

    2017-01-01

    Full Text Available The paper presents the investigations of an atmospheric-pressure argon plasma generated at 915 MHz microwaves using the optical emission spectroscopy (OES. The 915 MHz microwave plasma was inducted and sustained in a waveguide-supplied coaxial-line-based nozzleless microwave plasma source. The aim of presented investigations was to estimate parameters of the generated plasma, that is, excitation temperature of electrons Texc, temperature of plasma gas Tg, and concentration of electrons ne. Assuming that excited levels of argon atoms are in local thermodynamic equilibrium, Boltzmann method allowed in determining the Texc temperature in the range of 8100–11000 K. The temperature of plasma gas Tg was estimated by comparing the simulated spectra of the OH radical to the measured one in LIFBASE program. The obtained Tg temperature ranged in 1200–2800 K. Using a method based on Stark broadening of the Hβ line, the concentration of electrons ne was determined in the range from 1.4 × 1015 to 1.7 × 1015 cm−3, depending on the power absorbed by the microwave plasma.

  12. Argon plasma coagulation for rectal bleeding after prostate brachytherapy

    International Nuclear Information System (INIS)

    Smith, Stephen; Wallner, Kent; Dominitz, Jason A.; Han, Ben; True, Lawrence; Sutlief, Steven; Billingsley, Kevin

    2001-01-01

    Purpose: To better define the efficacy and safety of argon plasma coagulation (APC), specifically for brachytherapy-related proctitis, we reviewed the clinical course of 7 patients treated for persistent rectal bleeding. Approximately 2-10% of prostate cancer patients treated with 125 I or 103 Pd brachytherapy will develop radiation proctitis. The optimum treatment for patients with persistent bleeding is unclear from the paucity of available data. Prior reports lack specific dosimetric information, and patients with widely divergent forms of radiation were grouped together in the analyses. Methods and Materials: Seven patients were treated with APC at the Veterans Affairs Puget Sound Health Care System and the University of Washington from 1997 to 1999 for persistent rectal bleeding due to prostate brachytherapy-related proctitis. Four patients received supplemental external beam radiation, delivered by a four-field technique. A single gastroenterologist at the Veterans Affairs Puget Sound Health Care System treated 6 of the 7 patients. If the degree of proctitis was limited, all sites of active bleeding were coagulated in symptomatic patients. An argon plasma coagulator electrosurgical system was used to administer treatments every 4-8 weeks as needed. The argon gas flow was set at 1.6 L/min, with an electrical power setting of 40-45 W. Results: The rectal V100 (the total rectal volume, including the lumen, receiving the prescription dose or greater) for the 7 patients ranged from 0.13 to 4.61 cc. Rectal bleeding was first noticed 3-18 months after implantation. APC (range 1-3 sessions) was performed 9-22 months after implantation. Five patients had complete resolution of their bleeding, usually within days of completing APC. Two patients had only partial relief from bleeding, but declined additional APC therapy. No patient developed clinically evident progressive rectal wall abnormalities after APC, (post-APC follow-up range 4-13 months). Conclusions: Most

  13. The measurement of argon metastable atoms in the barrier discharge plasma

    Science.gov (United States)

    Ghildina, Anna R.; Mikheyev, Pavel Anatolyevich; Chernyshov, Aleksandr Konstantinovich; Lunev, Nikolai Nikolaevich; Azyazov, Valeriy Nikolaevich

    2018-04-01

    The mandatory condition for efficient operation of an optically-pumped all-rare-gas laser (OPRGL) is the presence of rare gas metastable atoms in the discharge plasma with number density of the order of 1012-1013 cm-3. This requirement mainly depends on the choice of a discharge system. In this study the number density values of argon metastable atoms were obtained in the condition of the dielectric-barrier discharge (DBD) at an atmospheric pressure.

  14. Modeling of magnetically enhanced capacitively coupled plasma sources: Ar discharges

    International Nuclear Information System (INIS)

    Kushner, Mark J.

    2003-01-01

    Magnetically enhanced capacitively coupled plasma sources use transverse static magnetic fields to modify the performance of low pressure radio frequency discharges. Magnetically enhanced reactive ion etching (MERIE) sources typically use magnetic fields of tens to hundreds of Gauss parallel to the substrate to increase the plasma density at a given pressure or to lower the operating pressure. In this article results from a two-dimensional hybrid-fluid computational investigation of MERIE reactors with plasmas sustained in argon are discussed for an industrially relevant geometry. The reduction in electron cross field mobility as the magnetic field increases produces a systematic decrease in the dc bias (becoming more positive). This decrease is accompanied by a decrease in the energy and increase in angular spread of the ion flux to the substrate. Similar trends are observed when decreasing pressure for a constant magnetic field. Although for constant power the magnitudes of ion fluxes to the substrate increase with moderate magnetic fields, the fluxes decreased at larger magnetic fields. These trends are due, in part, to a reduction in the contributions of more efficient multistep ionization

  15. Plasma and BIAS Modeling: Self-Consistent Electrostatic Particle-in-Cell with Low-Density Argon Plasma for TiC

    Directory of Open Access Journals (Sweden)

    Jürgen Geiser

    2011-01-01

    processes. In this paper we present a new model taken into account a self-consistent electrostatic-particle in cell model with low density Argon plasma. The collision model are based of Monte Carlo simulations is discussed for DC sputtering in lower pressure regimes. In order to simulate transport phenomena within sputtering processes realistically, a spatial and temporal knowledge of the plasma density and electrostatic field configuration is needed. Due to relatively low plasma densities, continuum fluid equations are not applicable. We propose instead a Particle-in-cell (PIC method, which allows the study of plasma behavior by computing the trajectories of finite-size particles under the action of an external and self-consistent electric field defined in a grid of points.

  16. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    International Nuclear Information System (INIS)

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-01

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent (c) . The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  17. Inductively coupled plasma as atomization, excitation and ionization sources in analytical atomic spectrometry

    International Nuclear Information System (INIS)

    Kawaguchi, Hiroshi

    1996-01-01

    Studies on inductively coupled plasma (ICP) for atomic emission and mass spectrometry accomplished in our laboratory since 1978 are reviewed. In emission spectrometry, the characteristics of the plasma are studied concerning the spatial profiles of spectral line intensity, axial profiles of gas and excitation temperatures, spectral line widths and matrix effect. The studies are particularly emphasized on the instrumentation such as developments of plasma generator, emission spectrometers, water-cooled torches and sample introduction methods. A slew-scan type spectrometer developed in these works represents a predecessor of the current commercial spectrometers. An ICP mass spectrometer was first developed in Japan in this laboratory in 1984. Non-spectroscopic interference of this method was found to have the correlation with the atomic weight of the matrix element. Plasma gases other than argon such as nitrogen and oxygen were used for the ICP to evaluate their performance in mass spectrometry as for the sensitivity and interferences. (author). 63 refs

  18. Integral simulation of the creation and expansion of a transonic argon plasma

    International Nuclear Information System (INIS)

    Peerenboom, K S C; Goedheer, W J; Van Dijk, J; Van der Mullen, J J A M

    2010-01-01

    A transonic argon plasma is studied in an integral simulation where both the plasma creation and expansion are incorporated in the same model. This integral approach allows for simulation of expanding plasmas where the Mach number is not known a priori. Results of this integral simulation are validated with semi-analytical models. Inside the creation region the results for the electron temperature, the heavy particle temperature and the electron density are compared with a global model of the creation region. In the expansion region, the simulation results of the compressible flow field are compared with predictions for the shock position. Both the results inside the creation region as well as in the expansion region are in good agreement with the semi-analytical models.

  19. Endobronchial Electrocautery and Argon Plasma Coagulation: A Practical Approach

    Directory of Open Access Journals (Sweden)

    Alain Tremblay

    2004-01-01

    Full Text Available The present review covers the technical and practical aspects of endobronchial electrocautery, including argon plasma coagulation, which have great potential for widespread use by pulmonologists around the world. The various electrocautery modes, power settings and electrode probes are described in detail, and the authors' clinical and technical approach is demonstrated with a narrative description and brief case presentations. Malignant airway obstruction, hemoptysis, web-like stenosis, stent related granulation tissue and early lung carcinomas are the most common indications for treatment. Advantages of electrocautery, such as low cost, rapid effect, safety and ease of use, are contrasted to other endobronchial therapeutic modalities. Published experience with electrocautery is reviewed.

  20. Calculations on charge state and energy loss of argon ions in partially and fully ionized carbon plasmas.

    Science.gov (United States)

    Barriga-Carrasco, Manuel D; Casas, David; Morales, Roberto

    2016-03-01

    The energy loss of argon ions in a target depends on their velocity and charge density. At the energies studied in this work, it depends mostly on the free and bound electrons in the target. Here the random-phase approximation is used for analyzing free electrons at any degeneracy. For the plasma-bound electrons, an interpolation between approximations for low and high energies is applied. The Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler et al. is used to determine its equilibrium charge state Q(eq). This latter criterion implies that the equilibrium charge state depends slightly on the electron density and temperature of the plasma. On the other hand, the effective charge Q(eff) is obtained as the ratio between the energy loss of the argon ion and that of the proton for the same plasma conditions. This effective charge Q(eff) is larger than the equilibrium charge state Q(eq) due to the incorporation of the BK charge distribution. Though our charge-state estimations are not exactly the same as the experimental values, our energy loss agrees quite well with the experiments. It is noticed that the energy loss in plasmas is higher than that in the same cold target of about, ∼42-62.5% and increases with carbon plasma ionization. This confirms the well-known enhanced plasma stopping. It is also observed that only a small part of this energy loss enhancement is due to an increase of the argon charge state, namely only ∼2.2 and 5.1%, for the partially and the fully ionized plasma, respectively. The other contribution is connected with a better energy transfer to the free electrons at plasma state than to the bound electrons at solid state of about, ∼38.8-57.4%, where higher values correspond to a fully ionized carbon plasma.

  1. Nonlinear phenomena in the interaction of microwaves with the low-temperature argon plasma flux

    International Nuclear Information System (INIS)

    Armand, N.A.; Lisitskaya, A.A.; Rogashkov, S.A.; Rogashkova, A.I.; Chmil', A.I.; Shustin, E.G.

    1982-01-01

    Theoretical and experimental investigations of nonlinear effects arising during the passing of SHF waves across an argon plasma jet flowing from an arc plasmatron have been carried on. It is shown that under conditions of the radiowave propagation through low temperature plasma moving across the direction of the wave propagation modes of both the wave self-focusing and its nonlinear asymmetrical refaction can be accomplished. The effect of the formation and propagation of the additional ionization region in a microwave flow initiated with plasma independently produced in the region of the maximum amplitude of the SHF field has been experimentally discovered [ru

  2. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters

    International Nuclear Information System (INIS)

    Adrouche, N.

    2006-09-01

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne 9+- argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne 9+ with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne 9+ beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  3. Waves generated in the vicinity of an argon plasma gun in the ionosphere

    Science.gov (United States)

    Cahill, L. J., Jr.; Arnoldy, R. L.; Lysak, R. L.; Peria, W.; Lynch, K. A.

    1993-01-01

    Wave and particle observations were made in the close vicinity of an argon plasma gun carned to over 600 km altitude on a sounding rocket. The gun was carned on a subpayload, separated from the main payload early in the flight. Twelve-second argon ion ejections were energized alternately with a peak energy of 100 or 200 eV. They produced waves, with multiple harmonics, in the range of ion cyclotron waves, 10 to 1000 Hz at rocket altitudes. Many of these waves could not be identified as corresponding to the cyclotron frequencies of any of the ions, argon or ambient, known to be present. In addition, the wave frequencies were observed to rise and fall and to change abruptly during a 12-s gun operation. The wave amplitudes, near a few hundred Hertz, were of the order of O. 1 V/m. Some of the waves may be ion-ion hybrid waves. Changes in ion populations were observed at the main payload and at the subpayload during gun operations. A gun-related, field-aligned, electron population also appeared.

  4. Spectroscopic and probe measurements of the electron temperature in the plasma of a pulse-periodic microwave discharge in argon

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V., E-mail: vvandreev@mail.ru; Vasileska, I., E-mail: ivonavasileska@yahoo.com; Korneeva, M. A., E-mail: korneevama@mail.ru [Peoples’ Friendship University of Russia (Russian Federation)

    2016-07-15

    A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10{sup –4} to 4 × 10{sup –3} Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.

  5. Cylindrical stationary striations in surface wave produced plasma columns of argon

    Science.gov (United States)

    Kumar, Rajneesh; Kulkarni, Sanjay V.; Bora, Dhiraj

    2007-12-01

    Striations are a good example of manifestation of a glow discharge. In the present investigation, stationary striations in the surface wave produced plasma column are formed. Physical parameters (length, number, etc.) of such striations can be controlled by operating parameters. With the help of bifurcation theory, experimental results are explained by considering two-step ionization in the surface wave discharge mechanism in argon gas. It is also observed that the bifurcation parameter is a function of input power, working pressure, and tube radius.

  6. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters; Diagnostic du plasma de la source d'ions ECR SIMPA par spectroscopie X, Collision d'ions neon hydrogenoides avec des agregats d'argon

    Energy Technology Data Exchange (ETDEWEB)

    Adrouche, N

    2006-09-15

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne{sup 9+-} argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne{sup 9+} with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne{sup 9+} beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  7. A study of the interference of cesium and phosphate in the low power inductively coupled radiofrequency argon plasma using spatially resolved emission and absorption measurements, ch. 4

    International Nuclear Information System (INIS)

    Kornblum, G.R.

    1977-01-01

    The literature on interferences in the radio frequency inductively coupled atmospheric argon plasma (ICP) is reviewed. Even for the most extensively investigated interferences of aluminum, phosphate and alkali elements on calcium, the studies are mostly descriptive. Inter-pretation of these data is impeded by conflicting results, the absence of thermal equilibrium and the lack of radially resolved observations. The present study of a low-power ICP $ KW) utilizes the Abel inversion technique for emission and absorption measurements of atom and ion lines to clarify the mechanism of interferences on calcium and magnesium due to phosphate and cesium. Under conditions of large carrier gas flow (4.5 l/min) the pronounced interferences are the result of three combined effects: volatilization interference, a change in excitation temperature and a shift in the ionization equilibrium. At lower carrier gas flow (1.4 l/min) the interferences are markedly reduced but still due to the same three effects. The relative preponderance of a particular type of interference depends upon the height of observation and upon the particular combination of analyte and interferent considered

  8. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure

    Science.gov (United States)

    Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.

    2018-05-01

    Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.

  9. Spectroscopic evaluation of the effect of the microparticles on radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Mitic, S; Pustylnik, M Y; Morfill, G E

    2009-01-01

    Axial distributions of 1s excited states of argon were measured in a radiofrequency (RF) discharge by a self-absorption method. Experiments were performed in the PK-3+ chamber, designed for microgravity experiments in complex (dusty) plasmas on board the International Space Station. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. Distributions, measured at the same discharge conditions in a microparticle-free discharge and a discharge containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  10. Electrical conductivity and charge carrier screening in weakly non-ideal argon plasmas

    International Nuclear Information System (INIS)

    Guenther, K.; Lang, S.; Radtke, R.

    1983-01-01

    A pulsed argon discharge as a stable source of weakly non-ideal plasmas is described in connection with the diagnostic necessities for conductivity measurements. The parameters overlap the range for stationary arcs and allow comparison with measurements in cascade arcs. The measured conductivities are explained using the binary collision model considering collisions with neutrals, excited atoms, and ions. A relation between the screening parameter and non-ideality is proposed which should be valid for all elements. (author)

  11. Electrical conductivity and charge carrier screening in weakly non-ideal argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Lang, S; Radtke, R [Akademie der Wissenschaften der DDR, Jena. Zentralinstitut fuer Elektronenphysik

    1983-07-14

    A pulsed argon discharge as a stable source of weakly non-ideal plasmas is described in connection with the diagnostic necessities for conductivity measurements. The parameters overlap the range for stationary arcs and allow comparison with measurements in cascade arcs. The measured conductivities are explained using the binary collision model considering collisions with neutrals, excited atoms, and ions. A relation between the screening parameter and non-ideality is proposed which should be valid for all elements.

  12. Non-monotonic behavior of electron temperature in argon inductively coupled plasma and its analysis via novel electron mean energy equation

    Science.gov (United States)

    Zhao, Shu-Xia

    2018-03-01

    In this work, the behavior of electron temperature against the power in argon inductively coupled plasma is investigated by a fluid model. The model properly reproduces the non-monotonic variation of temperature with power observed in experiments. By means of a novel electron mean energy equation proposed for the first time in this article, this electron temperature behavior is interpreted. In the overall considered power range, the skin effect of radio frequency electric field results in localized deposited power density, responsible for an increase of electron temperature with power by means of one parameter defined as power density divided by electron density. At low powers, the rate fraction of multistep and Penning ionizations of metastables that consume electron energy two times significantly increases with power, which dominates over the skin effect and consequently leads to the decrease of temperature with power. In the middle power regime, a transition region of temperature is given by the competition between the ionizing effect of metastables and the skin effect of electric field. The power location where the temperature alters its trend moves to the low power end as increasing the pressure due to the lack of metastables. The non-monotonic curve of temperature is asymmetric at the short chamber due to the weak role of skin effect in increasing the temperature and tends symmetric when axially prolonging the chamber. Still, the validity of the fluid model in this prediction is estimated and the role of neutral gas heating is guessed. This finding is helpful for people understanding the different trends of temperature with power in the literature.

  13. Spectroscopic study of atmospheric pressure 915 MHz microwave plasma at high argon flow rate

    International Nuclear Information System (INIS)

    Miotk, R; Hrycak, B; Jasinski, M; Mizeraczyk, J

    2012-01-01

    In this paper results of optical emission spectroscopic (OES) study of atmospheric pressure microwave 915 MHz argon plasma are presented. The plasma was generated in microwave plasma source (MPS) cavity-resonant type. The aim of research was determination of electron excitation temperature T exc gas temperature Tg and electron number density n e . All experimental tests were performed with a gas flow rate of 100 and 200 l/min and absorbed microwave power PA from 0.25 to 0.9 kW. The emission spectra at the range of 300 – 600 nm were recorded. Boltzmann plot method for argon 5p – 4s and 5d – 4p transition lines allowed to determine T exc at level of 7000 K. Gas temperature was determined by comparing the measured and simulated spectra using LIFBASE program and by analyzing intensities of two groups of unresolved rotational lines of the OH band. Gas temperature ranged 600 – 800 K. The electron number density was determined using the method based on the Stark broadening of hydrogen H β line. The measured n e rang ed 2 × 10 15 − 3.5×10 15 cm −3 , depending on the absorbed microwave power. The described MPS works very stable with various working gases at high flow rates, that makes it an attractive tool for different gas processing.

  14. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    Science.gov (United States)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-01

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.

  15. Influence of the low-frequency source parameters on the plasma characteristics in a dual frequency capacitively coupled plasma reactor: Two dimensional simulations

    Institute of Scientific and Technical Information of China (English)

    Xiang Xu; Hao Ge; Shuai Wang; Zhongling Dai; Younian Wang; Aimin Zhu

    2009-01-01

    A two-dimensional (2D) fluid model is presented to study the discharge of argon in a dual frequency capacitively coupled plasma (CCP) reactor. We are interested in the influence of low-frequency (LF) source parameters such as applied voltage amplitudes and low frequencies on the plasma characteristics. In this paper, the high frequency is set to 60 MHz with voltage 50 V. The simulations were carried out for low frequencies of 1, 2 and 6 MHz with LF voltage 100 V, and for LF voltages of 60, 90 and 120 V with low frequency 2 MHz. The results of 2D distributions of electric field and ion density, the ion flux impinging on the substrate and the ion energy on the powered electrode are shown. As the low frequency increases, two sources become from uncoupling to coupling, When two sources are uncoupling, the increase in LF has little impact on the plasma characteristics, but when two sources are coupling, the increase in LF decreases the uniformities of ion density and ion flux noticeably. It is also found that with the increase in LF voltage, the uniformities in the radial direction of ion density distribution and ion flux at the powered electrode decreases significantly, and the energy of ions bombarding on the powered electrode increases significantly.

  16. Emission spectroscopy of argon ferrocene mixture jet in a low pressure plasma reactor

    International Nuclear Information System (INIS)

    Tiwari, N.; Tak, A.K.; Chakravarthy, Y.; Shukla, A.; Meher, K.C.; Ghorui, S.; Thiyagarajan, T.K.

    2015-01-01

    Emission spectroscopy is employed to measure the plasma temperature and species identification in a reactor used for studying homogenous nucleation and growth of iron nano particle. Reactor employs segmented non transferred plasma torch mounted on water cooled cylindrical chamber. The plasma jet passes through graphite nozzle and expands in low pressure reactor. Ferrocene is fed into the nozzle where it mixes with Argon plasma jet. A high resolution spectrograph (SHAMROCK 303i, resolution 0.06 nm) has been used to record the spectra over a wide range. Identification of different emission lines has been done using NIST database. Lines from (700 to 860nm) were considered for calculation of temperature. Spectra were recorded for different axial location, pressure and power. Temperature was calculated using Maxwell Boltzman plot method. Variation in temperature with pressure and location is presented and possible reasons for different behaviour are explored. (author)

  17. Argon ion implantation inducing modifications in the properties of benzene plasma polymers

    International Nuclear Information System (INIS)

    Rangel, E.C.; Cruz, N.C.; Santos, D.C.R.; Algatti, M.A.; Mota, R.P.; Honda, R.Y.; Silva, P.A.F.; Costa, M.S.; Tabacniks, M.H.

    2002-01-01

    Benzene plasma polymer films were bombarded with Ar ions by plasma immersion ion implantation. The treatments were performed using argon pressure of 3 Pa and 70 W of applied power. The substrate holder was polarized with high voltage negative pulses (25 kV, 3 Hz). Exposure time to the immersion plasma, t, was varied from 0 to 9000 s. Optical gap and chemical composition of the samples were determined by ultraviolet-visible and Rutherford backscattering spectroscopies, respectively. Film wettability was investigated by the contact angle between a water drop and the film surface. Nanoindentation technique was employed in the hardness measurements. It was observed growth in carbon and oxygen concentrations while there was decrease in the concentration of H atoms with increasing t. Furthermore, film hardness and wettability increased and the optical gap decreased with t. Interpretation of these results is proposed in terms of the chain crosslinking and unsaturation

  18. Determination of gas temperature and thermometric species in inductively coupled plasmas by emission and diode laser absorption

    International Nuclear Information System (INIS)

    Bol'shakov, Alexander A; Cruden, Brett A; Sharma, Surendra P

    2004-01-01

    A vertical cavity surface-emitting laser diode (VCSEL) was used as a spectrally tunable emission source for measurements of the radial-integrated gas temperature inside an inductively coupled plasma reactor. The data were obtained by profiling the Doppler-broadened absorption of metastable Ar atoms at 763.51 nm in argon and argon/nitrogen plasmas (3%, 45%, and 90% N 2 in Ar) at pressures of 0.5-70 Pa and inductive powers of 100 and 300 W. The results were compared to the rotational temperature derived from the N 2 emission at the (0,0) vibrational transition of the C 3 Π u -B 3 Π g system. The differences in integrated rotational and Doppler temperatures were attributed to non-uniform spatial distributions of both temperature and thermometric species (Ar * and N 2 *) that varied depending on the conditions. A two-dimensional, three-temperature fluid plasma simulation was employed to explain these differences. This work should facilitate further development of a miniature sensor for non-intrusive acquisition of data (temperature and densities of multiple plasma species) during micro- and nano-fabrication plasma processing, thus enabling diagnostic-assisted continuous optimization and advanced control over the processes. Such sensors would also enable us to track the origins and pathways of damaging contaminants, thereby providing real-time feedback for adjustment of processes. Our work serves as an example of how two line-of-sight integrated temperatures derived from different thermometric species make it possible to characterize the radial non-uniformity of the plasma

  19. Determination of gas temperature and thermometric species in inductively coupled plasmas by emission and diode laser absorption

    Energy Technology Data Exchange (ETDEWEB)

    Bol' shakov, Alexander A; Cruden, Brett A; Sharma, Surendra P [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2004-11-01

    A vertical cavity surface-emitting laser diode (VCSEL) was used as a spectrally tunable emission source for measurements of the radial-integrated gas temperature inside an inductively coupled plasma reactor. The data were obtained by profiling the Doppler-broadened absorption of metastable Ar atoms at 763.51 nm in argon and argon/nitrogen plasmas (3%, 45%, and 90% N{sub 2} in Ar) at pressures of 0.5-70 Pa and inductive powers of 100 and 300 W. The results were compared to the rotational temperature derived from the N{sub 2} emission at the (0,0) vibrational transition of the C {sup 3}{pi}{sub u}-B {sup 3}{pi} {sub g} system. The differences in integrated rotational and Doppler temperatures were attributed to non-uniform spatial distributions of both temperature and thermometric species (Ar{sup *} and N{sub 2}*) that varied depending on the conditions. A two-dimensional, three-temperature fluid plasma simulation was employed to explain these differences. This work should facilitate further development of a miniature sensor for non-intrusive acquisition of data (temperature and densities of multiple plasma species) during micro- and nano-fabrication plasma processing, thus enabling diagnostic-assisted continuous optimization and advanced control over the processes. Such sensors would also enable us to track the origins and pathways of damaging contaminants, thereby providing real-time feedback for adjustment of processes. Our work serves as an example of how two line-of-sight integrated temperatures derived from different thermometric species make it possible to characterize the radial non-uniformity of the plasma.

  20. Diagnostics of the influence of levitating microparticles on the radiofrequency argon plasma

    International Nuclear Information System (INIS)

    Pustylnik, Mikhail Y.; Mitic, Slobodan; Klumov, Boris A.; Morfill, Gregor E.

    2010-01-01

    The effect of a levitating cloud of microparticles on the parameters of a radiofrequency (RF) plasma has been studied by means of two experimental techniques. Axial distributions of 1 s excited states of argon were measured by a self-absorption method. A correction of a standard self-absorption method for the extinction of the light by the levitating microparticles is proposed. In addition the electron temperature was estimated using the optical emission spectroscopy. Measurements at the same discharge conditions in a microparticle-free discharge and discharge, containing a cloud of levitating microparticles, revealed the non-local influence of the microparticle cloud on the discharge plasma. The most probable cause of this influence is the disturbance of the ionization balance by the levitating microparticles.

  1. Experimental investigation of standing wave effect in dual-frequency capacitively coupled argon discharges: role of a low-frequency source

    Science.gov (United States)

    Zhao, Kai; Liu, Yong-Xin; Kawamura, E.; Wen, De-Qi; Lieberman, M. A.; Wang, You-Nian

    2018-05-01

    It is well known that the plasma non-uniformity caused by the standing wave effect has brought about great challenges for plasma material processing. To improve the plasma uniformity, a low-frequency (LF) power source is introduced into a 100 MHz very-high-frequency (VHF) capacitively coupled argon plasma reactor. The effect of the LF parameters (LF voltage amplitude ϕ L and LF source f L) on the radial profile of plasma density has been investigated by utilizing a hairpin probe. The result at a low pressure (1 Pa) is compared to the one obtained by a 2D fluid-analytical capacitively coupled plasma model, showing good agreement in the plasma density radial profile. The experimental results show that the plasma density profile exhibits different dependences on ϕ L and f L at different gas pressures/electrode driven types (i.e., the two rf sources are applied on one electrode (case I) and separate electrodes (case II)). At low pressures (e.g., 8 Pa), the pronounced standing wave effect revealed in a VHF discharge can be suppressed at a relatively high ϕ L or a low f L in case I, because the HF sheath heating is largely weakened due to strong modulation by the LF source. By contrast, ϕ L and f L play insignificant roles in suppressing the standing wave effect in case II. At high pressures (e.g., 20 Pa), the opposite is true. The plasma density radial profile is more sensitive to ϕ L and f L in case II than in case I. In case II, the standing wave effect is surprisingly enhanced with increasing ϕ L at higher pressures; however, the center-high density profile caused by the standing wave effect can be compensated by increasing f L due to the enhanced electrostatic edge effect dominated by the LF source. In contrast, the density radial profile shows a much weaker dependence on ϕ L and f L in case I at higher pressures. To understand the different roles of ϕ L and f L, the electron excitation dynamics in each case are analyzed based on the measured spatio

  2. Coupling of Plasmas and Liquids

    Science.gov (United States)

    Lindsay, Alexander David

    Plasma-liquids have exciting applications to several important socioeconomic areas, including agriculture, water treatment, and medicine. To realize their application potential, the basic physical and chemical phenomena of plasma-liquid systems must be better understood. Additionally, system designs must be optimized in order to maximize fluxes of critical plasma species to the liquid phase. With objectives to increase understanding of these systems and optimize their applications, we have performed both comprehensive modeling and experimental work. To date, models of plasma-liquids have focused on configurations where diffusion is the dominant transport process in both gas and liquid phases. However, convection plays a key role in many popular plasma source designs, including jets, corona discharges, and torches. In this dissertation, we model momentum, heat, and neutral species mass transfer in a convection-dominated system based on a corona discharge. We show that evaporative cooling produced by gas-phase convection can lead to a significant difference between gas and liquid phase bulk temperatures. Additionally, convection induced in the liquid phase by the gas phase flow substantially increases interfacial mass transfer of hydrophobic species like NO and NO2. Finally, liquid kinetic modeling suggests that concentrations of highly reactive species like OH and ONOOH are several orders of magnitude higher at the interface than in the solution bulk. Subsequent modeling has focused on coupling discharge physics with species transport at and through the interface. An assumption commonly seen in the literature is that interfacial loss coefficients of charged species like electrons are equal to unity. However, there is no experimental evidence to either deny or support this assumption. Without knowing the true interfacial behavior of electrons, we have explored the effects on key plasma-liquid variables of varying interfacial parameters like the electron and energy

  3. Instabilities in strongly coupled plasmas

    CERN Document Server

    Kalman, G J

    2003-01-01

    The conventional Vlasov treatment of beam-plasma instabilities is inappropriate when the plasma is strongly coupled. In the strongly coupled liquid state, the strong correlations between the dust grains fundamentally affect the conditions for instability. In the crystalline state, the inherent anisotropy couples the longitudinal and transverse polarizations, and results in unstable excitations in both polarizations. We summarize analyses of resonant and non-resonant, as well as resistive instabilities. We consider both ion-dust streaming and dust beam-plasma instabilities. Strong coupling, in general, leads to an enhancement of the growth rates. In the crystalline phase, a resonant transverse instability can be excited.

  4. Application of atmospheric-pressure argon plasma jet for bread mold decontamination

    Science.gov (United States)

    Thonglor, P.; Amnuaycheewa, P.

    2017-09-01

    Atmospheric-pressure argon plasma (APAP) is a promising non-thermal technology for microbial control and prevention minimally affecting quality of foods. Effect of APAP jet on the growth of bread molds, including two Aspergillus sp., Rhizopus stolonifer, and Penicillium roqueforti, isolated from white bread were investigated. The molds were isolated, verified, cultured to fully grown on potato dextrose agar (PDA), and subsequently treated with APAP jet using plasma generating power at 24 W for 5, 10, and 20 min, respectively. The inhibition of mold growth was investigated by comparing fungal dry weights and the effect on fungal cell structure was observed using compound light microscope. The results indicated that the 20-min treatment time is most effective in retarding the growth of the three bread molds. However, this level of generating power did not lead to destruction of the cellular structures for all the four fungi. Plasma generating power and treatment time are significant parameters determining the success of bread mold decontamination and further investigation on real bread matrix is needed.

  5. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    Science.gov (United States)

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  6. Detection, in real time, of metallic pollutants present in the industrial atmospheric effluents by inductively coupled plasma torch; Detection, en temps reel, d'elements metalliques presents dans les rejets atmospheriques industriels par torche a plasma a couplage inductif

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, D.

    2001-12-15

    This work is devoted to the development of a process of detection in real time of metallic pollutants present in industrial atmospheric effluents. The method of measurement is the atomic spectrometry of emission coupled to an ICP torch (Inductively coupled Plasma). The technology of the fluidized beds is used as system of introduction of the metallic particles into the ICP torch, the interest of the principle of detection resting on the stamping from the usual procedure of calibration of the analytical system. The results are presented in two parts. The first relates to the diagnosis of plasmas formed with various mixtures of N{sub 2}/O{sub 2} which one corresponds to pure air, the second presents the setting process of detection in real time starting from the intensities ratios of the spectral lines of the metallic element with those of the plasma-producing element (argon or pure air) The study of the diagnosis of plasmas made up of mixtures N{sub 2}/O{sub 2} relates to the determination of the atomic excitation temperature from the spectral lines of the copper element and the evaluation of the thermal disequilibrium q Te/Th. This last is obtained by considering the mass enthalpy of various mixtures N{sub 2}/O{sub 2}. The existence of a small thermal disequilibrium is highlighted. The study of detection in real time by ICP torch, without calibration of the system, is based on three points: - spectroscopic data processing to determine the values of the intensities ratios of spectral lines; - the insertion of the intensities ratios and the characteristics of plasma (argon or pure air) into a calculation code of plasma composition; - the comparison of the mass flux values of the metallic pollutants, in real time, obtained by experiments with those resulting from the elutriation calculation, term which defines the phenomenon of entrainment of the particles out of the fluidized bed. The results made it possible to show the similarity of the analytical system response

  7. Speciation of arsenic in human nail and hair from arsenic-affected area by HPLC-inductively coupled argon plasma mass spectrometry

    International Nuclear Information System (INIS)

    Mandal, Badal Kumar; Ogra, Yasumitsu; Suzuki, Kazuo T.

    2003-01-01

    Nail and hair are rich in fibrous proteins, i.e., α-keratins that contain abundant cysteine residues (up to 22% in nail and 10-14% in hair). Although they are metabolically dead materials in the epidermis, the roots are highly influenced by the health status of the living beings and their analyses are used as a tool to monitor occupational and environmental exposure to toxic elements. The aims of the present study are to speciate arsenicals in human nail and hair and also to judge whether they should be used as a biomarker to arsenic (As) exposure and/or toxicity. All human fingernail and hair samples (n = 47) were collected from the As-affected area of West Bengal, India. Speciation of arsenicals in water extracts of fingernails and hair at 90 degree sign C was carried out by HPLC-inductively coupled argon plasma mass spectrometer (ICP MS). Fingernails contained iAs III (58.6%), iAs V (21.5), MMA V (7.7), DMA III (9.2), and DMA V (3.0), and hair contained iAs III (60.9%), iAs V (33.2), MMA V (2.2), and DMA V (3.6). Fingernails contained DMA III , but hair did not. The higher percentage of iAs III both in fingernails and hair than that of iAs V suggests more affinity of iAs III to keratin. Although all arsenicals in fingernails and hair correlate to As exposure positively, As speciation in fingernails seems to be more correlated with arsenism than that in hair. Exogenous contamination is a confounding factor for hair to consider it as a biomarker, whereas this is mostly absent in fingernails, which recommends it to be a better biomarker to arsenic exposure. DMA III content in fingernails and DMA V contents in both fingernails and hair could be the biomarker to As exposure

  8. Laser-induced fluorescence measurements of argon and xenon ion velocities near the sheath boundary in 3 ion species plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Chi-Shung; Hershkowitz, Noah [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Severn, Greg [Department of Physics, University of San Diego, San Diego, California 92110 (United States); Baalrud, Scott D. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2016-05-15

    The Bohm sheath criterion is studied with laser-induced fluorescence in three ion species plasmas using two tunable diode lasers. Krypton is added to a low pressure unmagnetized DC hot filament discharge in a mixture of argon and xenon gas confined by surface multi-dipole magnetic fields. The argon and xenon ion velocity distribution functions are measured at the sheath-presheath boundary near a negatively biased boundary plate. The potential structures of the plasma sheath and presheath are measured by an emissive probe. Results are compared with previous experiments with Ar–Xe plasmas, where the two ion species were observed to reach the sheath edge at nearly the same speed. This speed was the ion sound speed of the system, which is consistent with the generalized Bohm criterion. In such two ion species plasmas, instability enhanced collisional friction was demonstrated [Hershkowitz et al., Phys. Plasmas 18(5), 057102 (2011).] to exist which accounted for the observed results. When three ion species are present, it is demonstrated under most circumstances the ions do not fall out of the plasma at their individual Bohm velocities. It is also shown that under most circumstances the ions do not fall out of the plasma at the system sound speed. These observations are also consistent with the presence of the instabilities.

  9. Argon Kα measurement on DIII endash D by Ross filters technique (abstract)

    International Nuclear Information System (INIS)

    Snider, R.T.; Bogatu, I.N.; Brooks, N.H.; Wade, M.R.

    1999-01-01

    Techniques to reduce the heat flux to the divertor plates in tokamak power plants and the consequent erosion of, and subsequent damage to the divertor target plates include the injection of impurities such as argon, that can dissipate the energy (through radiative or collisional processes) before it reaches the target plates. An important issue with this type of scheme is poisoning of the plasma core by the impurities introduced in the divertor region. Subsequently, there is a desire to measure the profiles of the injected impurities in the core. X-ray Ross filters with an effective narrow band pass centered on the argon Kα line at 3.2 keV, have been installed on two of the existing x-ray arrays on DIII endash D in order to help determine the argon concentration profiles. Emissivity profiles of the Kα lines and the emissivity profiles for the argon enhanced continuum can be inferred from the inverted filtered x-ray brightness signals if T e , n e , and Ar 18+ profiles are known. The MIST code is used to couple the filtered x-ray signals to the time dependent measurements of T e and n e . Further, the Ar 16+ profiles measured by charge transfer spectroscopy, are used as a constraint on the MIST code runs to calculate Ar 18+ profiles and unfold the argon emissivity profiles. A discussion of the Ross filters, the DIII endash D argon data, and the data analysis scheme for inferring argon emissivity profiles will be discussed. Estimates of the total argon concentration in the core determined from this technique in DIII endash D argon puff experiments will be presented. copyright 1999 American Institute of Physics

  10. Cold plasma interactions with plants: Morphing and movements of Venus flytrap and Mimosa pudica induced by argon plasma jet.

    Science.gov (United States)

    Volkov, Alexander G; Xu, Kunning G; Kolobov, Vladimir I

    2017-12-01

    Low temperature (cold) plasma finds an increasing number of applications in biology, medicine and agriculture. In this paper, we report a new effect of plasma induced morphing and movements of Venus flytrap and Mimosa pudica. We have experimentally observed plasma activation of sensitive plant movements and morphing structures in these plants similar to stimulation of their mechanosensors in vivo. Application of an atmospheric pressure argon plasma jet to the inside or outside of a lobe, midrib, or cilia in Dionaea muscipula Ellis induces trap closing. Treatment of Mimosa pudica by plasma induces movements of pinnules and petioles similar to the effects of mechanical stimulation. We have conducted control experiments and simulations to illustrate that gas flow and UV radiation associated with plasma are not the primary reasons for the observed effects. Reactive oxygen and nitrogen species (RONS) produced by cold plasma in atmospheric air appear to be the primary reason of plasma-induced activation of phytoactuators in plants. Some of these RONS are known to be signaling molecules, which control plants' developmental processes. Understanding these mechanisms could promote plasma-based technology for plant developmental control and future use for plant protection from pathogens. Our work offers new insight into mechanisms which trigger plant morphing and movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Numerical Analysis of Amirkabir Plasma Focus (APF) Device for Neon and Argon Gases

    Science.gov (United States)

    Niknam Sharak, M.; Goudarzi, S.; Raeisdana, A.; Jafarabadi, M.

    2013-04-01

    In this paper the experimental results in different working conditions in Amirkabir Plasma Focus (APF) Device have been compared with the numerical results of a two-dimensional simulation code based on Lee's model. The experiments were done with pure Neon and Argon as operating gases over a wide range of working conditions (gas pressures and discharge voltages). It is observed that by a proper choice for values of the efficiency factors, comparison between numerical and experimental results shows a good agreement.

  12. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    International Nuclear Information System (INIS)

    Liu, Wen-Yao; Xu, Yong; Peng, Fei; Guo, Qian; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2015-01-01

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*( 3 P 2 ) and Ar*( 3 P 0 ) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze the main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF 4 was found to significantly increase the metastable destruction rate by the CF 4 quenching, especially for large CF 4 content and high pressure, it becomes the dominant depopulation process

  13. Interaction of UV laser pulses with reactive dusty plasmas

    NARCIS (Netherlands)

    van de Wetering, F.M.J.H.; Beckers, J.; Nijdam, S.; Oosterbeek, W.; Kovacevic, E.; Berndt, J.

    2016-01-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75

  14. Removal of model proteins by means of low-pressure inductively coupled plasma discharge

    International Nuclear Information System (INIS)

    Kylian, O; Rauscher, H; Gilliland, D; Bretagnol, F; Rossi, F

    2008-01-01

    Surgical instruments are intended to come into direct contact with the patients' tissues and thus interact with their first immune defence system. Therefore they have to be cleaned, sterilized and decontaminated, in order to prevent any kind of infections and inflammations or to exclude the possibility of transmission of diseases. From this perspective, the removal of protein residues from their surfaces constitutes new challenges, since certain proteins exhibit high resistance to commonly used sterilization and decontamination techniques and hence are difficult to remove without inducing major damages to the object treated. Therefore new approaches must be developed for that purpose and the application of non-equilibrium plasma discharges represents an interesting option. The possibility to effectively remove model proteins (bovine serum albumin, lysozyme and ubiquitin) from surfaces of different materials (Si wafer, glass, polystyrene and gold) by means of inductively coupled plasma discharges sustained in different argon containing mixtures is demonstrated and discussed in this paper

  15. Removal of model proteins by means of low-pressure inductively coupled plasma discharge

    Energy Technology Data Exchange (ETDEWEB)

    Kylian, O; Rauscher, H; Gilliland, D; Bretagnol, F; Rossi, F [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E Fermi 2749, 21027 Ispra (Italy)], E-mail: francois.rossi@jrc.it

    2008-05-07

    Surgical instruments are intended to come into direct contact with the patients' tissues and thus interact with their first immune defence system. Therefore they have to be cleaned, sterilized and decontaminated, in order to prevent any kind of infections and inflammations or to exclude the possibility of transmission of diseases. From this perspective, the removal of protein residues from their surfaces constitutes new challenges, since certain proteins exhibit high resistance to commonly used sterilization and decontamination techniques and hence are difficult to remove without inducing major damages to the object treated. Therefore new approaches must be developed for that purpose and the application of non-equilibrium plasma discharges represents an interesting option. The possibility to effectively remove model proteins (bovine serum albumin, lysozyme and ubiquitin) from surfaces of different materials (Si wafer, glass, polystyrene and gold) by means of inductively coupled plasma discharges sustained in different argon containing mixtures is demonstrated and discussed in this paper.

  16. Removal and sterilization of biofilms and planktonic bacteria by microwave-induced argon plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Lee, Mi Hee; Park, Bong Joo; Jin, Soo Chang; Kim, Dohyun; Kim, Jungsung; Park, Jong-Chul; Han, Inho; Hyun, Soon O; Chung, Kie-Hyung

    2009-01-01

    Microbial biofilms are a functional matrix of microbial cells, enveloped in polysaccharides, enzymes and virulence factors secreted by them that can develop on indwelling medical devices and biomaterials. Plasma sterilization has been widely studied in recent years for biological applications. In this study, we evaluated the possibility of removal and anti-recovery of biofilms by microwave-induced argon plasma at atmospheric pressure. We observed that all bacterial biofilms formatted by Gram-negative and Gram-positive bacteria are removed in less than 20 s, and the growth inhibitions of planktonic bacteria within biofilms are also confirmed by plasma exposure for 5 s. These results suggest that our plasma system can be applied to medical and biological fields where the removal of biofilms and their debris is required.

  17. Dynamics of ZnO laser produced plasma in high pressure argon

    International Nuclear Information System (INIS)

    Kaydashev, V.E.; Lunney, J.G.

    2011-01-01

    Pulsed laser deposition of ZnO in high pressure gas offers a route for the catalyst-free preparation of ZnO nanorods less than 10 nm in diameter. This paper describes the results of some experiments to investigate the laser plume dynamics in the high gas pressure (5 x 10 3 -10 4 Pa) regime used for PLD of ZnO nanorods. In this regime the ablation plume is strongly coupled to the gas and the plume expansion is brought to a halt within about 1 cm from the target. A 248 nm excimer laser was used to ablate a ceramic ZnO target in various pressures of argon. Time- and space-resolved UV/vis emission spectroscopy and Langmuir probe measurements were used to diagnose the plasma and follow the plume dynamics. By measuring the spatial profiles of Zn I and Zn II spectral lines it was possible to follow the propagation of the external and internal shock waves associated with the interaction of the ablation plume with the gas. The Langmuir probe measurements showed that the electron density was 10 9 -10 10 cm -3 and the electron temperature was several eV. At these conditions the ionization equilibrium is described by the collisional-radiative model. The plume dynamics was also studied for ZnO targets doped with elements which are lighter (Mg), comparable to (Ga), and heavier (Er) than Zn, to see if there is any elemental segregation in the plume.

  18. Measurement of plasma-surface energy fluxes in an argon rf-discharge by means of calorimetric probes and fluorescent microparticles

    International Nuclear Information System (INIS)

    Maurer, H. R.; Kersten, H.; Hannemann, M.; Basner, R.

    2010-01-01

    Measured energy influx densities toward a tungsten dummy substrate in an argon rf-plasma are presented and a model for the description of the energy influx density based on plasma parameters, which have been obtained by Langmuir probe measurements, is applied. Furthermore, temperature measurements of microparticles are presented, which are confined in the plasma sheath. An extension of the model is developed for the description of the energy influx density to the particles. The comparison of model and experimental results offer the possibility to obtain an improved understanding of plasma-surface interactions.

  19. Observation of inverse hysteresis in the E to H mode transitions in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Lee, Min-Hyong; Chung, Chin-Wook

    2010-01-01

    An inverse hysteresis is observed during the E mode to H mode transition in low pressure argon inductively coupled plasmas. The transition is accompanied by an evolution of electron energy distribution from the bi-Maxwellian to the Maxwellian distribution. The mechanism of this inversion is not clear. However, we think that the bi-Maxwellian electron energy distribution in E mode, where the proportion of high energy electron is much higher than the Maxwellian distribution, would be one of the reasons for the observed inverse hysteresis. As the gas pressure increases, the inverse hysteresis disappears and the E to H mode transition follows the scenario of usual hysteresis.

  20. Experimental behaviour of a argon plasma, which is passed by a high current intensity, with different magnetic field configurations; Comportamiento experimental de un plasma de argon en diferentes configuraciones de campo magnetico y a elevadas corrientes

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, J

    1964-07-01

    In a lineal discharge, the longitudinal and azimuthal magnetic fields produced by the current through the tube and the returning conductors, which have 4 different forms, are determined with a magnetic probe, which has a radial and longitudinal displacement. The plasma is produced discharging a 135{mu}F and 9 KV capacitor bank through Argon at 10{sup -}1 Torr. (Author) 5 refs.

  1. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  2. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models.

  3. Effect of Argon Plasma Treatment Variables on Wettability and Antibacterial Properties of Polyester Fabrics

    Science.gov (United States)

    Senthilkumar, Pandurangan; Karthik, Thangavelu

    2016-04-01

    In this research work, the effect of argon plasma treatment variables on the comfort and antibacterial properties of polyester fabric has been investigated. The SEM micrographs and FTIR analysis confirms the modification of fabric surface. The Box-Behnken design was used for the optimization of plasma process variables and to evaluate the effects and interactions of the process variables, i.e. operating power, treatment time and distance between the electrodes on the characteristics of polyester fabrics. The optimum conditions of operating power 600 W, treatment time 30 s, and the distance between the electrodes of 2.8 mm was arrived using numerical prediction tool in Design-Expert software. The plasma treated polyester fabrics showed better fabric characteristics particularly in terms of water vapour permeability, wickability and antibacterial activity compared to untreated fabrics, which confirms that the modified structure of polyester fabric.

  4. Coupled Langmuir oscillations in 2-dimensional quantum plasmas

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.

    2014-01-01

    In this work, we present a hydrodynamic model to study the coupled quantum electron plasma oscillations (QEPO) for two dimensional (2D) degenerate plasmas, which incorporates all the essential quantum ingredients such as the statistical degeneracy pressure, electron-exchange, and electron quantum diffraction effect. Effects of diverse physical aspects like the electronic band-dispersion effect, the electron exchange-correlations and the quantum Bohm-potential as well as other important plasma parameters such as the coupling parameter (plasma separation) and the plasma electron number-densities on the linear response of the coupled system are investigated. By studying three different 2D plasma coupling types, namely, graphene-graphene, graphene-metalfilm, and metalfilm-metalfilm coupling configurations, it is remarked that the collective quantum effects can influence the coupled modes quite differently, depending on the type of the plasma configuration. It is also found that the slow and fast QEPO frequency modes respond very differently to the change in plasma parameters. Current findings can help in understanding of the coupled density oscillations in multilayer graphene, graphene-based heterojunctions, or nanofabricated integrated circuits

  5. Post-bariatric surgery weight regain: evaluation of nutritional profile of candidate patients for endoscopic argon plasma coagulation.

    Science.gov (United States)

    Cambi, Maria Paula Carlini; Marchesini, Simone Dallegrave; Baretta, Giorgio Alfredo Pedroso

    2015-01-01

    Bariatric surgery is effective treatment for weight loss, but demand continuous nutritional care and physical activity. They regain weight happens with inadequate diets, physical inactivity and high alcohol consumption. To investigate in patients undergoing Roux-Y-of gastroplasty weight regain, nutritional deficiencies, candidates for the treatment with endoscopic argon plasma, the diameter of the gastrojejunostomy and the size of the gastric pouch at the time of treatment with plasma. A prospective 59 patients non-randomized study with no control group undergoing gastroplasty with recurrence of weight and candidates for the endoscopic procedure of argon plasma was realized. The surgical evaluation consisted of investigation of complications in the digestive system and verification of the increased diameter of the gastrojejunostomy. Nutritional evaluation was based on body mass index at the time of operation, in the minimum BMI achieved after and in which BMI was when making the procedure with plasma. The laboratory tests included hemoglobin, erythrocyte volume, ferritin, vitamin D, B12, iron, calcium, zinc and serum albumin. Clinical analysis was based on scheduled follow-up. Of the 59 selected, five were men and 51 women; were included 49 people (four men and 44 women) with all the complete data. The exclusion was due to the lack of some of the laboratory tests. Of this total 19 patients (38.7%) had a restrictive ring, while 30 (61.2%) did not. Iron deficiency anemia was common; 30 patients (61.2%) were below 30 with ferritin (unit); 35 (71.4%) with vitamin B12 were below 300 pg/ml; vitamin D3 deficiency occurred in more than 90%; there were no cases of deficiency of protein, calcium and zinc; glucose levels were above 99 mg/dl in three patients (6.12%). Clinically all had complaints of labile memory, irritability and poor concentration. All reported that they stopped treatment with the multidisciplinary team in the first year after the operation. The profile of

  6. Experimental study of the electron-atom Bremsstrahlung emission in an argon plasma jet

    International Nuclear Information System (INIS)

    Ranson, P.; Vallee, O.; Chapelle, J.

    1977-01-01

    Electron-neutral atom bremsstrahlung is studied between 0.4 μm and 5 μm in a decaying argon plasma jet; in visible and infra-red range, some discrepancies appear between experimental results and theoretical calculations of different authors (Geltman, Stallcop). In the infra-red, the discrepancy can be partly explained because theoretical elastic cross sections are higher than experimental values in the vicinity of the Ramsauer minimum. In the visible range, a very small amount of fast electrons due to superelastic and recombination collisions explain the observed discrepancy [fr

  7. Modelling of Argon Cold Atmospheric Plasmas for Biomedical Applications

    Science.gov (United States)

    Atanasova, M.; Benova, E.; Degrez, G.; van der Mullen, J. A. M.

    2018-02-01

    Plasmas for biomedical applications are one of the newest fields of plasma utilization. Especially high is the interest toward plasma usage in medicine. Promising results are achieved in blood coagulation, wound healing, treatment of some forms of cancer, diabetic complications, etc. However, the investigations of the biomedical applications from biological and medical viewpoint are much more advanced than the studies on the dynamics of the plasma. In this work we aim to address some specific challenges in the field of plasma modelling, arising from biomedical applications - what are the plasma reactive species’ and electrical fields’ spatial distributions as well as their production mechanisms; what are the fluxes and energies of the various components of the plasma delivers to the treated surfaces; what is the gas flow pattern? The focus is on two devices, namely the capacitive coupled plasma jet and the microwave surface wave sustained discharge. The devices are representatives of the so called cold atmospheric plasmas (CAPs). These are discharges characterized by low gas temperature - less than 40°C at the point of application - and non-equilibrium chemistry.

  8. Alternating current electrical properties of Argon plasma treated jute

    Directory of Open Access Journals (Sweden)

    Md. Masroor Anwer

    2012-09-01

    Full Text Available Low temperature plasma (LTP treatment, a kind of environment friendly surface modification technique, was applied to biodegradable and environment friendly jute fibre with the use of nonpolymerizing gas, namely argon, at various discharge power levels and exposure times with a definite flow rate. Scanning electron microscopy (SEM microphotographs reveal that the roughness of the fibre surfaces increases with the increase of discharge power and exposure time. This is caused due to the bombardment of high energetic ions on the fibre surface and the fibres become sputtered. The capacitance and the electrical conductance of raw and LTP treated jute fibre were measured as a function of frequency at room temperature. The dielectric constant, conductivity, dielectric loss-tangent and the surface morphology of raw and LTP treated jute as a function of frequency were studied at room temperature. It was observed that for all the samples the dielectric constant almost constant at lower frequencies and then decreases gradually in the high frequency region. In addition, dielectric constant increases with the increase of plasma treatment time as well as discharge power. It is also observed for all the samples that the conductivity increases as the frequency increases with a lower slope in the low frequency region and with a higher slope in the higher frequency region. In addition, the conductivity decreases with the increase of plasma exposure time as well as discharge power. The conductivity increases with frequency due to the hopping mechanism of electrons. The dependence of the dielectric loss-tangent with frequency at different treatment times and discharge powers for all the jute samples show small relaxation peaks in the very low frequency region. The dielectric loss-tangent decreases with the increase of both plasma treatment time and discharge power. In addition, the relaxation peaks are shifted to the higher frequency region as the plasma treatment

  9. The influence of ethanol addition on the spatial emission distribution of traces in a vertical argon stabilized DC arc plasma

    Directory of Open Access Journals (Sweden)

    MARIJA TODOROVIC

    2004-05-01

    Full Text Available The plasma of a vertical argon stabilized DC arc at atmospheric pressure is applied as a spectrochemical source. The lateral distributions of relative spectral line intensities of some trace elements (Zn, Pt, Cd, Mg, Ca and Al introduced into the plasma in the form of aqueous and ethanol–aqueous solutions were experimentally determined. These distributions were correlated with the calculated equilibrium plasma composition of the arc plasma. On the basis of the obtained results, an explanation of the influence of ethanol addition on the radiation densities from an arc plasma is given.

  10. Argon plasma treated electrospun P(Hola-E-Cl) Clay nanofiber composite: Effect on its antibacterial activity against S. Aureus and E.Coli

    International Nuclear Information System (INIS)

    Monserate, Juvy J.; Sumera, Florentino C.; Ramos, Henry J.; Daseco, Joanna Abigael

    2015-01-01

    In this work, the effects of argon plasma surface modification have been studied on electrospun P(HOLA-e-CL) Clay Nanofiber Composites in order to investigate the imposed limitation and possibilities to improve surface characteristics on fibrous assemblies. These assemblies were characterized using Scanning Electron Microscopy to determine the surface morphology and diameter size of the fiber. Fourier Transform Infrared Spectroscopy (FTIR) was employed to find out the positions of peaks similar to the constituent components incorporated during the process of polymerization which implied that the IR spectra illustrated the evidence of an interaction between clay and the polymer matrix. XRD peaks on increasing d-spacing going to the left 2?<20 0 verifies the results of interaction between the polymer and the ALA-MMT nanoclay. Thus this also suggested that the polymer was intercalated into the ALA-MMT. The Argon Plasma electrospun nanofiber was subjected to its antibacterial property against S. aureaus (gram positive) and E. coli (gram negative) bacteria. DMRT statistically revealed significantly at 5% level of significance shows that all treatments at increasing clay loading inhibit the growth of S. Aureus and E. Coli. Thus, Argon Plasma treated electrospun P(HOLA-e-CL) Clay Nanofiber Composites can be an excellent scaffold material for wound dressing applications. (author)

  11. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders

  12. Temporal and spatial dynamics of laser-induced aluminum plasma in argon background at atmospheric pressure: Interplay with the ambient gas

    International Nuclear Information System (INIS)

    Ma, Q.L.; Motto-Ros, V.; Lei, W.Q.; Boueri, M.; Bai, X.S.; Zheng, L.J.; Zeng, H.P.; Yu, J.

    2010-01-01

    Laser ablation in background gas implies supplementary complexities with respect to what happens in the vacuum. It is however essential to understand in detail the involved mechanisms for a number of applications requiring the ablation to be performed in an ambient gas at relative high pressure, such as pulsed-laser deposition, or laser-induced breakdown spectroscopy. In this paper, the expansion of a vapor plume ablated from an aluminum target into an argon gas at atmospheric pressure is experimentally investigated using time- and space-resolved emission spectroscopy. The obtained results provide a detailed description of the interplay between the vapor and the gas. The electron density, the temperature and the number densities (and therefore the partial pressures) of aluminum vapor and argon gas have been measured in and surrounding the vapor plume. Our observations show a confinement of the vapor plume by the gas, which is expected as predicted by the usual hydrodynamics models. The result is a plasma core with quite uniform distributions in electron density, temperature and number densities. Such plasma core presents an ideal emission source for spectroscopic applications. It is however evidenced by our observations that a large amount of argon is mixed into the aluminum plume in the plasma core, which invalidates in the experimental conditions that we used, the hydrodynamic 'piston' model where the background gas is pushed out by the shock wave surrounding the vapor plume. Instead, other mechanisms such as laser-supported detonation wave should play important roles in the early stage of the expansion of the plasma for the determination of its morphology at longer delays.

  13. Deposition of a-SiC:H using organosilanes in an argon/hydrogen plasma

    International Nuclear Information System (INIS)

    Maya, L.

    1993-01-01

    Selected organosilanes were examined as precursors for the deposition of amorphous hydrogenated silicon carbide in an argon/hydrogen plasma. Effect of process variables on the quality of the films was established by means of FTIR, Auger spectroscopy, XPS, XRD, chemical analysis, and weight losses upon pyrolysis. For a given power level there is a limiting feeding rate of the precursor under which operation of the system is dominated by thermodynamics and leads to high quality silicon carbide films that are nearly stoichiometric and low in hydrogen. Beyond that limit, carbosilane polymer formation and excessive hydrogen incorporation takes place. The hydrogen content of the plasma affects the deposition rate and the hydrogen content of the film. In the thermodynamically dominated regime the nature of the precursor has no effect on the quality of the film, it affects only the relative utilization efficiency

  14. Analysis of phosphorus herbicides by ion-pairing reversed-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry with octapole reaction cell.

    Science.gov (United States)

    Sadi, Baki B M; Vonderheide, Anne P; Caruso, Joseph A

    2004-09-24

    A reversed phase ion-pairing high performance liquid chromatographic (RPIP-HPLC) method is developed for the separation of two phosphorus herbicides, Glufosinate and Glyphosate as well as Aminomethylphosphonic acid (AMPA), the major metabolite of Glyphosate. Tetrabutylammonium hydroxide is used as the ion-pairing reagent in conjunction with an ammonium acetate/acetic acid buffering system at pH 4.7. An inductively coupled plasma mass spectrometer (ICP-MS) is coupled to the chromatographic system to detect the herbicides at m/z = 31P. Historically, phosphorus has been recognized as one of the elements difficult to analyze in argon plasma. This is due to its relatively high ionization potential (10.5 eV) as well as the inherent presence of the polyatomic interferences 14N16O1H+ and 15N16O+ overlapping its only isotope at m/z = 31. An octapole reaction cell is utilized to minimize the isobaric polyatomic interferences and to obtain the highest signal-to-background ratio. Detection limits were found to be in the low ppt range (25-32 ng/l). The developed method is successfully applied to the analysis of water samples collected from the Ohio River and spiked with a standard compounds at a level of 20 microg/l.

  15. Effects of argon plasma coagulation on human stomach tissue: An ex vivo study.

    Science.gov (United States)

    Gong, Eun Jeong; Ahn, Ji Yong; Jung, Hwoon-Yong; Park, Young Soo; Na, Hee Kyong; Jung, Kee Wook; Kim, Do Hoon; Lee, Jeong Hoon; Choi, Kee Don; Song, Ho June; Lee, Gin Hyug; Kim, Jin-Ho

    2017-05-01

    Argon plasma coagulation (APC) is a safe alternative treatment for gastrointestinal neoplasms and precancerous lesions. However, the extent of thermal damage after APC is difficult to predict. We investigated the effects of APC on human stomach tissue. Argon plasma coagulation was performed on 10 freshly resected human stomachs that were obtained after total gastrectomy. The effects on tissue were compared across power settings (40, 60, and 80 W), durations (5, 10, 15, 20, and 25 s), and between injection (submucosal injection of normal saline) and control (without injection) groups. Success was defined as complete mucosal necrosis without damaging the muscularis propria. Without submucosal injection, the incidence of damaging the muscularis propria increased as the power and duration increased. Tissue damage in the injection group was mostly confined to the submucosa, even when using the high-power setting. In the injection group, ablations at 40 W for 20 s, 60 W for 15 s, and 80 W for 15 or 20 s produced success rates ≥80%. In the control group, ablations at 60 W for 10 s, and 80 W for 5, or 10 s produced success rates ≥80%. The optimal energy levels to achieve complete mucosal and submucosal necrosis without damaging the muscularis propria were 800-1600 and 600-800 J in the injection and control groups, respectively. Application of APC produces good results with a low risk of perforation. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  16. Experimental control of the solvent load of inductively coupled argon plasmas and effects of the chloroform plasma load on their analytical performance

    Science.gov (United States)

    Maessen, F. J. M. J.; Kreuning, G.; Balke, J.

    The solvent plasma load ( QSPL) of water, methanol and chloroform was established as a function of the liquid uptake rate ( QL) by using a continuous weighing method for recording the rate differences between the relevant liquid streams. The shape of the QL vs QSPL curves revealed that the liquid uptake rate is a parameter much too insensitive to serve as a criterion for assessing the stability of "organic" plasmas. The quantity "maximum tolerable solvent plasma load" is suggested as a more useful criterion. Effects of rf power, observation height and solvent plasma load on the properties of chloroform inductively coupled plasmas (ICPs) are reported. The measurement of the axial distribution of net line intensities of representative spectral lines showed that the behaviour of emission lines as to their "hardness" is essentially the same in ICPs loaded with chloroform or water. The chloroform plasma load was regulated by the use of a condenser of which the temperature was varied in a range between -50°C and +20°C. Analytical performance characteristics such as net line and background intensities, signal-to-background ratios, and relative standard deviations of the background signal are presented for ICPs with various chloroform loads. Two sets of experimental conditions were finally selected for simultaneous multielement analysis of chloroform solvent solutions, one with and one without aerosol cooling. In the case that aerosol cooling was applied, the detection limits were similar to those for aqueous plasmas. Without aerosol cooling the detection limits were up to an order of magnitude poorer. An attempt has been made to catagorize organic solvents on the basis of both volatility and their behaviour in ICP systems. For a better understanding of the consequences of solvent volatility in ICP-AES it is of importance to consider separately the properties that determine the volatility of liquids, viz. the evaporation rate and the saturation vapour pressure.

  17. Energy spectrum of argon ions emitted from Filippov type Sahand plasma focus

    International Nuclear Information System (INIS)

    Mohammadnejad, M.; Pestehe, S. J.; Mohammadi, M. A.

    2013-01-01

    The energy and flux of the argon ions produced in Sahand plasma focus have been measured by employing a well-designed Faraday cup. The secondary electron emission effects on the ion signals are simulated and the dimensions of Faraday cup are optimized to minimize these effects. The measured ion energy spectrum is corrected for the ion energy loss and charge exchange in the background gas. The effects of the capacitor bank voltage and working gas pressure on the ion energy spectrum are also investigated. It has been shown that the emitted ion number per energy increases as the capacitor bank voltage increases. Decreasing the working gas pressure leads to the increase in the number of emitted ion per energy

  18. Thermal conductivity in an argon arc at atmospheric pressure

    NARCIS (Netherlands)

    Bol, L.; Timmermans, C.J.; Schram, D.C.

    1984-01-01

    The thermal conductivity of an argon plasma has been determined in a phi 5 mm wall stabilized atmospheric argon arc in the temperature range from 10000 to 16000 K. The calculations are based on the energy balance, and include non-LTE effects like ambipolar diffusion and overpopulation of the ground

  19. Detection efficiencies in nano- and femtosecond laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Waelle, M.; Koch, J.; Flamigni, L.; Heiroth, S.; Lippert, T.; Hartung, W.; Guenther, D.

    2009-01-01

    Detection efficiencies of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), defined as the ratio of ions reaching the detector and atoms released by LA were measured. For this purpose, LA of silicate glasses, zircon, and pure silicon was performed using nanosecond (ns) as well as femtosecond (fs) LA. For instance, ns-LA of silicate glass using helium as in-cell carrier gas resulted in detection efficiencies between approximately 1E-7 for low and 3E-5 for high mass range elements which were, in addition, almost independent on the laser wavelength and pulse duration chosen. In contrast, the application of argon as carrier gas was found to suppress the detection efficiencies systematically by a factor of up to 5 mainly due to a less efficient aerosol-to-ion conversion and ion transmission inside the ICP-MS

  20. Using the Pairs of Lines Broadened by Collisions with Neutral and Charged Particles for Gas Temperature Determination of Argon Non-Thermal Plasmas at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Cristina Yubero

    2017-10-01

    Full Text Available The spectroscopic method for gas temperature determination in argon non-thermal plasmas sustained at atmospheric pressure proposed recently by Spectrochimica Acta Part B 129 14 (2017—based on collisional broadening measurements of selected pairs of argon atomic lines, has been applied to other pairs of argon atomic lines, and the discrepancies found in some of these results have been analyzed. For validation purposes, the values of the gas temperature obtained using the different pairs of lines have been compared with the rotational temperatures derived from the OH ro-vibrational bands, using the Boltzmann-plot technique.

  1. Application of argon atmospheric cold plasma for indium tin oxide (ITO) based diodes

    Science.gov (United States)

    Akbari Nia, S.; Jalili, Y. Seyed; Salar Elahi, A.

    2017-09-01

    Transparent Conductive Oxide (TCO) layers due to transparency, high conductivity and hole injection capability have attracted a lot of attention. One of these layers is Indium Tin Oxide (ITO). ITO due to low resistance, transparency in the visible spectrum and its proper work function is widely used in the manufacture of organic light emitting diodes and solar cells. One way for improving the ITO surface is plasma treatment. In this paper, changes in surface morphology, by applying argon atmospheric pressure cold plasma, was studied through Atomic Force Microscopic (AFM) image analysis and Fourier Transform Infrared Spectroscopy (FTIR) analysis. FTIR analysis showed functional groups were not added or removed, but chemical bond angle and bonds strength on the surface were changed and also AFM images showed that surface roughness was increased. These factors lead to the production of diodes with enhanced Ohmic contact and injection mechanism which are more appropriate in industrial applications.

  2. A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model

    Energy Technology Data Exchange (ETDEWEB)

    Vries, N de; Iordanova, E; Hartgers, A; Veldhuizen, E M van; Donker, M J van der; Mullen, J J A M van der [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)

    2006-10-07

    A method is presented to determine the electron temperature in a low pressure argon plasma using emission spectroscopic measurements and a collisional radiative (CR) model. Absolute line intensity measurements are made in order to construct the atomic state distribution function. In addition to the excited states, the ground state density is also taken into account. Because of this, the excitation temperature can be determined with high precision. A CR-model has been used to determine the degree of equilibrium departure and to obtain the relationship between the excitation temperature and the electron temperature. This method is applied to a microwave plasma which has been generated inside a quartz tube using a surfatron device. The densities of argon levels close to the continuum are used to get an estimated value of the electron density. These values are used as input data for the CR-model. For an argon pressure of 6 mbar, the 4p level densities vary between 8 x 10{sup 14} and 6 x 10{sup 15} m{sup -3}. Using the estimated values for the electron density, between 2 x 10{sup 19} and 3 x 10{sup 19} m{sup -3}, the electron temperature was found to range between 1.15 and 1.20 eV. An extensive error analysis showed that the relative error in the electron temperature is less than 6%.

  3. A spectroscopic method to determine the electron temperature of an argon surface wave sustained plasmas using a collision radiative model

    International Nuclear Information System (INIS)

    Vries, N de; Iordanova, E; Hartgers, A; Veldhuizen, E M van; Donker, M J van der; Mullen, J J A M van der

    2006-01-01

    A method is presented to determine the electron temperature in a low pressure argon plasma using emission spectroscopic measurements and a collisional radiative (CR) model. Absolute line intensity measurements are made in order to construct the atomic state distribution function. In addition to the excited states, the ground state density is also taken into account. Because of this, the excitation temperature can be determined with high precision. A CR-model has been used to determine the degree of equilibrium departure and to obtain the relationship between the excitation temperature and the electron temperature. This method is applied to a microwave plasma which has been generated inside a quartz tube using a surfatron device. The densities of argon levels close to the continuum are used to get an estimated value of the electron density. These values are used as input data for the CR-model. For an argon pressure of 6 mbar, the 4p level densities vary between 8 x 10 14 and 6 x 10 15 m -3 . Using the estimated values for the electron density, between 2 x 10 19 and 3 x 10 19 m -3 , the electron temperature was found to range between 1.15 and 1.20 eV. An extensive error analysis showed that the relative error in the electron temperature is less than 6%

  4. Characterization and modeling of multi-dipolar microwave plasmas: application to multi-dipolar plasma assisted sputtering; Caracterisation et modelisation des plasmas micro-onde multi-dipolaires: application a la pulverisation assistee par plasma multi-dipolaire

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T.V

    2006-12-15

    The scaling up of plasma processes in the low pressure range remains a question to be solved for their rise at the industrial level. One solution is the uniform distribution of elementary plasma sources where the plasma is produced via electron cyclotron resonance (ECR) coupling. These elementary plasma sources are made up of a cylindrical permanent magnet (magnetic dipole) set at the end of a coaxial microwave line. Although of simple concept, the optimisation of these dipolar plasma sources is in fact a complex problem. It requires the knowledge, on one hand, of the configurations of static magnetic fields and microwave electric fields, and, on the other hand, of the mechanisms of plasma production in the region of high intensity magnetic field (ECR condition), and of plasma diffusion. Therefore, the experimental characterisation of the operating ranges and plasma parameters has been performed by Langmuir probes and optical emission spectroscopy on different configurations of dipolar sources. At the same time, in a first analytical approach, calculations have been made on simple magnetic field configurations, motion and trajectory of electrons in these magnetic fields, and the acceleration of electrons by ECR coupling. Then, the results have been used for the validation of the numerical modelling of the electron trajectories by using a hybrid PIC (particle-in-cell) / MC (Monte Carlo) method. The experimental study has evidenced large operating domains, between 15 and 200 W of microwave power, and from 0.5 to 15 mtorr argon pressure. The analysis of plasma parameters has shown that the region of ECR coupling is localised near the equatorial plane of the magnet and dependent on magnet geometry. These characterizations, applied to a cylindrical reactor using 48 sources, have shown that densities between 10{sup 11} and 10{sup 12} cm{sup -3} could be achieved in the central part of the volume at a few mtorr argon pressures. The modelling of electron trajectories near

  5. -3000 V dc bias Ti oxidation by inductively coupled plasma

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; Lopez-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Pena-Eguiluz, R; Munoz-Castro, A E; De la Piedad-Beneitez, A; De la Rosa-Vazquez, J

    2008-01-01

    Broadening the outer oxidized layer of titanium by means of plasmas commands considerable interest in the biomedical research area due to its potential in human biocompatibility enhancement. Some early results of titanium substrate superficial oxidation experiments which have been conducted in a cylindrical vessel inductively coupled to a 13.56 MHz RF generator with a 500 W output are presented. The oxidation process was carried out in a 20 % oxygen and 80 % argon mixture at work pressures in the 5x10 -3 -1 mbar range, while the samples were dc biased down to -3000 V. The substrate temperature appears to be directly dependent on this voltage, reaching 685 deg. C at the maximum bias when a diffusive oxidation process gives rise to the TiO 2 and α-TiO rutile phases. These were characterized by means of x-ray diffraction and scanning electron microscopy revealing atomic percentage concentrations of oxygen, with respect to those of titanium, between 68 and 13 at.%. The optimum modified layer depth reached 5 μm at a 5x10 -2 mbar work pressure.

  6. Systematic studies of covalent functionalization of carbon nanotubes via argon plasma-assisted UV grafting

    International Nuclear Information System (INIS)

    Yan, Y H; Cui, J; Chan-Park, M B; Wang, X; Wu, Q Y

    2007-01-01

    Single-walled carbon nanotubes (SWNTs) with 1-vinylimidazole species covalently attached to their sidewalls and end caps have been prepared by ultraviolet (UV) irradiation in 1-vinylimidazole monomer. This process can be greatly assisted by argon (Ar) plasma pretreatment, which generates more defect sites at the tube ends and sidewalls acting as the active sites for the subsequent UV grafting of 1-vinylimidazole molecules. The effects of total deposited energy of Ar plasma treatment, either by change of treatment time or discharge power, on the functionalization degree and structural morphology of the resulting nanotubes are systematically studied. By control of the Ar plasma treatment time within 5 min at the discharge power of 200 W, no visible chopping of the functionalized SWNTs was observed. Under this advised optimum processing condition, the functionalization degree, estimated by x-ray photoelectron spectroscopy (XPS) measurement, is as high as around 26 wt% 1-vinylimidazole molecules grafted onto the nanotubes. This method may be extended to other reactive vinyl monomers and offers another diverse way of covalent functionalization of SWNTs

  7. Anion dynamics in the first 10 milliseconds of an argon-acetylene radio-frequency plasma

    International Nuclear Information System (INIS)

    Van de Wetering, F M J H; Beckers, J; Kroesen, G M W

    2012-01-01

    The time evolution of the smallest anions (C 2 H - and H 2 CC - ), just after plasma ignition, is studied by means of microwave cavity resonance spectroscopy (MCRS) in concert with laser-induced photodetachment under varying gas pressure and temperature in an argon-acetylene radio-frequency (13.56 MHz) plasma. These anions act as an initiator for spontaneous dust particle formation in these plasmas. With an intense 355 nm Nd:YAG laser pulse directed through the discharge, electrons are detached only from these anions present in the laser path. This results in a sudden increase in the electron density in the plasma, which can accurately and with sub-microsecond time resolution be measured with MCRS. By adjusting the time after plasma ignition at which the laser is fired through the discharge, the time evolution of the anion density can be studied. We have operated in the linear regime: the photodetachment signal is proportional to the laser intensity. This allowed us to study the trends of the photodetachment signal as a function of the operational parameters of the plasma. The density of the smallest anions steadily increases in the first few milliseconds after plasma ignition, after which it reaches a steady state. While keeping the gas density constant, increasing the gas temperature in the range 30-120 °C limits the number of smallest anions and saturates at a temperature of about 90 °C. A reaction pathway is proposed to explain the observed trends.

  8. Plasma electron losses in a multidipole plasma

    International Nuclear Information System (INIS)

    Haworth, M.D.

    1983-01-01

    The magnitude of the plasma electron cusp losses in a multidipole plasma device is determined by using a plasma electron heating technique. This method consists of suddenly generating approximately monoenergetic test electrons inside the multidipole plasma, which is in a steady-state equilibrium prior to the introduction of the test electrons. The Coulomb collisions between the test electrons and the plasma electrons result in heating the plasma electrons. The experimentally measured time evolution of the plasma electron temperature is compared with that predicted by a kinetic-theory model which calculates the time evolution of the test electron and the plasma electron distribution functions. The analytical solution of the plasma electron heating rate when the test electrons are first introduced into the plasma predicts that there is no dependence on ion mass. Experimental results in helium, neon, argon, and krypton multidipole plasmas confirm this prediction. The time-evolved solution of the kinetic equations must be solved numerically, and these results (when coupled with the experimental heating results) show that the plasma electron cusp-loss width is on the order of an electron Larmor radius

  9. The study of selective emission lines from plasma, obtained by evaporating as sample by laser radiation in air and argon media

    International Nuclear Information System (INIS)

    Sufian, A.; Dimitrov, G.

    1993-01-01

    Ultra violet visible emission spectroscopic analysis of a plasma produced through laser interaction with a solid probe in different gaseous atmospheres is conducted. Reported are the effects of air and argon, as enveloping media, on the spectral intensities of some lines. The temperature gradient of the plasma, in different atmosphere, is also plotted. In order to improve the detection limits of individual elements, suggested are the possible areas of illuminating the slit of the spectroscopic from the plasma, in respect of the height, above the sample, when working in different gaseous media. (author)

  10. Inhibitory effect of double atmospheric pressure argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits.

    Science.gov (United States)

    Ouf, Salama A; Basher, Abdulrahman H; Mohamed, Abdel-Aleam H

    2015-12-01

    Aspergillus niger has been reported as a potentially dangerous pathogen of date-palm fruits in Saudi Arabia due to the production of fumonisin B2 (FB2 ) and ochratoxin A (OTA). In a trial to disinfect this product, a double atmospheric pressure argon cold plasma (DAPACP) jet system was set up and evaluated against spore germination and mycotoxin production of the pathogen. The plasma jets were characterised photographically, electrically and spectroscopically. DAPACP jet length increases with the increase of argon flow rate, with optimum rate at 3.5 L min(-1) . The viability of A. niger spores, inoculated onto sterilised date palm fruit discs, progressively decreases with extension of the exposure time of DAPACP due to the more quantitative amount of OH and O radicals interacting with the examined samples. There was a progressive reduction of the amount of FB2 and OTA detected in date palm discs on extension of the exposure time of the plasma-treated inoculums at flow rate of 3.5 L min(-1) . FB2 was not detected in the discs inoculated with 6-min plasma-treated A. niger, while OTA was completely absent when the fungus was treated for 7.5 min. DAPACP showed promising results in dry fruit decontamination and in inhibition of mycotoxin release by A. niger contaminating the fruits. The progress in the commercial application of cold plasma needs further investigation concerning the ideal width of the plasma output to enable it to cover wider surfaces of the sample and consequently inducing greater plasma performance. © 2014 Society of Chemical Industry.

  11. Development of a novel low-flow ion source/sampling cone geometry for inductively coupled plasma mass spectrometry and application in hyphenated techniques

    Science.gov (United States)

    Pfeifer, Thorben; Janzen, Rasmus; Steingrobe, Tobias; Sperling, Michael; Franze, Bastian; Engelhard, Carsten; Buscher, Wolfgang

    2012-10-01

    A novel ion source/sampling cone device for inductively coupled plasma mass spectrometry (ICP-MS) especially operated in the hyphenated mode as a detection system coupled with different separation modules is presented. Its technical setup is described in detail. Its main feature is the very low total argon consumption of less than 1.5 L min- 1, leading to significant reduction of operational costs especially when time-consuming speciation analysis is performed. The figures of merit of the new system with respect to sensitivity, detection power, long-term stability and working range were explored. Despite the profound differences of argon consumption of the new system in comparison to the conventional ICP-MS system, many of the characteristic features of the conventional ICP-MS could be maintained to a great extent. To demonstrate the ion source's capabilities, it was used as an element-selective detector for gas (GC) and high performance liquid chromatography (HPLC) where organic compounds of mercury and cobalt, respectively, were separated and detected with the new low-flow ICP-MS detection system. The corresponding chromatograms are shown. The applicability for trace element analysis has been validated with the certified reference material NIST 1643e.

  12. Reconstruction of the time-averaged sheath potential profile in an argon RF plasma using the ion energy distribution

    International Nuclear Information System (INIS)

    Fivaz, M.; Brunner, S.; Schwarzenbach, W.; Howling, A.A.; Hollenstein, C.

    1994-10-01

    Charge-exchange collisions and radio-frequency excitation combine to give peaks in the ion energy distribution measured at the ground electrode of an argon plasma in a capacitive reactor. These peaks are used as a diagnostic to reconstruct the profile of the time-averaged potential in the sheath. Particle-In-Cell simulations show that the method is accurate. The method is applied to investigate the sheath thickness as a function of excitation frequency at constant plasma power. The time-averaged potential is found to be parabolic in both experimental measurements and numerical simulation. (author) 6 figs., 1 tab., 15 refs

  13. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    Science.gov (United States)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  14. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    Energy Technology Data Exchange (ETDEWEB)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Buenos Aires, Argentina and Instituto de Física del Plasma (INFIP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires - UBA, C1428EHA, Buenos Aires (Argentina)

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  15. A case of radiation hemorrhagic gastritis successfully treated by endoscopic argon plasma coagulation

    International Nuclear Information System (INIS)

    Furukawa, Koichi; Ho, Nichyau; Kuroda, Ken; Ikarashi, Kentarou; Hata, Koujirou; Tukioka, Satosi

    2003-01-01

    A 72-year-old woman underwent irradiation of 46 Grey in total dose, for lumbago of the advanced pancreatic cancer in August 2000. She was admitted to our hospital due to severe anemia in February 2001 with occasionally positive fecal occult blood. Endoscopy revealed erosive gastric mucosa diffuse in the lower body of the stomach, which resulted from radiation. We applied argon plasma coagulation (APC) in March 2001 and succeeded in hemostasis of the widely spreading radiation hemorrhagic gastritis. The progress of the severe anemia improved without cicatricial stenosis. As the coagulation of the APC is limited in the surface mucosa, APC is an easy and effective treatment for radiation hemorrhagic gastritis. (author)

  16. Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tognoni, E. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)], E-mail: tognoni@ipcf.cnr.it; Hidalgo, M.; Canals, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia. Universidad de Alicante. Apdo. 99, 03080, Alicante (Spain); Cristoforetti, G.; Legnaioli, S.; Salvetti, A.; Palleschi, V. [Istituto per i Processi Chimico-Fisici, Area della Ricerca del Consiglio Nazionale delle Ricerche Via Moruzzi 1, 56124 Pisa (Italy)

    2007-05-15

    In Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) spectrochemical analysis, the MgII(280.270 nm)/MgI(285.213 nm) ionic to atomic line intensity ratio is commonly used as a monitor of the robustness of operating conditions. This approach is based on the univocal relationship existing between intensity ratio and plasma temperature, for a pure argon atmospheric ICP in thermodynamic equilibrium. In a multi-elemental plasma in the lower temperature range, the measurement of the intensity ratio may not be sufficient to characterize temperature and electron density. In such a range, the correct relationship between intensity ratio and plasma temperature can be calculated only when the complete plasma composition is known. We propose the combination of the line intensity ratios of two test elements (double ratio) as an effective diagnostic tool for a multi-elemental low temperature LTE plasma of unknown composition. In particular, the variation of the double ratio allows us discriminating changes in the plasma temperature from changes in the electron density. Thus, the effects on plasma excitation and ionization possibly caused by introduction of different samples and matrices in non-robust conditions can be more accurately interpreted. The method is illustrated by the measurement of plasma temperature and electron density in a specific analytic case.

  17. Self-consistent simulation study on magnetized inductively coupled plasma for 450 mm semiconductor wafer processing

    International Nuclear Information System (INIS)

    Lee, Ho-Jun; Kim, Yun-Gi

    2012-01-01

    The characteristics of weakly magnetized inductively coupled plasma (MICP) are investigated using a self-consistent simulation based on the drift–diffusion approximation with anisotropic transport coefficients. MICP is a plasma source utilizing the cavity mode of the low-frequency branch of the right-hand circularly polarized wave. The model system is 700 mm in diameter and has a 250 mm gap between the radio-frequency window and wafer holder. The model chamber size is chosen to verify the applicability of this type of plasma source to the 450 mm wafer process. The effects of electron density distribution and external axial magnetic field on the propagation properties of the plasma wave, including the wavelength modulation and refraction toward the high-density region, are demonstrated. The restricted electron transport and thermal conductivity in the radial direction due to the magnetic field result in small temperature gradient along the field lines and off-axis peak density profile. The calculated impedance seen from the antenna terminal shows that MICP has a resistance component that is two to threefold higher than that of ICP. This property is practically important for large-size, low-pressure plasma sources because high resistance corresponds to high power-transfer efficiency and stable impedance matching characteristics. For the 0.665 Pa argon plasma, MICP shows a radial density uniformity of 6% within 450 mm diameter, which is much better than that of nonmagnetized ICP.

  18. The discharge characteristics in nitrogen helicon plasma

    Science.gov (United States)

    Zhao, Gao; Wang, Huihui; Si, Xinlu; Ouyang, Jiting; Chen, Qiang; Tan, Chang

    2017-12-01

    Discharge characteristics of helicon plasma in nitrogen and argon-nitrogen mixtures were investigated experimentally by using a Langmuir probe, a B-dot probe, and an optical emission spectrum. Helicon wave discharge is confirmed by the changes of electron density and electromagnetic signal amplitude with the increasing RF power, which shows three discharge stages in nitrogen, corresponding to E-mode, H-mode, and W-mode discharges in helicon plasma, respectively. Discharge images in the radial cross section at different discharge modes through an intensified charge coupled device (ICCD) show a rapid increase in luminous intensity along with the RF power. When the nitrogen discharge is in the W-mode, the images show that the strongest luminance locates near the plasma boundary and no blue core appears in the axial center of tube, which is always observed in argon W-mode discharge. The "big blue" or blue core is a special character in helicon plasma, but it has not been observed in nitrogen helicon plasma. In nitrogen-argon mixtures, a weak blue core is observed in ICCD images since the nitrogen content is increased. The electric field turns to the periphery in the distribution of the radial field and the electron temperature decreases with the increasing nitrogen content, especially when the blue core disappears. The different behaviors of the electron impact and the energy consumption in nitrogen helicon plasma are suggested to be responsible for the decrease in electron energy and the change in the electric field distribution.

  19. Optically thick model for radiative and collisional effects in nonequilibrium argon plasma flows in a circular tube

    International Nuclear Information System (INIS)

    Shirai, Hiroyuki; Tabei, Katsuine; Koaizawa, Hisashi.

    1984-01-01

    Experimental and theoretical studies were made to gain a deeper understanding of the radiative properties of nonequilibrium argon plasma flows in a circular tube. The self-absorption effects were taken into account as rigorously as possible. Experimentally, the radial profiles of the population densities of argon atoms at the excited 4s, 4p, 5p, and 5d levels were obtained from the lateral distributions of the absolute intensities of ArI spectral lines originating from these levels. On the other hand, theoretical profiles of the population densities for the same levels were calculated based on the optically thick model for collisional and radiative processes proposed by Bates et al. and experimentally measured atom temperature, electron temperature, electron density and gas pressure. Comparison of the experimental and theoretical results showed a reasonably good agreement and the importance of the self-absorption effects. (author)

  20. Transport and turbulence in a magnetized argon plasma

    International Nuclear Information System (INIS)

    Vogels, J.M.M.J.

    1984-01-01

    Three aspects of the longitudinal motion of ionized and neutral particles in a hollow cathode arc are investigated. The longitudinal plasma momentum balance of the column has been investigated, we have studied the momentum balance in relation to turbulence and we have investigated the source properties of the cathode. The study of the plasma momentum balance contains two aspects: (1) to collect experimental data on ion drift velocities and temperatures with Fabry-Perot interferometry, on electron densities and temperatures with Thomson scattering or optical spectroscopy and on neutral densities with a collisional radiative model combined with the ion energy balance; (2) to check the (classical) theory of the momentum balance with these data. The coupling between these aspects has been investigated and found to be in good agreement. (Auth.)

  1. Experimental behaviour of a argon plasma, which is passed by a high current intensity, with different magnetic field configurations

    International Nuclear Information System (INIS)

    Lozano, J.

    1964-01-01

    In a lineal discharge, the longitudinal and azimuthal magnetic fields produced by the current through the tube and the returning conductors, which have 4 different forms, are determined with a magnetic probe, which has a radial and longitudinal displacement. The plasma is produced discharging a 135μF and 9 KV capacitor bank through Argon at 10 - 1 Torr. (Author) 5 refs

  2. [Argon plasma coagulation combined with cryotherapy via bronchoscopy for the treatment of one child with severe post-intubation tracheal stenosis and literature review].

    Science.gov (United States)

    Zhou, Kuo; Liang, Jun; Cui, Ai-hua; Fu, Ai-xia; Yang, Qiao-zhi

    2013-10-01

    To observe the short term effect of argon plasma coagulation (APC) combined with cryotherapy via bronchoscopy for treatment of severe post-intubation tracheal stenosis in a child. A 3-year old boy was admitted for cephalothorax abdominal compound trauma and dyspnea, who had severe post-incubation tracheal stenosis. The agreement about the operation risk was signed by the parents. Endotracheal APC procedure was performed with a bronchoscope under general anesthesia. The APC probe was put into the working channel of the bronchoscope. The stenotic lesion was endoscopically visualized and then coagulated by argon plasma. Such coagulation was carried out several times at the stenotic site until it gradually became dilated. The devitalized tissue was mechanically removed with grasping forceps. Thereafter, bronchoscopic cryosurgery was repeatedly performed at the stenotic site. Clinical symptoms, signs and bronchoscopic manifestations were observed right after operation, after 1 day, 10 days, 1 month and 6 months separately. Tracheal tissue hyperplasia and cyanosis disappeared, laryngeal stridor and dyspnea improved obviously right after the operation. General condition of the patient was well, there was no laryngeal stridor and dyspnea 10 days after operation. The mucosa of the surgical site was smooth and no tracheostenosis was seen under bronchoscope at 1 month and 6 months after the operation. Argon plasma coagulation combined with cryotherapy via bronchoscope is an effective method to treat tracheal stenosis of children, which needs further exploration for the application.

  3. Argon analytical procedures for potassium-argon dating

    International Nuclear Information System (INIS)

    Gabites, J.E.; Adams, C.J.

    1981-01-01

    A manual for the argon analytical methods involved in potassium-argon geochronology, including: i) operating procedures for the ultra-high vacuum argon extraction/purification equipment for the analysis of nanolitre quantities of radiogenic argon in rocks, minerals and gases; ii) operating procedures for the AEI-MS10 gas source mass spectrometer

  4. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Kavka, Tetyana; Bertolissi, Gabriele; Ctibor, Pavel; Vilémová, Monika; Mušálek, Radek; Nevrlá, Barbara

    2013-01-01

    Roč. 22, č. 5 (2013), s. 744-755 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA TA ČR TA01010300 Institutional support: RVO:61389021 Keywords : plasma spraying * tungsten * copper * inert gas shrouding * water-argon plasma torch * gas shroud * hybrid plasma torch * influence of spray parameters * nuclear fusion * oxidation Subject RIV: JG - Metallurgy Impact factor: 1.491, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11666-013-9895-x.pdf

  5. Electrical Measurements on a Moving Argon Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A. A.M.; Howatson, A. M. [Oxford University (United Kingdom)

    1966-10-15

    Experimental current-voltage characteristic curves were obtained for a moving argon plasma at two stations in an electrically-driven 5 cm shock tube. The standard energy was 1 kj and the base pressure 10 torr, giving a shock of about Mach 4. The measurements were made on the highly-ionized driver gas which followed the shock at speeds between 800 and 1100 m/sec. Two types of electrode were used. One comprised circular solid electrodes of aluminium, molybdenum or stainless steel so machined as to be quite flush with the tube wall; the other comprised filaments of tungsten wire which were immersed in the free stream and could be used cold or heated for thermionic emission. Characteristics were obtained both for applied voltages and for MHD-generated voltages; for the latter a magnetic field of good uniformity up to 0.9 Wb/m{sup 2} was used. The results were always markedly dependent on the surface condition of the electrodes. For consistent results the flush electrodes had to be cleaned carefully by hand after every third discharge, while the filament electrodes were thermionically cleaned before every discharge. In general the cold electrode characteristics for applied voltage showed three distinct regions: a current increase such as would be expected from a double probe; a saturation region; and a linear increase, in order of increasing voltage. For the flush electrodes another apparent saturation was found before, finally, the transition to an arc-type discharge. The first saturation current for flush electrodes corresponded to a random ion current much less than that estimated to exist away from the tube walls, as is expected from a consideration of diffusion through a boundary layer. The value of the current varied somewhat with the electrode material. For the cold filaments, the saturation current density was of the same order as for the flush electrodes. From the linear region of the curves, an effective plasma conductivity was obtained. For comparison, the

  6. An investigation into the role of metastable states on excited populations of weakly ionized argon plasmas, with applications for optical diagnostics

    Science.gov (United States)

    Arnold, Nicholas; Loch, Stuart; Ballance, Connor; Thomas, Ed

    2017-10-01

    Low temperature plasmas (Te ADAS) code suite to calculate a level-resolved, generalized collisional-radiative (GCR) model for line emission in low temperature argon plasmas. By combining our theoretical model with experimental electron temperature, density, and spectral measurements from the Auburn Linear eXperiment for Instability Studies (ALEXIS), we have developed diagnostic techniques to measure metastable fraction, electron temperature, and electron density. In the future we hope to refine our methods, and extend our model to plasmas other than ALEXIS. Supported by the U.S. Department of Energy. Grant Number: DE-FG02-00ER54476.

  7. Ultra-violet recombination continuum electron temperature measurements in a non-equilibrium atmospheric argon plasma

    International Nuclear Information System (INIS)

    Gordon, M.H.; Kruger, C.H.

    1991-01-01

    Emission measurements of temperature and electron density have been made downstream of a 50 kW induction plasma torch at temperatures and electron densities ranging between 6000 K and 8500 K and 10 to the 20th and 10 to the 21st/cu cm, respectively. Absolute and relative atomic line intensities, and absolute recombination continuum in both the visible and the UV were separately interpreted in order to characterize a recombining atmospheric argon plasma. Continuum measurements made in the UV at 270 nm were used to directly determine the kinetic electron temperature, independent of a Boltzmann equilibrium, assuming only that the electron velocity distribution is Maxwellian. The data indicate that a nonequilibrium condition exists in which the bound-excited and free electrons are nearly in mutual equilibrium down to the 4P level for electron densities as low as 2 x 10 to the 20th/cu m but that both are overpopulated with respect to the ground state due to finite recombination rates. 13 refs

  8. Dynamics of the spectral behaviour of an ultrashort laser pulse in an argon-gas-filled capillary discharge-preformed plasma channel

    Directory of Open Access Journals (Sweden)

    Sakai S.

    2013-11-01

    Full Text Available We have reported the argon plasma waveguide produced in an alumina (Al2O3 capillary discharge and used to guide ultrashort laser pulses at intensities of the order of 1016  W/cm2. A one-dimensional magnetohydrodynamic (MHD code was used to evaluate the average degree of ionization of Ar in the preformed plasma channel. The spectrum of the propagated laser pulse in the Ar plasma waveguide was not modified and was well reproduced by a particle-in-cell (PIC simulation under initial ion charge state of Ar3+ in the preformed plasma waveguide. The optimum timing for the laser pulse injection was around 150 ns after initiation of a discharge with a peak current of 200 A.

  9. Death during laparoscopy: can 1 gas push out another? Danger of argon electrocoagulation.

    Science.gov (United States)

    Sezeur, Alain; Partensky, Christian; Chipponi, Jacques; Duron, Jean-Jacques

    2008-08-01

    We report the death of a young man during a laparoscopic partial splenectomy performed with an argon plasma coagulator to remove a benign cyst. The report analyzes the very particular mechanism of a gas embolism, which caused death here. This analysis leads us to recommend a close attention on the use of argon coagulators during laparoscopy. The aim of this article is to draw surgeons' attention to the conclusions of a court-ordered expert assessment intended to elucidate the mechanisms responsible for the death of a 20-year-old man during a laparoscopic partial splenectomy performed with an argon plasma coagulator to remove a benign cyst.

  10. Numerical simulation of nonequilibrium effects in an argon plasma jet

    International Nuclear Information System (INIS)

    Chang, C.H.; Ramshaw, J.D.

    1994-01-01

    Departures from thermal (translational), ionization, and excitation equilibrium in an axisymmetric argon plasma jet have been studied by two-dimensional numerical simulations. Electrons, ions, and excited and ground states of neutral atoms are represented as separate chemical species in the mixture. Transitions between excited states, as well as ionization/recombination reactions due to both collisional and radiative processes, are treated as separate chemical reactions. Resonance radiation transport is represented using Holstein escape factors to simulate both the optically thin and optically thick limits. The optically thin calculation showed significant underpopulation of excited species in the upstream part of the jet core, whereas in the optically thick calculation this region remains close to local thermodynamic equilibrium, consistent with previous experimental observations. Resonance radiation absorption is therefore an important effect. The optically thick calculation results also show overpopulations (relative to equilibrium) of excited species and electron densities in the fringes and downstream part of the jet core. In these regions, however, the electrons and ions are essentially in partial local thermodynamic equilibrium with the excited state at the electron temperature, even though the ionized and excited states are no longer in equilibrium with the ground state. Departures from partial local thermodynamic equilibrium are observed in the outer fringes and far downstream part of the jet. These results are interpreted in terms of the local relative time scales for the various physical and chemical processes occurring in the plasma

  11. Characterization and modelling of microwave multi dipole plasmas. Application to multi dipolar plasma assisted sputtering; Caracterization et modelisation des plasmas micro-onde multi-dipolaires. Application a la pulverisation assistee par plasma multi-dipolaire

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Tan Vinh [Universite Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2006-07-01

    The scaling up of plasma processes in the low pressure range remains a question to be solved for their rise at the industrial level. One solution is the uniform distribution of elementary plasma sources where the plasma is produced via electron cyclotron resonance (ECR) coupling. These elementary plasma sources are made up of a cylindrical permanent magnet (magnetic dipole) set at the end of a coaxial microwave line. Although of simple concept, the optimisation of these dipolar plasma sources is in fact a complex problem. It requires the knowledge, on one hand, of the configurations of static magnetic fields and microwave electric fields, and, on the other hand, of the mechanisms of plasma production in the region of high intensity magnetic field (ECR condition), and of plasma diffusion. Therefore, the experimental characterisation of the operating ranges and plasma parameters has been performed by Langmuir probes and optical emission spectroscopy on different configurations of dipolar sources. At the same time, in a first analytical approach, calculations have been made on simple magnetic field configurations, motion and trajectory of electrons in these magnetic fields, and the acceleration of electrons by ECR coupling. Then, the results have been used for the validation of the numerical modelling of the electron trajectories by using a hybrid PIC (particle-in-cell) / MC (Monte Carlo) method. The experimental study has evidenced large operating domains, between 15 and 200 W of microwave power, and from 0.5 to 15 mTorr argon pressure. The analysis of plasma parameters has shown that the region of ECR coupling is localised near the equatorial plane of the magnet and dependent on magnet geometry. These characterizations, applied to a cylindrical reactor using 48 sources, have shown that densities between 10{sup 11} and 10{sup 12} cm{sup -3} could be achieved in the central part of the volume at a few mTorr argon pressures. The modelling of electron trajectories near

  12. Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules

    Science.gov (United States)

    Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.

    2018-03-01

    We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.

  13. The influence of gas pressure on E↔H mode transition in argon inductively coupled plasmas

    Science.gov (United States)

    Zhang, Xiao; Zhang, Zhong-kai; Cao, Jin-xiang; Liu, Yu; Yu, Peng-cheng

    2018-03-01

    Considering the gas pressure and radio frequency power change, the mode transition of E↔H were investigated in inductively coupled plasmas. It can be found that the transition power has almost the same trend decreasing with gas pressure, whether it is in H mode or E mode. However, the transition density increases slowly with gas pressure from E to H mode. The transition points of E to H mode can be understood by the propagation of electromagnetic wave in the plasma, while the H to E should be illustrated by the electric field strength. Moreover, the electron density, increasing with the pressure and power, can be attributed to the multiple ionization, which changes the energy loss per electron-ion pair created. In addition, the optical emission characteristics in E and H mode is also shown. The line ratio of I750.4 and I811.5, taken as a proxy of the density of metastable state atoms, was used to illustrate the hysteresis. The 750.4 nm line intensity, which has almost the same trend with the 811.5 nm line intensity in H mode, both of them increases with power but decreases with gas pressure. The line ratio of 811.5/750.4 has a different change rule in E mode and H mode, and at the transition point of H to E, it can be one significant factor that results in the hysteresis as the gas pressure change. And compared with the 811.5 nm intensity, it seems like a similar change rule with RF power in E mode. Moreover, some emitted lines with lower rate constants don't turn up in E mode, while can be seen in H mode because the excited state atom density increasing with the electron density.

  14. Plasma-assisted self-formation of nanotip arrays on the surface of Cu(In,Ga)Se{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zimin, Sergey P.; Mokrov, Dmitry A. [Yaroslavl State University (Russian Federation); Gorlachev, Egor S.; Amirov, Ildar I.; Naumov, Viktor V. [Institute of Physics and Technology, Russian Academy of Sciences, Yaroslavl (Russian Federation); Gremenok, Valery F. [Scientific-Practical Materials Research Center, NAS of Belarus, Minsk (Belarus); Bente, Klaus [Applied Mineralogy, University Tuebingen (Germany); Kim, Woo Y. [Fusion Research Center, Hoseo University, Asan-City (Korea, Republic of)

    2017-06-15

    In this paper, we report on the phenomenon of nanostructure self-formation on the surface of Cu(In,Ga)Se{sub 2} (CIGS) thin films during inductively coupled argon plasma treatment with its duration varied from 10 to 120 s. The initial films were grown on glass substrates using the selenization technique. During the CIGS film surface treatment in the high-density low-pressure radio-frequency inductively coupled argon plasma there took place a formation of arrays of uniform vertical nanostructures, which shape with increasing processing duration changed from nanocones to nanorods and back to nanocones. A model of the nanotip plasma-assisted self-formation associated with the implementation of micromasking and vapor-liquid-solid mechanisms involving metallic In-Ga (In-Ga-Cu) liquid alloy droplets is proposed. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A. [Center for Turbulence Research, Stanford University, Stanford, California 94305-3024 (United States)

    2015-06-15

    This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers and induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of

  16. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  17. Shear viscosities of photons in strongly coupled plasmas

    Directory of Open Access Journals (Sweden)

    Di-Lun Yang

    2016-09-01

    Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.

  18. Electron energy distributions and excitation rates in high-frequency argon discharges

    International Nuclear Information System (INIS)

    Ferreira, C.M.; Loureiro, J.

    1983-06-01

    The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...

  19. Energy coupling in the plasma focus

    International Nuclear Information System (INIS)

    Wainwright, T.E.; Pickles, W.L.; Sahlin, H.L.; Price, D.F.

    1979-01-01

    Experiments have been performed with a 125-kJ plasma focus to investigate mechanisms for rapid coupling of inductively-stored energy into plasmas. The coupling can take place through the formation of an electron or ion beam that deposits its energy in a target or directly by the penetration of the magnetic field into a resistive plasma. Some preliminary results from experiments of both types are described. The experiments use a replaceable conical anode tip that is intended to guide the focus to within a few millimeters of the axis, where it can suddenly deliver energy either to a small target or to particles that are accelerated. X-ray and fast-ion diagnostics have been used to study the effects

  20. Study of a microwave discharge in argon/helium mixtures

    International Nuclear Information System (INIS)

    Saada, Serge

    1983-01-01

    A discharge created by a surface wave in Argon-Helium mixture is studied. First, the helium influence on plasma parameters has been studied (electron density, electric field, effective collision frequency, etc...), then, on excitation processes in the discharge. Relations between plasma lines, electron density and electric field have been established. [fr

  1. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  2. Measurement of Stark width of some Ar I transitions and the investigation of local thermodynamic equilibrium (LTE) in an atmospheric d.c. argon plasma jet

    International Nuclear Information System (INIS)

    Bakshi, V.

    1988-01-01

    The Stark widths of seven Ar I transitions are reported. Axial line shape data from an atmospheric d.c. argon plasma jet were Abel-inverted to obtain radial line shapes. The electron-density was determined by Stark width measurements of the hydrogen H β transition. In the electron-density region of ≤6 x 10 22 m -3 the experimental Ar I Stark widths are fitted to a linear dependence on the electron-density. Values of Stark width extrapolated to other electron densities are compared to measurements reported in the literature on the 4s-4p array. Experimental values are up to 45% smaller than those predicted by Griem's theory of Stark broadening. Conditions for local thermodynamic equilibrium (LTE) to exist in an atmospheric argon plasma jet were studied. The experiment measures the emission coefficient of seven Ar I transitions and the line shape of the hydrogen H beta transition. After transforming the side-on data into radial space the excited neutral argon atom-density and the electron-density are determined. It is found LTE does not exist below an electron-density of 6 x 10 33 m -3 in the experimental conditions

  3. Plasma-related matrix effects in inductively coupled plasma--atomic emission spectrometry by group I and group II matrix-elements

    International Nuclear Information System (INIS)

    Chan, George C.-Y.; Chan, W.-T.

    2003-01-01

    The effects of Na, K, Ca and Ba matrices on the plasma excitation conditions in inductively coupled plasma-atomic emission spectrometry (ICP-AES) were studied. Normalized relative intensity was used to indicate the extent of the plasma-related matrix effects. The group I matrices have no effects on the plasma excitation conditions. In contrast, the group II matrices depress the normalized relative intensities of some spectral lines. Specifically, the Group II matrices have no effects on the normalized relative intensity of atomic lines of low upper energy level (soft lines), but reduce the normalized relative intensity of some ionic lines and atomic lines of high energy level (hard lines). The Group II matrices seem to shift the Saha balance of the analytes only; no shift in the Boltzmann balance was observed experimentally. Moreover, for some ionic lines with sum of ionization and excitation potentials close to the ionization potential of argon (15.75 eV), the matrix effect is smaller than other ionic lines of the same element. The reduced matrix effects may be attributed qualitatively to charge transfer excitation mechanism of these ionic lines. Charge transfer reaction renders ionic emission lines from the quasi-resonant levels similar in characteristics of atomic lines. The contribution of charge transfer relative to excitation by other non-specific excitation mechanisms (via Saha balance and Boltzmann balance) determines the degree of atomic behavior of a quasi-resonant level. A significant conclusion of this study is that plasma-related matrix effect depends strongly on the excitation mechanism of a spectral line. Since, in general, more than one excitation mechanism may contribute to the overall excitation of an emission line, the observed matrix effects reflect the sum of the effects due to individual excitation mechanisms. Excitation mechanisms, in addition to the often-used total excitation energy, should be considered in matrix effect studies

  4. Excitation mechanism for nickel and argon lines emitted by radio-frequency glow discharge plasma associated with bias current introduction

    International Nuclear Information System (INIS)

    Kodama, Kenji; Wagatsuma, Kazuaki

    2004-01-01

    The introduction of d.c. bias current to an r.f. glow discharge plasma led to enhancement in the intensity of particular emission lines. In order to investigate the excitation mechanism, a large number of nickel emission lines was measured with and without the bias-current introduction. Emission intensities of nickel atomic lines were predominantly elevated by conducting bias current, especially when the emission lines have an excitation energy of approximately 5 eV. This phenomenon could be explained from the additional excitation through collisions with the introduced electrons having kinetic energies favorable for the excitation of such nickel atomic lines. However, this additional excitation mechanism was less effective for excited states of nickel ion, argon atom and argon ion, because their excitation energies were fairly high compared with the excitation energies of Ni atomic lines

  5. Mass spectrometer diagnostic technique in the study of stationary afterglow plasmas in helium, argon and krypton

    International Nuclear Information System (INIS)

    Langenwalter, M.

    1979-01-01

    Since some years the method of massspectrometric monitoring has become an important tool in the analysis of time resolved (or stationary) afterglow plasmas. The present thesis reports the construction and testing of a new fully bakeable UHV-stationary-afterglow-apparatus using a hollow cathode discharge as plasma source for the first time. The hollow cathode is moveable perpendicular to its axis relative to the sampling orifice (i.e. a very small hole at the centre of the plasma container's boundary), so that the radical distribution of the charged particle density can be studied. Several specific extraction conditions for ions from the plasma especially the sampling probe potential have been systematically investigated. Results are illustrated and discussed. The new apparatus has been tested by determining the ambipolar diffusion coefficient of the molecular ion He 2 + in a pure Helium-plasma in thermal equilibrium. The present result (Dsub(a2) = 603 +- 38 / P 0 cm 2 s -1 ) is in agreement with results reported by other workers. Finally an example for the radial behaviour of the Ar + -sampling current in an Argon-discharge for several different times in the afterglow period is given. The shown behaviour agrees relatively well with the theoretically predicted radial ion density distribution, i.e. the zero-order Ressel'function. (Author)

  6. Improvement of In-Flight Alumina Spheroidization Process Using a Small Power Argon DC-RF Hybrid Plasma Flow System by Helium Mixture

    Science.gov (United States)

    Takana, Hidemasa; Jang, Juyong; Igawa, Junji; Nakajima, Tomoki; Solonenko, Oleg P.; Nishiyama, Hideya

    2011-03-01

    For the further improvement of in-flight alumina spheroidization process with a low-power direct-current radiofrequency (DC-RF) hybrid plasma flow system, the effect of a small amount of helium gas mixture in argon main gas and also the effect of increasing DC nozzle diameter on powder spheroidization ratio have been experimentally clarified with correlating helium gas mixture percentage, plasma enthalpy, powder in-flight velocity, and temperature. The alumina spheroidization ratio increases by helium gas mixture as a result of enhancement of plasma enthalpy. The highest spheroidization ratio is obtained by 4% mixture of helium in central gas with enlarging nozzle diameter from 3 to 4 mm, even under the constant low input electric power given to a DC-RF hybrid plasma flow system.

  7. Top down viewing of the inductively coupled plasma using a dual grating, direct reading spectrograph and an all mirror optical system

    International Nuclear Information System (INIS)

    Apel, C.T.; Duchane, D.V.; Palmer, B.A.

    1980-01-01

    Using an all-mirror optical system, an inductively coupled plasma is viewed top down and the light is directed to a dual grating, direct reading spectrograph. Top down viewing of the plasma, with masking of the image of the argon plasma torus at the spectrograph entrance slit, significantly reduces background signal from the source and permits the use of the depth of field of the optical system to achieve compromise conditions for viewing the plasma. Light from the plasma source is introduced to the optical system by means of a mirror situated directly over the plasma. The system is exhausted in such a way that cool air flowing past the mirror forms a thermal barrier between the mirror and the plasma. Elements such as copper and lead have atomic and ionic lines which tend to exhibit self absorption when viewed top down through the cooler ground state atoms in the plume of the plasma. One of the approaches to this problem is to shear off the plume of the plasma with a jet of air directed across the tip of the plasma. A second approach is to make use of the dual grating, direct reading spectrograph and real-time computer system which easily permits the setting of alternate lines for each element so that self absorption and matrix effects are minimized. The design of the dual-grating, direct-reading spectrograph allows for the mounting of more than 200 13-mm-dia photomultiplier tubes along the focal curves. In an effort to demonstrate the use of fiber optics as a viable technique for the closer placement of exit slits, a red sensitive photomultiplier tube was coupled with a 30-cm fiber-optic ribbon to detect light from the Li 670.784 nm line on the focal curve. It was successful and had the added advantages of absorbing second-order ultraviolet light

  8. Radiofrequency initiation and radiofrequency sustainment of laser initiated seeded high pressure plasma

    International Nuclear Information System (INIS)

    Paller, Eric S.; Scharer, John E.; Akhtar, Kamran; Kelly, Kurt; Ding, Guowen

    2001-01-01

    We examine radiofrequency initiation of high pressure(1-70 Torr) inductive plasma discharges in argon, nitrogen, air and organic seed gas mixtures. Millimeter wave interferometry, optical emission and antenna wave impedance measurements for double half-turn helix and helical inductive antennas are used to interpret the rf/plasma coupling, measure the densities in the range of 10 12 cm -3 and analyze the ionization and excited states of the gas mixtures. We have also carried out 193 nm excimer laser initiation of an organic gas seed plasma which is sustained at higher pressures(150 Torr) by radiofrequency coupling at 2.8 kW power levels

  9. An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium

    Science.gov (United States)

    Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.

    2015-11-01

    A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.

  10. Spatio-temporal evolution of the dust particle size distribution in dusty argon rf plasmas

    International Nuclear Information System (INIS)

    Killer, Carsten; Mulsow, Matthias; Melzer, André

    2015-01-01

    An imaging Mie scattering technique has been developed to measure the spatially resolved size distribution of dust particles in extended dust clouds. For large dust clouds of micrometre-sized plastic particles confined in an radio frequency (rf) discharge, a segmentation of the dust cloud into populations of different sizes is observed, even though the size differences are very small. The dust size dispersion inside a population is much smaller than the difference between the populations. Furthermore, the dust size is found to be constantly decreasing over time while the particles are confined in an inert argon plasma. The processes responsible for the shrinking of the dust in the plasma have been addressed by mass spectrometry, ex situ microscopy of the dust size, dust resonance measurements, in situ determination of the dust surface temperature and Fourier transform infrared absorption (FT-IR). It is concluded that both a reduction of dust size and its mass density due to outgassing of water and other volatile constituents as well as chemical etching by oxygen impurities are responsible for the observations. (paper)

  11. Unexpected properties of the inductively coupled plasma induced defect in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, S.M.M., E-mail: sergio@up.ac.za; Auret, F.D.; Janse van Rensburg, P.J.; Nel, J.M.

    2014-04-15

    Inductively coupled plasma (ICP) etching of germanium introduces a single defect, the E{sub 0.31} electron trap, for a large range of argon partial pressures from 4×10{sup –3} to 6.5×10{sup –4} mbar that correspond to ion energies of 8 to 60 eV. Ge of three crystallographic orientations, (1 0 0), (1 1 0) and (1 1 1), treated with 20 and 60 eV ICP had defect concentration profiles that were similar in appearance, with a maximum concentration of 10{sup 14} cm{sup −3} extending more than a µm into the material, approximately three orders of magnitude deeper than what TRIM simulations predicted. All profiles were measured using Laplace deep level transient spectroscopy (L-DLTS), a technique that is sensitive to defect concentrations as low as 10{sup 11} cm{sup −3}. Isochronal annealing of samples showed concentration curves broadening after a 400 K anneal and decreasing to the 10{sup 13} cm{sup −3} level after a 450 K anneal. Unannealed samples measured after a year exhibited similar decreases in defect concentration without broadening of their profiles. A 550 K anneal lowered the defect concentration to levels below the L-DLTS detection limit. Thereafter additional plasma treatment of the surface failed to reintroduce this defect indicating that the structure required for the formation of E{sub 0.31} was no longer present in the region under observation.

  12. Coupling of RF antennas to large volume helicon plasma

    Directory of Open Access Journals (Sweden)

    Lei Chang

    2018-04-01

    Full Text Available Large volume helicon plasma sources are of particular interest for large scale semiconductor processing, high power plasma propulsion and recently plasma-material interaction under fusion conditions. This work is devoted to studying the coupling of four typical RF antennas to helicon plasma with infinite length and diameter of 0.5 m, and exploring its frequency dependence in the range of 13.56-70 MHz for coupling optimization. It is found that loop antenna is more efficient than half helix, Boswell and Nagoya III antennas for power absorption; radially parabolic density profile overwhelms Gaussian density profile in terms of antenna coupling for low-density plasma, but the superiority reverses for high-density plasma. Increasing the driving frequency results in power absorption more near plasma edge, but the overall power absorption increases with frequency. Perpendicular stream plots of wave magnetic field, wave electric field and perturbed current are also presented. This work can serve as an important reference for the experimental design of large volume helicon plasma source with high RF power.

  13. Efficacy and safety of argon plasma coagulation for the treatment of hemorrhagic radiation proctitis Eficacia y seguridad de la electrocoagulación con plasma de argón en el tratamiento del sangrado rectal secundario a proctitis por radioterapia

    Directory of Open Access Journals (Sweden)

    C. de la Serna Higuera

    2004-11-01

    Full Text Available Objective: to evaluate the efficacy, safety and medium-/long-term clinical course of patients undergoing endoscopic treatment with argon plasma coagulation for hemorrhagic radiation proctopathy. Design: descriptive, retrospective study with medium- and long-term follow-up. Patients, material and methods: ten patients were treated with argon plasma coagulation for hemorrhagic radiation proctopathy between July 1998 and February 2003. Inclusion criteria were: evidence of chronic rectal bleeding, consistent endoscopic findings, and absence of any other cause of hematochezia after a comprehensive ano-rectal examination and complete colonoscopy. The equipment used was a standard colonoscope, an argon delivery unit, an argon plasma coagulation probe 1.5 mm in internal diameter, and a high-frequency electrosurgical generator. Consecutive treatment sessions were programmed whenever it was considered necessary until all mucosal lesions had been treated. Clinical and evolutive follow-up was performed with a focus on tolerance, efficacy, and potential argon plasma coagulation-related complications. Data were updated by personal or telephonic interview. Results: in all patients, chronic rectal bleeding stopped after the last treatment session. The mean number of treatment sessions to stop symptoms was 1.7. Mean follow-up was 31.1 months. All sessions were well tolerated, similarly to standard rectoscopy. In one case a recurrence of rectal bleeding was observed four months later, which required two repeat sessions. Four patients were anemic at inclusion. Three of them reported a resolved anemia at the end of the study. No delayed argon plasma coagulation-related complications such us ulcers or strictures were seen. Conclusions: argon plasma coagulation appears to be a useful, effective and safe treatment for rectal bleeding resulting from chronic radiation proctitis when compared to standard medical and endoscopic treatments. These successful outcomes seem

  14. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    International Nuclear Information System (INIS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-01-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  15. Coupling of laser energy into plasma channels

    International Nuclear Information System (INIS)

    Dimitrov, D. A.; Giacone, R. E.; Bruhwiler, D. L.; Busby, R.; Cary, J. R.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2007-01-01

    Diffractive spreading of a laser pulse imposes severe limitations on the acceleration length and maximum electron energy in the laser wake field accelerator (LWFA). Optical guiding of a laser pulse via plasma channels can extend the laser-plasma interaction distance over many Rayleigh lengths. Energy efficient coupling of laser pulses into and through plasma channels is very important for optimal LWFA performance. Results from simulation parameter studies on channel guiding using the particle-in-cell (PIC) code VORPAL [C. Nieter and J. R. Cary, J. Comput. Phys. 196, 448 (2004)] are presented and discussed. The effects that density ramp length and the position of the laser pulse focus have on coupling into channels are considered. Moreover, the effect of laser energy leakage out of the channel domain and the effects of tunneling ionization of a neutral gas on the guided laser pulse are also investigated. Power spectral diagnostics were developed and used to separate pump depletion from energy leakage. The results of these simulations show that increasing the density ramp length decreases the efficiency of coupling a laser pulse to a channel and increases the energy loss when the pulse is vacuum focused at the channel entrance. Then, large spot size oscillations result in increased energy leakage. To further analyze the coupling, a differential equation is derived for the laser spot size evolution in the plasma density ramp and channel profiles are simulated. From the numerical solution of this equation, the optimal spot size and location for coupling into a plasma channel with a density ramp are determined. This result is confirmed by the PIC simulations. They show that specifying a vacuum focus location of the pulse in front of the top of the density ramp leads to an actual focus at the top of the ramp due to plasma focusing, resulting in reduced spot size oscillations. In this case, the leakage is significantly reduced and is negligibly affected by ramp length

  16. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  17. Observation of dielectronic satellites in the K-spectrum of argon ions in plasma produced by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Magunov, A.I.; Faenov, A.Ya.; Skobelev, I.Yu.; Pikuz, T.A.; Biemont, E.; Quinet, P.; Blasco, F.; Bonte, C.; Dorchies, F.; Caillaud, T.; Salin, F.; Stenz, C.

    2002-01-01

    The satellite structure of 1s2p 1,3 P 1 -1s 21 S 0 lines of the He-like argon ion in plasma produced by a 45-fs laser pulse in a gas-jet cluster target is measured with a high spectral resolution. Radiation transitions 2p → 1s from autoionizing states (AISs) are detected for ions ranging from Li-like to F-like. The spectrum observed is theoretically simulated with the use of the spectroscopic data for the AISs of multicharged ions obtained within the multiconfiguration relativistic Hartree-Fock method. Good agreement with experimental data is obtained when the main population channels of these states are taken into account for typical values of cluster-target plasma parameters

  18. Mode coupling of electron plasma waves

    International Nuclear Information System (INIS)

    Harte, J.A.

    1975-01-01

    The driven coupled mode equations are derived for a two fluid, unequal temperature (T/sub e/ much greater than T/sub i/) plasma in the one-dimensional, electrostatic model and applied to the coupling of electron plasma waves. It is assumed that the electron to ion mass ratio identical with m/sub e/M/sub i// much less than 1 and eta 2 /sub ko/k lambda/sub De/ less than 1 where eta 2 /sub ko/ is the pump wave's power normalized to the plasma thermal energy, k the mode wave number and lambda/sub De/ the electron Debye length. Terms up to quadratic in pump power are retained. The equations describe the linear plasma modes oscillating at the wave number k and at ω/sub ek/, the Bohn Gross frequency, and at Ω/sub k/, the ion acoustic frequency, subject to the damping rates ν/sub ek/ and ν/sub ik/ for electrons and ions and their interactions due to intense high frequency waves E/sub k//sup l/. n/sub o/ is the background density, n/sub ik/ the fluctuating ion density, ω/sub pe/ the plasma frequency

  19. Plasma-particle interaction effects in induction plasma modelling under dense loading conditions

    International Nuclear Information System (INIS)

    Proulx, P.; Mostaghimi, J.; Boulos, M.

    1983-07-01

    The injection of solid particles or aerosol droplets in the fire-ball of an inductively coupled plasma can substantially perturb the plasma and even quench it under high loading conditions. This can be mainly attributed to the local cooling of the plasma by the particles or their vapour cloud, combined with the possible change of the thermodynamic and transport properties of the plasma in the presence of the particle vapour. This paper reports the state-of-the-art in the mathematical modelling of the induction plasma. A particle-in-cell model is used in order to combine the continuum approach for the calculation of the flow, temperature and concentration fields in the plasma, with the stochastic single particle approach, for the calculation of the particle trajectories and temperature histories. Results are given for an argon induction plasma under atmospheric pressure in which fine copper particles are centrally injected in the coil region of the discharge

  20. Argon-ion contamination of the plasmasphere

    International Nuclear Information System (INIS)

    Chiu, Y.T.; Cornwall, J.M.; Luhmann, J.G.; Schulz, M.

    1979-01-01

    This paper applies present observational and analytic knowledge on effects of plasma beam interaction wth the magnetosphere to the plasmasphere contamination problem of the argon ion engine exhaust expected to be deposited in the magnetosphere during the construction phase of the Satellite Power System. Effects of plasmasphere, ionosphere, and radiation belt modifications are discussed

  1. Observation of forbidden (E2) lines in the ultraviolet spectra of Ca II, Sr II, and Ba II by inductively coupled plasma emission spectroscopy

    International Nuclear Information System (INIS)

    Doidge, Peter S.

    2013-01-01

    Forbidden (electric quadrupole, E2) transitions of the type ns 2 S 1/2 –nd 2 D 3/2 and ns 2 S 1/2 –nd 2 D 5/2 in the ultraviolet spectra of singly ionized Ca, Sr, and Ba (with n = 4, 5 or 6 for Ca, Sr, and Ba, respectively) have been observed in the emission spectrum of an inductively coupled argon plasma. Wavelengths and wavenumbers of the six lines are reported and the values are in good agreement with those expected from literature data for the energy levels involved. - Highlights: • Wavelengths measured using commercially available ICP emission spectrometer • First wavelength and wavenumber measurements of some E2 lines of Ba +, Ca +, Sr + • Evidence for small plasma shifts in the wavenumbers of Ba + and Sr +

  2. Decomposition of 2-((2-methoxyphenyl)diazenyl)benzene-1,3,5-triol molecule by an argon plasma jet

    Science.gov (United States)

    Tanışlı, Murat; Taşal, Erol

    2018-05-01

    In this study, we have presented the effects of the argon plasma on a 2-((2-methoxyphenyl)diazenyl)benzene-1,3,5-triol molecule—AZO compound (abbreviated as 2MDB)—under atmospheric pressure. In order to do this, the validated molecule has been considered and plasma has been used to modify it. The atmospheric pressure plasma jet system was specially designed for performing decomposing processes of the 2MDB molecule. The characterizations before and after the application of plasma—which takes only 3 minutes under atmospheric pressure conditions, to dissolve the 2MDB molecule in ethanol and methanol solutions—were examined using the Fourier transform infrared and Ultraviolet-Visible (UV-Vis) spectroscopies. After the plasma treatment, the molecule was broken at -C-N=N-C-C bond. Accurate and important changes are seen clearly from the results. In addition, according to UV-Vis spectra, π-π* electronic transitions related to -N=N- AZO bridge for the 2MDB molecule in polar-aprotic solvents such as ethanol and methanol were recorded as strong transitions. The new photoproducts such as -C-N-N=C and C=O were obtained from the 2MDB molecule.

  3. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  4. The role of argon plasma coagulation in the management of Barrett's esophagus: a single-center experience

    Directory of Open Access Journals (Sweden)

    Gad YZ

    2011-04-01

    Full Text Available Yahia Z Gad1, Adel A Zeid21Associate Professor of Internal Medicine, Mansoura Specialized Medical Hospital, Mansoura University, Mansoura, Egypt; 2Consultant Surgeon, Al Nil Hospital, Mansaura, EgyptBackground/aim: Patients with Barrett's esophagus (BE are 30 times more likely to develop esophageal adenocarcinoma (EAC than the general population. Data regarding the use of argon plasma coagulation (APC for treatment of patients with BE in Egypt are still limited. This article discusses the efficacy and safety of APC as a thermoablative modality in Egyptian patients with BE.Materials and methods: A total of 73 referred eligible patients with a confirmed endoscopic and histopathologic diagnosis of BE were enrolled in this study and subjected to thermoablation by high-power (hp-APC equipment at a 60 W setting until complete ablation or a maximum of five sessions and were followed up clinically and endoscopically at 3-month intervals. Computer-generated randomization allocated patients into APC-treated and control groups (n = 75, all of whom were treated with a proton pump inhibitor.Results: Minor and major complications occurred in 8 of 73 (10.95% and 1 of 73 (1.36% patients, respectively. Macroscopic ablation was achieved after one session in 37 of 73 (50.63% patients, and complete histologic ablation was confirmed after 167 sessions in 69 of 73 (94.52% patients. At 1-year follow-up, no relapses of BE or progression to EAC were observed.Conclusion: hp-APC at a medium-energy setting of 60 W in an acid-reduced environment can ablate BE effectively and safely with promising initial results.Keywords: Barrett's esophagus, argon plasma coagulation

  5. Electron densities and energies of a guided argon streamer in argon and air environments

    International Nuclear Information System (INIS)

    Hübner, S; Hofmann, S; Van Veldhuizen, E M; Bruggeman, P J

    2013-01-01

    In this study we report the temporally and spatially resolved electron densities and mean energies of a guided argon streamer in ambient argon and air obtained by Thomson laser scattering. The plasma is driven by a positive monopolar 3.5 kV pulse, with a pulse width of 500 ns and a frequency of 5 kHz which is synchronized with the high repetition rate laser system. This configuration enables us to use the spatial and temporal stability of the guided streamer to accumulate a multitude of laser/plasma shots by a triple grating spectrometer equipped with an ICCD camera and to determine the electron parameters. We found a strong initial n e -overshoot with a maximum of 7 × 10 19  m −3 and a mean electron energy of 4.5 eV. This maximum is followed by a fast decay toward the streamer channel. Moreover, a 2D distribution of the electron density is obtained which exhibits a peculiar mushroom-like shape of the streamer head with a diameter significantly larger than that of the emission profile. A correlation of the width of the streamer head with the expected pre-ionization channel is found. (paper)

  6. Dynamic behaviour of dc double anode plasma torch at atmospheric pressure

    International Nuclear Information System (INIS)

    Tu, X; Cheron, B G; Yan, J H; Cen, K F

    2007-01-01

    An original dc double anode plasma torch which provides a long-time and highly stable atmospheric plasma jet has been devised for the purpose of hazardous waste treatment. The arc fluctuations and dynamic behaviour of the argon and argon-nitrogen plasma jets under different operating conditions have been investigated by means of classical tools, such as the statistic method, fast Fourier transform (FFT) and correlation analysis. In our experiments, the takeover mode is identified as the fluctuation characteristic of the argon plasma jet while the restrike mode is typical in the argon-nitrogen plasma dynamic behaviour. In the case of pure argon, the FFT and correlation calculation results of electrical signals exhibit the only characteristic frequency of 150 Hz, which originates from the torch power and is independent of any change in the operating conditions. It indicates that the nature of fluctuations in an argon plasma jet is mainly induced by the undulation of the tri-phase rectified power supply. In contrast, besides the same low frequency bulk fluctuation, the dynamic behaviour of the argon-nitrogen plasma jet at high frequency (4.1 kHz) is ascribed to the rapid motion of both arc roots on the anode surface. In addition, it is found that each arc root attachment is rather diffused than located at a fixed position on the anode wall in the argon plasma jet, while constricted arc roots occur when nitrogen is added into argon as the plasma working gas

  7. Nonlinear charge reduction effect in strongly coupled plasmas

    International Nuclear Information System (INIS)

    Sarmah, D; Tessarotto, M; Salimullah, M

    2006-01-01

    The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occurring in strongly coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor (f c ) which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analysed and shown to predict a strong charge reduction effect in strongly coupled plasmas

  8. Collisional Thermalization in Strongly Coupled Ultracold Neutral Plasmas

    Science.gov (United States)

    2017-01-25

    calculated collisions rates in a strongly coupled plasma. From Bannasch et al., PRL 109, 185008 (2012). DISTRIBUTION A: Distribution approved for public...applicability to other plasmas.) We use a Green- Kubo relation to extract the diffusion constant from our measurements of the relaxation towards...strongly coupled systems. Our measurements (data symbols) agree with numerical calculations (solid lines) from J. Daligault, PRL 108, 225004 (2012

  9. Investigations of the cathode region of an argon arc plasma by degenerate four-wave mixing laser spectroscopy and optical emission spectroscopy

    International Nuclear Information System (INIS)

    Dzierzega, K; Pokrzywka, B; Pellerin, S

    2004-01-01

    Degenerate four-wave mixing (DFWM) laser spectroscopy was used in local studies of atmospheric pressure argon plasma generated in a free-burning arc. The results of plasma diagnostics using the DFWM method were compared to the results obtained with optical emission measurements. In the cathode region of the arc the maxima of both the DFWM signal and the emission coefficient for the 696.5 nm Ar I line depend on the distance from the cathode tip. This effect proves the departure of the plasma state from local thermal equilibrium (LTE) as it has been reported by many authors. On the other hand the Stark shifts of the 696.5 nm Ar I line determined by the DFWM method in relation to plasma diagnostic results show no deviations from LTE on the arc axis down to 1.0 mm from the cathode tip

  10. Gas and particle velocity measurements in an induction plasma

    International Nuclear Information System (INIS)

    Lesinski, J.; Gagne, R.; Boulos, M.I.

    1981-08-01

    Laser doppler anemometry was used for the measurements of the plasma and particle velocity profiles in the coil region of an inductively coupled plasma. Results are reported for a 50 mm ID induction torch operated at atmospheric pressure with argon as the plasma gas. The oscillator frequency was 3 MHz and the power in the coil was varied between 4.6 and 10.5 kW. The gas velocity measurements were made using a fine carbon powder as a tracer (dp approx. = 1 μm). Measurements were also made with larger silicon particles (dp = 33 μm and sigma = 13 μm) centrally injected in the plasma under different operating conditions

  11. Effect of Argon Plasma Treatment on Tribological Properties of UHMWPE/MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Nitturi Naresh Kumar

    2016-08-01

    Full Text Available Ultra-high molecular weight polyethylene (UHMWPE is widely used in artificial joints in the replacement of knee, hip and shoulder that has been impaired as a result of arthritis or other degenerative joint diseases. The UHMWPE made plastic cup is placed in the joint socket in contact with a metal or ceramic ball affixed to a metal stem. Effective reinforcement of multi-walled carbon nanotubes (MWCNTs in UHMWPE results in improved mechanical and tribological properties. The hydrophobic nature of the nanocomposites surface results in lesser contact with biological fluids during the physiological interaction. In this project, we investigate the UHMWPE/MWCNTs nanocomposites reinforced with MWCNTs at different concentrations. The samples were treated with cold argon plasma at different exposure times. The water contact angles for 60 min plasma-treated nanocomposites with 0.0, 0.5, 1.0, 1.5, and 2.0 wt % MWCNTs were found to be 55.65°, 52.51°, 48.01°, 43.72°, and 37.18° respectively. Increasing the treatment time of nanocomposites has shown transformation from a hydrophobic to a hydrophilic nature due to carboxyl groups being bonded on the surface for treated nanocomposites. Wear analysis was performed under dry, and also under biological lubrication, conditions of all treated samples. The wear factor of untreated pure UHMWPE sample was reduced by 68% and 80%, under dry and lubricated conditions, respectively, as compared to 2 wt % 60 min-treated sample. The kinetic friction co-efficient was also noted under both conditions. The hardness of nanocomposites increased with both MWCNTs loading and plasma treatment time. Similarly, the surface roughness of the nanocomposites was reduced.

  12. Dry etching of ITO by magnetic pole enhanced inductively coupled plasma for display and biosensing devices

    Energy Technology Data Exchange (ETDEWEB)

    Meziani, T. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Vatican City State, Holy See,) (Italy)]. E-mail: tarik.meziani@jrc.it; Colpo, P. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Va) (Italy)]. E-mail: pascal.colpo@jrc.it; Lambertini, V. [Centro Ricerche Fiat, Strada Torino 50, 10043 Orbassano (TO) (Italy); Ceccone, G. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Va) (Italy); Rossi, F. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020 Ispra (Va) (Italy)

    2006-03-15

    The dry etching of indium tin oxide (ITO) layers deposited on glass substrates was investigated in a high density inductively coupled plasma (ICP) source. This innovative low pressure plasma source uses a magnetic core in order to concentrate the electromagnetic energy on the plasma and thus provides for higher plasma density and better uniformity. Different gas mixtures were tested containing mainly hydrogen, argon and methane. In Ar/H{sub 2} mixtures and at constant bias voltage (-100 V), the etch rate shows a linear dependence with input power varying the same way as the ion density, which confirms the hypothesis that the etching process is mainly physical. In CH{sub 4}/H{sub 2} mixtures, the etch rate goes through a maximum for 10% CH{sub 4} indicating a participation of the radicals to the etching process. However, the etch rate remains quite low with this type of gas mixture (around 10 nm/min) because the etching mechanism appears to be competing with a deposition process. With CH{sub 4}/Ar mixtures, a similar feature appeared but the etch rate was much higher, reaching 130 nm/min at 10% of CH{sub 4} in Ar. The increase in etch rate with the addition of a small quantity of methane indicates that the physical etching process is enhanced by a chemical mechanism. The etching process was monitored by optical emission spectroscopy that appeared to be a valuable tool for endpoint detection.

  13. Surface modification of gutta-percha cones by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Maíra, E-mail: maira@metalmat.ufrj.br [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Menezes, Marilia Santana de Oliveira [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Gomes, Brenda Paula Figueiredo de Almeida [Department of Restorative Dentistry, Endodontics Division, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP (Brazil); Barbosa, Carlos Augusto de Melo [Department of Clinical Dentistry, Endodontic Division, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Athias, Leonardo [Social Indicators Division, Brazilian Institute of Geography and Statistics, Rio de Janeiro, RJ (Brazil); Simão, Renata Antoun [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil)

    2016-11-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  14. Surface modification of gutta-percha cones by non-thermal plasma

    International Nuclear Information System (INIS)

    Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun

    2016-01-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  15. Kinetics of Ar+*(2G9/2) metastable ions and transport of argon ions in ICP reactor

    NARCIS (Netherlands)

    Sadeghi, N.; Derouard, J.; Grift, van de M.; Kroesen, G.M.W.; Hoog, de F.J.; Tachibana, K.; Watanabe, Y.

    1997-01-01

    The decay time of the argon Ar~~(2G912) metastable ions was measured in the afterglow of a low pressure pulsed helicon reactor. From the argon pressure and electron density dependence of this decay time, rate coefficients for quenching of these ions by argon atoms and by plasma electrons have been

  16. Exploring the Effects of Argon Plasma Treatment on Plasmon Frequency and the Chemiresistive Properties of Polymer-Carbon Nanotube Metacomposite

    Directory of Open Access Journals (Sweden)

    Manuel Rivera

    2017-08-01

    Full Text Available Metacomposites, composite materials exhibiting negative permittivity, represent an opportunity to create materials with depressed plasmon frequency without the need to create complex structural geometries. Although many reports exist on the synthesis and characterizations of metacomposites, very few have ventured into exploring possible applications that could take advantage of the unique electrical properties of these materials. In this article, we report on the chemiresistive properties of a polymer-CNT metacomposite and explore how these are affected by Argon plasma treatment.

  17. Training course on inductively coupled plasma spectrometry - Note

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    TRAINING COURSE ON INDUCTIVELY COUPLED PLASMA SPECTROMETRY In the present day geological, chemical, environmental and archaeological research activities, the Inductively Coupled Plasma (ICP) Spectrometry is established as a cost-effective multi... the knowledge and advances in the analytical tools and methodologies for the benefit of the research scholars as well as professionals. National Institute of Oceanography, A.B. VALSANGKAR Dona Paula - 403 004 slip tectonics playing a major role...

  18. Experimental measurements of Helicon wave coupling in KSTAR plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. J.; Wi, H. H.; Wang, S. J.; Park, S. Y.; Jeong, J. H.; Han, J. W.; Kwak, J. G.; Oh, Y. K. [National Fusion Research Institute, Daejeon (Korea, Republic of); Chun, M. H.; Yu, I. H. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of)

    2016-05-15

    KSTAR tokamak can be a good platform to test this current drive concept because it has adequate machine parameters. Furthermore, KSTAR will have high electron beta plasmas in near future with additional ECH power. In 2015 KSTAR experiments, low-power traveling wave antenna has been designed, fabricated and installed for helicon wave coupling tests in KSTAT plasmas. In 2016 KSTAR campaign, 200 kW klystron power will be combined using three coaxial hybrid couplers and three dummy loads. High power RF will be fed into the traveling wave antenna with two coaxial feeders through two dual disk windows and 6 inch coaxial transmission line system. Current status and plan for high power helicon wave current drive system in KSTAR will be presented. Mock-up TWA antenna installed at the KSTAR reveals high couplings in both L- and H-mode plasmas. The coupling can be easily controlled by radial outer gap without degradation of plasma confinement or local gas puffing with slight decrease of plasma confinement.

  19. Miniature Coaxial Plasma injector Diagnostics by Beam Plasma Interaction

    International Nuclear Information System (INIS)

    El-Tayeb, H.; El-Gamal, H.

    2003-01-01

    A miniature coaxial gun has been used to study the interaction between plasma beam and low density plasma formed in glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 kA as a single pulse with pulse width of 60 mu. Investigations are carried out with argon gas at pressure 0.4 Torr. The plasma stream ejected from the coaxial discharge propagates in the neutral argon atoms with mean velocity of 1.2x10 5 cm/s. The plasma stream temperature and density were 4.2 eV and 2.4x10 13 cm -3 respectively. An argon negative glow has been used as base plasma where its electron temperature and density were 2.2 eV and 6.2x10 7 cm -3 respectively. When the plasma stream propagates through the negative glow discharge region its velocity decreased to 8.8 x 10 4 cm/s and also the plasma electron temperature decreased to 3.1 eV, while the stream density remained the same. An excited wave appeared on the electric probe having frequency equal to the plasma frequency of the plasma under consideration. Simulation of the problem showed that this method could be applied for plasma diagnostics within the region of investigation. Those further studies for high temperature, dense, and magnetized plasma will be considered

  20. Experimental test of models of radio-frequency plasma sheaths

    International Nuclear Information System (INIS)

    Sobolewski, M.A.

    1997-01-01

    The ion current and sheath impedance were measured at the radio-frequency-powered electrode of an asymmetric, capacitively coupled plasma reactor, for discharges in argon at 1.33 endash 133 Pa. The measurements were used to test the models of the radio frequency sheath derived by Lieberman [IEEE Trans. Plasma Sci. 17, 338 (1989)] and Godyak and Sternberg [Phys. Rev. A 42, 2299 (1990)], and establish the range of pressure and sheath voltage in which they are valid. copyright 1997 American Institute of Physics

  1. Effect of voltage shape of electrical power supply on radiation and density of a cold atmospheric argon plasma jet

    Directory of Open Access Journals (Sweden)

    F Sohbatzadeh

    2017-02-01

    Full Text Available In this work, we investigated generating argon cold plasma jet at atmospheric pressure based on dielectric barrier discharge configuration using three electrical power supplies of sinusoidal, pulsed and saw tooth high voltage shapes at 8 KHZ. At first; we describe the electronic circuit features for generating high voltage (HV wave forms including saw tooth, sinusoidal and pulsed forms. Then, we consider the effect of voltage shape on the electrical breakdown. Relative concentrations of chemical reactive species such as Oxygen, atomic Nitrogen and OH were measured using optical emission spectroscopy. Using a simple numerical model, we showed a HV with less rise time increases electron density, therefore a cold plasma jet can be produced with a minimal consumption electrical power

  2. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia

    2002-01-01

    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  3. Stirring Strongly Coupled Plasma

    CERN Document Server

    Fadafan, Kazem Bitaghsir; Rajagopal, Krishna; Wiedemann, Urs Achim

    2009-01-01

    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implicati...

  4. Study on spatial distribution of plasma parameters in a magnetized inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hee-Woon; Lee, Woohyun; Kim, Ji-Won; Whang, Ki-Woong, E-mail: kwhang@snu.ac.kr [Plasma Laboratory, Inter-University Semiconductor Research Center, Department of Electrical and Computer Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyuk [Samsung Electronics Co., Banwol-dong, Hwaseong 445-701 (Korea, Republic of); Park, Wanjae [Tokyo Electron Miyagi Ltd., Taiwa-cho, Kurokawa-gun, Miyagi 981-3629 (Japan)

    2015-07-15

    Spatial distributions of various plasma parameters such as plasma density, electron temperature, and radical density in an inductively coupled plasma (ICP) and a magnetized inductively coupled plasma (M-ICP) were investigated and compared. Electron temperature in between the rf window and the substrate holder of M-ICP was higher than that of ICP, whereas the one just above the substrate holder of M-ICP was similar to that of ICP when a weak (<8 G) magnetic field was employed. As a result, radical densities in M-ICP were higher than those in ICP and the etch rate of oxide in M-ICP was faster than that in ICP without severe electron charging in 90 nm high aspect ratio contact hole etch.

  5. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  6. Thin TiO2 films deposited by implantation and sputtering in RF inductively coupled plasmas

    International Nuclear Information System (INIS)

    Valencia-Alvarado, R; López-Callejas, R; Barocio, S R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Rodríguez-Méndez, B G; De la Piedad-Beneitez, A; De la Rosa-Vázquez, J M

    2012-01-01

    The achievement of titanium dioxide (TiO 2 ) thin films in the rutile crystalline phase is reported. The samples result from the implantation of oxygen ions of Ti in argon/oxygen plasma generated by inductively coupled RF at a commercial 13.56 MHz frequency. Simultaneously, a sputtering process is conducted on the titanium target in order to produce TiO 2 thin films in the anatase phase over silicon and glass substrates. Both implantation and sputtering processes shared the same 500 W plasma with the target, polarized between 0 and -3 kV. The substrates were placed between 2 and 3 cm from the target, this distance being found to be determinant of the TiO 2 deposition rate. The rutile phase in the target was obtained at temperatures in the order of 680 degrees C and the anatase (unbiased) one at about 300 degrees C without any auxiliary heating. The crystalline phases were characterized by x ray diffraction and Raman spectroscopy. The morphology and average roughness were established by means of scanning electronic and atomic force microscopy, whereas the reaction products generated during the oxidation process were analyzed by mass spectrometry. Finally, the stoichiometric composition was measured by means of X-ray photoelectron spectroscopy.

  7. Helicon wave coupling to a chiral-plasma column

    International Nuclear Information System (INIS)

    Torres-Silva, H.; Reggiani, N.; Sakanaka, P.H.

    1995-01-01

    Inductive helicon wave coupling to a chiro-plasma column is studied numerically. In our theoretical model, the RF current distribution of the chiro-plasma is taken into account using the constitutive relations of a chiral-plasma. Computational results based on the data of present-day helicon devices are show. In particular, we discuss the role of magnetic-field-aligned electron landau damping for the helicon wave absorption. In many a see, the numerical findings can be understood reasonably in terms of the wavenumber spectra of the helicon wave dispersion relation for slow and fast wave of a chiral-plasma. In general however, the full electromagnetic treatment is necessary in order to describe and to understand the inductive coupling in the helicon wave regime. (author). 9 refs., 1 fig

  8. Magnetic properties of Co-N films deposited by ECR nitrogen/argon plasma with DC negative-biased Co target

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Zhang, Y.C.; Yang, K.; Liu, H.X.; Zhu, X.D., E-mail: xdzhu@ustc.edu.cn; Zhou, H.Y.

    2017-06-01

    Highlights: • A new method of synthesizing Co-N films containing Co{sub 4}N phase. • Tunable magnetic properties achieved in ECR plasma CVD. • The change of magnetic properties is related to atoms mobility on substrate and the concentration of active species in plasma vapor. - Abstract: By introducing DC negative-biased Co target in the Electron Cyclotron Resonance (ECR) nitrogen/argon plasma, the Co-N films containing Co{sub 4}N phase were synthesized on Si(100) substrate. Effects of processing parameters on magnetic properties of the films are investigated. It is found that magnetic properties of Co-N films vary with N{sub 2}/Ar flow ratio, substrate temperature, and target biasing voltage. The saturation magnetization M{sub s} decreased by increasing the N{sub 2}/Ar gas flow ratio or decreasing target biasing voltage, while the coercive field H{sub c} increased, which is ascribed to the variation of relative concentration for N or Co active species in plasma vapor. The magnetic properties present complex dependency with growth temperature, which is related to the atom mobility on the substrate affected by the growth temperature. This study exhibits a potential of ECR plasma chemical vapor deposition to synthesize the interstitial compounds and tune magnetic properties of films.

  9. Spheroidization of silica powders by radio frequency inductively coupled plasma with Ar-H2 and Ar-N2 as the sheath gases at atmospheric pressure

    Science.gov (United States)

    Li, Lin; Ni, Guo-hua; Guo, Qi-jia; Lin, Qi-fu; Zhao, Peng; Cheng, Jun-li

    2017-09-01

    Amorphous spherical silica powders were prepared by inductively coupled thermal plasma treatment at a radio frequency of 36.2 MHz. The effects of the added content of hydrogen and nitrogen into argon (serving as the sheath gas), as well as the carrier gas flow rate, on the spheroidization rate of silica powders, were investigated. The prepared silica powders before and after plasma treatment were examined by scanning electron microscopy, X-ray diffraction, and laser granulometric analysis. Results indicated that the average size of the silica particles increased, and the transformation of crystals into the amorphous state occurred after plasma treatment. Discharge image processing was employed to analyze the effect of the plasma temperature field on the spheroidization rate. The spheroidization rate of the silica powder increased with the increase of the hydrogen content in the sheath gas. On the other hand, the spheroidization rate of the silica power first increased and then decreased with the increase of the nitrogen content in the sheath gas. Moreover, the amorphous content increased with the increase of the spheroidization rate of the silica powder.

  10. Effect of single aerosol droplets on plasma impedance in the inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chan, George C.-Y., E-mail: gcchan@indiana.edu; Zhu, Zhenli; Hieftje, Gary M.

    2012-10-15

    The impedance of an inductively coupled plasma was indirectly monitored by two different means-through a RF-probe coil placed inside the torch housing and from tapping the phase-detector signal of the impedance-matching network. During single-droplet introduction, temporal spikes in both the RF-probe coil and the phase-detector signals were readily observed, indicating a momentary change in plasma impedance. The changes in plasma impedance were found to be due solely to plasma perturbation by droplet introduction, and not to an artifact caused by imperfect automatic impedance matching. The temporal changes in plasma impedance were found to be directly proportional to the temporally integrated atomic emission of hydrogen, which is assumed in turn to be directly proportional to the volume of the introduced droplet. A small satellite droplet, with an estimated diameter of 27 {mu}m (i.e., {approx} 10 pL in volume), caused a readily measurable change in plasma impedance. By assuming that the change in RF-probe voltage is directly proportional to the variation in RF power delivered by the load coil, the instantaneous power change coupled to the plasma during single-droplet introduction was estimated. Typical increases in peak RF power and total energy coupled to the plasma, for a single 50-{mu}m droplet introduction, were thereby estimated to be around 8 to 11 W and 0.03 to 0.04 J, respectively. This impedance change was also exploited as a trigger to signal the droplet-introduction event into the plasma. This trigger signal was obtained through a combination of the RF-probe and the phase-detector signals and offered typical jitter from 1 to 2 ms. With the proper choice of a trigger threshold, no trigger misfire resulted and the achievable efficiencies of the trigger signal were 99.95, 97.18 and 74.33% for plasma forward power levels of 900, 1200, and 1500 W, respectively. The baseline noise on the RF-probe coil and the phase-detector signals, which increase with plasma

  11. Investigation of the continuum radiation from a high pressure argon arc

    International Nuclear Information System (INIS)

    Glasser, J.; Chapelle, J.

    1975-01-01

    At the high electronic densities existing in high temperature strongly correlated plasmas (with number of electrons in the Debye sphere Nd<<1) it is sometimes difficult to find lines for which Stark broadening allows determination of electronic density. Since the broadening effect is rather strong, the lines overlap or could not be easily extracted from the intense continuous background. The continuum emission in the UV, visible and near infra-red regions, principally due to the radiative recombination, could thus be widely used for the diagnostics of such plasmas. So far a limited number of data on the continuum emission of Argon plasma is available. At the same time certain discrepancies between theoretical predictions and experiments have also been found. The aim of this work is to obtain more elaborated data on the Argon continuum emission at high pressure, where the differences were found to be the largest. (Auth.)

  12. Plasma processing of soft materials for development of flexible devices

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2011-01-01

    Plasma-polymer interactions have been studied as a basis for development of next-generation processing of flexible devices with soft materials by means of low-damage plasma technologies (soft materials processing technologies). In the present article, interactions between argon plasmas and polyethylene terephthalate (PET) films have been examined for investigations of physical damages induced by plasma exposures to the organic material via chemical bonding-structure analyses using hard X-ray photoelectron spectroscopy (HXPES) together with conventional X-ray photoelectron spectroscopy (XPS). The PET film has been selected as a test material for investigations in the present study not merely because of its specific applications, such as a substrate material, but because PET is one of the well defined organic materials containing major components in a variety of functional soft materials; C-C main chain, CH bond, oxygen functionalities (O=C-O bond and C-O bond) and phenyl group. Especially, variations of the phenyl group due to argon plasma exposures have been investigated in the present article in order to examine plasma interactions with π-conjugated system, which is in charge of electronic functions in many of the π-conjugated electronic organic materials to be utilized as functional layer for advanced flexible device formations. The PET films have been exposed to argon plasmas sustained via inductive coupling of RF power with low-inductance antenna modules. The HXPES analyses exhibited that the degradations of the oxygen functionalities and the phenyl group in the deeper regions up to 50 nm from the surface of the samples were insignificant indicating that the bond scission and/or the degradations of the chemical bonding structures due to photoirradiation from the plasma and/or surface heating via plasma exposure were relatively insignificant as compared with damages in the vicinity of the surface layers.

  13. A Method to Construct Plasma with Nonlinear Density Enhancement Effect in Multiple Internal Inductively Coupled Plasmas

    International Nuclear Information System (INIS)

    Chen Zhipeng; Li Hong; Liu Qiuyan; Luo Chen; Xie Jinlin; Liu Wandong

    2011-01-01

    A method is proposed to built up plasma based on a nonlinear enhancement phenomenon of plasma density with discharge by multiple internal antennas simultaneously. It turns out that the plasma density under multiple sources is higher than the linear summation of the density under each source. This effect is helpful to reduce the fast exponential decay of plasma density in single internal inductively coupled plasma source and generating a larger-area plasma with multiple internal inductively coupled plasma sources. After a careful study on the balance between the enhancement and the decay of plasma density in experiments, a plasma is built up by four sources, which proves the feasibility of this method. According to the method, more sources and more intensive enhancement effect can be employed to further build up a high-density, large-area plasma for different applications. (low temperature plasma)

  14. [Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].

    Science.gov (United States)

    Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo

    2014-05-01

    In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction.

  15. Hyperpolarizabilities of one and two electron ions under strongly coupled plasma

    International Nuclear Information System (INIS)

    Sen, Subhrangsu; Mandal, Puspajit; Kumar Mukherjee, Prasanta; Fricke, Burkhard

    2013-01-01

    Systematic investigations on the hyperpolarizabilities of hydrogen and helium like ions up to nuclear charge Z = 7 under strongly coupled plasma environment have been performed. Variation perturbation theory has been adopted to evaluate such properties for the one and two electron systems. For the two electron systems coupled Hartree-Fock theory, which takes care of partial electron correlation effects, has been utilised. Ion sphere model of the strongly coupled plasma, valid for ionic systems only, has been adopted for estimating the effect of plasma environment on the hyperpolarizability. The calculated free ion hyperpolarizability for all the systems is in good agreement with the existing data. Under confinement hyperpolarizabilities of one and two electron ions show interesting trend with respect to plasma coupling strength.

  16. Comparison of explicit and effective models for calculating ionic populations in argon plasmas

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1994-01-01

    Calculations have been performed to model the state populations of argon plasmas at electron densities at and above those required for the validity of coronal equilibrium. Both effective and explicit models have been used, and both are based on the same set of atomic cross sections. The effective model includes ground and singly excited states explicitly, while the effect of autoionizing states is accounted for by branching factors which describe their depopulation into the various non-autoionizing states. The explicit model considers both autoionizing and non-autoionizing states explicitly. The effective model requires a significantly reduced amount of computer time and memory. Good agreement between the two models can be obtained through moderate densities if the branching factors include electron density dependent terms which describe the collisional stabilization of each autoionizing state. The effective model breaks down as density is increased because the population of individual autoionizing states become significant. Results for both ionization balance and radiated power loss are presented. (Author)

  17. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    International Nuclear Information System (INIS)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs

  18. Analysis of plasma coupling with the prototype DIII-D ICRF antenna

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.M.; Hoffman, D.J.; Bigelow, T.S.; Baity, F.W.; Gardner, W.L.; Mayberry, M.J.; Rothe, K.E.

    1988-01-01

    Coupling to plasma in the H-mode is essential to the success of future ignited machines such as CIT. To ascertain voltage and current requirements for high-power second harmonic heating (2 MW in a 35- by 50-cm port), coupling to the DIII-D tokamak with a prototype compact loop antenna has been measured. The results show good loading for L-mode and limiter plasmas, but coupling 2 MW to an H-mode plasma demands voltages and currents near the limit of present technology. We report the technological analysis and progress that allow coupling of these power densities. 5 refs., 4 figs.

  19. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, Christopher Hysjulien [Ames Lab., Ames, IA (United States)

    2012-01-01

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows that MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.

  20. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Makonnen, Yoseif; Beauchemin, Diane

    2015-01-01

    In industrial/commercial settings where operators often have minimal expertise in inductively coupled plasma (ICP) mass spectrometry (MS), there is a prevalent need for a response factor indicating robust plasma conditions, which is analogous to the Mg II/Mg I ratio in ICP optical emission spectrometry (OES), whereby a Mg II/Mg I ratio of 10 constitutes robust conditions. While minimizing the oxide ratio usually corresponds to robust conditions, there is no specific target value that is widely accepted as indicating robust conditions. Furthermore, tuning for low oxide ratios does not necessarily guarantee minimal matrix effects, as they really address polyatomic interferences. From experiments, conducted in parallel for both MS and OES, there were some element pairs of similar mass and very different ionization potential that were exploited for such a purpose, the rationale being that, if these elements were ionized to the same extent, then that could be indicative of a robust plasma. The Be II/Li I intensity ratio was directly related to the Mg II/Mg I ratio in OES. Moreover, the 9Be+/7Li+ ratio was inversely related to the CeO+/Ce+ and LaO+/La+ oxide ratios in MS. The effects of different matrices (i.e. 0.01-0.1 M Na) were also investigated and compared to a conventional argon plasma optimized for maximum sensitivity. The suppression effect of these matrices was significantly reduced, if not eliminated in the case of 0.01 M Na, when the 9Be+/7Li+ ratio was around 0.30 on the Varian 820 MS instrument. Moreover, a very similar ratio (0.28) increased robustness to the same extent on a completely different ICP-MS instrument (PerkinElmer NEXION). Much greater robustness was achieved using a mixed-gas plasma with nitrogen in the outer gas and either nitrogen or hydrogen as a sheathing gas, as the 9Be+/7Li+ ratio was then around 1.70. To the best of our knowledge, this is the first report on using a simple analyte intensity ratio, 9Be+/7Li+, to gauge plasma robustness.

  1. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  2. Numerical study of the effect of gas temperature on the time for onset of particle nucleation in argon-silane low-pressure plasmas

    CERN Document Server

    Bhandarkar, U; Girshick, S L

    2003-01-01

    Particle nucleation in silane plasmas has attracted interest for the past decade, both due to the basic problems of plasma chemistry involved and the importance of silane plasmas for many applications. A better understanding of particle nucleation may facilitate the avoidance of undesirable particle contamination as well as enable the controlled production of nanoparticles for novel applications. While understanding of particle nucleation has significantly advanced over the past years, a number of questions have not been resolved. Among these is the delay of particle nucleation with an increasing gas temperature, which has been observed in experiments in argon-silane plasmas. We have developed a quasi-one-dimensional model to simulate particle nucleation and growth in silane containing plasmas. In this paper we present a comparative study of the various effects that have been proposed as explanations for the nucleation delay. Our results suggest that the temperature dependence of the Brownian diffusion coeffi...

  3. ICRH antenna S-matrix measurements and plasma coupling characterisation at JET

    Science.gov (United States)

    Monakhov, I.; Jacquet, P.; Blackman, T.; Bobkov, V.; Dumortier, P.; Helou, W.; Lerche, E.; Kirov, K.; Milanesio, D.; Maggiora, R.; Noble, C.; Contributors, JET

    2018-04-01

    The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at  >100 kW. Unlike traditional techniques relying on low-power (~10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding ‘global’ antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.

  4. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jierong

    2007-01-01

    The graft polymerization of acrylic acid (AAc) was carried out onto poly(tetrafluoroethylene) (PTFE) films that had been pretreated with remote argon plasma and subsequently exposed to oxygen to create peroxides. Peroxides are known to be the species responsible for initiating the graft polymerization when PTFE reacts with AAc. We chose different parameters of remote plasma treatment to get the optimum condition for introducing maximum peroxides (2.87 x 10 -11 mol/cm 2 ) on the surface. The influence of grafted reaction conditions on the grafting degree was investigated. The maximum grafting degree was 25.2 μg/cm 2 . The surface microstructures and compositions of the AAc grafted PTFE film were characterized with the water contact angle meter, Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). Contact angle measurements revealed that the water contact angle decreased from 108 o to 41 o and the surface free energy increased from 22.1 x 10 -5 to 62.1 x 10 -5 N cm -1 by the grafting of the AAc chains. The hydrophilicity of the PTFE film surface was greatly enhanced. The time-dependent activity of the grafted surface was better than that of the plasma treated film

  5. Study on characteristics of coupled cavity chain filled with plasma

    International Nuclear Information System (INIS)

    Li Jianqing; Xiao Shu; Mo Yuanlong

    2003-01-01

    In this paper, by using rigorous field analysis, a coupled-cavity (CC) chain filled with plasma has been analyzed. How the hybrid wave between the cavity mode and plasma mode is formed has been studied. The periodical CC chain filled with plasma demonstrates periodical TG modes with a cutoff frequency of zero. When the plasma density increase to a large scale, the cavity mode of the CC chain overlaps the TG mode, these two modes couple with each other and form the hybrid modes. In the case of hybrid modes, the 'cold' bandwidth and the 'warm' bandwidth expand, and the coupled impedance increases about 5 times larger than that of the vacuum. As a whole, the slow wave characteristics are improved substantially due to the formation of the hybrid mode

  6. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    Science.gov (United States)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.

  7. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    International Nuclear Information System (INIS)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm −1 and 3272 cm −1 , respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm −1 . The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity

  8. Jeans instability of self-gravitating magnetized strongly coupled plasma

    International Nuclear Information System (INIS)

    Prajapati, R P; Sharma, P K; Sanghvi, R K; Chhajlani, R K

    2012-01-01

    We investigate the Jeans instability of self-gravitating magnetized strongly coupled plasma. The equations of the problem are formulated using the generalized hydrodynamic model and a general dispersion relation is obtained using the normal mode analysis. This dispersion relation is discussed for transverse and longitudinal mode of propagations. The modified condition of Jeans instability is obtained for magnetized strongly coupled plasma. We find that strong coupling of plasma particles modify the fundamental criterion of Jeans gravitational instability. In transverse mode it is found that Jeans instability criterion gets modified due to the presence of magnetic field, shear viscosity and fluid viscosity but in longitudinal mode it is unaffected due to the presence of magnetic field. From the curves we found that all these parameters have stabilizing influence on the growth rate of Jeans instability.

  9. Radiation accompanied by self absorption in nonequilibrium argon plasma flow in a circular tube

    International Nuclear Information System (INIS)

    Shirai, Hiroyuki; Tabei, Katsuine; Koaizawa, Hisashi.

    1983-01-01

    In high temperature, nonequilibrium plasma flow, generally strong radiation arises, but the radiation phenomena are complicated by the thermo-chemical nonequilibrium of gas and the self absorption in light path, accordingly it is important to correctly understand and estimate their effects. In this research, for the radiation from the argon afterglow plasma flow with large nonequilibrium property in a circular tube, the experimental and theoretical studies were carried out taking the self absorption in consideration. Experimentally, the absolute intensity distribution of the radiated spectrum lines was measured from outside of the tube, and converted to the true radial distribution of atom number density at excited level using the mathematical conversion theory for the radiation accompanied by absorption of Elder et al. Theoretically, the radial distributions of electron temperature, electron density and atom temperature measured in the tube were applied to the collision-radiation process model including self absorption, and the distribution of the atom number density at excited level was calculated. Fairly good agreement was obtained between both results, and it was found that the consideration of self absorption was important. The theory, the experiment, the numerical examination of a number of physical quantities and the simplification of the theory, and the results are reported. (Kako, I.)

  10. Plasma edge modelling with ICRF coupling

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available The physics of Radio-Frequency (RF wave heating in the Ion Cyclotron Range of Frequencies (ICRF in the core plasmas of fusion devices are relatively well understood while those in the Scrape-Off Layer (SOL remain still unresolved. This paper is dedicated to study the ICRF interactions with the plasma edge, mainly from the theoretical and numerical point of view, in particular with the 3D edge plasma fluid and neutral transport code EMC3-EIRENE and various wave codes. Here emphasis is given to the improvement of ICRF coupling with local gas puffing and to the ICRF induced density convection in the SOL.

  11. Density of atoms in Ar*(3p5 4s) states and gas temperatures in an argon surfatron plasma measured by tunable laser spectroscopy

    NARCIS (Netherlands)

    Hübner, S.; Sadeghi, N.; Carbone, E.A.D.; Mullen, van der J.J.A.M.

    2013-01-01

    This study presents the absolute argon 1 s (in Paschens’s notation) densities and the gas temperature, Tg, obtained in a surfatron plasma in the pressure range 0:65

  12. Experimental evaluation of analyte excitation mechanisms in the inductively coupled plasma

    International Nuclear Information System (INIS)

    Lehn, Scott A.; Hieftje, Gary M.

    2003-01-01

    The inductively coupled plasma (ICP) is a justifiably popular source for atomic emission spectrometry. However, despite its popularity, the ICP is still only partially understood. Even the mechanisms of analyte excitation remain unclear; some energy levels are quite clearly populated by charge transfer while others might be populated by electron-ion recombination, by electron impact, or by Penning processes. Distinguishing among these alternatives is possible by means of a steady-state kinetics approach that examines correlations between the emission of a selected atom, ion, or level and the local number densities of species assumed to produce the excitation. In an earlier investigation, strong correlations were found between either calcium atom or ion emission and selected combinations of calcium atom or ion number densities and electron number densities in the plasma. However, all radially resolved data employed in the earlier study were produced from Abel inversion and from measurements that were crude by today's standards. Now, by means of tomographic imaging, laser-saturated atomic fluorescence, and Thomson and Rayleigh scattering, it is possible to measure the required radially resolved data without Abel inversion and with far greater fidelity. The correlations previously studied for calcium have been investigated with these more reliable data. Ion-electron recombination, either radiative or with argon as a third body, was determined to be the most likely excitation mechanism for calcium atom, while electron impact appeared to be the most important process to produce excite-state calcium ions. These results were consistent with the previous study. However, the present study suggests that collisional deactivation, rather than radiative decay, is the most likely mode of returning both calcium atoms and ions to the ground state

  13. Study of plasma-material surface interaction using langmuir probe technique during plasma treatment

    International Nuclear Information System (INIS)

    Saloum, S.; Akel, M.

    2012-01-01

    In this study, we tried to understand the plasma-surface interactions by using Langmuir probes. Two different types of plasmas were studied, the first is the electropositive plasma in Argon and the second is the electronegative plasma in Sulfur Hexafluoride. In the first type, the effects of Argon gas pressure, the injection of Helium in the remote zone and the substrate bias on the measurements of the Electron Energy Probability Function (EEPF) and on the plasma parameters (electron density (n e ), effective electron temperature (T e ff), plasma potential (V p ) and floating potential (V f )) have been investigated. The obtained EEPFs and plasma parameters have been used to control two remote plasma processes. The first is the remote Plasma Enhanced Chemical Vapor Deposition (PE-CVD) of thin films, on silicon wafers, from Hexamethyldisiloxane (HMDSO) precursor diluted in the remote Ar-He plasma. The second is the pure Argon remote plasma treatment of polymethylmethacrylate (PMMA) polymer surface. In the second type, the plasma diagnostics were performed in the remote zone as a function of SF 6 flow rate, where relative concentrations of fluorine atoms were measured using actinometry optical emission spectroscopy; electron density, electron temperature and plasma potential were determined using single cylindrical Langmuir probe, positive ion flux and negative ion fraction were determined using an planar probe. The silicon etching process in SF 6 plasma was studied. (author)

  14. Study of plasma-material surface interaction using Langmuir probe technique during plasma treatment

    International Nuclear Information System (INIS)

    Saloum, S.; Akel, M.

    2009-06-01

    In this study, we tried to understand the plasma-surface interactions by using Langmuir probes. Two different types of plasmas were studied, the first is the electropositive plasma in Argon and the second is the electronegative plasma in Sulfur Hexafluoride. In the first type, the effects of Argon gas pressure, the injection of Helium in the remote zone and the substrate bias on the measurements of the Electron Energy Probability Function (EEPF) and on the plasma parameters (electron density (n e ), effective electron temperature (T e ff), plasma potential (V p ) and floating potential (V f )) have been investigated. The obtained EEPFs and plasma parameters have been used to control two remote plasma processes. The first is the remote Plasma Enhanced Chemical Vapor Deposition (PE-CVD) of thin films, on silicon wafers, from Hexamethyldisoloxane (HMDSO) precursor diluted in the remote Ar-He plasma. The second is the pure Argon remote plasma treatment of polymethylmethacrylate (PMMA) polymer surface. In the second type, the plasma diagnostics were performed in the remote zone as a function of SF 6 flow rate, where relative concentrations of fluorine atoms were measured using actinometry optical emission spectroscopy; electron density, electron temperature and plasma potential were determined using single cylindrical Langmuir probe, positive ion flux and negative ion fraction were determined using an planar probe. The silicon etching process in SF 6 plasma was studied. (author)

  15. Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density

    International Nuclear Information System (INIS)

    Palomares, J.M.; Iordanova, E.; Veldhuizen, E.M. van; Baede, L.; Gamero, A.; Sola, A.; Mullen, J.J.A.M. van der

    2010-01-01

    The axial profiles of the electron density n e and electron temperature T e of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10 18 e 19 m -3 and 1.1 e e and T e down to 8% and 3%, respectively. It is found that n e decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T e does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.

  16. Argon activation analysis, application to dating by the potassium-argon method; Analyse par activation de l'argon. Application a la datation par la methode potassium-argon

    Energy Technology Data Exchange (ETDEWEB)

    Dumesnil, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Activation analysis using radiogenic argon-40 has been applied to rock-dating by the K-Ar method. The argon is extracted from the sample, purified, activated to saturation in a flux of 2 X 10{sup 13} neutrons/cm{sup 2} sec{sup -1} and measured by gamma spectroscopy. The sensitivity obtained is such that it is possible to measure amounts of argon corresponding to age of a few thousand years only. However since it has not been possible to measure the amount of pollution of radiogenic argon by atmospheric argon with any accuracy, the measurable age limit is in fact of the order of MY. The method has been applied to basalts from the Mont-Dore region. The results obtained are in fairly good agreement with geological, stratigraphic and paleomagnetic data. (author) [French] L'analyse par activation de l'argon 40 radiogenique a ete appliquee a la datation des roches par la methode K-Ar. L'argon est extrait de l'echantillon, purifie, active a saturation dans un flux de 2.10{sup 13} neutrons.cm{sup -2}.s{sup -1} et mesure en spectrometrie gamma. La sensibilite obtenue est telle qu'il est possible de mesurer des quantites d'argon correspondant a des ages de quelques milliers d'annees seulement. Cependant la correction de pollution de l'argon radiogenique par l'argon atmospherique n'ayant pu etre etablie avec precision, la limite d'age mesurable pratique est de l'ordre de 1 Ma. La methode a ete appliquee aux basaltes de la region du Mont-Dore. Les ages obtenus sont en assez bon accord avec les donnees geologiques, stratigraphiques et paleomagnetiques. (auteur)

  17. Theory and simulation of laser plasma coupling

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1979-01-01

    The theory and simulation of these coupling processes are considered. Particular emphasis is given to their nonlinear evolution. First a brief introduction to computer simulation of plasmas using particle codes is given. Then the absorption of light via the generation of plasma waves is considered, followed by a discussion of stimulated scattering of intense light. Finally these calculations are compared with experimental results

  18. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  19. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-01-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  20. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    Science.gov (United States)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  1. Watermelon stomach: clinical aspects and treatment with argon plasma coagulation Ectasia vascular do antro gástrico ("watermelon stomach": aspectos clínicos e tratamento com coagulação com plasma de argônio

    Directory of Open Access Journals (Sweden)

    Dalton M. Chaves

    2006-09-01

    Full Text Available BACKGROUND: Gastric antral vascular ectasia is a disorder whose pathogenetic mechanism is unknown. The endoscopic treatment with argon plasma coagulation has been considered one of the best endoscopic therapeutic options. AIM: To analyze the endoscopic and clinical features of gastric antral vascular ectasia and its response to the argon plasma coagulation treatment. PATIENTS AND METHODS: Eighteen patients were studied and classified into two groups: group 1 - whose endoscopic aspect was striped (watermelon or of the diffuse confluent type; group 2 - diffuse spotty nonconfluent endoscopic aspect. RESULTS: Group 1 with eight patients, all having autoimmune antibodies, but one, whose antibodies were not searched for. Three were cirrhotic and three had hypothyroidism. All had gastric mucosa atrophy. In group 2, with 10 patients, all had non-immune liver disease, with platelet levels below 90.000. Ten patients were submitted to argon plasma coagulation treatment, with 2 to 36 months of follow-up. Lesions recurred in all patients who remained in the follow-up program and one did not respond to treatment for acute bleeding control. CONCLUSION: There seem to be two distinct groups of patients with gastric antral vascular ectasia: one related to immunologic disorders and other to non-immune chronic liver disease and low platelets. The endoscopic treatment using argon plasma coagulation had a high recurrence in the long-term evaluation.RACIONAL: "Watermelon stomach" ou ectasia vascular do antro gástrico é uma doença de etiopatogenia desconhecida. O tratamento endoscópico através da coagulação com plasma de argônio é considerado uma das melhores opções terapêuticas. OBJETIVO: Analisar os aspectos clínicos e endoscópicos da ectasia vascular do antro gástrico e a resposta ao tratamento com coagulação com plasma de argônio. PACIENTES E MÉTODOS: Dezoito pacientes foram estudados e classificados em dois grupos: grupo I - oito pacientes que

  2. Atmospheric pressure argon surface discharges propagated in long tubes: physical characterization and application to bio-decontamination

    International Nuclear Information System (INIS)

    Kovalova, Zuzana; Leroy, Magali; Jacobs, Carolyn; Kirkpatrick, Michael J; Odic, Emmanuel; Machala, Zdenko; Lopes, Filipa; Laux, Christophe O; DuBow, Michael S

    2015-01-01

    Pulsed corona discharges propagated in argon (or in argon with added water vapor) at atmospheric pressure on the interior surface of a 49 cm long quartz tube were investigated for the application of surface bio-decontamination. H 2 O molecule dissociation in the argon plasma generated reactive species (i.e. OH in ground and excited states) and UV emission, which both directly affected bacterial cells. In order to facilitate the evaluation of the contribution of UV radiation, a DNA damage repair defective bacterial strain, Escherichia coli DH-1, was used. Discharge characteristics, including propagation velocity and plasma temperature, were measured. Up to ∼5.5 and ∼5 log 10 reductions were observed for E. coli DH-1 bacteria (from 10 6 initial load) exposed 2 cm and 44 cm away from the charged electrode, respectively, for a 20 min plasma treatment. The factors contributing to the observed bactericidal effect include desiccation, reactive oxygen species (OH) plus H 2 O 2 accumulation in the liquid phase, and UV-B (and possibly VUV) emission in dry argon. The steady state temperature measured on the quartz tube wall did not exceeded 29 °C; the contribution of heating, along with that of H 2 O 2 accumulation, was estimated to be low. The effect of UV-B emission alone or in combination with the other stress factors of the plasma process was examined for different operating conditions. (paper)

  3. Effect of antenna capacitance on the plasma characteristics of an internal linear inductively coupled plasma system

    International Nuclear Information System (INIS)

    Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Yeom, Geun Young

    2008-01-01

    This study examined the effect of the antenna capacitance of an inductively coupled plasma (ICP) source, which was varied using an internal linear antenna, on the electrical and plasma characteristics of the ICP source. The inductive coupling at a given rf current increased with decreasing antenna capacitance. This was caused by a decrease in the inner copper diameter of the antenna made from coaxial copper/quartz tubing, which resulted in a higher plasma density and lower plasma potential. By decreasing the diameter of the copper tube from 25 to 10 mm, the plasma density of a plasma source size of 2750x2350 mm 2 was increased from approximately 8x10 10 /cm 3 to 1.5x10 11 /cm 3 at 15 mTorr Ar and 9 kW of rf power

  4. Causes of plasma column contraction in surface-wave-driven discharges in argon at atmospheric pressure

    Science.gov (United States)

    Ridenti, Marco Antonio; de Amorim, Jayr; Dal Pino, Arnaldo; Guerra, Vasco; Petrov, George

    2018-01-01

    In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species. The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar2+. An explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase of electron temperature towards the plasma borders where the electron density is small.

  5. Characterization of weakly ionized argon flows for radio blackout mitigation experiments

    Science.gov (United States)

    Steffens, L.; Koch, U.; Esser, B.; Gülhan, A.

    2017-06-01

    For reproducing the so-called E × B communication blackout mitigation scheme inside the L2K arc heated facility of the DLR in weakly ionized argon §ows, a §at plate model has been equipped with a superconducting magnet, electrodes, and a setup comprising microwave plasma transmission spectroscopy (MPTS). A thorough characterization of the weakly ionized argon §ow has been performed including the use of microwave interferometry (MWI), Langmuir probe measurements, Pitot probe pro¦les, and spectroscopic methods like diode laser absorption spectroscopy (DLAS) and emission spectroscopy.

  6. Argon activation analysis, application to dating by the potassium-argon method; Analyse par activation de l'argon. Application a la datation par la methode potassium-argon

    Energy Technology Data Exchange (ETDEWEB)

    Dumesnil, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Activation analysis using radiogenic argon-40 has been applied to rock-dating by the K-Ar method. The argon is extracted from the sample, purified, activated to saturation in a flux of 2 X 10{sup 13} neutrons/cm{sup 2} sec{sup -1} and measured by gamma spectroscopy. The sensitivity obtained is such that it is possible to measure amounts of argon corresponding to age of a few thousand years only. However since it has not been possible to measure the amount of pollution of radiogenic argon by atmospheric argon with any accuracy, the measurable age limit is in fact of the order of MY. The method has been applied to basalts from the Mont-Dore region. The results obtained are in fairly good agreement with geological, stratigraphic and paleomagnetic data. (author) [French] L'analyse par activation de l'argon 40 radiogenique a ete appliquee a la datation des roches par la methode K-Ar. L'argon est extrait de l'echantillon, purifie, active a saturation dans un flux de 2.10{sup 13} neutrons.cm{sup -2}.s{sup -1} et mesure en spectrometrie gamma. La sensibilite obtenue est telle qu'il est possible de mesurer des quantites d'argon correspondant a des ages de quelques milliers d'annees seulement. Cependant la correction de pollution de l'argon radiogenique par l'argon atmospherique n'ayant pu etre etablie avec precision, la limite d'age mesurable pratique est de l'ordre de 1 Ma. La methode a ete appliquee aux basaltes de la region du Mont-Dore. Les ages obtenus sont en assez bon accord avec les donnees geologiques, stratigraphiques et paleomagnetiques. (auteur)

  7. Cold plasma brush generated at atmospheric pressure

    International Nuclear Information System (INIS)

    Duan Yixiang; Huang, C.; Yu, Q. S.

    2007-01-01

    A cold plasma brush is generated at atmospheric pressure with low power consumption in the level of several watts (as low as 4 W) up to tens of watts (up to 45 W). The plasma can be ignited and sustained in both continuous and pulsed modes with different plasma gases such as argon or helium, but argon was selected as a primary gas for use in this work. The brush-shaped plasma is formed and extended outside of the discharge chamber with typical dimension of 10-15 mm in width and less than 1.0 mm in thickness, which are adjustable by changing the discharge chamber design and operating conditions. The brush-shaped plasma provides some unique features and distinct nonequilibrium plasma characteristics. Temperature measurements using a thermocouple thermometer showed that the gas phase temperatures of the plasma brush are close to room temperature (as low as 42 deg. C) when running with a relatively high gas flow rate of about 3500 ml/min. For an argon plasma brush, the operating voltage from less than 500 V to about 2500 V was tested, with an argon gas flow rate varied from less than 1000 to 3500 ml/min. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical applications including battery-powered operation and use in large-scale applications. Several polymer film samples were tested for surface treatment with the newly developed device, and successful changes of the wettability property from hydrophobic to hydrophilic were achieved within a few seconds

  8. Bright branes for strongly coupled plasmas

    International Nuclear Information System (INIS)

    Mateos, David; Patino, Leonardo

    2007-01-01

    We use holographic techniques to study photon production in a class of finite temperature, strongly coupled, large-N c SU(N c ) quark-gluon plasmas with N f c quark flavours. Our results are valid to leading order in the electromagnetic coupling constant but non-perturbatively in the SU(N c ) interactions. The spectral function of electromagnetic currents and other related observables exhibit an interesting structure as a function of the photon frequency and the quark mass. We discuss possible implications for heavy ion collision experiments

  9. Broadband Ftmw Spectroscopy of the Urea-Argon and Thiourea-Argon Complexes

    Science.gov (United States)

    Medcraft, Chris; Bittner, Dror M.; Cooper, Graham A.; Mullaney, John C.; Walker, Nick

    2017-06-01

    The rotational spectra complexes of argon-urea, argon-thiourea and water-thiourea have been measured by chirped-pulse Fourier transform microwave spectroscopy from 2-18.5 GHz. The sample was produced via laser vaporisation of a rod containing copper and the organic sample as a stream of argon was passed over the surface and subsequently expanded into the vacuum chamber cooling the sample. Argon was found to bind to π system of the carbonyl bond for both the urea and thiourea complexes.

  10. The strongly coupled quark-gluon plasma created at RHIC

    International Nuclear Information System (INIS)

    Heinz, Ulrich

    2009-01-01

    The relativistic heavy-ion collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities-a 'quark-gluon plasma (QGP)'. A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called 'elliptic flow' in off-central collisions, with additional support from other observations. This paper explains how we probe the strongly coupled QGP, describes the ideas and measurements which led to the conclusion that the QGP is an almost perfect liquid, and shows how they tie relativistic heavy-ion physics into other burgeoning fields of modern physics, such as strongly coupled Coulomb plasmas, ultracold systems of trapped atoms and superstring theory

  11. Momentum Broadening in Weakly Coupled Quark-Gluon Plasma (with a view to finding the quasiparticles within liquid quark-gluon plasma)

    CERN Document Server

    D'Eramo, Francesco; Liu, Hong; Rajagopal, Krishna

    2013-01-01

    We calculate P(k_\\perp), the probability distribution for an energetic parton that propagates for a distance L through a medium without radiating to pick up transverse momentum k_\\perp, for a medium consisting of weakly coupled quark-gluon plasma. We use full or HTL self-energies in appropriate regimes, resumming each in order to find the leading large-L behavior. The jet quenching parameter \\hat q is the second moment of P(k_\\perp), and we compare our results to other determinations of this quantity in the literature, although we emphasize the importance of looking at P(k_\\perp) in its entirety. We compare our results for P(k_\\perp) in weakly coupled quark-gluon plasma to expectations from holographic calculations that assume a plasma that is strongly coupled at all length scales. We find that the shape of P(k_\\perp) at modest k_\\perp may not be very different in weakly coupled and strongly coupled plasmas, but we find that P(k_\\perp) must be parametrically larger in a weakly coupled plasma than in a strongl...

  12. Shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert E.; Cabot, William H.; Graziani, Frank R.

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and inertial confinement fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30 000-120 000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction; the electrons are not simulated explicitly. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We systematically study different mixtures through a series of simulations with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. In the more strongly coupled plasmas, the kinetic theory does not agree well with the MD results. We develop a simple model that interpolates between classical kinetic theories at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated, ranging from moderately weakly coupled to moderately strongly coupled asymmetric plasma mixtures.

  13. DC plasma ion implantation in an inductively coupled RF plasma

    International Nuclear Information System (INIS)

    Silawatshananai, C.; Matan, N.; Pakpum, C.; Pussadee, N.; Srisantitam, P.; Davynov, S.; Vilaithong, T.

    2004-01-01

    Various modes of plasma ion implantation have been investigated in a small inductively coupled 13.6 MHz RF plasma source. Plasma ion implantation with HVDC(up to -10 kV bias) has been investigated in order to incorporate with the conventional implantation of diamond like carbon. In this preliminary work, nitrogen ions are implanted into the stainless steel sample with a dose of 5.5 x 10 -2 cm for a short implanting time of 7 minutes without target cooling. Surface properties such as microhardness, wear rate and the friction coefficient have been improved. X-ray and SEM analyses show distinct structural changes on the surface. A combination of sheath assisted implantation and thermal diffusion may be responsible for improvement in surface properties. (orig.)

  14. Decomposition of poly(amide-imide) film enameled on solid copper wire using atmospheric pressure non-equilibrium plasma.

    Science.gov (United States)

    Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko

    2009-01-01

    The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.

  15. Effects of plasma on polyethylene fiber surface for prosthodontic application

    Directory of Open Access Journals (Sweden)

    Silvana Marques Miranda SPYRIDES

    2015-12-01

    Full Text Available ABSTRACT Plasma technology has the potential to improve the adherence of fibers to polymeric matrices, and there are prospects for its application in dentistry to reinforce the dental particulate composite. Objectives This study aimed to investigate the effect of oxygen or argon plasma treatment on polyethylene fibers. Material and Methods Connect, Construct, InFibra, and InFibra treated with oxygen or argon plasma were topographically evaluated by scanning electron microscopy (SEM, and chemically by X-ray photoelectron spectroscopy (XPS. For bending analysis, one indirect composite (Signum was reinforced with polyethylene fiber (Connect, Construct, or InFibra. The InFibra fiber was subjected to three different treatments: (1 single application of silane, (2 oxygen or argon plasma for 1 or 3 min, (3 oxygen or argon plasma and subsequent application of silane. The samples (25x2x2 mm, 6 unreinforced and 60 reinforced with fibers, were subjected to three-point loading tests to obtain their flexural strength and deflection. The results were statistically analyzed with ANOVA and the Bonferroni correction for multiple comparison tests. Results SEM analysis showed that oxygen and argon plasma treatments promote roughness on the polyethylene fiber surface. X-ray photoelectron spectroscopy (XPS analysis shows that both plasmas were effective in incorporating oxygenated functional groups. Argon or oxygen plasma treatment affected the flexural strength and deflection of a fiber reinforced composite. The application of silane does not promote an increase in the flexural strength of the reinforced composites. Conclusions Oxygen and argon plasma treatments were effective in incorporating oxygenated functional groups and surface roughness. The highest strength values were obtained in the group reinforced with polyethylene fibers treated with oxygen plasma for 3 min.

  16. Fast 2D Fluid-Analytical Simulation of IEDs and Plasma Uniformity in Multi-frequency CCPs

    Science.gov (United States)

    Kawamura, E.; Lieberman, M. A.; Graves, D. B.

    2014-10-01

    A fast 2D axisymmetric fluid-analytical model using the finite elements tool COMSOL is interfaced with a 1D particle-in-cell (PIC) code to study ion energy distributions (IEDs) in multi-frequency argon capacitively coupled plasmas (CCPs). A bulk fluid plasma model which solves the time-dependent plasma fluid equations is coupled with an analytical sheath model which solves for the sheath parameters. The fluid-analytical results are used as input to a PIC simulation of the sheath region of the discharge to obtain the IEDs at the wafer electrode. Each fluid-analytical-PIC simulation on a moderate 2.2 GHz CPU workstation with 8 GB of memory took about 15-20 minutes. The 2D multi-frequency fluid-analytical model was compared to 1D PIC simulations of a symmetric parallel plate discharge, showing good agreement. Fluid-analytical simulations of a 2/60/162 MHz argon CCP with a typical asymmetric reactor geometry were also conducted. The low 2 MHz frequency controlled the sheath width and voltage while the higher frequencies controlled the plasma production. A standing wave was observable at the highest frequency of 162 MHz. Adding 2 MHz power to a 60 MHz discharge or 162 MHz to a dual frequency 2 MHz/60 MHz discharge enhanced the plasma uniformity. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC000193, and in part by gifts from Lam Research Corporation and Micron Corporation.

  17. Application of an argon-nitrogen inductively-coupled radiofrequency plasma (ICP) to the analysis of geological and related materials for their rare earth contents

    Science.gov (United States)

    Brenner, I. B.; Watson, A. E.; Steele, T. W.; Jones, E. A.; Goncalves, M.

    An account is given of the development of a procedure for the determination of the rare earth (RE) elements in a large variety of geological materials employing a medium power argon-nitrogen ICP coupled with a 3.4m Ebert spectrograph. The effects of the carrier and intermediate gas flow rates, height of observation and power on RE spectral line intensities have been studied. The line-to-background ratio of the RE analyte was found to increase with observation height and passed through a maximum at 12-14 mm above the top of the work coil. The method eventually developed allows the direct determination of the lanthanides and yttrium at the 50-200 μg g -1 levels using a single solution prepared by fusing 0.2-1 g samples with Na 2O 2 or LiBO 2 and dissolving the melt in 4-10% (v/v) HNO 3, or by treating the samples with HF-HClO 4-HNO 3 mixtures. For lower contents of the RE elements, they can be separated from matrix concomitants by ion exchange employing AG50W-X8 resin. A large variety of silicate and phosphate reference materials was analysed using scandium as the internal standard. The relative standard deviations vary from about 1.5-15%. No matrix effects were observed despite the large compositional variation of the samples analysed.

  18. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    Science.gov (United States)

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  19. Ideal gas behavior of a strongly-coupled complex (dusty) plasma

    OpenAIRE

    Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry

    2012-01-01

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly-coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  20. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    Science.gov (United States)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  1. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    Directory of Open Access Journals (Sweden)

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  2. A refractory case of radiation proctitis. Effectiveness of argon plasma coagulation therapy and the rectal stenosis after therapy

    International Nuclear Information System (INIS)

    Oyama, Katsunobu; Morita, Akihiko; Terada, Itsuro

    2006-01-01

    A 75-years-old man received external radiation with a cumulative dose of 60 Gy for prostatic cancer. Severe hematochezia occurred approximately 16 months after irradiation. A extensive and circumferential telangiectatic lesion in the lower segment of the rectum was detected, then he was diagnosed as having radiation proctitis. Pharmacotherapy was employed at first, but the bleeding was uncontrollable. Colostomy was performed, but the bleeding could not be controlled. Argon plasma coagulation therapy (APC) was applied, and the bleeding ceased after first session of APC. But the severe rectal stricture appeared three months after APC. APC is effective treatment for refractory radiation proctitis, but the rectal stenosis was occurred three months after APC. (author)

  3. Enhanced laser beam coupling to a plasma

    International Nuclear Information System (INIS)

    Steiger, A.D.; Woods, C.H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma. 10 claims, 2 figures

  4. Wavelength scaling of laser plasma coupling

    International Nuclear Information System (INIS)

    Kruer, W.L.

    1983-01-01

    The use of shorter wavelength laser light both enhances collisional absorption and reduces deleterious collective plasma effects. Coupling processes which can be important in reactor-size targets are briefly reviewed. Simple estimates are presented for the intensity-wavelength regime in which collisional absorption is high and collective effects are minimized

  5. SU-8 etching in inductively coupled oxygen plasma

    DEFF Research Database (Denmark)

    Rasmussen, Kristian Hagsted; Keller, Stephan Sylvest; Jensen, Flemming

    2013-01-01

    Structuring or removal of the epoxy based, photo sensitive polymer SU-8 by inductively coupled plasma reactive ion etching (ICP-RIE) was investigated as a function of plasma chemistry, bias power, temperature, and pressure. In a pure oxygen plasma, surface accumulation of antimony from the photo......-initiator introduced severe roughness and reduced etch rate significantly. Addition of SF6 to the plasma chemistry reduced the antimony surface concentration with lower roughness and higher etch rate as an outcome. Furthermore the etch anisotropy could be tuned by controlling the bias power. Etch rates up to 800 nm...

  6. Effects of Reentry Plasma Sheath on Mutual-Coupling Property of Array Antenna

    Directory of Open Access Journals (Sweden)

    B. W. Bai

    2015-01-01

    Full Text Available A plasma sheath enveloping a reentry vehicle would cause the failure of on-board antennas, which is an important effect that contributes to the “blackout” problem. The method of replacing the on-board single antenna with the array antennas and using beamforming technology has been proposed to mitigate “blackout” problem by many other researchers. Because the plasma sheath is a reflective medium, plasma will alter the mutual coupling between array elements and degrade the beamforming performance of array antenna. In this paper, the effects of the plasma sheath on the mutual coupling properties between adjacent array elements are studied utilizing the algorithm of finite integration technique. Results show that mutual coupling coefficients of array elements are deteriorating more seriously with the decrease of collision frequency. Moreover, when electron density and collision frequency are both large, plasma sheath improves the mutual coupling property of array elements; this conclusion suggests that replacing the on-board single antenna with the array antennas and using beamforming technology can be adopted to mitigate the blackout problem in this condition.

  7. Nonlinear wave coupling in a warm plasma in the fluid

    International Nuclear Information System (INIS)

    Malara, F.; Veltri, P.

    1984-01-01

    The general expression for nonlinear coupling between plasma modes is obtained. The nonlinear conductivity tensor is then calculated by means of the two-fluid plasma description taking into account the thermal pressure effects

  8. Electric field measurements in the sheath of an argon RF discharge by probing with microparticles under varying gravity conditions

    NARCIS (Netherlands)

    Beckers, J.; Stoffels, W.W.; Kroesen, G.M.W.; Ockenga, T.; Wolter, M.; Kersten, H.

    2010-01-01

    The electric field profile in the plasma sheath of an argon rf plasma has been determined by measuring the equilibrium height and the resonance frequency of plasma-confined microparticles. In order to determine the electric field structure at any position in the plasma sheath without the discharge

  9. A new class of strongly coupled plasmas inspired by sonoluminescence

    Science.gov (United States)

    Bataller, Alexander; Plateau, Guillaume; Kappus, Brian; Putterman, Seth

    2014-10-01

    Sonoluminescence originates in a strongly coupled plasma with a near liquid density and a temperature of ~10,000 K. This plasma is in LTE and therefore, it should be a general thermodynamic state. To test the universality of sonoluminescence, similar plasma conditions were generated using femtosecond laser breakdown in high pressure gases. Calibrated streak spectroscopy reveals both transport and thermodynamic properties of a strongly coupled plasma. A blackbody spectrum, which persists long after the exciting laser has turned off, indicates the presence of a highly ionized LTE microplasma. In parallel with sonoluminescence, this thermodynamic state is achieved via a considerable reduction in the ionization potential. We gratefully acknowledge support from DARPA MTO for research on microplasmas. We thank Brian Naranjo, Keith Weninger, Carlos Camara, Gary Williams, and John Koulakis for valuable discussions.

  10. Thomson scattering on argon surfatron plasmas at intermediate pressures: Axial profiles of the electron temperature and electron density

    Energy Technology Data Exchange (ETDEWEB)

    Palomares, J.M., E-mail: f02palij@gmail.co [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Iordanova, E.; Veldhuizen, E.M. van; Baede, L. [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Gamero, A.; Sola, A. [Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain); Mullen, J.J.A.M. van der, E-mail: j.j.a.m.v.d.Mullen@tue.n [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Departamento de Fisica, Universidad de Cordoba, Campus de Rabanales, ed. C-2, 14071 Cordoba (Spain)

    2010-03-15

    The axial profiles of the electron density n{sub e} and electron temperature T{sub e} of argon surfatron plasmas in the pressure range of 6-20 mbar and microwave power between 32 and 82 W have been determined using Thomson Scattering of laser irradiation at 532 nm. For the electron density and temperature we found values in the ranges 5 x 10{sup 18} < n{sub e} < 8 x 10{sup 19} m{sup -3} and 1.1 < T{sub e} < 2.0 eV. Due to several improvements of the setup we could reduce the errors of n{sub e} and T{sub e} down to 8% and 3%, respectively. It is found that n{sub e} decreases in the direction of the wave propagation with a slope that is nearly constant. The slope depends on the pressure but not on the power. Just as predicted by theories we see that increasing the power leads to longer plasma columns. However, the plasmas are shorter than what is predicted by theories based on the assumption that for the plasma-wave interaction electron-atom collisions are of minor importance (the so-called collisionless regime). The plasma vanishes long before the critical value of the electron density is reached. In contrast to what is predicted by the positive column model it is found that T{sub e} does not stay constant along the column, but monotonically increases with the distance from the microwave launcher. Increases of more than 50% over 30 cm were found.

  11. Studies on Charge Variation and Waves in Dusty Plasmas

    Science.gov (United States)

    Kausik, Siddhartha Sankar

    Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move

  12. Impact of plasma tube wall thickness on power coupling in ICP sources

    International Nuclear Information System (INIS)

    Nawaz, Anuscheh; Herdrich, Georg

    2009-01-01

    The inductively heated plasma source at the Institute of Space Systems was investigated with respect to the wall thickness of the plasma tube using an air plasma. For this, the wall thickness of the quartz tube was reduced in steps from 2.5 to 1.25 mm. The significance of reducing the wall thickness was analyzed with respect to both the maximum allowable tube cooling power and the coupling efficiency. While the former results from thermal stresses in the tube's wall, the latter results from a minimization of magnetic field losses near the coil turns of the inductively coupled plasma (ICP) source. Analysis of the thermal stress could be validated by experimental data, i.e. the measurement of the tube cooling power when the respective tube structure failed. The coupling efficiency could be assessed qualitatively by simplified models, and the experimental data recorded show that coupling was improved far more than predicted.

  13. Type of precursor and synthesis of silicon oxycarbide (SiOxCyH) thin films with a surfatron microwave oxygen/argon plasma

    International Nuclear Information System (INIS)

    Walkiewicz-Pietrzykowska, Agnieszka; Espinos, J. P.; Gonzalez-Elipe, Agustin R.

    2006-01-01

    Siliconelike thin films (i.e., SiO x C y H z ) were prepared in a microwave plasma enhanced chemical vapor deposition reactor from structurally different organosilicon precursors [i.e., hexamethyldisiloxane (HMDSO), dimethylsilane (DMS), and tetramethylsilane (TMS)]. The films were deposited at room temperature by using different oxygen/argon ratios in the plasma gas. By changing the type of precursor and the relative concentration of oxygen in the plasma, thin films with different compositions (i.e., O/C ratio) and properties are obtained. In general, raising the oxygen concentration in the plasma produces the progressive removal of the organic moieties from the films whose composition and structure then approach those of silicon dioxide. The deposition rate was highly dependent on the type of precursor, following the order HMDSO>>DMS>TMS. The polarizabilities, optical band gaps, and surface free energy of the films also depended on the thin film composition and structure. It is proposed that the Si-O bonds existing in HMDSO is the main factor controlling the distinct reactivity of this precursor and is also responsible for the different compositions and properties of the SiO x C y H z thin films prepared with very low or no oxygen in the plasma gas

  14. Diagnostics of Argon Injected Hydrogen Peroxide Added High Frequency Underwater Capillary Discharge

    Directory of Open Access Journals (Sweden)

    Muhammad Waqar Ahmed

    2016-05-01

    Full Text Available The effects of hydrogen peroxide addition and Argon injection on electrical and spectral characteristics of underwater capillary discharge were investigated. The flowing water discharge was created in a quartz tube (Φ = 4mm outer; Φ = 2mm inner; thickness 1mm by applying high frequency (25 kHz alternating current voltage (0-15kV across the tungsten electrodes (Φ=0.5mm, in pin-pin electrode configuration, separated by a gap distance of 10 mm. The results of no hydrogen peroxide addition and no Argon gas injection were compared with addition of hydrogen peroxide and Argon injection for different values. The emission spectrum was taken to present the increase in concentration of •OH radicals with and without hydrogen peroxide addition under different argon injection rates. The results demonstrated that addition of hydrogen peroxide do not remarkably affected the conductivity of water, but its addition increased the yield rate of •OH radicals generated by plasma discharge. The addition of Argon generated bubbles and gas channels reduced the high power consumption required for inducing flowing water long gap discharge. The results showed large concentration of •OH radicals due to hydrogen peroxide addition, less required input power for generating flowing water discharge by using high frequency input voltage and due to Argon injection.

  15. Design Considerations in Capacitively Coupled Plasmas

    Science.gov (United States)

    Song, Sang-Heon; Ventzek, Peter; Ranjan, Alok

    2015-11-01

    Microelectronics industry has driven transistor feature size scaling from 10-6 m to 10-9 m during the past 50 years, which is often referred to as Moore's law. It cannot be overstated that today's information technology would not have been so successful without plasma material processing. One of the major plasma sources for the microelectronics fabrication is capacitively coupled plasmas (CCPs). The CCP reactor has been intensively studied and developed for the deposition and etching of different films on the silicon wafer. As the feature size gets to around 10 nm, the requirement for the process uniformity is less than 1-2 nm across the wafer (300 mm). In order to achieve the desired uniformity, the hardware design should be as precise as possible before the fine tuning of process condition is applied to make it even better. In doing this procedure, the computer simulation can save a significant amount of resources such as time and money which are critical in the semiconductor business. In this presentation, we compare plasma properties using a 2-dimensional plasma hydrodynamics model for different kinds of design factors that can affect the plasma uniformity. The parameters studied in this presentation include chamber accessing port, pumping port, focus ring around wafer substrate, and the geometry of electrodes of CCP.

  16. Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, Oleksandr; Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Petr, Martin; Choukourov, Andrei; Hanuš, Jan; Biederman, Hynek

    2013-07-01

    Hydrogenated amorphous carbon thin films were deposited by RF plasma polymerization in argon/n-hexane gas mixture on polyethylene terephthalate (PET) foils. It was found that such deposited films may significantly improve the barrier properties of PET. It was demonstrated that the principal parameter that influences barrier properties of such deposited films towards oxygen and water vapor is the density of the coatings. Moreover, it was shown that for achieving good barrier properties it is advantageous to deposit coatings with very low thickness. According to the presented results, optimal thickness of the coating should not be higher than several tens of nm. - Highlights: • a-C:H films were prepared by plasma polymerization in Ar/n-hexane atmosphere. • Barrier properties of coatings are dependent on their density and thickness. • Highest barrier properties were observed for films with thickness 15 nm.

  17. Self-organization observed in either fusion or strongly coupled plasmas

    International Nuclear Information System (INIS)

    Himura, Haruhiko; Sanpei, Akio

    2011-01-01

    If self-organization happens in the fusion plasma, the plasma alters its shape by weakening the confining magnetic field. The self-organized plasma is stable and robust, so its configuration is conserved even during transport in asymmetric magnetic fields. The self-organization of the plasma is driven by an electrostatic potential. Examples of the plasma that has such strong potential are non-neutral plasmas of pure ions or electrons and dusty plasmas. In the present paper, characteristic phenomena of strongly coupled plasmas such as particle aggregation and formation of the ordered structure are discussed. (T.I.)

  18. Designing plasmas for chronic wound disinfection

    International Nuclear Information System (INIS)

    Nosenko, T; Shimizu, T; Morfill, G E

    2009-01-01

    Irradiation with low-temperature atmospheric-pressure plasma provides a promising method for chronic wound disinfection. To be efficient for this purpose, plasma should meet the following criteria: it should significantly reduce bacterial density in the wounded area, cause a long-term post-irradiation inhibition of bacterial growth, yet without causing any negative effect on human cells. In order to design plasmas that would satisfy these requirements, we assessed the relative contribution of different components with respect to bactericidal properties due to irradiation with argon plasma. We demonstrate that plasma-generated UV radiation is the main short-term sterilizing factor of argon plasma. On the other hand, plasma-generated reactive nitrogen species (RNS) and reactive oxygen species (ROS) cause a long-term 'after-irradiation' inhibition of bacterial growth and, therefore, are important for preventing wound recolonization with bacteria between two treatments. We also demonstrate that at certain concentrations plasma-generated RNS and ROS cause significant reduction of bacterial density, but have no adverse effect on human skin cells. Possible mechanisms of the different effects of plasma-generated reactive species on bacteria and human cells are discussed. The results of this study suggest that argon plasma for therapeutic purposes should be optimized in the direction of reducing the intensity of plasma-generated UV radiation and increasing the density of non-UV plasma products.

  19. Designing plasmas for chronic wound disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Nosenko, T; Shimizu, T; Morfill, G E [Max-Planck Institute for Extraterrestrial Physics, Garching (Germany)], E-mail: tnosenko@mpe.mpg.de

    2009-11-15

    Irradiation with low-temperature atmospheric-pressure plasma provides a promising method for chronic wound disinfection. To be efficient for this purpose, plasma should meet the following criteria: it should significantly reduce bacterial density in the wounded area, cause a long-term post-irradiation inhibition of bacterial growth, yet without causing any negative effect on human cells. In order to design plasmas that would satisfy these requirements, we assessed the relative contribution of different components with respect to bactericidal properties due to irradiation with argon plasma. We demonstrate that plasma-generated UV radiation is the main short-term sterilizing factor of argon plasma. On the other hand, plasma-generated reactive nitrogen species (RNS) and reactive oxygen species (ROS) cause a long-term 'after-irradiation' inhibition of bacterial growth and, therefore, are important for preventing wound recolonization with bacteria between two treatments. We also demonstrate that at certain concentrations plasma-generated RNS and ROS cause significant reduction of bacterial density, but have no adverse effect on human skin cells. Possible mechanisms of the different effects of plasma-generated reactive species on bacteria and human cells are discussed. The results of this study suggest that argon plasma for therapeutic purposes should be optimized in the direction of reducing the intensity of plasma-generated UV radiation and increasing the density of non-UV plasma products.

  20. Capacity-coupled multidischarge for atmospheric plasma production

    International Nuclear Information System (INIS)

    Mase, Hiroshi; Fujiwara, Tamiya; Sato, Noriyoshi

    2003-01-01

    We propose a method of plasma production by capacity-coupled multidischarge (CCMD) at atmospheric pressure. The discharge gaps in the CCMD consist of a common electrode and a number of compact electrodes (CCE) which are directly coupled with small capacitors for quenching the discharge. A simple CCE structure is provided by a cylindrical capacitor, the inner conductor of which is used as a gap electrode. A short pulse discharge is observed to appear homogeneously at each CCE. A charge transfer for the single-pulsed discharge is 10-100 times as large as that of the conventional dielectric barrier discharge. A high efficiency of ozone production has been confirmed in the CCMD using O 2 gas. A device configuration of the CCMD is quite flexible with respect to its geometrical shape and size. The CCMD could be used to produce plasmas for various kinds of industrial applications at atmospheric pressure

  1. [Purification of arsenic-binding proteins in hamster plasma after oral administration of arsenite].

    Science.gov (United States)

    Wang, Wenwen; Zhang, Min; Li, Chunhui; Qin, Yingjie; Hua, Naranmandura

    2013-01-01

    To purify the arsenic-binding proteins (As-BP) in hamster plasma after a single oral administration of arsenite (iAs(III)). Arsenite was given to hamsters in a single dose. Three types of HPLC columns, size exclusion, gel filtration and anion exchange columns, combined with an inductively coupled argon plasma mass spectrometer (ICP MS) were used to purify the As-BP in hamster plasma. SDS-PAGE was used to confirm the arsenic-binding proteins at each purification step. The three-step purification process successfully separated As-BP from other proteins (ie, arsenic unbound proteins) in hamster plasma. The molecular mass of purified As-BP in plasma was approximately 40-50 kD on SDS-PAGE. The three-step purification method is a simple and fast approach to purify the As-BP in plasma samples.

  2. Silicon etching of difluoromethane atmospheric pressure plasma jet combined with its spectroscopic analysis

    Science.gov (United States)

    Sung, Yu-Ching; Wei, Ta-Chin; Liu, You-Chia; Huang, Chun

    2018-06-01

    A capacitivly coupled radio-frequency double-pipe atmospheric-pressure plasma jet is used for etching. An argon carrier gas is supplied to the plasma discharge jet; and CH2F2 etch gas is inserted into the plasma discharge jet, near the silicon substrate. Silicon etchings rate can be efficiently-controlled by adjusting the feeding etching gas composition and plasma jet operating parameters. The features of silicon etched by the plasma discharge jet are discussed in order to spatially spreading plasma species. Electronic excitation temperature and electron density are detected by increasing plasma power. The etched silicon profile exhibited an anisotropic shape and the etching rate was maximum at the total gas flow rate of 4500 sccm and CH2F2 concentration of 11.1%. An etching rate of 17 µm/min was obtained at a plasma power of 100 W.

  3. Multistage Coupling of Laser-Wakefield Accelerators with Curved Plasma Channels

    Science.gov (United States)

    Luo, J.; Chen, M.; Wu, W. Y.; Weng, S. M.; Sheng, Z. M.; Schroeder, C. B.; Jaroszynski, D. A.; Esarey, E.; Leemans, W. P.; Mori, W. B.; Zhang, J.

    2018-04-01

    Multistage coupling of laser-wakefield accelerators is essential to overcome laser energy depletion for high-energy applications such as TeV-level electron-positron colliders. Current staging schemes feed subsequent laser pulses into stages using plasma mirrors while controlling electron beam focusing with plasma lenses. Here a more compact and efficient scheme is proposed to realize the simultaneous coupling of the electron beam and the laser pulse into a second stage. A partly curved channel, integrating a straight acceleration stage with a curved transition segment, is used to guide a fresh laser pulse into a subsequent straight channel, while the electrons continue straight. This scheme benefits from a shorter coupling distance and continuous guiding of the electrons in plasma while suppressing transverse beam dispersion. Particle-in-cell simulations demonstrate that the electron beam from a previous stage can be efficiently injected into a subsequent stage for further acceleration while maintaining high capture efficiency, stability, and beam quality.

  4. Inductively coupled plasma- mass spectrometry. Chapter 13

    International Nuclear Information System (INIS)

    Mahalingam, T.R.

    1997-01-01

    Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) is a new technique for elemental and isotopic analysis which is currently attracting a great deal of interest. This relatively new technique has found wide applications in different fields of research viz., nuclear, geological, biological and environmental sciences

  5. Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

    International Nuclear Information System (INIS)

    Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin; Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping

    2012-01-01

    Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

  6. LH-power coupling in advanced tokamak plasmas in JET

    International Nuclear Information System (INIS)

    Joffrin, E.; Erents, K.; Gormezano, C.

    2000-02-01

    Lower Hybrid Current Drive (LHCD) is the most efficient tool to generate non-inductive current in tokamak plasmas. In JET, significant modifications of the current profile have been recently achieved in coupling up to 3MW of LH power in optimised shear discharges. However, the improved particle confinement during optimised shear plasmas results in a sharp decrease of the electron density in front the launcher close or below the cut-off density (ne=1.7.10 17 m -3 for f LH =37GHz) and makes difficult the coupling of the LH power. Deuterium gas near the launcher can help to improve the coupling, but has also the effect of increasing the ELM activity leading to the erosion of the internal transport barrier (ITB). Future development of lower hybrid launcher should include the constraints imposed by scenario such as the optimised shear. (author)

  7. Diamond deposition using a planar radio frequency inductively coupled plasma

    Science.gov (United States)

    Bozeman, S. P.; Tucker, D. A.; Stoner, B. R.; Glass, J. T.; Hooke, W. M.

    1995-06-01

    A planar radio frequency inductively coupled plasma has been used to deposit diamond onto scratched silicon. This plasma source has been developed recently for use in large area semiconductor processing and holds promise as a method for scale up of diamond growth reactors. Deposition occurs in an annulus which coincides with the area of most intense optical emission from the plasma. Well-faceted diamond particles are produced when the substrate is immersed in the plasma.

  8. Characterization of a segmented plasma torch assisted High Heat Flux (HHF) system for performance evaluation of plasma facing components in fusion devices

    International Nuclear Information System (INIS)

    Ngangom, Aomoa; Sarmah, Trinayan; Sah, Puspa; Kakati, Mayur; Ghosh, Joydeep

    2015-01-01

    A wide variety of high heat and particle flux test facilities are being used by the fusion community to evaluate the thermal performance of plasma facing materials/components, which includes electron beam, ion beam, neutral beam and thermal plasma assisted sources. In addition to simulate heat loads, plasma sources have the additional advantage of reproducing exact fusion plasma like conditions, in terms of plasma density, temperature and particle flux. At CPP-IPR, Assam, we have developed a high heat and particle flux facility using a DC, non-transferred, segmented thermal plasma torch system, which can produce a constricted, stabilized plasma jet with high ion density. In this system, the plasma torch exhausts into a low pressure chamber containing the materials to be irradiated, which produces an expanded plasma jet with more uniform profiles, compared to plasma torches operated at atmospheric pressure. The heat flux of the plasma beam was studied by using circular calorimeters of different diameters (2 and 3 cm) for different input power (5-55 kW). The effect of the change in gas (argon) flow rate and mixing of gases (argon + hydrogen) was also studied. The heat profile of the plasma beam was also studied by using a pipe calorimeter. From this, the radial heat flux was calculated by using Abel inversion. It is seen that the required heat flux of 10 MW/m 2 is achievable in our system for pure argon plasma as well as for plasma with gas mixtures. The plasma parameters like the temperature, density and the beam velocity were studied by using optical emission spectroscopy. For this, a McPherson made 1.33 meter focal length spectrometer; model number 209, was used. A plane grating with 1800 g/mm was used which gave a spectral resolution of 0.007 nm. A detailed characterization with respect to these plasma parameters for different gas (argon) flow rate and mixing of gases (argon+hydrogen) for different input power will be presented in this paper. The plasma

  9. Non-equilibrium in flowing atmospheric plasmas

    International Nuclear Information System (INIS)

    Haas, J.C.M. de.

    1986-01-01

    This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)

  10. Laser Induced Fluorescence (LIF) Measurements of Neutral (ArI) and singly-ionized (ArII) Argon in a LargeScale Helicon Plasma

    Science.gov (United States)

    Kelly, R. F.; Fisher, D. M.; Hatch, M. W.; Gilmore, M.; Dwyer, R. H.; Meany, K.; Zhang, Y.; Desjardins, T. R.

    2017-10-01

    In order to investigate the role of neutral dynamics in helicon discharges in the HelCat (Helicon-Cathode) plasma device at U. New Mexico, a Laser Induced Fluorescence (LIF) system has been developed. The LIF system is based on a >250 mW, tunable diode laser with a tuning range between 680 and 700nm. For neutral Argon, the laser pumps the metastable (2P3/20) 4s level to the (2P1/20) 4p level using 696. 7352 nm light. The fluorescence radiation from decay to the (2P1/20) 4s level at 772. 6333 nm is observed. For singly ionized Argon, the laser pumps the 3s23p4(3 P)3d level to the 3s23p4(3 P)4p level using 686.3162nm light. The fluorescence radiation from the decay to the 3s23p4(3 P)4s level is observed. The system design, and velocity measurements in the axial, azimuthal and radial directions for ArI, and in the axial direction for ArII will be presented. Supported by U.S. National Science Foundation Award 1500423.

  11. Ion sampling and transport in Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Farnsworth, Paul B.; Spencer, Ross L.

    2017-08-01

    Quantitative accuracy and high sensitivity in inductively coupled plasma mass spectrometry (ICP-MS) depend on consistent and efficient extraction and transport of analyte ions from an inductively coupled plasma to a mass analyzer, where they are sorted and detected. In this review we examine the fundamental physical processes that control ion sampling and transport in ICP-MS and compare the results of theory and computerized models with experimental efforts to characterize the flow of ions through plasma mass spectrometers' vacuum interfaces. We trace the flow of ions from their generation in the plasma, into the sampling cone, through the supersonic expansion in the first vacuum stage, through the skimmer, and into the ion optics that deliver the ions to the mass analyzer. At each stage we consider idealized behavior and departures from ideal behavior that affect the performance of ICP-MS as an analytical tool.

  12. The formation of a turbulent front in a time modulated argon APPJ

    NARCIS (Netherlands)

    Zhang, S.; Veldhuizen, van E.M.; Bruggeman, P.J.; Sobota, A.

    2014-01-01

    Cold atmospheric pressure plasma jets (APPJ) are promising tools for biomedical applications such as wound healing, disinfection, decontamination, and material processing. The jet effluent is blown in an open air environment which leads to air diffusion and argon-air mixtures in the effluent flow.

  13. Efecto del argon en películas CNxHy depositadas mediante ECR-CVD

    Directory of Open Access Journals (Sweden)

    Albella, J. M.

    2004-04-01

    Full Text Available Carbon nitride films have been deposited by ECR-CVD, from Ar/CH4/N2 gas mixtures with different methane concentrations. Infrared Spectroscopy (IRS and Elastic Recoil Detection Analysis (ERDA have been used for films characterisation and Optical Emission Spectroscopy (OES for plasma analysis. Argon concentration in the gas mixture controls the growth rate as well as the composition of the film. In the proposed model, argon plays a key role in the activation of methane molecules. Also, during the growth of the film, two processes may be considered: i Film formation and ii Etching of the growing surface. Changing the gas mixture composition affects both processes, which results in films with different composition and structure as well as different deposition rates.Se ha estudiado el efecto del argon durante el proceso de CVD asistido por un plasma ECR para la síntesis de películas de nitruro de carbono (CNxHy a partir de mezclas gaseosas Ar/CH4/N2 con diferente contenido de metano. Las películas depositadas han sido analizadas mediante espectroscopía infrarroja (IRS y ERDA (Elastic Recoil Detection Analysis, y el análisis del plasma ha sido realizado utilizando la técnica de espectroscopía de emisión óptica (OES. La velocidad de deposición y la composición de las películas depositadas se encuentran determinadas por la concentración de argon en la mezcla gaseosa. Se propone un modelo, según el cual el argon juega un papel fundamental como activador de las moléculas de metano. El modelo propuesto incluye dos procesos simultáneos durante el crecimiento de las capas : i formación de la capa y ii ataque de la superficie de crecimiento. Según la composición de la mezcla gaseosa se favorece uno u otro proceso, lo que conduce a velocidades de deposición diferentes así como a depósitos con diferente composición y estructura atómica.

  14. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    International Nuclear Information System (INIS)

    Baksht, E Kh; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2006-01-01

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude-time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ∼45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ∼130 ns. (laser applications and other topics in quantum electronics)

  15. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air

    Science.gov (United States)

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2014-09-01

    A direct-current-driven plasma jet is developed by applying a longitudinal electric field on the flowing argon at ambient air. This plasma shows a torch shape with its cross-section increased from the anode to the cathode. Comparison with its counterparts indicates that the gas flow plays a key role in variation of the plasma structure and contributes much to enlarging the plasma volume. It is also found that the circular hollow metal base promotes generation of plasma with a high-power volume density in a limited space. The optical emission spectroscopy (OES) diagnosis indicates that the plasma comprises many reactive species, such as OH, O, excited N2, and Ar metastables. Examination of the rotational and vibrational temperature indicates that the plasma is under nonequilibrium condition and the excited species OH(A 2Σ+), O(5P), and N2(C 3Πu) are partly generated by energy transfer from argon metastables. The spatially resolved OES of plasma reveals that the negative glow, Faraday dark space, and positive column are distributed across the gas gap. The absence of the anode glow is attributed to the fact that many electrons in the vicinity of the anode follow ions into the positive column due to the ambipolar diffusion in the flowing gas.

  16. Trace element determination using static high-sensitivity inductively coupled plasma optical emission spectrometry (SHIP-OES).

    Science.gov (United States)

    Engelhard, Carsten; Scheffer, Andy; Nowak, Sascha; Vielhaber, Torsten; Buscher, Wolfgang

    2007-02-05

    A low-flow air-cooled inductively coupled plasma (ICP) design for optical emission spectrometry (OES) with axial plasma viewing is described and an evaluation of its analytical capabilities in trace element determinations is presented. Main advantage is a total argon consumption of 0.6 L min(-1) in contrast to 15 L min(-1) using conventional ICP sources. The torch was evaluated in trace element determinations and studied in direct comparison with a conventional torch under the same conditions with the same OES system, ultrasonic nebulization (USN) and single-element optimization. A variety of parameters (x-y-position of the torch, rf power, external air cooling, gas flow rates and USN operation parameters) was optimized to achieve limits of detection (LOD) which are competitive to those of a conventional plasma source. Ionic to atomic line intensity ratios for magnesium were studied at different radio frequency (rf) power conditions and different sample carrier gas flows to characterize the robustness of the excitation source. A linear dynamic range of three to five orders of magnitude was determined under compromise conditions in multi-element mode. The accuracy of the system was investigated by the determination of Co, Cr, Mn, Zn in two certified reference materials (CRM): CRM 075c (Copper with added impurities), and CRM 281 (Trace elements in rye grass). With standard addition values of 2.44+/-0.04 and 3.19+/-0.21 microg g(-1) for Co and Mn in the CRM 075c and 2.32+/-0.09, 81.8+/-0.4, 32.2+/-3.9 for Cr, Mn and Zn, respectively, were determined in the samples and found to be in good agreement with the reported values; recovery rates in the 98-108% range were obtained. No influence on the analysis by the matrix load in the sample was observed.

  17. Parametric Study of Hybrid Argon-Water Stabilized Electric Arc under Subsonic and Supersonic Regimes

    Czech Academy of Sciences Publication Activity Database

    Jeništa, Jiří; Hrabovský, Milan; Nishiyama, H.; Takana, H.; Bartlová, M.; Aubrecht, V.

    2010-01-01

    Roč. 14, č. 1 (2010), s. 63-76 ISSN 1093-3611 R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : argon mass flow rate * divergence of radiation flux * partial characteristics * reabsorption * shock diamonds * water plasma torch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.189, year: 2010

  18. Quantitative images of metals in plant tissues measured by laser ablation inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Becker, J.S.; Dietrich, R.C.; Matusch, A.; Pozebon, D.; Dressler, V.L.

    2008-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used for quantitative imaging of toxic and essential elements in thin sections (thickness of 30 or 40 μm) of tobacco plant tissues. Two-dimensional images of Mg, Fe, Mn, Zn, Cu, Cd, Rh, Pt and Pb in leaves, shoots and roots of tobacco were produced. Sections of the plant tissues (fixed onto glass slides) were scanned by a focused beam of a Nd:YAG laser in a laser ablation chamber. The ablated material was transported with argon as carrier gas to the ICP ion source at a quadrupole ICP-MS instrument. Ion intensities of the investigated elements were measured together with 13 C + , 33 S + and 34 S + within the entire plant tissue section. Matrix matching standards (prepared using powder of dried tobacco leaves) were used to constitute calibration curves, whereas the regression coefficient of the attained calibration curves was typically 0.99. The variability of LA-ICP-MS process, sample heterogeneity and water content in the sample were corrected by using 13 C + as internal standard. Quantitative imaging of the selected elements revealed their inhomogeneous distribution in leaves, shoots and roots

  19. Investigations into the origins of polyatomic ions in inductively coupled plasma-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, Sally M. [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    An inductively coupled plasma-mass spectrometer (ICP-MS) is an elemental analytical instrument capable of determining nearly all elements in the periodic table at limits of detection in the parts per quadrillion and with a linear analytical range over 8-10 orders of magnitude. Three concentric quartz tubes make up the plasma torch. Argon gas is spiraled through the outer tube and generates the plasma powered by a looped load coil operating at 27.1 or 40.6 MHz. The argon flow of the middle channel is used to keep the plasma above the innermost tube through which solid or aqueous sample is carried in a third argon stream. A sample is progressively desolvated, atomized and ionized. The torch is operated at atmospheric pressure. To reach the reduced pressures of mass spectrometers, ions are extracted through a series of two, approximately one millimeter wide, circular apertures set in water cooled metal cones. The space between the cones is evacuated to approximately one torr. The space behind the second cone is pumped down to, or near to, the pressure needed for the mass spectrometer (MS). The first cone, called the sampler, is placed directly in the plasma plume and its position is adjusted to the point where atomic ions are most abundant. The hot plasma gas expands through the sampler orifice and in this expansion is placed the second cone, called the skimmer. After the skimmer traditional MS designs are employed, i.e. quadrupoles, magnetic sectors, time-of-flight. ICP-MS is the leading trace element analysis technique. One of its weaknesses are polyatomic ions. This dissertation has added to the fundamental understanding of some of these polyatomic ions, their origins and behavior. Although mainly continuing the work of others, certain novel approaches have been introduced here. Chapter 2 includes the first reported efforts to include high temperature corrections to the partition functions of the polyatomic ions in ICP-MS. This and other objections to preceeding

  20. Plasma diagnostics using laser-excited coupled and transmission ring resonators

    International Nuclear Information System (INIS)

    Haas, R.A.

    1976-01-01

    In this paper a simple two-level laser model is used to investigate the frequency response of coupled-cavity laser interferometers. It is found that under certain circumstances, often satisfied by molecular gas lasers, the frequency response exhibits a resonant behavior. This behavior severely complicates the interpretation of coupled-cavity laser interferometer measurements of rapidly varying plasmas. To circumvent this limitation a new type of laser interferometer plasma diagnostic with significantly improved time response was developed. In this interferometer the plasma is located in one arm of a transmission ring resonator cavity that is excited by an externally positioned laser. Thus, the laser is decoupled from the interferometer cavity and the time response of the interferometer is then limited by the Q of the ring resonator cavity. This improved time response is acquired without loss of spatial resolution, but requires a more sensitive signal detector since the laser is no longer used as a detector as it is in conventional coupled-cavity laser interferometers. Thus, the new technique incorporates the speed of the Mach--Zender interferometer and the sensitivity of the coupled-cavity laser interferometer. The basic operating principles of this type of interferometer have been verified using a CO 2 laser

  1. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    Directory of Open Access Journals (Sweden)

    Partha Saikia

    2016-04-01

    Full Text Available We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te, electron density (ne, ion density (ni, degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  2. Equation of state of strongly coupled plasma mixtures

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1984-01-01

    Thermodynamic properties of strongly coupled (high density) plasmas of mixtures of light elements have been obtained by Monte Carlo simulations. For an assumed uniform charge background the equation of state of ionic mixtures is a simple extension of the one-component plasma EOS. More realistic electron screening effects are treated in linear response theory and with an appropriate electron dielectric function. Results have been obtained for the ionic pair distribution functions, and for the electric microfield distribution

  3. Non-Equilibrium Modeling of Inductively Coupled RF Plasmas

    Science.gov (United States)

    2015-01-01

    wall can be approximated with the expression for an infinite solenoid , B(r = R) = µ0NIc, where quan- tities N and Ic are the number of turns per unit...Modeling of non-equilibrium plasmas in an induc- tively coupled plasma facility. AIAA Paper 2014– 2235, 2014. 45th AIAA Plasmadynamics and Lasers ...1993. 24th Plas- madynamics and Laser Conference, Orlando, FL. [22] M. Capitelli, I. Armenise, D. Bruno, M. Caccia- tore, R. Celiberto, G. Colonna, O

  4. Argon Plasma Coagulation Therapy Versus Topical Formalin for Intractable Rectal Bleeding and Anorectal Dysfunction After Radiation Therapy for Prostate Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yeoh, Eric, E-mail: eric.yeoh@health.sa.gov.au [Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide (Australia); School of Medicine, University of Adelaide, Adelaide (Australia); Tam, William; Schoeman, Mark [School of Medicine, University of Adelaide, Adelaide (Australia); Department of Gastroenterology, Royal Adelaide Hospital, Adelaide (Australia); Moore, James; Thomas, Michelle [School of Medicine, University of Adelaide, Adelaide (Australia); Department of Colorectal Surgery, Royal Adelaide Hospital, Adelaide (Australia); Botten, Rochelle; Di Matteo, Addolorata [Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide (Australia)

    2013-12-01

    Purpose: To evaluate and compare the effect of argon plasma coagulation (APC) and topical formalin for intractable rectal bleeding and anorectal dysfunction associated with chronic radiation proctitis. Methods and Materials: Thirty men (median age, 72 years; range, 49-87 years) with intractable rectal bleeding (defined as ≥1× per week and/or requiring blood transfusions) after radiation therapy for prostate carcinoma were randomized to treatment with APC (n=17) or topical formalin (n=13). Each patient underwent evaluations of (1) anorectal symptoms (validated questionnaires, including modified Late Effects in Normal Tissues–Subjective, Objective, Management, and Analytic and visual analogue scales for rectal bleeding); (2) anorectal motor and sensory function (manometry and graded rectal balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before and after the treatment endpoint (defined as reduction in rectal bleeding to 1× per month or better, reduction in visual analogue scales to ≤25 mm, and no longer needing blood transfusions). Results: The treatment endpoint was achieved in 94% of the APC group and 100% of the topical formalin group after a median (range) of 2 (1-5) sessions of either treatment. After a follow-up duration of 111 (29-170) months, only 1 patient in each group needed further treatment. Reductions in rectal compliance and volumes of sensory perception occurred after APC, but no effect on anorectal symptoms other than rectal bleeding was observed. There were no differences between APC and topical formalin for anorectal symptoms and function, nor for anal sphincteric morphology. Conclusions: Argon plasma coagulation and topical formalin had comparable efficacy in the durable control of rectal bleeding associated with chronic radiation proctitis but had no beneficial effect on anorectal dysfunction.

  5. Argon Plasma Coagulation Therapy Versus Topical Formalin for Intractable Rectal Bleeding and Anorectal Dysfunction After Radiation Therapy for Prostate Carcinoma

    International Nuclear Information System (INIS)

    Yeoh, Eric; Tam, William; Schoeman, Mark; Moore, James; Thomas, Michelle; Botten, Rochelle; Di Matteo, Addolorata

    2013-01-01

    Purpose: To evaluate and compare the effect of argon plasma coagulation (APC) and topical formalin for intractable rectal bleeding and anorectal dysfunction associated with chronic radiation proctitis. Methods and Materials: Thirty men (median age, 72 years; range, 49-87 years) with intractable rectal bleeding (defined as ≥1× per week and/or requiring blood transfusions) after radiation therapy for prostate carcinoma were randomized to treatment with APC (n=17) or topical formalin (n=13). Each patient underwent evaluations of (1) anorectal symptoms (validated questionnaires, including modified Late Effects in Normal Tissues–Subjective, Objective, Management, and Analytic and visual analogue scales for rectal bleeding); (2) anorectal motor and sensory function (manometry and graded rectal balloon distension); and (3) anal sphincteric morphology (endoanal ultrasound) before and after the treatment endpoint (defined as reduction in rectal bleeding to 1× per month or better, reduction in visual analogue scales to ≤25 mm, and no longer needing blood transfusions). Results: The treatment endpoint was achieved in 94% of the APC group and 100% of the topical formalin group after a median (range) of 2 (1-5) sessions of either treatment. After a follow-up duration of 111 (29-170) months, only 1 patient in each group needed further treatment. Reductions in rectal compliance and volumes of sensory perception occurred after APC, but no effect on anorectal symptoms other than rectal bleeding was observed. There were no differences between APC and topical formalin for anorectal symptoms and function, nor for anal sphincteric morphology. Conclusions: Argon plasma coagulation and topical formalin had comparable efficacy in the durable control of rectal bleeding associated with chronic radiation proctitis but had no beneficial effect on anorectal dysfunction

  6. On local thermal equilibrium and potential gradient vs current characteristic in wall-stabilized argon plasma arc at 0.1 atm pressure

    International Nuclear Information System (INIS)

    Shindo, Haruo; Imazu, Shingo; Inaba, Tsuginori.

    1979-01-01

    In wall-stabilized arc which is a very useful means for determining the transport characteristics of high temperature gases, it is the premise that the inside of arc column is in complete local thermal equilibrium (LTE). In general, the higher the gas pressure, the easier the establishment of LTE, accordingly the experimental investigations on the characteristics of arc discharge as well as the transport characteristics so far were limited to the region of relatively high pressure. However, the authors have found that the theoretical potential vs. current characteristic obtained by the transport characteristic was greatly different from the actually measured one in low pressure region, as the fundamental characteristic of wall-stabilized argon plasma arc below atmospheric pressure. This time, they have clarified this discrepancy at 0.1 atm using the plasma parameters obtained through the spectroscopic measurements. The spectroscopic measurements have been performed through the side observation window at the position 5.5 cm away from the cathode, when arc was ignited vertically at the electrodes distant by 11 cm. Arc radius was 0.5 cm. Electron density and temperature, gas temperature and the excitation density of argon neutral atoms have been experimentally measured. The investigations showed that, in the region of low arc current, where the ratio of current to arc radius is less than 200 A/cm, the fall of gas temperature affected greatly on the decrease of axial electric field of arc column. The non-equilibrium between electron temperature and gas temperature decreased with the increase of arc current, and it was concluded that LTE has been formed at the center portion of arc column above I/R = 300 A/cm. (Wakatsuki, Y.)

  7. Electron screening and kinetic-energy oscillations in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Chen, Y.C.; Simien, C.E.; Laha, S.; Gupta, P.; Martinez, Y.N.; Mickelson, P.G.; Nagel, S.B.; Killian, T.C.

    2004-01-01

    We study equilibration of strongly coupled ions in an ultracold neutral plasma produced by photoionizing laser-cooled and trapped atoms. By varying the electron temperature, we show that electron screening modifies the equilibrium ion temperature. Even with few electrons in a Debye sphere, the screening is well described by a model using a Yukawa ion-ion potential. We also observe damped oscillations of the ion kinetic energy that are a unique feature of equilibration of a strongly coupled plasma

  8. Surface grafting of styrene on polypropylene fibers by argon plasma and its adsorption-regeneration of BTX

    Science.gov (United States)

    Xu, J. J.; Guo, M. L.; Chen, Q. G.; Lian, Z. Y.; Wei, W. J.; Luo, Z. W.; Xie, G.; Chen, H. N.; Dong, K.

    2017-08-01

    Active macromolecular free radicals were generated on polypropylene (PP) fibers surfaces by argon (Ar) plasma irradiation, then, PP surface modified fibers (PP-g-St fibers) were prepared by in-situ grafting reaction of styrene monomers (St). Effects of reaction parameters on grafting percentage were studied and adsorption capacities of PP-g-St fibers for benzene, toluene and xylene (BTX) were evaluated. Afterwards, regeneration adsorption efficiencies after maximum adsorption were explored. The results indicated that the optimum input power, irradiation time and grafting reaction time are 90 W, 3 min and 3 h respectively and the grafting percentage of St reached 5.7 %. The adsorption capacities of PP-g-St fibers towards toluene and xylene emulsions and solutions in water increased by 336.89 % and 344.57 % respectively, compared to pristine PP fibers. In addition, regeneration adsorption efficiencies of modified fibers remained > 90 % after six cycles of regeneration-adsorption experiments, which showed excellent regeneration ability.

  9. Negative corona current pulses in argon and in mixture argon with SF6

    International Nuclear Information System (INIS)

    Zahoranova, A.; Zahoran, M.; Bucek, A.; Cernak, M.; Bosko, J.

    2004-01-01

    Waveforms of the first negative current pulses in a short negative point-to plane gap in pure argon and argon with SF 6 admixture have been investigated with a nanosecond time resolution at a gas pressure 50 kPa as a function of applied gap voltage and content of SF 6 in the mixture. We have made an attempt to explain the differences in the discharge development in pure argon and in argon with admixture of SF 6 based on the observed changes of the pulse shape. The experimental results obtained will be discussed in context with existing computer simulation models (Authors)

  10. The strongly coupled quark-gluon plasma created at RHIC

    CERN Document Server

    Heinz, Ulrich W

    2009-01-01

    The Relativistic Heavy Ion Collider (RHIC) was built to re-create and study in the laboratory the extremely hot and dense matter that filled our entire universe during its first few microseconds. Its operation since June 2000 has been extremely successful, and the four large RHIC experiments have produced an impressive body of data which indeed provide compelling evidence for the formation of thermally equilibrated matter at unprecedented temperatures and energy densities -- a "quark-gluon plasma (QGP)". A surprise has been the discovery that this plasma behaves like an almost perfect fluid, with extremely low viscosity. Theorists had expected a weakly interacting gas of quarks and gluons, but instead we seem to have created a strongly coupled plasma liquid. The experimental evidence strongly relies on a feature called "elliptic flow" in off-central collisions, with additional support from other observations. This article explains how we probe the strongly coupled QGP, describes the ideas and measurements whi...

  11. Local effects of ECRH on argon transport at ASDEX upgrade

    International Nuclear Information System (INIS)

    Sertoli, Marco

    2010-01-01

    Future deuterium-tritium magnetically confined fusion power plants will most probably rely an high-Z Plasma Facing Components (PFCs) such as tungsten. This choice is determined by the necessity of low erosion of the first wall materials (to guarantee a long lifetime of the wall components) and by the need to avoid the too high tritium wall retention of typical carbon based PFCs. The experience gathered at the ASDEX Upgrade (AUG) tokamak has demonstrated the possibility of reliable and high performance plasma operation with a full tungsten-coated first wall. The observed accumulation of tungsten which can lead to excessive radiation losses is mitigated with the use of Electron Cyclotron Resonance Heating (ECRH). Although this impurity control method is routinely performed at AUG, the underlying physics principles are still not clear. This thesis aims an providing further knowledge an the effects of ECRH an the transport of impurities inside the core plasma. The transport of argon has been therefore investigated in-depth in purely ECR heated L-mode (low-confinement) discharges. Studies an impurity transport in centrally ECR heated nitrogen-seeded H-mode (high-confinement) discharges have also been performed. To this scope, a new crystal X-ray spectrometer of the Johann type has been installed an AUG for argon concentration and ion temperature measurements. New methods for the experimental determination of the total argon density through the integrated use of this diagnostic and of the Soft X-Ray (SXR) diode arrays have been developed. This gives the possibility of evaluating the full profiles of the argon transport coefficients from the linear flux-gradient dependency of local argon density. In comparison to classical χ 2 -minimization methods, the approach proposed here delivers transport coefficients intrinsically independent of the modelling of periodic relaxation mechanisms such as those Lied to sawtooth MHD (Magneto-Hydro-Dynamic) activity. Moreover, the good

  12. Some remarks on coherent nonlinear coupling of waves in plasmas

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1976-01-01

    The analysis of nonlinear processes in plasma physics has given rise to a basic set of coupled equations. These equations describe the coherent nonlinear evolution of plasma waves. In this paper various possibilities of analysing these equations are discussed and inherent difficulties in the description of nonlinear interactions between different types of waves are pointed out. Specific examples of stimulated excitation of waves are considered. These are the parametric excitation of hybrid resonances in hot magnetized multi-ion component plasma and laser-plasma interactions. (B.D.)

  13. Sterilization and decontamination of medical instruments by low-pressure plasma discharges: application of Ar/O2/N2 ternary mixture

    International Nuclear Information System (INIS)

    Kylian, O; Rossi, F

    2009-01-01

    A low-pressure inductively coupled plasma discharge sustained in an argon-oxygen-nitrogen ternary mixture is studied in order to evaluate its properties in terms of sterilization and decontamination of surfaces of medical instruments. It is demonstrated by direct comparison with discharges operated in oxygen-nitrogen and oxygen-argon mixtures that application of an Ar/O 2 /N 2 mixture offers the possibility to combine advantageous properties of the binary mixtures, namely, the capability of an O 2 /N 2 plasma to emit intense UV radiation needed for effective inactivation of bacterial spores together with high removal rates of biological substances from Ar/O 2 discharge. Moreover, optimal conditions for both effects are obtained at a similar ternary discharge mixture composition, which is of much interest for real applications, since it offers a highly effective process desired for the safety of medical instruments.

  14. A study of the plasma electronegativity in an argon-oxygen pulsed-dc sputter magnetron

    International Nuclear Information System (INIS)

    You, S D; Dodd, R; Edwards, A; Bradley, J W

    2010-01-01

    Using Langmuir probe-assisted laser photodetachment, the temporal evolution of the O - density was determined in the bulk plasma of a unipolar pulsed-dc magnetron. The source was operated in reactive mode, at a fixed nominal on-time power of 100 W, sputtering Ti in argon-oxygen atmospheres at 1.3 Pa pressure, but over a variation of duty cycles from 5% to 50% and oxygen partial pressures of 10% and 50% of the total pressure. In the plasma on-time, for all duty cycles the negative ion density (n - ) rises marginally reaching values typically less than 2 x 10 15 m -3 with negative ion-to-electron density ratios, α - falls by about 20-30% as fast O - species created at the cathode exit the system. This is followed by a rapid rise in n - to values at least 2 or 3 times that in the on-time. The rate of rise of n - and its maximum value both increase with decreasing duty cycle. In the off-time, the electron density falls rapidly (initial decay rates of several tens of μs), and therefore the afterglow plasma becomes highly electronegative, with α reaching 4.6 and 14.4 for 10% and 50% oxygen partial pressure, respectively. The rapid rise in n - in the afterglow (in which the electron temperature falls from about 5 to 0.5 eV) is attributed to the dissociative attachment of highly excited oxygen metastables, which themselves are created in the pulse on-time. At the lowest duty of 5%, the long-term O - decay times are several hundred μs. Langmuir probe characteristics show the clear signature that negative ions dominate over the electrons in the off-time. From the ion and electron saturation current ratios, α has been estimated in some chosen cases and found to agree within a factor between 2 and 10 with those obtained more directly from the photodetachment method.

  15. Laser light scattering in a laser-induced argon plasma: Investigations of the shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2012-08-15

    Shock wave produced by a laser induced spark in argon at atmospheric pressure was examined using Rayleigh and Thomson scattering. The spark was generated by focusing a laser pulse from the second harmonic ({lambda} = 532 nm) of a nanosecond Nd:YAG laser using an 80 mm focal length lens, with a fluence of 2 kJ{center_dot}cm{sup -2}. Images of the spark emission were recorded for times between 30 ns and 100 {mu}s after the laser pulse in order to characterize its spatial evolution. The position of the shock wave at several instants of its evolution and for several plasma regions was determined from the Rayleigh-scattered light of another nanosecond Nd:YAG laser (532 nm, 40 J{center_dot}cm{sup -2} fluence). Simultaneously, Thomson scattering technique was applied to determine the electron density and temperature in the hot plasma core. Attempts were made to describe the temporal evolution of the shock wave within a self-similar model, both by the simple Sedov-Taylor formula as well as its extension deduced by de Izarra. The temporal radial evolution of the shock position is similar to that obtained within theory taking into account the counter pressure of the ambient gas. Density profiles just behind the shock front are in qualitative agreement with those obtained by numerically solving the Euler equations for instantaneous explosion at a point with counter pressure. - Highlights: Black-Right-Pointing-Pointer We investigated shock wave evolution by Rayleigh scattering method. Black-Right-Pointing-Pointer 2D map of shockwave position for several times after plasma generation is presented. Black-Right-Pointing-Pointer Shock wave evolution is not satisfactorily described within self-similar models. Black-Right-Pointing-Pointer Evolution of shock position similar to theory taking into account counter pressure. Black-Right-Pointing-Pointer Density profile behind the shock similar to numerical solution of Euler equations.

  16. Improved planar radio frequency inductively coupled plasma configuration in plasma immersion ion implantation

    International Nuclear Information System (INIS)

    Tang, D.L.; Fu, R.K.Y.; Tian, X.B.; Chu, P.K.

    2003-01-01

    Plasmas with higher density and better uniformity are produced using an improved planar radio frequency (rf) inductively coupled plasma configuration in plasma immersion ion implantation (PIII). An axial magnetic field is produced by external electromagnetic coils outside the discharge chamber. The rf power can be effectively absorbed by the plasma in the vicinity of the electron gyrofrequency due to the enhanced resonant absorption of electromagnetic waves in the whistler wave range, which can propagate nearly along the magnetic field lines thus greatly increases the plasma density. The plasma is confined by a longitudinal multipolar cusp magnetic field made of permanent magnets outside the process chamber. It can improve the plasma uniformity without significantly affecting the ion density. The plasma density can be increased from 3x10 9 to 1x10 10 cm -3 employing an axial magnetic field of several Gauss at 1000 W rf power and 5x10 -4 Torr gas pressure. The nonuniformity of the plasma density is less than 10% and can be achieved in a process chamber with a diameter of 600 mm. Since the plasma generation and process chambers are separate, plasma extinction due to the plasma sheath touching the chamber wall in high-energy PIII can be avoided. Hence, low-pressure, high-energy, and high-uniformity ion implantation can be accomplished using this setup

  17. Approximation scheme for strongly coupled plasmas: Dynamical theory

    International Nuclear Information System (INIS)

    Golden, K.I.; Kalman, G.

    1979-01-01

    The authors present a self-consistent approximation scheme for the calculation of the dynamical polarizability α (k, ω) at long wavelengths in strongly coupled one-component plasmas. Development of the scheme is carried out in two stages. The first stage follows the earlier Golden-Kalman-Silevitch (GKS) velocity-average approximation approach, but goes much further in its application of the nonlinear fluctuation-dissipation theorem to dynamical calculations. The result is the simple expression for α (k, ω), αatsub GKSat(k, ω) 4 moment sum rule. In the second stage, the above dynamical expression is made self-consistent at long wavelengths by postulating that a decomposition of the quadratic polarizabilities in terms of linear ones, which prevails in the k → 0 limit for weak coupling, can be relied upon as a paradigm for arbitrary coupling. The result is a relatively simple quadratic integral equation for α. Its evaluation in the weak-coupling limit and its comparison with known exact results in that limit reveal that almost all important correlational and long-time effects are reproduced by our theory with very good numerical accuracy over the entire frequency range; the only significant defect of the approximation seems to be the absence of the ''dominant'' γ ln γ -1 (γ is the plasma parameter) contribution to Im α

  18. Potassium-argon technology

    International Nuclear Information System (INIS)

    Cassignol, Charles; Cornette, Yves; David, Benjamin; Gillot, P.-Y.

    1978-04-01

    The main features of the method of processing rocks and minerals and measuring the extracted argon, for the purpose of potassium-argon dating are described. It differs in several respects from the conventional one, as described, f.i., in Dalrymple and Lanphere's monography. Principally it was established that the continual purification of the gases in the mass spectrometer cell during the measurement, stops the peaks of current drift, and renders them representative of the introduced argon. This allows on the one hand to improve the reliability and accuracy of measurements, on the other hand to get rid of the isotopic dilution method, with 38 A as a spike. Moreover the reliability of the radiogenic argon is improved by taking into account the mislinearness of the M.S. response. All this results in a higher performance of the K/Ar dating method, especially in the recent ages range. The technological side of the problem was only dealt with [fr

  19. Plasma chemistry in wire chambers

    International Nuclear Information System (INIS)

    Wise, J.

    1990-05-01

    The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an 55 Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed

  20. Effect of power modulation on properties of pulsed capacitively coupled radiofrequency discharges

    International Nuclear Information System (INIS)

    Samara, V; Bowden, M D; Braithwaite, N St J

    2010-01-01

    We describe measurements of plasma properties of pulsed, low pressure, capacitively coupled discharges operated in argon. The study aims to determine the effect of modulating the radiofrequency power during the discharge part of the pulse cycle. Measurements of local electron density and optical emission were made in capacitively coupled rf discharges generated in a Gaseous Electronics Conference (GEC) reference reactor. Gas pressure was in the range 7-70 Pa, rf power in the range 1-100 W and pulse durations in the range 10 μs-100 ms. The results indicate that the ignition and afterglow decay processes in pulsed discharges can be controlled by modulating the shape of applied radiofrequency pulse.

  1. Atomic fluorescence spectrometry with the inductively coupled plasma

    International Nuclear Information System (INIS)

    Omenetto, N.; Winefordner, J.D.

    1987-01-01

    Atomic fluorescence spectrometry (AFS) is based on the radiational activation of atoms and ions produced in a suitable atomizer (ionizer) and the subsequent measurement of the resulting radiational deactivation, called fluorescence. Atomic fluorescence spectrometry has been of considerable interest to researchers in atomic spectrometry because of its use for both analytical and diagnostic purposes. Unfortunately, the analytical applications of AFS have suffered from the lack of commercial instrumentation until the recent marketing of the Baird multiple-element, hollow cathode lamp-excited inductively coupled plasma system. This chapter is concerned strictly with the use of the inductively coupled plasma (ICP) as a cell and as a source for AFS. Many of the major references concerning the ICP in analytical AFS are categorized in Table 9.1, along with several reviews and diagnostical studies. For more detailed discussions of the fundamental aspects of AFS, the reader is referred to previous reviews

  2. Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas

    International Nuclear Information System (INIS)

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2005-01-01

    In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function

  3. Continuous Emission Spectrum Measurement for Electron Temperature Determination in Low-Temperature Collisional Plasmas

    International Nuclear Information System (INIS)

    Liu Qiuyan; Li Hong; Chen Zhipeng; Xie Jinlin; Liu Wandong

    2011-01-01

    Continuous emission spectrum measurement is applied for the inconvenient diagnostics of low-temperature collisional plasmas. According to the physical mechanism of continuous emission, a simplified model is presented to analyze the spectrum in low temperature plasma. The validity of this model is discussed in a wide range of discharge parameters, including electron temperature and ionization degree. Through the simplified model, the continuous emission spectrum in a collisional argon internal inductively coupled plasma is experimentally measured to determine the electron temperature distribution for different gas pressures and radio-frequency powers. The inverse Abel transform is also applied for a better spatially resoluted results. Meanwhile, the result of the continuous emission spectrum measurement is compared to that of the electrostatic double probes, which indicates the effectiveness of this method. (low temperature plasma)

  4. Plasma Processing of Metallic and Semiconductor Thin Films in the Fisk Plasma Source

    Science.gov (United States)

    Lampkin, Gregory; Thomas, Edward, Jr.; Watson, Michael; Wallace, Kent; Chen, Henry; Burger, Arnold

    1998-01-01

    The use of plasmas to process materials has become widespread throughout the semiconductor industry. Plasmas are used to modify the morphology and chemistry of surfaces. We report on initial plasma processing experiments using the Fisk Plasma Source. Metallic and semiconductor thin films deposited on a silicon substrate have been exposed to argon plasmas. Results of microscopy and chemical analyses of processed materials are presented.

  5. Equilibrium statistical mechanics of strongly coupled plasmas by numerical simulation

    International Nuclear Information System (INIS)

    DeWitt, H.E.

    1977-01-01

    Numerical experiments using the Monte Carlo method have led to systematic and accurate results for the thermodynamic properties of strongly coupled one-component plasmas and mixtures of two nuclear components. These talks are intended to summarize the results of Monte Carlo simulations from Paris and from Livermore. Simple analytic expressions for the equation of state and other thermodynamic functions have been obtained in which there is a clear distinction between a lattice-like static portion and a thermal portion. The thermal energy for the one-component plasma has a simple power dependence on temperature, (kT)/sup 3 / 4 /, that is identical to Monte Carlo results obtained for strongly coupled fluids governed by repulsive l/r/sup n/ potentials. For two-component plasmas the ion-sphere model is shown to accurately represent the static portion of the energy. Electron screening is included in the Monte Carlo simulations using linear response theory and the Lindhard dielectric function. Free energy expressions have been constructed for one and two component plasmas that allow easy computation of all thermodynamic functions

  6. Study of optical emission spectroscopy with inductively coupled plasma torch

    International Nuclear Information System (INIS)

    Bauer, M.

    1982-01-01

    Inductively coupled plasma optical emission spectroscopy is an excellent tool for quantitative multielement trace analysis. This paper describes the performance of a computer-controlled sequential measurement system. Chemical and ionization interferences are shown to be negligible due to the characteristics of the inductively coupled plasma, spectral interferences are eliminated by using a high-resolution monochromator and computer data handling. Good accuracy is achieved for most of the interesting elements, as is shown from both an interlaboratory test and from comparison of the results of water samples from the rivers Elbe and Weser with those achieved with neutron activation and X-ray fluorescence analysis. (orig.) [de

  7. Metal carbonyl vapor generation coupled with dielectric barrier discharge to avoid plasma quench for optical emission spectrometry.

    Science.gov (United States)

    Cai, Yi; Li, Shao-Hua; Dou, Shuai; Yu, Yong-Liang; Wang, Jian-Hua

    2015-01-20

    The scope of dielectric barrier discharge (DBD) microplasma as a radiation source for optical emission spectrometry (OES) is extended by nickel carbonyl vapor generation. We proved that metal carbonyl completely avoids the extinguishing of plasma, and it is much more suitable for matching the DBD excitation and OES detection with respect to significant DBD quenching by concomitant hydrogen when hydride generation is used. A concentric quartz UV reactor allows sample solution to flow through the central channel wherein to efficiently receive the uniformly distributed UV irradiation in the confined cylindrical space between the concentric tubes, which facilitates effective carbonyl generation in a nickel solution. The carbonyl is transferred into the DBD excitation chamber by an argon stream for nickel excitation, and the characteristic emission of nickel at 232.0 nm is detected by a charge-coupled device (CCD) spectrometer. A 1.0 mL sample solution results in a linear range of 5-100 μg L(-1) along with a detection limit of 1.3 μg L(-1) and a precision of 2.4% RSD at 50 μg L(-1). The present DBD-OES system is validated by nickel in certified reference materials.

  8. Simultaneous streak and frame interferometry for electron density measurements of laser produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, H. J., E-mail: hjquevedo@utexas.edu; McCormick, M.; Wisher, M.; Bengtson, Roger D.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2016-01-15

    A system of two collinear probe beams with different wavelengths and pulse durations was used to capture simultaneously snapshot interferograms and streaked interferograms of laser produced plasmas. The snapshots measured the two dimensional, path-integrated, electron density on a charge-coupled device while the radial temporal evolution of a one dimensional plasma slice was recorded by a streak camera. This dual-probe combination allowed us to select plasmas that were uniform and axisymmetric along the laser direction suitable for retrieving the continuous evolution of the radial electron density of homogeneous plasmas. Demonstration of this double probe system was done by measuring rapidly evolving plasmas on time scales less than 1 ns produced by the interaction of femtosecond, high intensity, laser pulses with argon gas clusters. Experiments aimed at studying homogeneous plasmas from high intensity laser-gas or laser-cluster interaction could benefit from the use of this probing scheme.

  9. Linear coupling of electromagnetic and Jeans modes in self-gravitating plasma streams

    International Nuclear Information System (INIS)

    Yaroshenko, Victoria V.; Voitenko, Yuriy; Goossens, Marcel

    2002-01-01

    A new mechanism of linear coupling between electromagnetic (nonpotential) and gravitational disturbances is found for oblique propagation relatively to particle streams. The general dispersion law is derived and applied to the case of two countersteaming dust beams of equal strength and quiasiperpendicular propagation. It reveals a strong linear coupling between the low-frequency aperiodically unstable electromagnetic (AEM) and the Jeans (JM) modes. The coupling is of a mode conversion type, resulting in a frequency gap in the dispersion, and thus significantly modifies the instability criteria. It is shown that, in contrast to the electrostatic case, AEM and JM coupling in streaming self-gravitating plasmas can actually appear even if the plasma frequencies of the dust species greatly exceed the corresponding Jeans frequencies

  10. Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma

    International Nuclear Information System (INIS)

    Wang Hongyu; Sun Peng; Zhao Shuangyun; Li Yang; Jiang Wei

    2016-01-01

    We analyzed perpendicularly configured dual-frequency (DF) capacitively coupled plasmas (CCP). In this configuration, two pairs of electrodes are arranged oppositely, and the discharging is perpendicularly driven by two radio frequency (RF) sources. Particle-in-cell/Monte Carlo (PIC/MC) simulation showed that the configuration had some advantages as this configuration eliminated some dual frequency coupling effects. Some variation and potential application of the discharging configuration is discussed briefly. (paper)

  11. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface

    Science.gov (United States)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A new combination of first principle molecular dynamics (MD) simulations with a rate equation model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of argon atoms from a platinum (111) surface. The combined model is based on a classification of all atom trajectories according to their energies into trapped, quasi-trapped and scattering states. The number of particles in each of the three classes obeys coupled rate equations. The coefficients in the rate equations are the transition probabilities between these states which are obtained from MD simulations. While these rates are generally time-dependent, after a characteristic time scale t E of several tens of picoseconds they become stationary allowing for a rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal evolution of the energy distribution functions of the adsorbate atoms. We separately study the energy loss distribution function of the atoms and the distribution function of in-plane and perpendicular energy components. Further, we compute the sticking probability of argon atoms as a function of incident energy, angle and lattice temperature. Our model is important for plasma-surface modeling as it allows to extend accurate simulations to longer time scales.

  12. Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera

    Science.gov (United States)

    Oldenbürger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.

    2010-06-01

    Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.

  13. Spectroscopic interpretation and velocimetry analysis of fluctuations in a cylindrical plasma recorded by a fast camera

    International Nuclear Information System (INIS)

    Oldenbuerger, S.; Brandt, C.; Brochard, F.; Lemoine, N.; Bonhomme, G.

    2010-01-01

    Fast visible imaging is used on a cylindrical magnetized argon plasma produced by thermionic discharge in the Mirabelle device. To link the information collected with the camera to a physical quantity, fast camera movies of plasma structures are compared to Langmuir probe measurements. High correlation is found between light fluctuations and plasma density fluctuations. Contributions from neutral argon and ionized argon to the overall light intensity are separated by using interference filters and a light intensifier. Light emitting transitions are shown to involve a metastable neutral argon state that can be excited by thermal plasma electrons, thus explaining the good correlation between light and density fluctuations. The propagation velocity of plasma structures is calculated by adapting velocimetry methods to the fast camera movies. The resulting estimates of instantaneous propagation velocity are in agreement with former experiments. The computation of mean velocities is discussed.

  14. Argon in action

    CERN Multimedia

    Corinne Pralavorio

    2015-01-01

    Over the past few days, the SPS has been accelerating argon ions, which have started to be sent to the NA61/SHINE experiment. This operating mode, using a new type of ion, required a number of modifications to the accelerator.   Picture 1: a “super-cycle” of the SPS, featuring a proton cycle for the LHC, followed by an argon ion cycle for the North Area. Today, the accelerators are once again juggling particles and even performing completely new tricks. The SPS is supplying beams of argon ions for the first time, at energies never before achieved for this type of beam. They are destined for the NA61/SHINE experiment (see box) located in the North Area, which began receiving the beams on 11 February. Argon ions have a relatively large mass, as they consist of 40 nucleons, so they can be used in a similar way to lead ions. The main difficulty in accelerating them lies in the SPS, where the variation in acceleration frequency is limited. “The SPS was designed for a...

  15. Control of plasma density distribution via wireless power transfer in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Lee, Hee-Jin; Lee, Hyo-Chang; Kim, Young-Cheol; Chung, Chin-Wook

    2013-01-01

    With an enlargement of the wafer size, development of large-area plasma sources and control of plasma density distribution are required. To control the spatial distribution of the plasma density, wireless power transfer is applied to an inductively coupled plasma for the first time. An inner powered antenna and an outer resonant coil connected to a variable capacitor are placed on the top of the chamber. As the self-resonance frequency ω r of the resonant coil is adjusted, the power transfer rate from the inner powered coil to the outer resonant coil is changed and the dramatic evolution of the plasma density profile is measured. As ω r of the outer resonant coil changes from the non-resonant condition (where ω r is not the driving angular frequency ω rf ) to the resonant condition (where ω r = ω rf ), the plasma density profile evolves from a convex shape with maximal plasma density at the radial center into a concave shape with maximal plasma density in the vicinity of the resonant antenna coil. This result shows that the plasma density distribution can be successfully controlled via wireless resonance power transfer. (fast track communication)

  16. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  17. Experiment on dust acoustic solitons in strongly coupled dusty plasma

    International Nuclear Information System (INIS)

    Boruah, Abhijit; Sharma, Sumita Kumari; Bailung, Heremba

    2015-01-01

    Dusty plasma, which contains nanometer to micrometer sized dust particles along with electrons and ions, supports a low frequency wave called Dust Acoustic wave, analogous to ion acoustic wave in normal plasma. Due to high charge and low temperature of the dust particles, dusty plasma can easily transform into a strongly coupled state when the Coulomb interaction potential energy exceeds the dust kinetic energy. Dust acoustic perturbations are excited in such strongly coupled dusty plasma by applying a short negative pulse (100 ms) of amplitude 5 - 20 V to an exciter. The perturbation steepens due to nonlinear effect and forms a solitary structure by balancing dispersion present in the medium. For specific discharge conditions, excitation amplitude above a critical value, the perturbation is found to evolve into a number of solitons. The experimental results on the excitation of multiple dust acoustic solitons in the strongly coupled regime are presented in this work. The experiment is carried out in radio frequency discharged plasma produced in a glass chamber at a pressure 0.01 - 0.1 mbar. Few layers of dust particles (∼ 5 μm in diameter) are levitated above a grounded electrode inside the chamber. Wave evolution is observed with the help of green laser sheet and recorded in a high resolution camera at high frame rate. The high amplitude soliton propagates ahead followed by smaller amplitude solitons with lower velocity. The separation between the solitons increases as time passes by. The characteristics of the observed dust acoustic solitons such as amplitude-velocity and amplitude- Mach number relationship are compared with the solutions of Korteweg-de Vries (KdV) equation. (author)

  18. Comparison of Langmuir probe and multipole resonance probe measurements in argon, hydrogen, nitrogen, and oxygen mixtures in a double ICP discharge

    Science.gov (United States)

    Fiebrandt, Marcel; Oberberg, Moritz; Awakowicz, Peter

    2017-07-01

    The results of a Multipole Resonance Probe (MRP) are compared to a Langmuir probe in measuring the electron density in Ar, H2, N2, and O2 mixtures. The MRP was designed for measurements in industry processes, i.e., coating or etching. To evaluate a possible influence on the MRP measurement due to molecular gases, different plasmas with increasing molecular gas content in a double inductively coupled plasma at 5 Pa and 10 Pa at 500 W are used. The determined electron densities from the MRP and the Langmuir probe slightly differ in H2 and N2 diluted argon plasmas, but diverge significantly with oxygen. In pure molecular gas plasmas, electron densities measured with the MRP are always higher than those measured with the Langmuir Probe, in particular, in oxygen containing mixtures. The differences can be attributed to etching of the tungsten wire in the Ar:O2 mixtures and rf distortion in the pure molecular discharges. The influence of a non-Maxwellian electron energy distribution function, negative ions or secondary electron emission seems to be of no or only minor importance.

  19. Jet quenching in a strongly coupled anisotropic plasma

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2012-08-01

    The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.

  20. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  1. Capillary electrophoresis - inductively coupled plasma mass spectrometry (CE-ICPMS) coupling to assess pentavalent actinides thermodynamic constants

    International Nuclear Information System (INIS)

    Topin, S.; Baglan, N.; Aupiais, J.

    2009-01-01

    Full text: Aiming to investigate plutonium speciation at trace levels, we coupled capillary electrophoresis, a high resolution separation technique with inductively coupled plasma mass spectrometry, a detector with high sensitivity for plutonium. The research work performed to optimize the coupling is discussed based on the following criteria: the migration time, the resolution and the detection limit. The capabilities of the analytical tool are demonstrated by determining thermodynamic constants for pentavalent plutonium, and neptunium as a reference, in the presence of inorganic ligands. (author)

  2. Purification of the gas after pyrolysis in coupled plasma-catalytic system

    Directory of Open Access Journals (Sweden)

    Młotek Michał

    2017-12-01

    Full Text Available Gliding discharge and coupled plasma-catalytic system were used for toluene conversion in a gas composition such as the one obtained during pyrolysis of biomass. The chosen catalyst was G-0117, which is an industrial catalyst for methane conversion manufactured by INS Pulawy (Poland. The effects of discharge power, initial concentration of toluene, gas flow rate and the presence of the bed of the G-0117 catalyst on the conversion of C7H8, a model tars compounds were investigated. Conversion of coluene increases with discharge power and the highest one was noted in the coupled plasma-catalytic system. It was higher than that in the homogeneous system of gliding discharge. When applying a reactor with reduced G-0117 and CO (0.15 mol%, CO2 (0.15 mol%, H2 (0.30 mol%, N2 (0.40 mol%, 4000 ppm of toluene and gas flow rate of 1.5 Nm3/h, the conversion of toluene was higher than 99%. In the coupled plasma-catalytic system with G-0117 methanation of carbon oxides was observed.

  3. Efficacy of argon plasma coagulation for locoregional relapse after chemoradiotherapy for esophageal cancer

    International Nuclear Information System (INIS)

    Kikuchi, Yoshinori; Domon, Kaoru; Otsuka, Takafumi

    2011-01-01

    Salvage therapy for residual or relapsed esophageal cancer after chemoradiotherapy (CRT) has not yet been established. We retrospectively evaluated relapse-free survival (RFS) after local recurrence following CRT and local control rate in patients who underwent argon plasma coagulation (APC). We reviewed the records of 14 patients who underwent APC after CRT for esophageal cancer at our department between 2001 and 2010 and analyzed overall survival (OS), 5-year survival rate, local control rate after APC and RFS-defined as the period between the end of CRT and the time when an iodine-negative area was found. Median OS and median RFS (mRFS) were 33 months and 6 months, respectively. The 5-year survival rate was 16.2%, and the local control rate after APC was 71.4% (10/14). RFS was significantly longer in the T1 group than in the T2/T3 group (p=0.03); the local control rate after APC did not significantly differ between groups. The high-dose (HD) radiation group had a significantly longer RFS and a tendency toward a higher local control rate after APC than did the standard-dose (SD) radiation group. APC was safe and resulted in a high rate of local control, regardless of T factor. HD radiation was associated with longer RFS and greater efficacy of APC treatment for local recurrence. (author)

  4. X-Ray photoelectron spectroscopy analysis of plasma-polymer interactions for development of low-damage plasma processing of soft materials

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2010-01-01

    Plasma-polymer interactions have been investigated using atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS) of polyethyleneterephthalate (PET) films, which have been exposed to argon plasmas driven by low-inductance antenna modules as a parameter of ion energy. The AFM images indicated that the argon plasma exposure exhibited a significant change in surface roughness. The XPS analyses suggested that the degradation of chemical bonding structure and/or bond scission of PET could be effectively suppressed in the plasma exposures with ion energies below 6 eV. However, significant degradations of O = C-O bond, C-O bond and phenyl group were observed with increasing ion energy above 6 eV.

  5. LLNL large-area inductively coupled plasma (ICP) source: Experiments

    International Nuclear Information System (INIS)

    Richardson, R.A.; Egan, P.O.; Benjamin, R.D.

    1995-05-01

    We describe initial experiments with a large (76-cm diameter) plasma source chamber to explore the problems associated with large-area inductively coupled plasma (ICP) sources to produce high density plasmas useful for processing 400-mm semiconductor wafers. Our experiments typically use a 640-nun diameter planar ICP coil driven at 13.56 MHz. Plasma and system data are taken in Ar and N 2 over the pressure range 3-50 mtorr. RF inductive power was run up to 2000W, but typically data were taken over the range 100-1000W. Diagnostics include optical emission spectroscopy, Langmuir probes, and B probes as well as electrical circuit measurements. The B and E-M measurements are compared with models based on commercial E-M codes. Initial indications are that uniform plasmas suitable for 400-mm processing are attainable

  6. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    El-Tayeb, H.A.; El-Gamal, H.A.

    2000-01-01

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 10 12 cm -3 and 4x10 13 cm -3 . The peak velocity of the ejected plasma was 0. 8 x 10 5 cm sec -1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x10 7 cm -3 . It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  7. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, Hidenobu; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density control to suppress heavy impurity accumulation. (author)

  8. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.; Higashijima, S.; Oyama, N.

    2003-01-01

    The relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated in reversed shear (RS) and high β p ELMy H-mode plasmas in JT-60U. No helium and carbon accumulation inside the ITB is observed even with ion heat transport reduced to a neoclassical level. On the other hand, the heavy impurity argon is accumulated inside the ITB. The argon density profile estimated from the soft x-ray profile is more peaked, by a factor of 2-4 in the RS plasma and of 1.6 in the high β p mode plasma, than the electron density profile. The helium diffusivity (D He ) and the ion thermal diffusivity (χ i ) are at an anomalous level in the high β p mode plasma, where D He and χ i are higher by a factor of 5-10 than the neoclassical value. In the RS plasma, D He is reduced from the anomalous to the neoclassical level, together with χ i . The carbon and argon density profiles calculated using the transport coefficients reduced to the neoclassical level only in the ITB are more peaked than the measured profiles, even when χ i is reduced to the neoclassical level. Argon exhaust from the inside of the ITB is demonstrated by applying ECH in the high β p mode plasma, where both electron and argon density profiles become flatter. The reduction of the neoclassical inward velocity for argon due to the reduction of density gradient is consistent with the experimental observation. In the RS plasma, the density gradient is not decreased by ECH and argon is not exhausted. These results suggest the importance of density gradient control to suppress heavy impurity accumulation. (author)

  9. Speciation of eight arsenic compounds in human urine by high performance liquid chromatography with inductively coupled plasma mass spectrometric detection using antimonate for internal chromatographic standardization

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Pritzl, G.; Hansen, S. H.

    1993-01-01

    Four anionic and four cationic arsenic compounds in urine were separated by anion- and cation-exchange high-performance liquid chromatography and detected by inductively coupled plasma mass spectrometry (ICP-MS) at m/z 75. The species were the anions arsenite, arsenate, monomethylarsonate...... and dimethylarsinate and the cations arsenobetaine, trimethylarsine oxide, arsenocholine and the tetramethylarsonium ion. Hexahydroxyantimonate(III) was co-chromatographed with the arsenic anions but detected at m/z 121 and used as an internal standard for their qualitative analysis. Arsenite was prone to oxidation....... The argon chloride interference at m/z 75 was eliminated by chromatographic separation of the chloride present in the sample from the arsenic analytes. The ClO+ ion detected at m/z 51 and 53 was used to monitor the retention time of chloride in the anion-exchange system. The chloride eluted about 100 s...

  10. Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas

    International Nuclear Information System (INIS)

    Hu, S. X.

    2017-01-01

    Here, continuum lowering is a well-known and important physics concept that describes the ionization potential depression (IPD) in plasmas caused by thermal-/pressure-induced ionization of outer-shell electrons. The existing IPD models are often used to characterize plasma conditions and to gauge opacity calculations. Recent precision measurements have revealed deficits in our understanding of continuum lowering in dense hot plasmas. However, these investigations have so far been limited to IPD in strongly coupled but nondegenerate plasmas. Here, we report a first-principles study of the K-edge shifting in both strongly coupled and fully degenerate carbon plasmas, with quantum molecular dynamics (QMD) calculations based on the all-electron density-functional theory (DFT). The resulted K-edge shifting versus plasma density, as a probe to the continuum lowering and the Fermi-surface rising, is found to be significantly different from predictions of existing IPD models. In contrast, a simple model of “single atom in box” (SAIB), developed in this work, accurately predicts K-edge locations as what ab-initio calculations provide.

  11. Study of the linear and non-linear coupling of the LH wave to the tokamak plasmas

    International Nuclear Information System (INIS)

    Preynas, M.

    2012-10-01

    In order to achieve long pulse operation with a tokamak, additional heating and current drive systems are necessary. High frequency antennas, which deliver several megawatts of power to the plasma, are currently used in several tokamaks. Moreover, a good control of the coupling of the wave launched by the antenna to the edge plasma is required to optimize the efficiency of heating and current drive LH systems. However, non-linear effects which depend on the level of injected power in the plasma strongly damage the coupling of the LH wave at particular edge parameters (density and temperature profiles). Results presented in the manuscript deal with the study of the linear and non-linear coupling of the LH wave to the plasma. In the framework of the commissioning of the Passive Active Multijunction antenna in 2009 on the Tore Supra tokamak aiming at validating the LH system suggested for ITER, the characterisation of its coupling properties was realized from low power experiments. The experimental results, which are compared with the linear coupling code ALOHA, have validated the theoretical predictions of good coupling at edge plasma density around the cut-off density. Besides, the ponderomotive effect is clearly identified as responsible for the deterioration in the coupling of the wave, which is measured under particular edge plasma conditions. A theoretical model combining the coupling of the LH wave with the ponderomotive force is suggested to explain the experimental observations. Thus, a new full wave code (named PICCOLO-2D) was developed and results from simulations validate the working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling on Tore Supra. (author)

  12. Expanding plasma jet in a vacuum vessel

    International Nuclear Information System (INIS)

    Chutov, Yu.I.; Kravchenko, A.Yu.; Yakovetskij, V.S.

    1998-01-01

    The paper deals with numerical calculations of parameters of a supersonic quasi-neutral argon plasma jet expanding into a cylindrical vacuum vessel and interacting with its inner surface. A modified method of large particles was used, the complex set of hydrodynamic equations being broken into simpler components, each of which describes a separate physical process. Spatial distributions of the main parameters of the argon plasma jet were simulated at various times after the jet entering the vacuum vessel, the parameters being the jet velocity field, the full plasma pressure, the electron temperature, the temperature of heavy particles, and the degree of ionization. The results show a significant effect of plasma jet interaction on the plasma parameters. The jet interaction with the vessel walls may result e.g. in excitation of shock waves and rotational plasma motions. (J.U.)

  13. Jets in a strongly coupled anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)

    2018-01-15

    In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)

  14. On coupling fluid plasma and kinetic neutral physics models

    Directory of Open Access Journals (Sweden)

    I. Joseph

    2017-08-01

    Full Text Available The coupled fluid plasma and kinetic neutral physics equations are analyzed through theory and simulation of benchmark cases. It is shown that coupling methods that do not treat the coupling rates implicitly are restricted to short time steps for stability. Fast charge exchange, ionization and recombination coupling rates exist, even after constraining the solution by requiring that the neutrals are at equilibrium. For explicit coupling, the present implementation of Monte Carlo correlated sampling techniques does not allow for complete convergence in slab geometry. For the benchmark case, residuals decay with particle number and increase with grid size, indicating that they scale in a manner that is similar to the theoretical prediction for nonlinear bias error. Progress is reported on implementation of a fully implicit Jacobian-free Newton–Krylov coupling scheme. The present block Jacobi preconditioning method is still sensitive to time step and methods that better precondition the coupled system are under investigation.

  15. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    Science.gov (United States)

    Zanáška, M.; Adámek, J.; Peterka, M.; Kudrna, P.; Tichý, M.

    2015-03-01

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents Isat-/Isat+ to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  16. Development of innovative thermal plasma and particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Benjamin-Leon

    2013-09-24

    Three original plasma diagnostic systems have been developed to investigate transient three-dimensional plasma processes with high spatial and temporal resolution. The developed diagnostics have been analyzed and tested by increasing the complexity from a stationary free burning Argon arc to a dc pulsed process and finally to a transient gas metal arc including droplet transfer through the plasma. The transient plasma parameters that have been determined include three-dimensional axially symmetric plasma densities (n{sub e}, n{sub A}, n{sub A+}, n{sub A++}), electron temperatures (T{sub e}), electrical conductivities (σ{sub el}), magnetic flux densities (B) and current densities (j{sub el}). In the case of a droplet transfer through an arc consisting of an Iron/Argon plasma, the droplet density, surface tension, viscosity, and temperature have been determined.

  17. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma.

    Science.gov (United States)

    Damar Huner, Irem; Gulec, Haci Ali

    2017-12-01

    The aim of the study was to investigate the effects of hydrophilic surface modification via atmospheric pressure jet plasma (ApJPls) on the fouling propensity of polyethersulfone (PES) ultrafiltration (UF) membranes during concentration of whey proteins. The distance from nozzle to substrate surface of 30mm and the exposure period of 5 times were determined as the most effective parameters enabling an increase in ΔG iwi value of the plain membrane from (-) 14.92±0.89mJ/m 2 to (+) 17.57±0.67mJ/m 2 . Maximum hydrophilicity and minimum surface roughness achieved by argon plasma action resulted in better antifouling behavior, while the hydraulic permeability and the initial permeate flux were decreased sharply due to the plasma-induced surface cross-linking. A quite steady state flux was obtained throughout the UF with the ApJPls modified PES membrane. The contribution of R frev to R t , which was 94% for the UF through the plain membrane, decreased to 43% after the plasma treatment. The overall results of this study highlighted the ApJPls modification decreased the fouling propensity of PES membrane without affecting the original protein rejection capability and improved the recovery of initial permeate flux after chemical cleaning. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effective potential kinetic theory for strongly coupled plasmas

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2016-11-01

    The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.

  19. Plasma parameters and electromagnetic forces induced by the magneto hydro dynamic interaction in a hypersonic argon flow experiment

    International Nuclear Information System (INIS)

    Cristofolini, Andrea; Neretti, Gabriele; Borghi, Carlo A.

    2012-01-01

    This work proposes an experimental analysis on the magneto hydro dynamic (MHD) interaction induced by a magnetic test body immersed into a hypersonic argon flow. The characteristic plasma parameters are measured. They are related to the voltages arising in the Hall direction and to the variation of the fluid dynamic properties induced by the interaction. The tests have been performed in a hypersonic wind tunnel at Mach 6 and Mach 15. The plasma parameters are measured in the stagnation region in front of the nozzle of the wind tunnel and in the free stream region at the nozzle exit. The test body has a conical shape with the cone axis in the gas flow direction and the cone vertex against the flow. It is placed at the nozzle exit and is equipped with three permanent magnets. In the configuration adopted, the Faraday current flows in a closed loop completely immersed into the plasma of the shock layer. The electric field and the pressure variation due to MHD interaction have been measured on the test body walls. Microwave adsorption measurements have been used for the determination of the electron number density and the electron collision frequency. Continuum recombination radiation and line radiation emissions have been detected. The electron temperature has been determined by means of the spectroscopic data by using different methods. The electron number density has been also determined by means of the Stark broadening of H α and the H β lines. Optical imaging has been utilized to visualize the pattern of the electric current distribution in the shock layer around the test body. The experiments show a considerable effect of the electromagnetic forces produced by the MHD interaction acting on the plasma flow around the test body. A comparison of the experimental data with simulation results shows a good agreement.

  20. PIC Modeling of Argon Plasma Flow in MNX

    Science.gov (United States)

    Cohen, Samuel; Sefkow, Adam

    2007-11-01

    A linear helicon-heated plasma device - the Magnetic Nozzle Experiment (MNX) at the Princeton Plasma Physics Laboratory - is used for studies of the formation of strong electrostatic double layers near mechanical and magnetic apertures and the acceleration of plasma ions into supersonic directed beams. In order to characterize the role of the aperture and its involvement with ion acceleration, detailed particle-in-cell simulations are employed to study the effects of the surrounding boundary geometry on the plasma dynamics near the aperture region, within which the transition from a collisional to collisionless regime occurs. The presence of a small superthermal electron population is examined, and the model includes a background neutral population which can be ionized by energetic electrons. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the formation mechanism of the double layer is investigated.

  1. Powder processing and spheroidizing with thermal inductively coupled plasma

    International Nuclear Information System (INIS)

    Nutsch, G.; Linke, P.; Zakharian, S.; Dzur, B.; Weiss, K.-H.

    2001-01-01

    Processing of advanced powder materials for the spraying industry is one of the most promising applications of the thermal RF inductively coupled plasma. By selecting the feedstock carefully and adjusting the RF plasma parameters, unique materials with high quality can be achieved. Powders injected in the hot plasma core emerge with modified shapes, morphology, crystal structure and chemical composition. Ceramic oxide powders such as Al 2 O 3 , ZrO 2 , SiO 2 are spheroidized with a high spheroidization rate. By using the RF induction plasma spheroidizing process tungsten melt carbide powders are obtained with a high spheroidization rate at high feeding rates by densification of agglomerated powders consisting of di-tungsten carbide and monocarbide with a definite composition. This kind of ball-like powders is particularly suited for wear resistant applications. (author)

  2. The Argon Geochronology Experiment (AGE)

    Science.gov (United States)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  3. Sheath and bulk expansion induced by RF bias in atmospheric pressure microwave plasma

    Science.gov (United States)

    Lee, Jimo; Nam, Woojin; Lee, Jae Koo; Yun, Gunsu

    2017-10-01

    A large axial volume expansion of microwave-driven plasma at atmospheric pressure is achieved by applying a low power radio frequency (RF) bias at an axial location well isolated from the original plasma bulk. The evolution of the plasma plume visualized by high speed ICCD imaging suggest that the free electrons drifting toward the bias electrode cause the prodigious expansion of the sheath, creating a stable plasma stream channel between the microwave and the RF electrodes. For argon plasma in ambient air, enhanced emissions of OH and N2 spectral lines are measured in the extended plume region, supporting the acceleration of electrons and subsequent generation of radical species. The coupling of RF bias with microwave provides an efficient way of enlarging the plasma volume and enhancing the production of radicals. Work supported by the National Research Foundation of Korea under BK21+ program and Grant No. 2015R1D1A1A01061556 (Ministry of Education).

  4. Modelling of plasma-antenna coupling and non-linear radio frequency wave-plasma-wall interactions in the magnetized plasma device under ion cyclotron range of frequencies

    International Nuclear Information System (INIS)

    Lu, LingFeng

    2016-01-01

    Ion Cyclotron Resonant Heating (ICRH) by waves in 30-80 MHz range is currently used in magnetic fusion plasmas. Excited by phased arrays of current straps at the plasma periphery, these waves exist under two polarizations. The Fast Wave tunnels through the tenuous plasma edge and propagates to its center where it is absorbed. The parasitically emitted Slow Wave only exists close to the launchers. How much power can be coupled to the center with 1 A current on the straps? How do the emitted radiofrequency (RF) near and far fields interact parasitically with the edge plasma via RF sheath rectification at plasma-wall interfaces? To address these two issues simultaneously, in realistic geometry over the size of ICRH antennas, this thesis upgraded and tested the Self-consistent Sheaths and Waves for ICH (SSWICH) code. SSWICH couples self-consistently RF wave propagation and Direct Current (DC) plasma biasing via non-linear RF and DC sheath boundary conditions (SBCs) at plasma/wall interfaces. Its upgrade is full wave and was implemented in two dimensions (toroidal/radial). New SBCs coupling the two polarizations were derived and implemented along shaped walls tilted with respect to the confinement magnetic field. Using this new tool in the absence of SBCs, we studied the impact of a density decaying continuously inside the antenna box and across the Lower Hybrid (LH) resonance. Up to the memory limits of our workstation, the RF fields below the LH resonance changed with the grid size. However the coupled power spectrum hardly evolved and was only weakly affected by the density inside the box. In presence of SBCs, SSWICH-FW simulations have identified the role of the fast wave on RF sheath excitation and reproduced some key experimental observations. SSWICH-FW was finally adapted to conduct the first electromagnetic and RF-sheath 2D simulations of the cylindrical magnetized plasma device ALINE. (author) [fr

  5. Transient effects caused by pulsed gas and liquid injections into low pressure plasmas

    International Nuclear Information System (INIS)

    Ogawa, D; Goeckner, M; Overzet, L; Chung, C W

    2010-01-01

    The fast injection of liquid droplets into a glow discharge causes significant time variations in the pressure, the chemical composition of the gas and the phases present (liquid and/or solid along with gas). While the variations can be large and important, very few studies, especially kinetic studies, have been published. In this paper we examine the changes brought about in argon plasma by injecting Ar (gas), N 2 (gas) hexane (gas) and hexane (liquid droplets). The changes in the RF capacitively coupled power (forward and reflected), electron and ion density (n e , n i ), electron temperature (T e ) and optical emissions were monitored during the injections. It was found that the Ar injection (pressure change only) caused expected variations. The electron temperature reduced, the plasma density increased and the optical emission intensity remained nearly constant. The N 2 and hexane gas injections (chemical composition and pressure changes) also followed expected trends. The plasma densities increased and electron temperature decreased while the optical emissions changed from argon to the injected gas. These all serve to highlight the fact that the injection of evaporating hexane droplets in the plasma caused very little change. This is because the number of injected droplets is too small to noticeably affect the plasma, even though the shift in the chemical composition of the gas caused by evaporation from those same droplets can be very significant. The net conclusion is that using liquid droplets to inject precursors for low pressure plasmas is both feasible and controllable.

  6. Serum/plasma methylmercury determination by isotope dilution gas chromatography-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Douglas C., E-mail: douglas.baxter@alsglobal.com [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Faarinen, Mikko [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Osterlund, Helene; Rodushkin, Ilia [ALS Scandinavia AB, Aurorum 10, 977 75 Lulea (Sweden); Division of Geosciences, Lulea University of Technology, 977 87 Lulea (Sweden); Christensen, Morten [ALS Scandinavia AB, Maskinvaegen 2, 183 53 Taeby (Sweden)

    2011-09-09

    Highlights: {center_dot} We determine methylmercury in serum and plasma using isotope dilution calibration. {center_dot} Separation by gas chromatography and detection by inductively coupled plasma mass spectrometry. {center_dot} Data for 50 specimens provides first reference range for methylmercury in serum. {center_dot} Serum samples shown to be stable for 11 months in refrigerator. - Abstract: A method for the determination of methylmercury in plasma and serum samples was developed. The method uses isotope dilution with {sup 198}Hg-labeled methylmercury, extraction into dichloromethane, back-extraction into water, aqueous-phase ethylation, purge and trap collection, thermal desorption, separation by gas chromatography, and mercury isotope specific detection by inductively coupled plasma mass spectrometry. By spiking 2 mL sample with 1.2 ng tracer, measurements in a concentration interval of (0.007-2.9) {mu}g L{sup -1} could be performed with uncertainty amplification factors <2. A limit of quantification of 0.03 {mu}g L{sup -1} was estimated at 10 times the standard deviation of concentrations measured in preparation blanks. Within- and between-run relative standard deviations were <10% at added concentration levels of 0.14 {mu}g L{sup -1}, 0.35 {mu}g L{sup -1} and 2.8 {mu}g L{sup -1}, with recoveries in the range 82-110%. Application of the method to 50 plasma/serum samples yielded a median (mean; range) concentration of methylmercury of 0.081 (0.091; <0.03-0.19) {mu}g L{sup -1}. This is the first time methylmercury has been directly measured in this kind of specimen, and is therefore the first estimate of a reference range.

  7. Antenna coupling study for ICWC plasma characterization in TEXTOR

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 80; Issue 1. Antenna coupling study for ICWC plasma characterization in ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...

  8. Numerical experiments on 2D strongly coupled complex plasmas

    International Nuclear Information System (INIS)

    Hou Lujing; Ivlev, A V; Thomas, H M; Morfill, G E

    2010-01-01

    The Brownian Dynamics simulation method is briefly reviewed at first and then applied to study some non-equilibrium phenomena in strongly coupled complex plasmas, such as heat transfer processes, shock wave excitation/propagation and particle trapping, by directly mimicking the real experiments.

  9. Slow wave antenna coupling to ion Bernstein waves for plasma heating in ICRF

    International Nuclear Information System (INIS)

    Sy, W.N-C.; Amano, T.; Ando, R.; Fukuyama, A.; Watari, T.

    1984-10-01

    The coupling of ICRF power from a slow wave antenna to a plasma with finite temperature is examined theoretically and compared to an independent computer calculation. It is shown that such antennas can be highly efficient in trasferring most of the antenna power directly to ion Bernstein waves, with only a very small fraction going into fast waves. The potentiality of this coupling scheme for plasma heating in ICRF is briefly discussed. (author)

  10. Sterilization and decontamination of medical instruments by low-pressure plasma discharges: application of Ar/O{sub 2}/N{sub 2} ternary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kylian, O [Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, Prague 8, 180 00 (Czech Republic); Rossi, F, E-mail: francois.rossi@jrc.i [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via E Fermi 2749, 21027 Ispra (Vatican City State, Holy See) (Italy)

    2009-04-21

    A low-pressure inductively coupled plasma discharge sustained in an argon-oxygen-nitrogen ternary mixture is studied in order to evaluate its properties in terms of sterilization and decontamination of surfaces of medical instruments. It is demonstrated by direct comparison with discharges operated in oxygen-nitrogen and oxygen-argon mixtures that application of an Ar/O{sub 2}/N{sub 2} mixture offers the possibility to combine advantageous properties of the binary mixtures, namely, the capability of an O{sub 2}/N{sub 2} plasma to emit intense UV radiation needed for effective inactivation of bacterial spores together with high removal rates of biological substances from Ar/O{sub 2} discharge. Moreover, optimal conditions for both effects are obtained at a similar ternary discharge mixture composition, which is of much interest for real applications, since it offers a highly effective process desired for the safety of medical instruments.

  11. Collisional radiative model for Ar-O2 mixture plasma with fully relativistic fine structure cross sections

    Science.gov (United States)

    Priti, Gangwar, Reetesh Kumar; Srivastava, Rajesh

    2018-04-01

    A collisional radiative (C-R) model has been developed to diagnose the rf generated Ar-O2 (0%-5%) mixture plasma at low temperatures. Since in such plasmas the most dominant process is an electron impact excitation process, we considered several electron impact fine structure transitions in an argon atom from its ground as well as excited states. The cross-sections for these transitions have been obtained using the reliable fully relativistic distorted wave theory. Processes which account for the coupling of argon with the oxygen molecules have been further added to the model. We couple our model to the optical spectroscopic measurements reported by Jogi et al. [J. Phys. D: Appl. Phys. 47, 335206 (2014)]. The plasma parameters, viz. the electron density (ne) and the electron temperature (Te) as a function of O2 concentration have been obtained using thirteen intense emission lines out of 3p54p → 3p54s transitions observed in their spectroscopic measurements. It is found that as the content of O2 in Ar increases from 0%-5%, Te increases in the range 0.85-1.7 eV, while the electron density decreases from 2.76 × 1012-2.34 × 1011 cm-3. The Ar-3p54s (1si) fine-structure level populations at our extracted plasma parameters are found to be in very good agreement with those obtained from the measurements. Furthermore, we have estimated the individual contributions coming from the ground state, 1si manifolds and cascade contributions to the population of the radiating Ar-3p54p (2pi) states as a function of a trace amount of O2. Such information is very useful to understand the importance of various processes occurring in the plasma.

  12. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    Tang Jingyou; Gu Yan; Peng Qixian; Bai Yulin; Li Ping

    2003-01-01

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  13. Radiation from nonlinear coupling of plasma waves

    International Nuclear Information System (INIS)

    Fung, S.F.

    1986-01-01

    The author examines the generation of electromagnetic radiation by nonlinear resonant interactions of plasma waves in a cold, uniformly magnetized plasma. In particular, he considers the up-conversion of two electrostatic wave packets colliding to produce high frequency electromagnetic radiation. Efficient conversion of electrostatic to electromagnetic wave energy occurs when the pump amplitudes approach and exceed the pump depletion threshold. Results from the inverse scattering transform analysis of the three-wave interaction equations are applied. When the wave packets are initially separated, the fully nonlinear set of coupling equations, which describe the evolution of the wave packets, can be reduced to three separate eigenvalue problems; each can be considered as a scattering problem, analogous to eh Schroedinger equation. In the scattering space, the wave packet profiles act as the scattering potentials. When the wavepacket areas approach (or exceed) π/2, the wave functions are localized (bound states) and the scattering potentials are said to contain solitons. Exchange of solitons occurs during the interaction. The transfer of solitons from the pump waves to the electromagnetic wave leads to pump depletion and the production of strong radiation. The emission of radio waves is considered by the coupling of two upper-hybrid branch wave packets, and an upper-hybrid and a lower hybrid branch wave packet

  14. Comparative Observation of Ar, Ar-H2 and Ar-N2 DC Arc Plasma Jets and Their Arc Root Behaviour at Reduced Pressure

    International Nuclear Information System (INIS)

    Pan Wenxia; Meng Xian; Li Teng; Chen Xi; Wu Chengkang

    2007-01-01

    Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon-nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch

  15. AETHER: A simulation platform for inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Turkoz, Emre, E-mail: emre.turkoz@boun.edu.tr; Celik, Murat

    2015-04-01

    An in-house code is developed to simulate the inductively coupled plasma (ICP). The model comprises the fluid, electromagnetic and transformer submodels. Fluid equations are solved to evaluate the plasma flow parameters, including the plasma and neutral densities, ion and neutral velocities, electron flux, electron temperature, and electric potential. The model relies on the ambipolar approximation and offers the evaluation of plasma parameters without solving the sheath region. The electromagnetic model handles the calculation of the electric and magnetic fields using the magnetic vector potential. The transformer model captures the effect of the matching circuit utilized in laboratory experiments for RF power deposition. The continuity and momentum equations are solved using finite volume method. The energy, electric potential, and magnetic vector potential equations are solved using finite difference method. The resulting linear systems of equations are solved with iterative solvers including Jacobi and GMRES. The code is written using the C++ programming language, it works in parallel and has graphical user interface. The model is applied to study ICP characteristics of a plasma confined within a cylindrical chamber with dielectric walls for two different power deposition cases. The results obtained from the developed model are verified using the plasma module of COMSOL Multiphysics. The model is also applied to a plasma source configuration, and it is demonstrated that there is an overall increase in the plasma potential when current is extracted from ICP with a biased wall electrode.

  16. Gas injected washer plasma gun

    International Nuclear Information System (INIS)

    Jain, K.K.; John, P.I.; Punithavelu, A.M.; Rao, P.P.

    1980-01-01

    A plasma gun similar in geometry to the washer plasma gun has been operated with gas injected externally. hydrogen, nitrogen and argon plasmas have been ionised and accelerated to velocities of the order of 10 7 mm s -1 and densities 10 11 mm -3 . Higher parameter range is possible with higher electrical input power. (author)

  17. Plasma-treated Langmuir-Blodgett reduced graphene oxide thin film for applications in biophotovoltaics

    Science.gov (United States)

    Ibrahim, Siti Aisyah; Jaafar, Muhammad Musoddiq; Ng, Fong-Lee; Phang, Siew-Moi; Kumar, G. Ghana; Majid, Wan Haliza Abd; Periasamy, Vengadesh

    2018-01-01

    The surface optimization and structural characteristics of Langmuir-Blodgett (LB) reduced graphene oxide thin (rGO) film treated by argon plasma treatment were studied. In this work, six times deposition of rGO was deposited on a clean glass substrate using the LB method. Plasma technique involving a variation of plasma power, i.e., 20, 60, 100 and 140 W was exposed to the LB-rGO thin films under argon ambience. The plasma treatment generally improves the wettability or hydrophilicity of the film surface compared to without treatment. Maximum wettability was observed at a plasma power of 20 W, while also increasing the adhesion of the rGO film with the glass substrate. The multilayer films fabricated were characterized by means of spectroscopic, structural and electrical studies. The treatment of rGO with argon plasma was found to have improved its biocompatibility, and thus its performance as an electrode for biophotovoltaic devices has been shown to be enhanced considerably.

  18. The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Samantha S [ORNL; Elwasif, Wael R [ORNL; Bernholdt, David E [ORNL

    2011-11-01

    High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels of parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.

  19. Functional speciation of metal-dissolved organic matter complexes by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry and deconvolution analysis

    International Nuclear Information System (INIS)

    Laborda, Francisco; Ruiz-Begueria, Sergio; Bolea, Eduardo; Castillo, Juan R.

    2009-01-01

    High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry (HP-SEC-ICP-MS), in combination with deconvolution analysis, has been used to obtain multielemental qualitative and quantitative information about the distributions of metal complexes with different forms of natural dissolved organic matter (DOM). High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry chromatograms only provide continuous distributions of metals with respect to molecular masses, due to the high heterogeneity of dissolved organic matter, which consists of humic substances as well as biomolecules and other organic compounds. A functional speciation approach, based on the determination of the metals associated to different groups of homologous compounds, has been followed. Dissolved organic matter groups of homologous compounds are isolated from the aqueous samples under study and their high performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry elution profiles fitted to model Gaussian peaks, characterized by their respective retention times and peak widths. High performance size exclusion chromatography coupled to inductively coupled plasma mass spectrometry chromatograms of the samples are deconvoluted with respect to these model Gaussian peaks. This methodology has been applied to the characterization of metal-dissolved organic matter complexes in compost leachates. The most significant groups of homologous compounds involved in the complexation of metals in the compost leachates studied have been hydrophobic acids (humic and fulvic acids) and low molecular mass hydrophilic compounds. The environmental significance of these compounds is related to the higher biodegradability of the low molecular mass hydrophilic compounds and the lower mobility of humic acids. In general, the hydrophilic compounds accounted for the complexation of around 50% of the leached

  20. Si-compatible cleaning process for graphene using low-density inductively coupled plasma.

    Science.gov (United States)

    Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong

    2012-05-22

    We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.

  1. Coupling between chip based isotachophoresis and multi-collector inductively coupled plasma mass spectrometry for separation and measurement of lanthanides

    International Nuclear Information System (INIS)

    Vio, Laurent; Cretier, Gerard; Rocca, Jean-Louis; Chartier, Frederic; Geertsen, Valerie; Gourgiotis, Alkiviadis; Isnard, Helene; Morin, Pierre

    2012-01-01

    This paper presents the conception and fabrication of a micro-system for lanthanides separation and its coupling with a multi-collector inductively coupled plasma mass spectrometer for isotope ratio measurements. The lanthanides separation is based on the isotachophoresis technique and the micro-system conception has been adapted in order to fit with glove box limitations in view of future spent nuclear fuels analysis. The micro-device was tested by using a mixture of standard solutions of natural elements and the separation of 13 lanthanides was successfully performed. The micro-device was then coupled to a multi-collector inductively coupled plasma mass spectrometer for the on-line measurements of Nd and Sm isotope ratios. The isotopes of Nd and Sm were acquired online in multi-collection mode after separation of the two elements with an injection amount of 5 ng. Results obtained on the Nd and Sm isotope ratio measurements on transient signals are presented and discussed. (authors)

  2. Detrapping of tungsten nanoparticles in a direct-current argon glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Couëdel, L., E-mail: lenaic.couedel@univ-amu.fr; Kumar, K. Kishor; Arnas, C. [Laboratoire de Physique des Interactions Ioniques et Moléculaires, CNRS, Aix-Marseille Université, 13397 Marseille (France)

    2014-12-15

    Nanoparticles are grown from the sputtering of a tungsten cathode in a direct current argon glow discharge. Laser light scattering of a vertical laser sheet going through the plasma reveals that the dust particle cloud is compressed and pushed towards the anode during the discharge. Scanning electron microscopy images of substrates exposed to the plasma for given durations show that dust particles are continuously falling down on the anode during the discharge. These observations are explained by the fact that the electrostatic force at the negative glow-anode sheath boundary cannot balance the ion drag, gravity, and thermophoresis forces for particles of more than a few tens of nanometres in diameter.

  3. Styrene and methyl methacrylate copolymer synthesized by RF inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z; Gillon, X; Diallo, M; Houssiau, L; Pireaux, J-J, E-mail: zhiling.li@fundp.ac.be [University of Namur (FUNDP) Research Centre in Physics of Matter and Radiation (PMR), 61, Rue de Bruxelles, 5000 Namur (Belgium)

    2011-01-01

    A series of random copolymers of styrene and methyl methacrylate was prepared on a silicon substrate by RF pulsed inductively coupled plasma. The plasma gas phase was investigated by optical emission spectroscopy (OES). The physico-chemical characteristics of the deposited copolymer films were analyzed by several surface techniques: X-ray photoelectron spectroscopy (XPS), Fourier-Transform infrared absorption (FT-IR), Time-of-flight secondary ion mass spectrometry (ToF-SIMS), etc. OES of the plasma and FT-IR spectra of the films are predictive: plasma emitting a higher relative benzyl radical signal results in the deposition of a more aromatic plasma polymer. The functional thin films can be deposited by selection of the co-monomers.

  4. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    International Nuclear Information System (INIS)

    Zanáška, M.; Kudrna, P.; Tichý, M.; Adámek, J.; Peterka, M.

    2015-01-01

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I sat − /I sat + to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa

  5. Comparative measurements of plasma potential with ball-pen and Langmuir probe in low-temperature magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zanáška, M.; Kudrna, P.; Tichý, M. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 12116 Prague 2 (Czech Republic); Adámek, J. [Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, 18200 Prague 8 (Czech Republic); Peterka, M. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 12116 Prague 2 (Czech Republic); Institute of Plasma Physics AS CR, v.v.i., Za Slovankou 3, 18200 Prague 8 (Czech Republic)

    2015-03-15

    The ball-pen probe (BPP) is used for direct plasma potential measurements in magnetized plasma. The probe can adjust the ratio of the electron and ion saturation currents I{sub sat}{sup −}/I{sub sat}{sup +} to be close to one and therefore its I-V characteristic becomes nearly symmetric. If this is achieved, the floating potential of the BPP is close to the plasma potential. Because of its rather simple construction, it offers an attractive probe for measurements in magnetized plasma. Comparative measurements of plasma potential by BPPs of different dimensions as well as one Langmuir probe (LP) in an argon discharge plasma of a cylindrical magnetron were performed at various experimental conditions. An additional comparison by an emissive probe was also performed. All these types of probes provide similar values of plasma potential in a wide range of plasma parameters. Our results for three different BPP dimensions indicate that the BPP can be operated in a cylindrical magnetron DC argon discharge if the value of the ratio of the magnetic field and neutral gas pressure, B/p, is greater than approximately 10 mT/Pa.

  6. Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids

    International Nuclear Information System (INIS)

    Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai

    2006-01-01

    We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes

  7. Investigation on the energy spectrums of electrons in atmospheric pressure argon plasma jets and their dependences on the applied voltage

    Science.gov (United States)

    Chen, Xinxian; Tan, Zhenyu; Liu, Yadi; Li, Xiaotong; Pan, Jie; Wang, Xiaolong

    2017-08-01

    This work presents a systematical investigation on the spatiotemporal evolution of the energy spectrum of electrons in atmospheric pressure argon plasma jets and its dependence on the applied voltage. The investigations are carried out by means of the numerical simulation based on a particle-in-cell Monte-Carlo collision model. The characteristics of the spatiotemporal evolution of the energy spectrum of electrons (ESE) in the discharge space have been presented, and especially the mechanisms of inducing these characteristics have also been revealed. The present work shows the following conclusions. In the evolution of ESE, there is a characteristic time under each applied voltage. Before the characteristic time, the peak value of ESE decreases, the peak position shifts toward high energy, and the distribution of ESE becomes wider and wider, but the reverse is true after the characteristic time. The formation of these characteristics can be mainly attributed to the transport of electrons toward a low electric field as well as a balance between the energy gained from the electric field including the effect of space charges and the energy loss due to inelastic collisions in the process of electron transport. The characteristic time decreases with the applied voltage. In addition, the average energy of electrons at the characteristic time can be increased by enhancing the applied voltage. The results presented in this work are of importance for regulating and controlling the energy of electrons in the plasma jets applied to plasma medicine.

  8. On plasma coupling and turbulence effects in low velocity stopping

    Energy Technology Data Exchange (ETDEWEB)

    Kurilenkov, Yu K [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation); Maynard, G [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Barriga-Carrasco, M D [Laboratoire de Physique des Gaz et des Plasmas, UMR-8578, Bat. 210, Universite Paris XI, F-91405 Orsay (France); Valuev, A A [Unified Institute for High Temperatures of Russian Academy of Sciences, 13/19 Izhorskaya Str., 125412 Moscow (Russian Federation)

    2006-04-28

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly.

  9. On plasma coupling and turbulence effects in low velocity stopping

    International Nuclear Information System (INIS)

    Kurilenkov, Yu K; Maynard, G; Barriga-Carrasco, M D; Valuev, A A

    2006-01-01

    The problem of stopping power (SP) for projectile ions is analysed in terms of the dielectric function and effective collision frequency for moderately dense and strongly coupled plasmas (SCP). We consider several issues regarding the calculation of stopping power for correlated ensembles of particles and oscillators. In particular, effects of group (few particle) modes, transition from positive to negative dispersion and excitation of collective modes up to suprathermal level at plasma targets are addressed. Linear SP of dense suprathermal (nonlinear) plasma targets at different levels of target plasma turbulence is estimated. The force of suprathermal plasma oscillations on the projectile ions is mostly in the nature of increased frictional drag. The results obtained show the possibility of increasing low velocity stopping (up to 'turbulent' values) in comparison with losses in equilibrium dense plasma targets. Experimental conditions to create specific turbulent targets as well as some connection between stopping phenomena and SCP transport properties are discussed briefly

  10. HAIFA: A modular, fiber-optic coupled, spectroscopic diagnostic for plasmas

    International Nuclear Information System (INIS)

    Ramsey, A.T.; Turner, S.L.

    1987-01-01

    HAIFA is a modular, multichannel, fiber optically coupled spectroscopy diagnostic for tokamak plasmas. It operates in the visible, measuring H/sub α/ radiation, the visible continuum from thermal bremsstrahlung, and selected impurity lines. HAIFA is characterized by high modularity and flexibility, good radiation resistance, high noise immunity, and low cost. Details of design, construction, and calibration are given. The analysis of visible bremsstrahlung radiation measurements to deduce the effective ionic charge in a plasma is discussed

  11. Structural and tribological properties of carbon steels modified by plasma pulses

    International Nuclear Information System (INIS)

    Sartowska, B.; Walis, L.; Piekoszewski, J.; Senatorski, J.; Stanislawski, J.; Nowicki, L.; Ratajczak, R.; Barlak, M.; Kopcewicz, M.; Kalinowska, J.; Prokert, F.

    2006-01-01

    Carbon steels with different concentration of carbon and heat (Armco-iron, steels 20, 45, 65 and N9) were treated according to the standard procedures: they were irradiated with five intense (about 5 J/cm 2 ), short (μs range) argon or nitrogen plasma pulses generated in a rod plasma injector (RPI) type of plasma generator. Samples were characterized by the following methods: nuclear reaction analysis (NRA) 14 N(d,α) 12 C , scanning electron microscopy (SEM), conversion electron Moessbauer spectroscopy (CEMS), X-ray diffraction analysis (GXRD), and Amsler wear tests. SEM observations shown that the morphology of the pulse treated samples, both argon and nitrogen plasma are identical. It has been found, that nitrogen is much more efficient than argon in ausenitization of carbon steel. The craters and droplets are uniformly distributed over the surface, which is typical of melted and rapidly recrystallized top layers. The thickness of the modified layers is in the range of 1.2-1.6 μm

  12. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  13. Application of low-temperature plasma for the synthesis of hydrogenated graphene (graphane)

    Science.gov (United States)

    Shavelkina, M. B.; Amirov, R. H.; Katarzhis, V. A.; Kiselev, V. I.

    2017-12-01

    The possibility of a direct synthesis of hydrogenated graphene in decomposition of methane by means of low-temperature plasma was investigated. A DC plasma torch with an expanding channel-anode, a vortex gas supply and a self-setting arc length was used as a generator of low-temperature plasma. Argon was used as the plasma-forming gas. The temperatures of argon plasma and with methane addition to it were determined on the basis of spectral measurements. The synthesis products were characterized by electron microscopy and thermogravimetry. The effect of hydrogenated graphene as a nanomodifier on the properties of the cubic boron nitride based functional ceramics was investigated.

  14. Inductively coupled plasma mass spectrometry (ICP-MS)

    International Nuclear Information System (INIS)

    Shimamura, Tadashi

    1997-01-01

    The period of investigation for the previous general remarks on the progress of ICP-MS was from January, 1991 to September, 1993. In the investigation of this time, for the object of the Chemical Abstracts from January, 1994 to September, 1996, retrieval was carried out by using the STN International. As the key words, ICP-MS, Inductively Coupled Plasma Mass Spectrometry or Inductively Coupled Plasma Mass Spectrometer was used. The number of hit was 373 in 1994, 462 in 1995, and 356 as of September, 1996, 1191 in total. The cumulative number of the papers from 1980 to 1996 is shown. It is known how rapidly the ICP-MS has pervaded as the means of analysis. In order to cope with the enormous number of papers, this time, it was decided to do the review by limiting to the papers which were published in the main journals deeply related to analytical chemistry. As to the tendency in the last three years, it is summarized as how to overcome the spectrum interference and matrix effect in the ICP-MS and the trend of using the ICP-MS as the high sensitivity detector for separation techniques. The technical basic research of the ICP-MS on spectrum interference, sample introduction method and others and the analysis of living body samples are reported. (K.I.)

  15. Energy exchange in strongly coupled plasmas with electron drift

    International Nuclear Information System (INIS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-01-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam

  16. Effect of vapor plasma on the coupling of laser radiation with aluminum targets

    Energy Technology Data Exchange (ETDEWEB)

    Shui, V H; Kivel, B; Weyl, G M

    1978-12-01

    The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.

  17. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wattieaux, G., E-mail: gaetan.wattieaux@laplace.univ-tlse.fr; Yousfi, M.; Merbahi, N.

    2013-11-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10{sup 14} cm{sup −3}, the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the

  18. Optical emission spectroscopy for quantification of ultraviolet radiations and biocide active species in microwave argon plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Wattieaux, G.; Yousfi, M.; Merbahi, N.

    2013-01-01

    This work deals with absorption and mainly emission spectrometry of a microwave induced surfatron plasma jet launched in ambient air and using an Argon flow carrier gas. The Ar flow rate varies between 1 and 3 L/min and the microwave power between 40 and 60 W. The analysis of the various spectra has led to the determination of the ozone and atomic oxygen concentrations, ultraviolet (UV) irradiance separating UVA, UVB and UVC, gas temperature, plasma electron density and excitation temperature. Most of these diagnostics are spatially resolved along the plasma jet axis. It is shown more particularly that rotational temperature obtained from OH(A-X) spectra ranges between 800 K to 1000 K while the apparent temperature of the plasma jet remains lower than about 325 K which is compatible with biocide treatment without significant thermal effect. The electron density reaches 1.2 × 10 14 cm −3 , the excitation temperature is about 4000 K, the UVC radiation represents only 5% of the UV radiations emitted by the device, the ozone concentration is found to reach 88 ± 27 ppm in the downstream part of the plasma jet at a distance of 30 mm away from the quartz tube outlet of the surfatron and the atomic oxygen concentration lies between 10 and 80 ppm up to a distance of 20 mm away from the quartz tube outlet. Ozone is identified as the main germicidal active species produced by the device since its concentration is in accordance with bacteria inactivation durations usually reported using such plasma devices. Human health hazard assessment is carried out all along this study since simple solutions are reminded to respect safety standards for exposures to ozone and microwave leakage. In this study, an air extraction unit is used and a Faraday cage is set around the quartz tube of the surfatron and the plasma jet. These solutions should be adopted by users of microwave induced plasma in open air conditions because according to the literature, this is not often the case

  19. Laser pulse propagation and enhanced energy coupling to fast electrons in dense plasma gradients

    International Nuclear Information System (INIS)

    Gray, R J; Carroll, D C; Yuan, X H; Brenner, C M; Coury, M; Quinn, M N; Tresca, O; McKenna, P; Burza, M; Wahlström, C-G; Lancaster, K L; Neely, D; Lin, X X; Li, Y T

    2014-01-01

    Laser energy absorption to fast electrons during the interaction of an ultra-intense (10 20 W cm −2 ), picosecond laser pulse with a solid is investigated, experimentally and numerically, as a function of the plasma density scale length at the irradiated surface. It is shown that there is an optimum density gradient for efficient energy coupling to electrons and that this arises due to strong self-focusing and channeling driving energy absorption over an extended length in the preformed plasma. At longer density gradients the laser filaments, resulting in significantly lower overall energy coupling. As the scale length is further increased, a transition to a second laser energy absorption process is observed experimentally via multiple diagnostics. The results demonstrate that it is possible to significantly enhance laser energy absorption and coupling to fast electrons by dynamically controlling the plasma density gradient. (paper)

  20. Study of shear viscosity for dense plasmas by equilibrium molecular dynamics in asymmetric Yukawa ionic mixtures

    Science.gov (United States)

    Haxhimali, Tomorr; Rudd, Robert; Cabot, William; Graziani, Frank

    2015-11-01

    We present molecular dynamics (MD) calculations of shear viscosity for asymmetric mixed plasma for thermodynamic conditions relevant to astrophysical and Inertial Confinement Fusion plasmas. Specifically, we consider mixtures of deuterium and argon at temperatures of 100-500 eV and a number density of 1025 ions/cc. The motion of 30000-120000 ions is simulated in which the ions interact via the Yukawa (screened Coulomb) potential. The electric field of the electrons is included in this effective interaction. Shear viscosity is calculated using the Green-Kubo approach with an integral of the shear stress autocorrelation function, a quantity calculated in the equilibrium MD simulations. We study different mixtures with increasing fraction of the minority high-Z element (Ar) in the D-Ar plasma mixture. In the more weakly coupled plasmas, at 500 eV and low Ar fractions, results from MD compare very well with Chapman-Enskog kinetic results. We introduce a model that interpolates between a screened-plasma kinetic theory at weak coupling and the Murillo Yukawa viscosity model at higher coupling. This hybrid kinetics-MD viscosity model agrees well with the MD results over the conditions simulated. This work was performed under the auspices of the US Dept. of Energy by Lawrence Livermore National Security, LLC under Contract DE-AC52-07NA27344.

  1. Low-pressure water-cooled inductively coupled plasma torch

    Science.gov (United States)

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  2. Influence of matrices on electron temperature of laser micro-plasma in argon atmosphere at reduced pressure

    International Nuclear Information System (INIS)

    Guo Qinlin; Zhou Yulong; Zhang Bo; Zhang Qiulin; Zhang Jinping; Huai Sufang

    2007-01-01

    Laser micro-spectral analysis coupled with CCD spectrometer was used in this experiment. With Fe I 356.54 nm and Fe I 358.12 nm as analysis spectral lines, the micro-plasma temperature and its spatial distribution were investigated in different matrices, namely Mg, Al, Si, and steel alloy6-0. The electron temperature as a function of location in each matrix and the differences of that at the same location in different matrices were determined and an explanation was given. Finally, with Cu I 324.75 nm and Zn I 394.50 nm as analysis spectral lines, we have successfully used the calculated micro-plasma temperature to discuss the matrix effect. (authors)

  3. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    International Nuclear Information System (INIS)

    Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.

    2015-01-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  4. Model etch profiles for ion energy distribution functions in an inductively coupled plasma reactor

    International Nuclear Information System (INIS)

    Chen, W.; Abraham-Shrauner, B.; Woodworth, J.R.

    1999-01-01

    Rectangular trench profiles are modeled with analytic etch rates determined from measured ion distribution functions. The pattern transfer step for this plasma etch is for trilayer lithography. Argon and chlorine angular ion energy distribution functions measured by a spherical collector ring analyzer are fit to a sum of drifting Maxwellian velocity distribution functions with anisotropic temperatures. The fit of the model ion distribution functions by a simulated annealing optimization procedure converges adequately for only two drifting Maxwellians. The etch rates are proportional to analytic expressions for the ion energy flux. Numerical computation of the etch profiles by integration of the characteristic equations for profile points and connection of the profiles points is efficient. copyright 1999 American Vacuum Society

  5. Measurement of air entrainment in plasma jets

    International Nuclear Information System (INIS)

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab

  6. Coupled two-dimensional edge-plasma and neutral gas modelling of the DIII-D scrape-off-layer

    International Nuclear Information System (INIS)

    Maingi, R.; Gilligan, J.; Hankins, O.; Rensink, M.; Owen, L.; Klepper, C.; Mioduszewski, P.

    1992-01-01

    This paper reports that in order to do consistent scrape-off-layer plasma and neutral transport calculations, the 2-D fluid code, B2 has been externally coupled to the neutral transport code, DEGAS, for Dlll-D. The coupling procedure is similar to recent simulations done for TFTR, Tore Supra, and ClT. An averaged source approach is utilized to allow convergence between the two codes. Initial comparison of plasma quantities between the coupled code set and the B2 code alone shows that a colder, denser plasma may exist at the divertor targets than predicted by the B2 code with its internal recycling model

  7. Charge transfer cross-sections of argon ions colliding on argon atoms

    International Nuclear Information System (INIS)

    Aubert, J.; Bliman, S.; Chan-Tung, N.; Geller, R.; Jacquot, B.; Van Houtte, D.

    1980-04-01

    A device has been built to measure charge changing cross-sections of Argon ions colliding on argon atoms. It consists of an E.C.R. ion source (Micromafios) that delivers argon ions up to charge + 13. The ion source potential may be varied from 1 up to 10 kVolts. A first magnet is used to charge analyze the extracted beam. For a given separated charge state, the ion beam is passed in a collision cell whose pressure may be varied. The ions undergoing collisions on the target are analyzed by a second magnet and collected. The pressure is varied in the collision cell in order to check that the single collision condition is satisfied. It is shown that the ions do two types of collisions: charge exchange and stripping whose cross-sections are measured. Interpretation of charge exchange is proposed along yet classic theoretical approaches. As to stripping no available theory allows interpretation

  8. Ratio of bulk to shear viscosity in a quasigluon plasma: from weak to strong coupling

    CERN Document Server

    Bluhm, M; Redlich, K

    2012-01-01

    The ratio of bulk to shear viscosity is expected to exhibit a different behaviour in weakly and in strongly coupled systems. This can be expressed by the dependence of the ratio on the squared sound velocity. In the high temperature QCD plasma at small running coupling, the viscosity ratio is uniquely determined by a quadratic dependence on the conformality measure, whereas in certain strongly coupled and nearly conformal theories this dependence is linear. Employing an effective kinetic theory of quasiparticle excitations with medium-modified dispersion relation, we analyze the ratio of bulk to shear viscosity of the gluon plasma. We show that in this approach the viscosity ratio comprises both dependencies found by means of weak coupling perturbative and strong coupling holographic techniques.

  9. Plasma Reactors and Plasma Thrusters Modeling by Ar Complete Global Models

    Directory of Open Access Journals (Sweden)

    Chloe Berenguer

    2012-01-01

    Full Text Available A complete global model for argon was developed and adapted to plasma reactor and plasma thruster modeling. It takes into consideration ground level and excited Ar and Ar+ species and the reactor and thruster form factors. The electronic temperature, the species densities, and the ionization percentage, depending mainly on the pressure and the absorbed power, have been obtained and commented for various physical conditions.

  10. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  11. Study of plasma parameters influencing fractionation in laser ablation-inductively coupled plasma-mass spectrometry

    Science.gov (United States)

    Gäckle, M.; Merten, D.

    2010-12-01

    Methods permitting to test the influence of the matrix as well as of its local and temporal distribution on the plasma conditions in laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) are developed. For this purpose, the MS interface is used as plasma probe allowing to investigate the average plasma condition within the ICP zone observed in terms of temporal and spatial distribution of the matrix. Inserted matrix particles, particularly when being atomized and ionized, can cause considerable changes in both electron density and plasma temperature thus influencing the ionization equilibrium of the individual analytes. In this context, the plasma probe covers a region of the plasma for which no local thermodynamic equilibrium can be assumed. The differences in temperature, identified within the region of the plasma observed, amounted up to 3000 K. While in the central region conditions were detected that would not allow efficient atomization and ionization of the matrix, these conditions improve considerably towards the margin of the area observed. Depending on the nature as well as on the temporally and locally variable density of the matrix, this can lead to varying intensity ratios of the analytes and explain fractionation effects. By means of a derived equation it is shown that the deviation of the intensity ratio from the concentration ratio turns out to be more serious the higher the difference of the ionization potential of the analytes observed, the lower the plasma temperature and the higher the matrix concentration within the area observed.

  12. High energy ions and energetic plasma irradiation effects on aluminum in a Filippov-type plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, M.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)], E-mail: mroshan20@yahoo.com; Rawat, R.S. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Babazadeh, A.R.; Emami, M.; Sadat Kiai, S.M. [Plasma Physics Research Center, AEOI, 14155-1339 Tehran (Iran, Islamic Republic of); Verma, R.; Lin, J.J.; Talebitaher, A.R.; Lee, P.; Springham, S.V. [National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore)

    2008-12-30

    High energy ions and energetic plasma irradiation of aluminum cathode inserts have been accomplished in nitrogen and argon filled plasma focus device. The Filippov-type plasma focus facility, Dena, with 288 {mu}F capacitor bank and charging voltage of 25 kV (90 kJ maximum storage energy) was first optimized for strong ion beam generation for nitrogen and argon gases by maximizing hard X-ray emission efficiency. X-ray diffraction analysis as well as scanning electron microscopy along with energy dispersive X-ray spectroscopy carried out to study the structural, morphological and compositional profile of the treated samples. Change in preferred orientation, emergence of meta-stable phases, generation of copper micro-droplets, and production of cracks across the sample are demonstrated and discussed. The micro-hardness measurements in Vickers scale reveal that after ion irradiation, the surface hardness of samples is reduced.

  13. Effect of low-frequency power on dual-frequency capacitively coupled plasmas

    International Nuclear Information System (INIS)

    Yuan, Q H; Xin, Y; Huang, X J; Sun, K; Ning, Z Y; Yin, G Q

    2008-01-01

    In low-pressure dual-frequency capacitively coupled plasmas driven with 60/13.56 MHz, the effect of low-frequency power on the plasma characteristics was investigated using a compensated Langmuir electrostatic probe. At lower pressures (about 10 mTorr), it was possible to control the plasma density and the ion bombardment energy independently. As the pressure increased, this independent control could not be achieved. As the low-frequency power increased for the fixed high-frequency power, the electron energy probability function (EEPF) changed from Druyvesteyn-like to Maxwellian-like at pressures of 50 mTorr and higher, along with a drop in electron temperature. The plasma parameters were calculated and compared with simulation results.

  14. ''SensArray'' voltage sensor analysis in an inductively coupled plasma

    International Nuclear Information System (INIS)

    Titus, M. J.; Hsu, C. C.; Graves, D. B.

    2010-01-01

    A commercially manufactured PlasmaVolt sensor wafer was studied in an inductively coupled plasma reactor in an effort to validate sensor measurements. A pure Ar plasma at various powers (25-420 W), for a range of pressures (10-80 mT), and bias voltages (0-250 V) was utilized. A numerical sheath simulation was simultaneously developed in order to interpret experimental results. It was found that PlasmaVolt sensor measurements are proportional to the rf-current through the sheath. Under conditions such that the sheath impedance is dominantly capacitive, sensor measurements follow a scaling law derived from the inhomogeneous sheath model of Lieberman and Lichtenberg, [Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)]. Under these conditions, sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, the one-fourth root of the electron temperature, and the one-fourth root of the rf bias voltage. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. The measurements and numerical sheath simulation demonstrate the scaling behavior as a function of changing sheath impedance for various plasma conditions.

  15. Collaborative project: research on strongly coupled plasmas. Final technical report for period July 15, 1998--July 14, 2002

    International Nuclear Information System (INIS)

    Golden, Kenneth I.

    2002-01-01

    The main research accomplishments/findings of the project were the following: (1) Publication of an in-depth review article in Physics of Plasmas on the quasilocalized charge approximation (QLCA) in strongly coupled plasma physics and its application to a variety of Coulomb systems: the model one-component plasma in three and two dimensions, binary ionic mixtures, charged particle bilayers, and laboratory dusty plasmas. (2) In the strongly coupled Coulomb liquid phase, the physical basis of the QLCA, namely, the caging of particles trapped in slowly fluctuating local potential minima, is supported by molecular dynamics simulation of the classical three-dimensional one-component plasma. (3) The QLCA theory, when applied to the analysis of the collective modes in strongly coupled charged particle bilayers, predicts the existence of a remarkable long-wavelength energy gap in the out-of-phase excitation spectrum. More recent theoretical calculations based on the three principal frequency-moment sum rules reveal that the gap persists for arbitrary coupling strengths and over the entire classical to quantum domain all the way down to zero temperature. The existence of the energy gap has now been confirmed in a molecular dynamics simulation of the charged particle bilayer. (4) New compressibility and third-frequency-moment sum rules for multilayer plasmas were formulated and applied to the analysis of the dynamical structure function of charged particle bilayers and superlattices. (5) An equivalent of the Debye-Huckel weak coupling equilibrium theory for classical charged particle bilayer and superlattice plasmas was formulated. (6) The quadratic fluctuation-dissipation theorem (QFDT) for layered classical plasmas was formulated. (7) The QFDT was applied to a powerful kinetic theory-based description of the density-density response function and long-wavelength plasma mode behavior in strongly coupled two-dimensional Coulomb fluids in the weakly degenerate quantum domain

  16. Characterization of thermal plasmas by laser light scattering

    International Nuclear Information System (INIS)

    Snyder, S.C.; Lassahn, G.D.; Reynolds, L.D.; Fincke, J.R.

    1993-01-01

    Characterization of an atmospheric pressure free-burning arc discharge and a plasma jet by lineshape analysis of scattered laser light is described. Unlike emission spectroscopy, this technique provides direct measurement of plasma gas temperature, electron temperature and electron density without the assumption of local thermodynamic equilibrium (LTE). Plasma gas velocity can also be determined from the Doppler shift of the scattered laser light. Radial gas temperature, electron temperature and electron density profiles are presented for an atmospheric pressure argon free-burning arc discharge. These results show a significant departure from LTE in the arc column, contradicting results obtained from emission spectroscopy. Radial gas temperature and gas velocity profiles in the exit plane of a subsonic atmospheric pressure argon plasma jet are also presented. In this case, the results show the plasma jet is close to LTE in the center, but not in the fringes. The velocity profile is parabolic

  17. Development of plasma properties along thermal plasma jet generated by hybrid water-argon torch

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Hrabovský, Milan

    2002-01-01

    Roč. 52, supplement D (2002), s. 637-642 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : thermal plasma, plasma jet, enthalpy probe Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  18. Gluon Bremsstrahlung in Weakly-Coupled Plasmas

    International Nuclear Information System (INIS)

    Arnold, Peter

    2009-01-01

    I report on some theoretical progress concerning the calculation of gluon bremsstrahlung for very high energy particles crossing a weakly-coupled quark-gluon plasma. (i) I advertise that two of the several formalisms used to study this problem, the BDMPS-Zakharov formalism and the AMY formalism (the latter used only for infinite, uniform media), can be made equivalent when appropriately formulated. (ii) A standard technique to simplify calculations is to expand in inverse powers of logarithms ln(E/T). I give an example where such expansions are found to work well for ω/T≥10 where ω is the bremsstrahlung gluon energy. (iii) Finally, I report on perturbative calculations of q.

  19. Energy resolution in liquid argon doped with allene

    International Nuclear Information System (INIS)

    Ichinose, H.; Doke, T.; Masuda, K.; Shibamura, E.

    1989-01-01

    Studies have been made on liquid argon as detection medium with large volume and good energy and position resolution. It is advantageous to dope liquid argon with molecules with an ionization potential lower than the energy of scintillation light. In the present work, the energy resolution for 5.305MeV alpha particles is examined, and the effect of allene added to liquid argon is investigated. Some preliminary results for 976 KeV electrons are also presented. Allene is purified by two methods: (a) small-quantity purification and (b) mass purification. Three methods are tried for mixing allene with argon. Results concerning the allene purification methods, effect of allene concentration, and allene-argon mixing methods are presented. Discussion is made of the collected charge and energy resolution. It is concluded that the addition of allene to liquid argon greatly improves the energy resolution of 5.305 MeV alpha particles. The best intrinsic resolution is 1.4 percent FWHM obtained for 4 ppm allene doped liquid argon. In the case of 976 KeV electron radiation, energy resolution is not improved by adding allene to liquid argon. The best resolution is 31 KeV FWHM obtaiend for 65ppm allene doped liquid argon. (N.K.)

  20. Radionuclide determination in environmental samples by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Lariviere, Dominic; Taylor, Vivien F.; Evans, R. Douglas; Cornett, R. Jack

    2006-01-01

    The determination of naturally occurring and anthropogenic radionuclides in the environment by inductively coupled plasma mass spectrometry has gained recognition over the last fifteen years, relative to radiometric techniques, as the result of improvement in instrumental performance, sample introduction equipment, and sample preparation. With the increase in instrumental sensitivity, it is now possible to measure ultratrace levels (fg range) of many radioisotopes, including those with half-lives between 1 and 1000 years, without requiring very complex sample pre-concentration schemes. However, the identification and quantification of radioisotopes in environmental matrices is still hampered by a variety of analytical issues such as spectral (both atomic and molecular ions) and non-spectral (matrix effect) interferences and instrumental limitations (e.g., abundance sensitivity). The scope of this review is to highlight recent analytical progress and issues associated with the determination of radionuclides by inductively coupled plasma mass spectrometry. The impact of interferences, instrumental limitations (e.g., degree of ionization, abundance sensitivity, detection limits) and low sample-to-plasma transfer efficiency on the measurement of radionuclides by inductively coupled plasma mass spectrometry will be described. Solutions that overcome these issues will be discussed, highlighting their pros and cons and assessing their impact on the measurement of environmental radioactivity. Among the solutions proposed, mass and chemical resolution through the use of sector-field instruments and chemical reactions/collisions in a pressurized cell, respectively, will be described. Other methods, such as unique sample introduction equipment (e.g., laser ablation, electrothermal vaporisation, high efficiency nebulization) and instrumental modifications/optimizations (e.g., instrumental vacuum, radiofrequency power, guard electrode) that improve sensitivity and performance