WorldWideScience

Sample records for county nevada rev

  1. Well Installation Report for Corrective Action Unit 443, Central Nevada Test Area, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Tim Echelard

    2006-01-01

    A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites, Corrective Action Unit 443'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first phase involved the gathering and interpretation of geologic and hydrogeologic data, and inputting the data into a three-dimensional numerical model to depict groundwater flow. The output from the groundwater flow model was used in a transport model to simulate the migration of a radionuclide release (Pohlmann et al., 2000). The second phase of modeling (known as a Data Decision Analysis [DDA]) occurred after NDEP reviewed the first model. This phase was designed to respond to concerns regarding model uncertainty (Pohll and Mihevc, 2000). The third phase of modeling updated the original flow and transport model to incorporate the uncertainty identified in the DDA, and focused the model domain on the region of interest to the transport predictions. This third phase culminated in the calculation of contaminant boundaries for the site (Pohll et al., 2003). Corrective action alternatives were evaluated and an alternative was submitted in the ''Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface'' (NNSA/NSO, 2004). Based on the results of this evaluation, the preferred alternative for CAU 443 is Proof-of-Concept and Monitoring with Institutional Controls. This alternative was judged to meet all requirements for the technical components evaluated and will control inadvertent exposure to contaminated groundwater at CAU 443.

  2. Analysis of ER-12-3 FY 2005 Hydrologic Testing, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Bill Fryer

    2006-07-01

    This report documents the analysis of data collected for ER-12-3 during the fiscal year (FY) 2005 Rainier Mesa/Shoshone Mountain well development and hydraulic testing program (herein referred to as the ''testing program''). Well ER-12-3 was constructed and tested as a part of the Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain, Phase I drilling program during FY 2005. These activities were conducted on behalf of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) for the Underground Test Area (UGTA) Project. As shown on Figure 1-1, ER-12-3 is located in central Rainier Mesa, in Area 12 of the Nevada Test Site (NTS). Figure 1-2 shows the well location in relation to the tunnels under Rainier Mesa. The well was drilled to a total depth (TD) of 4,908 feet (ft) below ground surface (bgs) (surface elevation 7,390.8 ft above mean sea level [amsl]) in the area of several tunnels mined into Rainier Mesa that were used historically for nuclear testing (NNSA/NSO, 2006). The closest nuclear test to the well location was YUBA (U-12b.10), conducted in the U-12b Tunnel approximately 1,529 ft northeast of the well site. The YUBA test working point elevation was located at approximately 6,642 ft amsl. The YUBA test had an announced yield of 3.1 kilotons (kt) (SNJV, 2006b). The purpose of this hydrogeologic investigation well is to evaluate the deep Tertiary volcanic section below the tunnel level, which is above the regional water table, and to provide information on the section of the lower carbonate aquifer-thrust plate (LCA3) located below the Tertiary volcanic section (SNJV, 2005b). Details on the drilling and completion program are presented in the ''Completion Report for Well ER-12-3 Corrective Action Unit 99: Rainier Mesa - Shoshone Mountain'' (NNSA/NSO, 2006). Development and hydraulic testing of ER-12-3 took place between June 3 and July 22, 2005. The

  3. Well ER-6-1 Tracer Test Analysis: Yucca Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Greg Ruskauff

    2006-09-01

    The ER-6-1 multiple-well aquifer test-tracer test (MWAT-TT) investigated groundwater flow and transport processes relevant to the transport of radionuclides from sources on the Nevada Test Site (NTS) through the lower carbonate aquifer (LCA) hydrostratigraphic unit (HSU). The LCA, which is present beneath much of the NTS, is the principal aquifer for much of southern Nevada. This aquifer consists mostly of limestone and dolomite, and is pervasively fractured. Groundwater flow in this aquifer is primarily in the fractures, and the hydraulic properties are primarily related to fracture frequency and fracture characteristics (e.g., mineral coatings, aperture, connectivity). The objective of the multiple-well aquifer test (MWAT) was to determine flow and hydraulic characteristics for the LCA in Yucca Flat. The data were used to derive representative flow model and parameter values for the LCA. The items of specific interest are: Hydraulic conductivity; Storage parameters; Dual-porosity behavior; and Fracture flow characteristics. The objective of the tracer transport experiment was to evaluate the transport properties and processes of the LCA and to derive representative transport parameter values for the LCA. The properties of specific interest are: Effective porosity; Matrix diffusion; Longitudinal dispersivity; Adsorption characteristics; and Colloid transport characteristics. These properties substantially control the rate of transport of contaminants in the groundwater system and concentration distributions. To best support modeling at the scale of the corrective action unit (CAU), these properties must be investigated at the field scale. The processes represented by these parameters are affected by in-situ factors that are either difficult to investigate at the laboratory scale or operate at a much larger scale than can be reproduced in the laboratory. Measurements at the field scale provide a better understanding of the effective average parameter values. The

  4. Analysis of Well ER-6-2 Testing, Yucca Flat FY 2004 Testing Program, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Greg Ruskauff

    2005-07-01

    This report documents the analysis of data collected for Well ER-6-2 during fiscal year (FY) 2004 Yucca Flat well development and testing program (herein referred to as the ''testing program''). Participants in Well ER-6-2 field development and hydraulic testing activities were: Stoller-Navarro Joint Venture (SNJV), Bechtel Nevada (BN), Desert Research Institute (DRI), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), U.S. Geological Survey (USGS), and the University of Nevada, Las Vegas-Harry Reid Center (UNLV-HRC). The analyses of data collected from the Well ER-6-2 testing program were performed by the SNJV.

  5. Analysis of FY 2005/2006 Hydrologic Testing and Sampling Results for Well ER-12-4, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Bill Fryer

    2006-09-01

    This report documents the analysis of data collected for ER-12-4 during the fiscal year (FY) 2005 Rainier Mesa/Shoshone Mountain well development and hydraulic testing program (herein referred to as the ''testing program'') and hydraulic response data from the FY 2006 Sampling Program. Well ER-12-4 was constructed and tested as a part of the Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain, Phase I drilling program during FY 2005. These activities were conducted on behalf of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) for the Underground Test Area (UGTA) Subproject. As shown on Figure 1-1, ER-12-4 is located in central Rainier Mesa, in Area 12 of the Nevada Test Site (NTS). Figure 1-2 shows the well location in relation to the tunnels under Rainier Mesa. The well was drilled to a total depth (TD) of 3,715 feet (ft) below ground surface (bgs) (surface elevation 6,883.7 ft above mean sea level [amsl]) in the area of several tunnels mined into Rainier Mesa that were used historically for nuclear testing (NNSA/NSO, 2006). The closest nuclear test to the well location was MIGHTY OAK (U-12t.08), conducted in the U-12t Tunnel approximately 475 ft north of the well site. The MIGHTY OAK test working point elevation was located at approximately 5,620 ft amsl. The MIGHTY OAK test had an announced yield of ''less than 20 kilotons'' (DOE/NV, 2000). The purpose of this hydrogeologic investigation well is to evaluate the deep Tertiary volcanic section below the tunnel level, which is above the regional water table, and to provide information on the section of the lower carbonate aquifer - thrust plate (LCA3), located below the Tertiary volcanic section (SNJV, 2005b). Details on the drilling and completion program are presented in the ''Completion Report for Well ER-12-4 Corrective Action Unit 99: Rainier Mesa-Shoshone Mountain'' (NNSA

  6. Analysis of Hydraulic Responses from the ER-6-1 Multiple-Well Aquifer Test, Yucca Flat FY 2004 Testing Program, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Greg Ruskauff

    2005-06-01

    This report documents the interpretation and analysis of the hydraulic data collected for the Fiscal Year (FY) 2004 Multiple-Well Aquifer Test-Tracer Test (MWAT-TT) conducted at the ER-6-1 Well Cluster in Yucca Flat Corrective Action Unit (CAU) 97, on the Nevada Test Site (NTS). The MWAT-TT was performed to investigate CAU-scale groundwater flow and transport processes related to the transport of radionuclides from sources on the NTS through the Lower Carbonate Aquifer (LCA) Hydrostratigraphic Unit (HSU). The ER-6-1 MWAT-TT was planned and executed by contractor participants for the Underground Test Area (UGTA) Project of the Environmental Restoration (ER) program of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Participants included Stoller-Navarro Joint Venture (SNJV), the Environmental Engineering Services Contractor; Bechtel Nevada (BN); the Desert Research Institute (DRI); Los Alamos National Laboratory; and the University of Nevada, Las Vegas-Harry Reid Center. The SNJV team consists of the S.M. Stoller Corporation, Navarro Research and Engineering, Battelle Memorial Institute, INTERA Inc., and Weston Solutions, Inc. The MWAT-TT was implemented according to the ''Underground Test Area Project, ER-6-1 Multi-Well Aquifer Test - Tracer Test Plan'' (SNJV, 2004a) issued in April 2004. The objective of the aquifer test was to determine flow processes and local hydraulic properties for the LCA through long-term constant-rate pumping at the well cluster. This objective was to be achieved in conjunction with detailed sampling of the composite tracer breakthrough at the pumping well, as well as with depth-specific sampling and logging at multiple wells, to provide information for the depth-discrete analysis of formation hydraulic properties, particularly with regard to fracture properties.

  7. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-06-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling

  8. Closure Report for Corrective Action Unit 540: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Lloyd

    2006-10-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 540: Spill Sites, Nevada Test Site, Nevada. This CR complies with the requirements of the 'Federal Facility Agreement and Consent Order' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 540 is located within Areas 12 and 19 of the Nevada Test Site and is comprised of the following Corrective Action Sites (CASs): CAS 12-44-01, ER 12-1 Well Site Release; CAS 12-99-01, Oil Stained Dirt; CAS 19-25-02, Oil Spill; CAS 19-25-04, Oil Spill; CAS 19-25-05, Oil Spill; CAS 19-25-06, Oil Spill; CAS 19-25-07, Oil Spill; CAS 19-25-08, Oil Spills (3); and CAS 19-44-03, U-19bf Drill Site Release. The purpose of this CR is to provide documentation supporting recommendations of no further action for the CASs within CAU 540. To achieve this, the following actions were performed: (1) Reviewed the current site conditions, including the concentration and extent of contamination; (2) Performed closure activities to address the presence of substances regulated by 'Nevada Administrative Code' 445A.2272 (NAC, 2002); and (3) Documented Notice of Completion and closure of CAU 540 issued by the Nevada Division of Environmental Protection.

  9. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    Science.gov (United States)

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  10. Southern Nevada Library Services; Serving Lincoln County, Nye County, Esmeralda County through the Clark County Library District: An Evaluation.

    Science.gov (United States)

    Dalton, Phyllis I.

    An anecdotal review covers the first year of increased library service in Nye, Lincoln, and Esmeralda Counties, Nevada, under the Southern Nevada Library Services project funded by the Library Services and Construction Act. Using information from questionnaires and site visits, the extent of library services in each community in the area is…

  11. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  12. Virgin Valley opal district, Humboldt County, Nevada

    Science.gov (United States)

    Staatz, Mortimer Hay; Bauer, Herman L.

    1951-01-01

    The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.

  13. Forecasting gaming revenues in Clark County, Nevada: Issues and methods

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.K.; Bando, A.

    1992-01-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. Is is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry. The model is meant to forecast Clark County gaming revenues and identifies the exogenous variables that affect gaming revenues. It will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming-related economic activity resulting from changes in regional economic activity and tourism.

  14. Forecasting gaming revenues in Clark County, Nevada: Issues and methods

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.K.; Bando, A.

    1992-07-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. Is is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry. The model is meant to forecast Clark County gaming revenues and identifies the exogenous variables that affect gaming revenues. It will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming-related economic activity resulting from changes in regional economic activity and tourism.

  15. Corrective Action Decision Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Susan Evans

    2004-11-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the subsurface at the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443, CNTA - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). CAU 443 is located in Hot Creek Valley in Nye County, Nevada, north of U.S. Highway 6, about 48 kilometers north of Warm Springs, Nevada. The CADD/CAP combines the decision document (CADD) with the corrective action plan (CAP) and provides or references the specific information necessary to recommend corrective actions for the UC-1 Cavity (Corrective Action Site 58-57-001) at CAU 443, as provided in the FFACO. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at CNTA. To achieve this, the following tasks were required: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend a preferred corrective action alternative for the subsurface at CNTA. A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites (Corrective Action Unit No. 443)'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first involved the gathering and interpretation of geologic and hydrogeologic data into a three-dimensional numerical model of groundwater flow, and use of the output of the flow model for a

  16. An exploration possibility at the Arizona mine, Pershing County, Nevada

    Science.gov (United States)

    Wallace, R.E.; Tatlock, Donald Bruce

    1963-01-01

    At the Arizona mine in Pershing County, Nevada, a block of ground that may contain significant bodies of silver ore at a shallow depth .appears to have been very inadequately explored during early mining activity. The block approximates in arcal extent

  17. A forecasting model of gaming revenues in Clark County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, B.; Bando, A.; Bassett, G.; Rosen, A. [Argonne National Lab., IL (United States); Carlson, J.; Meenan, C. [Science Applications International Corp., Las Vegas, NV (United States)

    1992-04-01

    This paper describes the Western Area Gaming and Economic Response Simulator (WAGERS), a forecasting model that emphasizes the role of the gaming industry in Clark County, Nevada. It is designed to generate forecasts of gaming revenues in Clark County, whose regional economy is dominated by the gaming industry, an identify the exogenous variables that affect gaming revenues. This model will provide baseline forecasts of Clark County gaming revenues in order to assess changes in gaming related economic activity resulting from future events like the siting of a permanent high-level radioactive waste repository at Yucca Mountain.

  18. Perennial vegetation data from permanent plots on the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Webb, Robert H.; Murov, Marilyn B.; Esque, Todd C.; Boyer, Diane E.; DeFalco, Lesley A.; Haines, Dustin F.; Oldershaw, Dominic; Scoles, Sara J.; Thomas, Kathryn A.; Blainey, Joan B.; Medica, Philip A.

    2003-01-01

    Perennial vegetation data from 68 permanent plots on the Nevada Test Site, Nye County, Nevada, are given for the period of 1963 through 2002. Dr. Janice C. Beatley established the plots in 1962 and then remeasured them periodically from 1963 through 1975. We remeasured 67 of these plots between 2000 and 2003; the remaining plot was destroyed at some time between 1975 and 1993. The plots ranged from 935 to 2,274 m in elevation and are representative of common plant associations of the Mojave Desert, the transition to Great Basin Desert, and pinyon-juniper woodlands. The purpose of this report is to describe the complete set of ecological data that Beatley collected from the Nevada Test Site from 1963 through 1975 and to present the data for perennial vegetation collected from 2000 through 2003.

  19. TS Power Plant, Eureka County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Peltier, R. [DTE Energy Services (United States)

    2008-10-15

    Not all coal-fired power plants are constructed by investor-owned utilities or independent power producers selling to wholesale markets. When Newmont Mining Corp. recognised that local power supplies were inadequate and too expensive to meet long-term electricity needs for its major gold- and copper-mining operations in northern Nevada, it built its own generation. What is more, Newmont's privately owned 200-MW net coal-fired plant features power plant technologies that will surely become industry standards. Newmont's investment in power and technology is also golden: the capital cost will be paid back in about eight years. 4 figs.

  20. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-10-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554.

  1. Nevada Test Site Waste Acceptance Criteria (NTSWAC), Rev. 7-01

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-05-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive waste and mixed low-level waste for disposal. The NTSWAC includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex for disposal.

  2. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robert Boehlecke

    2004-04-01

    The six bunkers included in CAU 204 were primarily used to monitor atmospheric testing or store munitions. The ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada'' (NNSA/NV, 2002a) provides information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for each CAS within CAU 204. The evaluation of corrective action alternatives is based on process knowledge and the results of investigative activities conducted in accordance with the CAIP (NNSA/NV, 2002a) that was approved prior to the start of the Corrective Action Investigation (CAI). Record of Technical Change (ROTC) No. 1 to the CAIP (approval pending) documents changes to the preliminary action levels (PALs) agreed to by the Nevada Division of Environmental Protection (NDEP) and DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This ROTC specifically discusses the radiological PALs and their application to the findings of the CAU 204 corrective action investigation. The scope of this CADD consists of the following: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of corrective action alternatives in relation to corrective action objectives and screening criteria; and (5) Recommend and justify a preferred corrective action alternative for each CAS within CAU 204.

  3. Corrective Action Investigation Plan for Corrective Action Unit 565: Stored Samples, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred; McCall, Robert

    2006-08-01

    Corrective Action Unit (CAU) 565 is located in Area 26 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 565 is comprised of one corrective action site (CAS) listed--CAS 26-99-04, Ground Zero Soil Samples. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend closure of CAU 565. Additional information will be obtained by conducting a corrective action investigation before evaluating closure objectives and selecting the appropriate corrective action. The results of the field investigation will support closure and waste management decisions that will be presented in the Corrective Action Decision Document/Closure Report. The site will be investigated based on the data quality objectives (DQOs) developed on June 1, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was utilized to identify and define the type, amount, and quality of data needed to develop and evaluate closure for CAU 565. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to this CAS. The scope of the corrective action investigation for CAU 565 includes the following activities: (1) Remove stored samples, shelves, and debris from the interior of Building 26-2106. (2) Perform field screening on stored samples, shelves, and debris. (3) Dispose of stored samples, shelves, and debris. (4) Collect samples of investigation-derived waste, as needed, for waste management purposes. (5) Conduct radiological surveys of Building 26-2106 in accordance with the requirements in the ''NV/YMP Radiological Control Manual'' to determine if there is residual radiological contamination that would prevent the release of the building for

  4. Corrective Action Investigation Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-04-01

    Corrective Action Unit (CAU) 139 is located in Areas 3, 4, 6, and 9 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 139 is comprised of the seven corrective action sites (CASs) listed below: (1) 03-35-01, Burn Pit; (2) 04-08-02, Waste Disposal Site; (3) 04-99-01, Contaminated Surface Debris; (4) 06-19-02, Waste Disposal Site/Burn Pit; (5) 06-19-03, Waste Disposal Trenches; (6) 09-23-01, Area 9 Gravel Gertie; and (7) 09-34-01, Underground Detection Station. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives with the exception of CASs 09-23-01 and 09-34-01. Regarding these two CASs, CAS 09-23-01 is a gravel gertie where a zero-yield test was conducted with all contamination confined to below ground within the area of the structure, and CAS 09-34-01 is an underground detection station where no contaminants are present. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for the other five CASs where information is insufficient. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 4, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 139.

  5. Corrective Action Investigation Plan for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-09-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 145: Wells and Storage Holes. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 145 is located in Area 3 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 145 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. One conceptual site model with three release scenario components was developed for the six CASs to address all releases associated with the site. The sites will be investigated based on data quality objectives (DQOs) developed on June 24, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQOs process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 145.

  6. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2006-12-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present

  7. Digital Geologic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Slate, Janet L.; Berry, Margaret E.; Rowley, Peter D.; Fridrich, Christopher J.; Morgan, Karen S.; Workman, Jeremiah B.; Young, Owen D.; Dixon, Gary L.; Williams, Van S.; McKee, Edwin H.; Ponce, David A.; Hildenbrand, Thomas G.; Swadley, W.C.; Lundstrom, Scott C.; Ekren, E. Bartlett; Warren, Richard G.; Cole, James C.; Fleck, Robert J.; Lanphere, Marvin A.; Sawyer, David A.; Minor, Scott A.; Grunwald, Daniel J.; Laczniak, Randell J.; Menges, Christopher M.; Yount, James C.; Jayko, Angela S.

    1999-01-01

    This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map compilation presents new polygon (geologic map unit contacts), line (fault, fold axis, metamorphic isograd, dike, and caldera wall) and point (structural attitude) vector data for the NTS and vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California. The map area covers two 30 x 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7.5-minute quadrangles on the east side-72 quadrangles in all. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains. This geologic map improves on previous geologic mapping of the same area (Wahl and others, 1997) by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. Concurrent publications to this one include a new isostatic gravity map (Ponce and others, 1999) and a new aeromagnetic map (Ponce, 1999).

  8. Site characterization data from the Area 5 science boreholes, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Blout, D.O.; Hammermeister, P.; Zukosky, K.A.

    1995-02-01

    The Science Borehole Project consists of eight boreholes that were drilled (from 45.7 m [150 ft] to 83.8 m [275 ft] depth) in Area 5 of the Nevada Test Site, Nye County, Nevada, on behalf of the US Department of Energy. These boreholes are part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level and mixed waste at this site. This series of boreholes was specifically designed to characterize parameters controlling near-surface gas transport and to monitor changes in these and liquid flow-related parameters over time. These boreholes are located along the four sides of the approximately 2.6-km{sup 2} (1-mi{sup 2}) Area 5 Radioactive Waste Management Site to provide reasonable spatial coverage for sampling and characterization. Laboratory testing results of samples taken from core and drill cuttings are reported.

  9. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-07-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area.

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 529: Area 25 Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Boehlecke

    2004-11-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 529, Area 25 Contaminated Materials, Nevada Test Site (NTS), Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Site (CAS) 25-23-17, Contaminated Wash, is the only CAS in CAU 529 and is located in Area 25 of the NTS, in Nye County, Nevada (Figure 1-2). Corrective Action Site 25-23-17, Contaminated Wash, was divided into nine parcels because of the large area impacted by past operations and the complexity of the source areas. The CAS was subdivided into separate parcels based on separate and distinct releases as determined and approved in the Data Quality Objectives (DQO) process and Corrective Action Investigation Plan (CAIP). Table 1-1 summarizes the suspected sources for the nine parcels. Corrective Action Site 25-23-17 is comprised of the following nine parcels: (1) Parcel A, Kiwi Transient Nuclear Test (TNT) 16,000-foot (ft) Arc Area (Kiwi TNT); (2) Parcel B, Phoebus 1A Test 8,000-ft Arc Area (Phoebus); (3) Parcel C, Topopah Wash at Test Cell C (TCC); (4) Parcel D, Buried Contaminated Soil Area (BCSA) l; (5) Parcel E, BCSA 2; (6) Parcel F, Borrow Pit Burial Site (BPBS); (7) Parcel G, Drain/Outfall Discharges; (8) Parcel H, Contaminated Soil Storage Area (CSSA); and (9) Parcel J, Main Stream/Drainage Channels.

  11. Corrective Action Decision Document/Closure Report for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. No.: 0 with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Laura Pastor

    2005-09-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 552, Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 552 is comprised of the corrective action site (CAS) that is shown on Figure 1-2 and listed below: 12-23-05, Ponds. The ponds were originally constructed to catch runoff from the muckpile. As the muckpile continued to be extended to the north and to the east, it became impossible to ensure that all of the runoff from the muckpile was funneled into the pond. Some of the runoff from the muckpile continues to be caught in the upper pond, but portions of the muckpile have eroded, diverting much of the runoff away from the ponds. Regarding the other ponds, there is no evidence that any of the overflow ponds ever received runoff from overflow of the upper pond. The muckpile was removed from CAU 552 because an active leachfield exists within the muckpile and there are current activities at G-Tunnel. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada'', Rev. 1 (NNSA/NSO, 2005). Corrective Action Unit 552, Area 12 Muckpile and Ponds, consists of one site located in the southern portion of Area 12. Corrective Action Site 12-23-05 consists of dry ponds adjacent to the G-Tunnel muckpile. The ponds were used to contain effluent from the G-Tunnel. The purpose of this CADD/CR is to provide justification for the closure of CAU 552 with no further

  12. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting

  13. Corrective Action Investigation Plan for Corrective Action Unit 555: Septic Systems Nevada Test Site, Nevada, Rev. No.: 0 with Errata

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, Laura

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 555: Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 555 is located in Areas 1, 3 and 6 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada, and is comprised of the five corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-59-01, Area 1 Camp Septic System; (2) CAS 03-59-03, Core Handling Building Septic System; (3) CAS 06-20-05, Birdwell Dry Well; (4) CAS 06-59-01, Birdwell Septic System; and (5) CAS 06-59-02, National Cementers Septic System. An FFACO modification was approved on December 14, 2005, to include CAS 06-20-05, Birdwell Dry Well, as part of the scope of CAU 555. The work scope was expanded in this document to include the investigation of CAS 06-20-05. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 555 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by

  14. Corrective Action Investigation Plan for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD). Corrective Action Unit 309 is located in Area 12 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 mi beyond the main gate to the NTS. Corrective Action Unit 309 is comprised of the three Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: CAS 12-06-09, Muckpile; CAS 12-08-02, Contaminated Waste Dump (CWD); and CAS 12-28-01, I, J, and K-Tunnel Debris. Corrective Action Sites 12-06-09 and 12-08-02 will be collectively referred to as muckpiles in this document. Corrective Action Site 12-28-01 will be referred to as the fallout plume because of the extensive lateral area of debris and fallout contamination resulting from the containment failures of the J-and K-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and media sampling, where appropriate. Data will also be obtained to support waste management decisions. The CASs in CAU 309 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and/or the environment. Existing information on the nature and extent of potential contamination at these sites are insufficient to evaluate and recommend corrective action alternatives for the CASs. Therefore, additional information will be obtained by conducting a CAI prior to evaluating corrective action

  15. Closure Report for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Laura A. Pastor

    2005-04-01

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 357: Mud Pits and Waste Dump, Nevada Test Site (NTS), Nevada. The CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). Corrective Action Unit 357 is comprised of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the NTS (Figure 1-1). The NTS is located approximately 65 miles (mi) northwest of Las Vegas, Nevada. Corrective Action Unit 357 consists of 11 CASs that are mud pits located in Areas 7, 8, and 10. The mud pits were associated with drilling activities conducted on the NTS in support of the underground nuclear weapons testing. The remaining three CASs are boxes and pipes associated with Building 1-31.2el, lead bricks, and a waste dump. These CAS are located in Areas 1, 4, and 25, respectively. The following CASs are shown on Figure 1-1: CAS 07-09-02, Mud Pit; CAS 07-09-03, Mud Pit; CAS 07-09-04, Mud Pit; CAS 07-09-05, Mud Pit; CAS 08-09-01, Mud Pit; CAS 08-09-02, Mud Pit; CAS 08-09-03, Mud Pit; CAS 10-09-02, Mud Pit; CAS 10-09-04, Mud Pit; CAS 10-09-05, Mud Pit; CAS 10-09-06, Mud Pit, Stains, Material; CAS 01-99-01, Boxes, Pipes; CAS 04-26-03, Lead Bricks; and CAS 25-15-01, Waste Dump. The purpose of the corrective action activities was to obtain analytical data that supports the closure of CAU 357. Environmental samples were collected during the investigation to determine whether contaminants exist and if detected, their extent. The investigation and sampling strategy was designed to target locations and media most likely to be contaminated (biased sampling). A general site conceptual model was developed for each CAS to support and guide the investigation as outlined in the Streamlined Approach for Environmental Restoration (SAFER) Plan (NNSA/NSO, 2003b). This CR

  16. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-06-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions.

  17. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Boehlecke

    2004-06-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions.

  18. Geology and mineral deposits of Churchill County, Nevada

    Science.gov (United States)

    Willden, Ronald; Speed, Robert C.

    1974-01-01

    Churchill County, in west-central Nevada, is an area of varied topography and geology that has had a rather small total mineral production. The western part of the county is dominated by the broad low valley of the Carson Sink, which is underlain by deposits of Lake Lahontan. The bordering mountain ranges to the west and south are of low relief and underlain largely by Tertiary volcanic and sedimentary units. Pre-Tertiary rocks are extensively exposed east of the Carson Sink in the Stillwater Range, Clan Alpine Mountains, Augusta Mountains, and New Pass Mountains. The eastern valleys are underlain by Quaternary alluvial and lacustrine deposits contemporaneous with the western deposits of Lake Lahontan. The eastern mountain ranges are more rugged than the western ranges and have higher relief; the eastern valleys are generally narrower.

  19. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case.

  20. Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Laura Pastor

    2006-05-01

    Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following

  1. Unclassified Source Term and Radionuclide Data for Corrective Action Unit 98: Frenchman Flat Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2005-09-01

    Frenchman Flat is one of several areas of the Nevada Test Site (NTS) used for underground nuclear testing (Figure 1-1). These nuclear tests resulted in groundwater contamination in the vicinity of the underground test areas. As a result, the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently conducting a corrective action investigation (CAI) of the Frenchman Flat underground test areas. Since 1996, the Nevada Division of Environmental Protection (NDEP) has regulated NNSA/NSO corrective actions through the ''Federal Facility Agreement and Consent Order'' ([FFACO], 1996). Appendix VI of the FFACO agreement, ''Corrective Action Strategy'', was revised on December 7, 2000, and describes the processes that will be used to complete corrective actions, including those in the Underground Test Area (UGTA) Project. The individual locations covered by the agreement are known as corrective action sites (CASs), which are grouped into corrective action units (CAUs). The UGTA CASs are grouped geographically into five CAUs: Frenchman Flat, Central Pahute Mesa, Western Pahute Mesa, Yucca Flat/Climax Mine, and Rainier Mesa/Shoshone Mountain (Figure 1-1). These CAUs have distinctly different contaminant source, geologic, and hydrogeologic characteristics related to their location (FFACO, 1996). The Frenchman Flat CAU consists of 10 CASs located in the northern part of Area 5 and the southern part of Area 11 (Figure 1-1). This report documents the evaluation of the information and data available on the unclassified source term and radionuclide contamination for Frenchman Flat, CAU 98. The methodology used to estimate hydrologic source terms (HSTs) for the Frenchman Flat CAU is also documented. The HST of an underground nuclear test is the portion of the total inventory of radionuclides that is released over time into the groundwater following the test. The total residual inventory

  2. Corrective Action Investigation Plan for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Boehlecke

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) for Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 309 is comprised of the following three corrective action sites (CASs) in Area 12 of the NTS: (1) CAS 12-06-09, Muckpile; (2) CAS 12-08-02, Contaminated Waste Dump (CWD); and (3) CAS 12-28-01, I-, J-, and K-Tunnel Debris. Corrective Action Site 12-06-09 consists of a muckpile and debris located on the hillside in front of the I-, J-, and K-Tunnels on the eastern slopes of Rainier Mesa in Area 12. The muckpile includes mining debris (muck) and debris generated during the excavation and construction of the I-, J-, and K-Tunnels. Corrective Action Site 12-08-02, CWD, consists of a muckpile and debris and is located on the hillside in front of the re-entry tunnel for K-Tunnel. For the purpose of this investigation CAS 12-28-01 is defined as debris ejected by containment failures during the Des Moines and Platte Tests and the associated contamination that is not covered in the two muckpile CASs. This site consists of debris scattered south of the I-, J-, and K-Tunnel muckpiles and extends down the hillside, across the valley, and onto the adjacent hillside to the south. In addition, the site will cover the potential contamination associated with ''ventings'' along the fault, fractures, and various boreholes on the mesa top and face. One conceptual site model was developed for all three CASs to address possible contamination migration pathways associated with CAU

  3. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Boehlecke

    2005-01-01

    Corrective Action Unit 552 is being investigated because man-made radionuclides and chemical contaminants may be present in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. The CAI will be conducted following the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The DQOs are used to identify the type, amount, and quality of data needed to define the nature and extent of contamination and identify and evaluate the most appropriate corrective action alternatives for CAU 552. The primary problem statement for the investigation is: ''Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for CAS 12-23-05.'' To address this problem statement, the resolution of the following two decision statements is required: (1) The Decision I statement is: ''Is a contaminant present within the CAU at a concentration that could pose an unacceptable risk to human health and the environment?'' Any site-related contaminant detected at a concentration exceeding the corresponding preliminary action level (PAL), as defined in Section A.1.4.2, will be considered a contaminant of concern (COC). A COC is defined as a site-related constituent that exceeds the screening criteria (PAL). The presence of a contaminant within each CAS is defined as the analytical detection of a COC. (2) The Decision II statement is: ''Determine the extent of contamination identified above PALs.'' This decision will be achieved by the collection of data that are adequate to define the extent of COCs. Decision II samples are used to determine the lateral and vertical extent of the contamination as well as the likelihood of COCs to migrate outside of the site

  4. Final Environmental Assessment for transfer of Indian Lakes area to Churchill County, Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The USFWS proposes to transfer the Indian Lakes portion of the Stillwater Wildlife Management Area to Churchill County, Nevada for the purposes of fish, wildlife,...

  5. Geospatial Database of Hydroclimate Variables, Spring Mountains and Sheep Range, Clark County, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This point feature class contains 81,481 points arranged in a 270-meter spaced grid that covers the Spring Mountains and Sheep Range in Clark County, Nevada. Points...

  6. Selected stratigraphic data for drill holes located in Frenchman Flat, Nevada Test Site. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Drellack, S.L. Jr.

    1997-02-01

    Stratigraphic data are presented in tabular form for 72 holes drilled in Frenchman Flat, Nevada Test Site, between 1950 and 1993. Three pairs of data presentations are included for each hole: depth to formation tops, formation thicknesses, and formation elevations are presented in both field (English) and metric units. Also included for each hole, where available, are various construction data (hole depth, hole diameter, surface location coordinates) and certain information of hydrogeologic significance (depth to water level, top of zeolitization). The event name is given for holes associated with a particular nuclear test. An extensive set of footnotes is included, which indicates data sources and provides other information. The body of the report describes the stratigraphic setting of Frenchman Flat, gives drill-hole naming conventions and database terminology, and provides other background and reference material.

  7. Selected stratigraphic data for drill holes located in Frenchman Flat, Nevada Test Site. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Drellack, S.L. Jr.

    1997-02-01

    Stratigraphic data are presented in tabular form for 72 holes drilled in Frenchman Flat, Nevada Test Site, between 1950 and 1993. Three pairs of data presentations are included for each hole: depth to formation tops, formation thicknesses, and formation elevations are presented in both field (English) and metric units. Also included for each hole, where available, are various construction data (hole depth, hole diameter, surface location coordinates) and certain information of hydrogeologic significance (depth to water level, top of zeolitization). The event name is given for holes associated with a particular nuclear test. An extensive set of footnotes is included, which indicates data sources and provides other information. The body of the report describes the stratigraphic setting of Frenchman Flat, gives drill-hole naming conventions and database terminology, and provides other background and reference material.

  8. 77 FR 13145 - Notice of Realty Action: Direct Sale of Public Land in Esmeralda County, Nevada

    Science.gov (United States)

    2012-03-05

    ... 4500022284; TAS: 14X1109] Notice of Realty Action: Direct Sale of Public Land in Esmeralda County, Nevada... Management (BLM) has examined and found suitable for disposal utilizing direct sale procedures, one parcel of... non-competitive (direct) sale to Esmeralda County under the provisions of Sections 203 and 209 of...

  9. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-08-01

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  10. Report on expedited site characterization of the Central Nevada Test Area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Yuhr, L. [Technos Inc., Miami, FL (United States); Wonder, J.D.; Bevolo, A.J. [Ames Lab., IA (United States)

    1997-09-01

    This report documents data collection, results, and interpretation of the expedited site characterization (ESC) pilot project conducted from September 1996 to June 1997 at the Central Nevada Test Area (CNTA), Nye County, Nevada. Characterization activities were limited to surface sites associated with deep well drilling and ancillary operations at or near three emplacement well areas. Environmental issues related to the underground nuclear detonation (Project Faultless) and hydrologic monitoring wells were not addressed as a part of this project. The CNTA was divided into four functional areas for the purpose of this investigation and report. These areas include the vicinity of three emplacement wells (UC-1, UC-3, and UC-4) and one mud waste drilling mud collection location (Central Mud Pit; CMP). Each of these areas contain multiple, potentially contaminated features, identified either from historic information, on-site inspections, or existing data. These individual features are referred to hereafter as ``sites.`` The project scope of work involved site reconnaissance, establishment of local grid systems, site mapping and surveying, geophysical measurements, and collection and chemical analysis of soil and drilling mud samples. Section 2.0 through Section 4.0 of this report provide essential background information about the site, project, and details of how the ESC method was applied at CNTA. Detailed discussion of the scope of work is provided in Section 5.0, including procedures used and locations and quantities of measurements obtained. Results and interpretations for each of the four functional areas are discussed separately in Sections 6.0, 7.0, 8.0, and 9.0. These sections provide a chronological presentation of data collected and results obtained, followed by interpretation on a site-by-site basis. Key data is presented in the individual sections. The comprehensive set of data is contained in appendices.

  11. Geologic map of the Yucca Mountain region, Nye County, Nevada

    Science.gov (United States)

    Potter, Christopher J.; Dickerson, Robert P.; Sweetkind, Donald S.; Drake II, Ronald M.; Taylor, Emily M.; Fridrich, Christopher J.; San Juan, Carma A.; Day, Warren C.

    2002-01-01

    Yucca Mountain, Nye County, Nev., has been identified as a potential site for underground storage of high-level radioactive waste. This geologic map compilation, including all of Yucca Mountain and Crater Flat, most of the Calico Hills, western Jackass Flats, Little Skull Mountain, the Striped Hills, the Skeleton Hills, and the northeastern Amargosa Desert, portrays the geologic framework for a saturated-zone hydrologic flow model of the Yucca Mountain site. Key geologic features shown on the geologic map and accompanying cross sections include: (1) exposures of Proterozoic through Devonian strata inferred to have been deformed by regional thrust faulting and folding, in the Skeleton Hills, Striped Hills, and Amargosa Desert near Big Dune; (2) folded and thrust-faulted Devonian and Mississippian strata, unconformably overlain by Miocene tuffs and lavas and cut by complex Neogene fault patterns, in the Calico Hills; (3) the Claim Canyon caldera, a segment of which is exposed north of Yucca Mountain and Crater Flat; (4) thick densely welded to nonwelded ash-flow sheets of the Miocene southwest Nevada volcanic field exposed in normal-fault-bounded blocks at Yucca Mountain; (5) upper Tertiary and Quaternary basaltic cinder cones and lava flows in Crater Flat and at southernmost Yucca Mountain; and (6) broad basins covered by Quaternary and upper Tertiary surficial deposits in Jackass Flats, Crater Flat, and the northeastern Amargosa Desert, beneath which Neogene normal and strike-slip faults are inferred to be present on the basis of geophysical data and geologic map patterns. A regional thrust belt of late Paleozoic or Mesozoic age affected all pre-Tertiary rocks in the region; main thrust faults, not exposed in the map area, are interpreted to underlie the map area in an arcuate pattern, striking north, northeast, and east. The predominant vergence of thrust faults exposed elsewhere in the region, including the Belted Range and Specter Range thrusts, was to the east

  12. Reconnaissance of beryl-bearing pegmatites in the Ruby Mountains, other areas in Nevada, and northwestern Mohave County, Arizona

    Science.gov (United States)

    Olson, Jerry Chipman; Hinrichs, E. Neal

    1957-01-01

    Pegmatite occurs widely in Nevada and northwestern Arizona, but little mining has been done for such pegmatite minerals as mica, feldspar, beryl, and lepidolite.  Reconnaissance for beryl-bearing pegmatite in Nevada and in part of Mohave County, Ariz., and detailed studies in the Dawley Canyon area, Elko County, Nev., have shown that beryl occurs in at least 11 districts in the region.  Muscovite has been prospected or mined in the Ruby Mountains and the Virgin Mountains, Nevada, and in Mohave County, Ariz.  Feldspar has been mined in the southern part of the region near Kingman, Ariz., and in Clark County, Nev.

  13. Blue Mountain, Humboldt County, Nevada, U.S.A

    Energy Technology Data Exchange (ETDEWEB)

    Ted Fitzpatrick, Brian D. Fairbank

    2005-04-01

    The report documents the drilling of well Deep Blue No.2, the second deep geothermal test hole at the Blue Mountain Geothermal Area, Humboldt County, Nevada. The well was drilled by Noramex Corp, a Nevada company, with funding support from the US Department of Energy, under the DOE’s GRED II Program. Deep Blue No.2 was drilled as a ‘step-out’ hole from Deep Blue No.1, to further evaluate the commercial potential of the geothermal resource. Deep Blue No.2 was designed as a vertical, slim observation test hole to a nominal target depth of 1000 meters (nominal 3400 feet). The well tests an area of projected high temperatures at depth, from temperature gradients measured in a group of shallow drill holes located approximately one kilometer to the northeast of observation hole Deep Blue No.1. The well is not intended for, or designed as, a commercial well or a production well. Deep Blue No.2 was spudded on March 25, 2004 and completed to a total depth of 1127.76m (3700 ft) on April 28, 2004. The well was drilled using conventional rotary drilling techniques to a depth of 201.17 m (660 ft), and continuously cored from 201.17m (660 ft) to 1127.76m (3700 ft). A brief rig-on flow-test was conducted at completion to determine basic reservoir parameters and obtain fluid samples. A permeable fracture zone with measured temperatures of 150 to 167°C (302 to 333°F) occurs between 500 to 750m (1640 to 2461ft). The well was left un-lined in anticipation of the Phase III - Flow and Injection Testing. A further Kuster temperature survey was attempted after the well had been shut in for almost 3 weeks. The well appears to have bridged off at 439m (1440ft) as the Kuster tool was unable to descend past this point. Several attempts to dislodge the obstruction using tube jars were unsuccessful. Deep Blue No.2 encountered variably fractured and veined, fine-grained rocks of the Singas Formation, and intruded by minor strongly altered fine-grained felsic dikes, and less altered

  14. Mineral-Resource Assessment of Northern Nye County, Nevada - A Progress Report

    Science.gov (United States)

    Ludington, Steve; John, David A.; Muntean, John L.; Hanson, Andrew D.; Castor, Stephen B.; Henry, Christopher D.; Wintzer, Niki; Cline, Jean S.; Simon, Adam C.

    2009-01-01

    The U.S. Geological Survey (USGS), University of Nevada, Las Vegas (UNLV), and Nevada Bureau of Mines and Geology (NBMG), which is a part of the University of Nevada, Reno (UNR), have completed the first year of data collection and analysis in preparation for a new mineral- and energy-resource assessment of northern Nye County, Nevada. This report provides information about work completed before October 1, 2009. Existing data are being compiled, including geology, geochemistry, geophysics, and mineral-deposit information. Field studies are underway, which are primarily designed to address issues raised during the review of existing information. In addition, new geochemical studies are in progress, including reanalyzing existing stream-sediment samples with modern methods, and analyzing metalliferous black shales.

  15. Reconnaissance geologic map of the northern Kawich and southern Reveille ranges, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, J.N.; Eddy, A.C.; Goff, F.E.; Grafft, K.S.

    1980-06-01

    A geological survey was performed in Nye County, Nevada. Results of that survey are summarized in the maps included. The general geology of the area is discussed. Major structures are described. The economics resulting from the mineral exploitation in the area are discussed. The hydrogeology and water chemistry of the area are also discussed.

  16. Digital Aeromagnetic Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Ponce, David A.

    2000-01-01

    An aeromagnetic map of the Nevada Test Site area was prepared from publicly available aeromagnetic data described by McCafferty and Grauch (1997). Magnetic surveys were processed using standard techniques. Southwest Nevada is characterized by magnetic anomalies that reflect the distribution of thick sequences of volcanic rocks, magnetic sedimentary rocks, and the occurrence of granitic rocks. In addition, aeromagnetic data reveal the presence of linear features that reflect faulting at both regional and local scales.

  17. Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Olson, A.L.; Nacht, S.J.

    1997-11-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

  18. Neotectonics of the southern Amargosa Desert, Nye County, Nevada and Inyo County, California

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, D.E. [Nevada Univ., Reno, NV (United States)

    1991-05-01

    A complex pattern of active faults occurs in the southern Amargosa Desert, southern Nye, County, Nevada. These faults can be grouped into three main fault systems: (1) a NE-striking zone of faults that forms the southwest extension of the left-lateral Rock Valley fault zone, in the much larger Spotted Range-Mine Mountain structural zone, (2) a N-striking fault zone coinciding with a NNW-trending alignment of springs that is either a northward continuation of a fault along the west side of the Resting Spring Range or a N-striking branch fault of the Pahrump fault system, and (3) a NW-striking fault zone which is parallel to the Pahrump fault system, but is offset approximately 5 km with a left step in southern Ash Meadows. These three fault zones suggest extension is occurring in an E-W direction, which is compatible with the {approximately}N10W structural grain prevalent in the Death Valley extensional region to the west.

  19. Corrective Action Investigation Plan for Corrective Action Unit 529: Area 25 Contaminated Materials, Nevada Test Site, Nevada, Rev. 0, Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-02-26

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 529, Area 25 Contaminated Materials, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. CAU 529 consists of one Corrective Action Site (25-23-17). For the purpose of this investigation, the Corrective Action Site has been divided into nine parcels based on the separate and distinct releases. A conceptual site model was developed for each parcel to address the translocation of contaminants from each release. The results of this investigation will be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0 with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2005-12-01

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are according to the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 309 is comprised of the three Corrective Action Sites (CASs) (Figure 1-1) listed below: (1) CAS 12-06-09, Muckpile; (2) CAS 12-08-02, Contaminated Waste Dump (CWD); and (3) CAS 12-28-01, I-, J-, and K-Tunnel Debris. Corrective Action Sites 12-06-09 and 12-08-02 will be collectively referred to as muckpiles in this document. Corrective Action Site 12-28-01 will be referred to as the fallout plume because of the extensive lateral area of debris and fallout contamination resulting from the containment failures of the J- and K-Tunnels. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site (NTS), Nevada.'' (NNSA/NSO, 2004). This CADD/CR provides justification for the closure of CAU 309 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted according to the CAIP (NNSA/NSO, 2004), which provides information relating to the history, planning, and scope of the investigation. Therefore, this information will not be repeated in this CADD/CR.

  1. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. No.: 1 with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 552 is comprised of the one Corrective Action Site which is 12-23-05, Ponds. One additional CAS, 12-06-04, Muckpile (G-Tunnel Muckpile), was removed from this CAU when it was determined that the muckpile is an active site. A modification to the FFACO to remove CAS 12-06-04 was approved by the Nevada Division of Environmental Protection (NDEP) on December 16, 2004. The G-Tunnel ponds were first identified in the 1991 Reynolds Electrical & Engineering Co., Inc. document entitled, ''Nevada Test Site Inventory of Inactive and Abandoned Facilities and Waste Sites'' (REECo, 1991). Corrective Action Unit 552 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Therefore, additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating and selecting the corrective action alternatives for the site. The CAI will include field inspections, radiological surveys, and sampling of appropriate media. Data will also be obtained to support investigation-derived waste (IDW) disposal and potential future waste management decisions.

  2. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 538: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2006-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the closure of Corrective Action Unit (CAU) 538: Spill Sites, Nevada Test Site, Nevada. It has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. A SAFER may be performed when the following criteria are met: (1) Conceptual corrective actions are clearly identified (although some degree of investigation may be necessary to select a specific corrective action before completion of the Corrective Action Investigation [CAI]). (2) Uncertainty of the nature, extent, and corrective action must be limited to an acceptable level of risk. (3) The SAFER Plan includes decision points and criteria for making data quality objective (DQO) decisions. The purpose of the investigation will be to document and verify the adequacy of existing information; to affirm the decision for either clean closure, closure in place, or no further action; and to provide sufficient data to implement the corrective action. The actual corrective action selected will be based on characterization activities implemented under this SAFER Plan. This SAFER Plan identifies decision points developed in cooperation with the Nevada Division of Environmental Protection (NDEP) and where DOE will reach consensus with NDEP before beginning the next phase of work.

  3. Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David Strand

    2006-06-01

    Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if

  4. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Paces, James B.; Peterman, Zell E.; Futo, Kiyoto; Oliver, Thomas A.; Marshall, Brian D.

    2007-01-01

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to values

  5. Strontium Isotopic Composition of Paleozoic Carbonate Rocks in the Nevada Test Site Vicinity, Clark, Lincoln, and Nye Counties, Nevada and Inyo County, California.

    Energy Technology Data Exchange (ETDEWEB)

    James B. Paces; Zell E. Peterman; Kiyoto Futa; Thomas A. Oliver; and Brian D. Marshall.

    2007-08-07

    Ground water moving through permeable Paleozoic carbonate rocks represents the most likely pathway for migration of radioactive contaminants from nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. The strontium isotopic composition (87Sr/86Sr) of ground water offers a useful means of testing hydrochemical models of regional flow involving advection and reaction. However, reaction models require knowledge of 87Sr/86Sr data for carbonate rock in the Nevada Test Site vicinity, which is scarce. To fill this data gap, samples of core or cuttings were selected from 22 boreholes at depth intervals from which water samples had been obtained previously around the Nevada Test Site at Yucca Flat, Frenchman Flat, Rainier Mesa, and Mercury Valley. Dilute acid leachates of these samples were analyzed for a suite of major- and trace-element concentrations (MgO, CaO, SiO2, Al2O3, MnO, Rb, Sr, Th, and U) as well as for 87Sr/86Sr. Also presented are unpublished analyses of 114 Paleozoic carbonate samples from outcrops, road cuts, or underground sites in the Funeral Mountains, Bare Mountain, Striped Hills, Specter Range, Spring Mountains, and ranges east of the Nevada Test Site measured in the early 1990's. These data originally were collected to evaluate the potential for economic mineral deposition at the potential high-level radioactive waste repository site at Yucca Mountain and adjacent areas (Peterman and others, 1994). Samples were analyzed for a suite of trace elements (Rb, Sr, Zr, Ba, La, and Ce) in bulk-rock powders, and 87Sr/86Sr in partial digestions of carbonate rock using dilute acid or total digestions of silicate-rich rocks. Pre-Tertiary core samples from two boreholes in the central or western part of the Nevada Test Site also were analyzed. Data are presented in tables and summarized in graphs; however, no attempt is made to interpret results with respect to ground-water flow paths in this report. Present-day 87Sr/86Sr values are compared to

  6. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Boehlecke, Robert F.

    2006-11-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the closure of Corrective Action Unit (CAU) 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site (NTS), Nevada. It has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. A SAFER may be performed when the following criteria are met: (1) Conceptual corrective actions are clearly identified (although some degree of investigation may be necessary to select a specific corrective action before completion of the Corrective Action Investigation [CAI]); (2) Uncertainty of the nature, extent, and corrective action must be limited to an acceptable level of risk; (3) The SAFER Plan includes decision points and criteria for making data quality objective (DQO) decisions. The purpose of the investigation will be to document and verify the adequacy of existing information; to affirm the decision for clean closure, closure in place, or no further action; and to provide sufficient data to implement the corrective action. The actual corrective action selected will be based on characterization activities implemented under this SAFER Plan. This SAFER Plan identifies decision points developed in cooperation with the Nevada Department of Environmental Protection (NDEP), where the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) will reach consensus with the NDEP before beginning the next phase of work. Corrective Action Unit 553 is located in Areas 19 and 20 of the NTS, approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 553 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: 19-99-01, Mud Spill; 19-99-11, Mud Spill; 20-09-09, Mud Spill; and 20-99-03, Mud Spill. There is sufficient

  7. Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Rev. 0 with ROTC No. 1 and ROTC No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Boehlecke

    2004-10-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to CAS 23-02-08. The scope of the corrective action investigation

  8. Corrective Action Investigation Plan for Corrective Action Unit 224: Decon Pad and Septic Systems Nevada Test Site, Nevada, Rev. No.: 0, with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-04-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 224: Decon Pad and Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 224 is comprised of the nine Corrective Action Sites (CASs) listed below: 02-04-01, Septic Tank (Buried); 03-05-01, Leachfield; 05-04-01, Septic Tanks (4)/Discharge Area; 06-03-01, Sewage Lagoons (3); 06-05-01, Leachfield; 06-17-04, Decon Pad and Wastewater Catch; 06-23-01, Decon Pad Discharge Piping; 11-04-01, Sewage Lagoon; and 23-05-02, Leachfield. Corrective Action Sites 06-05-01, 06-23-01, and 23-05-02 were identified in the 1991 Reynolds Electrical & Engineering Co., Inc. (REECo) inventory (1991). The remaining sites were identified during review of various historical documents. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating and selecting a corrective action alternative for each CAS. The CAI will include field inspections, radiological and geological surveys, and sample collection. Data will also be obtained to support investigation-derived waste (IDW) disposal and potential future waste management decisions.

  9. Corrective Action Decision Document/Closure Report for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2006-11-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 551, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. The corrective actions proposed in this document are in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) that are shown on Figure 1-2 and listed below: CAS 12-01-09, Aboveground Storage Tank and Stain; CAS 12-06-05, U-12b Muckpile; CAS 12-06-07, Muckpile; and CAS 12-06-08, Muckpile. A detailed discussion of the history of this CAU is presented in the ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 551: Area 12 Muckpiles'' (NNSA/NSO, 2004). This CADD/CR provides justification for the closure of CAU 551 in place with administrative controls. This justification is based upon process knowledge and the results of the investigative activities conducted in accordance with the CAIP (NNSA/NSO, 2004). The CAIP provides information relating to the history, planning, and scope of the investigation; therefore, this information will not be repeated in the CADD/CR. Corrective Action Unit 551, Area 12 Muckpiles, consists of four inactive sites located in the southwestern portion of Area 12. The four CAU 551 sites consist of three muckpiles, and an aboveground storage tank (AST) and stain. The CAU 551 sites were all used during underground nuclear testing at the B-, C-, D- and F-Tunnels in the late 1950s and early 1960s and have mostly remained inactive since that period.

  10. Environmental assessment for device assembly facility operations, Nevada Test Site, Nye County, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), has prepared an environmental assessment (EA), (DOE/EA-0971), to evaluate the impacts of consolidating all nuclear explosive operations at the newly constructed Device Assembly Facility (DAF) in Area 6 of the Nevada Test Site. These operations generally include assembly, disassembly or modification, staging, transportation, testing, maintenance, repair, retrofit, and surveillance. Such operations have previously been conducted at the Nevada Test Site in older facilities located in Area 27. The DAF will provide enhanced capabilities in a state-of-the-art facility for the safe, secure, and efficient handling of high explosives in combination with special nuclear materials (plutonium and highly enriched uranium). Based on the information and analyses in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.). Therefore, an environmental impact statement is not required, and DOE is issuing this finding of no significant impact.

  11. Environmental assessment for liquid waste treatment at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This environmental assessment (EA) examines the potential impacts to the environment from treatment of low-level radioactive liquid and low-level mixed liquid and semi-solid wastes generated at the Nevada Test Site (NTS). The potential impacts of the proposed action and alternative actions are discussed herein in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended in Title 42 U.S.C. (4321), and the US Department of Energy (DOE) policies and procedures set forth in Title 10 Code of Federal Regulations (CFR) Part 1021 and DOE Order 451.1, ``NEPA Compliance Program.`` The potential environmental impacts of the proposed action, construction and operation of a centralized liquid waste treatment facility, were addressed in the Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada. However, DOE is reevaluating the need for a centralized facility and is considering other alternative treatment options. This EA retains a centralized treatment facility as the proposed action but also considers other feasible alternatives.

  12. Corrective Action Investigation Plan for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada, Rev. 0, Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-04-28

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Sites Office's (NNSA/NSO's) approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 516, Septic Systems and Discharge Points, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. CAU 516 consists of six Corrective Action Sites: 03-59-01, Building 3C-36 Septic System; 03-59-02, Building 3C-45 Septic System; 06-51-01, Sump Piping, 06-51-02, Clay Pipe and Debris; 06-51-03, Clean Out Box and Piping; and 22-19-04, Vehicle Decontamination Area. Located in Areas 3, 6, and 22 of the NTS, CAU 516 is being investigated because disposed waste may be present without appropriate controls, and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. Existing information and process knowledge on the expected nature and extent of contamination of CAU 516 are insufficient to select preferred corrective action alternatives; therefore, additional information will be obtained by conducting a corrective action investigation. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document. Record of Technical Change No. 1 is dated 3/2004.

  13. Corrective Action Investigation Plan for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada (Rev. 0 / June 2003), Including Record of Technical Change No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-06-27

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 536: Area 3 Release Site, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 536 consists of a single Corrective Action Site (CAS): 03-44-02, Steam Jenny Discharge. The CAU 536 site is being investigated because existing information on the nature and extent of possible contamination is insufficient to evaluate and recommend corrective action alternatives for CAS 03-44-02. The additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating CAAs and selecting the appropriate corrective action for this CAS. The results of this field investigation are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document. Record of Technical Change No. 1 is dated 3-2004.

  14. Rural migration in Nevada: Lincoln County. Phase 1, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Soden, D.L.; Carns, D.E.; Mosser, D.; Conary, J.S.; Ansell, J.P.

    1993-12-31

    The principal objective of this project was to develop insight into the scope of migration of working age Nevadans out of their county of birth; including the collection of data on their skill levels, desire to out or in-migrate, interactions between families of migratory persons, and the impact that the proposed high-level nuclear waste repository at Yucca mountain might have on their individual, and collective, decisions to migrate and return. The initial phase of this project reported here was conducted in 1992 and 1993 in Lincoln County, Nevada, one of the counties designated as ``affected`` by the proposed repository program. The findings suggest that a serious out-migration problem exists in Lincoln County, and that the Yucca mountain project will likely affect decisions relating to migration patterns in the future.

  15. Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-08-01

    This Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select viable corrective actions. This Corrective Action Investigation Plan provides investigative details for CAU 511, whereas programmatic aspects of this project are discussed in the ''Project Management Plan'' (DOE/NV, 1994). General field and laboratory quality assurance and quality control issues are presented in the ''Industrial Sites Quality Assurance Project Plan'' (NNSA/NV, 2002). Health and safety aspects of the project are documented in the current version of the Environmental Engineering Services Contractor's Health and Safety Plan and will be supplemented with a site-specific safety basis document. Corrective Action Unit 511 is comprised of the following nine corrective action sites in Nevada Test Site Areas 3, 4, 6, 7, 18, and 19: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). Corrective Action Sites 18-99-10 and 19-19-03 were identified after a review of the ''1992 RCRA Part B Permit Application for Waste Management Activities at the Nevada Test Site, Volume IV, Section L Potential Solid Waste Management Unit'' (DOE/NV, 1992). The remaining seven sites were first identified in the 1991 Reynolds

  16. Corrective Action Investigation Plan for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2005-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 219, Septic Systems and Injection Wells, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 219 is located in Areas 3, 16, and 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 219 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document.

  17. Annual Post-Closure Inspection and Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2006-09-01

    This report presents the data collected during field activities and quarterly soil-gas sampling activities conducted from May 9, 2005, through May 20, 2006, at Corrective Action Unit (CAU) 329, Area 22 Desert Rock Airstrip (DRA) Fuel Spill; Corrective Action Site (CAS) 22-44-01, Fuel Spill. The CAU is located at the DRA, which is located approximately two miles southwest of Mercury, Nevada, as shown in Figure 1-1. Field activities were conducted in accordance with the revised sampling approach outlined in the Addendum to the Closure Report (CR) for CAU 329 (NNSA/NSO, 2005) to support data collection requirements. The previous annual monitoring program for CAU 329 was initiated in August 2000 using soil-gas samples collected from three specific intervals at the DRA-0 and DRA-3 monitoring wells. Results of four sampling events from 2000 through 2003 indicated there is uncertainty in the approach to establish a rate of natural attenuation as specified in ''Streamlined Approach for Environmental Restoration (SAFER) Work Plan for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada'' (DOE/NV, 1999). As a result, the Addendum to the CR (NNSA/NSO, 2005) was completed to address this uncertainty by modifying the previous approach. A risk evaluation was added to the scope of the project to determine if the residual concentration of the hazardous constituents of JP4 pose an unacceptable risk to human health or the environment and if a corrective action was required at the site, because the current quarterly monitoring program is not expected to yield a rate constant that could be used effectively to determine a biodegradation rate for total petroleum hydrocarbons (TPH) in less than the initial five years outlined in the CR. Additionally, remediation to the Tier 1 action level for TPH is not practical or technically feasible due to the depth of contamination.

  18. Corrective Action Decision Document for Corrective Action Unit 271: Areas 25, 26, and 27 Septic Systems, Nevada Test Site, Nevada, Rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-09-16

    This corrective action decision document (CADD) identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 271, Areas 25, 26, and 27 Septic Systems, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order (FFACO). Located on the NTS approximately 65 miles northwest of Las Vegas, CAU 271 consists of fifteen Corrective Action Sites (CASs). The CASs consist of 13 septic systems, a radioactive leachfield, and a contaminated reservoir. The purpose of this CADD is to identify and provide a rationale for the selection of a recommended CAA for each CAS within CAU 271. Corrective action investigation (CAI) activities were performed from October 29, 2001, through February 22, 2002, and April 29, 2002, through June 25, 2002. Analytes detected during the CAI were evaluated against preliminary action levels and regulatory disposal limits to determine contaminants of concern (COC) for each CAS. It was determined that contaminants of concern included hydrocarbon-contaminated media, polychlorinated biphenyls, and radiologically-contaminated media. Three corrective action objectives were identified for these CASs, and subsequently three CAAs developed for consideration based on a review of existing data, future use, and current operations in Areas 25, 26, and 27 of the NTS. These CAAs were: Alternative 1 - No Further Action, Alternative 2 - Clean Closure, and Alternative 3 - Closure in Place with Administrative Controls. Alternative 2, Clean Closure, was chosen as the preferred CAA for all but two of the CASs (25-04-04 and 27-05-02) because Nevada Administrative Control 444.818 requires clean closure of the septic tanks involved with these CASs. Alternative 3, Closure in Place, was chosen for the final two CASs because the short-term risks of

  19. Corrective Action Investigation Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-06-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental corrective action alternatives. Corrective Action Unit 151 is located in Areas 2, 12, 18, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 151 is comprised of the nine Corrective Action Sites (CAS) listed below: (1) 02-05-01, UE-2ce Pond; (2) 12-03-01, Sewage Lagoons (6); (3) 12-04-01, Septic Tanks; (4) 12-04-02, Septic Tanks; (5) 12-04-03, Septic Tank; (6) 12-47-01, Wastewater Pond; (7) 18-03-01, Sewage Lagoon; (8) 18-99-09, Sewer Line (Exposed); and (9) 20-19-02, Photochemical Drain. The CASs within CAU 151 are discharge and collection systems. Corrective Action Site 02-05-01 is located in Area 2 and is a well-water collection pond used as a part of the Nash test. Corrective Action Sites 12-03-01, 12-04-01, 12-04-02, 12-04-03, and 12-47-01 are located in Area 12 and are comprised of sewage lagoons, septic tanks, associated piping, and two sumps. The features are a part of the Area 12 Camp housing and administrative septic systems. Corrective Action Sites 18-03-01 and 18-99-09 are located in the Area 17 Camp in Area 18. These sites are sewage lagoons and associated piping. The origin and terminus of CAS 18-99-09 are unknown; however, the type and configuration of the pipe indicates that it may be a part of the septic systems in Area 18. Corrective Action Site 20-19-02 is located in the Area 20 Camp. This site is comprised of a surface discharge of photoprocessing chemicals.

  20. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-05-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (DoD). Corrective Action Unit 543 is located in Area 6 and Area 15 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Seven corrective action sites (CASs) comprise CAU 543 and are listed below: (1) 06-07-01, Decon Pad; (2) 15-01-03, Aboveground Storage Tank; (3) 15-04-01, Septic Tank; (4) 15-05-01, Leachfield; (5) 15-08-01, Liquid Manure Tank; (6) 15-23-01, Underground Radioactive Material Area; and (7) 15-23-03, Contaminated Sump, Piping. Corrective Action Site 06-07-01, Decon Pad, is located in Area 6 and consists of the Area 6 Decontamination Facility and its components that are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency (EPA) Farm and are related to waste disposal activities at the EPA Farm. The EPA Farm was a fully-functional dairy associated with animal experiments conducted at the on-site laboratory. The corrective action investigation (CAI) will include field inspections, video-mole surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions. The CASs within CAU 543 are being investigated because hazardous and/or radioactive constituents may be present at concentrations that could potentially pose a threat to human health and the environment. The seven CASs in CAU 543

  1. A Cold War Battlefield: Frenchman Flat Historic District, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William Gray [DRI; Holz, Barbara A [DRI; Jones, Robert [DRI

    2000-08-01

    This report provides the U.S. Department of Energy, Nevada Operations Office with the documentation necessary to establish the Frenchman Flat Historic District on the Nevada Test Site (NTS). It includes a list of historic properties that contribute to the eligibility of the district for inclusion in the National Register of Historic Places (NRHP) and provides contextual information establishing its significance. The list focuses on buildings, structures and features associated with the period of atmospheric testing of nuclear weapons on the NTS between 1951 and 1962. A total of 157 locations of buildings and structures were recorded of which 115 are considered to be eligible for the NRHP. Of these, 28 have one or more associated features which include instrumentation supports, foundations, etc. The large majority of contributing structures are buildings built to study the blast effects of nuclear weaponry. This has resulted in a peculiar accumulation of deteriorated structures that, unlike most historic districts, is best represented by those that are the most damaged. Limitations by radiological control areas, surface exposure and a focus on the concentration of accessible properties on the dry lake bed indicate additional properties exist which could be added to the district on a case-by-case basis.

  2. Well Completion Report for Corrective Action Unit 443 Central Nevada Test Area Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-12-01

    The drilling program described in this report is part of a new corrective action strategy for Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA). The drilling program included drilling two boreholes, geophysical well logging, construction of two monitoring/validation (MV) wells with piezometers (MV-4 and MV-5), development of monitor wells and piezometers, recompletion of two existing wells (HTH-1 and UC-1-P-1S), removal of pumps from existing wells (MV-1, MV-2, and MV-3), redevelopment of piezometers associated with existing wells (MV-1, MV-2, and MV-3), and installation of submersible pumps. The new corrective action strategy includes initiating a new 5-year proof-of-concept monitoring period to validate the compliance boundary at CNTA (DOE 2007). The new 5-year proof-of-concept monitoring period begins upon completion of the new monitor wells and collection of samples for laboratory analysis. The new strategy is described in the Corrective Action Decision Document/Corrective Action Plan addendum (DOE 2008a) that the Nevada Division of Environmental Protection approved (NDEP 2008).

  3. Corrective Action Decision Document for Corrective Action Unit 516: Septic Systems and Discharge Points, Nevada Test Site, Nevada, Rev. No.: 1 with ROTC 1

    Energy Technology Data Exchange (ETDEWEB)

    Alfred N. Wickline

    2004-04-01

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 516, Septic Systems and Discharge Points, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 516 is comprised of the following Corrective Action Sites (CASs): (1) 03-59-01 - Bldg 3C-36 Septic System; (2) 03-59-02 - Bldg 3C-45 Septic System; (3) 06-51-01 - Sump and Piping; (4) 06-51-02 - Clay Pipe and Debris; (5) 06-51-03 - Clean Out Box and Piping; and (7) 22-19-04 - Vehicle Decontamination Area. The purpose of this CADD is to identify and provide the rationale for the recommendation of an acceptable corrective action alternative for each CAS within CAU 516. Corrective action investigation activities were performed between July 22 and August 14, 2003, as set forth in the Corrective Action Investigation Plan. Supplemental sampling was conducted in late 2003 and early 2004.

  4. Corrective Action Decision Document for Corrective Action Unit 224: Decon Pad and Septic Systems Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2005-05-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 224, Decon Pad and Septic Systems, in Areas 2, 3, 5, 6, 11, and 23 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 224 is comprised of the following corrective action sites (CASs): (1) 02-04-01, Septic Tank (Buried); (2) 03-05-01, Leachfield; (3) 05-04-01, Septic Tanks (4)/Discharge Area; (4) 06-03-01, Sewage Lagoons (3); (5) 06-05-01, Leachfield; (6) 06-17-04, Decon Pad and Wastewater Catch; (7) 06-23-01, Decon Pad Discharge Piping; (8) 11-04-01, Sewage Lagoon; and (9) 23-05-02, Leachfield. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for the nine CASs within CAU 224. Corrective action investigation activities were performed from August 10, 2004, through January 18, 2005, as set forth in the CAU 224 Corrective Action Investigation Plan.

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 511: Waste Dumps (Piles and Debris) Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, Laura

    2005-12-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 511, Waste Dumps (Piles & Debris). The CAU is comprised of nine corrective action sites (CASs) located in Areas 3, 4, 6, 7, 18, and 19 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 511 is comprised of nine CASs: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 511 with no further corrective action. To achieve this, corrective action investigation (CAI) and closure activities were performed from January 2005 through August 2005, as set forth in the ''Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris)'' (NNSA/NSO, 2004) and Record of Technical Change No. 1. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 511 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the data quality objective data needs. Analytes detected during the CAI were evaluated against appropriate preliminary

  6. Geochemical Analyses of Geologic Materials from Areas of Critical Environmental Concern, Clark and Nye Counties, Nevada

    Science.gov (United States)

    Ludington, Steve; Castor, Stephen B.; Budahn, James R.; Flynn, Kathryn S.

    2005-01-01

    INTRODUCTION An assessment of known and undiscovered mineral resources of selected areas administered by the Bureau of Land Management (BLM) in Clark and Nye Counties, Nevada was conducted by the U.S. Geological Survey (USGS), Nevada Bureau of Mines and Geology (NBMG), and University of Nevada, Las Vegas (UNLV). The purpose of this work was to provide the BLM with information for use in their long-term planning process in southern Nevada so that they can make better-informed decisions. The results of the assessment are in Ludington (2006). Existing information about the areas, including geology, geophysics, geochemistry, and mineral-deposit information was compiled, and field examinations of selected areas and mineral occurrences was conducted. This information was used to determine the geologic setting, metallogenic characteristics, and mineral potential of the areas. Twenty-five Areas of Critical Environmental Concern (ACECs) were identified by BLM as the object of this study. They range from tiny (less than one km2) to large (more than 1,000 km2). The location of the study areas is shown on Figure 1. This report includes geochemical data for rock samples collected by staff of the USGS and NBMG in these ACECs and nearby areas. Samples have been analyzed from the Big Dune, Ash Meadows, Arden, Desert Tortoise Conservation Center, Coyote Springs Valley, Mormon Mesa, Virgin Mountains, Gold Butte A and B, Whitney Pockets, Rainbow Gardens, River Mountains, and Piute-Eldorado Valley ACECs.

  7. Corrective Action Investigation Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada, July 2002, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-07-18

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 140 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 140 consists of nine Corrective Action Sites (CASs): 05-08-01, Detonation Pits; 05-08-02, Debris Pits; 05-17-01, Hazardous Waste Accumulation Site (Buried); 05-19-01, Waste Disposal Site; 05-23-01, Gravel Gertie; 05-35-01, Burn Pit; 05-99-04, Burn Pit; 22-99-04, Radioactive Waste Dump; 23-17-01, Hazardous Waste Storage Area. All nine of these CASs are located within Areas 5, 22, and 23 of the Nevada Test Site (NTS) in Nevada, approximately 65 miles northwest of Las Vegas. This CAU is being investigated because disposed waste may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present or migrating at concentrations and locations that could potentially pose a threat to human health and the environment. The NTS has been used for various research and development projects including nuclear weapons testing. The CASs in CAU 140 were used for testing, material storage, waste storage, and waste disposal. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution criteria and resolve the decision statements. Phase I will determine if contaminants of potential concern (COPCs) are present in concentrations exceeding preliminary action levels. This data will be evaluated at all CASs. Phase II will determine the extent of the contaminant(s) of concern (COCs). This data will only be evaluated for CASs with a COC identified during Phase I. Based on process knowledge, the COPCs for CAU 140 include volatile organics, semivolatile organics, petroleum hydrocarbons, explosive

  8. Database of groundwater levels and hydrograph descriptions for the Nevada Test Site area, Nye County, Nevada

    Science.gov (United States)

    Elliott, Peggy E.; Fenelon, Joseph M.

    2010-01-01

    A database containing water levels measured from wells in and near areas of underground nuclear testing at the Nevada Test Site was developed. The water-level measurements were collected from 1941 to 2016. The database provides information for each well including well construction, borehole lithology, units contributing water to the well, and general site remarks. Water-level information provided in the database includes measurement source, status, method, accuracy, and specific water-level remarks. Additionally, the database provides hydrograph narratives that document the water-level history and describe and interpret the water-level hydrograph for each well.Water levels in the database were quality assured and analyzed. Multiple conditions were assigned to each water-level measurement to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed to each water-level measurement.

  9. Evaluating Failure Mechanics of the Malpais Landslide, Eureka County, Nevada

    Science.gov (United States)

    Wilhite, C. P.; Carr, J. R.; Wallace, A. R.; Watters, R. J.

    2008-12-01

    The Malpais Landslide is located on the northeast end of the Shoshone Mountains in north-central Nevada. The 2.3 square kilometer slide originated near the crest of the Malpais Rim and flowed north into Whirlwind Valley. Given the proximity to Holocene faulting and active geothermal conditions, destabilizing forces include seismic activity, hydrothermal alteration, and changes in groundwater conditions. Approximately 3 km west of the slide is the Beowawe Geothermal Field, which is partially recharged along local faults and has altered geologic units throughout the slide area. The area contains two major normal faults (the approximately east striking Malpais Fault and the approximately north striking Dunphy Pass Fault) and numerous smaller faults. The most recent offset along the Malpais fault was approximately 7450 years B.P. (Wesnousky et al., 2005). The resulting scarp cannot be traced through the slide, therefore sliding occurred after that time (though previous sliding has not been ruled out). The stratigraphy in the slide area consists of a basal Paleozoic quartzite, unconformably overlain by Oligocene to Miocene conglomeratic to tuffaceous sediments with interbedded volcanic flows, capped by a sequence of mafic flow units. Except for the lowest sedimentary unit, Tts, all units dip approximately 25 degrees southeast. Tts was measured in outcrops east of the site and dips approximately 20 degrees north; since these outcrops could not be traced into the slide area, the dip of Tts at the slide is unknown. Point-load testing showed Tts to have a tensile strength of 3.12 MPa which is 55% weaker than the next weakest unit in the area. These factors, as well as Tts" semiconsolidated nature, suggest that Tts was the unit of failure. Further testing of the Malpais Landslide, as well as computer simulation, will be used to determine the cause of failure. This information and the examination of other nearby landslides may be helpful in assessing landslide risk in north

  10. Corrective Action Decision Document for Corrective Action Unit 168: Area 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada, Rev. No.: 2 with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2006-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 168: Area 25 and 26, Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada. The purpose of this Corrective Action Decision Document is to identify and provide a rationale for the selection of a recommended corrective action alternative for each corrective action site (CAS) within CAU 168. The corrective action investigation (CAI) was conducted in accordance with the ''Corrective Action Investigation Plan for Corrective Action Unit 168: Area 25 and 26, Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada'', as developed under the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 168 is located in Areas 25 and 26 of the Nevada Test Site, Nevada and is comprised of the following 12 CASs: CAS 25-16-01, Construction Waste Pile; CAS 25-16-03, MX Construction Landfill; CAS 25-19-02, Waste Disposal Site; CAS 25-23-02, Radioactive Storage RR Cars; CAS 25-23-13, ETL - Lab Radioactive Contamination; CAS 25-23-18, Radioactive Material Storage; CAS 25-34-01, NRDS Contaminated Bunker; CAS 25-34-02, NRDS Contaminated Bunker; CAS 25-99-16, USW G3; CAS 26-08-01, Waste Dump/Burn Pit; CAS 26-17-01, Pluto Waste Holding Area; and CAS 26-19-02, Contaminated Waste Dump No.2. Analytes detected during the CAI were evaluated against preliminary action levels (PALs) to determine contaminants of concern (COCs) for CASs within CAU 168. Radiological measurements of railroad cars and test equipment were compared to unrestricted (free) release criteria. Assessment of the data generated from the CAI activities revealed the following: (1) Corrective Action Site 25-16-01 contains hydrocarbon-contaminated soil at concentrations exceeding the PAL. The contamination is at discrete locations associated with asphalt debris. (2) No COCs were identified at CAS 25-16-03. Buried construction waste is present in at least two

  11. Geologic evaluation of the Oasis Valley basin, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fridrich, C.J.; Minor, S.A.; and Mankinen, E.A.

    2000-01-13

    This report documents the results of a geologic study of the area between the underground-nuclear-explosion testing areas on Pahute Mesa, in the northwesternmost part of the Nevada Test Site, and the springs in Oasis Valley, to the west of the Test Site. The new field data described in this report are also presented in a geologic map that is a companion product(Fridrich and others, 1999) and that covers nine 7.5-minute quadrangles centered on Thirsty Canyon SW, the quadrangle in which most of the Oasis Valley springs are located. At the beginning of this study, published detailed maps were available for 3 of the 9 quadrangles of the study area: namely Thirsty Canyon (O'Connor and others, 1966); Beatty (Maldonado and Hausback, 1990); and Thirsty Canyon SE (Lipman and others, 1966). Maps of the last two of these quadrangles, however, required extensive updating owing to recent advances in understanding of the regional structure and stratigraphy. The new map data are integrated in this re port with new geophysical data for the Oasis Valley area, include gravity, aeromagnetic, and paleomagnetic data (Grauch and others, 1997; written comm., 1999; Mankinen and others, 1999; Hildenbrand and others, 1999; Hudson and others, 1994; Hudson, unpub. data).

  12. Map showing the Elko crater field, Elko County, Nevada

    Science.gov (United States)

    Ketner, Keith B.; Roddy, David J.

    1980-01-01

    The Elko crater field consists of two arrays of rimmed craters in the valleys of Dorsey, Susie, and McClellan Creeks, 30 to 50 km north of Elko, Nevada. In the principal array, more the 165 craters are scattered irregularly in an area 3 km wide and 20 km long. Most of the the craters are circular but some, formed by overlap, are oval or irregular. They range from 5 m to 250 m in diameter and the relief of the largest ones, from the sedimentary floor of the cater to the top of the rim, is at least 6 m. The surficial material of the rims is principally gravel similar to that in the surrounding terrane. The surficial material inside the craters is primarily silt, probably blown in by the wind, and pebbles, apparently washed in from the rims. There is also a later of volcanic ash at a depth of about 2 m. This ash was identified by its physical and mineralogical composition as the Mazama ash (R. E. Wilcox, oral commun., 1976), a ±6600 year old ash bed also present in the alluvium of Dorsey and Susie Creeks. The craters are presently interpreted as having been formed by a meteor shower although no meteor material has been discovered. Investigation is continuing.

  13. Geology of the Beowawe geothermal system, Eureka and Lander Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Struhsacker, E.M.

    1980-07-01

    A geologic study is described undertaken to evaluate the nature of structural and stratigraphic controls within the Beowawe geothermal system, Eureka and Lander Counties, Nevada. This study includes geologic mapping at a scale of 1:24,000 and lithologic logs of deep Chevron wells. Two major normal fault systems control the configuration of the Beowawe geothermal system. Active hot springs and sinter deposits lie along the Malpais Fault zone at the base of the Malpais Rim. The Malpais Rim is one of several east-northeast-striking, fault-bounded cuestas in north central Nevada. A steeply inclined scarp slope faces northwest towards Whirlwind Valley. The general inclination of the volcanic rocks on the Malpais dip slope is 5/sup 0/ to 10/sup 0/ southeast.

  14. A floristic survey of Yucca Mountain and vicinity, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Niles, W.E.; Leary, P.J.; Holland, J.S.; Landau, F.H.

    1995-12-01

    A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994, and from March to October 1995. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas. Collection data accompanying these specimens were entered into that herbarium`s electronic data base. Combined results from this survey and the works of other investigators reveal the presence of a total of 375 specific and intraspecific taxa within the area these allocated to 179 genera and 54 families. No taxon currently listed as threatened or endangered under the Endangered Species Act was encountered during this study. Several candidate species for listing under this Act were present, and distributional data for these were recorded. No change in the status of these candidate species is recommended as the result of this study.

  15. A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Inst., Nevada University, Reno, NV (United States); Holz, Barbara A. [Desert Research Inst., Nevada University, Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst., Nevada University, Reno, NV (United States); Goldenberg, Nancy G. [Desert Research Inst., Nevada University, Reno, NV (United States); Ashbaugh, Laurence J. [Desert Research Inst., Nevada University, Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst., Nevada University, Reno, NV (United States)

    2014-01-01

    This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense, Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962, Tiny Tot in 1965, and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types of experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013, totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface, four buildings, four structures, and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site, albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the

  16. A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Inst., Nevada University, Reno, NV (United States); Holz, Barbara A. [Desert Research Inst., Nevada University, Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst., Nevada University, Reno, NV (United States); Goldenberg, Nancy G. [Desert Research Inst., Nevada University, Reno, NV (United States); Ashbaough, Laurence J. [Desert Research Inst., Nevada University, Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst., Nevada University, Reno, NV (United States)

    2014-01-09

    This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense, Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962, Tiny Tot in 1965, and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types of experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013, totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface, four buildings, four structures, and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site, albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the

  17. A Historical Evaluation of the U15 Complex, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Inst., Nevada University, Reno, NV (United States); Holz, Barbara A. [Desert Research Inst., Nevada University, Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst., Nevada University, Reno, NV (United States); Goldenberg, Nancy G. [Desert Research Inst., Nevada University, Reno, NV (United States); Ashbaugh, Laurence J. [Desert Research Inst., Nevada University, Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst., Nevada University, Reno, NV (United States)

    2014-01-09

    This report presents a historical evaluation of the U15 Complex on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office and the U.S. Department of Defense, Defense Threat Reduction Agency. Three underground nuclear tests and two underground nuclear fuel storage experiments were conducted at the complex. The nuclear tests were Hard Hat in 1962, Tiny Tot in 1965, and Pile Driver in 1966. The Hard Hat and Pile Driver nuclear tests involved different types of experiment sections in test drifts at various distances from the explosion in order to determine which sections could best survive in order to design underground command centers. The Tiny Tot nuclear test involved an underground cavity in which the nuclear test was executed. It also provided data in designing underground structures and facilities to withstand a nuclear attack. The underground nuclear fuel storage experiments were Heater Test 1 from 1977 to 1978 and Spent Fuel Test - Climax from 1978 to 1985. Heater Test 1 was used to design the later Spent Fuel Test - Climax experiment. The latter experiment was a model of a larger underground storage facility and primarily involved recording the conditions of the spent fuel and the surrounding granite medium. Fieldwork was performed intermittently in the summers of 2011 and 2013, totaling 17 days. Access to the underground tunnel complex is sealed and unavailable. Restricted to the surface, four buildings, four structures, and 92 features associated with nuclear testing and fuel storage experiment activities at the U15 Complex have been recorded. Most of these are along the west side of the complex and next to the primary access road and are characteristic of an industrial mining site, albeit one with scientific interests. The geomorphological fieldwork was conducted over three days in the

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 219: Septic Systems and Injection Wells, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David Strand

    2006-05-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 219, Septic Systems and Injection Wells, in Areas 3, 16, and 23 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 219 is comprised of the following corrective action sites (CASs): (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 219 with no further corrective action beyond the application of a use restriction at CASs 16-04-01, 16-04-02, and 16-04-03. To achieve this, corrective action investigation (CAI) activities were performed from June 20 through October 12, 2005, as set forth in the CAU 219 Corrective Action Investigation Plan and Record of Technical Change No. 1. A best management practice was implemented at CASs 16-04-01, 16-04-02, and 16-04-03, and corrective action was performed at CAS 23-20-01 between January and April 2006. In addition, a use restriction will be applied to CASs 16-04-01, 16-04-02, and 16-04-03 to provide additional protection to Nevada Test Site personnel. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 219 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling

  19. Corrective Action Decision Document for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells Nevada Test Site, Nevada, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    Robert Boehlecke

    2004-12-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 322, Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 322 is comprised of the following corrective action sites (CASs): (1) 01-25-01 - AST Release Site; (2) 03-25-03 - Mud Plant and AST Diesel Release; and (3) 03-20-05 - Injection Wells and BOP Shop. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for each CAS within CAU 322. Corrective action investigation activities were performed from April 2004 through September 2004, as set forth in the Corrective Action Investigation Plan. The purposes of the activities as defined during the data quality objectives process were: (1) Determine if contaminants of concern (COCs) are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to recommend appropriate corrective actions for the CASs. Analytes detected during the corrective action investigation were evaluated against appropriate preliminary action levels to identify contaminants of concern for each corrective action site. Radiological field measurements were compared to unrestricted release criteria. Assessment of the data generated from investigation activities revealed the following: (1) CAS 01-25-01 contains an AST berm contaminated with total petroleum hydrocarbons (TPH) diesel-range organics (DRO). (2) CAS 03-25-03 includes two distinct areas: Area A where no contamination remains from a potential spill associated with an AST, and Area B where TPH-DRO contamination associated with various activities at the mud plant was identified. The Area B contamination was found at various locations and depths. (3) CAS 03-25-03 Area B contains TPH-DRO contamination at various

  20. Corrective Action Investigation Plan for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada (Rev. No.: 0, August 2002)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-08-27

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Offices's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 127 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 127 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of 12 Corrective Action Sites (CASs) located at Test Cell C; the Engine Maintenance, Assembly, and Disassembly (E-MAD) Facility; the X-Tunnel in Area 25; the Pluto Disassembly Facility; the Pluto Check Station; and the Port Gaston Training Facility in Area 26. These CASs include: CAS 25-01-05, Aboveground Storage Tank (AST); CAS 25-02-02, Underground Storage Tank (UST); CAS 25-23-11, Contaminated Materials; CAS 25-12-01, Boiler; CAS 25-01-06, AST; CAS 25-01-07, AST; CAS 25-02-13, UST; CAS 26- 01-01, Filter Tank (Rad) and Piping; CAS 26-01-02, Filter Tank (Rad); CAS 26-99-01, Radioactively Contaminated Filters; CAS 26-02-01, UST; CAS 26-23-01, Contaminated Liquids Spreader. Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for CAU 127 include radionuclides, metals, total petroleum hydrocarbons, volatile organic compounds, asbestos, and polychlorinated biphenyls. Additionally, beryllium may be present at some locations. The sources of potential releases are varied, but releases of contaminated liquids may have occurred and may have migrated into and impacted soil below and surrounding storage vessels at some of the CASs. Also, at several CASs, asbestos-containing materials may be present on the aboveground structures and may be friable. Exposure pathways are limited to ingestion, inhalation, and dermal contact (adsorption) of soils/sediments or liquids, or inhalation of contaminants by site workers due to disturbance of

  1. Corrective Action Investigation Plan for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada (Rev. No.: 0, August 2002)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-08-27

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Offices's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 127 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 127 is located on the Nevada Test Site approximately 65 miles northwest of Las Vegas, Nevada. This CAU is comprised of 12 Corrective Action Sites (CASs) located at Test Cell C; the Engine Maintenance, Assembly, and Disassembly (E-MAD) Facility; the X-Tunnel in Area 25; the Pluto Disassembly Facility; the Pluto Check Station; and the Port Gaston Training Facility in Area 26. These CASs include: CAS 25-01-05, Aboveground Storage Tank (AST); CAS 25-02-02, Underground Storage Tank (UST); CAS 25-23-11, Contaminated Materials; CAS 25-12-01, Boiler; CAS 25-01-06, AST; CAS 25-01-07, AST; CAS 25-02-13, UST; CAS 26- 01-01, Filter Tank (Rad) and Piping; CAS 26-01-02, Filter Tank (Rad); CAS 26-99-01, Radioactively Contaminated Filters; CAS 26-02-01, UST; CAS 26-23-01, Contaminated Liquids Spreader. Based on site history, process knowledge, and previous field efforts, contaminants of potential concern for CAU 127 include radionuclides, metals, total petroleum hydrocarbons, volatile organic compounds, asbestos, and polychlorinated biphenyls. Additionally, beryllium may be present at some locations. The sources of potential releases are varied, but releases of contaminated liquids may have occurred and may have migrated into and impacted soil below and surrounding storage vessels at some of the CASs. Also, at several CASs, asbestos-containing materials may be present on the aboveground structures and may be friable. Exposure pathways are limited to ingestion, inhalation, and dermal contact (adsorption) of soils/sediments or liquids, or inhalation of contaminants by site workers due to disturbance of

  2. Closure Report for Corrective Action Units 530, 531, 532, 533, 534, 535: NTS Mud Pits, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2006-07-01

    This Closure Report (CR) presents information supporting the recommendation of no further action for the following six Corrective Action Units (CAUs): (1) CAU 530 - LANL Preshot Mud Pits; (2) CAU 531 - LANL Postshot Mud Pits; (3) CAU 532 - LLNL Preshot Mud Pits; (4) CAU 533 - LLNL Postshot Mud Pits; (5) CAU 534 - Exploratory/Instrumentation Mud Pits; and (6) CAU 535 - Mud Pits/Disposal Areas. This CR complies with the requirements of the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. CAUs 530-535 are located in Areas 1-10, 14, 17, 19, and 20 of the Nevada Test Site and are comprised of 268 Corrective Action Sites (CASs) listed in Table 1-1. The purpose of this CR is to validate the risk-based closure strategy presented in the ''Mud Pit Risk-Based Closure Strategy Report'' (RBCSR) (NNSA/NSO, 2004) and the CAUs 530-535 SAFER Plan (NNSA/NSO, 2005b). This strategy uses 52 CASs as a statistical representation of CAUs 530-535 to confirm the proposed closure alternative, no further action, is sufficient to protect human health and the environment. This was accomplished with the following activities: A field investigation following a probabilistic sampling design to collect data that were used in a non-carcinogenic risk assessment for human receptors; Visual habitat surveys to confirm the lack of habitat for threatened and endangered species; Disposal of debris and waste generated during field activities; and Document Notice of Completion and closure of CAUs 530-535 issued by Nevada Division of Environmental Protection. The field investigation and site visits were conducted between August 31, 2005 and February 21, 2006. As stated in the RBCSR and Streamlined Approach for Environmental Restoration (SAFER) Plan, total petroleum hydrocarbons-diesel-range organics (TPH-DRO) was the only contaminant of potential

  3. Corrective Action Decision Document for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada, Rev. No.: 0, with ROTC No. 1 and Addendum

    Energy Technology Data Exchange (ETDEWEB)

    David Strand

    2006-04-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 145, Wells and Storage Holes in Area 3 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 145 is comprised of the following corrective action sites (CASs): (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of a corrective action alternative for the six CASs within CAU 145. Corrective action investigation activities were performed from August 1, 2005, through November 8, 2005, as set forth in the CAU 145 Corrective Action Investigation Plan and Record of Technical Change No. 1. Analytes detected during the Corrective Action Investigation (CAI) were evaluated against appropriate final action levels to identify the contaminants of concern for each CAS. The results of the CAI identified contaminants of concern at one of the six CASs in CAU 145 and required the evaluation of corrective action alternatives. Assessment of the data generated from investigation activities conducted at CAU 145 revealed the following: CASs 03-20-01, 03-20-02, 03-20-04, 03-20-08, and 03-99-13 do not contain contamination; and CAS 03-25-01 has pentachlorophenol and arsenic contamination in the subsurface soils. Based on the evaluation of analytical data from the CAI, review of future and current operations at the six CASs, and the detailed and comparative analysis of the potential corrective action alternatives, the following corrective actions are recommended for CAU 145. No further action is the preferred corrective action for CASs 03-20-01, 03-20-02, 03-20-04, 03-20-08, and 03-99-13. Close in place is the preferred corrective action

  4. Corrective Action Decision Document/Closure Report for Corrective Action Unit 274: Septic Systems, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-09-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 274, Septic Systems, Nevada Test Site (NTS), Nevada in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit (CAU) 274 is comprised of five corrective action sites (CASs): (1) CAS 03-02-01, WX-6 ETS Building Septic System; (2) CAS 06-02-01, Cesspool; (3) CAS 09-01-01, Spill Site; (4) CAS 09-05-01, Leaching Pit; and (5) CAS 20-05-01, Septic System. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the closure of CAU 274 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from November 14 through December 17, 2005 as set forth in the CAU 274 Corrective Action Investigation Plan. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If contaminants of concern are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 274 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. No analytes were detected at concentrations exceeding the FALs. No COCs have been released to the soil at CAU 274, and corrective action is not required. Therefore, the DQO data needs were met, and it was determined that no corrective action based on risk to human receptors is necessary for the site. All FALs were calculated using the industrial site worker scenario except for benzo(a)pyrene, which was

  5. Time-series analysis of ion and isotope geochemistry of selected springs of the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Lyles, B.F.; Edkins, J.; Jacobson, R.L.; Hess, J.W.

    1990-11-01

    The temporal variations of ion and isotope geochemistry were observed at six selected springs on the Nevada Test Site, Nye County, Nevada and included: Cane, Whiterock, Captain Jack, Topopah, Tippipah, and Oak Springs. The sites were monitored from 1980 to 1982 and the following parameters were measured: temperature, pH, electrical conductance, discharge, cations (Ca{sup 2+}, Mg{sup 2+}. Na{sup +}, K{sup +}), anions Cl{sup {minus}}, SO{sub 4}{sup 2{minus}}. HCO{sub 3}{sup {minus}}, silica, stable isotopes ({delta}{sup 18}O, {delta}D, {delta}{sup 13}C), and radioactive isotopes ({sup 3}H, {sup 14}C). A more detailed study was continued from 1982 to 1988 at Cane and Whiterock Springs. Field microloggers were installed at these sites in 1985 to measure the high frequency response of temperature, electrical conductance, and discharge to local precipitation. Stage fluctuations near the discharge point dissolve minerals/salts as groundwater inundates the mineralized zone immediately above the equilibrium water table. This phenomena was most noticeable at Whiterock Spring and lagged the discharge response by several hours. Stable isotope analysis of precipitation and groundwater suggests a 1.5 to 2 month travel time for meteoric water to migrate from the recharge area to the discharge point. Groundwater age determinations suggest a mean age of approximately 30 years at Whiterock Spring and possibly older at Cane Spring. However, the short travel time and geochemical integrity of recharge pulses suggest that the waters are poorly mixed along the flow paths. 25 refs., 25 figs., 24 tabs.

  6. Summary of data concerning radiological contamination at well PM-2, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.M.; Locke, G.L.

    1997-02-01

    Analysis of water from well Pahute Mesa No. 2 (PM-2), on Pahute Mesa in the extreme northwestern part of the Nevada Test Site, indicated tritium concentrations above background levels in August 1993. A coordinated investigation of the tritium occurrence in well PM-2 was undertaken by the Hydrologic Resources Management Program of the US Department of Energy. Geologic and hydrologic properties of the hydrogeologic units were characterized using existing information. Soil around the well and water quality in the well were characterized during the investigation. The purpose of this report is to present existing information and results from a coordinated investigation of tritium occurrence. The objectives of the overall investigation include: (1) determination of the type and concentration of contamination; (2) identification of the source and mechanism of contamination; (3) estimation of the extent of radiological contamination; (4) initiation of appropriate monitoring of the contamination; and (5) reporting of investigation results. Compiled and tabulated data of the area are presented. The report also includes characterization of geology, soil, hydrology, and water quality data.

  7. Summary of data concerning radiological contamination at well PM-2, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Russell, G.M.; Locke, G.L.

    1997-02-01

    Analysis of water from well Pahute Mesa No. 2 (PM-2), on Pahute Mesa in the extreme northwestern part of the Nevada Test Site, indicated tritium concentrations above background levels in August 1993. A coordinated investigation of the tritium occurrence in well PM-2 was undertaken by the Hydrologic Resources Management Program of the US Department of Energy. Geologic and hydrologic properties of the hydrogeologic units were characterized using existing information. Soil around the well and water quality in the well were characterized during the investigation. The purpose of this report is to present existing information and results from a coordinated investigation of tritium occurrence. The objectives of the overall investigation include: (1) determination of the type and concentration of contamination; (2) identification of the source and mechanism of contamination; (3) estimation of the extent of radiological contamination; (4) initiation of appropriate monitoring of the contamination; and (5) reporting of investigation results. Compiled and tabulated data of the area are presented. The report also includes characterization of geology, soil, hydrology, and water quality data.

  8. Geochemical and Isotopic Evaluation of Groundwater Movement in Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2006-02-01

    This report describes the results of a comprehensive geochemical evaluation of the groundwater flow system in the Yucca Flat/Climax Mine Corrective Action Unit (CAU). The main objectives of this study are to identify probable pathways for groundwater flow within the study area and to develop constraints on groundwater transit times between selected data collection sites. This work provides an independent means of testing and verifying predictive flow models being developed for this CAU using finite element methods. The Yucca Flat/Climax Mine CAU constitutes the largest of six underground test areas on the Nevada Test Site (NTS) specified for remedial action in the ''Federal Facility Agreement and Consent Order''. A total of 747 underground nuclear detonations were conducted in this CAU. Approximately 23 percent of these detonations were conducted below or near the water table, resulting in groundwater contamination in the vicinity and possibly downgradient of these underground test locations. Therefore, a rigorous evaluation of the groundwater flow system in this CAU is necessary to assess potential long-term risks to the public water supply at downgradient locations.

  9. The distribution and modeling of nitrate transport in the Carson Valley alluvial aquifer, Douglas County, Nevada

    Science.gov (United States)

    Naranjo, Ramon C.; Welborn, Toby L.; Rosen, Michael R.

    2013-01-01

    Residents of Carson Valley in Douglas County, Nevada, rely on groundwater from an alluvial aquifer for domestic use and agricultural irrigation. Since the 1970s, there has been a rapid increase in population in several parts of the valley that rely on domestic wells for drinking water and septic systems for treatment of household waste. As a result, the density of septic systems in the developed areas is greater than one septic system per 3 acres, and the majority of the domestic wells are shallow (screened within 250 feet of the land surface).

  10. Barriers to HIV Testing Among Young Men Who Have Sex With Men (MSM): Experiences from Clark County, Nevada

    OpenAIRE

    Pharr, Jennifer R.; Lough, Nancy L.; Echezona E Ezeanolue

    2015-01-01

    Clark County, Nevada had a 52% increase in newly diagnosed HIV infections in young people age 13-24 with 83% of the new diagnoses in this age group being men who have sex with men (MSM). HIV testing and counseling is critical for HIV prevention, care and treatment, yet young people are the least likely to seek HIV testing. The purpose of this study was to identify barriers and facilitators to HIV testing experienced by young MSM in Clark County, Nevada. We conducted a qualitative focus group ...

  11. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  12. Hydraulic characterization of overpressured tuffs in central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Halford, Keith J.; Laczniak, Randell J.; Galloway, Devin L.

    2005-01-01

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  13. Corrective Action Decision Document/Closure Report for Corrective Action Unit 554: Area 23 Release Site Nevada Test Site, Nevada, Rev. No.: 0 with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Evenson, Grant

    2005-12-01

    This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit 554, Area 23 Release Site, located in Mercury at the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit (CAU) 554 is comprised of one corrective action site (CAS): CAS 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation for closure of CAU 554 with no further corrective action. To achieve this, corrective action investigation (CAI) activities were performed from January 18 through May 5, 2005, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site (NNSA/NSO, 2004) and Records of Technical Change No. 1 and No. 2. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern are present. (2) If contaminants of concern are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 554 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against preliminary action levels (PALs) established in the CAU 554 CAIP for total petroleum hydrocarbons (TPH) benzo(a)pyrene, dibenz(a,h)anthracene, and trichloroethene (TCE). Specifically: (1) The soil beneath and laterally outward from former underground storage tanks at CAS 23-02-08 contains TPH-diesel-range organics (DRO) above the PAL of 100 milligrams per kilogram, confined vertically from a depth of approximately 400 feet (ft) below ground

  14. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    David Strand

    2006-09-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses closure for Corrective Action Unit (CAU) 118, Area 27 Super Kukla Facility, identified in the ''Federal Facility Agreement and Consent Order''. Corrective Action Unit 118 consists of one Corrective Action Site (CAS), 27-41-01, located in Area 27 of the Nevada Test Site. Corrective Action Site 27-41-01 consists of the following four structures: (1) Building 5400A, Reactor High Bay; (2) Building 5400, Reactor Building and access tunnel; (3) Building 5410, Mechanical Building; and (4) Wooden Shed, a.k.a. ''Brock House''. This plan provides the methodology for field activities needed to gather the necessary information for closing the CAS. There is sufficient information and process knowledge from historical documentation and site confirmation data collected in 2005 and 2006 to recommend closure of CAU 118 using the SAFER process. The Data Quality Objective process developed for this CAU identified the following expected closure option: closure in place with use restrictions. This expected closure option was selected based on available information including contaminants of potential concern, future land use, and assumed risks. There are two decisions that need to be answered for closure. Decision I is to determine the nature of contaminants of concern in environmental media or potential source material that could impact human health or the environment. Decision II is to determine whether or not sufficient information has been obtained to confirm that closure objectives were met. This decision includes determining whether the extent of any contamination remaining on site has been defined, and whether actions have been taken to eliminate exposure pathways.

  15. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    Energy Technology Data Exchange (ETDEWEB)

    McCord, John; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of

  16. Mineral resource assessment of selected areas in Clark and Nye Counties, Nevada [Chapters A-L

    Science.gov (United States)

    Ludington, Steve

    2006-01-01

    During 2004-2006, the U.S. Geological Survey conducted a mineral resource assessment of selected areas administered by the Bureau of Land Management in Clark and Nye Counties, Nevada. The purpose of this study is to provide the BLM with information for land planning and management and, specifically, to determine mineral resource potential in accordance with regulations in 43 CFR 2310, which governs the withdrawal of public lands. The Clark County Conservation of Public Land and Natural Resources Act of 2002 (Public Law 107-282) temporarily withdraws a group of areas designated as Areas of Critical Environmental Concern (ACECs) from mineral entry, pending final approval of an application for permanent withdrawal by the BLM. This study provides information about mineral resource potential of the ACECs. Existing information was compiled about the ACECs, including geology, geophysics, geochemistry, and mineral-deposit information. Field examinations of selected areas and mineral occurrences were conducted to determine their geologic setting and mineral potential.

  17. Corrective Action Decision Document for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Grant Evenson

    2006-05-01

    This Corrective Action Decision Document has been prepared for Corrective Action Unit (CAU) 151, Septic Systems and Discharge Area, at the Nevada Test Site, Nevada, according to the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 151 is comprised of eight corrective action sites (CASs): (1) CAS 02-05-01, UE-2ce Pond; (2) CAS 12-03-01, Sewage Lagoons (6); (3) CAS 12-04-01, Septic Tanks; (4) CAS 12-04-02, Septic Tanks; (5) CAS 12-04-03, Septic Tank; (6) CAS 12-47-01, Wastewater Pond; (7) CAS 18-03-01, Sewage Lagoon; and (8) CAS 18-99-09, Sewer Line (Exposed). The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of corrective action alternatives (CAAs) for each of the eight CASs within CAU 151. Corrective action investigation (CAI) activities were performed from September 12 through November 18, 2005, as set forth in the CAU 151 Corrective Action Investigation Plan and Record of Technical Change No. 1. Additional confirmation sampling was performed on December 9, 2005; January 10, 2006; and February 13, 2006. Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the contaminants of concern for each CAS. The results of the CAI identified contaminants of concern at two of the eight CASs in CAU 151 and required the evaluation of CAAs. Assessment of the data generated from investigation activities conducted at CAU 151 revealed the following: (1) Soils at CASs 02-05-01, 12-04-01, 12-04-02, 12-04-03, 12-47-01, 18-03-01, 18-99-09, and Lagoons B through G of CAS 12-03-01 do not contain contamination at concentrations exceeding the FALs. (2) Lagoon A of CAS 12-03-01 has arsenic above FALs in shallow subsurface soils. (3) One of the two tanks of CAS 12-04-01, System No.1, has polychlorinated biphenyls (aroclor-1254), trichloroethane, and cesium-137 above FALs in the sludge. Both CAS 12-04-01, System

  18. Corrective Action Investigation Plan for Corrective Action Unit 409: Other Waste Sites, Tonopah Test Range, Nevada (Rev. 0)

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2000-10-05

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 409 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 409 consists of three Corrective Action Sites (CASs): TA-53-001-TAB2, Septic Sludge Disposal Pit No.1; TA-53-002-TAB2, Septic Sludge Disposal Pit No.2; and RG-24-001-RGCR, Battery Dump Site. The Septic Sludge Disposal Pits are located near Bunker Two, close to Area 3, on the Tonopah Test Range. The Battery Dump Site is located at the abandoned Cactus Repeater Station on Cactus Peak. The Cactus Repeater Station was a remote, battery-powered, signal repeater station. The two Septic Sludge Disposal Pits were suspected to be used through the late 1980s as disposal sites for sludge from septic tanks located in Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern are the same for the disposal pits and include: volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPHs) as gasoline- and diesel-range organics, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and radionuclides (including plutonium and depleted uranium). The Battery Dump Site consists of discarded lead-acid batteries and associated construction debris, placing the site in a Housekeeping Category and, consequently, no contaminants are expected to be encountered during the cleanup process. The corrective action the at this CAU will include collection of discarded batteries and construction debris at the Battery Dump Site for proper disposal and recycling, along with photographic documentation as the process progresses. The corrective action for the remaining CASs involves the collection of background radiological data through borings drilled

  19. Digitally available interval-specific rock-sample data compiled from historical records, Nevada National Security Site and vicinity, Nye County, Nevada

    Science.gov (United States)

    Wood, David B.

    2007-11-01

    Between 1951 and 1992, 828 underground tests were conducted on the Nevada National Security Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada National Security Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples can not be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.

  20. Digitally Available Interval-Specific Rock-Sample Data Compiled from Historical Records, Nevada Test Site and Vicinity, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    David B. Wood

    2009-10-08

    Between 1951 and 1992, underground nuclear weapons testing was conducted at 828 sites on the Nevada Test Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada Test Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples cannot be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.

  1. Digitally Available Interval-Specific Rock-Sample Data Compiled from Historical Records, Nevada Test Site and Vicinity, Nye County, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    David B. Wood

    2007-10-24

    Between 1951 and 1992, 828 underground tests were conducted on the Nevada Test Site, Nye County, Nevada. Prior to and following these nuclear tests, holes were drilled and mined to collect rock samples. These samples are organized and stored by depth of borehole or drift at the U.S. Geological Survey Core Library and Data Center at Mercury, Nevada, on the Nevada Test Site. From these rock samples, rock properties were analyzed and interpreted and compiled into project files and in published reports that are maintained at the Core Library and at the U.S. Geological Survey office in Henderson, Nevada. These rock-sample data include lithologic descriptions, physical and mechanical properties, and fracture characteristics. Hydraulic properties also were compiled from holes completed in the water table. Rock samples are irreplaceable because pre-test, in-place conditions cannot be recreated and samples cannot be recollected from the many holes destroyed by testing. Documenting these data in a published report will ensure availability for future investigators.

  2. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 177: Mud Pits and Cellars, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    Alfred Wickline

    2006-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses closure for Corrective Action Unit (CAU) 177, Mud Pits and Cellars, identified in the ''Federal Facility Agreement and Consent Order''. Corrective Action Unit 177 consists of the 12 following Corrective Action Sites (CASs) located in Areas 8, 9, 19, and 20 of the Nevada Test Site: (1) 08-23-01, Mud Pit and Cellar; (2) 09-09-41, Unknown No.3 Mud Pit/Disposal Area; (3) 09-09-45, U-9bz PS No.1A Mud Pit (1) and Cellar; (4) 09-23-05, Mud Pit and Cellar; (5) 09-23-08, Mud Pit and Cellar; (6) 09-23-09, U-9itsx20 PS No.1A Cellar; (7) 10-23-02, Mud Pit and Cellar; (8) 10-23-03, Mud Pit and Cellar; (9) 19-23-01, Mud Pit and Cellar; (10) 19-23-02, Cellar and Waste Storage Area; (11) 19-23-03, Cellar with Casing; and (12) 20-23-07, Cellar. This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 177 using the SAFER process. The data quality objective process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the preliminary action levels (PALs), leading to a no further action declaration, or (2) characterization of the nature and extent of contamination, leading to closure in place with use restrictions. The expected closure options were selected based on available information including contaminants of potential concern, future land use, and assumed risks. A decision flow process was developed to outline the collection of data necessary to achieve closure. There are two decisions that need to be answered for closure. Decision I is to determine whether contaminants of potential concern are present in concentrations

  3. Ecologic and geographic distributions of the vascular plants of southern Nye County, and adjacent parts of Clark, Lincoln, and Esmeralda Counties, Nevada. [Based on collections made in 1970

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J. C.

    1971-01-01

    A catalog is compiled of the vascular plants indiginous to Nye, Clark, Lincoln, and Esmeralda Counties of Nevada based on collections made in 1970. This compilation is an update of previous collections in these areas and is a supplement to report, UCLA--12-705. (ERB)

  4. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    Science.gov (United States)

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  5. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    Science.gov (United States)

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  6. The Relationship between Schools' Costs per Pupil and Nevada School Performance Framework Index Scores in Clark County School District

    Science.gov (United States)

    Rice, John; Huang, Min

    2015-01-01

    Clark County School District (CCSD) asked the Western Regional Education Laboratory (REL West) to examine the relationship between spending per pupil and Nevada School Performance Framework (NSPF) index scores in the district's schools. Data were examined from three school years (2011/12, 2012/13, 2013/14) and for three types of schools…

  7. A floristic survey of Yucca Mountain and vicinity, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Niles, W.E.; Leary, P.J.; Holland, J.S.; Landau, F.H.

    1994-12-01

    A survey of the vascular flora of Yucca Mountain and vicinity, Nye County, Nevada, was conducted from March to June 1994. An annotated checklist of recorded taxa was compiled. Voucher plant specimens were collected and accessioned into the Herbarium at the University of Nevada, Las Vegas. Collection data accompanying these specimens were entered into that herbarium`s electronic data base. Combined results from this survey and the works of other investigators reveal the presence of a total of 325 specific and intraspecific taxa within the area, these allocated to 162 genera and 53 families. Owing to drought conditions prevalent throughout the area, the annual floristic component was largely absent during the period of study, and it is likely much under-represented in the tabulation of results. No taxon currently listed as threatened or endangered under the Endangered Species Act was encountered during this study. Several candidate species for listing under this Act were present, and distributional data for these were recorded. No change in the status of these candidate species is recommended as the result of this survey.

  8. Bedrock geologic map of the central block area, Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S. [Geological Survey, Denver, CO (United States); Dickerson, R.P.; San Juan, C.A. [Pacific Western Technologies Ltd., Denver, CO (United States)

    1998-11-01

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. This study was funded by the US Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bon, (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the vicinity of the potential repository. In addition to structural considerations, ongoing subsurface excavation and geologic mapping within the exploratory Studies Facility (ESF), development of a three-dimensional-framework geologic model, and borehole investigations required use of a constituent stratigraphic system to facilitate surface to underground comparisons. The map units depicted in this report correspond as closely as possible to the proposed stratigraphic nomenclature by Buesch and others (1996), as described here.

  9. Bedrock geologic map of the Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Day, W.C.; Potter, C.J.; Sweetkind, D.S.; Fridrich, C.J. [Geological Survey, Denver, CO (US); Dickerson, R.P.; San Juan, C.A.; Drake, R.M. II [Pacific Western Technologies, Inc., Denver, CO (US)

    1998-11-01

    Yucca Mountain, Nye County, Nevada, has been identified as a potential site for underground storage of high-level radioactive nuclear waste. Detailed bedrock geologic maps form an integral part of the site characterization program by providing the fundamental framework for research into the geologic hazards and hydrologic behavior of the mountain. This bedrock geologic map provides the geologic framework and structural setting for the area in and adjacent to the site of the potential repository. The study area comprises the northern and central parts of Yucca Mountain, located on the southern flank of the Timber Mountain-Oasis Valley caldera complex, which was the source for many of the volcanic units in the area. The Timber Mountain-Oasis Valley caldera complex is part of the Miocene southwestern Nevada volcanic field, which is within the Walker Lane belt. This tectonic belt is a northwest-striking megastructure lying between the more active Inyo-Mono and Basin-and-Range subsections o f the southwestern Great Basin.

  10. Wildland inventory and resource modeling for Douglas and Carson City Counties, Nevada, using LANDSAT and digital terrain data

    Science.gov (United States)

    Brass, J. A.; Likens, W. C.; Thornhill, R. R.

    1983-01-01

    The potential of using LANDSAT satellite imagery to map and inventory pinyon-juniper desert forest types in Douglas and Carson City Counties, Nevada was demonstrated. Specific map and statistical products produced include land cover, mechanical operations capability, big game winter range habitat, fire hazard, and forest harvestability. The Nevada Division of Forestry determined that LANDSAT can produce a reliable and low-cost resource data. Added benefits become apparent when the data are linked to a geographical information system (GIS) containing existing ownership, planning, elevation, slope, and aspect information.

  11. Field examination of shale and argillite in northern Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, J. R.; Woodward, L. A.; Emanuel, K. M.; Keil, K.

    1981-12-01

    Thirty-two locales underlain by clay-rich strata ranging from Cambrian Pioche Shale to Mississippian Chainman Shale and equivalents were examined in northern Nye County, Nevada. The text of the report summarizes data for each stratigraphic unit examined. Checklists for tabulating field data at each locale are included in an appendix. Working guidelines used to evaluate the locales include a minimum thickness of 150 m (500 ft) of relatively pure clay-rich bedrock, subsurface depth between 150 m (500 ft) and 900 m (3000 ft), low topographic relief, low seismic and tectonic activity, and avoidance of areas with mineral resource production or potential. Field studies indicate that only the Chainman Shale, specifically in the central and northern parts of the Pancake Range, appears to contain sites that meet these guidelines.

  12. Mineral resource potential map of the Muddy Mountains Wilderness Study Area, Clark County, Nevada

    Science.gov (United States)

    Bohannon, Robert G.; Leszcykowski, Andrew M.; Esparza, Leon E.; Rumsey, Clayton M.

    1982-01-01

    The Muddy Mountains Wilderness Study Area (WSA 050-0229), Clark County, Nevada, has a high potential for mineral deposits of calcium borates and lithium. The known and potential mineral deposits are concentrated in the east-central and south-central parts of the study area (see map). Zeolites (in particular clinoptilolite) are present in some tuff beds throughout much of the study area, and this resource potential is probably moderate to high. Stream-sediment sampling suggests that the Muddy Mountains area has little potential for mineral deposits of metals (other than lithium). Clay minerals are mined at one locality in the (!rea (see map). Building stone and silica sand have moderate to low potential in some places. Oil and gas potential within the study area is low, but complete evaluation of its potential is not possible without drilling.

  13. Assessment of ecological concerns with alternative water sources used for wetland maintenance at Mason Valley Wildlife Management Area, Lyon County, Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Mason Valley Wildlife Management Area in Lyon County, Nevada, obtains water from the Walker River, groundwater via fish hatchery effluent and power plant cooling...

  14. Geologic map of the Mound Spring quadrangle, Nye and Clark Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Lundstrom, Scott C.; Mahan, Shannon; Blakely, Richard J.; Paces, James B.; Young, Owen D.; Workman, Jeremiah B.; Dixon, Gary L.

    2003-01-01

    The Mound Spring quadrangle, the southwestern-most 7.5' quadrangle of the area of the Las Vegas 1:100,000-scale quadrangle, is entirely within the Pahrump Valley, spanning the Nevada/California State line. New geologic mapping of the predominantly Quaternary materials is combined with new studies of gravity and geochronology in this quadrangle. Eleven predominantly fine-grained units are delineated, including playa sediment, dune sand, and deposits associated with several cycles of past groundwater discharge and distal fan sedimentation. These units are intercalated with 5 predominantly coarse-grained alluvial-fan and wash gravel units mainly derived from the Spring Mountains. The gravel units are distinguished on the basis of soil development and associated surficial characteristics. Thermoluminescence and U-series geochronology constrain most of the units to the Holocene and late and middle Pleistocene. Deposits of late Pleistocene groundwater discharge in the northeast part of the quadrangle are associated with a down-to-the-southwest fault zone that is expressed by surface fault scarps and a steep gravity gradient. The gravity field also defines a northwest-trending uplift along the State line, in which the oldest sediments are poorly exposed. About 2 km to the northeast a prominent southwest-facing erosional escarpment is formed by resistant beds in middle Pleistocene fine-grained sediments that dip northeast away from the uplift. These sediments include cycles of groundwater discharge that were probably caused by upwelling of southwesterly groundwater flow that encountered the horst.

  15. Quality assurance and analysis of water levels in wells on Pahute Mesa and vicinity, Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Fenelon, Joseph M.

    2000-01-01

    Periodic and continual water-level data from 1963 to 1998 were compiled and quality assured for 65 observation wells on Pahute Mesa and vicinity, Nye County, Nevada. As part of the quality assurance of all water levels, ancillary data pertinent to computing hydraulic heads in wells were compiled and analyzed. Quality-assured water levels that were not necessarily in error but which did not represent static heads in the regional aquifer system, or required some other qualification, were flagged. Water levels flagged include those recovering from recent pumping or well construction, water levels affected by nuclear tests, and measurements affected by borehole deviations. A cursory examination of about 30 wells with available water-level and down-hole temperature data indicate that water levels in most wells on Pahute Mesa would not be significantly affected by temperature if corrected to 95 degrees Fahrenheit. Wells with large corrections (greater than 10 feet) are those with long water columns (greater than 1,500 feet of water above the assumed point of inflow) in combination with mean water-column temperatures exceeding 105 degrees Fahrenheit. Water-level fluctuations in wells on Pahute Mesa are caused by several factors including infiltration of precipitation, barometric pressure, Earth tides, ground-water pumpage, and seismic events caused by tectonic activity and underground nuclear testing. No observed water-level fluctuations were attributed to a naturally occurring earthquake. The magnitude and duration of changes in water levels caused by nuclear tests are affected by the test size and the distance from a well to the test. Identifying water levels that might be affected by past nuclear tests is difficult because pre-testing water-level data are sparse. Hydrologically significant trends were found in 13 of 25 wells with multiple years of water-level record. The largest change in water levels (1,029 feet in 25 years) occurred in well U-19v PS 1D as a result of

  16. Preliminary survey of tuff distribution in Esmeralda, Nye, and Lincoln Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.; Pink, T.S.; Lawrence, J.R.; Woodward, L.A.; Keil, K.; Lappin, A.R.

    1981-02-01

    This report inventories the surface distribution of silicic tuffs in Nye, Esmeralda, and Lincoln Counties, NV, based on a review of available literature. The inventory was taken to provide a data base in evaluating tuff sites for the disposal of high-level nuclear waste. Silicic ash-flow tuffs that are about 11 to 34 million years (my) old are widespread in these counties. These rocks are locally deformed by right-lateral movement along Walker Lane and the Las Vegas Shear Zone, and left-lateral movement along a zone from near the Nevada Test Site (NTS) to the Utah border, and are commonly offset by steeply dipping normal faults. The normal faults that bound horsts, grabens, and tilted-fault blocks of the Basin-and-Range Province began to form 30 my ago; some are still active. Tuff distribution is discussed on a regional basis. Tuff thicknesses and alterations, structural complexity, and proximity to recent faulting, recent volcanism, and mineral resources are discussed for each area. Although the literature on which it is based is often incomplete and sketchy, this report is intended to serve as a basis for future, more detailed work that includes initial field inspection, detailed field and laboratory studies, and extrapolations to the subsurface.

  17. A revised lithostratigraphic framework for the southern Yucca Mountain area, Nye County, Nevada

    Science.gov (United States)

    Spengler, R.W.; Byers, F.M.; Dickerson, R.P.

    2006-01-01

    An informal, revised lithostratigraphic framework for the southern Yucca Mountain area, Nevada has been developed to accommodate new information derived from subsurface investigations of the Nye County Early Warning Drilling Program. Lithologies penetrated by recently drilled boreholes at locations between Stagecoach Road and Highway 95 in southern Nye County include Quaternary and Pliocene alluvium and alluvial breccia, Miocene pyroclastic flow deposits, Miocene intercalated lacustrine siltstone and claystone sequences, early Miocene to Oligocene pre-volcanic sedimentary rocks, and Paleozoic strata. Of the 37 boreholes currently drilled, 21 boreholes have sufficient depth, spatial distribution, or traceable pyroclastic flow, pyroclastic fall, and reworked tuff deposits to aid in the lateral correlation of lithostrata. Medial and distal parts of regional pyroclastic flow deposits of Miocene age can be correlated with the Timber Mountain, Paintbrush, Crater Flat, and Tram Ridge Groups. Rocks intercalated between these regional pyroclastic flow deposits are substantially thicker than in the central part of Yucca Mountain, particularly near the downthrown side of major faults and along the southern extent of exposures at Yucca Mountain.

  18. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 3 with Errata Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Tim Echelard

    2006-03-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for Corrective Action Unit (CAU) 447, Project Shoal Area (PSA)-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Springs Mountains in Churchill County, Nevada, approximately 48 kilometers (30 miles) southeast of Fallon, Nevada. The CADD/CAP combines the decision document (CADD) with the Corrective Action Plan (CAP) and provides or references the specific information necessary to recommend corrective actions for CAU 447, as provided in the FFACO. Corrective Action Unit 447 consists of two corrective action sites (CASs): CAS 57-49-01, Emplacement Shaft, and CAS 57-57-001, Cavity. The emplacement shaft (CAS-57-49-01) was backfilled and plugged in 1996 and will not be evaluated further. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at PSA. To achieve this, the following tasks were required: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend a preferred corrective action alternative for the subsurface at PSA. The original Corrective Action Investigation Plan (CAIP) for the PSA was approved in September 1996 and described a plan to drill and test four characterization wells, followed by flow and transport modeling (DOE/NV, 1996). The resultant drilling is described in a data report (DOE/NV, 1998e) and the data analysis and modeling in an interim modeling report (Pohll et al., 1998). After considering the results of the modeling effort

  19. Geologic map of the Oasis Valley basin and vicinity, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fridrich, C.J.; Minor, S.A.; Ryder, P.L.; Slate, J.L.

    2000-01-13

    This map and accompanying cross sections present an updated synthesis of the geologic framework of the Oasis Valley area, a major groundwater discharge site located about 15 km west of the Nevada Test Site. Most of the data presented in this compilation is new geologic map data, as discussed below. In addition, the cross sections incorporate new geophysical data that have become available in the last three years (Grauch and others, 1997; written comm., 1999; Hildenbrand and others, 1999; Mankinen and others, 1999). Geophysical data are used to estimate the thickness of the Tertiary volcanic and sedimentary rocks on the cross sections, and to identify major concealed structures. Large contiguous parts of the map area are covered either by alluvium or by volcanic units deposited after development of the major structures present at the depth of the water table and below. Hence, geophysical data provide critical constraints on our geologic interpretations. A companion paper by Fridrich and others (1999) and the above-cited reports by Hildenbrand and others (1999) and Mankinen and others (1999) provide explanations of the interpretations that are presented graphically on this map. This map covers nine 7.5-minute quadrangles in Nye County, Nevada, centered on the Thirsty Canyon SW quadrangle, and is a compilation of one published quadrangle map (O'Connor and others, 1966) and eight new quadrangle maps, two of which have been previously released (Minor and others, 1997; 1998). The cross sections that accompany this map were drawn to a depth of about 5 km below land surface at the request of hydrologists who are modeling the Death Valley groundwater system.

  20. Digital geologic map of the Thirsty Canyon NW quadrangle, Nye County, Nevada

    Science.gov (United States)

    Minor, S.A.; Orkild, P.P.; Sargent, K.A.; Warren, R.G.; Sawyer, D.A.; Workman, J.B.

    1998-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, dike, and caldera wall), and point (i.e., structural attitude) vector data for the Thirsty Canyon NW 7 1/2' quadrangle in southern Nevada. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic and tectonic interest. The Thirsty Canyon NW quadrangle is located in southern Nye County about 20 km west of the Nevada Test Site (NTS) and 30 km north of the town of Beatty. The map area is underlain by extensive layers of Neogene (about 14 to 4.5 million years old [Ma]) mafic and silicic volcanic rocks that are temporally and spatially associated with transtensional tectonic deformation. Mapped volcanic features include part of a late Miocene (about 9.2 Ma) collapse caldera, a Pliocene (about 4.5 Ma) shield volcano, and two Pleistocene (about 0.3 Ma) cinder cones. Also documented are numerous normal, oblique-slip, and strike-slip faults that reflect regional transtensional deformation along the southern part of the Walker Lane belt. The Thirsty Canyon NW map provides new geologic information for modeling groundwater flow paths that may enter the map area from underground nuclear testing areas located in the NTS about 25 km to the east. The geologic map database comprises six component ArcINFO map coverages that can be accessed after decompressing and unbundling the data archive file (tcnw.tar.gz). These six coverages (tcnwpoly, tcnwflt, tcnwfold, tcnwdike, tcnwcald, and tcnwatt) are formatted here in ArcINFO EXPORT format. Bundled with this database are two PDF files for readily viewing and printing the map, accessory graphics, and a description of map units and compilation methods.

  1. Mobilization Of Polonium-210 In Naturally-Contaminated Groundwater, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R. L.; Stillings, L. L.; Cutler, N.

    2009-12-01

    Polonium-210 activities in groundwater rarely exceed about 40 mBq/L because it strongly binds to sediments. The recent discovery of natural 210Po at levels ranging from below 1 to 6,300±280 mBq/L in 62 drinking-water wells in Lahontan Valley, Churchill County, Nevada, led to a geochemical investigation of the processes responsible for its mobilization from the aquifer sediments. The source of the 210Po is radioactive decay of uranium in sediments transported into the valley by erosion of granitic rocks in the Sierra Nevada during the Pleistocene. There is little spatial or depth variability in 210Pb activity in study-area sediments (average 35 Bq/kg) and detailed analysis at a contaminated well indicates mobilization of 200 mBq/L) are associated with anoxic water (DO 9.0). Investigations in the 1980s by William Burnett and colleagues of naturally-contaminated wells in Florida showed that 210Po was mobilized by sulfate-reducing bacteria and remained in solution as long as sulfides did not accumulate above certain levels. Similarly, δ34SSO4 values in Lahontan Valley indicate that significant sulfate reduction has occurred in wells containing >200 mBq/L of 210Po, but sulfide is not accumulating and its concentrations are low (<0.03 mg/L) in 25 of 28 of those wells. In our working hypothesis, mobilization of 210Po in Lahontan Valley is linked to reduction of Mn oxides by sulfide in an anaerobic sulfur cycle (Figure 1). Such a sulfur cycle is consistent with the high pH, less than predicted δ18OSO4 values, low sulfide concentrations, and presence of elemental sulfur in the water. Results from the Nevada and Florida investigations suggest that 210Po contamination may be more widespread than previously recognized, occurring in groundwater near uranium-mine operations and other uranium containing sediments when sulfate-reducing conditions develop in the subsurface. Possible linkage of anaerobic S cycle, Mn reduction, and Po mobilization

  2. Environmental Assessment for Leasing Nellis Air Force Base Land for Construction and Operation of a Solar Photovoltaic System, Clark County, Nevada

    Science.gov (United States)

    2006-08-01

    would be power consumption. Nevada Power, a division of Sierra Pacific Corporation, supplies the Las Vegas Valley with the majority of its power...from Mr. John Mendoza , Clark County Department of Air Quality and Environmental Management, follows. Mr. Rob Mrowka, Clark County Department of

  3. Biostratigraphy and paleoenvironment of Morrowan (Zone 2) brachiopoda, Bird Spring Group, Arrow Canyon, Clark County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Vaiden, R.C.; Langenheim, R.L.

    1985-02-01

    Comprehensive study of the Morrowan brachiopod faunas of the Bird Spring Group at Arrow Canyon, Clark County, Nevada, is important because the section has been suggested as a stratotype for the base and top of the Pennsylvanian Subsystem and for the Atoka Series. Twenty-three species of brachiopods belonging to 17 genera occur in zone 20 at Arrow Canyon. Many of these also occur in described Morrowan faunas in Wyoming, Colorado, Utah, and New Mexico; but similarities with the Mid-Continent and Appalachian assemblages are less. However, no striking regional differences are evident, and it appears that the North American Morrowan fauna is more or less homogeneous. In contrast to the exotic South American and Arctic elements known from Atokan, Missourian, and Virgilian rocks at Arrow Canyon, no foreign taxa have been noted in zone 20. Microfacies and faunal association indicate four distinct brachiopod-bearing environments; (1) relatively deep water below turbulence with few brachiopods on a soft substrate; (2) somewhat shallower, more turbulent water with many species, of which only a few are represented by large populations, living on a more firm substrate; (3) environments just below the zone of turbulence in which many species of brachiopods are represented by substantial populations on a calcarenitic substrate; and (4) crinoidal bars in the zone of turbulence with a few species represented by relatively few individuals.

  4. Interpretation of dipole-dipole electrical resistivity survey, Colado geothermal area, Pershing County, Nevada

    Science.gov (United States)

    Mackelprang, C. E.

    1980-09-01

    An electrical resistivity survey in the Colado geothermal area, Pershing County, Nevada has defined areas of low resistivity on each of five lines surveyed. Some of these areas appear to be fault controlled. Thermal fluids encountered in several drill holes support the assumption that the hot fluids may be associated with areas of low resistivity. The evidence of faulting as interpreted from modeling of the observed resistivity data is therefore particularly significant since these structures may be the conduits for the thermal fluids. Sub-alluvial fault zones are interpreted to occur between stations 0-5 NW on Line D and on Line A between stations 4 NW and 4 SE. Fault zones are also interpreted on Line C near stations 1 NW, 1 SE, and 3 SE, and on Line E between stations 2-4 NW and near 1 SE. No faulting is evident under the alluvial cover on the southwest end of Line B. A deep conductive zone is noted within the mountain range on two resistivity lines. There is no definite indication that thermal fluids are associated with this resistivity feature.

  5. Geologic Map of the Pahranagat Range 30' x 60' Quadrangle, Lincoln and Nye Counties, Nevada

    Science.gov (United States)

    Jayko, A.S.

    2007-01-01

    Introduction The Pahranagat Range 30' x 60' quadrangle lies within an arid, sparsely populated part of Lincoln and Nye Counties, southeastern Nevada. Much of the area is public land that includes the Desert National Wildlife Range, the Pahranagat National Wildlife Refuge, and the Nellis Air Force Base. The topography, typical of much of the Basin and Range Province, consists of north-south-trending ranges and intervening broad alluvial valleys. Elevations range from about 1,000 to 2,900 m. At the regional scale, the Pahranagat Range quadrangle lies within the Mesozoic and early Tertiary Sevier Fold-and-Thrust Belt and the Cenozoic Basin and Range Province. The quadrangle is underlain by a Proterozoic to Permian miogeoclinal section, a nonmarine clastic and volcanic section of middle Oligocene or older to late Miocene age, and alluvial deposits of late Cenozoic age. The structural features that are exposed reflect relatively shallow crustal deformation. Mesozoic deformation is dominated by thrust faults and asymmetric or open folds. Cenozoic deformation is dominated by faults that dip more than 45i and dominostyle tilted blocks. At least three major tectonic events have affected the area: Mesozoic (Sevier) folding and thrust faulting, pre-middle Oligocene extensional deformation, and late Cenozoic (mainly late Miocene to Holocene) extensional deformation. Continued tectonic activity is expressed in the Pahranagat Range area by seismicity and faults having scarps that cut alluvial deposits.

  6. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gregg Ruskuaff

    2010-01-01

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  7. Corrective action investigation plan for Corrective Action Unit 340, Pesticide Release Sites, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This Correction Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. As required by the FFACO (1996), this document provides or references all of the specific information for planning investigation activities associated with three Corrective Action Sites (CASs) located at the Nevada Test Site (NTS). These CASs are collectively known as Corrective Action Unit (CAU) 340, Pesticide Release Sites. According to the FFACO, CASs are sites that may require corrective action(s) and may include solid waste management units or individual disposal or release sites. These sites are CAS 23-21-01, Area 23 Quonset Hut 800 (Q800) Pesticide Release Ditch; CAS 23-18-03, Area 23 Skid Huts Pesticide Storage; and CAS 15-18-02, Area 15 Quonset Hut 15-11 Pesticide Storage (Q15-11). The purpose of this CAIP for CAU 340 is to direct and guide the investigation for the evaluation of the nature and extent of pesticides, herbicides, and other contaminants of potential concern (COPCs) that were stored, mixed, and/or disposed of at each of the CASs.

  8. Digital Isostatic Gravity Map of the Nevada Test Site and Vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Ponce, David A.; Mankinen, E.A.; Davidson, J.G.; Morin, R.L.; Blakely, R.J.

    2000-01-01

    An isostatic gravity map of the Nevada Test Site area was prepared from publicly available gravity data (Ponce, 1997) and from gravity data recently collected by the U.S. Geological Survey (Mankinen and others, 1999; Morin and Blakely, 1999). Gravity data were processed using standard gravity data reduction techniques. Southwest Nevada is characterized by gravity anomalies that reflect the distribution of pre-Cenozoic carbonate rocks, thick sequences of volcanic rocks, and thick alluvial basins. In addition, regional gravity data reveal the presence of linear features that reflect large-scale faults whereas detailed gravity data can indicate the presence of smaller-scale faults.

  9. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Jones, robert C [DRI; Drollinger, Harold [DRI; Bullard, Thomas F [DRI; Ashbaugh, Laurence J [DRI; Griffin, Wayne R [DRI

    2013-06-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16

  10. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Roberrt C. [Desert Research Inst. (DRI), Reno, NV (United States); Drollinger, Harold [Desert Research Inst. (DRI), Reno, NV (United States)

    2013-06-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16

  11. A Historical Evaluation of the U16a Tunnel, Nevada National Security Site, Nye County, Nevada Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert C. [Desert Research Inst. (DRI), Reno, NV (United States); Drollinger, Harold [Desert Research Inst. (DRI), Reno, NV (United States); Bullard, Thomas F. [Desert Research Inst. (DRI), Reno, NV (United States); Ashbaugh, Laurence J. [Desert Research Inst. (DRI), Reno, NV (United States); Griffin, Wayne R. [Desert Research Inst. (DRI), Reno, NV (United States)

    2013-01-01

    This report presents a historical evaluation of the U16a Tunnel on the Nevada National Security Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency. The U16a Tunnel was used for underground nuclear weapons effects tests in Shoshone Mountain in Area 16 of the Nevada National Security Site. Six nuclear tests were conducted in the U16a Tunnel from 1962 to 1971. These tests are Marshmallow, Gum Drop, Double Play, Ming Vase, Diamond Dust, and Diamond Mine. The U.S. Department of Defense Threat Reduction Agency, with participation from Lawrence Livermore National Laboratory and Las Alamos National Laboratory, sponsored the tests. Fifteen high explosives tests were also conducted at the tunnel. Two were calibration tests during nuclear testing and the remaining were U.S. Department of Defense, Defense Threat Reduction Agency tunnel defeat tests. The U16a Tunnel complex is on the top and slopes of Shoshone Mountain, encompassing an area of approximately 16.7 hectares (41.1 acres). Major modifications to the landscape are a result of three principal activities, road construction and maintenance, mining activities related to development of the tunnel complex, and site preparation for activities related to testing. Forty-seven cultural features were recorded at the portal and on the slopes of Shoshone Mountain. At the portal area, features relate to the mining, construction, testing, and general every day operational support activities within the tunnel. These include concrete foundations for buildings, equipment pads, and rail lines. Features on the slopes above the tunnel relate to tunnel ventilation, borehole drilling, and data recording. Feature types include soil-covered bunkers, concrete foundations, instrument cable holes, drill holes, and ventilation shafts. The U16

  12. Summary of Natural Resources that Potentially Influence Human Intrusion at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-06-01

    In 1993, Raytheon Services Nevada completed a review of natural resource literature and other sources to identify potentially exploitable resources and potential future land uses near the Area 5 Radioactive Waste Management Site (RWMS) of the Nevada Test Site (NTS), Nye County, Nevada, that could lead to future inadvertent human intrusion and subsequent release of radionuclides to the accessible environment. National Security Technologies, LLC, revised the original limited-distribution document to conform to current editorial standards and U.S. Department of Energy requirements for public release. The researchers examined the potential for future development of sand, gravel, mineral, petroleum, water resources, and rural land uses, such as agriculture, grazing, and hunting. The study was part of the performance assessment for Greater Confinement Disposal boreholes. Sand and gravel are not considered exploitable site resources because the materials are common throughout the area and the quality at the Area 5 RWMS is not ideal for typical commercial uses. Site information also indicates a very low mineral potential for the area. None of the 23 mining districts in southern Nye County report occurrences of economic mineral deposits in unconsolidated alluvium. The potential for oil and natural gas is low for southern Nye County. No occurrences of coal, tar sand, or oil shale on the NTS are reported in available literature. Several potential future uses of water were considered. Agricultural irrigation is impractical due to poor soils and existing water supply regulations. Use of water for geothermal energy development is unlikely because temperatures are too low for typical commercial applications using current technology. Human consumption of water has the most potential for cause of intrusion. The economics of future water needs may create a demand for the development of deep carbonate aquifers in the region. However, the Area 5 RWMS is not an optimal location for

  13. Geologic Map of Oasis Valley Spring-Discharge Area and Vicinity, Nye County, Nevada

    Science.gov (United States)

    Fridrich, Christopher J.; Minor, Scott A.; Slate, Janet L.; Ryder, Phil L.

    2007-01-01

    This map report presents the geologic framework of an area in southern Nye County, Nevada, that extends from the southern limit of the Oasis Valley spring-discharge site, northeastward to the southwest margin of the Pahute Mesa testing area, on the Nevada Test Site. This map adds new surficial mapping and revises bedrock mapping previously published as USGS Open-File Report 99-533-B. The locations of major concealed structures were based on a combination of gravity and magnetic data. This report includes a geologic discussion explaining many of the interpretations that are presented graphically on the map and sections. Additional discussion of the geologic framework of the Oasis Valley area can be found in an interpretive geophysical report and in a geologic report (USGS Open-File Report 99-533-A that was a companion product to the previously published version of this map. The map presented here covers nine 7.5-minute quadrangles centered on the Thirsty Canyon SW quadrangle. It is a compilation of one previously published quadrangle map and eight new quadrangle maps, two of which were published separately during the course of the study. The new bedrock mapping was completed by S.A. Minor from 1991 to 1995, by C.J. Fridrich from 1992 to 1998, and by P.L. Ryder from 1997 to 1998. New surficial-deposits mapping was completed by J.L. Slate and M.E. Berry in 1998 and 1999. The new bedrock and surficial mapping is partly a revision of several unpublished reconnaissance maps completed by Orkild and Swadley in the 1960's, and of previously published maps by Maldonado and Hausback (1990), Lipman and others (1966); and Sargent and Orkild (1976). Additionally, mapping of the pre-Tertiary rocks of northern Bare Mountain was compiled from Monsen and others (1992) with only minor modification. The cross sections were drawn to a depth of about 5 km below land surface at the request of hydrologists studying the Death Valley ground-water system. Below a depth of about 1 kilometer

  14. Bedrock geologic Map of the Central Block Area, Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    W.C. Day; C. Potter; D. Sweetkind; R.P. Dickerson; C.A. San Juan

    1998-09-29

    Bedrock geologic maps form the foundation for investigations that characterize and assess the viability of the potential high-level radioactive waste repository at Yucca Mountain, Nevada. As such, this map focuses on the central block at Yucca Mountain, which contains the potential repository site. The central block is a structural block of Tertiary volcanic rocks bound on the west by the Solitario Canyon Fault, on the east by the Bow Ridge Fault, to the north by the northwest-striking Drill Hole Wash Fault, and on the south by Abandoned Wash. Earlier reconnaissance mapping by Lipman and McKay (1965) provided an overview of the structural setting of Yucca Mountain and formed the foundation for selecting Yucca Mountain as a site for further investigation. They delineated the main block-bounding faults and some of the intrablock faults and outlined the zoned compositional nature of the tuff units that underlie Yucca Mountain. Scott and Bonk (1984) provided a detailed reconnaissance geologic map of favorable area at Yucca Mountain in which to conduct further site-characterization studies. Of their many contributions, they presented a detailed stratigraphy for the volcanic units, defined several other block-bounding faults, and outlined numerous intrablock faults. This study was funded by the U.S. Department of Energy Yucca Mountain Project to provide a detailed (1:6,000-scale) bedrock geologic map for the area within and adjacent to the potential repository area at Yucca Mountain, Nye County, Nevada. Prior to this study, the 1:12,000-scale map of Scott and Bonk (1984) was the primary source of bedrock geologic data for the Yucca Mountain Project. However, targeted detailed mapping within the central block at Yucca Mountain revealed structural complexities along some of the intrablock faults that were not evident at 1:12,000 (Scott and Bonk, 1984). As a result, this study was undertaken to define the character and extent of the dominant structural features in the

  15. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 5 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  16. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 2 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  17. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 1 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Jones, Robert C. [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Bullard, Thomas F. [Desert Research Institute (DRI), Nevada System of Higher Education, Reno,NV (United States); Ashbaugh, Laurence J. [Southern Nevada Courier Service, NV (United States); Griffin, Wayne R. [Stoller-Navarro Joint Venture, Las Vegas, NV (United States)

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  18. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 6 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  19. A Historical Evaluation of the U12t Tunnel, Nevada Test Site, Nye County, Nevada, Volume 3 of 6

    Energy Technology Data Exchange (ETDEWEB)

    Harold Drollinger; Robert C. Jones; and Thomas F. Bullard; Desert Research Institute, Laurence J. Ashbaugh, Southern Nevada Courier Service and Wayne R. Griffin, Stoller-Navarro Joint Venture

    2009-02-01

    This report presents a historical evaluation of the U12t Tunnel on the Nevada Test Site in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12t Tunnel is one of a series of tunnels used for underground nuclear weapons effects tests on the east side of Rainier and Aqueduct Mesas. Six nuclear weapons effects tests, Mint Leaf, Diamond Sculls, Husky Pup, Midas Myth/Milagro, Mighty Oak, and Mission Ghost, and one high explosive test, SPLAT, were conducted within the U12t Tunnel from 1970 to 1987. All six of the nuclear weapons effects tests and the high explosive test were sponsored by DTRA. Two conventional weapons experiments, Dipole Knight and Divine Eagle, were conducted in the tunnel portal area in 1997 and 1998. These experiments were sponsored by the Defense Special Weapons Agency. The U12t Tunnel complex is composed of the Portal and Mesa Areas and includes an underground tunnel with a main access drift and nine primary drifts, a substantial tailings pile fronting the tunnel portal, a series of discharge ponds downslope of the tailings pile, and two instrumentation trailer parks and 16 drill holes on top of Aqueduct Mesa. A total of 89 cultural features were recorded: 54 at the portal and 35 on the mesa. In the Portal Area, cultural features are mostly concrete pads and building foundations; other features include the portal, rail lines, the camel back, ventilation and cooling system components, communication equipment, and electrical equipment. On the mesa are drill holes, a few concrete pads, a loading ramp, and electrical equipment.

  20. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  1. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    Science.gov (United States)

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  2. Stratigraphy and structure of the McCoy geothermal prospect, Churchill and Lander Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Adams, M.C.

    1982-06-01

    The McCoy geothermal system straddles the border of Lander and Churchill counties, central Nevada, in the middle of the Basin and Range Province. The study area occupies approximately 100 sq. km. near the intersection of the Augusta and Clan Alpine Mountains and the New Pass Range. The geology of the area is dominated by rhyolite ash-flow tuffs and subordinate intermediate-composition lava flows of Oligocene age. These volcanics were emplaced on Permo-Pennsylvanian massive cherts and Triassic dolomitic limestones. At least two episodes of hydrothermal activity can be recognized at McCoy. The oldest event altered and mineralized the volcanic and sedimentary rocks, producing the McCoy and Wild Horse mercury deposits. The youngest event produced travertine and siliceous sinter deposits which intercalate with alluvium, and appears to be related to the high heat flow found at the McCoy prospect. The oldest recognized faults at McCoy produced several east-west grabens and horsts. These fault zones were active before and during the deposition of the volcanics. The Wild Horse and McCoy mercury mines occur along one of these east-west fault zones. Basin and Range faulting began subsequent to 23 m.y. ago, and produced a complex array of polygonal blocks which were subsequently eroded into subparallel cuestas. Fluid movement in the geothermal system is controlled by the intersections of the east-west and north-south faults. There is no known igneous source for the thermal energy in this system. However, its intramontane location is atypical of known geothermal systems in the Basin and Range, which may preclude deep circulation through major basin-bounding faults.

  3. Quantitative remote sensing of ammonium minerals, Cedar Mountains, Esmeralda County, Nevada

    Science.gov (United States)

    Baugh, William M.; Kruse, Fred A.

    1995-01-01

    Mineral-bound ammonium (NH4+) was discovered by the U.S. Geological Survey in the southern Cedar Mountains of Esmeralda County, Nevada in 1989. At 10 km in length, this site is 100 times larger than any previously known occurrence in volcanic rocks. The ammonium occurs in two hydrothermally altered, crystal-rich rhyolitic tuff units of Oligocene age, and is both structurally and stratigraphically controlled. This research uses Advanced Visible/Infrared Imaging Spectrometer (AVIRIS) data to quantitatively map the mineral-bound ammonium (buddingtonite) concentration in the altered volcanic rocks. Naturally occurring mineral-bound ammonium is fairly rare; however, it has been found to occur in gold-bearing hydrothermal deposits. Because of this association, it is thought that ammonium may be a useful too in exploration for gold and other metal deposits. Mineral-bound ammonium is produced when an ammonium ion (NH4+) replaces the alkali cation site (usually K+) in the crystal structure of silicate minerals such as feldspars, micas and clays. Buddingtonite is an ammonium feldspar. The ammonium originates in buried organic plant matter and is transported to the host rock by hydrothermal fluids. Ammonium alteration does not produce visible changes in the rock, and it is barely detectable with standard x-ray diffraction methods. It is clearly identified, however, by absorption features in short wave-infrared (SWIR) wavelengths (2.0 - 2.5 micrometers). The ammonium absorption features are believed to be caused by N-H vibrational modes and are analogous to hydroxyl (O-H) vibrational modes, only shifted slightly in wavelength. Buddingtonite absorption features in the near- and SWIR lie at 1.56, 2.02 and 2.12 micrometers. The feature at 2.12 micrometer is the strongest of the three and is the only one used in this study. The southern Cedar Mountains are sparsely vegetated and are an ideal site for a remote sensing study.

  4. Using seismic reflection to locate a tracer testing complex south of Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Kryder, Levi

    Tracer testing in the fractured volcanic aquifer near Yucca Mountain, and in the alluvial aquifer south of Yucca Mountain, Nevada has been conducted in the past to determine the flow and transport properties of groundwater in those geologic units. However, no tracer testing has been conducted across the alluvium/volcanic interface. This thesis documents the investigative process and subsequent analysis and interpretations used to identify a location suitable for installation of a tracer testing complex, near existing Nye County wells south of Yucca Mountain. The work involved evaluation of existing geologic data, collection of wellbore seismic data, and a detailed surface seismic reflection survey. Borehole seismic data yielded useful information on alluvial P-wave velocities. Seismic reflection data were collected over a line of 4.5-km length, with a 10-m receiver and shot spacing. Reflection data were extensively processed to image the alluvium/volcanic interface. A location for installation of an alluvial/volcanic tracer testing complex was identified based on one of the reflectors imaged in the reflection survey; this site is located between existing Nye County monitoring wells, near an outcrop of Paintbrush Tuff. Noise in the reflection data (due to some combination of seismic source signal attenuation, poor receiver-to-ground coupling, and anthropogenic sources) were sources of error that affected the final processed data set. In addition, in some areas low impedance contrast between geologic units caused an absence of reflections in the data, complicating the processing and interpretation. Forward seismic modeling was conducted using Seismic Un*x; however, geometry considerations prevented direct comparison of the modeled and processed data sets. Recommendations for additional work to address uncertainties identified during the course of this thesis work include: drilling additional boreholes to collect borehole seismic and geologic data; reprocessing a

  5. Phase II Groundwater Flow Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2006-05-01

    The Phase II Frenchman Flat groundwater flow model is a key element in the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) corrective action strategy for the Underground Test Area (UGTA) Frenchman Flat corrective action unit (CAU). The objective of this integrated process is to provide an estimate of the vertical and horizontal extent of contaminant migration for each CAU to predict contaminant boundaries. A contaminant boundary is the model-predicted perimeter that defines the extent of radionuclide-contaminated groundwater from underground testing above background conditions exceeding the ''Safe Drinking Water Act'' (SDWA) standards. The contaminant boundary will be composed of both a perimeter boundary and a lower hydrostratigraphic unit (HSU) boundary. The computer model will predict the location of this boundary within 1,000 years and must do so at a 95 percent level of confidence. Additional results showing contaminant concentrations and the location of the contaminant boundary at selected times will also be presented. These times may include the verification period, the end of the five-year proof-of-concept period, as well as other times that are of specific interest. This report documents the development and implementation of the groundwater flow model for the Frenchman Flat CAU. Specific objectives of the Phase II Frenchman Flat flow model are to: (1) Incorporate pertinent information and lessons learned from the Phase I Frenchman Flat CAU models. (2) Develop a three-dimensional (3-D), mathematical flow model that incorporates the important physical features of the flow system and honors CAU-specific data and information. (3) Simulate the steady-state groundwater flow system to determine the direction and magnitude of groundwater fluxes based on calibration to Frenchman Flat hydrogeologic data. (4) Quantify the uncertainty in the direction and magnitude of groundwater flow due to uncertainty in parameter values and alternative component conceptual models (e.g., geology, boundary flux, and recharge).

  6. Analysis of Responses From Hydraulic Testing of the Lower Carbonate Aquifer at Yucca Flat, Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Bhark, E. W.; Ruskauff, G.

    2005-12-01

    The Yucca Flat corrective action unit extends over an approximately 120 square-mile basin at the Nevada Test Site (NTS), southern Nevada, and was the site for over 650 historical underground nuclear tests. The lower carbonate aquifer (LCA), roughly 1,800 feet below ground surface at Yucca Flat and with a confined thickness of several thousand feet, is the primary aquifer for much of southern Nevada and underlies the full extent of Yucca Flat. Within the last decade, long-term (multiple-day) single- and multiple-well hydraulic tests have been performed to better define aquifer properties over larger scales. The LCA is highly heterogeneous, both laterally and vertically across Yucca Flat, reflecting differences in fracturing and fault density. As such, analysis of the recent testing data requires the consideration of heterogeneous hydraulic properties at multiple spatial scales. Three individual hydraulic tests are presented that portray the marked spatial variability of hydraulic properties related to both local fracturing and basin-scale faulting across Yucca Flat. Two ten-day single-well tests (wells ER-7-1, ER-6-2) and one ninety-day multiple-well test (well cluster ER-6-1) are considered. Interpretive and numerical analyses are based upon the log-log diagnostic plots of drawdown and recovery from pumping, utilizing both the head change and derivative. Heterogeneity is considered using the flow dimension, which represents a variable formation area of flow away from the well, and proves to be a fundamental analytical tool. All hydraulic parameter estimates, including flow dimension, are complete with a measure of uncertainty. The composite interpretation of all data results in a conceptual flow model representative of two spatially continuous scales. At the larger basin (km) scale, the data indicate a fracture- or high permeability strip-dominated flow regime created by fault-related features. Ubiquitous north-south trending faults throughout Yucca Flat appear to

  7. Groundwater withdrawals and associated well descriptions for the Nevada National Security Site, Nye County, Nevada, 1951-2008

    Science.gov (United States)

    Elliott, Peggy E.; Moreo, Michael T.

    2011-01-01

    From 1951 to 2008, groundwater withdrawals totaled more than 25,000 million gallons from wells on and directly adjacent to the Nevada National Security Site. Total annual groundwater withdrawals ranged from about 30 million gallons in 1951 to as much as 1,100 million gallons in 1989. Annual withdrawals from individual wells ranged from 0 million gallons to more than 325 million gallons. Monthly withdrawal data for the wells were compiled in a Microsoft(copyright) Excel 2003 spreadsheet. Groundwater withdrawal data are a compilation of measured and estimated withdrawals obtained from published and unpublished reports, U.S. Geological Survey files, and/or data reported by other agencies. The withdrawal data were collected from 42 wells completed in 33 boreholes. A history of each well is presented in terms of its well construction, borehole lithology, withdrawals, and water levels.

  8. Favorable areas for prospecting adjacent to the Roberts Mountains thrust in southern Lander County, Nevada

    Science.gov (United States)

    Stewart, John Harris; McKee, Edwin H.

    1968-01-01

    Recent geologic mapping by the U.S. Geological Survey of more than 2,500 square miles of a relatively little-studied part of central Nevada has outlined four areas favorable for the discovery of metallic mineral deposits. In these areas, lower Paleozoic carbonate rocks crop out below the Roberts Mountains thrust, a widespread fault in central and north-central Nevada. These areas have a stratigraphic and structural setting similar to that of the areas where large, open-pit gold deposits have been discovered recently at Carlin and Cortez in north-central Nevada.

  9. Barriers to HIV Testing Among Young Men Who Have Sex With Men (MSM): Experiences from Clark County, Nevada.

    Science.gov (United States)

    Pharr, Jennifer R; Lough, Nancy L; Ezeanolue, Echezona E

    2015-11-03

    Clark County, Nevada had a 52% increase in newly diagnosed HIV infections in young people age 13-24 with 83% of the new diagnoses in this age group being men who have sex with men (MSM). HIV testing and counseling is critical for HIV prevention, care and treatment, yet young people are the least likely to seek HIV testing. The purpose of this study was to identify barriers and facilitators to HIV testing experienced by young MSM in Clark County, Nevada. We conducted a qualitative focus group discussion to identify barriers and facilitators to HIV testing among eleven young MSM in March, 2015. The primary barrier to HIV testing identified by the group was a lack of awareness or knowledge about testing for HIV. Other barriers within the person included: fear of results, fear of rejection, and fear of disclosure. Barriers identified within the environment included: access issues, stigma, and unfriendly test environments for young people. In addition to increasing awareness, intervention to increase HIV testing among MSM young people should incorporate access to testing in environments where the adolescents are comfortable and which reduces stigma. HIV testing sites should be convenient, accessible and young person/gay friendly.

  10. Mercury characterization in Lahontan Valley Wetlands : Carson River Mercury Site : Lyon and Churchill Counties, Nevada, 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1999, the Nevada Fish and Wildlife Office of the U.S. Fish and Wildlife Service and the Superfund Division, U.S. Environmental Protection Agency, Region 9...

  11. Assessment of Environmental Contaminants in Muddy River Fishes, Clark County, Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 2002 the U.S. Fish and Wildlife Service (Service) Southern Nevada Field Office initiated a study to identify environmental contaminant impacts to native fish of...

  12. A Historical Evaluation of the U12n Tunnel, Nevada national Security Site, Nye County, Nevada Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [DRI; Jones, Robert C [DRI; Bullard, Thomas F [DRI; Ashbaugh, Laurence J [DRI; Griffin, Wayne R

    2011-06-01

    This report presents a historical evaluation of the U12n Tunnel on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12n Tunnel was one of a series of tunnels used for underground nuclear weapons effects tests in Rainier and Aqueduct Mesas. A total of 22 nuclear tests were conducted in the U12n Tunnel from 1967 to 1992. These tests include Midi Mist, Hudson Seal, Diana Mist, Misty North, Husky Ace, Ming Blade, Hybla Fair, Mighty Epic, Diablo Hawk, Miners Iron, Huron Landing, Diamond Ace, Mini Jade, Tomme/Midnight Zephyr, Misty Rain, Mill Yard, Diamond Beech, Middle Note, Misty Echo, Mineral Quarry, Randsburg, and Hunters Trophy. DTRA sponsored all tests except Tomme and Randsburg which were sponsored by the Lawrence Livermore National Laboratory. Midnight Zephyr, sponsored by DTRA, was an add on experiment to the Tomme test. Eleven high explosive tests were also conducted in the tunnel and included a Stemming Plan Test, the Pre-Mill Yard test, the two seismic Non-Proliferation Experiment tests, and seven Dipole Hail tests. The U12n Tunnel complex is composed of the portal and mesa areas, encompassing a total area of approximately 600 acres (240 hectares). Major modifications to the landscape have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to testing, and construction of retention ponds. A total of 202 cultural features were recorded for the portal and mesa areas. At the portal area, features relate to the mining, construction, testing, and general everyday operational support activities within the tunnel. These include concrete foundations for buildings, ventilation

  13. A Historical Evaluation of the U12n Tunnel, Nevada National Security Site, Nye County, Nevada Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Drollinger, Harold [DRI; Jones, Robert C [DRI; Bullard, Thomas F [DRI; Ashbaugh, Laurence J [DRI; Griffin, Wayne R [DRI

    2011-06-01

    This report presents a historical evaluation of the U12n Tunnel on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12n Tunnel was one of a series of tunnels used for underground nuclear weapons effects tests in Rainier and Aqueduct Mesas. A total of 22 nuclear tests were conducted in the U12n Tunnel from 1967 to 1992. These tests include Midi Mist, Hudson Seal, Diana Mist, Misty North, Husky Ace, Ming Blade, Hybla Fair, Mighty Epic, Diablo Hawk, Miners Iron, Huron Landing, Diamond Ace, Mini Jade, Tomme/Midnight Zephyr, Misty Rain, Mill Yard, Diamond Beech, Middle Note, Misty Echo, Mineral Quarry, Randsburg, and Hunters Trophy. DTRA sponsored all tests except Tomme and Randsburg which were sponsored by the Lawrence Livermore National Laboratory. Midnight Zephyr, sponsored by DTRA, was an add on experiment to the Tomme test. Eleven high explosive tests were also conducted in the tunnel and included a Stemming Plan Test, the Pre-Mill Yard test, the two seismic Non-Proliferation Experiment tests, and seven Dipole Hail tests. The U12n Tunnel complex is composed of the portal and mesa areas, encompassing a total area of approximately 600 acres (240 hectares). Major modifications to the landscape have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to testing, and construction of retention ponds. A total of 202 cultural features were recorded for the portal and mesa areas. At the portal area, features relate to the mining, construction, testing, and general everyday operational support activities within the tunnel. These include concrete foundations for buildings, ventilation

  14. Addendum 1 Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Vefa Yucel

    2001-11-01

    A disposal authorization statement (DAS) was issued by the U.S. Department of Energy/Headquarters (DOE/HQ) on December 5, 2000, authorizing the DOE's National Nuclear Security Administration Nevada Operations Office to continue the operation of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site for the disposal of low-level waste and mixed low-level waste. Prior to the issuance of the DAS, the Low-Level Waste Disposal Facility Federal Review Group (LFRG) had conducted reviews of the performance assessment (PA) and the composite analysis (CA) for the Area 5 RWMS, in accordance with the requirements of the DOE Radioactive Waste Management Order DOE O 435.1. A brief history of the reviews is as follows. (The reviews were conducted by independent review teams chartered by the LFRG; the review findings and recommendations were issued in review team reports to the LFRG.) The LFRG accepted the initial PA, with conditions, on August 30, 1996. Revision 2.1 to the PA was issued in January 1998, implementing the conditions of acceptance of the 1996 PA. The LFRG reviewed Revision 2.1 as part of the Area 5 RWMS CA review during 2000, and found it acceptable. The CA and the Supplemental Information provided in response to issues identified during the initial review of the CA were accepted by the LFRG. The Supplemental Information (including the responses to four key issues) is included in the Review Team Report to the LFRG, which recommends that it be incorporated into the CA and issued to all known holders of the CA. The Area 5 RWMS DAS requires that the Supplemental Information generated during the DOE/HQ review of the CA be incorporated into the CA within one year of the date of issuance of the DAS. This report, the first addendum to the Area 5 CA, is prepared to fulfill that requirement. The Supplemental Information includes the following: Issues Identified in the Review Team Report; Crosswalk Presentation; and Maintaining Doses As Low As

  15. Clay alteration and gold deposition in the genesis and blue star deposits, Eureka County, Nevada

    Science.gov (United States)

    Drews-Armitage, S. P.; Romberger, S.B.; Whitney, C.G.

    1996-01-01

    The Genesis and Blue Star sedimentary rock-hosted gold deposits occur within the 40-mile-long Carlin trend and are located in Eureka County, Nevada. The deposits are hosted within the Devonian calcareous Popovich Formation, the siliciclastic Rodeo Creek unit and the siliciclastic Vinini Formation. The host rocks have undergone contact metamorphism, decalcification, silicification, argillization, and supergene oxidation. Detailed characterization of the alteration patterns, mineralogy, modes of occurrence, and associated geochemistry of clay minerals resulted in the following classifications: least altered rocks, found distal to the orebody, consisting of both metamorphosed and unmetamorphosed host rock that has not been completely decalcified; and altered rocks, found proximal to the orebody that have been decalcified. Altered rocks are classified further into the following groups based on clay mineral content: silicic, 1 to 10 percent clay; silicicargillic, 10 to 35 percent clay; and argillic, 35 to 80 percent clay. Clay species identified are 1M illite, 2M1 illite, kaolinite, halloysite, and dioctahedral smectite. An early hydrothermal event resulted in the precipitation of euhedral kaolinite and at least one generation of silica. This event occurred contemporaneously with decalcification which increased rock permeability and porosity. A second clay alteration event resulted in the precipitation of hydrothermal 1M illite which replaced hydrothermal kaolinite and is associated with gold deposition. Silver and silica deposition is also associated with this phase of hydrothermal alteration. Hydrothermal alteration was followed by supergene alteration which resulted in the formation of supergene kaolinite, halloysite, and smectite as well as the oxidation of iron-bearing minerals. Supergene clays are concentrated along faults, dike margins, and within rocks containing carbonate. Gold mineralization is not associated with supergene clay minerals within the Genesis and

  16. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    V. Yucel

    2001-09-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

  17. In-situ arsenic remediation in Carson Valley, Douglas County, west-central Nevada

    Science.gov (United States)

    Paul, Angela P.; Maurer, Douglas K.; Stollenwerk, Kenneth G.; Welch, Alan H.

    2010-01-01

    Conventional arsenic remediation strategies primarily involve above-ground treatment that include costs involved in the disposal of sludge material. The primary advantages of in-situ remediation are that building and maintaining a large treatment facility are not necessary and that costs associated with the disposal of sludge are eliminated. A two-phase study was implemented to address the feasibility of in-situ arsenic remediation in Douglas County, Nevada. Arsenic concentrations in groundwater within Douglas County range from 1 to 85 micrograms per liter. The primary arsenic species in groundwater at greater than 250 ft from land surface is arsenite; however, in the upper 150 ft of the aquifer arsenate predominates. Where arsenite is the primary form of arsenic, the oxidation of arsenite to arsenate is necessary. The results of the first phase of this investigation indicated that arsenic concentrations can be remediated to below the drinking-water standard using aeration, chlorination, iron, and pH adjustment. Arsenic concentrations were remediated to less than 10 micrograms per liter in groundwater from the shallow and deep aquifer when iron concentrations of 3-6 milligrams per liter and pH adjustments to less than 6 were used. Because of the rapid depletion of dissolved oxygen, the secondary drinking-water standards for iron (300 micrograms per liter) and manganese (100 micrograms per liter) were exceeded during treatment. Treatment was more effective in the shallow well as indicated by a greater recovery of water meeting the arsenic standard. Laboratory and field tests were included in the second phase of this study. Laboratory column experiments using aquifer material indicated the treatment process followed during the first phase of this study will continue to work, without exceeding secondary drinking-water standards, provided that groundwater was pre-aerated and an adequate number of pore volumes treated. During the 147-day laboratory experiment, no

  18. Corrective Action Decision Document for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (Rev. No.: 0, February 2001)

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2001-02-23

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended Corrective Action Alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 490, Station 44 Burn Area, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 490 is located on the Nellis Air Force Range and the Tonopah Test Range and is approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (located southwest of Area 3); RG-56-001-RGBA, Station 44 Burn Area (located west of Main Lake); 03-58-001-03FN, Sandia Service Yard (located north of the northwest corner of Area 3); and 09-54-001-09L2, Gun Propellant Burn Area (located south of the Area 9 Compound on the TTR). A Corrective Action Investigation was performed in July and August 2000, and analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine contaminants of concern (COCs). There were no COCs identified in soil at the Gun Propellant Burn Area or the Station 44 Burn Area; therefore, there is no need for corrective actions at these two sites. Five soil samples at the Fire Training Area and seven at the Sandia Service Yard exceeded PALs for total petroleum hydrocarbons-diesel. Upon the identification of COCs specific to CAU 490, Corrective Action Objectives were developed based on a review of existing data, future use, and current operations at the TTR, with the following three CAAs under consideration: Alternative 1 - No Further Action, Alternative 2 - Closure In Place - No Further Action With Administrative Controls, and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based

  19. CORRECTIVE ACTION DECISION DOCUMENT FOR CORRECTIVE ACTION UNIT 383: AREA 12 E-TUNNEL SITES, NEVADA TEST SITE, REV. NO. 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark McLane

    2005-03-01

    This Corrective Action Decision Document (CADD) was prepared by the Defense Threat Reduction Agency (DTRA) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The recommendations and corrective actions described within this document apply to the future closure of Corrective Action Unit (CAU) 383, Area 12 E-Tunnel Sites, which is a joint DTRA and NNSA/NSO site. The CAU consists of three (3) Corrective Action Sites (CASs): CAS 12-06-06 (Muckpile); CAS 12-25-02 (Oil Spill); and CAS 12-28-02 (Radioactive Material). In addition to these CASs, E-Tunnel Ponds One, Two, and Three, and the Drainage Area above the ponds were included since closure of the Muckpile will impact these areas. This CADD is consistent with the requirements of the ''Federal Facility Agreement and Consent Order'' agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The DTRA point of contact is the Nevada Operations Office, Environmental Project Manager; currently Ms. Tiffany A. Lantow. The NNSA/NSO point of contact is the Environmental Restoration, Industrial Sites Project Manager; currently Ms. Janet Appenzeller-Wing. The purpose of this CADD is to identify and provide the rationale for the selection of a recommended corrective action alternative for CAU 383. This document presents the recommended corrective action for CAU 383 (E-Tunnel Sites); however, implementation may be affected by the corrective action (to be determined) for CAU 551 (Area 12 Muckpiles) due to the close proximity of B, C, D, and F-Tunnels. The scope of this CADD consists of the following tasks: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5

  20. A User’s Guide to the Comprehensive Water Quality Database for Groundwater in the Vicinity of the Nevada Test Site, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene

    2006-09-01

    This water quality database (viz.GeochemXX.mdb) has been developed as part of the Underground Test Area (UGTA) Program with the cooperation of several agencies actively participating in ongoing evaluation and characterization activities under contract to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The database has been constructed to provide up-to-date, comprehensive, and quality controlled data in a uniform format for the support of current and future projects. This database provides a valuable tool for geochemical and hydrogeologic evaluations of the Nevada Test Site (NTS) and surrounding region. Chemistry data have been compiled for groundwater within the NTS and the surrounding region. These data include major ions, organic compounds, trace elements, radionuclides, various field parameters, and environmental isotopes. Colloid data are also included in the database. The GeochemXX.mdb database is distributed on an annual basis. The extension ''XX'' within the database title is replaced by the last two digits of the release year (e.g., Geochem06 for the version released during the 2006 fiscal year). The database is distributed via compact disc (CD) and is also uploaded to the Common Data Repository (CDR) in order to make it available to all agencies with DOE intranet access. This report provides an explanation of the database configuration and summarizes the general content and utility of the individual data tables. In addition to describing the data, subsequent sections of this report provide the data user with an explanation of the quality assurance/quality control (QA/QC) protocols for this database.

  1. Phase II Documentation Overview of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Ruskauff

    2010-04-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Subproject to assess and evaluate radiologic groundwater contamination resulting from underground nuclear testing at the NTS. These activities are overseen by the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended March 2010). For Frenchman Flat, the UGTA Subproject addresses media contaminated by the underground nuclear tests, which is limited to geologic formations within the saturated zone or 100 meters (m) or less above the water table. Transport in groundwater is judged to be the primary mechanism of migration for the subsurface contamination away from the Frenchman Flat underground nuclear tests. The intent of the UGTA Subproject is to assess the risk to the public from the groundwater contamination produced as a result of nuclear testing. The primary method used to assess this risk is the development of models of flow and contaminant transport to forecast the extent of potentially contaminated groundwater for the next 1,000 years, establish restrictions to groundwater usage, and implement a monitoring program to verify protectiveness. For the UGTA Subproject, contaminated groundwater is that which exceeds the radiological standards of the Safe Drinking Water Act (CFR, 2009) the State of Nevada’s groundwater quality standard to protect human health and the environment. Contaminant forecasts are expected to be uncertain, and groundwater monitoring will be used in combination with land-use control to build confidence in model results and reduce risk to the public. Modeling forecasts of contaminant transport will provide the basis for negotiating a compliance boundary for the Frenchman Flat Corrective Action Unit (CAU). This compliance boundary represents a regulatory-based distinction between groundwater contaminated or not contaminated by underground testing. Transport modeling simulations

  2. Analysis of single-hole and cross-hole tracer tests conducted at the Nye County early warning drilling program well complex, Nye County, Nevada

    Science.gov (United States)

    Umari, A.; Earle, J.D.; Fahy, M.F.

    2006-01-01

    As part of the effort to understand the flow and transport characteristics downgradient from the proposed high-level radioactive waste geologic repository at Yucca Mountain, Nevada, single- and cross-hole tracer tests were conducted from December 2004 through October 2005 in boreholes at the Nye County 22 well complex. The results were analyzed for transport properties using both numerical and analytical solutions of the governing advection dispersion equation. Preliminary results indicate effective flow porosity values ranging from 1.0 ?? 10-2 for an individual flow path to 2.0 ?? 10 -1 for composite flow paths, longitudinal dispersivity ranging from 0.3 to 3 m, and a transverse horizontal dispersivity of 0.03 m. Individual flow paths identified from the cross-hole testing indicate some solute diffusion into the stagnant portion of the alluvial aquifer.

  3. Ground-water potentialities in the Crescent Valley, Eureka and Lander Counties, Nevada

    Science.gov (United States)

    Zones, Christie Paul

    1961-01-01

    The Crescent Valley is an intermontane basin in Eureka and Lander Counties, just south of the Humboldt River in north-central Nevada. The valley floor, with an area of about 150 square miles, has a shape that more nearly resembles a Y than a crescent, although the valley apparently was named after the arc described by its southern part and northeastern arm. The northwestern arm of the Y extends northward to the small railroad town of Beowawe on the Humboldt River; the northeastern arm lies east of the low Dry Hills. The leg of the Y extends southwestward toward a narrow gap which separates the Crescent Valley from the Carico Lake Valley. The total drainage area of the Crescent Valley-about 700 square miles--includes also the slopes of the bordering mountain ranges: the Shoshone Range to the west, the Cortez Mountains to the east, and the Toiyabe Range to the south. The early history of the Crescent Valley was dominated by mining of silver and gold, centered at Lander in the Shoshone Range and at Cortez and Mill Canyon in the Cortez Mountains, but in recent years the only major mining activity has been at Gold Acres; there open-pit mining of low-grade gold ore has supported a community of about 200. For many years the only agricultural enterprises in the valley were two cattle ranches, but recently addition lands have been developed for the raising of crops in the west-central part of the valley. The average annual precipitation upon the floor of the Crescent Valley is probably less than 7 inches, of which only a little more than 1 inch formally falls during the growing season (from June through September). This is far less than the requirement of any plants of economic value, and irrigation is essential to agricultural development. Small perennial streams rising in the mountains have long been utilized for domestic supply, mining and milling activities of the past, and irrigation, and recently some large wells have been developed for irrigation. In 1956 the total

  4. Goldquarryite, a new Cd-bearing phosphate mineral from the Gold Quarry mine, Eureka County, Nevada

    Science.gov (United States)

    Roberts, Andrew C.; Cooper, M.A.; Hawthorne, F.C.; Gault, Robert A.; Jensen, M.C.; Foord, E.E.

    2003-01-01

    Goldquarryite, idealized formula CuCd2Al3(PO44F2(H2O)10(H2O 2, structure-derived formula (Cu0.70???0.30??1.00(Cd1.68Ca0.32??2.00Al3 (PO44F2(H2O)10[(H2O 1.60F0.40]??2.00, is triclinic, space group P1, with unit-cell parameters derived from crystal structure: a = 6.787(1), b = 9.082(2), c = 10.113(2) A??, ?? = 101.40(1)??, ?? = 104.27(1)??, ?? = 102.51(1)??, V = 568.7(3) A??3, a:b:c: = 0.7473:1:1.1135, Z = 1. The strongest seven reflections in the X-ray powder-diffraction pattern are [d(A??)(I)(hkl)]: 9.433(100)(001); 4.726(30)(002); 3.700(30)(022); 3.173(30b)(122, 113, 120, 003); 3.010(30)(122, 212); 2.896(30)(211); 2.820(50)(022). The mineral occurs on a single specimen collected from the 5,425-foot bench, Gold Quarry mine, Eureka County, Nevada, as isolated clusters of radiating sprays of crystals and as compact parallel crystal aggregates, which are both found on and between breccia fragments. Sprays and aggregates never exceed 3 mm in longest dimension and typically average about 0.5 mm in size. Goldquarryite is a late-stage supergene mineral associated with opal, carbonate-fluorapatite and hewettite, on a host rock composed principally of brecciated and hydrothermally rounded jasperoid fragments which have been lightly cemented by late-stage silicification. Individual euhedral crystals are acicular to bladed, elongate [100], with a length-to-width ratio of approximately 20:1; the maximum size is 1.5 mm but most crystals do not exceed 0.4 mm in length. Forms are {010}, {001} major and {100} very minor. The mineral is pleochroic; translucent (masses) to transparent (crystals); very pale blue to blue-gray (crystals) or blue (masses); with a white streak and a vitreous to glassy luster. Goldquarryite is brittle, lacks cleavage, has an irregular fracture, and is nonfluorescent; hardness (Mohs') is estimated at 3-4; measured density is 2.78(1) g/cm3 (sink-float techniques using methylene iodide-acetone mixtures), calculated density is 2.81 g/cm3 (for formula and unit

  5. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Donald S. Sweetkind; Ronald M. Drake II

    2007-01-22

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  6. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill-Hole Data in Yucca Flat, Nye County, Nevada

    Science.gov (United States)

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill-hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin such as alluvial fan, channel, basin axis, and playa deposits.

  7. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada

    Science.gov (United States)

    Sweetkind, Donald S.; Drake II, Ronald M.

    2007-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  8. 2014 Well Completion Report for Corrective Action Unit 447 Project Shoal Area Churchill County, Nevada October 2015

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [US Department of Energy, Washington, DC (United States).Office of Legacy Management

    2015-11-01

    This report summarizes the drilling program conducted by the U.S. Department of Energy (DOE) Office of Legacy Management at the Project Shoal Area (Shoal) Subsurface Corrective Action Unit 447 in Churchill County, Nevada. Shoal was the location of an underground nuclear test conducted on October 26, 1963, as part of the Vela Uniform program sponsored jointly by the U.S. Department of Defense and the U.S. Atomic Energy Commission (a predecessor to DOE). The test consisted of detonating a 12-kiloton nuclear device in granitic rock at a depth of approximately 1,211 feet (ft) below ground surface (bgs) (AEC 1964). The corrective action strategy for the site is focused on revising the site conceptual model and evaluating the adequacy of the monitoring well network at the site. Field activities associated with the project were conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended) and applicable Nevada Division of Environmental Protection (NDEP) policies and regulations.

  9. Electrical studies at the proposed Wahmonie and Calico Hills nuclear waste sites, Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Hoover, D.B.; Chornack, Michael P.; Nervick, K.H.; Broker, M.M.

    1982-01-01

    Two sites in the southwest quadrant of the Nevada Test Site (NTS) were investigated as potential repositories for high-level nuclear waste. These are designated the Wahmonie and Calico Hills sites. The emplacement medium at both sites was to be an inferred intrusive body at shallow depth; the inference of the presence of the body was based on aeromagnetic and regional gravity data. This report summarizes results of Schlumberger VES, induced polarization dipole-dipole traverses and magnetotelluric soundings made in the vicinity of the sites in order to characterize the geoelectric section. At the Wahmonie site VES work identified a low resistivity unit at depth surrounding the inferred intrusive body. The low resistivity unit is believed to be either the argillite (Mississippian Eleana Formation) or a thick unit of altered volcanic rock (Tertiary). Good electrical contrast is provided between the low resistivity unit and a large volume of intermediate resistivity rock correlative with the aeromagnetic and gravity data. The intermediate resistivity unit (100-200 ohm-m) is believed to be the intrusive body. The resistivity values are very low for a fresh, tight intrusive and suggest significant fracturing, alteration and possible mineralization have occurred within the upper kilometer of rock. Induced polarization data supports the VES work, identifies a major fault on the northwest side of the inferred intrusive and significant potential for disseminated mineralization within the body. The mineralization potential is particularly significant because as late as 1928, a strike of high grade silver-gold ore was made at the site. The shallow electrical data at Calico Hills revealed no large volume high resistivity body that could be associated with a tight intrusive mass in the upper kilometer of section. A drill hole UE 25A-3 sunk to 762 m (2500 ft) at the site revealed only units of the Eleana argillite thermally metamorphosed below 396 m (1300 ft) and in part highly

  10. Water levels in periodically measured wells in the Yucca Mountain area, Nye County, Nevada, 1981-87

    Science.gov (United States)

    Robison, J.H.; Stephens, D.M.; Luckey, R.R.; Baldwin, D.A.

    1988-01-01

    This report contains data on groundwater levels beneath Yucca Mountain and adjacent areas, Nye County, Nevada. In addition to new data collected since 1983, the report contains data that has been updated from previous reports, including added explanations of the data. The data was collected in cooperation with the U.S. Department of Energy to help that agency evaluate the suitability of the area of storing high-level nuclear waste. The water table in the Yucca Mountain area occurs in ash-flow and air-fall tuff of Tertiary age. West of the crest of Yucca Mountain, water level altitudes are about 775 m above sea level. Along the eastern edge and southern end of Yucca Mountain, the potentiometric surface generally is nearly flat, ranging from about 730 to 728 m above sea level. (USGS)

  11. Special Analysis of the Area 3 Radioactive Waste Management Site at the Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    National Security Technologies, LLC, Environmental Management

    2012-09-30

    This report describes the methods and results of a special analysis (SA) of the Area 3 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The purpose of the SA is to determine if the approved performance assessment (PA) and composite analysis (CA) (Shott et al., 2001) remain valid. The Area 3 RWMS PA and CA were prepared as a single document and received conditional approval on October 6, 1999. A conditional Disposal Authorization Statement (DAS) for the Area 3 RWMS was issued on October 20, 1999. Since preparation of the approved PA and CA, new information and additional environmental monitoring data have been used to update the PA and CA. At the same time, continual advancements in computer processors and software have allowed improvement to the PA and CA models. Annual reviews of the PA and CA required by U.S. Department of Energy (DOE) Order DOE O 435.1 have documented multiple changes occurring since preparation of the PA and CA. Potentially important changes include: Development of a new and improved baseline PA and CA model implemented in the probabilistic GoldSim simulation platform. A significant increase in the waste inventory disposed at the site. Revision and updating of model parameters based on additional years of site monitoring data and new research and development results. Although changes have occurred, many important PA/CA issues remain unchanged, including the site conceptual model, important features, events, and processes, and the points of compliance. The SA is performed to document the current status of the PA/CA model and to quantitatively assess the impact of cumulative changes on the PA and CA results. The results of the SA are used to assess the validity of the approved PA/CA and make a determination if revision of the PA or CA is necessary. The SA was performed using the Area 3 RWMS, version 2.102, GoldSim model, the current baseline PA/CA model. Comparison of the maximum SA results with the PA

  12. Special Analysis of the Area 3 Radioactive Waste Management Site at the Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    National Security Technologies, LLC, Environmental Management

    2012-09-30

    This report describes the methods and results of a special analysis (SA) of the Area 3 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The purpose of the SA is to determine if the approved performance assessment (PA) and composite analysis (CA) (Shott et al., 2001) remain valid. The Area 3 RWMS PA and CA were prepared as a single document and received conditional approval on October 6, 1999. A conditional Disposal Authorization Statement (DAS) for the Area 3 RWMS was issued on October 20, 1999. Since preparation of the approved PA and CA, new information and additional environmental monitoring data have been used to update the PA and CA. At the same time, continual advancements in computer processors and software have allowed improvement to the PA and CA models. Annual reviews of the PA and CA required by U.S. Department of Energy (DOE) Order DOE O 435.1 have documented multiple changes occurring since preparation of the PA and CA. Potentially important changes include: Development of a new and improved baseline PA and CA model implemented in the probabilistic GoldSim simulation platform. A significant increase in the waste inventory disposed at the site. Revision and updating of model parameters based on additional years of site monitoring data and new research and development results. Although changes have occurred, many important PA/CA issues remain unchanged, including the site conceptual model, important features, events, and processes, and the points of compliance. The SA is performed to document the current status of the PA/CA model and to quantitatively assess the impact of cumulative changes on the PA and CA results. The results of the SA are used to assess the validity of the approved PA/CA and make a determination if revision of the PA or CA is necessary. The SA was performed using the Area 3 RWMS, version 2.102, GoldSim model, the current baseline PA/CA model. Comparison of the maximum SA results with the PA

  13. Corrective Action Decision Document/Closure Report for Corrective Action 405: Area 3 Septic Systems, Tonopah Test Range, Nevada Rev. No.: 0, April 2002

    Energy Technology Data Exchange (ETDEWEB)

    IT Coroporation, Las Vegas, NV

    2002-04-17

    This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 405, Area 3 Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. Located on the Tonopah Test Range (TTR) approximately 235 miles north of Las Vegas, Nevada, CAU 405 consists of three Corrective Action Sites (CASs): 03-05-002-SW03, Septic Waste System (aka: Septic Waste System [SWS] 3); 03-05-002-SW04, Septic Waste System (aka: SWS 4); 03-05-002-SW07, Septic Waste System (aka: SWS 7). The CADD and CR have been combined into one report because no further action is recommended for this CAU, and this report provides specific information necessary to support this recommendation. The CAU consists of three leachfields and associated collection systems that were installed in or near Area 3 for wastewater disposal. These systems were used until a consolidated sewer system was installed in 1990. Historically, operations within various buildin gs in and near Area 3 of the TTR generated sanitary and industrial wastewaters. There is a potential that contaminants of concern (COCs) were present in the wastewaters and were disposed of in septic tanks and leachfields. The justification for closure of this CAU without further action is based on process knowledge and the results of the investigative activities. Closure activities were performed at these CASs between January 14 and February 2, 2002, and included the removal and proper disposal of media containing regulated constituents and proper closure of septic tanks. No further action is appropriate because all necessary activities have been completed. No use restrictions are required to be imposed for these sites since the investigation showed no evidence of COCs identified in the soil for CAU 405.

  14. Corrective Action Investigation Plan for Corrective Action Unit 165: Areas 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada (including Record of Technical Change Nos. 1, 2, and 3) (January 2002, Rev. 0)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2002-01-09

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 165 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 165 consists of eight Corrective Action Sites (CASs): CAS 25-20-01, Lab Drain Dry Well; CAS 25-51-02, Dry Well; CAS 25-59-01, Septic System; CAS 26-59-01, Septic System; CAS 25-07-06, Train Decontamination Area; CAS 25-07-07, Vehicle Washdown; CAS 26-07-01, Vehicle Washdown Station; and CAS 25-47-01, Reservoir and French Drain. All eight CASs are located in the Nevada Test Site, Nevada. Six of these CASs are located in Area 25 facilities and two CASs are located in Area 26 facilities. The eight CASs at CAU 165 consist of dry wells, septic systems, decontamination pads, and a reservoir. The six CASs in Area 25 are associated with the Nuclear Rocket Development Station that operated from 1958 to 1973. The two CASs in Area 26 are associated with facilities constructed for Project Pluto, a series of nuclear reactor tests conducted between 1961 to 1964 to develop a nuclear-powered ramjet engine. Based on site history, the scope of this plan will be a two-phased approach to investigate the possible presence of hazardous and/or radioactive constituents at concentrations that could potentially pose a threat to human health and the environment. The Phase I analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. If laboratory data obtained from the Phase I investigation indicates the presence of contaminants of concern, the process will continue with a Phase II investigation to define the extent of contamination. Based on the

  15. Archaeological studies at Drill Hole U20az Pahute Mesa, Nye county, Nevada. [Contains bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, A.H.; Hemphill, M.L.; Henton, G.H.; Lockett, C.L.; Nials, F.L.; Pippin, L.C.; Walsh, L.

    1991-07-01

    During the summer of 1987, the Quaternary Sciences Center (formerly Social Science Center) of the Desert Research Institute (DRI), University of Nevada System, conducted data recovery investigations at five archaeological sites located near Drill Hole U20az on the Nevada Test Site in southern Nevada. These sites were among 12 recorded earlier during an archaeological survey of the drill hole conducted as part of the environmental compliance activities of the Department of Energy (DOE). The five sites discussed in this report were considered eligible for the National Register of Historic Places and were in danger of being adversely impacted by construction activities or by effects of the proposed underground nuclear test. Avoidance of these sites was not a feasible alternative; thus DRI undertook a data recovery program to mitigate expected adverse impacts. DRI's research plan included controlled surface collections and excavation of the five sites in question, and had the concurrence of the Nevada Division of Historic Preservation and Archaeology and the Advisory Council of Historic Preservation. Of the five sites investigated, the largest and most complex, 26Ny5207, consists of at least three discrete artifact concentrations. Sites 26Ny5211 and 26Ny5215, both yielded considerable assemblages. Site 26Ny5206 is very small and probably is linked to 26Ny5207. Site 26Ny5205 contained a limited artifact assemblage. All of the sites were open-air occurrences, and, with one exception contained no or limited subsurface cultural deposits. Only two radiocarbon dates were obtained, both from 26Ny5207 and both relatively recent. While the investigations reported in the volume mitigate most of the adverse impacts from DOE activities at Drill Hole U20az, significant archaeological sites may still exist in the general vicinity. Should the DOE conduct further activities in the region, additional cultural resource investigations may be required. 132 refs., 71 figs., 44 tabs.

  16. Archaeological data recovery at drill pad U19au, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Henton, G.H.; Pippin, L.C.

    1991-01-01

    Construction activities accompanying underground nuclear tests result in the disturbance of the surface terrain at the Nevada Test Site. In compliance with Federal legislation (National Historic Preservation Act of 1966 (PL 89-665) and National Environmental Policy Act of 1969 (PL 91-190)), the US Department of Energy (DOE), Field Office, Nevada, has long required that cultural resources studies must precede all land-disturbing activities on the Nevada Test Site. In accordance with 36 CFR Part 800, these studies consist of archaeological surveys conducted prior to the land-disturbing activities. The intent of these surveys is to identify and evaluate all cultural resources that might be adversely affected by the proposed construction activity. This report presents the final analysis of the data recovered from archaeological investigations conducted at the U19au drill site and access road. This report includes descriptions of the archaeological sites as recorded during the original survey, the research design used to guide the investigations, the method and techniques used to collect and analyze the data, and the results and interpretations of the analysis. 200 refs., 112 figs., 53 tabs.

  17. Final base case community analysis: Indian Springs, Nevada for the Clark County socioeconomic impact assessment of the proposed high- level nuclear waste repository at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-06-18

    This document provides a base case description of the rural Clark County community of Indian Springs in anticipation of change associated with the proposed high-level nuclear waste repository at Yucca Mountain. As the community closest to the proposed site, Indian Springs may be seen by site characterization workers, as well as workers associated with later repository phases, as a logical place to live. This report develops and updates information relating to a broad spectrum of socioeconomic variables, thereby providing a `snapshot` or `base case` look at Indian Springs in early 1992. With this as a background, future repository-related developments may be analytically separated from changes brought about by other factors, thus allowing for the assessment of the magnitude of local changes associated with the proposed repository. Given the size of the community, changes that may be considered small in an absolute sense may have relatively large impacts at the local level. Indian Springs is, in many respects, a unique community and a community of contrasts. An unincorporated town, it is a small yet important enclave of workers on large federal projects and home to employees of small- scale businesses and services. It is a rural community, but it is also close to the urbanized Las Vega Valley. It is a desert community, but has good water resources. It is on flat terrain, but it is located within 20 miles of the tallest mountains in Nevada. It is a town in which various interest groups diverge on issues of local importance, but in a sense of community remains an important feature of life. Finally, it has a sociodemographic history of both surface transience and underlying stability. If local land becomes available, Indian Springs has some room for growth but must first consider the historical effects of growth on the town and its desired direction for the future.

  18. Corrective Action Investigation Plan for Corrective Action Unit 5: Landfills, Nevada Test Site, Nevada (Rev. No.: 0) includes Record of Technical Change No. 1 (dated 9/17/2002)

    Energy Technology Data Exchange (ETDEWEB)

    IT Corporation, Las Vegas, NV

    2002-05-28

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 5 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 5 consists of eight Corrective Action Sites (CASs): 05-15-01, Sanitary Landfill; 05-16-01, Landfill; 06-08-01, Landfill; 06-15-02, Sanitary Landfill; 06-15-03, Sanitary Landfill; 12-15-01, Sanitary Landfill; 20-15-01, Landfill; 23-15-03, Disposal Site. Located between Areas 5, 6, 12, 20, and 23 of the Nevada Test Site (NTS), CAU 5 consists of unlined landfills used in support of disposal operations between 1952 and 1992. Large volumes of solid waste were produced from the projects which used the CAU 5 landfills. Waste disposed in these landfills may be present without appropriate controls (i.e., use restrictions, adequate cover) and hazardous and/or radioactive constituents may be present at concentrations and locations that could potentially pose a threat to human health and/or the environment. During the 1992 to 1995 time frame, the NTS was used for various research and development projects including nuclear weapons testing. Instead of managing solid waste at one or two disposal sites, the practice on the NTS was to dispose of solid waste in the vicinity of the project. A review of historical documentation, process knowledge, personal interviews, and inferred activities associated with this CAU identified the following as potential contaminants of concern: volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, pesticides, petroleum hydrocarbons (diesel- and gasoline-range organics), Resource Conservation and Recovery Act Metals, plus nickel and zinc. A two-phase approach has been selected to collect information and generate data to satisfy needed resolution

  19. Water-level changes and directions of ground-water flow in the shallow aquifer, Fallon area, Churchill County, Nevada

    Science.gov (United States)

    Seiler, R.L.; Allander, K.K.

    1993-01-01

    The Truckee-Carson-Pyramid Lake Water Rights Settlement Act of 1990 directed the U.S. Fish and Wildlife Service to acquire water rights for wetland areas in the Carson Desert, Nevada. The public is concerned that htis acquisition of water rights and delivery of the water directly to wildlife areas would result in less recharge to the shallow ground water in the Fallon area and cause domestic wells to go dry. In January 1992, the U.S. Geological Survey, in cooperation with U.S. Fish and Wildlife Service, began a study of the shallow ground-water system in the Fallon area in Churchill County, Nevada. A network of 126 wells in the study area was monitored. Between January and November 1992, water levels in most wells declined, usually less than 2 feet. The maximum measured decline over this period was 2.68 feet in a well near Stillwater Marsh. Between April and July, however, water levels rose in irrigated areas, typically 1 to 2 feet. Newlands Project water deliveries to the study area began soon after the turn of the century. Since then, water levels have risen more than 15 feet across much of the study area. Water lost from unlined irrigtiaon canals caused the stage in Big Soda Lake to rise nearly 60 feet; ground-water levels near the lake have risen 30 to 40 feet. The depth to water in most irrigated areas is now less than 10 feet. The altitude of the water table ranges from 4.025 feet above sea level 11 miles west of Fallon to 3,865 feet in the Stillwater Marsh area. Ground water flows eastward and divides; some flow goes to the northeast toward the Carson Sink and Stillwater areas, and some goes southeastward to Carson Lake.

  20. Imaging the Black Hills Fault, Clark County, Nevada Utilizing High-Resolution Seismic Reflection and Vibroseis

    Science.gov (United States)

    Zaragoza, S. A.; Snelson, C. M.; Saldana, S. C.; Hirsch, A.; Poche, S.; Taylor, W. J.

    2006-12-01

    Historically, the location, geometries, and seismic potential of southern Nevada faults are poorly constrained. Collection of such data and seismic hazard characterization of the Black Hills fault (BHF) are important steps in better defining one of these faults. The BHF forms the northwestern structural boundary of the Eldorado Valley, which lies ~20 km southeast of Las Vegas, Nevada, between the growing communities of Henderson and Boulder City. Earthquake magnitude estimates based on surface rupture length (SRL) indicate an earthquake potential of Mw 5.7; however, estimates based on displacement values documented in a paleoseismic trench indicate a higher value of Mw 6.4-6.8. This implies that the subsurface rupture length is significantly greater than the length of the scarp. Although previous attempts to image the fault with a hammer source were inconclusive, gravity studies and local geology imply that the fault continues south of the scarp. Therefore, additional high-resolution seismic reflection and refraction data were acquired in SEG2 format along portions of a 1 km profile at 5 m station spacing utilizing a vibroseis source. At each shot point, a stack of four 30-160 Hz vibroseis sweeps of 15 s duration was recorded on a 60-channel system with 40 Hz geophones. A preliminary examination of these data indicates the existence of an eastward dipping structure, potentially confirming that the BHF continues in the subsurface south of the scarp.

  1. Steamlined Approach for Environmental Restoration (SAFER) Plan For Corrective Action Unit 394: Areas 12, 18, and 29, Spill/Release Sites, Nevada Test Site, Nevada (November 2001, Rev. 0)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2001-09-24

    This plan addresses the actions necessary for the characterization and closure of Corrective Action Unit (CAU) 394: Areas 12, 18, and 29, Spill/Release Sites, identified in the Federal Facility Agreement and Consent Order (FFACO). The CAU, located on the Nevada Test Site, consists of six Corrective Action Sites (CASs): CAS 12-25-04, UST 12-16-2 Waste Oil Release; CAS 18-25-02, Oil Spills; CAS 18-25-02, Oil Spills; CAS 18-25-03, Oil Spill; CAS 18-25-04, Spill (Diesel Fuel); CAS 29-44-01, Fuel Spill (a & b). Process knowledge is the basis for the development of the conceptual site models (CSMs). The CSMs describe the most probable scenario for current conditions at each site, and define the assumptions that are the basis for the SAFER plan. The assumptions are formulated from historical information and process knowledge. Vertical migration of contaminant(s) of potential concern (COPCs) is expected to be predominant over lateral migration in the absence of any barrier (with asphalt /concrete being the exception at least two of the CASs). Soil is the impacted or potentially impacted media at all the sites, with asphalt and/or concrete potentially impacted at two of the CASs. Radionuclides are not expected at any CAS; hydrocarbons are the primary COPC at each CAS, and can be used to guide the investigation; future land-use scenarios limit use to various nonresidential uses; and exposure scenarios are limited by future land-use scenarios to site workers. There is sufficient information and process knowledge from historical documentation regarding the expected nature and extent of potential contaminants to recommend closure of CAU 394 using the SAFER process. On completion of the field activities, a Closure Report will be prepared and submitted to the NDEP for review and approval.

  2. Annual Post-Closure Inspection and Monitoring Report for Corrective Action Unit 329: Area 22 Desert Rock Airstrip Fuel Spill, Nevada Test Site, Nevada, with Errata Sheet, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2007-01-01

    This report presents the data collected during field activities and quarterly soil-gas sampling activities conducted from May 9, 2005, through May 20, 2006, at Corrective Action Unit (CAU) 329, Area 22 Desert Rock Airstrip (DRA) Fuel Spill; Corrective Action Site (CAS) 22-44-01, Fuel Spill. The CAU is located at the DRA, which is located approximately two miles southwest of Mercury, Nevada. A risk evaluation was added to the scope of the project to determine if the residual concentration of the hazardous constituents of JP4 pose an unacceptable risk to human health or the environment and if a corrective action was required at the site, because the current quarterly monitoring program is not expected to yield a rate constant that could be used effectively to determine a biodegradation rate for total petroleum hydrocarbons (TPH) in less than the initial five years outlined in the CR. Additionally, remediation to the Tier 1 action level for TPH is not practical or technically feasible due to the depth of contamination. Field activities were conducted under the Addendum to the CR to collect sufficient data to determine the rate of biodegradation for TPH contamination at CAU 329 to support closure requirements. Reconstruction of the monitoring system at the site and quarterly soil-gas sampling were conducted to collect the required data. Because existing Wells DRA-0 and DRA-3 were determined to be insufficient to provide adequate data, soil-gas monitoring Wells DRA-10 and DRA-11 were installed. Two soil-gas sampling events were conducted to establish a baseline for the site, and subsequent quarterly sampling was conducted as part of the quarterly soil-gas sampling program. In addition, soil samples were collected during well drilling activities so comparisons might be made between the initial soil contamination levels in 2000 and the concentrations present at the time of the well installation.

  3. Potential areas of ground-water discharge in the Basin and Range carbonate-rock aquifer system, White Pine County, Nevada, and adjacent parts of Nevada and Utah

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data represent potential areas of ground-water discharge for selected hydrographic areas in eastern Nevada and western Utah. The data are based on phreatophyte...

  4. Principal facts for gravity stations in Dixie; Fairview, and Stingaree valleys, Churchill and Pershing counties, Nevada

    Science.gov (United States)

    Schaefer, D.H.; Thomas, J.M.; Duffrin, B.G.

    1984-01-01

    During March through July 1979, gravity measurements were made at 300 stations in Dixie Valley, Nevada. In December 1981, 45 additional stations were added--7 in Dixie Valley, 23 in Fairview Valley, and 15 in Stingaree Valley. Most altitudes were determined by using altimeters or topographic maps. The gravity observations were made with a Worden temperature-controlled gravimeter with an initial scale factor of 0.0965 milliGal/scale division. Principal facts for each of the 345 stations are tabulated; they consist of latitude, longitude, altitude, observed gravity, free-air anomaly, terrain correction, and Bouguer anomaly values at a bedrock density of 2.67 grams/cu cm. (Lantz-PTT)

  5. Contributions to Astrogeology: Geology of the lunar crater volcanic field, Nye County, Nevada

    Science.gov (United States)

    Scott, D. H.; Trask, N. J.

    1971-01-01

    The Lunar Crater volcanic field in east-central Nevada includes cinder cones, maars, and basalt flows of probably Quaternary age that individually and as a group resemble some features on the moon. Three episodes of volcanism are separated by intervals of relative dormancy and erosion. Changes in morphology of cinder cones, degree of weathering, and superposition of associated basalt flows provide a basis for determining the relative ages of the cones. A method has been devised whereby cone heights, base radii, and angles of slope are used to determine semiquantitatively the age relationships of some cinder cones. Structural studies show that cone and crater chains and their associated lava flows developed along fissures and normal faults produced by tensional stress. The petrography of the basalts and pyroclastics suggests magmatic differentiation at depth which produced interbedded subalkaline basalts, alkali-olivine basalts, and basanitoids. The youngest flows in the field are basanitoids.

  6. Geologic map of south-central Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Dickerson, Robert P.; Drake II, Ronald M.

    2004-01-01

    New 1:6,000-scale geologic mapping in a 20-square-kilometer area near the south end of Yucca Mountain, Nevada, which is the proposed site of an underground repository for the storage of high-level radioactive wastes, substantially supplements the stratigraphic and structural data obtained from earlier, 1:24,000-scale mapping. Principal observations and interpretations resulting from the larger scale, more detailed nature of the recent investigation include: (1) the thickness of the Miocene Tiva Canyon Tuff decreases from north to south within the map area, and the lithophysal zones within the formation have a greater lateral variability than in areas farther north; and (2) fault relations are far more complex than shown on previous maps, with both major (block-bounding) and minor (intrablock) faults showing much lateral variation in (a) the number of splays and (b) the amount, distribution, and width of anastomosing breccia and fracture zones.

  7. Geohydrology of rocks penetrated by test well USW H-6, Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Craig, R.W. [Geological Survey, Denver, CO (United States); Reed, R.L. [Fenix and Scisson, Inc., Tulsa, OK (United States)

    1991-12-01

    Test well USW H-6 is one of several wells drilled in the Yucca Mountain area near the southwestern part of the Nevada Test Site for investigations related to isolation of high-level nuclear waste. This well was drilled to a depth of 1,220 meters. Rocks penetrated are predominantly ash-flow tuffs of Tertiary age, with the principal exception of dacitic(?) lave penetrated at a depth from 877 to 1,126 meters. The composite static water level was about 526 meters below the land surface; the hydraulic head increased slightly with depth. Most permeability in the saturated zone is in two fractured intervals in Crater Flat Tuff. Based on well-test data using the transitional part of a dual-porosity solution, an interval of about 15 meters in the middle part of the Bullfrog Member of the Crater Flat Tuff has a calculated transmissivity of about 140 meters squared per day, and an interval of about 11 meters in the middle part of the Tram Member of the Crater Flat Tuff has a calculated transmissivity of about 75 meters squared per day. The upper part of the Bullfrog Member has a transmissivity of about 20 meters squared per day. The maximum likely transmissivity of any rocks penetrated by the test well is about 480 meters squared per day, based on a recharge-boundary model. The remainder of the open hole had no detectable production. Matrix hydraulic conductivity ranges from less than 5 {times} 10{sup {minus}5} to 1 {times} 10{sup {minus}3} meter per day. Ground water is a sodium bicarbonate type that is typical of water from tuffaceous rock of southern Nevada. The apparent age of the water is about 14,6000 years. 29 refs., 26 figs., 5 tabs.

  8. Characterization of the Highway 95 Fault in lower Fortymile Wash using electrical and electromagnetic methods, Nye County, Nevada

    Science.gov (United States)

    Macy, Jamie P.; Kryder, Levi; Walker, Jamieson

    2012-01-01

    The Highway 95 Fault is a buried, roughly east-west trending growth fault at the southern extent of Yucca Mountain and Southwestern Nevada Volcanic Field. Little is known about the role of this fault in the movement of groundwater from the Yucca Mountain area to downgradient groundwater users in Amargosa Valley. The U.S. Geological Survey (USGS) Arizona Water Science Center (AZWSC), in cooperation with the Nye County Nuclear Waste Repository Project Office (NWRPO), has used direct current (DC) resistivity, controlled-source audio magnetotelluric (CSAMT), and transient electromagnetics (TEM) to better understand the fault. These geophysical surveys were designed to look at structures buried beneath the alluvium, following a transect of wells for lithologic control. Results indicate that the fault is just north of U.S. Highway 95, between wells NC-EWDP-2DB and -19D, and south of Highway 95, east of well NC-EWDP-2DB. The Highway 95 Fault may inhibit shallow groundwater movement by uplifting deep Paleozoic carbonates, effectively reducing the overlying alluvial aquifer thickness and restricting the movement of water. Upward vertical hydraulic gradients in wells proximal to the fault indicate that upward movement is occurring from deeper, higher-pressure aquifers.

  9. Characterization of liquid-water percolation in tuffs in the unsaturated zone, Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Kume, J.; Rousseau, J.P.

    1989-12-31

    A surface-based borehole investigation currently (1989) is being done to characterize liquid-water percolation in tuffs of Miocene age in the unsaturated zone beneath Yucca Mountain, Nye County, Nevada Active in-situ testing and passive in-situ monitoring will be used in this investigation to estimate the present-day liquid-water percolation (flux). The unsaturated zone consists of a gently dipping sequence of fine-grained, densely fractured, and mostly welded ash-flow tuffs that are interbedded with fine-grained, slightly fractured, non-welded ash-flow and ash-fall tuffs that are partly vitric and zeolitized near the water table. Primary study objectives are to define the water potential field within the unsaturated zone and to determine the in-situ bulk permeability and bulk hydrologic properties of the unsaturated tuffs. Borehole testing will be done to determine the magnitude and spatial distribution of physical and hydrologic properties of the geohydrologic units, and of their water potential fields. The study area of this investigation is restricted to that part of Yucca Mountain that immediately overlies and is within the boundaries of the perimeter drift of a US Department of Energy proposed mined, geologic, high-level radioactive-waste repository. Vertically, the study area extends from near the surface of Yucca Mountain to the underlying water table, about 500 to 750 meters below the ground surface. The average distance between the proposed repository and the underlying water table is about 205 meters.

  10. Methods and Data Used to Investigate Polonium-210 as a Source of Excess Gross-Alpha Radioactivity in Ground Water, Churchill County, Nevada

    Science.gov (United States)

    Seiler, Ralph L.

    2007-01-01

    Ground water is the major source of drinking water in the Carson River Basin, California and Nevada. Previous studies have shown that uranium and gross-alpha radioactivities in ground water can be greater than U.S. Environmental Protection Agency Maximum Contaminant Levels, particularly in the Carson Desert, Churchill County, Nevada. Studies also have shown that the primary source of the gross-alpha radioactivity and alpha-emitting radionuclides in ground water is the dissolution of uranium-rich granitic rocks and basin-fill sediments that have their origins in the Sierra Nevada. However, ground water sampled from some wells in the Carson Desert had gross-alpha radioactivities greater than could be accounted for by the decay of dissolved uranium. The occurrence of polonium-210 (Po-210) was hypothesized to explain the higher than expected gross-alpha radioactivities. This report documents and describes the study design, field and analytical methods, and data used to determine whether Po-210 is the source of excess gross-alpha radioactivity in ground water underlying the Carson Desert in and around Fallon, Nevada. Specifically, this report presents: 1) gross alpha and uranium radioactivities for 100 wells sampled from June to September 2001; and 2) pH, dissolved oxygen, specific conductance, and Po-210 radioactivity for 25 wells sampled in April and June 2007. Results of quality-control samples for the 2007 dataset are also presented.

  11. 2010 Annual Summary Report for the Area 3 and Area 5 Radioactive Management Sites at the Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2011-03-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 Radioactive Waste Management Site (RWMS) Performance Assessments (PAs) and Composite Analyses (CAs) in fiscal year (FY) 2010. This annual summary report presents data and conclusions from the FY 2010 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

  12. 2010 Annual Summary Report for the Area 3 and Area 5 Radioactive Management Sites at the Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2011-03-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 Radioactive Waste Management Site (RWMS) Performance Assessments (PAs) and Composite Analyses (CAs) in fiscal year (FY) 2010. This annual summary report presents data and conclusions from the FY 2010 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

  13. Addendum for the Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0 (page changes)

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2007-05-01

    This document, which makes changes to Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, S-N/99205--077, Revision 0 (June 2006), was prepared to address review comments on this final document provided by the Nevada Division of Environmental Protection (NDEP) in a letter dated August 4, 2006. The document includes revised pages that address NDEP review comments and comments from other document users. Change bars are included on these pages to identify where the text was revised. In addition to the revised pages, the following clarifications are made for the two plates inserted in the back of the document: • Plate 4: Disregard the repeat of legend text ‘Drill Hole Name’ and ‘Drill Hole Location’ in the lower left corner of the map. • Plate 6: The symbol at the ER-16-1 location (white dot on the lower left side of the map) is not color-coded because no water level has been determined. The well location is included for reference. • Plate 6: The symbol at the ER-12-1 location (upper left corner of the map), a yellow dot, represents the lower water level elevation. The higher water level elevation, represented by a red dot, was overprinted.

  14. Structural controls on Carlin-type gold mineralization in the gold bar district, Eureka County, Nevada

    Science.gov (United States)

    Yigit, O.; Nelson, E.P.; Hitzman, M.W.; Hofstra, A.H.

    2003-01-01

    The Gold Bar district in the southern Roberts Mountains, 48 km northwest of Eureka, Nevada, contains one main deposit (Gold Bar), five satellite deposits, and other resources. Approximately 0.5 Moz of gold have been recovered from a resource of 1,639,000 oz of gold in Carlin-type gold deposits in lower plate, miogeoclinal carbonate rocks below the Roberts Mountains thrust. Host rocks are unit 2 of the Upper Member of the Devonian Denay Formation and the Bartine Member of the McColley Canyon Formation. Spatial and temporal relations between structures and gold mineralization indicate that both pre-Tertiary and Tertiary structures were important controls on gold mineralization. Gold mineralization occurs primarily along high-angle Tertiary normal faults, some of which are reactivated reverse faults of Paleozoic or Mesozoic age. Most deposits are localized at the intersection of northwest- and northeast-striking faults. Alteration includes decalcification, and to a lesser extent, silicification along high-angle faults. Jasperoid (pervasive silicification), which formed along most faults and in some strata-bound zones, accounts for a small portion of the ore in every deposit. In the Gold Canyon deposit, a high-grade jasperoid pipe formed along a Tertiary normal fault which was localized along a zone of overturned fault-propagation folds and thrust faults of Paleozoic or Mesozoic age.

  15. Geohydrology of Monitoring Wells Drilled in Oasis Valley near Beatty, Nye County, Nevada, 1997

    Science.gov (United States)

    Robledo, Armando R.; Ryder, Philip L.; Fenelon, Joseph M.; Paillet, Frederick L.

    1999-01-01

    Twelve monitoring wells were installed in 1997 at seven sites in and near Oasis Valley, Nevada. The wells, ranging in depth from 65 to 642 feet, were installed to measure water levels and to collect water-quality samples. Well-construction data and geologic and geophysical logs are presented in this report. Seven geologic units were identified and described from samples collected during the drilling: (1) Ammonia Tanks Tuff; (2) Tuff of Cutoff Road; (3) tuffs, not formally named but informally referred to in this report as the 'tuff of Oasis Valley'; (4) lavas informally named the 'rhyolitic lavas of Colson Pond'; (5) Tertiary colluvial and alluvial gravelly deposits; (6) Tertiary and Quaternary colluvium; and (7) Quaternary alluvium. Water levels in the wells were measured in October 1997 and February 1998 and ranged from about 18 to 350 feet below land surface. Transmissive zones in one of the boreholes penetrating volcanic rock were identified using flowmeter data. Zones with the highest transmissivity are at depths of about 205 feet in the 'rhyolitic lavas of Colson Pond' and 340 feet within the 'tuff of Oasis Valley.'

  16. Airborne Thermal Infrared Multispectral Scanner (TIMS) images over disseminated gold deposits, Osgood Mountains, Humboldt County, Nevada

    Science.gov (United States)

    Krohn, M. Dennis

    1986-01-01

    The U.S. Geological Survey (USGS) acquired airborne Thermal Infrared Multispectral Scanner (TIMS) images over several disseminated gold deposits in northern Nevada in 1983. The aerial surveys were flown to determine whether TIMS data could depict jasperoids (siliceous replacement bodies) associated with the gold deposits. The TIMS data were collected over the Pinson and Getchell Mines in the Osgood Mountains, the Carlin, Maggie Creek, Bootstrap, and other mines in the Tuscarora Mountains, and the Jerritt Canyon Mine in the Independence Mountains. The TIMS data seem to be a useful supplement to conventional geochemical exploration for disseminated gold deposits in the western United States. Siliceous outcrops are readily separable in the TIMS image from other types of host rocks. Different forms of silicification are not readily separable, yet, due to limitations of spatial resolution and spectral dynamic range. Features associated with the disseminated gold deposits, such as the large intrusive bodies and fault structures, are also resolvable on TIMS data. Inclusion of high-resolution thermal inertia data would be a useful supplement to the TIMS data.

  17. Structural development of the west-central Grant Range, Nye County, Nevada

    Science.gov (United States)

    Fryxell, J. E.

    The Grant Ridge in east central Nevada shows a complex history of Mesozoic and Cenozoic deformation. The oldest structure in the range is a major east vergent overturned anticline, possibly related to a thrust fault at depth. Most of the lower to upper Cambrian rocks exposed in the study area are part of the overturned limb of the anticline. After folding, the Cambrian rocks were metamorphosed, locally to staurolite grade; neomineralization dies out upward through the fold. The older set dips to the southeast, and generally placed slightly to unmetamorphosed units upon more severely deformed units. The younger fault set dips west, cutting east dipping faults and syntectonic conglomerates likely correlative with the Mio-Pliocene Horse Camp Formation. These faults are therefore Pliocene or younger in age. These relationships indicate that, folding, metamorphism, ductile shearing, and low angle normal faulting were geometrically and chronologically independent of each other. Post late Cretaceous and pre late Oligocene low angle north directed shearing occurred, but the relationship of this shearing to the regional structural history is uncertain.

  18. A Hydrostratigraphic Model of the Pahute Mesa - Oasis Valley Area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Drellack, Jr.; L. B. Prothro; J. L. Gonzales

    2001-12-01

    A 3-D hydrostratigraphic framework model has been built for the use of hydrologic modelers who are tasked with developing a model to determine how contaminants are transported by groundwater flow in an area of complex geology. The area of interest includes Pahute Mesa, a former nuclear testing area at the Nevada Test Site (NTS), and Oasis Valley, a groundwater discharge area down-gradient from contaminant source areas on Pahute Mesa. To build the framework model, the NTS hydrogeologic framework was integrated with an extensive collection of drill-hole data (stratigraphic, lithologic, and alteration data); a structural model; and several recent geophysical, geological, and hydrological studies to formulate a hydrostratigraphic system. The authors organized the Tertiary volcanic units in the study area into 40 hydrostratigraphic units that include 16 aquifers, 13 confining units, and 11 composite units. The underlying pre-Tertiary rocks were divided into six hydrostratigraphic units, including two aquifers and four confining units. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with all the major structural features that control them, including calderas and faults. The complexity of the model area and the non-uniqueness of some of the interpretations incorporated into the base model made it necessary to address alternative interpretations for some of the major features in the model. Six of these alternatives were developed so they could be modeled in the same fashion as the base model.

  19. Structural Controls of the Emerson Pass Geothermal System, Washoe County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Ryan B [Nevada Bureau of Mines and Geology, University of Nevada, Reno; Faulds, James E [Nevada Bureau of Mines and Geology, University of Nevada, Reno

    2012-09-30

    We have conducted a detailed geologic study to better characterize a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Tribe Reservation, western Nevada. A thermal anomaly was discovered in Emerson Pass by use of 2 m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The anomaly lies at the western edge of a broad left step at the northeast end of Pyramid Lake between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The 2-m temperature surveys have defined a N-S elongate thermal anomaly that has a maximum recorded temperature of ~60°C and resides on a north- to north-northeaststriking fault. Travertine mounds, chalcedonic silica veins, and silica cemented Pleistocene lacustrine gravels in Emerson Pass indicate a robust geothermal system active at the surface in the recent past. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a WNW-trending (~280° azimuth) extension direction. The geothermal system is likely hosted in Emerson Pass as a result of enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and northnortheast- striking faults.

  20. Oreshoot zoning in the Carlin-type Betze orebody, Goldstrike Mine, Eureka County, Nevada

    Science.gov (United States)

    Peters, Stephen G.; Ferdock, Gregory C.; Woitsekhowskaya, Maria B.; Leonardson, Robert; Rahn, Jerry

    1998-01-01

    Field and laboratory investigations of the giant Betze gold orebody, the largest Carlin-type deposit known, in the north-central Carlin trend, Nevada document that the orebody is composed of individual high-grade oreshoots that contain different geologic, mineralogic, and textural characteristics. The orebody is typical of many structurally controlled Carlin-type deposits, and is hosted in thin-bedded, impure carbonate or limy siltstone, breccia bodies, and intrusive or calc-silicate rock. Most ores in the Betze orebody are highly sheared or brecciated and show evidence of syndeformational hydrothermal deposition. The interplay between rock types and pre- and syn-structural events accounts for most of the distribution and zoning of the oreshoots. Hydrothermal alteration is scale dependent, either in broad, pervasive alteration patterns, or in areas related to various oreshoots. Alteration includes decarbonatization (~decalcification) of carbonate units, argillization (illite-clay), and silicification. Patterns of alteration zoning in and surrounding the Betze orebody define a large porous, dilated volume of rock where high fluid flow predominated. Local restriction of alteration to narrow illite- and clay-rich selvages around unaltered marble or calc-silicate rock phacoids implies that fluid flow favored permeable structures and deformed zones. Gold mainly is present as disseminated sub-micron-sized particles, commonly associated with Asñrich pyrite, although one type of oreshoot contains micron-size free gold. Oreshoots form a three-dimensional zoning pattern in the orebody within a WNW-striking structural zone of shearing and shear folding, termed the Dillon deformation zone (DDZ). Main types of oreshoots are: (1) rutile-bearing siliceous oreshoots; (2) illite-clay-pyrite oreshoots; (3) realgar- and orpiment-bearing oreshoots; (4) stibnite-bearing siliceous oreshoots; and (5) polymetallic oreshoots. Zoning patterns result from paragenetically early development

  1. Evidence for Active Westward Tilting of Fortymile Wash, Nye County, Nevada

    Science.gov (United States)

    McKague, H. L.; Sims, D. W.; Waiting, D. J.

    2006-12-01

    Fortymile Wash is located east and south of a potential high-level nuclear waste repository at Yucca Mountain, Nevada. Several lines of evidence suggest that this may be an area of active westward tilting associated with the continued development of Crater Flat basin and slip on the Bare Mountain normal fault. Near the southern end of Busted Butte, the incised channel of Fortymile Wash changes trend downgradient from south to south-southwest. Further southward, the incised main channel grades to a divergent distributary channel system that shows evidence of increasingly westward tilt. Viewed in profiles oriented normal to the incised channel and across the Fortymile Wash distributary system, topographic elevation of the western margin of the fan decreases southward, resulting in the elevation of the western margin of Fortymile Basin being as much as 18 m [59 ft] lower than the channel system on the eastern fan margin. Mapping of the surficial deposits within the distributary channel system (Pelletier, et al., 2005; Geophy. Res. Ltr., Vol. 32) may be interpreted to show a westward shift (downslope) of the locus of erosional activity toward the topographically lower western fan margin. Most of the older alluvium (Qa3 {86±40-16 ka}) has been eroded from the eastern portion, while incipient incision into the older alluvium is occurring on the western side of the distributary channel system. The results from level-line benchmark surveys (Gilmore, 1992; USGS OFR 92- 450) from 1915 and 1984 show gradual and systematic elevation changes east of the Bare Mountain fault to just east of Amargosa City, Nevada, where a step-like increase occurs. The level-line surveys are near and along the path of U.S. Highway 95, which traverses the distributary channel system of the Fortymile Wash alluvial fan in the southern portion of the Fortymile Wash basin. These lines of evidence indicate disequilibrium in the channel system that would result from active westward tilting of the

  2. Geologic map of the Caetano caldera, Lander and Eureka counties, Nevada

    Science.gov (United States)

    Colgan, Joseph P.; Henry, Christopher D.; John, David A.

    2011-01-01

    The Eocene (34 Ma) Caetano caldera in north-central Nevada offers an exceptional opportunity to study the physical and petrogenetic evolution of a large (20 km by 10–18 km pre-extensional dimensions) silicic magma chamber, from precursor magmatism to caldera collapse and intrusion of resurgent plutons. Caldera-related rocks shown on this map include two units of crystal-rich intracaldera tuff totaling over 4 km thickness, caldera collapse breccias, tuff dikes that fed the eruption, hydrothermally altered post-eruption rocks, and two generations of resurgent granitic intrusions (John et al., 2008). The map also depicts middle Miocene (about 16–12 Ma) normal faults and synextensional basins that accommodated >100 percent extension and tilted the caldera into a series of ~40° east-dipping blocks, producing exceptional 3-D exposures of the caldera interior (Colgan et al., 2008). This 1:75,000-scale map is a compilation of published maps and extensive new mapping by the authors (fig. 1), and supersedes a preliminary 1:100,000-scale map published by Colgan et al. (2008) and John et al. (2008). New mapping focused on the margins of the Caetano caldera, the distribution and lithology of rocks within the caldera, and on the Miocene normal faults and sedimentary basins that record Neogene extensional faulting. The definition of geologic units and their distribution within the caldera is based entirely on new mapping, except in the northern Toiyabe Range, where mapping by Gilluly and Gates (1965) was modified with new field observations. The distribution of pre-Cenozoic rocks outside the caldera was largely compiled from existing sources with minor modifications, with the exception of the northeastern caldera margin (west of the Cortez Hills Mine), which was remapped in the course of this work and published as a stand-alone 1:6000-scale map (Moore and Henry, 2010).

  3. High-Resolution Seismic Reflection Profiling Across the Black Hills Fault, Clark County, Nevada: Preliminary Results

    Science.gov (United States)

    Zaragoza, S. A.; Snelson, C. M.; Jernsletten, J. A.; Saldana, S. C.; Hirsch, A.; McEwan, D.

    2005-12-01

    The Black Hills fault (BHF) is located in the central Basin and Range Province of western North America, a region that has undergone significant Cenozoic extension. The BHF is an east-dipping normal fault that forms the northwestern structural boundary of the Eldorado basin and lies ~20 km southeast of Las Vegas, Nevada. A recent trench study indicated that the fault offsets Holocene strata, and is capable of producing Mw 6.4-6.8 earthquakes. These estimates indicate a subsurface rupture length at least 10 km greater than the length of the scarp. This poses a significant hazard to structures such as the nearby Hoover Dam Bypass Bridge, which is being built to withstand a Mw 6.2-7.0 earthquake on local faults. If the BHF does continue in the subsurface, this structure, as well as nearby communities (Las Vegas, Boulder City, and Henderson), may not be as safe as previously expected. Previous attempts to image the fault with shallow seismics (hammer source) were inconclusive. However, gravity studies imply that the fault continues south of the scarp. Therefore, a new experiment utilizing high-resolution seismic reflection was performed to image subsurface geologic structures south of the scarp. At each shot point, a stack of four 30-160 Hz vibroseis sweeps of 15 s duration was recorded on a 60-channel system with 40 Hz geophones. This produced two 300 m reflection profiles, with a maximum depth of 500-600 m. A preliminary look at these data indicates the existence of two faults, potentially confirming that the BHF continues in the subsurface south of the scarp.

  4. Hydrocarbon occurrences near Kyle Hot Springs, Buena Vista Valley, Pershing County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Ehni, W.J. [Ehni Enterprises Inc., Carson City, NV (United States); McCarthy, H. [Univ. of Nevada, Reno, NV (United States); Neumann, W.H. [Minnova Inc., Sparks, NV (United States)

    1995-06-01

    Buena Vista Valley is a small Tertiary Basin located in Northwestern Nevada. Oil was discovered in a mineral exploration hole drilled by Independence Mining Company Inc. (IMC) during October, 1993 near Kyle Hot Springs in Buena Vista Valley. The hole flowed unchecked for four and a half days, producing an estimated 500 barrels of oil with large volumes of hot water, before it was plugged and abandoned. In August of 1994 a continuous core hole was drilled by Barton/Evans to further evaluate the oil occurrences in the IMC hole. Two oil zones were found in the Barton/Evans hole, both of which have similar characteristics to the oil produced in the IMC hole. Pristane and phytane ratios (pr/ph) for oil samples from both holes are low (<0.1) which suggests that the source rock for this oil is from non marine lacustrine Tertiary sediments. There are no detectable hydrocarbons in the gas emanating from Kyle Hot Springs which indicates that the current day geothermal system is not in direct contact with any oil accumulations. Organic rich Triassic marine rocks which outcrop west of Buena Vista Valley, are over mature which supports the hypothesis that unexposed organic rich Tertiary rocks occurring in the deeper portions of the basin acted as the source for the oil occurrences in the IMC hole and in the Barton/Evans hole. In 1974, Standard Oil drilled an 11,000 foot well south of Buena Vista Valley in the Carson Sink and encountered organic rich Tertiary sediments at about 3500`. If this organic rich unit extends north into Buena Vista Valley, local geothermal anomalies might play an important role in the generation of oil. Earlier researches have reported that such anomalies do exist with temperature gradients approaching 100 C per kilometer west of Kyle Hot Springs in an area where gravity data suggest a relatively thick interval of Tertiary rocks have accumulated.

  5. Thermal modeling of step-out targets at the Soda Lake geothermal field, Churchill County, Nevada

    Science.gov (United States)

    Dingwall, Ryan Kenneth

    Temperature data at the Soda Lake geothermal field in the southeastern Carson Sink, Nevada, highlight an intense thermal anomaly. The geothermal field produces roughly 11 MWe from two power producing facilities which are rated to 23 MWe. The low output is attributed to the inability to locate and produce sufficient volumes of fluid at adequate temperature. Additionally, the current producing area has experienced declining production temperatures over its 40 year history. Two step-out targets adjacent to the main field have been identified that have the potential to increase production and extend the life of the field. Though shallow temperatures in the two subsidiary areas are significantly less than those found within the main anomaly, measurements in deeper wells (>1,000 m) show that temperatures viable for utilization are present. High-pass filtering of the available complete Bouguer gravity data indicates that geothermal flow is present within the shallow sediments of the two subsidiary areas. Significant faulting is observed in the seismic data in both of the subsidiary areas. These structures are highlighted in the seismic similarity attribute calculated as part of this study. One possible conceptual model for the geothermal system(s) at the step-out targets indicated upflow along these faults from depth. In order to test this hypothesis, three-dimensional computer models were constructed in order to observe the temperatures that would result from geothermal flow along the observed fault planes. Results indicate that the observed faults are viable hosts for the geothermal system(s) in the step-out areas. Subsequently, these faults are proposed as targets for future exploration focus and step-out drilling.

  6. Preliminary results of paleoseismic investigations of Quaternary faults on eastern Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Menges, C.M.; Oswald, J.A.; Coe, J.A. [and others

    1995-12-31

    Site characterization of the potential nuclear waste repository at Yucca Mountain, Nevada, requires detailed knowledge of the displacement histories of nearby Quaternary faults. Ongoing paleoseismic studies provide data on the amount and rates of Quaternary activity on the Paintbrush Canyon, Bow Ridge, and Stagecoach Road faults along the eastern margin of the mountain over varying time spans of 0-700 ka to perhaps 0-30 ka, depending on the site. Preliminary stratigraphic interpretations of deposits and deformation at many logged trenches and natural exposures indicate that each of these faults have experienced from 3 to 8 surface-rupturing earthquakes associated with variable dip-slip displacements per event ranging from 5 to 115 cm, and commonly in the range of 20 to 85 cm. Cumulative dip-slip offsets of units with broadly assigned ages of 100-200 ka are typically less than 200 cm, although accounting for the effects of possible left normal-oblique slip could increase these displacements by factors of 1.1 to 1.7. Current age constraints indicate recurrence intervals of 10{sup 4} to 10{sup 5} years (commonly between 30 and 80 k.y.) and slip rates of 0.001 to 0.08 mm/yr (typically 0.01-0.02 mm/yr). Based on available timing data, the ages of the most recent ruptures varies among the faults; they appear younger on the Stagecoach Road Fault ({approximately}5-20 ka) relative to the southern Paintbrush Canyon and Bow Ridge faults ({approximately}30-100 ka).

  7. Analysis of remote sensing data for geothermal exploration over Fish Lake Valley, Esmeralda County, Nevada

    Science.gov (United States)

    Littlefield, Elizabeth F.

    The purpose of this study was to identify and map hydrothermal alteration and geothermal deposits in northern Fish Lake Valley, Nevada using both visible, near, shortwave infrared (0.4-2.5 microm) and thermal infrared (8-12 microm) remote sensing data. Visible, near, and shortwave infrared data were collected by four airborne instruments including NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) instruments, HyVista Corporation's HyMap sensor, and SpecTIR Corporation's ProSpecTIR instrument. MASTER also collected thermal infrared data over Fish Lake Valley. Hydrothermal alteration minerals and hot spring deposits were identified using diagnostic spectra extracted from the remote sensing data. Mapping results were verified in the field using a portable spectrometer. Two areas of opaline sinter and travertine deposits were identified west of the Fish Lake Valley playa. Field observation reveals the alternating nature of these beds, which likely reflects fluctuating hot spring fluid chemistries. Sinter and travertine were likely deposited around fault-related hot springs during the Pleistocene when the water table was higher. Previously undiscovered Miocene crystalline travertine was identified within the Emigrant Hills near Columbus Salt Marsh. Argillic alteration was mapped in parts of the ranges surrounding Fish Lake Valley. Kaolinite, and to a lesser extent, muscovite and montmorillonite, were used as indicator minerals for argillic alteration. In these regions, thermal fluids were likely discharged from faults to alter rhyolite tuff. Mineral maps were synthesized with previously published geologic data and used to delineate four new targets for future geothermal exploration. The abundant hot spring deposits along the edge of the Volcanic Hills combined with argillic alteration minerals mapped in the ranges suggest geothermal influence throughout much of the valley.

  8. Preliminary results of paleoseismic investigations of Quaternary faults on eastern Yucca Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Menges, C.M.; Oswald, J.A.; Coe, J.A.; Whitney, J.W. [Geological Survey, Denver, CO (United States); Swan, F.H.; Wesling, J.R.; Thomas, A.P. [Geomatrix Consultants, San Francisco, CA (United States)

    1994-12-31

    Site characterization of the potential nuclear waste repository at Yucca Mountain, Nevada, requires detailed knowledge of the displacement histories of nearby Quaternary faults. Ongoing paleoseismic studies provide data on the amount and rates of Quaternary activity on the Paintbrush Canyon, Bow Ridge, and Stagecoach Road faults along the eastern margin of the mountain over varying time spans of 0-700 ka to perhaps 0-30 ka, depending on the site. Preliminary stratigraphic interpretations of deposits and deformation at many logged trenches and natural exposures indicate that each of these faults have experienced from 3 to 8 surface-rupturing earthquakes associated with variable dip-slip displacements per event ranging from 5 to 115 cm, and commonly in the range of 20 to 85 cm. Cumulative dip-slip offsets of units with broadly assigned ages of 100-200 ka are typically less than 200 cm, although accounting for the effects of possible left normal-oblique slip could increase these displacements by factors of 1.1 to 1.7. Current age constraints indicate recurrence intervals of 10{sup 4} to 10{sup 5} years (commonly between 30 and 80 k.y.) and slip rates of 0.001 to 0.08 mm/yr (typically 0.01-0.02 mm/yr). Based on available timing data, the ages of the most recent ruptures among the faults; they appear younger on the Stagecoach Road Fault ({approximately} 5.20 ka) relative to the southern Paintbrush Canyon and Bow Ridge faults ({approximately} 30-100 ka).

  9. Gravity and magnetic study of the Pahute Mesa and Oasis Valley region, Nye County, Nevada

    Science.gov (United States)

    Mankinen, Edward A.; Hildenbrand, Thomas G.; Dixon, Gary L.; McKee, Edwin H.; Fridrich, Christopher J.; Laczniak, Randell J.

    1999-01-01

    Regional gravity and aeromagnetic maps reveal the existence of deep basins underlying much of the southwestern Nevada volcanic field, approximately 150 km northwest of Las Vegas. These maps also indicate the presence of prominent features (geophysical lineaments) within and beneath the basin fill. Detailed gravity surveys were conducted in order to characterize the nature of the basin boundaries, delineate additional subsurface features, and evaluate their possible influence on the movement of ground-water. Geophysical modeling of gravity and aeromagnetic data indicates that many of the features may be related to processes of caldera formation. Collapse of the various calderas within the volcanic field resulted in dense basement rocks occurring at greater depths within caldera boundaries. Modeling indicates that collapse occurred along faults that are arcuate and steeply dipping. There are indications that the basement in the western Pahute Mesa - Oasis Valley region consists predominantly of granitic and/or fine-grained siliceous sedimentary rocks that may be less permeable to groundwater flow than the predominantly fractured carbonate rock basement to the east and southeast of the study area. The northeast-trending Thirsty Canyon lineament, expressed on gravity and basin thickness maps, separates dense volcanic rocks on the northwest from less dense intracaldera accumulations in the Silent Canyon and Timber Mountain caldera complexes. The source of the lineament is an approximately 2-km wide ring fracture system with step-like differential displacements, perhaps localized on a pre-existing northeast-trending Basin and Range fault. Due to vertical offsets, the Thirsty Canyon fault zone probably juxtaposes rock types of different permeability and, thus, it may act as a barrier to ground-water flow and deflect flow from Pahute Mesa along its flanks toward Oasis Valley. Within the Thirsty Canyon fault zone, highly fractured rocks may serve also as a conduit

  10. Hydroclimate of the Spring Mountains and Sheep Range, Clark County, Nevada

    Science.gov (United States)

    Moreo, Michael T.; Senay, Gabriel B.; Flint, Alan L.; Damar, Nancy A.; Laczniak, Randell J.; Hurja, James

    2014-01-01

    Precipitation, potential evapotranspiration, and actual evapotranspiration often are used to characterize the hydroclimate of a region. Quantification of these parameters in mountainous terrains is difficult because limited access often hampers the collection of representative ground data. To fulfill a need to characterize ecological zones in the Spring Mountains and Sheep Range of southern Nevada, spatially and temporally explicit estimates of these hydroclimatic parameters are determined from remote-sensing and model-based methodologies. Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation estimates for this area ranges from about 100 millimeters (mm) in the low elevations of the study area (700 meters [m]) to more than 700 mm in the high elevations of the Spring Mountains (> 2,800 m). The PRISM model underestimates precipitation by 7–15 percent based on a comparison with four high‑elevation precipitation gages having more than 20 years of record. Precipitation at 3,000-m elevation is 50 percent greater in the Spring Mountains than in the Sheep Range. The lesser amount of precipitation in the Sheep Range is attributed to partial moisture depletion by the Spring Mountains of eastward-moving, cool-season (October–April) storms. Cool-season storms account for 66–76 percent of annual precipitation. Potential evapotranspiration estimates by the Basin Characterization Model range from about 700 mm in the high elevations of the Spring Mountains to 1,600 mm in the low elevations of the study area. The model realistically simulates lower potential evapotranspiration on northeast-to-northwest facing slopes compared to adjacent southeast-to-southwest facing slopes. Actual evapotranspiration, estimated using a Moderate Resolution Imaging Spectroradiometer based water-balance model, ranges from about 100 to 600 mm. The magnitude and spatial variation of simulated, actual evapotranspiration was validated by comparison to PRISM precipitation

  11. Mineral Resources of the Antelope Wilderness Study Area, Nye County, Nevada

    Science.gov (United States)

    Hardyman, Richard F.; Poole, Forrest G.; Kleinhampl, Frank J.; Turner, Robert L.; Plouff, Donald; Duval, Joe S.; Johnson, Fredrick L.; Benjamin, David A.

    1987-01-01

    At the request of the U.S. Bureau of land Management, 83,100 acres of the Antelope Wilderness Study Area (NV-4)60-231/241) was studied. In this report the studied area is called the 'wilderness study area', or simply the 'study area.' No identified mineral or energy resources occur within the study area. The southern part of the area has moderate mineral resource potential for undiscovered gold and silver, and the Woodruff Formation in the southern part of the area has high resource potential for undiscovered vanadium, zinc, selenium, molybdenum, and silver (fig. 1). This assessment is based on field geochemical studies in 1984 and 1985 by the U.S. Bureau of Mines and field geochemical studies and geologic mapping by the U.S. Geological Survey in 1984 and 1985. The remainder of the study area has low resource potential for undiscovered gold, silver, lead, zinc, manganese, tin, and molybdenum. The study area also has low resource potential for undiscovered oil and gas resources. The Antelope Wilderness Study Area is about midway between Tonopah and Eureka, Nev., in the northern Hot Creek Range and southern Antelope Range of central Nevada. It is accessible by unimproved dirt roads extending 20 mi (miles) north from U.S. Highway 6 and 40 mi south from U.S. Highway 50 (fig. 2). Most of the study area consists of rugged mountainous terrain having approximately 2,600 ft (feet) of relief. The mountain range is a block tilted gently to the east and bounded on both sides by normal faults that dip steeply to moderately west and have major displacements. Most of the study area is underlain by a thick sequence of Tertiary volcanic rocks that predominantly consist of silicic ash-flow tuff, the Windous Butte Formation. Paleozoic and lower Mesozoic (see geologic time chart in appendix) marine sediments occur along the southern margin of the study area, and lower Paleozoic rocks are exposed in the northeast corner. The areas of exposed Paleozoic-Mesozoic rocks along the southern

  12. 2004 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Vefa Yucel

    2005-01-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (Bechtel Nevada, 2000) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, and reports the results in an annual summary report to the U.S. Department of Energy Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (U.S. Department of Energy [DOE]). The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2004 by evaluating operational factors and research results that impact the continuing validity of the PA and CA results. This annual summary report presents data and conclusions from the FY 2004 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, closure plans, as well as monitoring results and research and development (R&D) activities were reviewed in FY 2004 for the determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for the determination of the adequacy of the CAs.

  13. Flood Assessment at the Area 5 Radioactive Waste Management Site and the Proposed Hazardous Waste Storage Unit, DOE/Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Schmeltzer, J. S.; Millier, J. J.; Gustafson, D. L.

    1993-01-01

    A flood assessment at the Radioactive Waste Management Site (RWMS) and the proposed Hazardous Waste Storage Unit (HWSU) in Area 5 of the Nevada Test Site (NTS) was performed to determine the 100-year flood hazard at these facilities. The study was conducted to determine whether the RWMS and HWSU are located within a 100-year flood hazard as defined by the Federal Emergency Management Agency, and to provide discharges for the design of flood protection.

  14. Phase II Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa

    2005-04-01

    This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.

  15. Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    John McCord

    2004-12-01

    This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

  16. Judicial Districts, nevada judicial districts, Published in 2006, 1:1200 (1in=100ft) scale, Washoe County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Judicial Districts dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Other information as of 2006. It is described as 'nevada...

  17. Legislative Districts, nevada legislative districts, Published in 2006, 1:1200 (1in=100ft) scale, Washoe County.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Legislative Districts dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Other information as of 2006. It is described as 'nevada...

  18. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    Science.gov (United States)

    Lane, J.W.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  19. Geologic map of the Alligator Ridge area, including the Buck Mountain East and Mooney Basin Summit quadrangles and parts of the Sunshine Well NE and Long Valley Slough quadrangles, White Pine County, Nevada

    Science.gov (United States)

    Nutt, Constance J.

    2000-01-01

    Data set describes the geology of Paleozoic through Quaternary units in the Alligator Ridge area, which hosts disseminated gold deposits. These digital files were used to create the 1:24,000-scale geologic map of the Buck Mountain East and Mooney Basin Summit Quadrangles and parts of the Sunshine Well NE and Long Valley Slough Quadrangles, White Pine County, east-central Nevada.

  20. Framework for a Risk-Informed Groundwater Compliance Strategy for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam

    2010-09-01

    Note: This document was prepared before the NTS was renamed the Nevada National Security Site (August 23, 2010); thus, all references to the site herein remain NTS. Corrective Action Unit (CAU) 98, Frenchman Flat, at the Nevada Test Site (NTS) was the location of ten underground nuclear tests between 1965 and 1971. As a result, radionuclides were released in the subsurface in the vicinity of the test cavities. Corrective Action Unit 98 and other CAUs at the NTS and offsite locations are being investigated. The Frenchman Flat CAU is one of five Underground Test Area (UGTA) CAUs at the NTS that are being evaluated as potential sources of local or regional impact to groundwater resources. For UGTA sites, including Frenchman Flat, contamination in and around the test cavities will not be remediated because it is technologically infeasible due to the depth of the test cavities (150 to 2,000 feet [ft] below ground surface) and the volume of contaminated groundwater at widely dispersed locations on the NTS. Instead, the compliance strategy for these sites is to model contaminant flow and transport, estimate the maximum spatial extent and volume of contaminated groundwater (over a period of 1,000 years), maintain institutional controls, and restrict access to potentially contaminated groundwater at areas where contaminants could migrate beyond the NTS boundaries.

  1. Database of Ground-Water Levels in the Vicinity of Rainier Mesa, Nevada Test Site, Nye County, Nevada, 1957-2005

    Science.gov (United States)

    Fenelon, Joseph M.

    2006-01-01

    More than 1,200 water-level measurements from 1957 to 2005 in the Rainier Mesa area of the Nevada Test Site were quality assured and analyzed. Water levels were measured from 50 discrete intervals within 18 boreholes and from 4 tunnel sites. An interpretive database was constructed that describes water-level conditions for each water level measured in the Rainier Mesa area. Multiple attributes were assigned to each water-level measurement in the database to describe the hydrologic conditions at the time of measurement. General quality, temporal variability, regional significance, and hydrologic conditions are attributed for each water-level measurement. The database also includes hydrograph narratives that describe the water-level history of each well.

  2. 2007 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-01-01

    This report summarizes the results of an annual review of conditions affecting the operation of the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) and a determination of the continuing adequacy of the performance assessments (PAs) and composite analyses (CAs). The Area 5 RWMS PA documentation consists of the original PA (Shott et al., 1998), referred to as the 1998 Area 5 RWMS PA and supporting addenda (Bechtel Nevada [BN], 2001b; 2006a). The Area 5 RWMS CA was issued as a single document (BN, 2001a) and has a single addendum (BN, 2001c). The Area 3 PA and CA were issued in a single document (Shott et al., 2000). The Maintenance Plan for the PAs and CAs (National Security Technologies, LLC [NSTec], 2006) and the Disposal Authorization Statements (DASs) for the Area 3 and 5 RWMSs (U.S. Department of Energy [DOE], 2000; 2002) require preparation of an annual summary and a determination of the continuing adequacy of the PAs and CAs. The annual summary report is submitted to DOE Headquarters. Following the annual report format in the DOE PA/CA Maintenance Guide (DOE, 1999), this report presents the annual summary for the PAs in Section 2.0 and the CAs in Section 3.0. The annual summary for the PAs includes the following: Section 2.1 summarizes changes in waste disposal operations; Section 2.1.5 provides an evaluation of the new estimates of the closure inventories derived from the actual disposals through fiscal year (FY) 2007; Section 2.2 summarizes the results of the monitoring conducted under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's (NNSA/NSO's) Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (BN, 2005), and the research and development (R&D) activities; Section 2.4 is a summary of changes in facility design, operation, or expected future conditions; monitoring and R&D activities; and the maintenance program; and

  3. Geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to investigate their suitability for possible storage of radioactive waste material as of September 1977

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The results from a geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to examine their suitability for further study and consideration in connection with the possible storage of radioactive waste material are given. The results indicate that (1) approximately one-half of the salt body underlies the Overton Arm of Lake Mead and that the dry land portion of the salt body that has a thickness of 1,000 feet or more covers an area of about four and one-half square miles; (2) current tectonic activity in the area of the salt deposits is believed to be confined to seismic events associated with crustal adjustments following the filling of Lake Mead; (3) detailed information on the hydrology of the salt deposit area is not available at present but it is reported that a groundwater study by the U.S. Geological Survey is now in progress; (4) there is no evidence of exploitable minerals in the salt deposit area other than evaporites such as salt, gypsum, and possibly sand and gravel; (5) the salt deposit area is located inside the Lake Mead Recreation Area, outlined on the accompanying Location Plat, and several Federal, State, and Local agencies share regulatory responsibilities for the activities in the area; (6) other salt deposit areas of Arizona and Nevada, such as the Detrital Valley, Red Lake Dome, Luke Dome, and Mormon Mesa area, and several playa lake areas of central Nevada may merit further study; and (7) additional information, as outlined, is needed to more thoroughly evaluate the salt deposits of the Virgin River Valley and other areas referred to above.

  4. FLOODPLAIN, CLARK COUNTY, NEVADA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  5. FLOODPLAIN, MINERAL COUNTY, NEVADA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  6. INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    Eric H. Johnson; Don E. French

    2001-06-01

    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A

  7. Relative abundance and distribution of fishes and crayfish at Ash Meadows National Wildlife Refuge, Nye County, Nevada, 2007-08

    Science.gov (United States)

    Scoppettone, G. Gary; Rissler, Peter; Johnson, Danielle; Hereford, Mark

    2011-01-01

    This study provides baseline data of native and non-native fish populations in Ash Meadows National Wildlife Refuge (NWR), Nye County, Nevada, that can serve as a gauge in native fish enhancement efforts. In support of Carson Slough restoration, comprehensive surveys of Ash Meadows NWR fishes were conducted seasonally from fall 2007 through summer 2008. A total of 853 sampling stations were created using Geographic Information Systems and National Agricultural Imagery Program. In four seasons of sampling, Amargosa pupfish (genus Cyprinodon) was captured at 388 of 659 stations. The number of captured Amargosa pupfish ranged from 5,815 (winter 2008) to 8,346 (summer 2008). The greatest success in capturing Amargosa pupfish was in warm water spring-pools with temperature greater than 25 degrees C, headwaters of warm water spring systems, and shallow (depths less than 10 centimeters) grassy marshes. In four seasons of sampling, Ash Meadows speckled dace (Rhinichthys osculus nevadesis) was captured at 96 of 659 stations. The number of captured Ash Meadows speckled dace ranged from 1,009 (summer 2008) to 1,552 (winter 2008). The greatest success in capturing Ash Meadows speckled dace was in cool water spring-pools with temperature less than 20 degrees C and in the high flowing water outflows. Among 659 sampling stations within the range of Amargosa pupfish, red swamp crayfish (Procambarus clarkii) was collected at 458 stations, western mosquitofish (Gambusia affinis) at 374 stations, and sailfin molly (Poecilia latipinna) at 128 stations. School Springs was restored during the course of this study. Prior to restoration of School Springs, maximum Warm Springs Amargosa pupfish (Cyprinodon nevadensis pectoralis) captured from the six springs of the Warm Springs Complex was 765 (fall 2007). In four seasons of sampling, Warm Springs Amargosa pupfish were captured at 85 of 177 stations. The greatest success in capturing Warm Springs Amargosa pupfish when co-occurring with red

  8. BLM Communications Use Lease to USAF to Conduct Patriot Communications Exercises in Lincoln County, Nevada. Final Environmental Assessment

    Science.gov (United States)

    2008-08-01

    and include: Eastwood milkweed (Asclepias eastwoodiana), rock purpusia (Ivesia arizonica var. saxosa), Merriam’s bearpoppy (Arctomecon merriami... milkweed Asclepias eastwoodiana SOC, BLM Alkaline clay hills, gravelly drainages, and shadscale scrub (5,300-6,900) Could occur in adjacent habitat...2004 regarding report of known Desert tortoise locations in the Delamar Valley. _____. 2004b. Rare plant fact sheet for Eastwood Milkweed . Nevada

  9. External Peer Review Team Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Marutzky, Sam J. [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States); Andrews, Robert [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2015-01-01

    The peer review team commends the Navarro-Intera, LLC (N-I), team for its efforts in using limited data to model the fate of radionuclides in groundwater at Yucca Flat. Recognizing the key uncertainties and related recommendations discussed in Section 6.0 of this report, the peer review team has concluded that U.S. Department of Energy (DOE) is ready for a transition to model evaluation studies in the corrective action decision document (CADD)/corrective action plan (CAP) stage. The DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) clarified the charge to the peer review team in a letter dated October 9, 2014, from Bill R. Wilborn, NNSA/NFO Underground Test Area (UGTA) Activity Lead, to Sam J. Marutzky, N-I UGTA Project Manager: “The model and supporting information should be sufficiently complete that the key uncertainties can be adequately identified such that they can be addressed by appropriate model evaluation studies. The model evaluation studies may include data collection and model refinements conducted during the CADD/CAP stage. One major input to identifying ‘key uncertainties’ is the detailed peer review provided by independent qualified peers.” The key uncertainties that the peer review team recognized and potential concerns associated with each are outlined in Section 6.0, along with recommendations corresponding to each uncertainty. The uncertainties, concerns, and recommendations are summarized in Table ES-1. The number associated with each concern refers to the section in this report where the concern is discussed in detail.

  10. Bibliography of reports on studies of the geology, hydrogeology and hydrology at the Nevada Test Site, Nye County, Nevada, from 1951--1996

    Energy Technology Data Exchange (ETDEWEB)

    Seaber, P.R.; Stowers, E.D.; Pearl, R.H.

    1997-04-01

    The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could result from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.

  11. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  12. Special Analysis of Transuranic Waste in Trench T04C at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Shott, Vefa Yucel, Lloyd Desotell

    2008-05-01

    This Special Analysis (SA) was prepared to assess the potential impact of inadvertent disposal of a limited quantity of transuranic (TRU) waste in classified Trench 4 (T04C) within the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). The Area 5 RWMS is a low-level radioactive waste disposal site in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS is regulated by the U.S. Department of Energy (DOE) under DOE Order 435.1 and DOE Manual (DOE M) 435.1-1. The primary objective of the SA is to evaluate if inadvertent disposal of limited quantities of TRU waste in a shallow land burial trench at the Area 5 RWMS is in compliance with the existing, approved Disposal Authorization Statement (DAS) issued under DOE M 435.1-1. In addition, supplemental analyses are performed to determine if there is reasonable assurance that the requirements of Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes, can be met. The 40 CFR 191 analyses provide supplemental information regarding the risk to human health and the environment of leaving the TRU waste in T04C. In 1989, waste management personnel reviewing classified materials records discovered that classified materials buried in trench T04C at the Area 5 RWMS contained TRU waste. Subsequent investigations determined that a total of 102 55-gallon drums of TRU waste from Rocky Flats were buried in trench T04C in 1986. The disposal was inadvertent because unclassified records accompanying the shipment indicated that the waste was low-level. The exact location of the TRU waste in T04C was not recorded and is currently unknown. Under DOE M 435.1-1, Chapter IV, Section P.5, low-level waste disposal facilities must obtain a DAS. The DAS specifies conditions that must be met to operate within the radioactive waste management basis, consisting of a

  13. Preliminary mapping of surficial geology of Midway Valley Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Wesling, J.R.; Bullard, T.F.; Swan, F.H.; Perman, R.C.; Angell, M.M. [Geomatrix Consultants, Inc., San Francisco, CA (United States); Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States)

    1992-04-01

    The tectonics program for the proposed high-level nuclear waste repository at Yucca Mountain in southwestern Nevada must evaluate the potential for surface faulting beneath the prospective surface facilities. To help meet this goal, Quaternary surficial mapping studies and photolineament analyses were conducted to provide data for evaluating the location, recency, and style of faulting with Midway Valley at the eastern base of Yucca Mountain, the preferred location of these surface facilities. This interim report presents the preliminary results of this work.

  14. A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, Lance; Drellack Jr., Sigmund; Mercadante, Jennifer

    2009-01-31

    Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of

  15. Legacy Compliance Final Report: Results of the Navy/Encapo Soil Stabilization Study at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Desotell, Lloyd; Anderson, David; Rawlinson, Stuart; Hudson, David; Yucel, Vefa

    2008-03-01

    Historic atmospheric testing of nuclear devices at the Nevada Test Site (NTS) has resulted in large areas of plutonium-contaminated surface soils. The potential transport of these contaminated soils to onsite and offsite receptors is a concern to the land steward and local stakeholders. The primary transport pathways of interest at the NTS are sediment entrained in surface water runoff and windblown dust. This project was initially funded by the U.S. Navy and subsequently funded by the USDOE Stockpile Stewardship Program. Field tests were conducted over a 20.5 month period to evaluate the efficacy of an organic-based, surface applied emulsion to reduce sediment transport from plutonium-contaminated soils. The patented emulsion was provided by Encapco Technologies LLC. Field tests were conducted within the SMOKY radioactive contamination area (CA). The SMOKY above ground nuclear test was conducted on 08/31/1957, with a reported yield of 44 kilotons and was located at N 37 degrees 10.5 minutes latitude and W 116 degrees 04.5 minutes longitude. Three 'safety tests' were also conducted within approximately 1,500 meters (5,000 feet) of the SMOKY ground zero in 1958. Safety tests are designed to test the response of a nuclear device to an unplanned external force (e.g., nearby detonation of conventional explosives). These three safety tests (CERES, OBERON, and TITANIA) resulted in dispersal of plutonium over a wide area (Bechtel Nevada, 2002). Ten 3 x 4.6 meter test plots were constructed within the SMOKY CA to conduct rainfall-runoff simulations. Six of the ten test plots were treated with the emulsion at the manufacturer recommended loading of 1.08 gallons per square meter, and four plots were held untreated as experimental controls. Separate areas were also treated to assess impacts to native vegetation and surface infiltration rate. Field tests were conducted at approximately 6, 13, and 20.5 months post emulsion treatment. Field tests consisted of rainfall

  16. Fallon Geothermal Exploration Project, Naval Air Station, Fallon, Nevada.

    Science.gov (United States)

    1980-05-01

    Dral. Iron Ore Deposits of Nevada . Part A: Geology and Iron Ore Deposits of the Buena Vista Hills, Chur- chill and Pershing Counties , Nevada . Nevada ...tumber) Geothermal Potential Naval Air Station, Fallon, Nevada Fallon Exploration Project 20. ABSTRACT (Coawu en reverse aide It neeeen end $doaft...UNCLASSIFIED ICUMTY CLASSIFICATION OF THIS PAat L tmb Doe aneem (U) Fallon Geothermal Exploration Project, Naval Air Station, Fallon, Nevada , Interim Report

  17. Summary of results from a thermal gradient survey of the San Emidio wells Washoe County, Nevada, for Chevron Oil Co., Wells SE-A and SE-B, Project No. 76.112

    Energy Technology Data Exchange (ETDEWEB)

    Katzenstein, A.M.; Sanyai, S.K.

    1976-08-01

    This summary describes the results obtained from a temperature gradient survey of the San Emidio wells drilled in Washoe County, Nevada. The temperature gradient survey was performed during the month of July, 1976, by Geonomics, Inc., for the Chevron Oil Company. The approximate location of the survey is shown in Figure 1. A total of two holes were drilled with locations plotted on Figure 2.

  18. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Fenelon, Joseph M.; Laczniak, Randell J.; Halford, Keith J.

    2008-01-01

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types?volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in

  19. A Cultural Resources Inventory and Historical Evaluation of the Smoky Atmospheric Nuclear Test, Areas 8, 9, and 10, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert C. [Desert Research Inst. (DRI), Reno, NV (United States); King, Maureen L. [Desert Research Inst. (DRI), Reno, NV (United States); Beck, Colleen M. [Desert Research Inst. (DRI), Reno, NV (United States); Falvey, Lauren W. [Desert Research Inst. (DRI), Reno, NV (United States); Menocal, Tatianna M. [Desert Research Inst. (DRI), Reno, NV (United States)

    2014-09-01

    This report presents the results of a National Historic Preservation Act Section 106 cultural resources inventory and historical evaluation of the 1957 Smoky atmospheric test location on the Nevada National Security Site (NNSS). The Desert Research Institute (DRI) was tasked to conduct a cultural resources study of the Smoky test area as a result of a proposed undertaking by the Department of Energy Environmental Management. This undertaking involves investigating Corrective Action Unit (CAU) 550 for potential contaminants of concern as delineated in a Corrective Action Investigation Plan. CAU 550 is an area that spatially overlaps portions of the Smoky test location. Smoky, T-2c, was a 44 kt atmospheric nuclear test detonated at 5:30 am on August 31, 1957, on top of a 213.4 m (700 ft) 200 ton tower (T-2c) in Area 8 of the NNSS. Smoky was a weapons related test of the Plumbbob series (number 19) and part of the Department of Defense Exercise Desert Rock VII and VIII. The cultural resources effort involved the development of a historic context based on archival documents and engineering records, the inventory of the cultural resources in the Smoky test area and an associated military trench location in Areas 9 and 10, and an evaluation of the National Register eligibility of the cultural resources. The inventory of the Smoky test area resulted in the identification of structures, features, and artifacts related to the physical development of the test location and the post-test remains. The Smoky test area was designated historic district D104 and coincides with a historic archaeological site recorded as 26NY14794 and the military trenches designed for troop observation, site 26NY14795. Sites 26NY14794 and 26NY14795 are spatially discrete with the trenches located 4.3 km (2.7 mi) southeast of the Smoky ground zero. As a result, historic district D104 is discontiguous and in total it covers 151.4 hectares (374 acres). The Smoky test location, recorded as historic

  20. Predevelopment Water-Level Contours for Aquifers in the Rainier Mesa and Shoshone Mountain area of the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Fenelon; Randell J. Laczniak; and Keith J. Halford

    2008-06-24

    Contaminants introduced into the subsurface of the Nevada Test Site at Rainier Mesa and Shoshone Mountain by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. Although contaminants were introduced into low-permeability rocks above the regional flow system, the potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by ground-water transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the water-level distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. The contoured water-level distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped, presented, and discussed in general terms as being one of three aquifer types—volcanic aquifer, upper carbonate aquifer, or lower carbonate aquifer. Each of these aquifer types was subdivided and mapped as independent continuous and isolated aquifers, based on the continuity of its component rock. Ground-water flow directions, as related to the transport of test-generated contaminants, were developed from water-level contours and are presented and discussed for each of the continuous aquifers. Contoured water-level altitudes vary across the study area and range from more than 5,000 feet in the volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,450 feet in the lower carbonate aquifer in the southern part of the study area. Variations in

  1. Geohydrologic data collected from shallow neutron-access boreholes and resultant-preliminary geohydrologic evaluations, Yucca Mountain area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Blout, D.O. [Raytheon Services Nevada, Las Vegas, NV (United States); Hammermeister, D.P.; Loskot, C.L.; Chornack, M.P.

    1994-12-31

    In cooperation with the US Department of Energy, 74 neutron-access boreholes were drilled in and near the southwestern part of the Nevada Test Site, Nye County, Nevada. Drilling, coring, sample collection and handling, and lithologic and preliminary geohydrologic data are presented in this report. The boreholes were drilled in a combination of alluvium/colluvium, ash-flow tuff, ash-fall tuff, or bedded tuff to depths of 4.6 to 36.6 meters. Air was used as a drilling medium to minimize disturbance of the water content and water potential of drill cuttings, core, and formation rock. Drill cuttings were collected at approximately 0.6-meter intervals. Core was taken at selected intervals from the alluvium/colluvium using drive-coring methods and from tuff using rotary-coring methods. Nonwelded and bedded tuffs were continuously cored using rotary-coring methods. Gravimetric water-content and water-potential values of core generally were greater than those of corresponding drill cuttings. Gravimetric water-content, porosity, and water-potential values of samples generally decreased, and bulk density values increased, as the degree of welding increased. Grain-density values remained fairly constant with changes in the degree of welding. A high degree of spatial variability in water-content and water-potential profiles was noted in closely spaced boreholes that penetrate similar lithologic subunits and was also noted in adjacent boreholes located in different topographic positions. Variability within a thick lithologic unit usually was small. 18 refs., 21 figs., 17 tabs.

  2. Anomalous concentrations of gold, silver, and other metals in the Mill Canyon area, Cortez quadrangle, Eureka and Lander Counties, Nevada

    Science.gov (United States)

    Elliott, James E.; Wells, John David

    1968-01-01

    The Mill Canyon area is in the eastern part of the Cortez window of the Roberts Mountains thrust belt in the Cortez quadrangle, north-central Nevada. Gold and silver ores have been mined from fissure veins in Jurassic quartz monzonite and in the bordering Wenban Limestone of Devonian age. Geochemical data show anomalies of gold, silver, lead, zinc, copper, arsenic, antimony, mercury, and tellurium. Geologic and geochemical studies indicate that a formation favorable for gold deposition, the Roberts Mountains Limestone of Silurian age, may be found at depth near the mouth of Mill Canyon.

  3. Letter Report: Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Englebrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2008-08-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

  4. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program.

  5. Geothermal Reservoir Assessment Case Study: Northern Basin and Range Province, Leach Hot Springs Area, Pershing County, Nevada. Final report, April 1979-December 1981

    Energy Technology Data Exchange (ETDEWEB)

    Beard, G.A.

    1981-01-01

    A Geothermal Reservoir Assessment Case Study was conducted in the Leach Hot Springs Known Geothermal Resource Area of Pershing County, Nevada. The case study included the drilling of twenty-three temperature gradient wells, a magnetotelluric survey, seismic data acquisition and processing, and the drilling of one exploratory well. Existing data from prior investigations, which included water geochemistry, gravity, photogeologic reports and a hydrothermal alteration study, was also provided. The exploratory well was drilled to total depth of 8565' with no significant mud losses or other drilling problems. A maximum temperature of 260/sup 0/F was recorded at total depth. The relatively low temperature and the lack of permeability (as shown by absence of mud loss) indicated that a current, economic geothermal resource had not been located, and the well was subsequently plugged and abandoned. However, the type and extent of rock alteration found implied that an extensive hot water system had existed in this area at an earlier time. This report is a synopsis of the case study activities and the data obtained from these activities.

  6. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    Science.gov (United States)

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability. The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960?s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the

  7. Portable Chamber Measurements of Evapotranspiration at the Amargosa Desert Research Site near Beatty, Nye County, Nevada, 2003-06

    Science.gov (United States)

    Garcia, C. Amanda; Johnson, Michael J.; Andraski, Brian J.; Halford, Keith J.; Mayers, C. Justin

    2008-01-01

    Portable chamber measurements of evapotranspiration (ET) were made at the U.S. Geological Survey's Amargosa Desert Research Site in southern Nevada to help quantify component- and landscape-scale contributions to ET in an arid environment. Evapotranspiration data were collected approximately every 3 months from 2003 to 2006. Chamber measurements of ET were partitioned into bare-soil evaporation and mixed-species transpiration components. The component-scale ET fluxes from native shrubs typically surpassed those from bare soil by as much as a factor of four. Component-scale ET fluxes were extrapolated to landscape-scale ET using a one-layer, multi-component canopy model. Landscape-scale ET fluxes predominantly were controlled by bare-soil evaporation. Bare soil covered 94 percent of the landscape on average and contributed about 70 percent of the landscape-scale vapor flux. Creosote bush, an evergreen shrub, accounted for about 90 percent of transpiration on average due to its dominance across the landscape (80 percent of the 6 percent shrub cover) and evergreen character.

  8. The spatial distribution and chemical heterogeneity of clinoptilolite at Yucca Mountain, Nye County, Nevada: Evidence for polygenetic hypogene alteration

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, D.E.; Szymanski, J.S.

    1994-01-01

    This part of TRAC`s Annual Report for 1993 summarizes the finding of previous reports on the major element geochemistry of zeolitic alteration of the tuffs at Yucca Mountain and updates the status of work. In this report we examine the spatial distribution of zeolites by stratigraphic units and boreholes and the various types of chemical alteration of clinoptilolite indicated by the data reported in Broxton et al. and Bish and Chipera. The purpose is to evaluate the extent of the metasomatic alteration and to test the hypogene hypothesis of Szymanski. In this regard, it is of prime importance to evaluate whether the metasomatic alteration at Yucca Mountain is due to supergene or hypogene processes. In this report, the term {open_quotes}supergene{close_quotes} denotes alteration and mineralization produced by fluids derived directly from atmospheric precipitation and infiltration through the vadose zone, and the term {open_quotes}hypogene{close_quotes} denotes alteration and mineralization produced by fluids from the phreatic zone regardless of their former location or residence time in the Earth`s crust. This report begins with a review of previous work on the genesis of zeolites of the Nevada Test Site.

  9. Geologic and geophysical maps of the Las Vegas 30' x 60' quadrangle, Clark and Nye counties, Nevada, and Inyo County, California

    Science.gov (United States)

    Page, William R.; Lundstrom, Scott C.; Harris, Anita G.; Langenheim, V.E.; Workman, Jeremiah B.; Mahan, Shannon; Paces, James B.; Dixon, Gary L.; Rowley, Peter D.; Burchfiel, B.C.; Bell, John W.; Smith, Eugene I.

    2005-01-01

    Las Vegas and Pahrump are two of the fastest growing cities in the US, and the shortage of water looms as among the greatest future problems for these cities. These new maps of the Las Vegas 30 x 60-minute quadrangle provide a geologic and geophysical framework and fundamental earth science database needed to address societal issues such as ground water supply and contamination, surface flood, landslide, and seismic hazards, and soil properties and their changing impact by and on urbanization. The mountain ranges surrounding Las Vegas and Pahrump consist of Mesozoic, Paleozoic and Proterozoic rocks. A majority of these rocks are Paleozoic carbonate rocks that are part of Nevada's carbonate rock aquifer province. The Spring Mountains represent a major recharge site in the province, where maximum altitude is 3,632 m (Charleston Peak) above sea level. Rocks in the Sheep and Las Vegas Ranges and Spring Mountains contain correlative, northeast-striking, southeast-verging thrust faults that are part of the Cretaceous, Sevier orogenic belt. These thrusts were offset during the Miocene by the Las Vegas Valley shear system (LVVSZ). We conducted new mapping in the Blue Diamond area, highlighting refined work on the Bird Spring thrust, newly studied ancient landslides, and gravity-slide blocks. We conducted new mapping in the Las Vegas Range and mapped previously unrecognized structures such as the Valley thrust and fold belt; recognition of these structures has led to a refined correlation of Mesozoic thrust faults across the LVVSZ. New contributions in the quadrangle also include a greatly refined stratigraphy of Paleozoic bedrock units based on conodont biostragraphy. We collected over 200 conodont samples in the quadrangle and established stratigraphic reference sections used to correlate units across the major Mesozoic thrust faults. Quaternary deposits cover about half of the map area and underlie most of the present urbanized area. Deposits consist of large coalescing

  10. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, Jody L.; Nylund, W.E.

    1999-01-01

    Ash Meadows is one of the major discharge areas within the regional Death Valley ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Ash Meadows is replenished from inflow derived from an extensive recharge area that includes the eastern part of the Nevada Test Site (NTS). Currently, contaminants introduced into the subsurface by past nuclear testing at NTS are the subject of study by the U.S. Department of Energy's Environmental Restoration Program. The transport of any contaminant in contact with ground water is controlled in part by the rate and direction of ground-water flow, which itself depends on the location and quantity of ground water discharging from the flow system. To best evaluate any potential risk associated with these test-generated contaminants, studies were undertaken to accurately quantify discharge from areas downgradient from the NTS. This report presents results of a study to refine the estimate of ground-water discharge at Ash Meadows. The study estimates ground-water discharge from the Ash Meadows area through a rigorous quantification of evapotranspiration (ET). To accomplish this objective, the study identifies areas of ongoing ground-water ET, delineates unique areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computes ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite images recorded in 1992 identified seven unique units representing areas of ground-water ET. The total area classified encompasses about 10,350 acres dominated primarily by lush desert vegetation. Each unique area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes. The ET units identified range from sparse grasslands to open water. Annual ET rates are computed by energy-budget methods from micrometeorological measurements made at 10 sites within six

  11. Geochronology and correlation of Tertiary volcanic and intrusive rocks in part of the southern Toquima Range, Nye County, Nevada

    Science.gov (United States)

    Shawe, Daniel R.; Snee, Lawrence W.; Byers, Frank M.; du Bray, Edward A.

    2014-01-01

    Extensive volcanic and intrusive igneous activity, partly localized along regional structural zones, characterized the southern Toquima Range, Nevada, in the late Eocene, Oligocene, and Miocene. The general chronology of igneous activity has been defined previously. This major episode of Tertiary magmatism began with emplacement of a variety of intrusive rocks, followed by formation of nine major calderas and associated with voluminous extrusive and additional intrusive activity. Emplacement of volcanic eruptive and collapse megabreccias accompanied formation of some calderas. Penecontemporaneous volcanism in central Nevada resulted in deposition of distally derived outflow facies ash-flow tuff units that are interleaved in the Toquima Range with proximally derived ash-flow tuffs. Eruption of the Northumberland Tuff in the north part of the southern Toquima Range and collapse of the Northumberland caldera occurred about 32.3 million years ago. The poorly defined Corcoran Canyon caldera farther to the southeast formed following eruption of the tuff of Corcoran Canyon about 27.2 million years ago. The Big Ten Peak caldera in the south part of the southern Toquima Range Tertiary volcanic complex formed about 27 million years ago during eruption of the tuff of Big Ten Peak and associated air-fall tuffs. The inferred Ryecroft Canyon caldera formed in the south end of the Monitor Valley adjacent to the southern Toquima Range and just north of the Big Ten Peak caldera in response to eruption of the tuff of Ryecroft Canyon about 27 million years ago, and the Moores Creek caldera just south of the Northumberland caldera developed at about the same time. Eruption of the tuff of Mount Jefferson about 26.8 million years ago was accompanied by collapse of the Mount Jefferson caldera in the central part of the southern Toquima Range. An inferred caldera, mostly buried beneath alluvium of Big Smoky Valley southwest of the Mount Jefferson caldera, formed about 26.5 million years

  12. Some New Constraints On The Stratigraphic And Structural Setting Of The Soda Lake Geothermal Field, Churchill County, Nevada - McLACHLAN, Holly S. and FAULDS, James E., Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 89557

    Science.gov (United States)

    McLachlan, H. S.

    2012-12-01

    Our research group is currently conducting a regional survey to identify favorable structural settings of producing and prospective geothermal fields in the Great Basin. The Soda Lake geothermal field - one of the oldest consistently producing fields in this study region - is located in west-central Nevada near the heart of the Carson Sink. Producing and prospective geothermal fields in the surrounding highlands are hosted in 1) fault termination zones (Desert Queen), 2) accommodation zones (Brady's Hot Springs) and 3) fault step-overs (Desert Peak). However, the structural setting is challenging to identify at the Soda Lake field, because it lies in the central part of a large basin with no nearby bedrock exposures. The well field at Soda Lake is centered ~3.5 km NNE of the Holocene Soda Lake maar, from which it takes its name. The geothermal field was identified serendipitously during the drilling of an irrigation survey well in the early 20th century. Modern exploratory drilling at the field began in the mid-1970s and has continued sporadically to the present. There are currently more than 28 500+ m wells at and near the production site. The exceptional drilling density at Soda Lake allows for comparatively reliable correlation of stratigraphy in the subsurface below the feature-poor Carson Sink. Stratigraphy in the Soda Lake geothermal area is relatively "layer cake" at the scale of the well field. Unconsolidated sediments extend more than 1000 m below surface. The upper few hundred meters are composed of fluvial and lacustrine sediments derived from Sierran batholith source rocks. The deeper basin fill derives from more proximal mafic to felsic Miocene volcanic rocks along the basin margins. At ~450-650 m depth, basin sediments are interrupted by a 5.11 Ma trachytic basalt of restricted lateral extent and variable thickness. Most wells intercept ~50-250 m of fine lacustrine sediments below this basalt body before intercepting the basin floor. Basin floor rocks

  13. Long-term nongeocentric axial dipole directions and a geomagnetic excursion from the Middle Pleistocene sediments of the Humboldt River Canyon, Pershing County, Nevada

    Science.gov (United States)

    Negrini, Robert M.; Verosub, Kenneth L.; Davis, Jonathan O.

    1987-09-01

    A paleomagnetic record has been obtained from the middle Pleistocene sediments of the Humboldt River Canyon, Pershing County, Nevada. The age of the sediments is constrained by two tephra layers, the 610,000-year-old Lava Creek tephra and the approximately 495,000-year-old Dibekulewe tephra. The magnetization of the sediments is strong and stable, and the similarity of data from replicate sections strongly suggests that the data set represents an accurate record of the magnetic field except for the presence of postmagnetization rotations of less than 10°. The influence of postmagnetization rotations was eliminated in one of the sections (HR1A) by rotating the paleomagnetic directions in accordance with the direction of the Lava Creek welded tuff previously determined from five sampling sites near Yellowstone National Park. After correcting the mean directions we observed nongeocentric axial dipole (non-GAD) mean directions of moderate amplitude (19° ± 13° in declination and 22° ± 8° in inclination) in the record from the HRlA section which may represent as much as 115,000 years of magnetic field behavior. In the youngest part of the Humboldt River Canyon sediments a zone of anomalous directions was recorded which we interpret to be a detailed record of an unconfirmed geomagnetic excursion. This record exhibits behavior consistent with that of previously reported polarity transitions. Because of the widespread nature of the tephras, especially the Lava Creek tephra, the prospects are very good for improving estimates of the magnitude and duration of the non-GAD paleomagnetic directions and, also, for confirming the excursion.

  14. Precision and accuracy of manual water-level measurements taken in the Yucca Mountain area, Nye County, Nevada, 1988-90

    Science.gov (United States)

    Boucher, M.S.

    1994-01-01

    Water-level measurements have been made in deep boreholes in the Yucca Mountain area, Nye County, Nevada, since 1983 in support of the U.S. Department of Energy's Yucca Mountain Project, which is an evaluation of the area to determine its suitability as a potential storage area for high-level nuclear waste. Water-level measurements were taken either manually, using various water-level measuring equipment such as steel tapes, or they were taken continuously, using automated data recorders and pressure transducers. This report presents precision range and accuracy data established for manual water-level measurements taken in the Yucca Mountain area, 1988-90. Precision and accuracy ranges were determined for all phases of the water-level measuring process, and overall accuracy ranges are presented. Precision ranges were determined for three steel tapes using a total of 462 data points. Mean precision ranges of these three tapes ranged from 0.014 foot to 0.026 foot. A mean precision range of 0.093 foot was calculated for the multiconductor cable, using 72 data points. Mean accuracy values were calculated on the basis of calibrations of the steel tapes and the multiconductor cable against a reference steel tape. The mean accuracy values of the steel tapes ranged from 0.053 foot, based on three data points to 0.078, foot based on six data points. The mean accuracy of the multiconductor cable was O. 15 foot, based on six data points. Overall accuracy of the water-level measurements was calculated by taking the square root of the sum of the squares of the individual accuracy values. Overall accuracy was calculated to be 0.36 foot for water-level measurements taken with steel tapes, without accounting for the inaccuracy of borehole deviations from vertical. An overall accuracy of 0.36 foot for measurements made with steel tapes is considered satisfactory for this project.

  15. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2002-01-17

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  16. Evaluation of the Location and Recency of Faulting Near Prospective Surface Facilities in Midway Valley, Nye County, Nevada

    Science.gov (United States)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2001-01-01

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  17. Locations and summary of types of data available by borehole or other underground openings, Mercury Core Library and Data Center, Nye County, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This geospatial data set represents about 2,500 locations of boreholes, shafts, tunnels, and drifts on and around the Nevada Test Site (NTS) where rock-samples have...

  18. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    2001-11-21

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3; 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC

  19. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    2001-11-21

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3; 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC

  20. 2009 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analysis

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2010-03-15

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 Radioactive Wate Management Site (RWMS) Performance Assessments (PAs) and Composite Analyses (CAs) in fiscal year (FY) 2009. This annual summary report presents data and conclusions from the FY 2009 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

  1. Alternative Evaluation Study: Methods to Mitigate/Accommodate Subsidence for the Radioactive Waste Management Sites at the Nevada Test Site, Nye County Nevada, with Special Focus on Disposal Cell U-3ax/bl

    Energy Technology Data Exchange (ETDEWEB)

    Barker, L.

    1997-09-01

    An Alternative Evaluation Study is a type of systematic approach to problem identification and solution. An Alternative Evaluation Study was convened August 12-15, 1997, for the purpose of making recommendations concerning closure of Disposal Cell U-3ax/bl and other disposal cells and mitigation/accommodation of waste subsidence at the Radioactive Waste Management Sites at the Nevada Test Site. This report includes results of the Alternative Evaluation Study and specific recommendations.

  2. 2008 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-03-30

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs) for each of the facilities, with the results submitted annually to U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) performed an annual review in fiscal year (FY) 2008 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs. This annual summary report presents data and conclusions from the FY 2008 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

  3. Ages and sources of components of Zn-Pb, Cu, precious metal, and platinum group element deposits in the goodsprings district, clark county, Nevada

    Science.gov (United States)

    Vikre, P.; Browne, Q.J.; Fleck, R.; Hofstra, A.; Wooden, J.

    2011-01-01

    The Goodsprings district, Clark County, Nevada, includes zinc-dominant carbonate replacement deposits of probable late Paleozoic age, and lead-dominant carbonate replacement deposits, copper ?? precious metal-platinum group element (PGE) deposits, and gold ?? silver deposits that are spatially associated with Late Triassic porphyritic intrusions. The district encompasses ??500 km2 although the distribution of all deposits has been laterally condensed by late Mesozoic crustal contraction. Zinc, Pb, and Cu production from about 90 deposits was ??160,000 metric tons (t) (Zn > Pb >> Cu), 2.1 million ounces (Moz) Ag, 0.09 Moz Au, and small amounts of PGEs-Co, V, Hg, Sb, Ni, Mo, Mn, Ir, and U-were also recovered. Zinc-dominant carbonate replacement deposits (Zn > Pb; Ag ?? Cu) resemble Mississippi Valley Type (MVT) Zn-Pb deposits in that they occur in karst and fault breccias in Mississippian limestone where the southern margin of the regional late Paleozoic foreland basin adjoins Proterozoic crystalline rocks of the craton. They consist of calcite, dolomite, sphalerite, and galena with variably positive S isotope compositions (??34S values range from 2.5-13%), and highly radiogenic Pb isotope compositions (206Pb/204Pb >19), typical of MVT deposits above crystalline Precambrian basement. These deposits may have formed when southward flow of saline fluids, derived from basinal and older sedimentary rocks, encountered thinner strata and pinch-outs against the craton, forcing fluid mixing and mineral precipitation in karst and fault breccias. Lead-dominant carbonate replacement deposits (Pb > Zn, Ag ?? Cu ?? Au) occur among other deposit types, often near porphyritic intrusions. They generally contain higher concentrations of precious metals than zinc-dominant deposits and relatively abundant iron oxides after pyrite. They share characteristics with copper ?? precious metal- PGE and gold ?? silver deposits including fine-grained quartz replacement of carbonate minerals in

  4. First report of the white pine blister rust fungus, Cronartium ribicola, infecting Pinus flexilis on Pine Mountain, Humboldt National Forest, Elko County, northeastern Nevada, U.S.A.

    Science.gov (United States)

    Detlev R. Vogler; Patricia E. Maloney; Tom Burt; Jacob W. Snelling

    2017-01-01

    In 2013, while surveying for five-needle white pine cone crops in northeastern Nevada, we observed white pine blister rust, caused by the rust pathogen Cronartium ribicola Fisch., infecting branches and stems of limber pines (Pinus flexilis James) on Pine Mountain (41.76975°N, 115.61622°W), Humboldt National Forest,...

  5. Special Analysis for the Disposal of the Neutron Products Incorporated Sealed Source Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Neutron Products Incorporated (NPI) Sealed Sources waste stream (DRTK000000056, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The NPI Sealed Sources waste stream consists of 850 60Co sealed sources (Duratek [DRTK] 2013). The NPI Sealed Sources waste stream requires a special analysis (SA) because the waste stream 60Co activity concentration exceeds the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  6. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory J. [National Security Technologies, LLC

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  7. Special Analysis for the Disposal of the Sandia National Laboratory Classified Macroencapsulated Mixed Waste at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, Louis B. [National Security Technologies, LLC

    2015-12-01

    This special analysis evaluates whether the Sandia National Laboratory (SNL) Classified Macroencapsulated Mixed Waste stream (ASLA000001007, Revision 4) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The SNL Classified Macroencapsulated Mixed Waste stream consists of debris from classified nuclear weapons components (SNL 2015). The SNL Classified Macroencapsulated Mixed Waste stream required a special analysis due to tritium (3H) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The SNL Classified Macroencapsulated Mixed Waste stream had no significant effect on the maximum mean and 95th percentile results for the resident air pathway and all-pathways annual total effective dose (TED). The SNL Classified Macroencapsulated Mixed Waste stream increases the mean air pathway and all-pathways annual TED from approximately 100 to 200 years after closure. Addition of the SNL Classified Macroencapsulated Mixed Waste stream inventory shifts the maximum TED to approximately 100 years after closure and increases the TED for several alternative exposure scenarios. The maximum mean and the 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The SNL Classified Macroencapsulated Mixed Waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  8. A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2005-09-01

    A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.

  9. Phase I Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada with Errata Sheet 1, 2, 3, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Greg Ruskauff

    2009-02-01

    As prescribed in the Pahute Mesa Corrective Action Investigation Plan (CAIP) (DOE/NV, 1999) and Appendix VI of the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008), the ultimate goal of transport analysis is to develop stochastic predictions of a contaminant boundary at a specified level of uncertainty. However, because of the significant uncertainty of the model results, the primary goal of this report was modified through mutual agreement between the DOE and the State of Nevada to assess the primary model components that contribute to this uncertainty and to postpone defining the contaminant boundary until additional model refinement is completed. Therefore, the role of this analysis has been to understand the behavior of radionuclide migration in the Pahute Mesa (PM) Corrective Action Unit (CAU) model and to define, both qualitatively and quantitatively, the sensitivity of such behavior to (flow) model conceptualization and (flow and transport) parameterization.

  10. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [NSTec

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  11. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory J. [National Security Technologies, LLC

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  12. Temporal Chemical Data for Sediment, Water, and Biological Samples from the Lava Cap Mine Superfund Site, Nevada County, California-2006-2008

    Science.gov (United States)

    Foster, Andrea L.; Ona-Nguema, Georges; Tufano, Kate; White, Richard III

    2010-01-01

    The Lava Cap Mine is located about 6 km east of the city of Grass Valley, Nevada County, California, at an elevation of about 900 m. Gold was hosted in quartz-carbonate veins typical of the Sierran Gold Belt, but the gold grain size was smaller and the abundance of sulfide minerals higher than in typical deposits. The vein system was discovered in 1860, but production was sporadic until the 1930s when two smaller operations on the site were consolidated, a flotation mill was built, and a 100-foot deep adit was driven to facilitate drainage and removal of water from the mine workings, which extended to 366 m. Peak production at the Lava Cap occurred between 1934 and 1943, when about 90,000 tons of ore per year were processed. To facilitate removal of the gold and accessory sulfide minerals, the ore was crushed to a very fine sand or silt grain size for processing. Mining operations at Lava Cap ceased in June 1943 due to War Production Board Order L-208 and did not resume after the end of World War II. Two tailings retention structures were built at the Lava Cap Mine. The first was a log dam located about 0.4 km below the flotation mill on Little Clipper Creek, and the second, built in 1938, was a larger earth fill and rip-rap structure constructed about 2 km downstream, which formed the water body now called Lost Lake. The log dam failed during a storm that began on December 31, 1996, and continued into January 1997; an estimated 8,000-10,000 m3 of tailings were released into Little Clipper Creek during this event. Most of the fine tailings were deposited in Lost Lake, dramatically increasing its turbidity and resulting in a temporary 1-1.5 m rise in lake level due to debris blocking the dam spillway. When the blockage was cleared, the lake level quickly lowered, leaving a ?bathtub ring? of very fine tailings deposited substantially above the water line. The U.S. Environmental Protection Agency (EPA) initiated emergency action in late 1997 at the mine site to reduce

  13. Evaluation of U.S. Geological Survey Monitoring-well network and potential effects of changes in water use, Newlands Project, Churchill County, Nevada

    Science.gov (United States)

    Maurer, Douglas K.; Seiler, Ralph L.; Watkins, Sharon A.

    2004-01-01

    Domestic wells tapping shallow ground water are an important source of potable water for rural residents of Lahontan Valley. For this reason, the public has expressed concern over the acquisition of water rights directed by Public Law 101-618. The acquisition has resulted in removal of land from irrigation, which could cause shallow domestic wells to go dry and adversely affect shallow ground-water quality. Periodic water-level measurements and water-quality sampling at a monitoring-well network developed by the U.S. Geological Survey (USGS) provided data to evaluate the potential effects of changes in water use. The USGS, in cooperation with Churchill County, analyzed these data and the monitoring-well network to determine if the network provides an adequate means to measure the response of the shallow aquifer to changes in water use, and to determine if measurable changes have taken place. To evaluate the USGS monitoring-well network, wells were characterized by their distance from active canals or ditches, and from currently (2003) or formerly irrigated land. An analysis of historical data showed that about 9,800 acres of land have been removed from irrigation, generally from the late 1990's to 2003. Twenty-five wells in the network are within about 1 mile of fields removed from irrigation. Of the 25 wells, 13 are within 300 feet of canals or ditches where seepage maintains stable water levels. The 13 wells likely are not useful for detecting changes caused by reductions in irrigation. The remaining 12 wells range from about 400 to 3,800 feet from the nearest canal and are useful for detecting continued changes from current reductions in irrigation. The evaluation showed that of the 75 wells in the network, only 8 wells are likely to be useful for detecting the effects of future (after 2003) reductions in irrigation. Water levels at most of the monitoring wells near irrigated land have declined from 1998 to 2003 because of drought conditions and below normal

  14. Threatened plant species of the Nevada Test Site, Ash Meadows, central-southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-04-01

    This report is a companion one to Endangered Plant Species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada (COO-2307-11) and deals with the threatened plant species of the same area. The species are those cited in the Federal Register, July 1, 1975, and include certain ones listed as occurring only in California or Arizona, but which occur also in central-southern Nevada. As with the earlier report, the purpose of this one is to record in detail the location of the past plant collections which constitute the sole or principal basis for defining the species' distributions and frequency of occurrence in southern Nye County, Nevada, and to recommend the area of the critical habitat where this is appropriate. Many of the species occur also in southern California, and for these the central-southern Nevada records are presented for consideration of the overall status of the species throughout its range.

  15. 2013 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada; Review of the Performance Assessments and Composite Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [NSTec

    2014-03-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC 2007a) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs), with the results submitted to the U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE 1999a, 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2013. This annual summary report presents data and conclusions from the FY 2013 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2013 include the following: • Development of a new Area 5 RWMS closure inventory estimate based on disposals through FY 2013 • Evaluation of new or revised waste streams by special analysis • Development of version 4.115 of the Area 5 RWMS GoldSim PA/CA model The Area 3 RWMS has been in inactive status since July 1, 2006, with the last shipment received in April 2006. The FY 2013 review of operations

  16. Nuclear Propulsion for Space (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R; Schwenk, Francis C

    1971-01-01

    The operation of nuclear rockets and a description of the development of nuclear rockets in the U.S. is given. Early developments and Project Rover, Project Pluto, and the NERVA (Nuclear Engine for Rocket Vehicle Application) Program are detailed. The Nuclear Rocket Development Station facilities in Nevada are described. The possibilities and advantages of using nuclear rockets for missions beginning from an earth orbit and moving outward toward higher earth orbits, the moon, and the planets are discussed.

  17. Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 1 with ROTCs 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Robert

    2013-09-01

    The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).

  18. 2011 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-03-20

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2007a) requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs), with the results submitted annually to U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 1999a; 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2011. This annual summary report presents data and conclusions from the FY 2011 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R and D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2011 include the following: (1) Operation of a new shallow land disposal unit and a new Resource Conservation and Recovery Act (RCRA)-compliant lined disposal unit at the Area 5 RWMS; (2) Development of new closure inventory estimates based on disposals through FY 2011; (3) Evaluation of new or revised waste streams by special analysis; (4) Development of

  19. 2011 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-03-20

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2007a) requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs), with the results submitted annually to U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 1999a; 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2011. This annual summary report presents data and conclusions from the FY 2011 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R and D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) (formerly the Nevada Test Site) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2011 include the following: (1) Operation of a new shallow land disposal unit and a new Resource Conservation and Recovery Act (RCRA)-compliant lined disposal unit at the Area 5 RWMS; (2) Development of new closure inventory estimates based on disposals through FY 2011; (3) Evaluation of new or revised waste streams by special analysis; (4) Development of

  20. 2012 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada National Security Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Shott, G. [National Security Technologies, LLC

    2013-03-18

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC 2007a) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs), with the results submitted to the U.S. Department of Energy (DOE) Office of Environmental Management. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE 1999a, 2000). The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 RWMS PAs and CAs for fiscal year (FY) 2012. This annual summary report presents data and conclusions from the FY 2012 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada National Security Site (NNSS) relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs. Important developments in FY 2012 include the following: Release of a special analysis for the Area 3 RWMS assessing the continuing validity of the PA and CA; Development of a new Area 5 RWMS closure inventory estimate based on disposals through FY 2012; Evaluation of new or revised waste streams by special analysis; and Development of version 4.114 of the Area 5 RWMS GoldSim PA model. The Area 3 RWMS has been in inactive status since

  1. Hydrologic, lithologic, and chemical data for sediment in the shallow alluvial aquifer at two sites near Fallon, Churchill County, Nevada, 1984-85

    Science.gov (United States)

    Lico, M.S.; Welch, A.H.; Hughes, J.L.

    1986-01-01

    The U.S. Geological Survey collected an extensive amount of hydrogeologic data from the shallow alluvial aquifer at two study sites near Fallon, Nevada, from 1984 though 1985. These data were collected as part of a study to determine the geochemical controls on the mobility of arsenic and other trace elements in shallow groundwater systems. The main study area is approximately 7 miles south of Fallon. A subsidiary study area is about 8 miles east of Fallon. The data collected include lithologic logs and water level altitudes for the augered sampling wells and piezometers, and determinations of arsenic and selenium content, grain size, porosity, hydraulic conductivity, and mineralogy for sediment samples from cores. (USGS)

  2. Micrometeorological, evapotranspiration, and soil-moisture data at the Amargosa Desert Research site in Nye County near Beatty, Nevada, 2006-11

    Science.gov (United States)

    Arthur, Jonathan M.; Johnson, Michael J.; Mayers, C. Justin; Andraski, Brian J.

    2012-01-01

    This report describes micrometeorological, evapotranspiration, and soil-moisture data collected since 2006 at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada. Micrometeorological data include precipitation, solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, near-surface soil temperature, soil-heat flux, and soil-water content. Evapotranspiration (ET) data include latent-heat flux, sensible-heat flux, net radiation, soil-heat flux, soil temperature, air temperature, vapor pressure, and other principal energy-budget data. Soil-moisture data include periodic measurements of volumetric water-content at experimental sites that represent vegetated native soil, devegetated native soil, and simulated waste disposal trenches - maximum measurement depths range from 5.25 to 29.25 meters. All data are compiled in electronic spreadsheets that are included with this report.

  3. Geologic map of the Duncan Peak and southern part of the Cisco Grove 7 1/2' quadrangles, Placer and Nevada Counties, California

    Science.gov (United States)

    Harwood, David S.; Fisher, G. Reid; Waugh, Barbara J.

    1995-01-01

    This map covers an area of 123 km2 on the west slope of the Sierra Nevada, an uplifted and west-tilted range in eastern California (fig. 1). The area is located 20 km west of Donner Pass, which lies on the east escarpment of the range, and about 80 km east of the Great Valley Province. Interstate Highway 80 is the major route over the range at this latitude and secondary roads, which spur off from this highway, provide access to the northern part of the area. None of the secondary roads crosses the deep canyon cut by the North Fork of the American River, however, and access to the southern part of the area is provided by logging roads that spur off from the Foresthill Divide Road that extends east from Auburn to the Donner Pass area (fig. 1).

  4. Quantifying the eroded volume of mercury-contaminated sediment using terrestrial laser scanning at Stocking Flat, Deer Creek, Nevada County, California, 2010–13

    Science.gov (United States)

    Howle, James F.; Alpers, Charles N.; Bawden, Gerald W.; Bond, Sandra

    2016-07-28

    High-resolution ground-based light detection and ranging (lidar), also known as terrestrial laser scanning, was used to quantify the volume of mercury-contaminated sediment eroded from a stream cutbank at Stocking Flat along Deer Creek in the Sierra Nevada foothills, about 3 kilometers west of Nevada City, California. Terrestrial laser scanning was used to collect sub-centimeter, three-dimensional images of the complex cutbank surface, which could not be mapped non-destructively or in sufficient detail with traditional surveying techniques.The stream cutbank, which is approximately 50 meters long and 8 meters high, was surveyed on four occasions: December 1, 2010; January 20, 2011; May 12, 2011; and February 4, 2013. Volumetric changes were determined between the sequential, three-dimensional lidar surveys. Volume was calculated by two methods, and the average value is reported. Between the first and second surveys (December 1, 2010, to January 20, 2011), a volume of 143 plus or minus 15 cubic meters of sediment was eroded from the cutbank and mobilized by Deer Creek. Between the second and third surveys (January 20, 2011, to May 12, 2011), a volume of 207 plus or minus 24 cubic meters of sediment was eroded from the cutbank and mobilized by the stream. Total volumetric change during the winter and spring of 2010–11 was 350 plus or minus 28 cubic meters. Between the third and fourth surveys (May 12, 2011, to February 4, 2013), the differencing of the three-dimensional lidar data indicated that a volume of 18 plus or minus 10 cubic meters of sediment was eroded from the cutbank. The total volume of sediment eroded from the cutbank between the first and fourth surveys was 368 plus or minus 30 cubic meters.

  5. MX Siting Investigation. Municipal Water-Supply and Waste-Water Treatment Facilities in Selected Nevada and Utah Communities.

    Science.gov (United States)

    1980-06-20

    following counties : VoI I - Carson City, Douglas, Storey; Vol IL - Churchill, Mineral; Vol III - Lincoln, White Pine; Vol IV - Humbold., Pershing ; Vol...the Washoe County Commissioners. In 1975 the Water Resources Center of DRI completed an important related study on "Economics and Finance of Nevada ... Nevada Rural Communities Water and Wastewater Plan, 1972, Volume V Eureka County - Lander County , Walters Engineering, Reno, NV, Chilton Engineering

  6. 77 FR 24218 - Filing of Plats of Survey; Nevada

    Science.gov (United States)

    2012-04-23

    ... was executed to meet certain administrative needs of Pershing County Water Conservation District. 3... needs of Pershing County Water Conservation District. 7. The Plats of Survey of the following described...] Filing of Plats of Survey; Nevada AGENCY: Bureau of Land Management, Interior. ACTION: Notice....

  7. 77 FR 50530 - Filing of Plats of Survey; Nevada

    Science.gov (United States)

    2012-08-21

    ... administrative needs of the Pershing County Water Conservation District. A plat, in 3 sheets, representing the... May 3, 2012. This survey was executed to meet certain administrative needs of the Pershing County...] Filing of Plats of Survey; Nevada AGENCY: Bureau of Land Management, Interior. ACTION: Notice....

  8. 75 FR 51841 - Notice of Realty Action: Proposed sale of Public Lands, Churchill County, NV

    Science.gov (United States)

    2010-08-23

    ...: Proposed sale of Public Lands, Churchill County, NV AGENCY: Bureau of Land Management, Interior. ACTION... the appraised fair market value, approximately 800 acres of public lands in Churchill County, Nevada... lands in Churchill County, Nevada, proposed for sale are located 65 miles northeast of Fallon,...

  9. A Hydrostratigraphic Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat-Climax Mine, Lincoln and Nye Counties, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Geotechnical Sciences Group Bechtel Nevada

    2006-01-01

    A new three-dimensional hydrostratigraphic framework model for the Yucca Flat-Climax Mine Corrective Action Unit was completed in 2005. The model area includes Yucca Flat and Climax Mine, former nuclear testing areas at the Nevada Test Site, and proximal areas. The model area is approximately 1,250 square kilometers in size and is geologically complex. Yucca Flat is a topographically closed basin typical of many valleys in the Basin and Range province. Faulted and tilted blocks of Tertiary-age volcanic rocks and underlying Proterozoic and Paleozoic sedimentary rocks form low ranges around the structural basin. During the Cretaceous Period a granitic intrusive was emplaced at the north end of Yucca Flat. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the basin. These were integrated using EarthVision? software to develop the 3-dimensional hydrostratigraphic framework model. Fifty-six stratigraphic units in the model area were grouped into 25 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the alluvial section into 3 hydrostratigraphic units including 2 aquifers and 1 confining unit. The volcanic units in the model area are organized into 13 hydrostratigraphic units that include 8 aquifers and 5 confining units. The underlying pre-Tertiary rocks are divided into 7 hydrostratigraphic units, including 3 aquifers and 4 confining units. Other units include 1 Tertiary-age sedimentary confining unit and 1 Mesozoic-age granitic confining unit. The model depicts the thickness, extent, and geometric relationships of these hydrostratigraphic units (''layers'' in the model) along with the major structural features (i.e., faults). The model incorporates 178 high-angle normal faults of Tertiary age and 2 low-angle thrust faults of Mesozoic age. The complexity of the model

  10. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa L.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  11. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa L.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    This report is temporarily unavailableSummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  12. Clark County Health Manpower and Education Profile.

    Science.gov (United States)

    Callen, John; And Others

    The profile is a concise description of the demographic and economic characteristics, existing health manpower employed, and health education programs for the Clark County area of Nevada, one of seven surveyed in the Mountain States region (Idaho, Montana, Wyoming, and Nevada). The first section of the profile provides general population…

  13. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1990-91

    Science.gov (United States)

    Seiler, R.L.; Ekechukwu, G.A.; Hallock, R.J.

    1993-01-01

    A reconnaissance investigation was begun in 1990 to determine whether the quality of irrigation drainage in and near the Humboldt Wildlife Management Area, Nevada, has caused or has the potential to cause harmful effects on human health, fish, and wildlife or to impair beneficial uses of water. Samples of surface and ground water, bottom sediment, and biota collected from sites upstream and downstream from the Lovelock agricultural area were analyzed for potentially toxic trace elements. Also analyzed were radioactive substances, major dissolved constitu- ents, and nutrients in water, as well as pesticide residues in bottom sediment and biota. In samples from areas affected by irrigation drainage, the following constituents equaled or exceeded baseline concentrations or recommended standards for protection of aquatic life or propagation of wildlife--in water: arsenic, boron, dissolved solids, mercury, molybdenum, selenium, sodium, and un-ionized ammonia; in bottom sediment; arsenic and uranium; and in biota; arsenic, boron, and selenium. Selenium appears to be biomagnified in the Humboldt Sink wetlands. Biological effects observed during the reconnaissance included reduced insect diversity in sites receiving irrigation drainage and acute toxicity of drain water and sediment to test organisms. The current drought and upstream consumption of water for irrigation have reduced water deliveries to the wetlands and caused habitat degradation at Humboldt Wildlife Management Area. During this investigation. Humboldt and Toulon Lakes evaporated to dryness because of the reduced water deliveries.

  14. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in and near Stillwater Wildlife Management Area, Churchill County, Nevada, 1986-87

    Science.gov (United States)

    Hoffman, R.J.; Hallock, R.J.; Rowe, T.G.; Lico, M.S.; Burge, H.L.; Thompson, S.P.

    1990-01-01

    A reconnaissance was initiated in 1986 to determine whether the quality of irrigation-drainage water in and near the Stillwater Wildlife Management Area, Nevada, has caused or has potential to cause harmful effects on human health, fish, wildlife, or other beneficial uses of water. Samples of surface and groundwater, bottom sediment, and biota were collected from sites upstream and downstream from the Fallon agricultural area in the Carson Desert, and analyzed for potentially toxic trace elements. Other analysis included radioactive substances, major dissolved constituents, and nutrients in water, and pesticide residues in bottom sediment and biota. In areas affected by irrigation drainage, the following constituents were found to commonly exceed baseline concentrations or recommended criteria for protection of aquatic life or propagation of wildlife: In water, arsenic, boron, dissolved solids, molybdenum, sodium, and un-ionized ammonia; in bottom sediments, arsenic, lithium, mercury, molybdenum, and selenium; and in biota, arsenic, boron, chromium, copper, mercury, selenium, and zinc. In some wetlands, selenium and mercury appeared to be biomagnified, and arsenic bioaccumulated. Pesticides contamination in bottom sediments and biota was insignificant. Adverse biological effects observed during this reconnaissance included gradual vegetative changes and species loss, fish die-offs, waterfowl disease epidemics, and persistent and unexplained deaths of migratory birds. (USGS)

  15. San Emidio Desert Prospect, Washoe and Pershing Counties, Nevada, for Chevron Oil Co., Wells Se-A and SE-B, Temperature depth data, 19 wells

    Energy Technology Data Exchange (ETDEWEB)

    Kehoe, Mark

    1977-01-01

    During 1977 Chevron Resources conducted numerous temperature hole programs in the San Emidio Desert Prospect, Nevada. These programs were projected to evaluate recently acquired Fee Land and acreage which could be included in a unit package. The 1977 temperature holes (Map 1) were drilled to a maximum depth of 500 feet with a minimum of 100 feet. Maximum temperature encountered in these holes was 232 F with an average gradient of {approx} 9 F/100 feet (300-400 feet) and {approx} 11 F/100 feet (100-200 feet). In addition, shot holes drilled during the seismic program had temperature pipe installed and were also logged. Table 1 reflects data pertinent to the temperature holes drilled in 1977; in addition, complete temperature gradient plots (Appendix A) and lithology descriptions (Appendix B) are included in this report. Water samples from two temperature holes were collected early in the 1977 program and analyzed by Skyline Laboratories (Appendix C). The results of the estimated base temperature calculations are given.

  16. Geologic Insights and Suggestions on Mineral Potential Based on Analyses of Geophysical Data of the Southern Toquima Range, Nye County, Nevada

    Science.gov (United States)

    Shawe, D.R.; Kucks, R.P.; Hildenbrand, T.G.

    2004-01-01

    Aeromagnetic and gravity data provide confirmation of major structural and lithologic units in the southern Toquima Range, Nevada. These units include Cretaceous granite plutons and Tertiary calderas. In addition, the geophysical maps pinpoint numerous faults and lesser intrusions, and they suggest locations of several inferred subsurface intrusions. They also corroborate a system of northwesterly and northeasterly conjugate structures that probably are fundamental to the structural framework of the Toquima Range. A combination of geophysical, geochemical, and geologic data available for the widely mineralized and productive area suggests additional mineral resource potential, especially in and (or) adjacent to the Round Mountain, Jefferson, Manhattan, and Belmont mining districts. Also, evidence for mineral potential exists for areas near the Flower mercury mine south of Mount Jefferson caldera, and in the Bald Mountain Canyon belt of gold-quartz veins in the Manhattan caldera. A few other areas also show potential for mineral resources. The various geologic environments indicated within the map area suggest base- and precious-metal potential in porphyry deposits as well as in quartz-vein and skarn deposits associated with intrusive stocks.

  17. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats.

  18. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  19. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2013-01-31

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of

  20. A Hydrostrat Model and Alternatives for Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainer Mesa-Shoshone Mountain, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Geotechnical Sciences Group

    2007-03-01

    The three-dimensional hydrostratigraphic framework model for the Rainier Mesa-Shoshone Mountain Corrective Action Unit was completed in Fiscal Year 2006. The model extends from eastern Pahute Mesa in the north to Mid Valley in the south and centers on the former nuclear testing areas at Rainier Mesa, Aqueduct Mesa, and Shoshone Mountain. The model area also includes an overlap with the existing Underground Test Area Corrective Action Unit models for Yucca Flat and Pahute Mesa. The model area is geologically diverse and includes un-extended yet highly deformed Paleozoic terrain and high volcanic mesas between the Yucca Flat extensional basin on the east and caldera complexes of the Southwestern Nevada Volcanic Field on the west. The area also includes a hydrologic divide between two groundwater sub-basins of the Death Valley regional flow system. A diverse set of geological and geophysical data collected over the past 50 years was used to develop a structural model and hydrostratigraphic system for the model area. Three deep characterization wells, a magnetotelluric survey, and reprocessed gravity data were acquired specifically for this modeling initiative. These data and associated interpretive products were integrated using EarthVision{reg_sign} software to develop the three-dimensional hydrostratigraphic framework model. Crucial steps in the model building process included establishing a fault model, developing a hydrostratigraphic scheme, compiling a drill-hole database, and constructing detailed geologic and hydrostratigraphic cross sections and subsurface maps. The more than 100 stratigraphic units in the model area were grouped into 43 hydrostratigraphic units based on each unit's propensity toward aquifer or aquitard characteristics. The authors organized the volcanic units in the model area into 35 hydrostratigraphic units that include 16 aquifers, 12 confining units, 2 composite units (a mixture of aquifer and confining units), and 5 intrusive

  1. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    Science.gov (United States)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, Jody L.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  2. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

  3. Water resources and potential effects of ground-water development in Maggie, Marys, and Susie Creek basins, Elko and Eureka counties, Nevada

    Science.gov (United States)

    Plume, R.W.

    1995-01-01

    The basins of Maggie, Marys, and Susie Creeks in northeastern Nevada are along the Carline trend, an area of large, low-grade gold deposits. Pumping of ground water, mostly for pit dewatering at one of the mines, will reach maximum rates of about 70,000 acre-ft/yr (acre-feet per year) around the year 2000. This pumping is expected to affect ground-water levels, streamflow, and possibly the flow of Carlin spring, which is the water supply for the town of Carlin, Nev. Ground water in the upper Maggie Creek Basin moves from recharge areas in mountain ranges toward the basin axis and discharges as evapotranspiration and as inflow to the stream channel. Ground water in the lower Maggie, Marys, and Susie Creek Basins moves southward from recharge areas in mountain ranges and along the channel of lower Maggie Creek to the discharge area along the Humboldt River. Ground-water underflow between basins is through permeable bedrock of Schroeder Mountain from the upper Maggie Creek Basin to the lower Maggie Creek Basin and through permeable volcanic rocks from lower Maggie Creek to Carlin spring in the Marys Creek Basin. The only source of water to the combined area of the three basins is an estimated 420,000 acre-ft/yr of precipitation. Water leaves as runoff (38,000 acre-ft/yr) and evapotranspiration of soil moisture and ground water (380,000 acre-ft/yr). A small part of annual precipitation (about 25,000 acre-ft/yr) infiltrates the soil zone and becomes ground-water recharge. This ground water eventually is discharged as evapotranspiration (11,000 acre-ft/yr) and as inflow to the Humboldt River channel and nearby springflow (7,000 acre-ft/yr). Total discharge is estimated to be 18,000 acre-ft/yr.

  4. Ground-water conditions and effects of mine dewatering in Desert Valley, Humboldt and Pershing Counties, northwestern Nevada, 1962-91

    Science.gov (United States)

    Berger, D.L.

    1995-01-01

    Desert Valley is a 1,200-square-mile, north- trending, structural basin, about 30 miles northwest of Winnemucca, Nevada. Unconsolidated basin-fill deposits exceeding 7,000 feet in thickness constitute the primary ground-water reservoir. Dewatering operations at an open-pit mine began in the Spring of 1985 in the northeast part of Desert Valley. Ground-water withdrawal for mine dewatering in 1991 was greater than three times the estimated average annual recharge from precipitation. The mine discharge water has been allowed to flow to areas west of the mine where it has created an artificial wetlands. This report documents the 1991 hydrologic conditions in Desert Valley and the change in conditions since predevelopment (pre-1962). It also summarizes the results of analyzing the simulated effects of open-pit mine dewatering on a basin-wide scale over time. Water-level declines associated with the dewatering have propagated north and south of the mine, but have been attenuated to the west due to the infiltration beneath the artificial wetlands. Maximum water-level declines beneath the open pits at the mine, as of Spring 1991, are about 300 feet. Changes in the hydrologic conditions since predevelopment are observed predominantly near the dewatering operations and the associated discharge lakes. General ground-water chemistry is essentially unchanged since pre- development. On the basis of a ground-water flow model used to simulate mine dewatering, a new equilibrium may slowly be approached only after 100 years of recovery from the time mine dewatering ceases.

  5. Inversion of Gravity Data to Define the Pre-Cenozoic Surface and Regional Structures Possibly Influencing Groundwater Flow in the Rainier Mesa Region, Nye County, Nevada

    Science.gov (United States)

    Hildenbrand, Thomas G.; Phelps, Geoffrey A.; Mankinen, Edward A.

    2006-01-01

    A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significant improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.

  6. Inversion of Gravity Data to Define the Pre-Cenozoic Surface and Regional Structures Possibly Influencing Groundwater Flow in the Rainier Mesa Region, Nye County, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen

    2006-09-21

    A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significant improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.

  7. Inversion of Gravity Data to Define the Pre-Cenozoic Surface and Regional Structures Possibly Influencing Groundwater Flow in the Rainier Mesa Region, Nye County, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas G. Hildenbrand; Geoffrey A. Phelps; Edward A. Mankinen

    2006-09-21

    A three-dimensional inversion of gravity data from the Rainier Mesa area and surrounding regions reveals a topographically complex pre-Cenozoic basement surface. This model of the depth to pre-Cenozoic basement rocks is intended for use in a 3D hydrogeologic model being constructed for the Rainier Mesa area. Prior to this study, our knowledge of the depth to pre-Cenozoic basement rocks was based on a regional model, applicable to general studies of the greater Nevada Test Site area but inappropriate for higher resolution modeling of ground-water flow across the Rainier Mesa area. The new model incorporates several changes that lead to significant improvements over the previous regional view. First, the addition of constraining wells, encountering old volcanic rocks lying above but near pre-Cenozoic basement, prevents modeled basement from being too shallow. Second, an extensive literature and well data search has led to an increased understanding of the change of rock density with depth in the vicinity of Rainier Mesa. The third, and most important change, relates to the application of several depth-density relationships in the study area instead of a single generalized relationship, thereby improving the overall model fit. In general, the pre-Cenozoic basement surface deepens in the western part of the study area, delineating collapses within the Silent Canyon and Timber Mountain caldera complexes, and shallows in the east in the Eleana Range and Yucca Flat regions, where basement crops out. In the Rainier Mesa study area, basement is generally shallow (< 1 km). The new model identifies previously unrecognized structures within the pre-Cenozoic basement that may influence ground-water flow, such as a shallow basement ridge related to an inferred fault extending northward from Rainier Mesa into Kawich Valley.

  8. Rural migration in southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Mosser, D.; Soden, D.L.

    1993-08-01

    This study reviews the history of migration in two rural counties in Southern Nevada. It is part of a larger study about the impact of a proposed high-level nuclear waste repository on in- and out-migration patterns in the state. The historical record suggests a boom and bust economic cycle has predominated in the region for the past century creating conditions that should be taken into account by decision makers when ascertaining the long-term impacts of the proposed repository.

  9. 12MW Horns Rev experiment

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Peña, A.; Mikkelsen, Torben

    The 12MW project with the full title ‘12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore’ has the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis...... relevant for the next generation of huge 12 MW wind turbines operating offshore. The report describes the experimental campaign at the Horns Rev offshore wind farm at which observations from Doppler Laser LIDAR and SODAR were collected from 3 May to 24 October 2006. The challenges for mounting...... profile. Further studies on this part of the work are on-going. Technical detail on LIDAR and SODAR are provided as well as theoretical work on turbulence and atmospheric boundary layer flow. Selected results from the experimental campaign are reported....

  10. Selected Micrometeorological, Soil-Moisture, and Evapotranspiration Data at Amargosa Desert Research Site in Nye County near Beatty, Nevada, 2001-05

    Science.gov (United States)

    Johnson, Michael J.; Mayers, C. Justin; Garcia, C. Amanda; Andraski, B.J.

    2007-01-01

    Selected micrometeorological and soil-moisture data were collected at the Amargosa Desert Research Site adjacent to a low-level radio-active waste and hazardous chemical waste facility near Beatty, Nevada, 2001-05. Evapotranspiration data were collected from February 2002 through the end of December 2005. Data were col-lected in support of ongoing research to improve the understanding of hydrologic and con-taminant-transport processes in arid environments. Micrometeorological data include solar radiation, net radiation, air temperature, relative humidity, saturated and ambient vapor pressure, wind speed and direction, barometric pressure, precipita-tion, near-surface soil temperature, soil-heat flux and soil-water content. All micrometeorological data were collected using a 10-second sampling interval by data loggers that output daily and hourly mean values. Daily maximum and minimum values are based on hourly mean values. Precipitation data output includes daily and hourly totals. Selected soil-moisture profiles at depth include periodic measure-ments of soil volumetric water-content measurements at nine neutron-probe access tubes to depths ranging from 5.25 to 29.25 meters. Evapotranspiration data include measurement of daily evapotranspiration and 15-minute fluxes of the four principal energy budget components of latent-heat flux, sensible-heat flux, soil-heat flux, and net radiation. Other data collected and used in equations to determine evapotranspiration include temperature and water content of soil, temperature and vapor pressure of air, and covariance values. Evapotranspiration and flux estimates during 15-minute intervals were calculated at a 0.1-second execution interval using the eddy covariance method. Data files included in this report contain the complete micrometeorological, soil-moisture, and evapotranspiration field data sets. These data files are presented in tabular Excel spreadsheet format. This report highlights selected data con-tained in the

  11. Groundwater-level change and evaluation of simulated water levels for irrigated areas in Lahontan Valley, Churchill County, west-central Nevada, 1992 to 2012

    Science.gov (United States)

    Smith, David W.; Buto, Susan G.; Welborn, Toby L.

    2016-09-14

    The acquisition and transfer of water rights to wetland areas of Lahontan Valley, Nevada, has caused concern over the potential effects on shallow aquifer water levels. In 1992, water levels in Lahontan Valley were measured to construct a water-table map of the shallow aquifer prior to the effects of water-right transfers mandated by the Fallon Paiute-Shoshone Tribal Settlement Act of 1990 (Public Law 101-618, 104 Stat. 3289). From 1992 to 2012, approximately 11,810 water-righted acres, or 34,356 acre-feet of water, were acquired and transferred to wetland areas of Lahontan Valley. This report documents changes in water levels measured during the period of water-right transfers and presents an evaluation of five groundwater-flow model scenarios that simulated water-level changes in Lahontan Valley in response to water-right transfers and a reduction in irrigation season length by 50 percent.Water levels measured in 98 wells from 2012 to 2013 were used to construct a water-table map. Water levels in 73 of the 98 wells were compared with water levels measured in 1992 and used to construct a water-level change map. Water-level changes in the 73 wells ranged from -16.2 to 4.1 feet over the 20-year period. Rises in water levels in Lahontan Valley may correspond to annual changes in available irrigation water, increased canal flows after the exceptionally dry and shortened irrigation season of 1992, and the increased conveyance of water rights transferred to Stillwater National Wildlife Refuge. Water-level declines generally occurred near the boundary of irrigated areas and may be associated with groundwater pumping, water-right transfers, and inactive surface-water storage reservoirs. The largest water-level declines were in the area near Carson Lake.Groundwater-level response to water-right transfers was evaluated by comparing simulated and observed water-level changes for periods representing water-right transfers and a shortened irrigation season in areas near Fallon

  12. Corrective Action Plan for Corrective Action Unit 214: Bunkers and Storage Areas, Nevada Test Site, Nevada - Revision 0 - March 2005

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

    2005-03-01

    Corrective Action Unit 214, Bunkers and Storage Areas, is identified in the Federal Facility Agreement and Consent Order of 1996. Corrective Action Unit 214 consists of nine Corrective Action Sites located in Areas 5, 11, and 25 of the Nevada Test Site. The Nevada Test Site is located approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada, in Nye County. Corrective Action Unit 214 was previously characterized in 2004, and results were presented in the Corrective Action Decision Document for 214. Site characterization indicated that soil and/or debris exceeded clean-up criteria for Total Petroleum Hydrocarbons, pesticides, metals, and radiological contamination.

  13. Data on Streamflow and Quality of Water and Bottom Sediment in and near Humboldt Wildlife Management Area, Churchill and Pershing Counties, Nevada, 1998-2000

    Science.gov (United States)

    Paul, Angela P.; Thodal, Carl E.

    2003-01-01

    produced the maximum instantaneous loads of sodium, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium at all river-sampling sites, except molybdenum near Imlay. Nevada Division of Environmental Protection monitoring reports on mine-dewatering discharge for permitted releases of treated effluent to the surface waters of the Humboldt River and its tributaries were reviewed for reported discharges and trace-element concentrations from June 1998 to September 1999. These data were compared with similar information for the river near Imlay. In all bottom sediments collected for this study, arsenic concentrations exceeded the Canadian Freshwater Interim Sediment-Quality Guideline for the protection of aquatic life and probable-effect level (concentration). Sediments collected near Imlay, Rye Patch Reservoir, Lovelock, and from Toulon Drain and Army Drain were found to contain cadmium and chromium concentrations that exceeded Canadian criteria. Chromium concentrations in sediments collected from these sites also exceeded the consensus-based threshold-effect concentration. The Canadian criterion for sediment copper concentration was exceeded in sediments collected from the Humboldt River near Lovelock and from Toulon, Army, and the unnamed agricultural drains. Mercury in sediments collected near Imlay and from Toulon Drain in August 1999 exceeded the U.S. Department of the Interior sediment probable-effect level. Nickel concentrations in sediments collected during this study were above the consensus-based threshold-effect concentration. All other river and drain sediments had constituent concentrations below protective criteria and toxicity thresholds. In Upper Humboldt Lake, chloride, dissolved solids, arsenic, boron, molybdenum, and uranium concentrations in surface-water samples collected near the mouth of the Humboldt River generally were higher than in samples collected near the mouth of Army Drain. Ecological criteria or effect con

  14. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks in the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Maldonado, Florian; Koether, S.L.

    1983-01-01

    A continuously cored drill hole designated as USW G-2, located at Yucca Mountain in southwestern Nevada, penetrated 1830.6 m of Tertiary volcanic strata composed of abundant silicic ash-flow tuffs, minor lava and flow breccias, and subordinate volcaniclastic rocks. The volcanic strata penetrated are comprised of the following in descending order: Paintbrush Tuff (Tiva Canyon Member, Yucca Mountain Member, bedded tuff, Pah Canyon Member, and Topopah Spring Member), tuffaceous beds of Calico Hills, Crater Flat Tuff (Prow Pass Member, Bullfrog Member, and Tram unit), lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia (rhyolitic, quartz latitic, and dacitic), bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate the following: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of approximately 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic

  15. Results of Hydraulic Tests in Miocene Tuffaceous Rocks at the C-Hole Complex, 1995 to 1997, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Geldon, Arthur L.; Umari, Amjad M.A.; Fahy, Michael F.; Earle, John D.; Gemmell, James M.; Darnell, Jon

    2002-01-01

    Four hydraulic tests were conducted by the U.S. Geological Survey at the C-hole complex at Yucca Mountain, Nevada, between May 1995 and November 1997. These tests were conducted as part of ongoing investigations to determine the hydrologic and geologic suitability of Yucca Mountain as a potential site for permanent underground storage of high-level nuclear waste. The C-hole complex consists of three 900-meter-deep boreholes that are 30.4 to 76.6 meters apart. The C-holes are completed in fractured, variably welded tuffaceous rocks of Miocene age. Six hydrogeologic intervals occur within the saturated zone in these boreholes - the Calico Hills, Prow Pass, Upper Bullfrog, Lower Bullfrog, Upper Tram, and Lower Tram intervals. The Lower Bullfrog and Upper Tram intervals contributed about 90 percent of the flow during hydraulic tests. The four hydraulic tests conducted from 1995 to 1997 lasted 4 to 553 days. Discharge from the pumping well, UE-25 c #3, ranged from 8.49 to 22.5 liters per second in different tests. Two to seven observation wells, 30 to 3,526 meters from the pumping well, were used in different tests. Observation wells included UE-25 c #1, UE-25 c #2, UE-25 ONC-1, USW H-4, UE-25 WT #14, and UE-25 WT #3 in the tuffaceous rocks and UE-25 p #1 in Paleozoic carbonate rocks. In all hydraulic tests, drawdown in the pumping well was rapid and large (2.9-11 meters). Attributable mostly to frictional head loss and borehole-skin effects, this drawdown could not be used to analyze hydraulic properties. Drawdown and recovery in intervals of UE-25 c #1 and UE-25 c #2 and in other observation wells typically was less than 51 centimeters. These data were analyzed. Hydrogeologic intervals in the C-holes have layered heterogeneity related to faults and fracture zones. Transmissivity, hydraulic conductivity, and storativity generally increase downhole. Transmissivity ranges from 4 to 1,600 meters squared per day; hydraulic conductivity ranges from 0.1 to 50 meters per day

  16. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests

  17. Geochemical characterization of water, sediment, and biota affected by mercury contamination and acidic drainage from historical gold mining, Greenhorn Creek, Nevada County, California, 1999-2001

    Science.gov (United States)

    Alpers, Charles N.; Hunerlach, Michael P.; May, Jason T.; Hothem, Roger L.; Taylor, Howard E.; Antweiler, Ronald C.; De Wild, John F.; Lawler, David A.

    2005-01-01

    In 1999, the U.S. Geological Survey (USGS) initiated studies of mercury and methylmercury occurrence, transformation, and transport in the Bear River and Yuba River watersheds of the northwestern Sierra Nevada. Because these watersheds were affected by large-scale, historical gold extraction using mercury amalgamation beginning in the 1850s, they were selected for a pilot study of mercury transport by the USGS and other cooperating agencies. This report presents data on methylmercury (MeHg) and total mercury (THg) concentrations in water, bed sediment, invertebrates, and frogs collected at 40 stations during 1999-2001 in the Greenhorn Creek drainage, a major tributary to Bear River. Results document several mercury contamination ?hot spots? that represent potential targets for ongoing and future remediation efforts at abandoned mine sites in the study area. Water-quality samples were collected one or more times at each of 29 stations. The concentrations of total mercury in 45 unfiltered water samples ranged from 0.80 to 153,000 nanograms per liter (ng/L); the median was 9.6 ng/L. Total mercury concentrations in filtered water (41 samples) ranged from less than 0.3 to 8,000 ng/L; the median was 2.7 ng/L. Concentrations of methylmercury in the unfiltered water (40 samples) ranged from less than 0.04 to 9.1 ng/L; the median was 0.07 ng/L. Methylmercury in filtered water (13 samples) ranged from less than 0.04 to 0.27 ng/L; the median was 0.04 ng/L. Acidic drainage with pH values as low as 3.4 was encountered in some of the mined areas. Elevated concentrations of aluminum, cadmium, copper, iron, manganese, nickel, and zinc were found at several stations, especially in the more acidic water samples. Total mercury concentrations in sediment were determined by laboratory and field methods. Total mercury concentrations (determined by laboratory methods) in ten samples from eight stations ranged from about 0.0044 to 12 ?g/g (microgram per gram, equivalent to parts per

  18. 1:250,000-scale geology of the Carson River Basin, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of digital continuous geologic data for the Carson River Basin, Nevada and California. It was compiled from individual county 1:250,000-scale...

  19. 76 FR 35208 - Pacific Gas and Electric Company; Nevada Irrigation District; Notice of Environmental Site Review

    Science.gov (United States)

    2011-06-16

    ... Yuba River, Canyon Creek, Rucker Creek and Bear River watersheds in Nevada, Placer and Sierra Counties... some brief walking over dirt trails might be needed. Cell phone coverage in the upper and mid...

  20. Preliminary hydrogeologic assessment of boreholes UE-25c #1, UE-25c #2, and UE-25c #3, Yucca Mountain, Nye County, Nevada

    Science.gov (United States)

    Geldon, A.L.

    1993-01-01

    Boreholes UE-25c #1, UE-25c #2, and UE-25c #3 (collectively called the C-holes) each were drilled to a depth of 914.4 meters at Yucca Mountain, on the Nevada Test Site, in 1983 and 1984 for the purpose of conducting aquifer and tracer tests. Each of the boreholes penetrated the Paintbrush Tuff and the tuffs and lavas of Calico Hills and bottomed in the Crater Flat Tuff. The geologic units penetrated consist of devitrified to vitrophyric, nonwelded to densely welded, ash-flow tuff, tuff breccia, ash-fall tuff, and bedded tuff. Below the water table, which is at an average depth of 401.6 meters below land surface, the rocks are argillic and zeolitic. The geologic units at the C-hole complex strike N. 2p W. and dip 15p to 21p NE. They are cut by several faults, including the Paintbrush Canyon Fault, a prominent normal fault oriented S. 9p W., 52.2p NW. The rocks at the C-hole complex are fractured extensively, with most fractures oriented approximately perpendicular to the direction of regional least horizontal principal stress. In the Crater Flat Tuff and the tuffs and lavas of Calico Hills, fractures strike predominantly between S. 20p E. and S. 20p W. and secondarily between S. 20p E. and S. 60p E. In the Topopah Spring Member of the Paintbrush Tuff, however, southeasterly striking fractures predominate. Most fractures are steeply dipping, although shallowly dipping fractures occur in nonwelded and reworked tuff intervals of the Crater Flat Tuff. Mineral-filled fractures are common in the tuff breccia zone of the Tram Member of the Crater Flat Tuff, and, also, in the welded tuff zone of the Bullfrog Member of the Crater Flat Tuff. The fracture density of geologic units in the C-holes was estimated to range from 1.3 to 7.6 fractures per cubic meter. Most of these estimates appear to be the correct order of magnitude when compared to transect measurements and core data from other boreholes 1.3 orders of magnitude too low. Geophysical data and laboratory analyses were

  1. Private Schools, Nevada, 2009, Nevada Department of Education

    Data.gov (United States)

    U.S. Environmental Protection Agency — Nevada private schools locations. Nevada Department of Education Nevada private schools list for school year 2008-2009. Locations furnishe by the US EPA Region 9.

  2. Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Science.gov (United States)

    Taranik, James V.; Hsu, Liang C.; Spatz, David M.; Chenevey, Michael J.

    1989-01-01

    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada.

  3. On the benefits of an integrated nuclear complex for Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Blink, J.A. [Lawrence Livermore National Laboratory, Las Vegas, NV (United States); Halsey, W.G. [Lawrence Livermore National Lab., CA (United States)

    1994-01-01

    An integrated nuclear complex is proposed for location at the Nevada Test Site. In addition to solving the nuclear waste disposal problem, this complex would tremendously enhance the southern Nevada economy, and it would provide low cost electricity to each resident and business in the affected counties. Nuclear industry and the national economy would benefit because the complex would demonstrate the new generation of safer nuclear power plants and revitalize the industry. Many spin-offs of the complex would be possible, including research into nuclear fusion and a world class medical facility for southern Nevada. For such a complex to become a reality, the cycle of distrust between the federal government and the State of Nevada must be broken. The paper concludes with a discussion of implementation through a public process led by state officials and culminating in a voter referendum.

  4. Carson-Washoe County Health Manpower and Education Profile.

    Science.gov (United States)

    Callen, John; And Others

    The profile is a concise description of the demographic and economic characteristics, existing health manpower employed, and health education programs for the Carson-Washoe County area of Nevada, one of seven surveyed in the Mountain States region (Idaho, Montana, Wyoming, and Nevada). The first section of the profile provides general population…

  5. Environmental Assessment for Changes to Reveille Airspace at Nevada Test and Training Range Nellis Air Force Base, Nevada

    Science.gov (United States)

    2002-03-01

    Alrcr.rt SOUnd Source Level (SEL) 125 Oxy/~ene Torch I B-2 & F-18 at200 feel =121 Rock Band 120 I B-1 at 200 feet =119 8-52 at 200 feet =115...County; N Range (Kawich Range). Beatley milk vetch Astragalus beatle )’<JC soc CB G2S2 Nye County; N Range, NAI’R (Pohute Mesa) and Nevada Test Site (NTS

  6. Determinants of Threatened Sage Grouse in Northeastern Nevada

    NARCIS (Netherlands)

    Kooten, van G.C.; Eagle, A.J.; Eiswerth, M.E.

    2007-01-01

    We examined potential human determinants of observed declines in greater sage grouse (Centrocercus urophasianus) populations in Elko County, Nevada. Although monitoring of sage grouse has occurred for decades, monitoring levels have not been consistent. This article contributes to the literature by

  7. Determinants of Threatened Sage Grouse in Northeastern Nevada

    NARCIS (Netherlands)

    Kooten, van G.C.; Eagle, A.J.; Eiswerth, M.E.

    2007-01-01

    We examined potential human determinants of observed declines in greater sage grouse (Centrocercus urophasianus) populations in Elko County, Nevada. Although monitoring of sage grouse has occurred for decades, monitoring levels have not been consistent. This article contributes to the literature by

  8. County digital geologic mapping. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hess, R.H.; Johnson, G.L.; dePolo, C.M.

    1995-12-31

    The purpose of this project is to create quality-county wide digital 1:250,000-scale geologic maps from existing published 1:250,000-scale Geologic and Mineral Resource Bulletins published by the Nevada Bureau of Mines and Geology (NBMG). An additional data set, based on current NBMG research, Major and Significant Quaternary and Suspected Quaternary Faults of Nevada, at 1:250,000 scale has also been included.

  9. Rev Variation during Persistent Lentivirus Infection

    Directory of Open Access Journals (Sweden)

    Karin S. Dorman

    2011-01-01

    Full Text Available The ability of lentiviruses to continually evolve and escape immune control is the central impediment in developing an effective vaccine for HIV-1 and other lentiviruses. Equine infectious anemia virus (EIAV is considered a useful model for immune control of lentivirus infection. Virus-specific cytotoxic T lymphocytes (CTL and broadly neutralizing antibody effectively control EIAV replication during inapparent stages of disease, but after years of low-level replication, the virus is still able to produce evasion genotypes that lead to late re-emergence of disease. There is a high rate of genetic variation in the EIAV surface envelope glycoprotein (SU and in the region of the transmembrane protein (TM overlapped by the major exon of Rev. This review examines genetic and phenotypic variation in Rev during EIAV disease and a possible role for Rev in immune evasion and virus persistence.

  10. HIV Rev Assembly on the Rev Response Element (RRE: A Structural Perspective

    Directory of Open Access Journals (Sweden)

    Jason W. Rausch

    2015-06-01

    Full Text Available HIV-1 Rev is an ~13 kD accessory protein expressed during the early stage of virus replication. After translation, Rev enters the nucleus and binds the Rev response element (RRE, a ~350 nucleotide, highly structured element embedded in the env gene in unspliced and singly spliced viral RNA transcripts. Rev-RNA assemblies subsequently recruit Crm1 and other cellular proteins to form larger complexes that are exported from the nucleus. Once in the cytoplasm, the complexes dissociate and unspliced and singly-spliced viral RNAs are packaged into nascent virions or translated into viral structural proteins and enzymes, respectively. Rev binding to the RRE is a complex process, as multiple copies of the protein assemble on the RNA in a coordinated fashion via a series of Rev-Rev and Rev-RNA interactions. Our understanding of the nature of these interactions has been greatly advanced by recent studies using X-ray crystallography, small angle X-ray scattering (SAXS and single particle electron microscopy as well as biochemical and genetic methodologies. These advances are discussed in detail in this review, along with perspectives on development of antiviral therapies targeting the HIV-1 RRE.

  11. Revised Safety Instruction 4 (IS4 REV.)

    CERN Multimedia

    2006-01-01

    Please note that the revised safety instruction 4 (IS4 REV.) entitled 'Safety Inspections' is available on the web at the following url: https://edms.cern.ch/file/335741/LAST_RELEASED/E_IS4.pdf Paper copies can also be obtained from the SC unit secretariat, e-mail: sc.secretariat@cern.ch SC Secretariat

  12. Wetlands Inventory Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Nevada wetlands inventory is a unit of a nationwide survey undertaken by the Fish and Wildlife Service to locate and tabulate by habitat types the important...

  13. Hydrogeology of Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of hydrogeology for the State of Nevada. Consolidated rocks and unconsolidated sediments are the two major hydrogeologic units. Consolidated...

  14. Special Nevada report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-09-23

    This report is submitted to Congress by the Secretary of the Air Force, the Secretary of the Navy, and the Secretary of the Interior pursuant to Section 6 of the Military Lands Withdrawal Act of 1986. It contains an analysis and evaluation of the effects on public health and safety resulting from DOD and Department of Energy (DOE) military and defense-related uses on withdrawn public lands in the State of Nevada and in airspace overlying the State. This report describes the cumulative impacts of those activities on public and private property in Nevada and on plants, fish and wildlife, cultural, historic, scientific, recreational, wilderness and other resources of the public lands of Nevada. An analysis and evaluation of possible measures to mitigate the cumulative effects of the withdrawal of lands and the use of airspace in Nevada for defense-related purposes was conducted, and those considered practical are listed.

  15. Thermodynamics of Rev-RNA interactions in HIV-1 Rev-RRE assembly.

    Science.gov (United States)

    Jayaraman, Bhargavi; Mavor, David; Gross, John D; Frankel, Alan D

    2015-10-27

    The HIV-1 protein Rev facilitates the nuclear export of intron-containing viral mRNAs by recognizing a structured RNA site, the Rev-response-element (RRE), contained in an intron. Rev assembles as a homo-oligomer on the RRE using its α-helical arginine-rich-motif (ARM) for RNA recognition. One unique feature of this assembly is the repeated use of the ARM from individual Rev subunits to contact distinct parts of the RRE in different binding modes. How the individual interactions differ and how they contribute toward forming a functional complex is poorly understood. Here we examine the thermodynamics of Rev-ARM peptide binding to two sites, RRE stem IIB, the high-affinity site that nucleates Rev assembly, and stem IA, a potential intermediate site during assembly, using NMR spectroscopy and isothermal titration calorimetry (ITC). NMR data indicate that the Rev-IIB complex forms a stable interface, whereas the Rev-IA interface is highly dynamic. ITC studies show that both interactions are enthalpy-driven, with binding to IIB being 20-30 fold tighter than to IA. Salt-dependent decreases in affinity were similar at both sites and predominantly enthalpic in nature, reflecting the roles of electrostatic interactions with arginines. However, the two interactions display strikingly different partitioning between enthalpy and entropy components, correlating well with the NMR observations. Our results illustrate how the variation in binding modes to different RRE target sites may influence the stability or order of Rev-RRE assembly and disassembly, and consequently its function.

  16. Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-02-24

    This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

  17. Nevadaite, (Cu2+, Al, V3+)6 [Al8 (PO4)8 F8] (OH 2 (H2O)22, a new phosphate mineral species from the Gold Quarry mine, Carlin, Eureka County, Nevada: description and crystal structure

    Science.gov (United States)

    Cooper, M.A.; Hawthorne, F.C.; Roberts, Andrew C.; Foord, E.E.; Erd, Richard C.; Evans, H.T.; Jensen, M.C.

    2004-01-01

    Nevadaite, (Cu2+, ???, Al, V3+)6 (PO4)8 F8 (OH)2 (H2O)22, is a new supergene mineral species from the Gold Quarry mine, near Carlin, Eureka County, Nevada, U.S.A. Nevadaite forms radiating clusters to 1 mm of prismatic crystals, locally covering surfaces more that 2 cm across; individual crystals are elongate on [001] with a length:width ratio of > 10:1 and a maximum diameter of ???30 ??m. It also occurs as spherules and druses associated with colorless to purple-black fluellite, colorless wavellite, strengitevariscite, acicular maroon-to-red hewettite, and rare anatase, kazakhstanite, tinticite, leucophosphite, torbernite and tyuyamunite. Nevadaite is pale green to turquoise blue with a pale powder-blue streak and a vitreous luster; it does not fluoresce under ultra-violet light. It has no cleavage, a Mohs hardness of ???3, is brittle with a conchoidal fracture, and has measured and calculated densities of 2.54 and 2.55 g/cm3, respectively. Nevadaite is biaxial negative, with ?? 1.540, ?? 1.548, ?? 1.553, 2V(obs.) = 76??, 2V(calc.) = 76??, pleochroic with X pale greenish blue, Y very pale greenish blue, Z blue, and with absorption Z ??? X > Y and orientation X = c, Y = a, Z = b. Nevadaite is orthorhombic, space group P21mn, a 12.123(2), b 18.999(2), c 4.961(1) A?? , V 1142.8(2) A??3, Z = 1, a:b:c = 0.6391:1:0.2611. The strongest seven lines in the X-ray powder-diffraction pattern [d in A??(I)(hkl)] are: 6.077(10)(200), 5.618(9)(130), 9.535(8)(020), 2.983(6)(241), 3.430(4)(041), 2.661(4)(061 , and 1.844(4)(352). A chemical analysis with an electron microprobe gave P2O5 32.54, Al2O3 27.07, V2O3 4.24, Fe2O3 0.07, CuO 9.24, ZnO 0.11, F 9.22, H2O (calc.) 23.48, OH ??? F -3.88, sum 102.09 wt.%; the valence states of V and Fe, and the amount of H2O, were determined by crystal-structure analysis. The resulting empirical formula on the basis of 63.65 anions (including 21.65 H2O pfu) is (CU2+2.00 Zn0.02 V3+0.98 Fe3+0.01 Al1.15)??4.16 Al8 P7.90 O32 [F8.37 (OH 1.63]??10 (H2O

  18. County Spending

    Data.gov (United States)

    Montgomery County of Maryland — This dataset includes County spending data for Montgomery County government. It does not include agency spending. Data considered sensitive or confidential and will...

  19. Quicklook overview of model changes in Melcor 2.2: Rev 6342 to Rev 9496

    Energy Technology Data Exchange (ETDEWEB)

    Humphries, Larry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    MELCOR 2.2 is a significant official release of the MELCOR code with many new models and model improvements. This report provides the code user with a quick review and characterization of new models added, changes to existing models, the effect of code changes during this code development cycle (rev 6342 to rev 9496), a preview of validation results with this code version. More detailed information is found in the code Subversion logs as well as the User Guide and Reference Manuals.

  20. Revised Safety Instruction 41 (IS41 REV.)

    CERN Multimedia

    SC Secretariat

    2005-01-01

    Please note that the Revised Safety Instruction No. 41 (IS41 REV.), entitled 'The use of plastic and other non-metallic materials at CERN with respect to fire safety and radiation resistance' is available on the web at the following url: https://edms.cern.ch/document/335806/LAST_RELEASED Paper copies can also be obtained from the SC Unit Secretariat, e-mail: sc.secretariat@cern.ch SC Secretariat

  1. 77 FR 12830 - Pershing County Water Conservation District; Notice of Intent To File License Application, Filing...

    Science.gov (United States)

    2012-03-02

    ... Pershing County, Nevada. The project occupies 0.01 acre of United States lands administered by the Bureau... Energy Regulatory Commission Pershing County Water Conservation District; Notice of Intent To File....: 14327-000. c. Date Filed: November 22, 2011. d. Submitted by: Pershing County Water...

  2. 78 FR 41390 - Pershing County Water Conservation District; Notice of Application Tendered for Filing with the...

    Science.gov (United States)

    2013-07-10

    ..., nearby the Town of Lovelock, Pershing County, Nevada. The project would occupy 0.25 acre of Reclamation... Energy Regulatory Commission Pershing County Water Conservation District; Notice of Application Tendered...: Pershing County Water Conservation District. e. Name of Project: Humboldt River Hydro Power Project....

  3. Environmental Baseline Survey, Real Property Transaction Between Nellis Air Force Base and the City of North Las Vegas for Construction of a Wastewater Treatment Facility, Clark County, Nevada. Phase 1

    Science.gov (United States)

    2007-12-06

    Varies INDIAN LUST R6: Leaking Underground Storage Tanks on Indian Land LUSTs on Indian land in New Mexico and Oklahoma. Date of Government Version: 01/04...California, New Mexico and Nevada Date of Government Version: 06/18/2007 Date Data Arrived at EDR: 06/18/2007 Date Made Active in Reports: 07/05/2007...ReportedSubdivisio:Not ReportedParcel no: Not ReportedOwner no: 5082 E COLLEGE LAS VEGAS NVOwner addr: EDWARDS, IVA LOwner current: GLat long acc: NV003Lat long s

  4. 40 CFR 81.329 - Nevada.

    Science.gov (United States)

    2010-07-01

    ... Douglas County (part) Area outside Hydrographic Area 90 Elko County Esmeralda County Eureka County.../Attainment Carson City Churchill County Clark County Douglas County Elko County Esmeralda County Eureka... (part) remainder Douglas County Elko County Esmeralda County Eureka County Humboldt County Lander...

  5. Sheridan County Health Manpower and Education Profile.

    Science.gov (United States)

    Callen, John; And Others

    The profile is a concise description of the demographic and economic characteristics, existing health manpower employed, and health education programs for the Sheridan County area of Wyoming, one of seven surveyed in the Mountain States region (Idaho, Montana, Wyoming, and Nevada). The first section of the profile provides general population…

  6. Missoula County Health Manpower and Education Profile.

    Science.gov (United States)

    Callen, John; And Others

    The profile is a concise description of the demographic and economic characteristics, existing health manpower employed, and health education programs for the Missoula County area of Montana, one of seven surveyed in the Mountain States region (Idaho, Montana, Wyoming, and Nevada). The first section of the profile provides general population…

  7. Yellowstone County Health Manpower and Education Profile.

    Science.gov (United States)

    Callen, John; And Others

    The profile is a concise description of the demographic and economic characteristics, existing health manpower employed, and health education programs for the Yellowstone County area of Montana, one of seven surveyed in the Mountain States region (Idaho, Montana, Wyoming, and Nevada). The first section of the profile provides general population…

  8. Introducing RevPASH: The Free Webtool Application

    Directory of Open Access Journals (Sweden)

    Peter Szende

    2014-10-01

    Full Text Available RevPASH (Revenue Per Available Seat Hour is an important measure that helps restaurant operators understand how efficiently each seat in a restaurant generates revenue. The RevPASH app is an easy-to-use web-tool that provides an operator with a quick way to input a few relevant numbers and calculate RevPASH.The application has the ability to compare RevPASH over different times, days, weeks, and months.

  9. Lithology, fault displacement, and origin of secondary calcium carbonate and opaline silica at Trenches 14 and 14D on the Bow Ridge Fault at Exile Hill, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, E.M.; Huckins, H.E.

    1995-02-01

    Yucca Mountain, a proposed site for a high-level nuclear-waste repository, is located in southern Nevada, 20 km east of Beatty, and adjacent to the southwest comer of the Nevada Test Site (NTS) (fig. 1). Yucca Mountain is located within the Basin and Range province of the western United States. The climate is semiarid, and the flora is transitional between that of the Mojave Desert to the south and the Great Basin Desert to the north. As part of the evaluation, hydrologic conditions, especially water levels, of Yucca Mountain and vicinity during the Quaternary, and especially the past 20,000 years, are being characterized. In 1982, the US Geological Survey, in cooperation with the US Department of Energy (under interagency agreement DE-A104-78ET44802), excavated twenty-six bulldozer and backhoe trenches in the Yucca Mountain region to evaluate the nature and frequency of Quaternary faulting (Swadley and others, 1984). The trenches were oriented perpendicular to traces of suspected Quaternary faults and across projections of known bedrock faults into Quaternary deposits. Trench 14 exposes the Bow Ridge Fault on the west side of Exile Hill. Although the original purpose of the excavation of trench 14 was to evaluate the nature and frequency of Quaternary faulting on the Bow Ridge Fault, concern arose as to whether or not the nearly vertical calcium carbonate (the term ``carbonate`` in this study refers to calcium carbonate) and opaline silica veins in the fault zone were deposited by ascending waters (ground water). These veins resemble in gross morphology veins commonly formed by hydrothermal processes.

  10. Geothermal energy in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

  11. Geologic map of Paleozoic rocks in the Calico Hills, Nevada Test Site, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.C.; Cashman, P.H.

    1998-11-01

    The Calico Hills area in the southwestern part of the Nevada Test Site, Nye County, Nevada, exposes a core of pre-Tertiary rocks surrounded by middle Miocene volcanic strata. This map portrays the very complex relationships among the pre-Tertiary stratigraphic units of the region. The Devonian and Mississippian rocks of the Calico Hills are distinct from age-equivalent carbonate-shelf or submarine-fan strata in other parts of the Nevada Test Site. The Calico Hills strata are interpreted to have been deposited beyond the continental shelf edge from alternating silicic and carbonate clastic sources. Structures of the Calico Hills area record the compounded effects of: (1) eastward-directed, foreland-vergent thrusting; (2) younger folds, kink zones, and thrusts formed by hinterland-vergent deformation toward northwesterly and northerly directions; and (3) low-angle normal faults that displaced blocks of Middle Paleozoic carbonate strata across the contractionally deformed terrane. All of these structures are older than any of the middle Miocene volcanic rocks that were erupted across the Calico Hills.

  12. Suppression of atherosclerosis by synthetic REV-ERB agonist

    Energy Technology Data Exchange (ETDEWEB)

    Sitaula, Sadichha [Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 (United States); Billon, Cyrielle [Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104 (United States); Kamenecka, Theodore M.; Solt, Laura A. [Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458 (United States); Burris, Thomas P., E-mail: burristp@slu.edu [Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104 (United States)

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.

  13. 77 FR 13142 - Notice of Realty Action: Modified-Competitive Sale of Public Land in Pahrump, Nye County, NV

    Science.gov (United States)

    2012-03-05

    ...; TAS: 14X5232] Notice of Realty Action: Modified-Competitive Sale of Public Land in Pahrump, Nye County... in Pahrump, Nye County, Nevada, by modified-competitive, sealed-bid sale at not less than the... INFORMATION: The Nye County Board of Commissioners supports the Spring Mountain Raceway, LLC's request for...

  14. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  15. 76 FR 9595 - Notice of Public Meetings: Sierra Front Northwestern Basin Resource Advisory Council, Nevada

    Science.gov (United States)

    2011-02-18

    ... habitat, BLM wildlands policy, geothermal program review, Salt Wells Energy Projects Draft Environmental Impact Statement, field tour of ENEL Geothermal Power Plant at Salt Wells (Churchill County), Nevada ] Historic Marker Dedication for Pony Express Trail at ENEL Plant, LiDAR (Optical Remote-Sensing Technology...

  16. 77 FR 64737 - Partial Approval and Partial Disapproval of Air Quality State Implementation Plans; Nevada...

    Science.gov (United States)

    2012-10-23

    ... Disapprovals IV. Statutory and Executive Order Reviews I. Background Section 110(a)(1) of the CAA requires each... Clark County Department of Air Quality, and has delegated responsibility for conducting PSD review, as... submittal based on EPA's independent evaluation of Nevada's impact on receptor states.'' NDEP stated...

  17. 75 FR 1408 - Notice of Availability of the Record of Decision for the Lincoln County Land Act Groundwater...

    Science.gov (United States)

    2010-01-11

    ... Groundwater Development and Utility Right-of-Way Project, Nevada AGENCY: Bureau of Land Management, Interior... of the Record of Decision (ROD) for the Lincoln County Land Act Groundwater Development and Utility... be filed with: Project Manager, Nevada Groundwater Projects Office, Bureau of Land Management,...

  18. The effects of sediment and mercury mobilization in the South Yuba River and Humbug Creek Confluence Area, Nevada County, California: Concentrations, speciation, and environmental fate-Part 1: Field characterization

    Science.gov (United States)

    Fleck, Jacob A.; Alpers, Charles N.; Marvin-DiPasquale, Mark; Hothem, Roger L.; Wright, Scott A.; Ellett, Kevin; Beaulieu, Elizabeth; Agee, Jennifer L.; Kakouros, Evangelos; Kieu, Le H.; Eberl, Dennis D.; Blum, Alex E.; May, Jason T.

    2011-01-01

    Millions of pounds of mercury (Hg) were deposited in the river and stream channels of the Sierra Nevada from placer and hard-rock mining operations in the late 1800s and early 1900s. The resulting contaminated sediments are relatively harmless when buried and isolated from the overlying aquatic environment. The entrained Hg in the sediment constitutes a potential risk to human and ecosystem health should it be reintroduced to the actively cycling portion of the aquatic system, where it can become methylated and subsequently bioaccumulated in the food web. Each year, sediment is mobilized within these fluvial systems during high stormflows, transporting hundreds of tons of Hg-laden sediment downstream. The State of California and resource-management agencies, including the Bureau of Land Management (BLM) and the U.S. Forest Service, are concerned about additional disturbances, such as from suction gold dredging activities, which have the potential to mobilize Hg associated with buried sediment layers elevated in Hg that are otherwise likely to remain buried under normal storm conditions. The BLM initiated a study looking at the feasibility of removing Hg-contaminated sediment at the confluence of the South Yuba River and Humbug Creek in the northern Sierra Nevada of California by using standard suction-dredge technology. Additionally, the California State Water Resources Control Board (SWRCB) supported a comprehensive characterization of the intended dredge site. Together, the BLM and SWRCB supported a comprehensive characterization of Hg contamination at the site and the potential effects of sediment disturbance at locations with historical hydraulic mining debris on downstream environments. The comprehensive study consisted of two primary components: field studies and laboratory experiments. The field component, described in this report, had several study elements: 1) a preliminary, small-scale, in-stream dredge test; 2) comprehensive characterization of grain

  19. Administrative Circular No. 14 (Rev. 2)

    CERN Multimedia

    HR Department

    2007-01-01

    The HR Department wishes to draw the attention of members of the personnel to a number of amendments to Administrative Circular No. 14 (Rev. 2) entitled "Protection of members of the personnel against the financial consequences of illness, accident and disability" which came into force on 1st July 2006 (cf. Weekly Bulletin of 14 and 21 August 2006). Occupational Accident Declaration Form (HS50) https://cern.ch/service-procedures/AdminMan/Forms/HS50E.doc •\tIt must be completed within 10 working days of the date on which the accident occurred (§ 29.2.1), unless the person concerned is materially unable to meet this deadline. • The completed formula must be accompanied by a medical certificate giving details of any bodily injuries resulting from the accident (Annex 1, § 5). The medical certificate must be obtained from the doctor who has been consulted for that purpose. Benefits resulting from illnesses and accidents Medical treatment will cease to be reimbursed under ...

  20. Nevada Underserved Science Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Nicole Rourke; Jason Marcks

    2004-07-06

    Nevada Underserved Science Education Program (NUSEP) is a project to examine the effect of implementing new and innovative Earth and space science education curriculum in Nevada schools. The project provided professional development opportunities and educational materials for teachers participating in the program.

  1. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Science.gov (United States)

    Asch, Theodore H.; Sweetkind, Donald S.; Burton, Bethany L.; Wallin, Erin L.

    2009-01-01

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  2. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the

  3. An overview of the Southern Nevada Agency Partnership science and research synthesis: Chapter 1 in The Southern Nevada Agency Partnership science and research synthesis: science to support land management in southern Nevada

    Science.gov (United States)

    Chambers, Jeanne C.; Brooks, Matthew L.; Turner, Kent; Raish, Carol B.; Ostoja, Steven M.

    2013-01-01

    Maintaining and restoring the diverse ecosystems and resources that occur in southern Nevada in the face of rapid socio-economic and ecological change presents numerous challenged to Federal land managers. Rapid population growth since the 1980s, the land uses associated with that growth, and the interactions of those uses with the generally dry and highly variable climate result in numerous stresses to ecosystems, species, and cultural resource. In addition, climate models predict that the rate of temperature increase and, thus, changes in ecological processes, will be highest for ecosystems like the Mojave Desert. The Southern Nevada Agency Partnership (SNAP; http:www.SNAP.gov) was established in 1999 to address common issues pertaining to public lands in southern Nevada. Partners include the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, and USDA Forest Service and they work with each other, the local community, and other partners. SNAP agencies manage more than seven million acres of public lands in southern Nevada (95% of the land area). Federal land includes two national recreation areas, two national conservation area, four national wildlife refuges, 18 congressionally designated wilderness areas, five wilderness study areas, and 22 areas of critical environmental concern. The partnership's activities are mainly centered in Southern Nevada's Clark County (fig. 1.1), but lands managed by SNAP partner agencies also include portions of Lake Mead National Recreation Area in Mohave County, Arizona, U.S. Fish and Wildlife Service, and USDA Forest Service-managed lands in Lincoln and Nye Counties, Nevada, and all lands and activities managed by the Southern Nevada District Office of the Bureau of Land Management. These lands encompass nine distinct ecosystem types (fig. 1.2), support multiple species of management concern an 17 listed species, and are rich in cultural and historic resource. This introductory executive summary

  4. Nevada GPW Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-10-01

    Nevada holds the largest amount of untapped geothermal resources in the U.S., with apotential of 2,500 to 3,700 megawatts of electricity (MWe). (1 MWe powers approximately 1,000 homes.) Wells and springs exist over the entire state, offering extensive opportunities for development of low- and high-temperature resources for direct use or power generation. As U.S. Senator Harry Reid said at the inauguration of GeoPowering the West (see reverse), "This modest investment by the Federal government...

  5. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function

    DEFF Research Database (Denmark)

    Bugge, Anne Skovsø; Feng, Dan; Everett, Logan J;

    2012-01-01

    of binding sites across the genome, enriched near metabolic genes. Depletion of both Rev-erbs in liver synergistically derepresses several metabolic genes as well as genes that control the positive limb of the molecular clock. Moreover, deficiency of both Rev-erbs causes marked hepatic steatosis, in contrast...

  6. Wave power plant at Horns Rev. Screening[Denmark]; Boelgekraftanlaeg ved Horns Rev. Screening

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Hans C.; Nielsen, Kim; Steenstrup, P.R.; Friis-Madsen, E.; Wigant, L.

    2005-12-15

    The objective for the analysis has been to establish data for the sea at Horns Rev wind farm in the North Sea in order to assess the opportunity for using the site as test site for demonstration of wave energy devices exemplified by three different devices under development in Denmark. For comparison alternative sites like Hanstholm, Samsoe and Nissum Bredning are also assessed as well as the test centre EMEC at the Orkney Islands and the proposed test site Wave Hub at the north coast of Cornwall. The analysis shows that it is possible without major technical problems to connect 2-4 MW power generated by 3 different wave energy devices (AquaBuOY, Wave Star Energy and Wave Dragon) to the wind farm at Horns Rev (www.hornsrev.dk). The expenses for connection and regulation within the wind farm is about 200,000 DKK (30,00 EURO). On top of this comes the cost for individual sub sea cable connection to the wave devices, pull in of the sub sea cable through the existing J-tube in turbine T04 and the necessary regulation/control system in the individual wave devices to avoid damaging the power system in case of too high production. The analysis of the co-production of wind and wave power is dealt with in a separate report which shows that over a time period of half to one hour the time variation for wind generated electricity is 3 times as large as for wave energy generated power based on the actual measurement at Horns Rev. Further on the analysis shows that the wave generated power is more predictable than wind energy generated power as the power from the waves first is present about 2 hours after the wind is acting and last for 3 to 6 hours after the wind dies out; 6 to 12 hours with wind from west. The time is off course strongly depending of the direction of the wind i.e. the fetch. As this special report has a more general scope than the analysis as such it is reported in English (Annex Report II). The analysis shows that it is up to the individual device developer

  7. Ecosystem stressors in southern Nevada: Chapter 2 in The Southern Nevada Agency Partnership science and research synthesis: science to support land management in southern Nevada

    Science.gov (United States)

    Pendleton, Burton K.; Chambers, Jeanne C.; Brooks, Matthew L.; Ostoja, Steven M.

    2013-01-01

    Southern Nevada ecosystems and their associated resources are subject to a number of global and regional/local stressors that are affecting the sustainability of the region. Global stressors include elevated carbon dioxide (CO2) concentrations and associated changes in temperature and precipitation patterns and amount, solar radiation, and nutrient cycles (Smith and others 2009b). Global stressors are ubiquitous in nature and interact both directly and indirectly with regional or local stressors. Regional/local stressors in southern Nevada include: population growth and urbanization and associated increases in nitrogen deposition, energy development, water development, and recreation; increased effects of insects and disease; ongoing effects of livestock, wild horse and burro grazing; new and expanding invasive species; and altered fire regimes. This chapter provides background information on the stressors affecting southern Nevada's ecosystems that is needed to address Goal 1.0 in the SNAP Science Research Strategy, which is to restore, sustain, and enhance southern Nevada's ecosystems (Turner and others 2009). Human population growth and changes in land use strongly affect the type and magnitude of local/regional stressors. From 1960 to 2010, Nevada's growth rate was the highest in the nation (www.census.gov/prod/cen2010/briefs/c2010br-01.pdf). Clark County has experienced particularly high growth, with a population increase of greater than 40 percent since the 2000 census. Factors like land ownership, historic and current land use, proximity to human and energy developments, and desirability for recreation all influence the level of human-caused stress. The strong elevation/climate gradients and large difference in the environmental characteristics of southern Nevada ecosystems (fig. 1.2; Chapter 1) have a major influence on both patterns of land use and the dominant stressors for different ecosystem types. Shifts in land use related to population growth

  8. Sierra Nevada Subregional Boundary - Sierra Nevada Conservancy [ds542

    Data.gov (United States)

    California Department of Resources — Sierra Nevada Conservancy (SNC) boundary. The boundary was mapped to correspond with statute AB 2600 (2004) and as re-defined in AB 1201 (2005). Work on the boundary...

  9. Nevada Transportatoion Options Study

    Energy Technology Data Exchange (ETDEWEB)

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-05-25

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  10. Nevada`s role in the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Vaeth, T. [Dept. of Energy, Las Vegas, NV (United States)

    1997-12-31

    The paper discusses the promise of hydrogen and its possible applications, barriers to its development, the role that the Nevada Test Site could play if it were made more available to public and private institutions for research, and the ``clean city`` concept being developed jointly with California, Utah, and Nevada. This concept would create a ``clean corridor`` along the route from Salt Lake City through Reno to Sacramento, Los Angeles, Las Vegas, and back to Salt Lake City.

  11. Nevada National Security Site 2013 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, David B. [National Security Technologies, LLC, Las Vegas, NV (United States)

    2014-02-01

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2013 results. Beginning with this report, analysis results for leachate collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included.

  12. Nevada National Security Site 2013 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, David B

    2014-02-13

    This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site, Nye County, Nevada. Groundwater samples from the aquifer immediately below the Area 5 RWMS have been collected and analyzed and static water levels have been measured in this aquifer since 1993. This report updates these data to include the 2013 results. Beginning with this report, analysis results for leachate collected from the mixed-waste cell at the Area 5 RWMS (Cell 18) are also included.

  13. DNA nuclease activity of Rev-coupled transition metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Keuper, Kevin D; Cowan, J A

    2012-06-07

    Artificial nucleases containing Rev-coupled metal chelates based on combinations of the transition metals Fe(2+), Co(2+), Ni(2+), and Cu(2+) and the chelators DOTA, DTPA, EDTA, NTA, tripeptide GGH, and tetrapeptide KGHK have been tested for DNA nuclease activity. Originally designed to target reactive transition metal chelates (M-chelates) to the HIV-1 Rev response element mRNA, attachment to the arginine-rich Rev peptide also increases DNA-binding affinity for the attached M-chelates. Apparent K(D) values ranging from 1.7 to 3.6 µM base pairs for binding of supercoiled pUC19 plasmid DNA by Ni-chelate-Rev complexes were observed, as a result of electrostatic attraction between the positively-charged Rev peptide and negatively-charged DNA. Attachment of M-chelates to the Rev peptide resulted in enhancements of DNA nuclease activity ranging from 1-fold (no enhancement) to at least 13-fold (for Cu-DTPA-Rev), for the rate of DNA nicking, with second order rate constants for conversion of DNA(supercoiled) to DNA(nicked) up to 6 × 10(6) M(-1) min(-1), and for conversion of DNA(nicked) to DNA(linear) up to 1 × 10(5) M(-1) min(-1). Freifelder-Trumbo analysis and the ratios of linearization and nicking rate constants (k(lin)/k(nick)) revealed concerted mechanisms for nicking and subsequent linearization of plasmid DNA for all of the Rev-coupled M-chelates, consistent with higher DNA residency times for the Rev-coupled M-chelates. Observed rates for Rev-coupled M-chelates were less skewed by differing DNA-binding affinities than for M-chelates lacking Rev, as a result of the narrow range of DNA-binding affinities observed, and therefore relationships between DNA nuclease activity and other catalyst properties, such as coordination unsaturation, the ability to consume ascorbic acid and generate diffusible radicals, and the identity of the metal center, are now clearly illustrated in light of the similar DNA-binding affinities of all M-chelate-Rev complexes. This work

  14. Albany-Laramie Counties Health Manpower and Education Profile.

    Science.gov (United States)

    Callen, John; And Others

    The profile is a concise description of the demographic and economic characteristics, existing health manpower employed, and health education programs for the Albany-Laramie Counties area of Wyoming, one of seven surveyed in the Mountain States region (Idaho, Montana, Wyoming, and Nevada). The first section of the profile provides general…

  15. Nevada Thickness of Cenozoic Deposits

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study of gravity data from Nevada is part of a statewide analysis of mineral resources. The main objective of the gravity study were: 1) to infer the structure...

  16. Redhead production areas : Northwestern Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This is a survey of redhead production areas in northwestern Nevada. Breeding pair summaries are also provided for a number waterfowl species.

  17. Thermal infrared exploration in the Carlin trend, northern Nevada

    Science.gov (United States)

    Watson, K.; Kruse, F.A.; Hummer-Miller, S.

    1990-01-01

    Experimental Thermal Infrared Multispectral Scanner (TIMS) aircraft data have been acquired for the Rodeo Creek NE 7 1/2 minute quadrangle, Eureka County, northern Nevada, covering the Carlin gold mine. A simple model has been developed to extract spectral emissivities for mapping surface lithology and alteration based on the physical properties of geologic materials. Emissivity-ratio images were prepared that allow generalized lithologic discrimination, identification of areas with high silica content, and the first reported detection of the carbonate secondary rest-strahlen feature. -from Authors

  18. Sierra Nevada (Granada, Spain)

    DEFF Research Database (Denmark)

    Gilgado, José D.; Enghoff, Henrik; Tinaut, Alberto;

    2015-01-01

    Millipedes (Diplopoda), with a few notable exceptions, are poor dispersers, showing a very high degree of endemicity, not the least in mountains. The first samplings of the Mesovoid Shallow Substratum (MSS) of the higher altitudes of the Sierra Nevada Mountains (Baetic System, Southern Spain) have...... of Ceratosphys cryodeserti Gilgado, Mauriès & Enghoff n. sp. are here provided, as well as the first data on the humidity and temperature fluctuations in the MSS of this high mountain. The new species is similar to other Baetico-Riffan species, while the only previously known congener from the region, C...... led to the discovery of a high number of millipedes, each of the species present showing a different degree of establishment in this subterranean environment. An update of the knowledge on the millipedes of this region, the first data of the millipede communities in the MSS and the description...

  19. Administrative Circular N° 26 (Rev.  5) - November 2004

    CERN Multimedia

    Human Resources Department

    2004-01-01

    Procedure governing the career evolution of staff members The introduction of an electronic individual appraisal report form via EDH for the MAPS exercise entails some modifications to Administrative Circular N° 26 (Rev. 4). The revised version (Rev. 5) is available in departmental secretariats as well as on the Web at the following address: http://cern.ch/hr-web/internal/admin_services/admincirc/listadmincirc.asp Human Resources Department Tel. 74128

  20. Libraries in Nevada: MedlinePlus

    Science.gov (United States)

    ... this page: https://medlineplus.gov/libraries/nevada.html Libraries in Nevada To use the sharing features on ... page, please enable JavaScript. Elko Great Basin College Library 1500 College Parkway Elko, NV 89801 775-753- ...

  1. Pärnu REV sai kuuekümneseks / Andres Mets

    Index Scriptorium Estoniae

    Mets, Andres, 1943-

    2004-01-01

    Ehitusfirma Pärnu REV tähistab ainsa toimiva ja sisu muutnud remondi- ja ehitusvalitsusena kuuekümneaastast juubelit. Kommenteerivad REV-i nõukogu esimees Raivo Pulk ja REV-i juhataja Uno Kõressaar

  2. Pärnu REV sai kuuekümneseks / Andres Mets

    Index Scriptorium Estoniae

    Mets, Andres, 1943-

    2004-01-01

    Ehitusfirma Pärnu REV tähistab ainsa toimiva ja sisu muutnud remondi- ja ehitusvalitsusena kuuekümneaastast juubelit. Kommenteerivad REV-i nõukogu esimees Raivo Pulk ja REV-i juhataja Uno Kõressaar

  3. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy Nevada Operations Office

    1999-04-02

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  4. 78 FR 22425 - Designation of Areas for Air Quality Planning Purposes; State of Nevada; Total Suspended Particulate

    Science.gov (United States)

    2013-04-16

    ...) relied upon a similar mix of control measures. While the relative proportions of the various source... regulation of stationary sources of air pollution throughout the State of Nevada with the exception of Clark... Clark County pre-construction stationary source permit program (referred to as ``new source...

  5. US Department of Energy Environment, Safety and Health Progress Assessment of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    This report documents the result of the US Department of Energy (DOE) Environment, Safety, and Health (ES&H) Progress Assessment of the Nevada Test Site (NTS), Nye County, Nevada. The assessment, which was conducted from July 20 through August 4, 1992, included a selective review of the ES&H management systems and progress of the responsible DOE Headquarters Program Offices; the DOE Nevada Field Office (NV); and the site contractors. The ES&H Progress Assessments are part of the Secretary of Energy`s continuing effort to institutionalize line management accountability and the self-assessment process throughout DOE and its contractor organizations. This report presents a summary of issues and progress in the areas of environment, safety and health, and management.

  6. Corrective action investigation plan for Central Nevada Test Area CAU No. 417

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) is part of a US Department of Energy (DOE)-funded environmental investigation of the Central Nevada Test Area (CNTA). The CNTA is located in Hot Creek Valley in Nye County, Nevada, adjacent to US Highway 6, about 15 kilometers (10 miles) northeast of Warm Springs. The CNTA was the site of Project Faultless, a nuclear device detonated in the subsurface by the US Atomic Energy Commission (AEC) in January 1968. The purpose of this test was to gauge the seismic effects of relatively large, high-yield detonations completed outside of the Nevada Test Site (NTS). The test was also used to determine the suitability of the site for future large detonations. The yield of the Faultless test was between 200 kilotons and 1 megaton (DOE, 1994c).

  7. REVS: a radar-based enhanced vision system for degraded visual environments

    Science.gov (United States)

    Brailovsky, Alexander; Bode, Justin; Cariani, Pete; Cross, Jack; Gleason, Josh; Khodos, Victor; Macias, Gary; Merrill, Rahn; Randall, Chuck; Rudy, Dean

    2014-06-01

    Sierra Nevada Corporation (SNC) has developed an enhanced vision system utilizing fast-scanning 94 GHz radar technology to provide three-dimensional measurements of an aircraft's forward external scene topography. This threedimensional data is rendered as terrain imagery, from the pilot's perspective, on a Head-Up Display (HUD). The image provides the requisite "enhanced vision" to continue a safe approach along the flight path below the Decision Height (DH) in Instrument Meteorological Conditions (IMC) that would otherwise be cause for a missed approach. Terrain imagery is optionally fused with digital elevation model (DEM) data of terrain outside the radar field of view, giving the pilot additional situational awareness. Flight tests conducted in 2013 show that REVS™ has sufficient resolution and sensitivity performance to allow identification of requisite visual references well above decision height in dense fog. This paper provides an overview of the Enhanced Flight Vision System (EFVS) concept, of the technology underlying REVS, and a detailed discussion of the flight test results.

  8. Environmental overview of geothermal development: northern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.)

    1980-08-01

    Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

  9. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  10. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NSO Waste Management Project

    2008-06-01

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  11. Toward a Nevada Digital Collaborative

    Directory of Open Access Journals (Sweden)

    Jason Vaughan

    2011-05-01

    Full Text Available In mid-2008, a statewide committee was formed to engage in a comprehensive, Nevada statewide digital planning process. This group consisted of broad membership from the range of Nevada cultural heritage institutions, and was focused on creating a five year digital plan for the state, with an emphasis on collaboration amongst various cultural heritage institutions, increased digitization, and adoption of a digital preservation strategy. This article describes the initial work of the parent committee and two subsequent working groups, funded by the Library Technology and Services Act and aided by outside consultants. Early steps included a comprehensive planning survey and various meetings to understand the capabilities and desires of both primary stakeholders and the community at large. While several challenges not necessarily unique to Nevada arose over the first couple of years, a clear path forward for additional progress has been charted.

  12. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada, Revision 0 with ROTC 1, 2, and Errata

    Energy Technology Data Exchange (ETDEWEB)

    Wickline, Alfred

    2004-04-01

    This Corrective Action Decision Document (CADD) has been prepared for Corrective Action Unit (CAU) 204 Storage Bunkers, Nevada Test Site (NTS), Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE); and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) north of Las Vegas, Nevada (Figure 1-1). The Corrective Action Sites (CASs) within CAU 204 are located in Areas 1, 2, 3, and 5 of the NTS, in Nye County, Nevada (Figure 1-2). Corrective Action Unit 204 is comprised of the six CASs identified in Table 1-1. As shown in Table 1-1, the FFACO describes four of these CASs as bunkers one as chemical exchange storage and one as a blockhouse. Subsequent investigations have identified four of these structures as instrumentation bunkers (CASs 01-34-01, 02-34-01, 03-34-01, 05-33-01), one as an explosives storage bunker (CAS 05-99-02), and one as both (CAS 05-18-02). The six bunkers included in CAU 204 were primarily used to monitor atmospheric testing or store munitions. The ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada'' (NNSA/NV, 2002a) provides information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for each CAS within CAU 204. The evaluation of corrective action alternatives is based on process knowledge and the results of investigative activities conducted in accordance with the CAIP (NNSA/NV, 2002a) that was approved prior to the start of the Corrective Action Investigation (CAI). Record of Technical Change (ROTC) No. 1 to the CAIP (approval pending) documents changes to the preliminary action levels

  13. HIV-1 tat and rev upregulates osteoclast bone resorption

    Directory of Open Access Journals (Sweden)

    Nicholas Chew

    2014-11-01

    Full Text Available Introduction: Disruption in bone homeostasis with increased osteoclastic resorption may lead to osteoporosis. HIV tat has been found to increase differentiation of precursor cells into osteoclast (OC (1. Presence of soluble HIV proteins in virally suppressed HIV patients on ART may drive a bone resorption phenotype. We investigated the role of soluble HIV proteins (tat, gp120 Mn and Bal, rev and p55-gag on osteoclastogenesis and OC resorptive capacity. Methods: Mouse monocyte RAW 264.7 cells were cultured in vitro and induced to differentiate into OCs with 50 ng/mL RANKL and 25 ng/mL mCSF. Medium was supplemented with 100 ng/mL of recombinant HIV tat, gp120 (Mn and Bal, rev, nef and p55-gag, respectively, with zolendronate as negative control. Differentiated OCs were stained for TRAP and counted. OC resorption function was examined by culturing differentiated OCs (in the presence of respective HIV proteins on dentin-coated plates and examining the following (i sealing zone formation, (ii volume of resorption pits and (iii area of resorption pits per field using confocal microscopy. Expression of OC specific genes including NFATc1 and cathepsin K was investigated by qPCR. Reactive oxygen species (ROS production is essential in RANKL-induced OC differentiation (2,3; effect of these proteins on ROS production was assessed using the fluorescent H2DCFH-DA. Mean fluorescence intensity was then measured by flow cytometry. TNFα production by OC precursors when incubated with tat and rev was measured by ELISA. Results: Tat and rev treatment was associated with increased OC formation by 70 and 26%, respectively (p<0.01, relative to control, while zolendronate significantly inhibited OC formation by 75%. Gp120 Mn and Bal, nef and p55-gag treatment had no effect on OC differentiation. Interestingly, neither tat nor rev treatment caused significant increases in sealing zone formation but increased dentin resorption pit area by 28 and 19%, respectively, and

  14. Administrative Circular No. 26 (Rev. 9) – Recognition of Merit

    CERN Multimedia

    2012-01-01

    Administrative Circular No. 26 (Rev. 9) entitled "Recognition of Merit”, approved by the Director-General following discussion in the Standing Concertation Committee meeting on 27 September 2011 is available on the intranet site of the Human Resources Department: https://cern.ch/hr-docs/admincirc/admincirc.asp The circular was above all revised in order to integrate the new CERN Competency Model into the annual procedure of performance appraisal. It cancels and replaces Administrative Circular No. 26 (Rev. 8) entitled "Recognition of merit” of September 2008. Department Head Office HR Department

  15. Administrative Circular No. 26 (Rev. 7) – May 2007

    CERN Multimedia

    HR Department

    2007-01-01

    Recognition of Merit of Staff Members Administrative Circular No. 26 (Rev. 7) is now available on the intranet site of the Human Resources Department. This circular cancels and replaces Administrative Circular No. 26 (Rev. 6) - Procedures governing the career development of staff members. Copies will shortly be available in Departmental secretariats. If you require any additional information on the new staff-member merit assessment and recognition system, you may consult the FAQ, which has been available on the Human Resources Department intranet site since February 2007. Human Resources Department Tel. 78003

  16. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: novel insights into the regulation of Rev nuclear import.

    LENUS (Irish Health Repository)

    Gu, Lili

    2011-01-01

    The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS) by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s) predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised.

  17. Wind Farm Wake: The Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Rasmussen, Leif; Peña, Alfredo

    2013-01-01

    The aim of the paper is to examine the nowadays well-known wind farm wake photographs taken on 12 February 2008 at the offshore Horns Rev 1 wind farm. The meteorological conditions are described from observations from several satellite sensors quantifying clouds, surface wind vectors and sea...

  18. Revised Safety Instruction NO. 4 (IS4 REV.)

    CERN Multimedia

    2006-01-01

    Please note that the revised safety instruction no. 4 (IS4 REV.), entitled 'Safety Inspections' is available on the web at the following url: https://edms.cern.ch/file/335741/LAST_RELEASED/E_IS4.pdf Paper copies can be obtained from the SC unit secretariat. SC Secretariat e-mail: sc.secretariat@cern.ch

  19. Revised Safety Instruction NO. 4 (IS4 REV.)

    CERN Multimedia

    SC Secretariat

    2006-01-01

    Please note that the revised safety instruction No. 4 (IS4 REV.), entitled 'Safety Inspections' is available on the web at the following url: https://edms.cern.ch/file/335741/LAST_RELEASED/E_IS4.pdf Paper copies can be obtained from the SC unit secretariat. SC Secretariat e-mail: sc.secretariat@cern.ch

  20. Revised Safety Instruction NO. 4 (IS4 REV.)

    CERN Multimedia

    2006-01-01

    Please note that the revised safety instruction no. 4 (IS4 REV.), entitled 'Safety Inspections' is available on the web at the following url: https://edms.cern.ch/file/335741/LAST_RELEASED/E_IS4.pdf Paper copies can be obtained from the SC unit secretariat. SC Secretariat sc.secretariat@cern.ch

  1. Wind Farm Wake: The 2016 Horns Rev Photo Case

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Nygaard, Nicolai Gayle; Volker, Patrick

    2017-01-01

    Offshore wind farm wakes were observed and photographed in foggy conditions at Horns Rev 2 on 25 January 2016 at 12:45 UTC. These new images show highly contrasting conditions regarding the wind speed, turbulence intensity, atmospheric stability, weather conditions and wind farm wake development...

  2. LINCOLN CREEK ROADLESS AREA, NEVADA.

    Science.gov (United States)

    John, David A.; Stebbins, Scott A.

    1984-01-01

    On the basis of a mineral survey, the Lincoln Creek Roadless Area, Nevada was determined to have little likelihood for the occurrence of mineral resources. Geologic terrane favorable for the occurrence of contact-metasomatic tungsten deposits exists, but no evidence for this type of mineralization was identified. The geologic setting precludes the occurrence of fossil fuels and no other energy resources were identified.

  3. Characterization report for Area 23, Building 650 Leachfield, Corrective Action Unit Number 94, Nevada Test Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-27

    Corrective Action Unit (CAU) Number 94, Building 650 Leachfield, is an historic laboratory disposal unit located in Area 23 at the Nevada Test Site (NTS) in Nye County, Nevada. The objectives of this project were twofold: characterize subsurface conditions at the CAU with respect to the on-site disposal unit, and provide sufficient information to develop a closure strategy for the leachfield. To this end, subsurface sampling was conducted in the vicinity of the piping above the distribution box, under and around the distribution box, and within the leachfield.

  4. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, Douglas COUNTY, Nevada

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  5. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, EUREKA COUNTY, NEVADA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  6. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, NEVADA COUNTY, CALIFORNIA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  7. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, Douglas COUNTY, Nevada

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  8. Environmental Impact Analysis Process, Groom Mountain Range, Lincoln County, Nevada

    Science.gov (United States)

    1986-11-01

    e 2.0o. 0.4120>. -0 m - to W100 2 .0.0U 144 200. 0 20o 0" 4. .wj 04 𔃾> r 01 -A 02 -’c1104’𔃾 ’󈧰 24.0 0, eZw - 0 1 0 ,. ea 20-0 u) w ’ 4 �...V n L ) > 4 W V X : 4 A 0 o 0 .-. 0 M~ d, - 1d 4 4 ’ C o - tP 0d 0a ) 0 >. 4) 44 0 0 4m_1 45 Q, 0 o~ OWM . 0, MMt 0 r ൖ, 41 >, toac 0 M a~4 ow M

  9. Reconnaissance assessment of contaminants in Pahranagat Valley, Lincoln County, Nevada

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — In 1995, U.S. Fish and Wildlife Service personnel initiated a study to identify and quantify potential human-induced environmental contaminant impacts to endangered...

  10. 76 FR 53664 - Nevada and Placer Counties Resource Advisory Committee

    Science.gov (United States)

    2011-08-29

    ... of the Act. The meeting is open to the public. The purpose of the meeting is to discuss and vote on projects submitted for funding and the expenditure of Title II funds benefiting National Forest System..., including names and addresses when provided, are placed in the record and are available for public...

  11. 76 FR 53665 - Nevada and Placer Counties Resource Advisory Committee

    Science.gov (United States)

    2011-08-29

    ... the Title II of the Act. The meeting is open to the public. The purpose of the meeting is to discuss and vote on projects submitted for funding and the expenditure of Title II funds benefiting National... available for public inspection and copying. The public may inspect comments received at the Tahoe National...

  12. The hydrothermal system in southern Grass Valley, Pershing County, Nevada

    Science.gov (United States)

    Welch, Alan H.; Sorey, M.L.; Olmsted, F.H.

    1981-01-01

    Southern Grass Valley is typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163-173C. This report discusses results of geologic, hydrologic, geophysical and geochemical investigations used in an attempt to construct an internally consistent model of the system. (USGS)

  13. Geologic reconnaissance of the Hot Springs Mountains, Churchill County, Nevada

    Science.gov (United States)

    Voegtly, Nickolas E.

    1981-01-01

    A geologic reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas, during June-December 1975, resulted in a reinterpretation of the nature and location of some Basin and Range faults. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by U.S. Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie ' basement ' rocks of the Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present. (USGS)

  14. CHURCHILL COUNTY, NEVADA ARSENIC STUDY: WATER CONSUMPTION AND EXPOSURE BIOMARKERS

    Science.gov (United States)

    The US Environmental Protection Agency is required to reevaluate the Maximum Contaminant Level (MCL) for arsenic in 2006. To provide data for reducing uncertainties in assessing health risks associated with exposure to low levels (<200 g/l) of arsenic, a large scale biomarker st...

  15. Hydrothermal system in Southern Grass Valley, Pershing County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Welch, A.H.; Sorey, M.L.; Olmsted, F.H.

    1981-01-01

    Southern Grass Valley is a fairly typical extensional basin in the Basin and Range province. Leach Hot Springs, in the southern part of the valley, represents the discharge end of an active hydrothermal flow system with an estimated deep aquifer temperature of 163 to 176/sup 0/C. Results of geologic, hydrologic, geophysical and geochemical investigations are discussed in an attempt to construct an internally consistent model of the system.

  16. Groundwater Discharge Area for Dixie Valley, Churchill County, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — With increasing population growth and land-use change, urban communities in the desert southwest are progressively looking to remote basins to supplement existing...

  17. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, CLARK COUNTY, NEVADA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  18. Evapotranspiration units for Dixie Valley, Churchill County, Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — With increasing population growth and land-use change, urban communities in the desert southwest are progressively looking to remote basins to supplement existing...

  19. DIGITAL FLOOD INSURANCE RATE MAP DATABASE, WASHOE COUNTY, NV, NEVADA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk...

  20. A ground-based magnetic survey of Frenchman Flat, Nevada National Security Site and Nevada Test and Training Range, Nevada: data release and preliminary interpretation

    Science.gov (United States)

    Phillips, Jeffrey D.; Burton, Bethany L.; Curry-Elrod, Erika; Drellack, Sigmund

    2014-01-01

    The Nevada National Security Site (NNSS, formerly the Nevada Test Site) is located in southern Nevada approximately 105 kilometers (km) (65 miles) northwest of Las Vegas. Frenchman Flat is a sedimentary basin located on the eastern edge of NNSS and extending eastward into the adjacent Nevada Test and Training Range (NTTR).

  1. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line work) of Swadley and Hoover (1990) and re-label these with map unit designations like those in northern Frenchman Flat (Huckins-Gang et al, 1995a,b,c; Snyder et al, 1995a,b,c,d).

  2. Tourism Impacts of Three Mile Island and Other Adverse Events: Implications for Lincoln County and Other Rural Counties Bisected by Radioactive Wastes Intended for Yucca Mountain.

    Science.gov (United States)

    Himmelberger, Jeffery J.; And Others

    1995-01-01

    Summarizes key research implications of Three Mile Island and other major hazard events as related to tourism. Examines how the proposed Yucca Mountain nuclear waste repository system will impact tourism in southern Nevada and other visitor-oriented rural counties bisected by planned waste transportation corridors. (AIM)

  3. Precipitation and Runoff Simulations of the Carson Range and Pine Nut Mountains, and Updated Estimates of Ground-Water Inflow and the Ground-Water Budgets for Basin-Fill Aquifers of Carson Valley, Douglas County, Nevada, and Alpine County, California

    Science.gov (United States)

    Jeton, Anne E.; Maurer, Douglas K.

    2007-01-01

    Recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, Nevada, and California, from the adjacent Carson Range and Pine Nut Mountains ranged from 22,000 to 40,000 acre-feet per year using water-yield and chloride-balance methods. In this study, watershed models were developed for watersheds with perennial streams and for watersheds with ephemeral streams in the Carson Range and Pine Nut Mountains to provide an independent estimate of ground-water inflow. This report documents the development and calibration of the watershed models, presents model results, compares the results with recent estimates of ground-water inflow to the basin-fill aquifers of Carson Valley, and presents updated estimates of the ground-water budget for basin-fill aquifers of Carson Valley. The model used for the study was the Precipitation-Runoff Modeling System, a physically based, distributed-parameter model designed to simulate precipitation and snowmelt runoff as well as snowpack accumulation and snowmelt processes. Geographic Information System software was used to manage spatial data, characterize model drainages, and to develop Hydrologic Response Units. Models were developed for * Two watersheds with gaged perennial streams in the Carson Range and two watersheds with gaged perennial streams in the Pine Nut Mountains using measured daily mean runoff, * Ten watersheds with ungaged perennial streams using estimated daily mean runoff, * Ten watershed with ungaged ephemeral streams in the Carson Range, and * A large area of ephemeral runoff near the Pine Nut Mountains. Models developed for the gaged watersheds were used as index models to guide the calibration of models for ungaged watersheds. Model calibration was constrained by daily mean runoff for 4 gaged watersheds and for 10 ungaged watersheds in the Carson Range estimated in a previous study. The models were further constrained by annual precipitation volumes estimated in a previous study to provide

  4. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: Novel insights into the regulation of Rev nuclear import.

    LENUS (Irish Health Repository)

    Gu, Lili

    2011-03-14

    Abstract Background The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS) by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s) predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised. Results In our study, we have identified the cellular protein HIC (Human I-mfa domain-Containing protein) as a novel interactor of HIV-1 Rev. We demonstrate that HIC selectively interferes with Rev NLS interaction with importin β and impedes its nuclear import and function, but does not affect Rev nuclear import mediated by transportin. Hence, the molecular determinants mediating Rev-NLS recognition by importin β and transportin appear to be distinct. Furthermore, we have employed HIC and M9 M, a peptide specifically designed to inhibit the transportin-mediated nuclear import pathway, to characterise Rev nuclear import pathways within different cellular environments. Remarkably, we could show that in 293T, HeLa, COS7, Jurkat, U937, THP-1 and CEM cells, Rev nuclear import is cell type specific and alternatively mediated by transportin or importin β, in a mutually exclusive fashion. Conclusions Rev cytoplasmic sequestration by HIC may represent a novel mechanism for the control of Rev function. These studies highlight that the multivalent nature of the Rev NLS for different import receptors enables Rev to adapt its nuclear trafficking strategy.

  5. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: Novel insights into the regulation of Rev nuclear import

    Directory of Open Access Journals (Sweden)

    Sheehy Noreen

    2011-03-01

    Full Text Available Abstract Background The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised. Results In our study, we have identified the cellular protein HIC (Human I-mfa domain-Containing protein as a novel interactor of HIV-1 Rev. We demonstrate that HIC selectively interferes with Rev NLS interaction with importin β and impedes its nuclear import and function, but does not affect Rev nuclear import mediated by transportin. Hence, the molecular determinants mediating Rev-NLS recognition by importin β and transportin appear to be distinct. Furthermore, we have employed HIC and M9 M, a peptide specifically designed to inhibit the transportin-mediated nuclear import pathway, to characterise Rev nuclear import pathways within different cellular environments. Remarkably, we could show that in 293T, HeLa, COS7, Jurkat, U937, THP-1 and CEM cells, Rev nuclear import is cell type specific and alternatively mediated by transportin or importin β, in a mutually exclusive fashion. Conclusions Rev cytoplasmic sequestration by HIC may represent a novel mechanism for the control of Rev function. These studies highlight that the multivalent nature of the Rev NLS for different import receptors enables Rev to adapt its nuclear trafficking strategy.

  6. Probability estimates for the unique childhood leukemia cluster in Fallon, Nevada, and risks near other U.S. Military aviation facilities.

    OpenAIRE

    2004-01-01

    A unique cluster of childhood leukemia has recently occurred around the city of Fallon in Churchill County, Nevada. From 1999 to 2001, 11 cases were diagnosed in this county of 23,982 people. Exposures related to a nearby naval air station such as jet fuel or an infectious agent carried by naval aviators have been hypothesized as potential causes. The possibility that the cluster could be attributed to chance was also considered. We used data from the Surveillance, Epidemiology, and End Resul...

  7. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  8. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    Energy Technology Data Exchange (ETDEWEB)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    2005-07-01

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  9. Magnetotelluric Data, Southern Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Southern Yucca Flat, Profile 4, as shown in Figure 1. No interpretation of the data is included here.

  10. Magnetotelluric Data, Central Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Central Yucca Flat, Profile 1, as shown in figure 1. No interpretation of the data is included here.

  11. Magnetotelluric Data, Northern Frenchman Flat, Nevada Test Site Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Williams; B.D. Rodriguez, and T. H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Frenchman Flat Profile 3, as shown in Figure 1. No interpretation of the data is included here.

  12. Administrative Circular No. 26 (Rev.10) - Recognition of merit

    CERN Multimedia

    2014-01-01

    Administrative Circular No. 26 (Rev. 10) entitled “Recognition of Merit”, approved by the Director-General following discussion at the Standing Concertation Committee meeting of 5 December 2013 and entering into force on 1 January 2014, is available on the intranet site of the Human Resources Department (see here).   This circular is applicable to staff members. It cancels and replaces Administrative Circular No. 26 (Rev. 9) entitled “Recognition of Merit” of December 2011. The circular was revised in order to take into account the work performed in the framework of an elective mandate during the exercise of merit recognition of staff members. In addition, the circular was revised to provide that, in the case of staff members on special leave for professional reasons for a period equal to or longer than half a year, it will no longer be possible to grant an exceptional advancement. Department Head Office HR Department

  13. Administrative Circular No. 23 (Rev. 4) - Special working hours

    CERN Multimedia

    Department Head Office - HR Department

    2016-01-01

    Administrative Circular No. 23 (Rev. 4) entitled "Special working hours", approved by the Director-General following discussion in the Standing Concertation Committee meeting on 22 March 2016, will be available on 1st September 2016 via the following link: https://cds.cern.ch/record/2208539.   This revised circular cancels and replaces Administrative Circular No. 23 (Rev. 3) also entitled "Special working hours" of January 2013. This document contains modifications to reflect the new career structure and ensuring the provision consistent with practice that compensation or remuneration of special working hours performed remotely is possible only in case of emergency.   This circular will enter into force on 1st September 2016.

  14. Operational circular No. 1 (Rev. 1) – Operational circulars

    CERN Multimedia

    HR Department

    2011-01-01

    Operational Circular No. 1 (Rev. 1) is applicable to members of the personnel and other persons concerned. Operational Circular No. 1 (Rev. 1) entitled "Operational circulars", approved following discussion at the Standing Concertation Committee meeting on 4 May 2011, is available on the intranet site of the Human Resources Department: https://hr-docs.web.cern.ch/hr-docs/opcirc/opcirc.asp It cancels and replaces Operational Circular No. 1 entitled "Operational Circulars” of December 1996. This new version clarifies, in particular, that operational circulars do not necessarily arise from the Staff Rules and Regulations, and the functional titles have been updated to bring them into line with the current CERN organigram. Department Head Office  

  15. Safety Instruction nº 23 (IS 23 Rev. 3)

    CERN Multimedia

    SC Secretariat

    2005-01-01

    Please note that the revised version of Safety Instruction no 23 (IS 23 rev. 3) entitled "Criteria and standard test methods for the selection of electric cables and wires with respect to fire safety and radiation resistance" is available on the web at the following url: https://edms.cern.ch/document/335745/LAST_RELEASED/ Paper copies can also be obtained from the SC Secretariat, e-mail: sc.secretariat@cern.ch SC Secretariat

  16. International Field Reversible Thermal Connector (RevCon) Challenge

    Science.gov (United States)

    2016-07-01

    AFRL-RY-WP-TR-2016-0108 INTERNATIONAL FIELD REVERSIBLE THERMAL CONNECTOR (RevCon) CHALLENGE Chung-Lung Chen University of...or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them. This report is...DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) July 2016 Final 07 November 2013 – 15 March 2016 4. TITLE AND SUBTITLE INTERNATIONAL

  17. REV-ERB and ROR: therapeutic targets for treating myopathies

    Science.gov (United States)

    Welch, Ryan D.; Flaveny, Colin A.

    2017-08-01

    Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.

  18. RevPAR、GOP率、GOPPAR的联动增长

    Institute of Scientific and Technical Information of China (English)

    陈雪羽

    2007-01-01

    RevPAR,指平均每间可售客房产生的收入,其计算方式是酒店客房的全年营收总额除以全年可供出售的客房总间数,或者用更简化的方式,就是用平均房价乘以平均出租率。

  19. Evidence of bovine viral diarrhea virus infection in three species of sympatric wild ungulates in Nevada: Life history strategies may maintain endemic infections in wild populations

    Science.gov (United States)

    Evidence for bovine viral diarrhea virus (BVDV) infection was detected in 2009-10 during a pneumonia die-off in Rocky Mountain bighorn sheep (Ovis canadensis canadensis), and sympatric mountain goats (Oreamnos americanum) in adjacent mountain ranges in Elko County, Nevada. Seroprevalence to BVDV-1 ...

  20. Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export.

    Science.gov (United States)

    Behrens, Ryan T; Aligeti, Mounavya; Pocock, Ginger M; Higgins, Christina A; Sherer, Nathan M

    2017-02-01

    HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding.

  1. 76 FR 77580 - Nevada Disaster #NV-00014

    Science.gov (United States)

    2011-12-13

    ... ADMINISTRATION Nevada Disaster NV-00014 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Nevada dated 12/07/2011. Incident: Caughlin Fire. Incident Period: 11/18/2011 through 11/21/2011. Effective Date:...

  2. 77 FR 7228 - Nevada Disaster #NV-00015

    Science.gov (United States)

    2012-02-10

    ... ADMINISTRATION Nevada Disaster NV-00015 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY: This is a notice of an Administrative declaration of a disaster for the State of Nevada dated 02/01/2012. Incident: Washoe Drive Fire. Incident Period: 01/19/2012 through 01/21/2012. Effective Date:...

  3. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    Energy Technology Data Exchange (ETDEWEB)

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.; Miley, Terri B.; Nichols, William E.; Strenge, Dennis L.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  4. Administrative Circulars No. 12 A (Rev. 2) - "Education fees” and No. 12 B (Rev. 2) - “Education fees and language courses”

    CERN Multimedia

    2013-01-01

    Administrative Circulars No. 12 A (Rev. 2) entitled “Education fees” and No. 12 B (Rev. 2) entitled “Education fees and language courses”, approved by the Director-General following discussion at the Standing Concertation Committee meeting of 27 June 2013 and entering into force on 1 August 2013, are available on the intranet site of the Human Resources Department (see here).   Administrative Circular No. 12 A (Rev. 2) is applicable to Staff Members (except former “Local Staff Members”) recruited before 1st January 2007. Administrative Circular No. 12 B (Rev. 2) is applicable to Staff Members recruited on or after 1st January 2007, to Fellows, to Scientific Associates, to Guest Professors and to former “Local Staff” recruited before 1st January 2007. They cancel and replace Administrative Circulars No. 12 A (Rev. 1/Corr.) entitled "Education fees” and No. 12 B (Rev. 1/Corr.) entitled “Edu...

  5. 75 FR 14626 - Notice of Realty Action: Recreation and Public Purposes Act Classification, Clark County, NV

    Science.gov (United States)

    2010-03-26

    ... proposed classification, lease or conveyance will be reviewed by the BLM Nevada State Director, who may...] Notice of Realty Action: Recreation and Public Purposes Act Classification, Clark County, NV AGENCY... filed a Recreation and Public Purposes (R&PP) Act application for lease or conveyance of approximately...

  6. 75 FR 82065 - Notice of Realty Action: Recreation and Public Purposes Act Classification, Clark County, NV

    Science.gov (United States)

    2010-12-29

    ... found suitable for classification for lease and/or conveyance under the provisions of the Recreation and... comments regarding the proposed classification for lease and/or conveyance of the land until February 14... County, Nevada, has been examined and found suitable for classification for lease and/or conveyance...

  7. Sampling and estimation techniques for the implementation of new classification systems: the change-over from NACE Rev. 1.1 to NACE Rev. 2 in business surveys

    Directory of Open Access Journals (Sweden)

    Jan van den Brakel

    2010-09-01

    Full Text Available This paper describes some of the methodological problems encountered with the change-over from the NACE Rev. 1.1 to the NACE Rev. 2 in business statistics. Different sampling and estimation strategies are proposed to produce reliable figures for the domains under both classifications simultaneously. Furthermore several methods are described that can be used to reconstruct time series for the domains under the NACE Rev. 2.

  8. Magnetotelluric Data, North Central Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for north central Yucca Flat, Profile 7, as shown in Figure 1. No interpretation of the data is included here.

  9. Magnetotelluric Data, Northern Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT sounding data for Profile 2, (fig. 1), located in the northern Yucca Flat area. No interpretation of the data is included here.

  10. Magnetotelluric Data, Across Quartzite Ridge, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Williams; B.D. Rodriguez, and T.H. Asch

    2005-11-23

    Nuclear weapons are integral to the defense of the United States. The U.S. Department of Energy, as the steward of these devices, must continue to gauge the efficacy of the individual weapons. This could be accomplished by occasional testing at the Nevada Test Site (NTS) in Nevada, northwest of Las Vegas. Yucca Flat Basin is one of the testing areas at the NTS. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow in the area subsequent to a nuclear test. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey (USGS) collected and processed Magnetotelluric (MT) and Audio-magnetotelluric (AMT) data at the Nevada Test Site in and near Yucca Flat to help characterize this pre-Tertiary geology. That work will help to define the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (UCCU) in the Yucca Flat area. Interpretation will include a three-dimensional (3-D) character analysis and two-dimensional (2-D) resistivity model. The purpose of this report is to release the MT soundings across Quartzite Ridge, Profiles 5, 6a, and 6b, as shown in Figure 1. No interpretation of the data is included here.

  11. RNA helicase MOV10 functions as a co-factor of HIV-1 Rev to facilitate Rev/RRE-dependent nuclear export of viral mRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Feng; Zhang, Junsong; Zhang, Yijun; Geng, Guannan; Liang, Juanran; Li, Yingniang; Chen, Jingliang [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Liu, Chao, E-mail: liuchao9@mail.sysu.edu.cn [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Zhang, Hui [Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China); Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 (China)

    2015-12-15

    Human immunodeficiency virus type 1 (HIV-1) exploits multiple host factors during its replication. The REV/RRE-dependent nuclear export of unspliced/partially spliced viral transcripts needs the assistance of host proteins. Recent studies have shown that MOV10 overexpression inhibited HIV-1 replication at various steps. However, the endogenous MOV10 was required in certain step(s) of HIV-1 replication. In this report, we found that MOV10 potently enhances the nuclear export of viral mRNAs and subsequently increases the expression of Gag protein and other late products through affecting the Rev/RRE axis. The co-immunoprecipitation analysis indicated that MOV10 interacts with Rev in an RNA-independent manner. The DEAG-box of MOV10 was required for the enhancement of Rev/RRE-dependent nuclear export and the DEAG-box mutant showed a dominant-negative activity. Our data propose that HIV-1 utilizes the anti-viral factor MOV10 to function as a co-factor of Rev and demonstrate the complicated effects of MOV10 on HIV-1 life cycle. - Highlights: • MOV10 can function as a co-factor of HIV-1 Rev. • MOV10 facilitates Rev/RRE-dependent transport of viral mRNAs. • MOV10 interacts with Rev in an RNA-independent manner. • The DEAG-box of MOV10 is required for the enhancement of Rev/RRE-dependent export.

  12. 12MW Horns Rev experiment[Wind farm

    Energy Technology Data Exchange (ETDEWEB)

    Hasager, C.B.; Pena, A; Mikkelsen, T.; Courtney, M.; Antoniou, I.; Gryning, S.-E.; Hansen, P. [Risoe National Lab., DTU, Wind Energy Dept. (Denmark); Soerensen, P.B. [DONG Energy (Denmark)

    2007-10-15

    The 12MW project with the full title '12 MW wind turbines: the scientific basis for their operation at 70 to 270 m height offshore' has the goal to experimentally investigate the wind and turbulence characteristics between 70 and 270 m above sea level and thereby establish the scientific basis relevant for the next generation of huge 12 MW wind turbines operating offshore. The report describes the experimental campaign at the Horns Rev offshore wind farm at which observations from Doppler Laser LIDAR and SODAR were collected from 3 May to 24 October 2006. The challenges for mounting and operating the instruments on the transformer platform at Horns Rev were overcome by a close collaboration between DONG energy and Risoe National Laboratory DTU. The site is presented. In particular, three tall offshore meteorological masts, up to 70 m tall, provided a useful source of meteorological data for comparison to the remotely sensed wind and turbulence observations. The comparison showed high correlation. The LIDAR and SODAR wind and turbulence observations were collected far beyond the height of the masts (up to 160 m above sea level) and the extended profiles were compared to the logarithmic wind profile. Further studies on this part of the work are on-going. Technical detail on LIDAR and SODAR are provided as well as theoretical work on turbulence and atmospheric boundary layer flow. Selected results from the experimental campaign are reported. (au)

  13. Comparative analysis of Rev function in human immunodeficiency virus types 1 and 2.

    OpenAIRE

    Garrett, E D; Cullen, B R

    1992-01-01

    The Rev proteins of the related but distinct human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) display incomplete functional reciprocity. One possible explanation for this observation is that HIV-2 Rev is unable to interact with the HIV-1 Rev-response element (RRE1). However, an analysis of the biological activity of chimeric proteins derived from HIV-1 and HIV-2 Rev reveals that this target specificity does not map to the Rev RNA binding domain but is instead primarily determined ...

  14. Analysis of the virulence-associated RevSR two-component signal transduction system of Clostridium perfringens.

    Science.gov (United States)

    Cheung, Jackie K; Wisniewski, Jessica A; Adams, Vicki M; Quinsey, Noelene S; Rood, Julian I

    2016-09-01

    Clostridium perfringens is a Gram-positive, anaerobic, spore-forming bacterium that causes human gas gangrene (clostridial myonecrosis) and food poisoning. Early studies showed that virulence was regulated by the VirSR two-component signal transduction system. However, our identification of the RevR orphan response regulator indicated that more than one system was involved in controlling virulence. To further characterize this virulence-associated regulator, gel mobility shift experiments, coupled with DNase I footprinting, were used to identify the RevR DNA binding sequence. Bioinformatics analysis suggested that an orphan sensor histidine kinase, CPE1757 (renamed RevS), was the cognate sensor of RevR. Interaction between RevS and RevR was demonstrated by use of a bacterial two-hybrid system and validated by protein-protein interaction studies using biolayer interferometry. To assess the involvement of RevS in virulence regulation, the revS gene was inactivated by Targetron insertion. When isogenic wild-type, revS and complemented revS strains were tested in a mouse myonecrosis model, the revS mutant was found to be attenuated in virulence, which was similar to the attenuation observed previously with the revR mutant. However, transcriptional analysis of selected RevR-regulated genes in the revS mutant revealed a different pattern of expression to a revR mutant, suggesting that the RevSR system is more complex than originally thought. Taken together, the results have led to the identification and characterization of the two essential parts of a new regulatory network that is involved in the regulation of virulence in C. perfringens.

  15. GPS Imaging of Sierra Nevada Uplift

    Science.gov (United States)

    Hammond, W. C.; Blewitt, G.; Kreemer, C.

    2015-12-01

    Recent improvements in the scope and precision of GPS networks across California and Nevada have allowed for uplift of the Sierra Nevada to be observed directly. Much of the signal, in the range of 1 to 2 mm/yr, has been attributed to lithospheric scale rebound following massive groundwater withdrawal in the San Joaquin Valley in southern California, exacerbated by drought since 2011. However, natural tectonic deformation associated with long term uplift of the range may also contribute to the observed signal. We have developed new algorithms that enhance the signal of Sierra Nevada uplift and improve our ability to interpret and separate natural tectonic signals from anthropogenic contributions. We apply our new Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series and a inverse distance-weighted median spatial filtering and Delaunay-based interpolation to despeckle the rate map. The resulting spatially continuous vertical rate field is insensitive to outliers and steps in the GPS time series, and omits isolated features attributable to unstable stations or unrepresentative rates. The resulting vertical rate field for California and Nevada exhibits regionally coherent signals from the earthquake cycle including interseismic strain accumulation in Cascadia, postseismic relaxation of the mantle from recent large earthquakes in central Nevada and southern California, groundwater loading changes, and tectonic uplift of the Sierra Nevada and Coast Ranges. Uplift of the Sierra Nevada extends from the Garlock Fault in the south to an indefinite boundary in the north near the latitude of Mt. Lassen to the eastern Sierra Nevada range front in Owen's Valley. The rates transition to near zero in the southern Walker Lane. The eastern boundary of uplift coincides with the highest strain rates in the western Great Basin, suggesting higher normal fault slip rates and a component of tectonic uplift of the Sierra Nevada.

  16. POST CLOSURE INSPECTION AND MONITORING REPORT FOR CORRECTIVE ACTION UNIT 417: CENTRAL NEVADA TEST AREA - SURFACE, HOT CREEK VALLEY, NEVADA, FOR CALENDAR YEAR 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA; NNSA NEVADA SITE OFFICE

    2005-04-01

    This post-closure inspection and monitoring report has been prepared according to the stipulations laid out in the Closure Report (CR) for Corrective Action Unit (CAU) 417, Central Nevada Test Area (CNTA)--Surface (U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office [NNSA/NV], 2001), and the Federal Facility Agreement and Consent Order (FFACO, 1996). This report provides an analysis and summary of site inspections, subsidence surveys, meteorological information, and soil moisture monitoring data for CAU 417, which is located in Hot Creek Valley, Nye County, Nevada. This report covers Calendar Year 2004. Inspections at CAU 417 are conducted quarterly to document the physical condition of the UC-1, UC-3, and UC-4 soil covers, monuments, signs, fencing, and use restricted areas. The physical condition of fencing, monuments, and signs is noted, and any unusual conditions that could impact the integrity of the covers are reported. The objective of the soil moisture monitoring program is to monitor the stability of soil moisture conditions within the upper 1.2 meters (m) (4 feet [ft]) of the UC-1 Central Mud Pit (CMP) cover and detect changes that may be indicative of moisture movement exceeding the cover design performance expectations.

  17. Publication Of Administrative Circulars: No. 4 (Rev. 4) – Unemployment Insurance Scheme No. 30 (Rev. 2) – Financial Benefits on Taking Up Appointment and on Termination of Contract

    CERN Multimedia

    HR Department

    2008-01-01

    Administrative Circular No. 4 (Rev. 4) – Unemployment insurance scheme Administrative Circular No. 4 (Rev. 4) – "Unemployment insurance scheme", approved following discussion at the Standing Concertation Committee meetings of 28 August 2007 and 27 February 2008, is now available on the intranet site of the Human Resources Department. It cancels and replaces Administrative Circular No. 4 (Rev. 3) – "Unemployment insurance" of October 1993. Copies will shortly be available in Departmental secretariats. Human Resources Department Tel. 78003 Administrative Circular No. 30 (Rev. 2) – Financial benefits on taking up appointment and termination of contract Administrative Circular No. 30 (Rev. 2) – "Financial benefits on taking up appointment and termination of contract", approved following discussion at the Standing Concertation Committee meetings of 28 August 2007 and 27 February 2008, is now available on the intranet site of the Human Resources De...

  18. Publication Of Administrative Circulars: No. 4 (Rev. 4) – Unemployment Insurance Scheme No. 30 (Rev. 2) – Financial Benefits on Taking Up Appointment and on Termination of Contract

    CERN Multimedia

    HR Department

    2008-01-01

    Administrative Circular No. 4 (Rev. 4) – Unemployment insurance scheme Administrative Circular No. 4 (Rev. 4) – "Unemployment insurance scheme", approved following discussion in the Standing Concertation Committee meetings of 28 August 2007 and 27 February 2008, is now available on the intranet site of the Human Resources Department. It cancels and replaces Administrative Circular No. 4 (Rev. 3) – "Unemployment insurance" of October 1993. Copies will shortly be available in Departmental secretariats. Human Resources Department Tel. 78003 Administrative Circular No. 30 (Rev. 2) – Financial benefits on taking up appointment and termination of contract Administrative Circular No. 30 (Rev. 2) – "Financial benefits on taking up appointment and termination of contract", approved following discussion in the Standing Concertation Committee meetings of 28 August 2007 and 27 February 2008, is now available on the intranet site of the Human Resources De...

  19. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez; Charles R. Lindsay; and Jay A. Sampson

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in

  20. Deep resistivity structure of Yucca Flat, Nevada Test Site, Nevada

    Science.gov (United States)

    Asch, Theodore H.; Rodriguez, Brian D.; Sampson, Jay A.; Wallin, Erin L.; Williams, Jackie M.

    2006-01-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian - Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large fault

  1. Deep Resistivity Structure of Yucca Flat, Nevada Test Site, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch, Brian D. Rodriguez; Jay A. Sampson; Erin L. Wallin; and Jackie M. Williams.

    2006-09-18

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office are addressing groundwater contamination resulting from historical underground nuclear testing through the Environmental Management program and, in particular, the Underground Test Area project. One issue of concern is the nature of the somewhat poorly constrained pre Tertiary geology and its effects on ground-water flow in the area adjacent to a nuclear test. Ground water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Yucca Flat Corrective Action Unit (CAU). During 2003, the U.S. Geological Survey, supported by the DOE and NNSA-NSO, collected and processed data from 51 magnetotelluric (MT) and audio-magnetotelluric (AMT) stations at the Nevada Test Site in and near Yucca Flat to assist in characterizing the pre-Tertiary geology in that area. The primary purpose was to refine the character, thickness, and lateral extent of pre Tertiary confining units. In particular, a major goal has been to define the upper clastic confining unit (late Devonian – Mississippian-age siliciclastic rocks assigned to the Eleana Formation and Chainman Shale) in the Yucca Flat area. The MT and AMT data have been released in separate USGS Open File Reports. The Nevada Test Site magnetotelluric data interpretation presented in this report includes the results of detailed two-dimensional (2 D) resistivity modeling for each profile (including alternative interpretations) and gross inferences on the three dimensional (3 D) character of the geology beneath each station. The character, thickness, and lateral extent of the Chainman Shale and Eleana Formation that comprise the Upper Clastic Confining Unit are generally well determined in the upper 5 km. Inferences can be made regarding the presence of the Lower Clastic Confining Unit at depths below 5 km. Large

  2. Magnetotelluric Data, Mid Valley, Nevada Test Site, Nevada.

    Energy Technology Data Exchange (ETDEWEB)

    Jackie M. Williams; Erin L. Wallin; Brian D. Rodriguez; Charles R. Lindsay; and Jay A. Sampson

    2007-08-15

    The United States Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) at their Nevada Site Office (NSO) are addressing ground-water contamination resulting from historical underground nuclear testing through the Environmental Management (EM) program and, in particular, the Underground Test Area (UGTA) project. One issue of concern is the nature of the somewhat poorly constrained pre-Tertiary geology and its effects on ground-water flow. Ground-water modelers would like to know more about the hydrostratigraphy and geologic structure to support a hydrostratigraphic framework model that is under development for the Rainier Mesa/Shoshone Mountain Corrective Action Unit (CAU) (Bechtel Nevada, 2006). During 2003, the U.S. Geological Survey (USGS), in cooperation with the DOE and NNSA-NSO, collected and processed data at the Nevada Test Site in and near Yucca Flat (YF) to help define the character, thickness, and lateral extent of the pre-tertiary confining units. We collected 51 magnetotelluric (MT) and audio-magnetotelluric (AMT), stations for that research (Williams and others, 2005a, 2005b, 2005c, 2005d, 2005e, 2005f). In early 2005 we extended that research with 26 additional MT data stations (Williams and others, 2006), located on and near Rainier Mesa and Shoshone Mountain (RM-SM). The new stations extended the area of the hydrogeologic study previously conducted in Yucca Flat. This work was done to help refine what is known about the character, thickness, and lateral extent of pre-Tertiary confining units. In particular, a major goal was to define the upper clastic confining unit (UCCU). The UCCU is comprised of late Devonian to Mississippian siliciclastic rocks assigned to the Eleana Formation and Chainman Shale. The UCCU underlies the Yucca Flat area and extends westward towards Shoshone Mountain, southward to Buckboard Mesa, and northward to Rainier Mesa. Late in 2005 we collected another 14 MT stations in Mid Valley and in

  3. Geology of outer Horns Rev, Danish North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Joern B.; Gravesen, P.; Lomholt, S. (Geological Survey of Denmark and Greenland, Copenhagen (Denmark))

    2008-07-15

    In 2006, Dong Energy initiated the development of the Horns Rev II offshore wind farm in the North Sea. In order to evaluate and map the characteristics of the surface features of the sea bed and to characterise the subsurface in the wind farm area, the Geological Survey of Denmark and Greenland (GEUS) conducted a geophysical survey of the area. The survey utilised a variety of instruments: sparker, side-scan sonar, marine caesium magnetometer and a multibeam echo-sounder. In addition, information on the subsurface sediments was obtained by cone penetration tests (CPT) and by drilling to 30-50 m below the sea bottom. Geological correlation of the CPT results with the other survey results was extremely complicated but was required in order to understand the architecture of the ice marginal glaciotectonic complex. Information on the geology is crucial for evaluation of the geotechnical problems of the region. (au)

  4. Ensemble-based Probabilistic Forecasting at Horns Rev

    DEFF Research Database (Denmark)

    Pinson, Pierre; Madsen, Henrik

    2009-01-01

    of probabilistic forecasts, the resolution of which may be maximized by using meteorological ensemble predictions as input. The paper concentrates on the test case of the Horns Rev wind form over a period of approximately 1 year, in order to describe, apply and discuss a complete ensemble-based probabilistic...... the benefit of yielding predictive distributions that are of increased reliability (in a probabilistic sense) in comparison with the raw ensemble forecasts, at the some time taking advantage of their high resolution. Copyright (C) 2008 John Wiley & Sons, Ltd....... are then converted into predictive distributions with an original adaptive kernel dressing method. The shape of the kernels is driven by a mean-variance model, the parameters of which ore recursively estimated in order to maximize the overall skill of obtained predictive distributions. Such a methodology has...

  5. 75 FR 22100 - Nevada County and Placer County, CA, Resource Advisory Committee

    Science.gov (United States)

    2010-04-27

    ... (Payments to States) as reauthorized by Public Law 110-343 and the expenditure of Title II funds benefiting... chair; and (5) Comments from the public. The meeting is open to the public and the public will have an...

  6. Reconnaissance Appraisal Report of Proposed Desert Pupfish Preserve in Nye County, Nevada and Inyo County, California

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains information about a proposed preserve for threatened pupfish. It includes a reconnaissance appraisal, a biological ascertainment report, and...

  7. University and Community College System of Nevada Report on Teacher Education in Nevada. Prepared for the 70th Nevada Legislature (in Accordance with SCR 46, 1997 Session).

    Science.gov (United States)

    Nevada Univ. and Community Coll. System, Reno. Office of the Chancellor.

    This report examines population trends in Nevada and the current and projected capacity of University and Community College System of Nevada (UCCSN) institutions to graduate teachers. After an executive summary and introduction, the first section discusses "Supply and Demand for Teachers in Nevada: The Future," which includes "Current Workforce…

  8. Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome.