WorldWideScience

Sample records for counting energy dispersive

  1. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  2. Calorie count - sodas and energy drinks

    Science.gov (United States)

    ... ency/patientinstructions/000888.htm Calorie count - sodas and energy drinks To use the sharing features on this page, ... to have a few servings of soda or energy drinks a day without thinking about it. Like other ...

  3. Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses

    Science.gov (United States)

    Caldwell, C. E.; McCarthy, I. G.; Baldry, I. K.; Collins, C. A.; Schaye, J.; Bird, S.

    2016-11-01

    The evolution of galaxy cluster counts is a powerful probe of several fundamental cosmological parameters. A number of recent studies using this probe have claimed tension with the cosmology preferred by the analysis of the Planck primary cosmic microwave background (CMB) data, in the sense that there are fewer clusters observed than predicted based on the primary CMB cosmology. One possible resolution to this problem is systematic errors in the absolute halo mass calibration in cluster studies, which is required to convert the standard theoretical prediction (the halo mass function) into counts as a function of the observable (e.g. X-ray luminosity, Sunyaev-Zel'dovich flux, and optical richness). Here we propose an alternative strategy, which is to directly compare predicted and observed cluster counts as a function of the one-dimensional velocity dispersion of the cluster galaxies. We argue that the velocity dispersion of groups/clusters can be theoretically predicted as robustly as mass but, unlike mass, it can also be directly observed, thus circumventing the main systematic bias in traditional cluster counts studies. With the aid of the BAHAMAS suite of cosmological hydrodynamical simulations, we demonstrate the potential of the velocity dispersion counts for discriminating even similar Λ cold dark matter models. These predictions can be compared with the results from existing redshift surveys such as the highly complete Galaxy And Mass Assembly survey, and upcoming wide-field spectroscopic surveys such as the Wide Area Vista Extragalactic Survey and the Dark Energy Survey Instrument.

  4. Relativistic energy loss in a dispersive medium

    DEFF Research Database (Denmark)

    Houlrik, Jens Madsen

    2002-01-01

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...

  5. Relativistic energy loss in a dispersive medium

    DEFF Research Database (Denmark)

    Houlrik, Jens Madsen

    2002-01-01

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...

  6. Flexible models for spike count data with both over- and under- dispersion.

    Science.gov (United States)

    Stevenson, Ian H

    2016-08-01

    A key observation in systems neuroscience is that neural responses vary, even in controlled settings where stimuli are held constant. Many statistical models assume that trial-to-trial spike count variability is Poisson, but there is considerable evidence that neurons can be substantially more or less variable than Poisson depending on the stimuli, attentional state, and brain area. Here we examine a set of spike count models based on the Conway-Maxwell-Poisson (COM-Poisson) distribution that can flexibly account for both over- and under-dispersion in spike count data. We illustrate applications of this noise model for Bayesian estimation of tuning curves and peri-stimulus time histograms. We find that COM-Poisson models with group/observation-level dispersion, where spike count variability is a function of time or stimulus, produce more accurate descriptions of spike counts compared to Poisson models as well as negative-binomial models often used as alternatives. Since dispersion is one determinant of parameter standard errors, COM-Poisson models are also likely to yield more accurate model comparison. More generally, these methods provide a useful, model-based framework for inferring both the mean and variability of neural responses.

  7. Estimation for zero-inflated over-dispersed count data model with missing response.

    Science.gov (United States)

    Mian, Rajibul; Paul, Sudhir

    2016-12-30

    In this paper, we develop estimation procedure for the parameters of a zero-inflated over-dispersed/under-dispersed count model in the presence of missing responses. In particular, we deal with a zero-inflated extended negative binomial model in the presence of missing responses. A weighted expectation maximization algorithm is used for the maximum likelihood estimation of the parameters involved. Some simulations are conducted to study the properties of the estimators. Robustness of the procedure is shown when count data follow other over-dispersed models, such as the log-normal mixture of the Poisson distribution or even from a zero-inflated Poisson model. An illustrative example and a discussion leading to some conclusions are given. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Casimir energies: temperature dependence, dispersion, and anomalies.

    Science.gov (United States)

    Brevik, I; Milton, K A

    2008-07-01

    Assuming the conventional Casimir setting with two thick parallel perfectly conducting plates of large extent with a homogeneous and isotropic medium between them, we discuss the physical meaning of the electromagnetic field energy W disp when the intervening medium is weakly dispersive but nondissipative. The presence of dispersion means that the energy density contains terms of the form d[omega epsilon(omega)]/d omega and d[omega mu(omega)]/d omega . We find that, as W disp refers thermodynamically to a nonclosed physical system, it is not to be identified with the internal thermodynamic energy U following from the free energy F , or the electromagnetic energy W , when the last-mentioned quantities are calculated without such dispersive derivatives. To arrive at this conclusion, we adopt a model in which the system is a capacitor, linked to an external self-inductance L such that stationary oscillations become possible. Therewith the model system becomes a nonclosed one. As an introductory step, we review the meaning of the nondispersive energies, F , U , and W . As a final topic, we consider an anomaly connected with local surface divergences encountered in Casimir energy calculations for higher space-time dimensions, D>4 , and discuss briefly its dispersive generalization. This kind of application is essentially a generalization of the treatment of Alnes [J. Phys. A 40, F315 (2007)] to the case of a medium-filled cavity between two hyperplanes.

  9. Predicting energy expenditure from accelerometry counts in adolescent girls.

    Science.gov (United States)

    Schmitz, Kathryn H; Treuth, Margarita; Hannan, Peter; McMurray, Robert; Ring, Kimberly B; Catellier, Diane; Pate, Russ

    2005-01-01

    Calibration of accelerometer counts against oxygen consumption to predict energy expenditure has not been conducted in middle school girls. We concurrently assessed energy expenditure and accelerometer counts during physical activities on adolescent girls to develop an equation to predict energy expenditure. Seventy-four girls aged 13-14 yr performed 10 activities while wearing an Actigraph accelerometer and a portable metabolic measurement unit (Cosmed K4b2). The activities were resting, watching television, playing a computer game, sweeping, walking 2.5 and 3.5 mph, performing step aerobics, shooting a basketball, climbing stairs, and running 5 mph. Height and weight were also assessed. Mixed-model regression was used to develop an equation to predict energy expenditure (EE) (kJ.min(-1)) from accelerometer counts. Age (mean [SD] = 14 yr [0.34]) and body-weight-adjusted correlations of accelerometer counts with EE (kJ.min(-1)) for individual activities ranged from -0.14 to 0.59. Higher intensity activities with vertical motion were best correlated. A regression model that explained 85% of the variance of EE was developed: [EE (kJ.min(-1)) = 7.6628 + 0.1462 [(Actigraph counts per minute - 3000)/100] + 0.2371 (body weight in kilograms) - 0.00216 [(Actigraph counts per minute - 3000)/100](2) + 0.004077 [((Actigraph counts per minute - 3000)/100) x (body weight in kilograms)]. The MCCC = 0.85, with a standard error of estimate = 5.61 kJ.min(-1). We developed a prediction equation for kilojoules per minute of energy expenditure from Actigraph accelerometer counts. This equation may be most useful for predicting energy expenditure in groups of adolescent girls over a period of time that will include activities of broad-ranging intensity, and may be useful to intervention researchers interested in objective measures of physical activity.

  10. Horava Gravity with Mixed Derivative Terms: Power-Counting Renormalizability with Lower-Order Dispersions

    CERN Document Server

    Colombo, Mattia; Sotiriou, Thomas P

    2015-01-01

    It has been argued that Horava gravity needs to be extended to include terms that mix spatial and time derivatives in order avoid unacceptable violations of Lorentz invariance in the matter sector. In an earlier paper we have shown that including such mixed derivative terms generically leads to 4th instead of 6th order dispersion relations and this could be (naively) interpreted as a threat to renormalizability. We have also argued that power-counting renormalizability is not actually compromised, but instead the simplest power-counting renormalizable model is not unitary. In this note we consider the Lifshitz scalar as a toy theory and we generalize our analysis to include higher order operators. We show that models which are power-counting renormalizable and unitary do exist. Our results suggest the existence of a new class of Horava theories with mixed derivative terms.

  11. Counting

    Institute of Scientific and Technical Information of China (English)

    许有国

    2005-01-01

    Most people began to count in tens because they had ten fingers on their hands. But in some countries, people counted on one hand and used the three parts of their four fingers. So they counted in twelves, not in tens.

  12. Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses

    CERN Document Server

    Caldwell, C E; Baldry, I K; Collins, C A; Schaye, J; Bird, S

    2016-01-01

    The evolution of galaxy cluster counts is a powerful probe of several fundamental cosmological parameters. A number of recent studies using this probe have claimed tension with the cosmology preferred by the analysis of the Planck primary CMB data, in the sense that there are fewer clusters observed than predicted based on the primary CMB cosmology. One possible resolution to this problem is systematic errors in the absolute halo mass calibration in cluster studies, which is required to convert the standard theoretical prediction (the halo mass function) into counts as a function of the observable (e.g., X-ray luminosity, Sunyaev-Zel'dovich flux, optical richness). Here we propose an alternative strategy, which is to directly compare predicted and observed cluster counts as a function of the one-dimensional velocity dispersion of the cluster galaxies. We argue that the velocity dispersion of groups/clusters can be theoretically predicted as robustly as mass but, unlike mass, it can also be directly observed, ...

  13. Low Energy Lorentz Violation from Modified Dispersion at High Energies.

    Science.gov (United States)

    Husain, Viqar; Louko, Jorma

    2016-02-12

    Many quantum theories of gravity propose Lorentz-violating dispersion relations of the form ω=|k|f(|k|/M⋆), with recovery of approximate Lorentz invariance at energy scales much below M⋆. We show that a quantum field with this dispersion predicts drastic low energy Lorentz violation in atoms modeled as Unruh-DeWitt detectors, for any f that dips below unity somewhere. As an example, we show that polymer quantization motivated by loop quantum gravity predicts such Lorentz violation below current ion collider rapidities.

  14. Superconducting tunnel junction array development for high-resolution energy-dispersive x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barfknecht, A. T.; Cramer, S. P; Frank, M.; Friedrich, S.; Hiller, L. J.; Labov, S. E.; Mears, C. A.; Niderost, B.

    1998-07-01

    Cryogenic energy-dispersive x-ray detectors are being developed because of their superior energy resolution ((less than or equal to) 10 eV FWHM for keV x rays) compared to semiconductor EDS systems. So far, their range of application is limited due to their comparably small size and low count rate. We present data on the development of superconducting tunnel junction (STJ) detector arrays to address both of these issues. A single STJ detector has a resolution around 10 eV below 1 keV and can be operated at count rates of order 10,000 counts/s. We show that the simultaneous operation of several STJ detectors does not diminish their energy resolution significantly, while increasing the detector area and the maximum count rate by a factor given by the total number of independent channels.

  15. Fundamentals of energy dispersive X-ray analysis

    CERN Document Server

    Russ, John C; Kiessling, R; Charles, J

    1984-01-01

    Fundamentals of Energy Dispersive X-ray Analysis provides an introduction to the fundamental principles of dispersive X-ray analysis. It presents descriptions, equations, and graphs to enable the users of these techniques to develop an intuitive and conceptual image of the physical processes involved in the generation and detection of X-rays. The book begins with a discussion of X-ray detection and measurement, which is accomplished by one of two types of X-ray spectrometer: energy dispersive or wavelength dispersive. The emphasis is on energy dispersive spectrometers, given their rather wid

  16. Energy harvesting using AC machines with high effective pole count

    Science.gov (United States)

    Geiger, Richard Theodore

    In this thesis, ways to improve the power conversion of rotating generators at low rotor speeds in energy harvesting applications were investigated. One method is to increase the pole count, which increases the generator back-emf without also increasing the I2R losses, thereby increasing both torque density and conversion efficiency. One machine topology that has a high effective pole count is a hybrid "stepper" machine. However, the large self inductance of these machines decreases their power factor and hence the maximum power that can be delivered to a load. This effect can be cancelled by the addition of capacitors in series with the stepper windings. A circuit was designed and implemented to automatically vary the series capacitance over the entire speed range investigated. The addition of the series capacitors improved the power output of the stepper machine by up to 700%. At low rotor speeds, with the addition of series capacitance, the power output of the hybrid "stepper" was more than 200% that of a similarly sized PMDC brushed motor. Finally, in this thesis a hybrid lumped parameter / finite element model was used to investigate the impact of number, shape and size of the rotor and stator teeth on machine performance. A typical off-the-shelf hybrid stepper machine has significant cogging torque by design. This cogging torque is a major problem in most small energy harvesting applications. In this thesis it was shown that the cogging and ripple torque can be dramatically reduced. These findings confirm that high-pole-count topologies, and specifically the hybrid stepper configuration, are an attractive choice for energy harvesting applications.

  17. Energy intake estimation from counts of chews and swallows.

    Science.gov (United States)

    Fontana, Juan M; Higgins, Janine A; Schuckers, Stephanie C; Bellisle, France; Pan, Zhaoxing; Melanson, Edward L; Neuman, Michael R; Sazonov, Edward

    2015-02-01

    Current, validated methods for dietary assessment rely on self-report, which tends to be inaccurate, time-consuming, and burdensome. The objective of this work was to demonstrate the suitability of estimating energy intake using individually-calibrated models based on Counts of Chews and Swallows (CCS models). In a laboratory setting, subjects consumed three identical meals (training meals) and a fourth meal with different content (validation meal). Energy intake was estimated by four different methods: weighed food records (gold standard), diet diaries, photographic food records, and CCS models. Counts of chews and swallows were measured using wearable sensors and video analysis. Results for the training meals demonstrated that CCS models presented the lowest reporting bias and a lower error as compared to diet diaries. For the validation meal, CCS models showed reporting errors that were not different from the diary or the photographic method. The increase in error for the validation meal may be attributed to differences in the physical properties of foods consumed during training and validation meals. However, this may be potentially compensated for by including correction factors into the models. This study suggests that estimation of energy intake from CCS may offer a promising alternative to overcome limitations of self-report. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Improvement in the energy resolving capabilities of photon counting detectors

    Science.gov (United States)

    Kang, D.; Lim, K. T.; Park, K.; Cho, G.

    2016-12-01

    Patterned pixel array was proposed to increase the number of energy bins in a single pixel of photon counting detectors without adding more comparators and counters. The pixels were grouped into four different types and each pixel has a common threshold and a specific threshold assigned to each pixel type. The common threshold in every pixel records the total number of incident photons regardless of its pixel type and the specific thresholds classify incident photon energies. The patterned pixel array was evaluated with the pinhole gamma camera system based on the XRI-UNO detector flip-chip bonded with a 1mm thick CdTe sensor. The experimental data was acquired with time-over-threshold mode to avoid the charge sharing problem. The shared total charges created by one photon can be found by summing all pixels within the cluster. To correct the different response to the same energy of photon, the energy calibration of the time-over-threshold value was perfomed independently depending on the cluster size. The time-over-threshold values were separated into two energy bins since we assumed that each pixel has two thresholds. Although each pixel has only two thresholds, five images from different energy windows were obtained by sharing the spectal information from four adjacent pixels. Thus, degradation of the spatial resolution in the image occured in each energy window. The image of the entire energy, however, was not degraded since all four different types of pixels have a common threshold just above the noise level. In addition, the number of steps for the threshold scan method can be drastically reduced with the increased number of effective thresholds in a single pixel.

  19. Electromagnetic Energy Momentum Tensor in a Spatially Dispersive Medium

    CERN Document Server

    Fietz, Chris

    2016-01-01

    We derive a generalized Minkowski Energy Momentum Tensor for a monochromatic wave in a lossless medium exhibiting temporal and spatial dispersion. The Energy Momentum Tensor is then related to familiar expressions for energy density and energy flux, as well as new expressions for momentum density and momentum flux.

  20. A continuum solvent model of the multipolar dispersion solvation energy.

    Science.gov (United States)

    Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W

    2013-08-15

    The dispersion energy is an important contribution to the total solvation energies of ions and neutral molecules. Here, we present a new continuum model calculation of these energies, based on macroscopic quantum electrodynamics. The model uses the frequency dependent multipole polarizabilities of molecules in order to accurately calculate the dispersion interaction of a solute particle with surrounding water molecules. It includes the dipole, quadrupole, and octupole moment contributions. The water is modeled via a bulk dielectric susceptibility with a spherical cavity occupied by the solute. The model invokes damping functions to account for solute-solvent wave function overlap. The assumptions made are very similar to those used in the Born model. This provides consistency and additivity of electrostatic and dispersion (quantum mechanical) interactions. The energy increases in magnitude with cation size, but decreases slightly with size for the highly polarizable anions. The higher order multipole moments are essential, making up more than 50% of the dispersion solvation energy of the fluoride ion. This method provides an accurate and simple way of calculating the notoriously problematic dispersion contribution to the solvation energy. The result establishes the importance of using accurate calculations of the dispersion energy for the modeling of solvation.

  1. Modelling the dispersion energy for Van der Waals complexes

    CERN Document Server

    Sanz-Garcia, A

    2002-01-01

    Strictly ab initio calculations of the dispersion energy are unfeasible in practice but for the smallest systems. A sensible alternative is to model the dispersion contribution through a damped multipolar expansion. This thesis proposes to represent the dispersion energy by means of a non-empirical, atom-atom model using damping functions scaled from 'exact' results for one electron-one electron systems. We start by investigating the scalability of ab initio calculated damping functions for closed-shell atom-atom dimers. Ab initio scaling parameters are employed to assess the quality of the damping functions yielded by a predictor scheme based on the charge overlap between the interacting monomers. The investigation of the scaling properties is extended to atom-linear molecule systems, focusing on the dependence on orientation of the short-range dispersion energy and how to account for it using isotropic damping parameters. We study the possibilities of an 'atomic' (multicentre) representation of the dispersi...

  2. Energy dispersive analysis in the TEM

    Directory of Open Access Journals (Sweden)

    Neil Rowlands

    2010-01-01

    Full Text Available Large area silicon drift detectors have been very successful as an analytical tool when used in conjunction with the scanning electron microscope (SEM. Sensors with detectors of up to 80mm2 have been employed for such tasks as fast area mapping, linescans, fast quantitative analysis and analysis of nanoparticles in SEMs at low accelerating voltages. Thin samples may also be analysed in scanning transmission (STEM mode in high resolution field emission SEMs. In this case the large sensor area improves the collection efficiency improving the X-ray count rate significantly. The use of these detectors for analysis in the analytical transmission electron microscope (TEM offers certain advantages over traditional liquid nitrogen cooled Si(Li detectors while also increasing solid angle for improved signal acquisition.

  3. Energy prices, technological knowledge and green energy innovation. A dynamic panel analysis of patent counts

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, Juergen; Wetzel, Heike [Koeln Univ. (Germany). Dept. of Economics; Koeln Univ. (Germany). Energiewirtschaftliches Inst.

    2014-07-15

    We examine the effect of energy prices and technological knowledge on innovation in green energy technologies. In doing so, we consider both demand-pull effects, which induce innovative activity by increasing the expected value of innovations, and technology-push effects, which drive innovative activity by extending the technological capability of an economy. Our analysis is conducted using patent data from the European Patent Office on a panel of 26 OECD countries over the period 1978-2009. Utilizing a dynamic count data model for panel data, we analyze 11 distinct green energy technologies. Our results indicate that the existing knowledge stock is a significant driver of green energy innovation for all technologies. Furthermore, the results suggest that energy prices have a positive impact on innovation for some but not all technologies and that the e.ect of energy prices and technological knowledge on green energy innovation becomes more pronounced after the Kyoto protocol agreement in 1997.

  4. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    Science.gov (United States)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 μm2 was fabricated by using a 6-metal 1-poly 0.18 μm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  5. Integrated assessment of dispersed energy resources deployment

    Energy Technology Data Exchange (ETDEWEB)

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  6. Geometrical origin of the energy-momentum dispersion relation

    CERN Document Server

    Watcharangkool, Apimook

    2016-01-01

    We investigate a link between the energy-momentum dispersion relation and the spectral distance in the context of a Lorentzian almost-commutative spectral geometry, defined by the product of Minkowski spacetime and an internal discrete noncommutative space. Using the causal structure, the almost-commutative manifold can be identified with a pair of four-dimensional Minkowski spacetimes embedded in a five-dimensional Minkowski geometry. Considering fermions travelling within the light cone of the ambient five-dimensional spacetime, we then derive the energy-momentum dispersion relation.

  7. Noncommutative geometrical origin of the energy-momentum dispersion relation

    Science.gov (United States)

    Watcharangkool, A.; Sakellariadou, M.

    2017-01-01

    We investigate a link between the energy-momentum dispersion relation and the spectral distance in the context of a Lorentzian almost-commutative spectral geometry, defined by the product of Minkowski spacetime and an internal discrete noncommutative space. Using the causal structure, the almost-commutative manifold can be identified with a pair of four-dimensional Minkowski spacetimes embedded in a five-dimensional Minkowski geometry. Considering fermions traveling within the light cone of the ambient five-dimensional spacetime, we then derive the energy-momentum dispersion relation.

  8. Optimum Resolution in X-Ray Energy-Dispersive Diffractometry

    DEFF Research Database (Denmark)

    Buras, B.; Niimura, N.; Staun Olsen, J.

    1978-01-01

    The resolution problem in X-ray energy-dispersive diffractometry is discussed. It is shown that for a given characteristic of the solid-state detector system and a given range of interplanar spacings, an optimum scattering angle can be easily found for any divergence of the incident and scattered...

  9. An energy dispersive time resolved liquid surface reflectometer

    CERN Document Server

    Garrett, R F; King, D J; Dowling, T L; Fullagar, W

    2001-01-01

    Two designs are presented for an energy dispersive liquid surface reflectometer with time resolution in the milli-second domain. The designs utilise rotating crystal and Laue analyser optics respectively to energy analyse a pink synchrotron X-ray beam after reflection from a liquid surface. Some performance estimates are presented, along with results of a test experiment using a laboratory source and solid state detector.

  10. Counting Extra Dimensions Magnetic Cherenkov Radiation from High Energy Neutrinos

    CERN Document Server

    Domokos, Gabor K; Kövesi-Domokos, S; Erdas, Andrea

    2003-01-01

    In theories which require a space of dimension d > 4, there is a natural mechanism of suppressing neutrino masses: while Standard Model fields are confined to a 3-brane, right handed neutrinos live in the bulk. Due to Kaluza-Klein excitations, the effective magnetic moments of neutrinos are enhanced. The effective magnetic moment is a monotonically growing function of the energy of the neutrino: consequently, high energy neutrinos can emit observable amounts of magnetic Cherenkov radiation. By observing the energy dependence of the magnetic Cherenkov radiation, one may be able to determine the number of compactified dimensions.

  11. Distributed-dispersed renewable energy systems and novel control strategies

    Science.gov (United States)

    Aljankawey, Abdualah S.

    Renewable green-energy systems are re-emerging as viable economic alternative sources of environmentally safe power generation in place of conventional fossil fuels. In terms of power quality and safety, this research investigates a number of renewable green-energy (wind, photovoltaic and fuel cells) interface schemes and control strategies that ensure maximum energy utilization, voltage and frequency stabilization and minimum impact on the host electric grid systems. The research key objectives are to study efficient and robust renewable energy converter schemes with associated control strategies and validate their operations for both stand-alone and electric utility grid interfacing. The research work investigates both stand-alone and grid connected renewable green-energy utilization schemes with a number of power electronic converter topologies and robust control schemes for both dispersed and hybrid renewable energy systems. Different sample study systems and control strategies are digitally simulated and fully validated using the MATLAB-Simulink-SimPower environment.

  12. Ab initio Calculation of Intermolecular Dispersion Energy and Induction Energy of Nitramide Dimer

    Institute of Scientific and Technical Information of China (English)

    SONG, Hua-Jie(宋华杰); XIAO, He-Ming(肖鹤鸣); DONG, Hai-Shan(董海山); HUANG, Yi-Gang(黄奕刚); LONG, Xin-Ping(龙新平); TANG, Yei-Peng(汤业鹏)

    2004-01-01

    The dispersion energies, induction energies and their exchange counterparts (exchange-dispersion and exchange-induction energies) between two interacting nitramide molecules at several separations are derived based upon symmetry-adapted perturbation theory (SAPT). The results show that (1) the effect of intramonomer electron correlation on dispersion energies and induction energies for nitramide dimer system is remarkable especially in the region near the van der Waals minimum distance (0.42 nm). (2) At smaller separations the dispersion energies and the induction energies are largely quenched by their exchange counterparts, and this case in induction interaction is much more remarkable than in dispersion interaction. (3) Since at shorter distances there exists the strong short-range interaction due to electron transfer which quickly decays and even disappears at larger separations, the two different R-dependency formulae of induction energies were found: one is ca. R-12.7 at short distances, and the other ca. R-7.0 at large separations. The latter R-dependency is similar to that (ca. R-7.2) of dispersion. (4) In the case of strong polar interaction existing in nitramide dimer, the "true" induction correlation terms of higher order than tE(22)ind may be important.

  13. Energy Dispersive Spectrometry and Quantitative Analysis Short Course. Introduction to X-ray Energy Dispersive Spectrometry and Quantitative Analysis

    Science.gov (United States)

    Carpenter, Paul; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    This course will cover practical applications of the energy-dispersive spectrometer (EDS) to x-ray microanalysis. Topics covered will include detector technology, advances in pulse processing, resolution and performance monitoring, detector modeling, peak deconvolution and fitting, qualitative and quantitative analysis, compositional mapping, and standards. An emphasis will be placed on use of the EDS for quantitative analysis, with discussion of typical problems encountered in the analysis of a wide range of materials and sample geometries.

  14. An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons

    Science.gov (United States)

    Kilbourne, Caroline

    2010-01-01

    High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.

  15. Multipole expansion of the retarded interatomic dispersion energy: evaluation in the spherical-tensor formalism

    NARCIS (Netherlands)

    Michels, M.A.J.; Suttorp, L.G.

    1972-01-01

    The multipole expansion of the retarded interatomic dispersion energy is evaluated in the spherical-tensor formalism. The multipole expansion of the electrostatic dispersion energy follows as a special case.

  16. [Application of the racial algorithm in energy dispersive X-ray fluorescence overlapped spectrum analysis].

    Science.gov (United States)

    Zeng, Guo-Qiang; Luo, Yao-Yao; Ge, Liang-Quan; Zhang, Qing-Xian; Gu, Yi; Cheng, Feng

    2014-02-01

    In the energy dispersive X-ray fluorescence spectrum analysis, scintillation detector such as NaI (Tl) detector usually has a low energy resolution at around 8%. The low energy resolution causes problems in spectral data analysis especially in the high background and low counts condition, it is very limited to strip the overlapped spectrum, and the more overlapping the peaks are, the more difficult to peel the peaks, and the qualitative and quantitative analysis can't be carried out because we can't recognize the peak address and peak area. Based on genetic algorithm and immune algorithm, we build a new racial algorithm which uses the Euclidean distance as the judgment of evolution, the maximum relative error as the iterative criterion to be put into overlapped spectrum analysis, then we use the Gaussian function to simulate different overlapping degrees of the spectrum, and the racial algorithm is used in overlapped peak separation and full spectrum simulation, the peak address deviation is in +/- 3 channels, the peak area deviation is no more than 5%, and it is proven that this method has a good effect in energy dispersive X-ray fluorescence overlapped spectrum analysis.

  17. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study.

    Science.gov (United States)

    Cho, H-M; Ding, H; Ziemer, B P; Molloi, S

    2014-12-07

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  18. Acoustoelectric effect in graphene with degenerate energy dispersion

    Science.gov (United States)

    Dompreh, K. A.; Mensah, N. G.; Mensah, S. Y.

    2017-01-01

    Acoustoelectric current (jac) in Free-Standing Graphene (FSG) having degenerate energy dispersion at low temperatures T ≪TBG (TBG is the Block-Gruneisen temperature) was studied theoretically. We considered electron interaction with in-plain acoustic phonons in the hypersound regime (sound vibration in the range 109 -1012 Hz). The obtained expression for jac was numerically analyzed for various temperatures (T) and frequencies (ωq) and graphically presented. The non-linear dependence of jac on ωq varied with temperature. This qualitatively agreed with an experimentally obtained result which deals with temperature dependent acoustoelectric current in graphene [21].

  19. Calibration of the Accuscan II IN Vivo System for High Energy Lung Counting

    Energy Technology Data Exchange (ETDEWEB)

    Ovard R. Perry; David L. Georgeson

    2011-07-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for high energy lung counting. The source used for the calibration was a NIST traceable lung set manufactured at the University of Cincinnati UCLL43AMEU & UCSL43AMEU containing Am-241 and Eu-152 with energies from 26 keV to 1408 keV. The lung set was used in conjunction with a Realistic Torso phantom. The phantom was placed on the RMC II counting table (with pins removed) between the v-ridges on the backwall of the Accuscan II counter. The top of the detector housing was positioned perpendicular to the junction of the phantom clavicle with the sternum. This position places the approximate center line of the detector housing with the center of the lungs. The energy and efficiency calibrations were performed using a Realistic Torso phantom (Appendix I) and the University of Cincinnati lung set. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for high energy lung counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  20. Specific Energies for the Collisional Dispersion of Gravitational Aggregates

    Science.gov (United States)

    Campo Bagatin, Adriano; Davo, M.; Richardson, D. C.

    2009-09-01

    One of the most interesting problems in planetology is the one concerning the internal structure of asteroids and comets. Despite of the available experimental results about the fragmentation of cohesive bodies the size of a soccer ball, and the theoretical and numerical studies extending these results to larger objects, little is known about the response to collisions by objects that formed by the gravitational re-accumulation following shattering events. We are developing a systematic study of the effects of collisions on rocky and icy gravitational aggregates (GA) between 100 m and 100 km in size, under different conditions (mass and texture of targets and projectiles, impact angle, momentum of collision, rotation of target). The study is based on a numerical model of the N-body problem (PKDGRAV code). We present our results on the dependence of the threshold specific energy for the dispersion of targets (Q*D) as a function of their mass, obtaining the corresponding scaling law. All GA are made up by the same number of particles. We have chosen 7 different targets, scaling a factor of 3 in mass and we performed a number of head-on collisions on each target mass with different projectile masses. In this way, we are able to relate the impact energy with the fraction of mass reaccumulated after impacts (f_R), and derive the threshold specific energy for dispersion, Q*_D, by interpolating the corresponding fitted linear relationship. As the result of every single collision partly depends on impact location, a number of collisions is performed with a same target and projectile, changing the direction of impact (not the impact angle). We take the average and standard deviation of the corresponding mass fraction of each set of collisions. Finally a power law relationship between Q*_D and size is derived. The main results of this study are presented.

  1. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry

    Science.gov (United States)

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-01-01

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red–green–blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications. PMID:28374801

  2. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry.

    Science.gov (United States)

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-04-04

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red-green-blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications.

  3. All-order dispersion cancellation and energy-time entangled state.

    Science.gov (United States)

    Ryu, Jinsoo; Cho, Kiyoung; Oh, Cha-Hwan; Kang, Hoonsoo

    2017-01-23

    Dispersion cancellation with an energy-time entangled photon pair in Hong-Ou-Mandel (HOM) interference is one phenomenon that reveals the nonclassical nature of the entangled photon pair. This phenomenon has been observed in materials with very weak dispersions. If the higher-order dispersion coefficient is non-negligible, then the experiment must be modified to realize dispersion cancellation. All-order dispersion cancellation using balanced dispersion was suggested by Steinberg. However, the same phenomenon is expected to occur even if a photon pair is not entangled. This behaviour can be explained by path indistinguishability with identical dispersion. To achieve an all-order dispersion experiment that cannot be explained classically, we modified the experiment and performed another all-order dispersion cancellation experiment that cannot be explained by identical dispersion. This is the first demonstration of nonclassical all-order dispersion cancellation.

  4. Statistical Measurement of the Gamma-ray Source-count Distribution as a Function of Energy

    CERN Document Server

    Zechlin, Hannes-S; Donato, Fiorenza; Fornengo, Nicolao; Regis, Marco

    2016-01-01

    Statistical properties of photon count maps have recently been proven as a new tool to study the composition of the gamma-ray sky with high precision. We employ the 1-point probability distribution function of 6 years of Fermi-LAT data to measure the source-count distribution dN/dS and the diffuse components of the high-latitude gamma-ray sky as a function of energy. To that aim, we analyze the gamma-ray emission in five adjacent energy bands between 1 GeV and 171 GeV. It is demonstrated that the source-count distribution as a function of flux is compatible with a broken power law up to energies of 50 GeV. The index below the break is between 1.95 and 2.0. For higher energies, a simple power law fits the data, with an index of 2.2^{+0.7}_{-0.3} in the energy band between 50 GeV and 171 GeV. Upper limits on further possible breaks as well as the angular power of unresolved sources are derived. We find that point source populations probed by this method can explain 83^{+7}_{-13}% (81^{+52}_{-19}%) of the extrag...

  5. Dispersal

    Science.gov (United States)

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  6. A dynamic attenuator improves spectral imaging with energy-discriminating, photon counting detectors.

    Science.gov (United States)

    Hsieh, Scott S; Pelc, Norbert J

    2015-03-01

    Energy-discriminating, photon counting (EDPC) detectors have high potential in spectral imaging applications but exhibit degraded performance when the incident count rate approaches or exceeds the characteristic count rate of the detector. In order to reduce the requirements on the detector, we explore the strategy of modulating the X-ray flux field using a recently proposed dynamic, piecewise-linear attenuator. A previous paper studied this modulation for photon counting detectors but did not explore the impact on spectral applications. In this work, we modeled detection with a bipolar triangular pulse shape (Taguchi et al., 2011) and estimated the Cramer-Rao lower bound (CRLB) of the variance of material selective and equivalent monoenergetic images, assuming deterministic errors at high flux could be corrected. We compared different materials for the dynamic attenuator and found that rare earth elements, such as erbium, outperformed previously proposed materials such as iron in spectral imaging. The redistribution of flux reduces the variance or dose, consistent with previous studies on benefits with conventional detectors. Numerical simulations based on DICOM datasets were used to assess the impact of the dynamic attenuator for detectors with several different characteristic count rates. The dynamic attenuator reduced the peak incident count rate by a factor of 4 in the thorax and 44 in the pelvis, and a 10 Mcps/mm (2) EDPC detector with dynamic attenuator provided generally superior image quality to a 100 Mcps/mm (2) detector with reference bowtie filter for the same dose. The improvement is more pronounced in the material images.

  7. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    CERN Document Server

    Zang, A; Ballabriga, R; Bisello, F; Campbell, M; Celi, J C; Fauler, A; Fiederle, M; Jensch, M; Kochanski, N; Llopart, X; Michel, N; Mollenhauer, U; Ritter, I; Tennert, F; Wölfel, S; Wong, W; Michel, T

    2015-01-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation wa...

  8. Full-counting statistics of energy transport of molecular junctions in the polaronic regime

    Science.gov (United States)

    Tang, Gaomin; Yu, Zhizhou; Wang, Jian

    2017-08-01

    We investigate the full-counting statistics (FCS) of energy transport carried by electrons in molecular junctions for the Anderson-Holstein model in the polaronic regime. Using the two-time quantum measurement scheme, the generating function (GF) for the energy transport is derived and expressed as a Fredholm determinant in terms of Keldysh nonequilibrium Green’s function in the time domain. Dressed tunneling approximation is used in decoupling the phonon cloud operator in the polaronic regime. This formalism enables us to analyze the time evolution of energy transport dynamics after a sudden switch-on of the coupling between the dot and the leads towards the stationary state. The steady state energy current cumulant GF in the long time limit is obtained in the energy domain as well. Universal relations for steady state energy current FCS are derived under a finite temperature gradient with zero bias and this enabled us to express the equilibrium energy current cumulant by a linear combination of lower order cumulants. The behaviors of energy current cumulants in steady state under temperature gradient and external bias are numerically studied and explained. The transient dynamics of energy current cumulants is numerically calculated and analyzed. Universal scaling of normalized transient energy cumulants is found under both temperature gradient and external bias.

  9. Differences in the sublimation energy of benzene and hexahalogenbenzenes are caused by dispersion energy.

    Science.gov (United States)

    Trnka, Jakub; Sedlak, Robert; Kolář, Michal; Hobza, Pavel

    2013-05-23

    The crystals of benzene and hexahalogenbenzenes have been studied by means of the density functional theory augmented by an empirical dispersion correction term as well as by the symmetry-adapted perturbation theory. In order to elucidate the nature of noncovalent binding, pairwise interactions have been investigated. It has been demonstrated that the structures of dimers with the highest stabilization energy differ notably along the crystals. It has been shown that the differences in the experimental sublimation energies might be attributed to the dispersion interaction. To our surprise, the dihalogen bonding observed in the hexachloro- and hexabromobenzenes plays a rather minor role in structure stabilization because it is energetically comparable with the other binding motifs. However, the dihalogen bond is by far the most frequent binding motif in hexachloro- and hexabromobenzenes.

  10. Composition measurement in substitutionally disordered materials by atomic resolution energy dispersive X-ray spectroscopy in scanning transmission electron microscopy.

    Science.gov (United States)

    Chen, Z; Taplin, D J; Weyland, M; Allen, L J; Findlay, S D

    2016-10-21

    The increasing use of energy dispersive X-ray spectroscopy in atomic resolution scanning transmission electron microscopy invites the question of whether its success in precision composition determination at lower magnifications can be replicated in the atomic resolution regime. In this paper, we explore, through simulation, the prospects for composition measurement via the model system of AlxGa1-xAs, discussing the approximations used in the modelling, the variability in the signal due to changes in configuration at constant composition, and the ability to distinguish between different compositions. Results are presented in such a way that the number of X-ray counts, and thus the expected variation due to counting statistics, can be gauged for a range of operating conditions.

  11. Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector.

    Science.gov (United States)

    Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-09-21

    Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the

  12. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Science.gov (United States)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  13. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Y., E-mail: cycjty@sophie.q.t.u-tokyo.ac.jp [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Shimazoe, K.; Yan, X. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ueda, O.; Ishikura, T. [Fuji Electric Co., Ltd., Fuji, Hino, Tokyo 191-8502 (Japan); Fujiwara, T. [National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Uesaka, M.; Ohno, M. [Nuclear Professional School, the University of Tokyo, 2-22 Shirakata-shirane, Tokai, Ibaraki 319-1188 (Japan); Tomita, H. [Department of Quantum Engineering, Nagoya University, Furo, Chikusa, Nagoya 464-8603 (Japan); Yoshihara, Y. [Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Takahashi, H. [Department of Bioengineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Nuclear Engineering and Management, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2016-09-11

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  14. Correlation energy and dispersion interaction in the ab initio potential energy curve of the neon dimer.

    Science.gov (United States)

    Bytautas, Laimutis; Ruedenberg, Klaus

    2008-06-01

    A close approximation to the empirical potential energy curve of the neon dimer is obtained by coupled-cluster singles plus doubles plus noniterative triples calculations by using nonaugmented correlation-consistent basis sets without counterpoise corrections and complementing them by three-term extrapolations to the complete basis set limit. The potential energy is resolved into a self-consistent-field Hartree-Fock contribution and a correlation contribution. The latter is shown to decay in the long-range region in accordance with the empirical dispersion expansion.

  15. ERICA: an energy resolving photon counting readout ASIC for X-ray in-line cameras

    Science.gov (United States)

    Macias-Montero, J.-G.; Sarraj, M.; Chmeissani, M.; Moore, T.; Casanova, R.; Martinez, R.; Puigdengoles, C.; Prats, X.; Kolstein, M.

    2016-12-01

    We present ERICA (Energy Resolving Inline X-ray Camera) a photon-counting readout ASIC, with 6 energy bins. The ASIC is composed of a matrix of 8 × 20 pixels controlled by a global digital controller and biased with 7 independent digital to analog converters (DACs) and a band-gap current reference. The pixel analog front-end includes a charge sensitive amplifier with 16 mV/ke- gain and dynamic range of 45 ke-. ERICA has programmable pulse width, an adjustable constant current feedback resistor, a linear test pulse generator, and six discriminators with 6-bit local threshold adjustment. The pixel digital back-end includes the digital controller, 8 counters of 8-bit depth, half-full buffer flag for any of the 8 counters, a 74-bit shadow/shift register, a 74-bit configuration latch, and charge sharing compensation processing to perform the energy classification and counting operations of every detected photon in 1 μ s. The pixel size is 330 μm × 330 μm and its average consumption is 150 μW. Implemented in TSMC 0.25 μm CMOS process, the ASIC pixel's equivalent noise charge (ENC) is 90 e- RMS connected to a 1 mm thickness matching CdTe detector biased at -300 V with a total leakage current of 20 nA.

  16. Dual energy CT kidney stone differentiation in photon counting computed tomography

    Science.gov (United States)

    Gutjahr, R.; Polster, C.; Henning, A.; Kappler, S.; Leng, S.; McCollough, C. H.; Sedlmair, M. U.; Schmidt, B.; Krauss, B.; Flohr, T. G.

    2017-03-01

    This study evaluates the capabilities of a whole-body photon counting CT system to differentiate between four common kidney stone materials, namely uric acid (UA), calcium oxalate monohydrate (COM), cystine (CYS), and apatite (APA) ex vivo. Two different x-ray spectra (120 kV and 140 kV) were applied and two acquisition modes were investigated. The macro-mode generates two energy threshold based image-volumes and two energy bin based image-volumes. In the chesspattern-mode four energy thresholds are applied. A virtual low energy image, as well as a virtual high energy image are derived from initial threshold-based images, while considering their statistically correlated nature. The energy bin based images of the macro-mode, as well as the virtual low and high energy image of the chesspattern-mode serve as input for our dual energy evaluation. The dual energy ratio of the individually segmented kidney stones were utilized to quantify the discriminability of the different materials. The dual energy ratios of the two acquisition modes showed high correlation for both applied spectra. Wilcoxon-rank sum tests and the evaluation of the area under the receiver operating characteristics curves suggest that the UA kidney stones are best differentiable from all other materials (AUC = 1.0), followed by CYS (AUC ≍ 0.9 compared against COM and APA). COM and APA, however, are hardly distinguishable (AUC between 0.63 and 0.76). The results hold true for the measurements of both spectra and both acquisition modes.

  17. Trimming the threshold dispersion below 10 e-rms in a large area readout IC working in a single photon counting mode

    Science.gov (United States)

    Kmon, P.; Maj, P.; Gryboś, P.; Szczygieł, R.

    2016-01-01

    We present a new method of an in-pixel threshold dispersion correction implemented in a prototype readout integrated circuit (IC) operating in a single photon counting mode. The new threshold correction method was implemented in a readout IC of area 9.6× 14.9 mm2 containing 23552 square pixels with the pitch of 75 μm designed and fabricated in CMOS 130 nm technology. Each pixel of the IC consists of a charge sensitive amplifier, a shaper, two discriminators, two 14-bit counters and a low-area trim DACs for threshold correction. The user can either control the range of the trim DAC globally for all the pixels in the integrated circuit or modify the trim DACs characteristics locally in each pixel independently. Using a simulation tool based on the Monte-Carlo methods, we estimated how much we could improve the offset trimming by increasing the number of bits in the trim DACs or implementing additional bits in a pixel to modify the characteristics of the trim DACs. The measurements of our IC prototype show that it is possible to reduce the effective threshold dispersion in large-area single-photon counting chips below 10 electrons rms.

  18. High-energy pulse compressor using self-defocusing spectral broadening in anomalously dispersive media

    DEFF Research Database (Denmark)

    Bache, Morten; Zhou, Binbin

    2014-01-01

    A new high-energy pulse compressor uses self-defocusing spectral broadening in anomalously dispersive quadratic nonlinear crystals, followed by positive group-delay-dispersion compensation. Compression to sub-50 fs is possible from Joule-class 1.03 µm femtosecond amplifiers in large-aperture KDP....

  19. Certification of reference materials by energy-dispersive x-ray fluorescence spectrometry?

    DEFF Research Database (Denmark)

    Christensen, Leif Højslet; Heydorn, Kaj

    1985-01-01

    This paper studies the precision and accuracy that can be achieved using energy-dispersive x-ray fluorescence spectrometry for the determination of total sulphur content in BCR 38 Fly Ash issued by the European Community Bureau of Reference....

  20. Dispersion Analysis of Gravity Waves in Fluid Media Discretized by Energy-Orthogonal Finite Elements

    Science.gov (United States)

    José Brito Castro, Francisco

    2014-11-01

    This article studies the dispersion of gravity waves in fluid media discretized by the finite element method. The element stiffness matrix is split into basic and higher-order components which are respectively related to the mean and deviatoric components of the gradient of displacement potential. This decomposition is applied to the kinetic energy. The dispersion analysis yields a correlation between the higher-order kinetic energy and the kinetic energy error. The use of this correlation as a reference to apply the higher-order energy as an error indicator for the sloshing modes computed by the finite element method is explored.

  1. Numerical Simulation of Energy Saving Potential in Dispersing Process of Blasted Smoke in Mines

    Institute of Scientific and Technical Information of China (English)

    Ge Zhang; Yingying Hong; Qinhai Yang; Hongguang Ji; Guilin Lv

    2015-01-01

    The dispersing process of the blasted smoke in underground mines by ventilation is very important for the safety of personnel, and its energy consumption is also worthy of concern. In this study, the impact of supply air flow rate on the decay process of harmful gases and fan energy, and the role of harmful gases buried by blasted pile in the smoke dispersing process is analyzed with three⁃dimensional numerical simulation. According to the results, air flow facilitates quick smoke dispersion and the gas emits from the blasted pile is only significant at the beginning of ventilation. It is thus recommended that large amount of air supply is taken to disperse the smoke quickly until the concentration of harmful gases reaches relevant standards, and reduce the amount of air in the remain time with frequency conversion technology to save energy. In the given study, 12 m/s air flow rate is taken for dispersing smoke and 3 m/s air flow rate is taken for the waiting time. The energy consumption for ventilation is reduced by about 50%. In addition, due to the gases in the blasted pile remains very high concentration after the dispersing process, it is recommended to keep suitable amount of ventilation in the consequent process.

  2. SU-E-I-77: A Noise Reduction Technique for Energy-Resolved Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lam Ng, A; Ding, H; Cho, H; Molloi, S [University of California, Irvine, CA (United States)

    2014-06-01

    Purpose: Finding the optimal energy threshold setting for an energy-resolved photon-counting detector has an important impact on the maximization of contrast-to-noise-ratio (CNR). We introduce a noise reduction method to enhance CNR by reducing the noise in each energy bin without altering the average gray levels in the projection and image domains. Methods: We simulated a four bin energy-resolved photon-counting detector based on Si with a 10 mm depth of interaction. TASMIP algorithm was used to simulate a spectrum of 65 kVp with 2.7 mm Al filter. A 13 mm PMMA phantom with hydroxyapatite and iodine at different concentrations (100, 200 and 300 mg/ml for HA, and 2, 4, and 8 mg/ml for Iodine) was used. Projection-based and Image-based energy weighting methods were used to generate weighted images. A reference low noise image was used for noise reduction purposes. A Gaussian-like weighting function which computes the similarity between pixels of interest was calculated from the reference image and implemented on a pixel by pixel basis for the noisy images. Results: CNR improvement compared to different methods (Charge-Integrated, Photon-Counting and Energy-Weighting) and after noise reduction was highly task-dependent. The CNR improvement with respect to the Charge-Integrated CNR for hydroxyapatite and iodine were 1.8 and 1.5, respectively. In each of the energy bins, the noise was reduced by approximately factor of two without altering their respective average gray levels. Conclusion: The proposed noise reduction technique for energy-resolved photon-counting detectors can significantly reduce image noise. This technique can be used as a compliment to the current energy-weighting methods in CNR optimization.

  3. Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids

    Science.gov (United States)

    Anatole von Lilienfeld, O.; Tkatchenko, Alexandre

    2010-06-01

    We present numerical estimates of the leading two- and three-body dispersion energy terms in van der Waals interactions for a broad variety of molecules and solids. The calculations are based on London and Axilrod-Teller-Muto expressions where the required interatomic dispersion energy coefficients, C6 and C9, are computed "on the fly" from the electron density. Inter- and intramolecular energy contributions are obtained using the Tang-Toennies (TT) damping function for short interatomic distances. The TT range parameters are equally extracted on the fly from the electron density using their linear relationship to van der Waals radii. This relationship is empiricially determined for all the combinations of He-Xe rare gas dimers, as well as for the He and Ar trimers. The investigated systems include the S22 database of noncovalent interactions, Ar, benzene and ice crystals, bilayer graphene, C60 dimer, a peptide (Ala10), an intercalated drug-DNA model [ellipticine-d(CG)2], 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and 12 molecular crystal polymorphs from crystal structure prediction blind test studies. The two- and three-body interatomic dispersion energies are found to contribute significantly to binding and cohesive energies, for bilayer graphene the latter reaches 50% of experimentally derived binding energy. These results suggest that interatomic three-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.

  4. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior

    Directory of Open Access Journals (Sweden)

    Jeong Seok Lee

    2016-04-01

    Full Text Available Fast and accurate energy calibration of photon counting spectral detectors (PCSDs is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM CdTe PCSD based on Medipix-2 shows some non-convergent behaviors in turning off the detector elements when a high enough threshold is applied to the comparator that produces a binary photon count pulse. More specifically, the detector elements are supposed to stop producing photon count pulses once the threshold reaches a point of the highest photon energy determined by the tube voltage. However, as the x-ray exposure time increases, the threshold giving 50% of off pixels also increases without converging to a point. We established a method to take account of the non-convergent behavior in the energy calibration. With the threshold-to-photon energy mapping function established by the proposed method, we could better identify iodine component in a phantom consisting of iodine and other components.

  5. Energy storage and dispersion of surface acoustic waves trapped in a periodic array of mechanical resonators

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    2009-01-01

    It has been shown previously that surface acoustic waves can be efficiently trapped and slowed by steep ridges on a piezoelectric substrate, giving rise to two families of shear-horizontal and vertically polarized surface waves. The mechanisms of energy storage and dispersion are explored by using...... as resonators storing mechanical energy. These resonators are evanescently coupled by the surface. The dispersion diagram is presented and shows very low group velocities as the wave vector approaches the limit of the first Brillouin zone. ©2009 American Institute of Physics...

  6. Concepts for design of an energy management system incorporating dispersed storage and generation

    Science.gov (United States)

    Kirkham, H.; Koerner, T.; Nightingale, D.

    1981-04-01

    New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed.

  7. Concepts for design of an energy management system incorporating dispersed storage and generation

    Science.gov (United States)

    Kirkham, H.; Koerner, T.; Nightingale, D.

    1981-01-01

    New forms of generation based on renewable resources must be managed as part of existing power systems in order to be utilized with maximum effectiveness. Many of these generators are by their very nature dispersed or small, so that they will be connected to the distribution part of the power system. This situation poses new questions of control and protection, and the intermittent nature of some of the energy sources poses problems of scheduling and dispatch. Under the assumption that the general objectives of energy management will remain unchanged, the impact of dispersed storage and generation on some of the specific functions of power system control and its hardware are discussed.

  8. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors.

    Directory of Open Access Journals (Sweden)

    Qingsong Yang

    Full Text Available The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV. The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved.

  9. Spectral X-Ray CT Image Reconstruction with a Combination of Energy-Integrating and Photon-Counting Detectors.

    Science.gov (United States)

    Yang, Qingsong; Cong, Wenxiang; Xi, Yan; Wang, Ge

    2016-01-01

    The purpose of this paper is to develop an algorithm for hybrid spectral computed tomography (CT) which combines energy-integrating and photon-counting detectors. While the energy-integrating scan is global, the photon-counting scan can have a local field of view (FOV). The algorithm synthesizes both spectral data and energy-integrating data. Low rank and sparsity prior is used for spectral CT reconstruction. An initial estimation is obtained from the projection data based on physical principles of x-ray interaction with the matter, which provides a more accurate Taylor expansion than previous work and can guarantee the convergence of the algorithm. Numerical simulation with clinical CT images are performed. The proposed algorithm produces very good spectral features outside the FOV when no K-edge material exists. Exterior reconstruction of K-edge material can be partially achieved.

  10. Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent.

    Directory of Open Access Journals (Sweden)

    Tran T Huynh

    Full Text Available Carbon starvation has been shown to induce a massive dispersal event in biofilms of the opportunistic pathogen Pseudomonas aeruginosa; however, the molecular pathways controlling this dispersal response remain unknown. We quantified changes in the proteome of P. aeruginosa PAO1 biofilm and planktonic cells during glucose starvation by differential peptide-fingerprint mass-spectrometry (iTRAQ. In addition, we monitored dispersal photometrically, as a decrease in turbidity/opacity of biofilms pre-grown and starved in continuous flow-cells, in order to evaluate treatments (e.g. inhibitors CCCP, arsenate, chloramphenicol, L-serine hydroxamate and key mutants altered in biofilm development and dispersal (e.g. nirS, vfr, bdlA, rpoS, lasRrhlR, Pf4-bacteriophage and cyaA. In wild-type biofilms, dispersal started within five minutes of glucose starvation, was maximal after 2 h, and up to 60% of the original biomass had dispersed after 24 h of starvation. The changes in protein synthesis were generally not more than two fold and indicated that more than 100 proteins belonging to various classes, including carbon and energy metabolism, stress adaptation, and motility, were differentially expressed. For the different treatments, only the proton-ionophore CCCP or arsenate, an inhibitor of ATP synthesis, prevented dispersal of the biofilms. For the different mutants tested, only cyaA, the synthase of the intracellular second messenger cAMP, failed to disperse; complementation of the cyaA mutation restored the wild-type phenotype. Hence, the pathway for carbon starvation-induced biofilm dispersal in P. aeruginosa PAO1 involves ATP production via direct ATP synthesis and proton-motive force dependent step(s and is mediated through cAMP, which is likely to control the activity of proteins involved in remodeling biofilm cells in preparation for planktonic survival.

  11. Energy-efficient methane production from macroalgal biomass through chemo disperser liquefaction.

    Science.gov (United States)

    Tamilarasan, K; Kavitha, S; Rajesh Banu, J; Arulazhagan, P; Yeom, Ick Tae

    2017-03-01

    In this study, an effort has been made to reduce the energy cost of liquefaction by coupling a mechanical disperser with a chemical (sodium tripolyphosphate). In terms of the cost and specific energy demand of liquefaction, the algal biomass disintegrated at 12,000rpm for 30min, and an STPP dosage of about 0.04g/gCOD was chosen as an optimal parameter. Chemo disperser liquefaction (CDL) was found to be energetically and economically sustainable in terms of liquefaction, methane production, and net profit (15%, 0.14gCOD/gCOD, and 4 USD/Ton of algal biomass) and preferable to disperser liquefaction (DL) (10%, 0.11 gCOD/gCOD, and -475 USD/Ton of algal biomass). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Evaluating Chemical Dispersant Efficacy In An Experimental Wave Tank: 1, Dispersant Effectiveness As A Function Of Energy Dissipation Rate

    Science.gov (United States)

    Numerous laboratory test systems have been developed for the comparison of efficacy between various chemical oil dispersant formulations. However, for the assessment of chemical dispersant effectiveness under realistic sea state, test protocols are required to produce hydrodynam...

  13. A new NAMA framework for dispersed energy end-use sectors

    DEFF Research Database (Denmark)

    Cheng, Chia-Chin

    2010-01-01

    sectors make up the largest portions of energy consumption in developing countries. However, due to multiple barriers and lack of effective polices, energy efficiency in dispersed energy end-use sectors has not been effectively put into practice. The new NAMA framework described in this paper is designed......This paper presents a new approach for a nationally appropriate mitigation actions (NAMA) framework that can unlock the huge potential for greenhouse gas mitigation in dispersed energy end-use sectors in developing countries; specifically, the building sector and the industrial sector. These two...... investment projects. This is an essential step to achieve the global climate change mitigation target and support sustainable development in developing countries....

  14. Two and three-body interatomic dispersion energy contributions to binding in molecules and solids

    Science.gov (United States)

    von Lilienfeld, Anatole; Tkatchenko, Alexandre

    2010-03-01

    Numerical estimates of the leading two and three body dispersion energy terms in van der Waals (vdW) interactions are presented for a broad variety of molecules and solids. The calculations employ London and Axilrod-Teller-Muto expressions damped at short interatomic distances, where the required interatomic dispersion energy coefficients, C6 and C9, are computed from first-principles. The investigated systems include the S22 database of non-covalent interactions, benzene and ice crystals, bilayer graphene, fullerene dimer, a poly peptide (Ala10), an intercalated drug-DNA model (Ellipticine-d(CG)2), 42 DNA base pairs, a protein (DHFR, 2616 atoms), double stranded DNA (1905 atoms), and molecular crystals from a crystal structure blind test. We find that the 2 and 3-body interatomic dispersion energies contribute significantly to binding and cohesive energies, for some systems they can reach up to 50% of experimental estimates of absolute binding. Our results suggest that interatomic 3-body dispersion potentials should be accounted for in atomistic simulations when modeling bulky molecules or condensed phase systems.

  15. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.L.; Steinberg, A.D. [Univ. of Illinois, Chicago, IL (United States); Krauss, A.R. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  16. Rossby wave energy dispersion from tropical cyclone in zonal basic flows

    Science.gov (United States)

    Shi, Wenli; Fei, Jianfang; Huang, Xiaogang; Liu, Yudi; Ma, Zhanhong; Yang, Lu

    2016-04-01

    This study investigates tropical cyclone energy dispersion under horizontally sheared flows using a nonlinear barotropic model. In addition to common patterns, unusual features of Rossby wave trains are also found in flows with constant vorticity and vorticity gradients. In terms of the direction of the energy dispersion, the wave train can rotate clockwise and elongate southwestward under anticyclonic circulation (ASH), which contributes to the reenhancement of the tropical cyclone (TC). The wave train even splits into two obvious wavelike trains in flows with a southward vorticity gradient (WSH). Energy dispersed from TCs varies over time, and variations in the intensity of the wave train components typically occur in two stages. Wave-activity flux diagnosis and ray tracing calculations are extended to the frame that moves along with the TC to reveal the concrete progress of wave propagation. The direction of the wave-activity flux is primarily determined by the combination of the basic flow and the TC velocity. Along the flux, the distribution of pseudomomentum effectively illustrates the development of wave trains, particularly the rotation and split of wave propagation. Ray tracing involves the quantitative tracing of wave features along rays, which effectively coincide with the wave train regimes. Flows of a constant shear (parabolic meridional variation) produce linear (nonlinear) wave number variations. For the split wave trains, the real and complex wave number waves move along divergent trajectories and are responsible for different energy dispersion ducts.

  17. Surface dispersive energy determined with IGC-ID in anti-graffiti-coated building materials

    OpenAIRE

    Carmona-Quiroga, Paula María; Rubio, J; Sánchez, M. J.; Martínez-Ramírez, Sagrario.; Blanco-Varela, María Teresa

    2011-01-01

    Coating building materials with anti-graffiti treatments hinders or prevents spray paint adherence by generating low energy surfaces. This paper describes the effect of coating cement paste, lime mortar, granite, limestone and brick with two anti-graffiti agents (a water-base fluoroalkylsiloxane, “Protectosil Antigraffiti®”, and a Zr ormosil) on the dispersive component of the surface energy of these five construction materials. The agents were rediluted in their respective solvents at concen...

  18. Forster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion

    DEFF Research Database (Denmark)

    Wubs, Martijn; Vos, Willem L.

    2016-01-01

    Motivated by the ongoing debate about nanophotonic control of Forster resonance energy transfer (FRET), notably by the local density of optical states (LDOS), we study FRET and spontaneous emission in arbitrary nanophotonic media with weak dispersion and weak absorption in the frequency overlap...... to the mirror, typically a few nm. Finally, we discuss the consequences of our results to applications of Forster resonance energy transfer, for instance in quantum information processing....

  19. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    Science.gov (United States)

    Wu, Dufan; Xu, Xiaofei; Zhang, Li; Wang, Sen

    2016-09-01

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  20. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dufan; Xu, Xiaofei [Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Zhang, Li, E-mail: zli@mail.tsinghua.edu.cn [Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Wang, Sen [Key Laboratory of Particle & Radiation Imaging, Tsinghua University, Ministry of Education (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-09-11

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  1. Phonon Excitation and Energy Redistribution in Phonon Space for Energy Dissipation and Transport in Lattice Structure with Nonlinear Dispersion

    Science.gov (United States)

    Xu, Zhi-Jie

    2015-01-01

    We first propose fundamental solutions of wave propagation in dispersive chain subject to a localized initial perturbation in the displacement. Analytical solutions are obtained for both second order nonlinear dispersive chain and homogenous harmonic chain using stationary phase approximation. Solution is also compared with numerical results from molecular dynamics (MD) simulations. Locally dominant phonon modes (k-space) are introduced based on these solutions. These locally defined spatially and temporally varying phonon modes k(x, t) are critical to the concept of the local thermodynamic equilibrium (LTE). Wave propagation accompanying with the nonequilibrium dynamics leads to the excitation of these locally defined phonon modes. It is found that the system energy is gradually redistributed among these excited phonons modes (k-space). This redistribution process is only possible with nonlinear dispersion and requires a finite amount of time to achieve a steady state distribution. This time scale is dependent on the spatial distribution (or frequency content) of the initial perturbation and the dispersion relation. Sharper and more concentrated perturbation leads to a faster energy redistribution and dissipation. This energy redistribution generates localized phonons with various frequencies that can be important for phonon-phonon interaction and energy dissipation in nonlinear systems. Depending on the initial perturbation and temperature, the time scale associated with this energy distribution can be critical for energy dissipation compared to the Umklapp scattering process. Ballistic type of heat transport along the harmonic chain reveals that at any given position, the lowest mode (k = 0) is excited first and gradually expanding to the highest mode (kmax(x,t)), where kmax(x,t) can only asymptotically approach the maximum mode kB of the first Brillouin zone (kmax(x,t) → kB). No energy distributed into modes with kmax(x,t) proportional to the sound speed

  2. A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions.

    Science.gov (United States)

    Duignan, Timothy T; Parsons, Drew F; Ninham, Barry W

    2013-08-15

    Physically accurate continuum solvent models that can calculate solvation energies are crucial to explain and predict the behavior of solute particles in water. Here, we present such a model applied to small spherical ions and neutral atoms. It improves upon a basic Born electrostatic model by including a standard cavity energy and adding a dispersion component, consistent with the Born electrostatic energy and using the same cavity size parameter. We show that the well-known, puzzling differences between the solvation energies of ions of the same size is attributable to the neglected dispersion contribution. This depends on dynamic polarizability as well as size. Generally, a large cancellation exists between the cavity and dispersion contributions. This explains the surprising success of the Born model. The model accurately reproduces the solvation energies of the alkali halide ions, as well as the silver(I) and copper(I) ions with an error of 12 kJ mol(-1) (±3%). The solvation energy of the noble gases is also reproduced with an error of 2.6 kJ mol(-1) (±30%). No arbitrary fitting parameters are needed to achieve this. This model significantly improves our understanding of ionic solvation and forms a solid basis for the investigation of other ion-specific effects using a continuum solvent model.

  3. Effects of Single Dose Energy Drink on QT and P-Wave Dispersion

    Directory of Open Access Journals (Sweden)

    Huseyin Arinc

    2013-12-01

    Full Text Available INTRODUCTION: Aim of this study is to evaluate the cardiac electrophysiological effects of energy drink (Red Bull on QT and P duration and dispersion on surface electrocardiogram. METHODS: Twenty healthy volunteers older than 17 years of age were included the study. Subjects with a cardiac rhythm except sinus rhythm, history of atrial or ventricular arrhythmia, family history of premature sudden cardiac death, palpitations, T-wave abnormalities, QTc interval greater than 440 milliseconds, or those P-waves and QT intervals unavailable in at least eight ECG leads were excluded. Subjects having insomnia, lactose intolerance, caffeine allergy, recurrent headaches, depression, any psychiatric condition, and history of alcohol or drug abuse, pregnant or lactating women were also excluded from participation. 12 lead ECG was obtained before and after consumption of 250 cc enegry drink. QT and P-wave dispersion was calculated. RESULTS: No significant difference have occurred in heart rate (79 ± 14 vs.81 ±13, p=0.68, systolic pressure (114 ± 14 vs.118 ± 16,p=0.38, diastolic blood pressure (74 ± 12 vs.76 ± 14, p=0.64, QT dispersion (58 ± 12 vs. 57 ± 22, p= 0.785 and P-wave dispersion (37 ± 7 vs. 36 ± 13, p= 0.755 between before and 2 hours after consumption of energy drink. DISCUSSION AND CONCLUSION: Consumption of single dose energy drink doesn't affect QT dispersion and P-wave dispersion, heart rate and blood pressure in healthy adults.

  4. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    CERN Document Server

    Sundararaman, Ravishankar; Arias, T A

    2014-01-01

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting model with a single solvent-independent parameter: the electron density threshold ($n_c$), and a single solvent-dependent parameter: the dispersion scale factor ($s_6$), reproduces solvation energies of organic molecules in water, chloroform and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0....

  5. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture.

  6. Projection-based energy weighting on photon-counting X-ray images in digital subtraction mammography: a feasibility study

    Science.gov (United States)

    Choi, Sung-Hoon; Lee, Seung-Wan; Choi, Yu-Na; Lee, Young-Jin; Kim, Hee-Joung

    2014-03-01

    In digital subtraction mammography where subtracts the one image (with contrast medium) from the other (anatomical background) for observing the tumor structure, tumors which include more blood vessels than normal tissue could be distinguished through the enhancement of contrast-to-noise ratio (CNR). In order to improve CNR, we adopted projection-based energy weighting for iodine solutions with four different concentrations embedded in a breast phantom (50% adipose and 50% glandular tissues). In this study, a Monte Carlo simulation was used to simulate a 40 mm thickness breast phantom, which has 15 and 30 mg/cm3 iodine solutions with two different thicknesses, and an energy resolving photon-counting system. The input energy spectrum was simulated in a range of 20 to 45 keV in order to reject electronic noise and include k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy weighting improved the CNR by factors of 1.05-1.86 compared to the conventional integrating images. Consequently, the CNR of images from the digital subtraction mammography could be improved by the projection-based energy weighting with photon-counting detectors.

  7. Correlation of Effective Dispersive and Polar Surface Energies in Heterogeneous Self-Assembled Monolayer Coatings

    DEFF Research Database (Denmark)

    Zhuang, Yanxin; Hansen, Ole

    2009-01-01

    We show, theoretically, that the measured effective dispersive and polar surface energies of a heterogeneous Surface are correlated; the correlation, however, differs whether a Cassic or an Israelachvili and Gee model is assumed. Fluorocarbon self-assembled monolayers with varying coverage were...... grown oil oxidized (100) silicon Surfaces in a vapor phase process using five different precursors. Experimentally, effective surface energy components of the fluorocarbon self-assembled monolayers were determined from measured contact angles using the Owens-Wendt-Rabel-Kaelble method. We show...... that the correlation between the effective surface energy components of the heterogeneous Surfaces coated with fluorocarbon self-assembled monolayers is in agreement with the Cassie model....

  8. Computing dispersive, polarizable, and electrostatic shifts of excitation energy in supramolecular systems: PTCDI crystal.

    Science.gov (United States)

    Megow, Jörg

    2016-09-07

    The gas-to-crystal-shift denotes the shift of electronic excitation energies, i.e., the difference between ground and excited state energies, for a molecule transferred from the gas to the bulk phase. The contributions to the gas-to-crystal-shift comprise electrostatic as well as inductive polarization and dispersive energy shifts of the molecular excitation energies due to interaction with environmental molecules. For the example of 3,4,9,10-perylene-tetracarboxylic-diimide (PTCDI) bulk, the contributions to the gas-to-crystal shift are investigated. In the present work, electrostatic interaction is calculated via Coulomb interaction of partial charges while inductive and dispersive interactions are obtained using respective sum over states expressions. The coupling of higher transition densities for the first 4500 excited states of PTCDI was computed using transition partial charges based on an atomistic model of PTCDI bulk obtained from molecular dynamics simulations. As a result it is concluded that for the investigated model system of a PTCDI crystal, the gas to crystal shift is dominated by dispersive interaction.

  9. Velocity dispersion of correlated energy spread electron beams in the free electron laser

    Science.gov (United States)

    Campbell, L. T.; Maier, A. R.

    2017-03-01

    The effects of a correlated linear energy/velocity chirp in the electron beam in the free electron laser (FEL), and how to compensate for its effects by using an appropriate taper (or reverse-taper) of the undulator magnetic field, is well known. The theory, as described thus far, ignores velocity dispersion from the chirp in the undulator, taking the limit of a ‘small’ chirp. In the following, the physics of compensating for chirp in the beam is revisited, including the effects of velocity dispersion, or beam compression or decompression, in the undulator. It is found that the limit of negligible velocity dispersion in the undulator is different from that previously identified as the small chirp limit, and is more significant than previously considered. The velocity dispersion requires a taper which is nonlinear to properly compensate for the effects of the detuning, and also results in a varying peak current (end thus a varying gain length) over the length of the undulator. The results may be especially significant for plasma driven FELs and low energy linac driven FEL test facilities.

  10. Investigation of dual-energy X-ray photon counting using a cadmium telluride detector with dual-energy selection electronics

    Science.gov (United States)

    Sato, Eiichi; Kosuge, Yoshiyuki; Yamanome, Hayato; Mikata, Akiko; Miura, Tatsuya; Oda, Yasuyuki; Ishii, Tomotaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2017-01-01

    To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have developed a dual-energy X-ray photon counter with a cadmium telluride (CdTe) detector and two energy-selecting devices (ESDs). The ESD consists of two comparators and a microcomputer (MC). X-ray photons are detected using the CdTe detector, and the event pulses from a shaping amplifier are sent to two ESDs simultaneously to determine two energy ranges. X-ray photons in the two ranges are counted using the MCs, and the logical pulses from the MCs are input to frequency-to-voltage converters (FVCs). The outputs from the two FVCs are input to a personal computer through an analog-to-digital converter to carry out dual-energy computed tomography. The tube voltage and current were 80 kV and 8.5 μA, respectively. Two tomograms were obtained simultaneously with two energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-45 and 50-65 keV, respectively. The maximum count rate was 6.8 kilocounts per second with energies ranging from 10 to 80 keV, and the exposure time for tomography was 9.8 min.

  11. Elemental analysis of soils from central Sudan by energy dispersive XRF

    DEFF Research Database (Denmark)

    Yousif, A. A.; Kunzendorf, Helmar

    1986-01-01

    Energy dispersive X-ray fluorescence spectroscopy is employed to determine the concentration of nineteen elements in seven profiles representing the aridisols and vertisols groups from agricultural plains of Sudan. A significant variation in the concentration of alkaline and alkaline earth elements...... in the different regions is observed, which is discussed in relation to the texture of the soil and climatic factors. Uranium, determined by the delayed neutron technique, is observed to increase with depth in one area....

  12. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron source

    Indian Academy of Sciences (India)

    K K Pandey; H K Poswal; A K Mishra; Abhilash Dwivedi; R Vasanthi; Nandini Garg; Surinder M Sharma

    2013-04-01

    An energy-dispersive X-ray diffraction beamline has been designed, developed and commissioned at BL-11 bending magnet port of the Indian synchrotron source, Indus-2. The performance of this beamline has been benchmarked by measuring diffraction patterns from various elemental metals and standard inorganic powdered samples. A few recent high-pressure investigations are presented to demonstrate the capabilities of the beamline.

  13. A comparative analysis of OTF, NPS, and DQE in energy integrating and photon counting digital x-ray detectors.

    Science.gov (United States)

    Acciavatti, Raymond J; Maidment, Andrew D A

    2010-12-01

    One of the benefits of photon counting (PC) detectors over energy integrating (EI) detectors is the absence of many additive noise sources, such as electronic noise and secondary quantum noise. The purpose of this work is to demonstrate that thresholding voltage gains to detect individual x rays actually generates an unexpected source of white noise in photon counters. To distinguish the two detector types, their point spread function (PSF) is interpreted differently. The PSF of the energy integrating detector is treated as a weighting function for counting x rays, while the PSF of the photon counting detector is interpreted as a probability. Although this model ignores some subtleties of real imaging systems, such as scatter and the energy-dependent amplification of secondary quanta in indirect-converting detectors, it is useful for demonstrating fundamental differences between the two detector types. From first principles, the optical transfer function (OTF) is calculated as the continuous Fourier transform of the PSF, the noise power spectra (NPS) is determined by the discrete space Fourier transform (DSFT) of the autocovariance of signal intensity, and the detective quantum efficiency (DQE) is found from combined knowledge of the OTF and NPS. To illustrate the calculation of the transfer functions, the PSF is modeled as the convolution of a Gaussian with the product of rect functions. The Gaussian reflects the blurring of the x-ray converter, while the rect functions model the sampling of the detector. The transfer functions are first calculated assuming outside noise sources such as electronic noise and secondary quantum noise are negligible. It is demonstrated that while OTF is the same for two detector types possessing an equivalent PSF, a frequency-independent (i.e., "white") difference in their NPS exists such that NPS(PC) > or = NPS(EI) and hence DQE(PC) function given as zero or unity everywhere. In analyzing the model detector with Gaussian blurring

  14. A Spectrometer for X-Ray Energy-Dispersive Diffraction using Synchrotron Radiation

    DEFF Research Database (Denmark)

    Staun Olsen, Janus; Buras, B; Gerward, Leif

    1981-01-01

    Describes a white-beam X-ray energy-dispersive diffractometer built for Hasylab in Hamburg, FRG, using the synchrotron radiation from the electron storage ring DORIS. The following features of the instrument are discussed: horizontal or vertical scattering plane, collimators, sample environment, ......, remote control of the goniometer, data acquisition, energy-sensitive detectors using small-area and large-area detector crystals, modes of operation, powder and single crystal diffraction. An example is given from a high-pressure study of YbH2 using a diamond anvil cell....

  15. High-energy magnon dispersion and multimagnon continuum in the two-dimensional Heisenberg antiferromagnet.

    Science.gov (United States)

    Sandvik, A W; Singh, R R

    2001-01-15

    We use quantum Monte Carlo simulations and numerical analytic continuation to study high-energy spin excitations in the two-dimensional S = 1/2 Heisenberg antiferromagnet at low temperature. We present results for both the transverse (x) and longitudinal (z) dynamic spin structure factors Sx,z(q,omega) at q = (pi,0) and (pi/2, pi/2). Linear spin-wave theory predicts no dispersion on the line connecting these momenta. Our calculations show that in fact the magnon energy at (pi,0) is 10% lower than at (pi/2, pi/2). We also discuss the transverse and longitudinal multimagnon continua and their relevance to neutron scattering experiments.

  16. Place of HgI/sub 2/ energy-dispersive x-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, A.J.; Huth, G.C.; Iwanczyk, J.S.; Kusmiss, J.H.; Barton, J.S.; Szymczyk, J.M.; Schnepple, W.F.; Lynn, R.

    1982-01-01

    After a review of solid-state conduction counters, in general, and of the history of mercuric iodide, in particular, the theory of operation of solid-state energy-dispersive HgI/sub 2/ detectors is dicusssed. The main factors which limit energy resolution in solid-state compound detectors are considered, including statistical fluctuations in charge generation, the window effect, trapping, inhomogeneities in the detector material, and electronic noise. Potential applications of room-temperature HgI/sub 2/ x-ray detectors are listed, and general considerations are discussed for x-ray fluorescence analysis with HgI/sub 2/. Directions of current investigations are given. (LEW)

  17. High-Energy Kink Observed in the Electron Dispersion of High-Temperature Cuprate Superconductors

    Science.gov (United States)

    Valla, T.; Kidd, T. E.; Yin, W.-G.; Gu, G. D.; Johnson, P. D.; Pan, Z.-H.; Fedorov, A. V.

    2007-04-01

    Photoemission studies show the presence of a high-energy anomaly in the observed band dispersion for two families of cuprate superconductors, Bi2Sr2CaCu2O8+δ and La2-xBaxCuO4. The anomaly, which occurs at a binding energy of approximately 340 meV, is found to be anisotropic and relatively weakly doping dependent. Scattering from short range or nearest neighbor spin excitations is found to supply an adequate description of the observed phenomena.

  18. The effect of photon energy weighting on X-ray imaging based on a photon counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu-Na; Lee, Seung-Wan; Cho, Hyo-Min; Ryu, Hyun-Ju; Lee, Young-Jin; Kim, Hee-Joung [Yonsei University, Wonju (Korea, Republic of)

    2011-11-15

    Development of photon counting detectors with the ability of energy discrimination would provide additional information. These detectors could improve the contrast-to-noise ratio (CNR) by using photon energy weighting with energy-dependent weighting factors. The purpose of this study was to evaluate the effect of photon energy weighting using GEANT4 Application for Tomographic Emission (GATE) version 6.0. The photon energy weighting depends on the X-ray attenuation coefficient of contrast elements and background materials. In this study, we simulated a photon counting X-ray imaging system. We designed a cadmium telluride (CdTe) photon counting detector (model PID-350, AJAT, Finland), the micro focus X-ray source (model L8601-01, Hamamatsu, Japan) and two phantoms with GATE. In the first case, we were concerned with calcifications in breast tissue or soft tissue. We defined a cubic phantom made of poly (methyl methacrylate) (PMMA) material with a thickness of 40 mm including four CaCO{sub 3} contrast elements with different thickness of 1.0, 3.0, 5.0, and 7.0 mm. In the second case, we designed a second phantom for contrast enhanced digital mammography (CEDM). We defined two cylindrical phantoms made of PMMA with thicknesses of 30 and 40 mm, including four iodine contrast elements with different thicknesses of 0.3, 0.5, 1.0, and 1.5 mm. The effect of photon energy weighting was investigated in terms of the CNR. In all cases, photon energy weighting improve the CNR. The CNR improvements for CaCO{sub 3} with thicknesses of 1.0, 3.0, 5.0, and 7.0 mm were 1.41, 1.32, 1.43, and 1.56, respectively. For the second phantom with a thickness of 30 mm, the CNR improvements of iodine contrast elements with thicknesses of 1.0, 3.0, 5.0, and 7.0 mm were 1.01, 1.03, 1.09, and 1.13, respectively, and for the second phantom with a thicknesses of 40 mm, the CNR improvements of iodine contrast elements with thickness of 1.0, 3.0, 5.0, and 7.0 mm were 1.05, 1.07, 1.16, and 1

  19. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    Science.gov (United States)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  20. Application of decision tree algorithm for identification of rock forming minerals using energy dispersive spectrometry

    Science.gov (United States)

    Akkaş, Efe; Çubukçu, H. Evren; Artuner, Harun

    2014-05-01

    Rapid and automated mineral identification is compulsory in certain applications concerning natural rocks. Among all microscopic and spectrometric methods, energy dispersive X-ray spectrometers (EDS) integrated with scanning electron microscopes produce rapid information with reliable chemical data. Although obtaining elemental data with EDS analyses is fast and easy by the help of improving technology, it is rather challenging to perform accurate and rapid identification considering the large quantity of minerals in a rock sample with varying dimensions ranging between nanometer to centimeter. Furthermore, the physical properties of the specimen (roughness, thickness, electrical conductivity, position in the instrument etc.) and the incident electron beam (accelerating voltage, beam current, spot size etc.) control the produced characteristic X-ray, which in turn affect the elemental analyses. In order to minimize the effects of these physical constraints and develop an automated mineral identification system, a rule induction paradigm has been applied to energy dispersive spectral data. Decision tree classifiers divide training data sets into subclasses using generated rules or decisions and thereby it produces classification or recognition associated with these data sets. A number of thinsections prepared from rock samples with suitable mineralogy have been investigated and a preliminary 12 distinct mineral groups (olivine, orthopyroxene, clinopyroxene, apatite, amphibole, plagioclase, K- feldspar, zircon, magnetite, titanomagnetite, biotite, quartz), comprised mostly of silicates and oxides, have been selected. Energy dispersive spectral data for each group, consisting of 240 reference and 200 test analyses, have been acquired under various, non-standard, physical and electrical conditions. The reference X-Ray data have been used to assign the spectral distribution of elements to the specified mineral groups. Consequently, the test data have been analyzed using

  1. Velocity Dispersion of Correlated Energy Spread Electron Beams in the Free Electron Laser

    CERN Document Server

    Campbell, L T

    2016-01-01

    The effects of a correlated linear energy/velocity chirp in the electron beam in the FEL, and how to compensate for its effects by using an appropriate taper (or reverse-taper) of the undulator magnetic field, is well known. The theory, as described thus far, ignores velocity dispersion from the chirp in the undulator, taking the limit of a `small' chirp. In the following, the physics of compensating for chirp in the beam is revisited, including the effects of velocity dispersion, or beam compression or decompression, in the undulator. It is found that the limit of negligible velocity dispersion in the undulator is different from that previously identified as the small chirp limit, and is more significant than previously considered. The velocity dispersion requires a taper which is non-linear to properly compensate for the effects of the detuning, and also results in a varying peak current (end thus a varying gain length) over the length of the undulator. The results may be especially significant for plasma d...

  2. Energy-spread measurement of triple-pulse electron beams based on the magnetic dispersion principle

    CERN Document Server

    Wang, Yi; Yang, Zhiyong; Zhang, Huang; Ding, Hengsong; Yang, Anmin; Wang, Minhong

    2016-01-01

    The energy-spread of the triple-pulse electron beam generated by the Dragon-II linear induction accelerator is measured using the method of energy dispersion in the magnetic field. A sector magnet is applied for energy analyzing of the electron beam, which has a bending radius of 300 mm and a deflection angle of 90 degrees. For each pulse, both the time-resolved and the integral images of the electron position at the output port of the bending beam line are recorded by a streak camera and a CCD camera, respectively. Experimental results demonstrate an energy-spread of less than +-2.0% for the electron pulses. The cavity voltage waveforms obtained by different detectors are also analyzed for comparison.

  3. Making It Count: Understanding the Value of Energy Efficiency Financing Programs Funded by Utility Customers

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fadrhonc, Emily Martin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-12-01

    Utility customer-supported financing programs are receiving increased attention as a strategy for achieving energy saving goals. Rationales for using utility customer funds to support financing initiatives

  4. Energy and exergy analysis of particle dispersed latent heat storage system

    Directory of Open Access Journals (Sweden)

    S. Jegadheeswaran, S. D. Pohekar

    2010-05-01

    Full Text Available Latent heat thermal storage (LHTS system has been attractive over the years as an effective energy storage and retrieval device especially in solar thermal applications. However, the performance of LHTS systems is limited by the poor thermal conductivity of phase change materials (PCMs employed. A numerical study is carried out to investigate the performance enhancement of a LHTS unit of shell and tube configuration due to the dispersion of high conductivity particles in the PCM during charging process (melting. Temperature based governing equations have been formulated and solved numerically following an alternate iteration between the temperature and thermal resistance. Exergy based performance evaluation is taken as a main aspect. The numerical results are presented for several mass flow rates and inlet temperatures of heat transfer fluid (HTF. The results indicate a significant improvement in the performance of the LHTS unit when high conductivity particles are dispersed.

  5. Energy Efficienct Processes for Making Tackifier Dispersions used to make Pressure Sensitive Adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Rakesh Gupta

    2006-07-26

    The primary objective of this project was to develop an energy efficient, environmentally friendly and low cost process (compared to the current process) for making tackifier dispersions that are used to make pressure-sensitive adhesives. These adhesives are employed in applications such as self-adhesive postage stamps and disposable diapers and are made by combining the tackifier dispersion with a natural or synthetic rubber latex. The current process for tackifier dispersion manufacture begins by melting a (plastic) resin and adding water to it in order to form a water-in-oil emulsion. This is then converted to an oil-in-water emulsion by phase inversion in the presence of continuous stirring. The resulting emulsion is the tackifier dispersion, but it is not concentrated and the remaining excess water has to be transported and removed. The main barrier that has to be overcome in the development of commercial quality tackifier dispersions is the inability to directly emulsify resin in water due to the very low viscosity of water as compared to the viscosity of the molten resin. In the present research, a number of solutions were proposed to overcome this barrier, and these included use of different mixer types to directly form the emulsion from the molten resin but without going through a phase inversion, the idea of forming a solid resin-in-water suspension having the correct size and size distribution but without melting of the resin, and the development of techniques of making a colloidal powder of the resin that could be dispersed in water just prior to use. Progress was made on each of these approaches, and each was found to be feasible. The most appealing solution, though, is the last one, since it does not require melting of the resin. Also, the powder can be shipped in dry form and then mixed with water in any proportion depending on the needs of the process. This research was conducted at Argonne National Laboratory, and it was determined the new process

  6. Decoupling the contribution of dispersive and acid-base components of surface energy on the cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2014-11-20

    This study reports an experimental approach to determine the contribution from two different components of surface energy on cohesion. A method to tailor the surface chemistry of mefenamic acid via silanization is established and the role of surface energy on cohesion is investigated. Silanization was used as a method to functionalize mefenamic acid surfaces with four different functional end groups resulting in an ascending order of the dispersive component of surface energy. Furthermore, four haloalkane functional end groups were grafted on to the surface of mefenamic acid, resulting in varying levels of acid-base component of surface energy, while maintaining constant dispersive component of surface energy. A proportional increase in cohesion was observed with increases in both dispersive as well as acid-base components of surface energy. Contributions from dispersive and acid-base surface energy on cohesion were determined using an iterative approach. Due to the contribution from acid-base surface energy, cohesion was found to increase ∼11.7× compared to the contribution from dispersive surface energy. Here, we provide an approach to deconvolute the contribution from two different components of surface energy on cohesion, which has the potential of predicting powder flow behavior and ultimately controlling powder cohesion.

  7. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)

    2016-07-11

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.

  8. High-energy femtosecond Yb-doped dispersion compensation free fiber laser.

    Science.gov (United States)

    Ortaç, B; Schmidt, O; Schreiber, T; Limpert, J; Tünnermann, A; Hideur, A

    2007-08-20

    We report on a mode-locked high energy fiber laser operating in the dispersion compensation free regime. The sigma cavity is constructed with a saturable absorber mirror and short-length large-mode-area photonic crystal fiber. The laser generates positively-chirped pulses with an energy of 265 nJ at a repetition rate of 10.18 MHz in a stable and self-starting operation. The pulses are compressible down to 400 fs leading to a peak power of 500 kW. Numerical simulations accurately reflect the experimental results and reveal the mechanisms for self consistent intracavity pulse evolution. With this performance mode-locked fiber lasers can compete with state-of-the-art bulk femtosecond oscillators for the first time and pulse energy scaling beyond the muJ-level appears to be feasible.

  9. Energy Dispersive X-Ray and Electrochemical Impedance Spectroscopies for Performance and Corrosion Analysis of PEMWEs

    Science.gov (United States)

    Steen, S. M., Iii; Zhang, F.-Y.

    2014-11-01

    Proton exchange membrane water electrolyzers (PEMWEs) are a promising energy storage technology due to their high efficiency, compact design, and ability to be used in a renewable energy system. Before they are able to make a large commercial impact, there are several hurdles facing the technology today. Two powerful techniques for both in-situ and ex- situ characterizations to improve upon their performance and better understand their corrosion are electrochemical impedance spectroscopy and energy dispersive x-ray spectroscopy, respectively. In this paper, the authors use both methods in order to characterize the anode gas diffusion layer (GDL) in a PEMWE cell and better understand the corrosion that occurs in the oxygen electrode during electrolysis.

  10. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Science.gov (United States)

    Gimenez, E. N.; Astromskas, V.; Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N.

    2016-07-01

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e- collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system.

  11. iVPIC: A low-­dispersion, energy-­conserving relativistic PIC solver for LPI simulations

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, Luis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-07

    We have developed a novel low-­dispersion, exactly energy-­conserving PIC algorithm for the relativistic Vlasov-­Maxwell system. The approach features an exact energy conservation theorem while preserving the favorable performance and numerical dispersion properties of explicit PIC. The new algorithm has the potential to enable much longer laser-­plasma-­interaction (LPI) simulations than are currently possible.

  12. TU-G-207-01: CT Imaging Using Energy-Sensitive Photon-Counting Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, K. [Johns Hopkins University (United States)

    2015-06-15

    Last few years has witnessed the development of novel of X-ray imaging modalities, such as spectral CT, phase contrast CT, and X-ray acoustic/fluorescence/luminescence imaging. This symposium will present the recent advances of these emerging X-ray imaging modalities and update the attendees with knowledge in various related topics, including X-ray photon-counting detectors, X-ray physics underlying the emerging applications beyond the traditional X-ray imaging, image reconstruction for the novel modalities, characterization and evaluation of the systems, and their practical implications. In addition, the concept and practical aspects of X-ray activatable targeted nanoparticles for molecular X-ray imaging will be discussed in the context of X-ray fluorescence and luminescence CT. Learning Objectives: Present background knowledge of various emerging X-ray imaging techniques, such as spectral CT, phase contrast CT and X-ray fluorescence/luminescence CT. Discuss the practical need, technical aspects and current status of the emerging X-ray imaging modalities. Describe utility and future impact of the new generation of X-ray imaging applications.

  13. Dose optimization for dual-energy contrast-enhanced digital mammography based on an energy-resolved photon-counting detector: A Monte Carlo simulation study

    Science.gov (United States)

    Lee, Youngjin; Lee, Seungwan; Kang, Sooncheol; Eom, Jisoo

    2017-03-01

    Dual-energy contrast-enhanced digital mammography (CEDM) has been used to decompose breast images and improve diagnostic accuracy for tumor detection. However, this technique causes an increase of radiation dose and an inaccuracy in material decomposition due to the limitations of conventional X-ray detectors. In this study, we simulated the dual-energy CEDM with an energy-resolved photon-counting detector (ERPCD) for reducing radiation dose and improving the quantitative accuracy of material decomposition images. The ERPCD-based dual-energy CEDM was compared to the conventional dual-energy CEDM in terms of radiation dose and quantitative accuracy. The correlation between radiation dose and image quality was also evaluated for optimizing the ERPCD-based dual-energy CEDM technique. The results showed that the material decomposition errors of the ERPCD-based dual-energy CEDM were 0.56-0.67 times lower than those of the conventional dual-energy CEDM. The imaging performance of the proposed technique was optimized at the radiation dose of 1.09 mGy, which is a half of the MGD for a single view mammogram. It can be concluded that the ERPCD-based dual-energy CEDM with an optimal exposure level is able to improve the quality of material decomposition images as well as reduce radiation dose.

  14. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X

  15. Application of direct peak analysis to energy dispersive x-ray fluorescence spectra

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, K.K.

    1977-07-01

    A modified Covell method for direct peak analysis has been applied to energy dispersive x-ray fluorescence spectra. The method is background independent and is well-suited to computerized data reduction. It provides acceptable precision, minimizes errors from instrumental gain shift, and permits peak overlap correction. Peak overlap errors exhibit both positive and negative nodes as a function of peak separation distance, and are corrected using concentration ratios determined from thin, single-element standards. Peak precisions and overlaps are evaluated as a function of window width to aid in width selection. Least-square polynomial smoothing prior to peak analysis significantly improves peak area precisions without significantly affecting their accuracies.

  16. Energy-dispersive X-ray diffraction mapping on a benchtop X-ray fluorescence system

    OpenAIRE

    Lane, D W.; Nyombi, A.; Shackel, J.

    2014-01-01

    A method for energy-dispersive X-ray diffraction mapping is presented, using a conventional low-power benchtop X-ray fluorescence spectrometer, the Seiko Instruments SEA6000VX. Hyper spectral X-ray maps with a 10µm step size were collected from polished metal surfaces, sectioned Bi, Pb and steel shot gun pellets. Candidate diffraction lines were identified by eliminating those that matched a characteristic line for an element and those predicted for escape peaks, sum peaks, and Rayleigh and C...

  17. Online Speed Scaling Based on Active Job Count to Minimize Flow Plus Energy

    DEFF Research Database (Denmark)

    Lam, Tak-Wah; Lee, Lap Kei; To, Isaac K. K.;

    2013-01-01

    ) that changes speed discretely. This is in contrast to the previous algorithms which change the speed continuously. More interestingly, AJC admits a better competitive ratio, and without using extra speed. In the second part, we extend the study to a more general speed scaling model where the processor can......This paper is concerned with online scheduling algorithms that aim at minimizing the total flow time plus energy usage. The results are divided into two parts. First, we consider the well-studied “simple” speed scaling model and show how to analyze a speed scaling algorithm (called AJC...... enter a sleep state to further save energy. A new sleep management algorithm called IdleLonger is presented. This algorithm, when coupled with AJC, gives the first competitive algorithm for minimizing total flow time plus energy in the general model....

  18. Simulation results for PLATO: a prototype hybrid X-ray photon counting detector with a low energy threshold for fusion plasma diagnostics

    Science.gov (United States)

    Habib, A.; Menouni, M.; Pangaud, P.; Fenzi, C.; Colledani, G.; Moureau, G.; Escarguel, A.; Morel, C.

    2017-01-01

    PLATO is a prototype hybrid X-ray photon counting detector that has been designed to meet the specifications for plasma diagnostics for the WEST tokamak platform (Tungsten (W) Environment in Steady-state Tokamak) in southern France, with potential perspectives for ITER. PLATO represents a customized solution that fulfills high sensitivity, low dispersion and high photon counting rate. The PLATO prototype matrix is composed of 16 × 18 pixels with a 70 μm pixel pitch. New techniques have been used in analog sensitive blocks to minimize noise coupling through supply rails and substrate, and to suppress threshold dispersion across the matrix. The PLATO ASIC is designed in CMOS 0.13 μm technology and was submitted for a fabrication run in June 2016. The chip is designed to be bump-bonded to a silicon sensor. This paper presents pixel architecture as well as simulation results while highlighting novel solutions.

  19. Energy-dispersive study of the interactions of fast neutrons with matter

    CERN Document Server

    Altstadt, E; Eckert, S; Freiesleben, H; Galindo, V; Grosse, E; Naumann, B; Weiss, F P

    2003-01-01

    The construction and the first use of a compact time-of-flight system for the energy-dispersive study of the interaction of fast neutrons with materials are content of a network project of the Research Center Rossendorf, to which also the Technical University Dresden contributes in the framework of a common DFG project. The planned time-of-flight experiments with pulsed neutrons will be performed at the radiation source ELBE. First results on the development of a neutron-production target are presented. By means of radiation-transport and finite-element programs the distributions of the energy deposition of the used pulsed electron beam of the radiation source ELBE and the temperature in the neutron radiator as well as the expected particle spectra and fluxes at the measurement place were calculated. Considerations on the development of a beam catcher are discussed.

  20. Time resolved energy dispersive X-ray diagnostic for the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, J.; Amaro, P.; Amorim, P.; Varandas, C.A.F. [Associacao EURATOM/IST, Centro de Fusao Nuclear, Instituto Superior Tecnico, Lisbon (Portugal); Duval, B. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1996-10-01

    A time resolved energy dispersive X-ray diagnostic is being developed for the TCV tokamak (CRPP - Lausanne) to measure the evolution of the plasma impurities, runaway electrons and electron temperature. A liquid nitrogen cooled Ge diode detects the X-ray photons which are processed by a spectroscopic amplifier and a locally developed interface amplifier and timing generator (IATG) unit. The energy spectrum is obtained using a fast digitiser and a software histogramming algorithm. These electronics components have been optimised to improve the data throughput to match high flux 2 seconds time duration of a TCV plasma pulse. This paper describes the diagnostic hardware with particular emphasis on the IATG unit. (author) 5 figs., 4 refs.

  1. Lorentz symmetry violating low energy dispersion relations from a dimension-five photon scalar mixing operator

    CERN Document Server

    Ganguly, Avijit K

    2016-01-01

    Dimension-five photon $(\\gamma )$ scalar $(\\phi)$ interaction terms usually appear in the bosonic sector of unified theories of electromagnetism and gravity. In these theories the three propagation eigenstates are different from the three field eigenstates. The dispersion relation in an external magnetic field shows that, for a non- zero energy $(\\omega)$, out of the three propagating eigenstates one has superluminal phase velocity $v_p$. During propagation, another eigenstate undergoes amplification or attenuation, showing signs of an unstable system. The remaining one maintains causality. In this paper, using techniques from optics as well as gravity, we identify the energy $(\\omega)$ interval outside which $v_p \\le c$ for the field eigenstates $|\\gamma_{\\parallel} > $ and $ |\\phi > $, and stability of the system is restored. The behavior of group velocity $v_g$ is also explored in the same context. We conclude by pointing out its possible astrophysical implications.

  2. High-energy femtosecond Yb-doped fiber laser operating in the anomalous dispersion regime.

    Science.gov (United States)

    Ortaç, Bülend; Limpert, Jens; Tünnermann, Andreas

    2007-08-01

    We report on high-energy ultrashort pulse generation from a passively mode-locked ytterbium-doped large-mode-area photonic crystal fiber oscillator operating in the anomalous dispersion regime. In the single-pulse regime, the laser directly generates 880 mW of average power of sub-500 fs pulses at a repetition rate of 53.33 MHz, corresponding to a pulse energy of 16.5 nJ. Stable and self-starting operation is obtained by adapting the spot size at the saturable absorber mirror to the pulse evolution in the low-nonlinearity fiber. The approach presented demonstrates the scaling potential of fiber based short pulse oscillators towards the microJ-level.

  3. Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions

    Science.gov (United States)

    Isobe, Hiroki; Nagaosa, Naoto

    2016-03-01

    Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α -(BEDT -TTF )2I3 and three-dimensional WTe2 . The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the speed of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.

  4. The energy-dispersive reflectometer at BESSY II: a challenge for thin film analysis

    CERN Document Server

    Pietsch, U; Geue, T; Neissendorfer, F; Brezsesinski, G; Symietz, C; Moehwald, H; Gudat, W

    2001-01-01

    Installed in 1999 the energy-dispersive reflectometer at the 13.2 bending magnet employs the exponentially decaying white X-ray emission spectrum of the 1.7 GeV storage ring of BESSY II outside the vacuum. Using an energy-dispersive detector specular and longitudinal-diffuse reflectivity spectra of thin films can be recorded simultaneously between 0.2 A sup - sup 1

  5. [Analysis of pine pollen by using FTIR, SEM and energy-dispersive X-ray analysis].

    Science.gov (United States)

    Wang, Ya-min; Wang, Hong-jie; Zhang, Zhuo-yong

    2005-11-01

    Infrared spectroscopy (IR), scanning electron microscope (SEM) and energy-dispersive X-ray analysis (EDX) were used to analyze nutrients in four pine pollen powder samples. The IR fingerprints showed that each of the samples, pinus massoniana, pinus yunnanensis, pinus tabulaeformis, and pinus densiflora, respectively had its own characteristic infrared spectrum. Based on the difference of the relative intensity of those characteristic absorption peaks, the IR fingerprints can be used for the identification of the four kinds of pine pollen samples. The broken pollen of pinus was more easily to release nutritional components for the distinct difference IR fingerprints of natural and broken masson pine pollen samples. As a result of SEM, four kinds of pollen grains were oblong or subspheroidal in distal face and proximal face. The exine sculpture of the four kinds of samples were granulous and almost the same, but there was some difference of the size of pollen grains. The main morphologic change of the broken pollen was that the air bags were separated from pollen particles, and part of the main body of pollen particles was broken. The energy-dispersive X-ray analysis results showed that eleven elements, including Mg, Se, Si, Sr, P, S, Cl, K, Ca, Mn, and Fe, existed and the highest content in pollen of pinus was K element. The contents of trace elements were different in different kinds of pollen of pinus. The element intensity in broken masson pine pollen was distinctlyhigher than that innatural masson pine pollen.

  6. Accurate Evaluation of the Dispersion Energy in the Simulation of Gas Adsorption into Porous Zeolites.

    Science.gov (United States)

    Fraccarollo, Alberto; Canti, Lorenzo; Marchese, Leonardo; Cossi, Maurizio

    2017-03-07

    The force fields used to simulate the gas adsorption in porous materials are strongly dominated by the van der Waals (vdW) terms. Here we discuss the delicate problem to estimate these terms accurately, analyzing the effect of different models. To this end, we simulated the physisorption of CH4, CO2, and Ar into various Al-free microporous zeolites (ITQ-29, SSZ-13, and silicalite-1), comparing the theoretical results with accurate experimental isotherms. The vdW terms in the force fields were parametrized against the free gas densities and high-level quantum mechanical (QM) calculations, comparing different methods to evaluate the dispersion energies. In particular, MP2 and DFT with semiempirical corrections, with suitable basis sets, were chosen to approximate the best QM calculations; either Lennard-Jones or Morse expressions were used to include the vdW terms in the force fields. The comparison of the simulated and experimental isotherms revealed that a strong interplay exists between the definition of the dispersion energies and the functional form used in the force field; these results are fairly general and reproducible, at least for the systems considered here. On this basis, the reliability of different models can be discussed, and a recipe can be provided to obtain accurate simulated adsorption isotherms.

  7. Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium

    Science.gov (United States)

    Smolkova, Ilona S.; Kazantseva, Natalia E.; Babayan, Vladimir; Smolka, Petr; Parmar, Harshida; Vilcakova, Jarmila; Schneeweiss, Oldrich; Pizurova, Nadezda

    2015-01-01

    Magnetic iron oxide nanoparticles were obtained by a coprecipitation method in a controlled growth process leading to the formation of uniform highly crystalline nanoparticles with average size of 13 nm, which corresponds to the superparamagnetic state. Nanoparticles obtained are a mixture of single-phase nanoparticles of magnetite and maghemite as well as nanoparticles of non-stoichiometric magnetite. The subsequent annealing of nanoparticles at 300 °C in air during 6 h leads to the full transformation to maghemite. It results in reduced value of the saturation magnetization (from 56 emu g-1 to 48 emu g-1) but does not affect the heating ability of nanoparticles. A 2-7 wt% dispersion of as-prepared and annealed nanoparticles in glycerol provides high heating rate in alternating magnetic fields allowed for application in magnetic hyperthermia; however the value of specific loss power does not exceed 30 W g-1. This feature of heat output is explained by the combined effect of magnetic interparticle interactions and the properties of the carrier medium. Nanoparticles coalesce during the synthesis and form aggregates showing ferromagnetic-like behavior with magnetization hysteresis, distinct sextets on Mössbauer spectrum, blocking temperature well about room temperature, which accounts for the higher energy barrier for magnetization reversal. At the same time, low specific heat capacity of glycerol intensifies heat transfer in the magnetic dispersion. However, high viscosity of glycerol limits the specific loss power value, since predominantly the Neel relaxation accounts for the absorption of AC magnetic field energy.

  8. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa_{5}

    Directory of Open Access Journals (Sweden)

    Tanmoy Das

    2012-11-01

    Full Text Available We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa_{5} that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV and high (approximately 1 eV binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  9. Practical applications of energy dispersive X-ray microanalysis in diagnostic oral pathology

    Energy Technology Data Exchange (ETDEWEB)

    Daley, T.D.; Gibson, D. (Univ. of Western Ontario, London (Canada))

    1990-03-01

    Energy dispersive X-ray microanalysis is a powerful tool that can reveal the presence and relative quantities of elements in minute particles in biologic materials. Although this technique has been used in some aspects of dental research, it has rarely been applied to diagnostic oral pathology. The purpose of this paper is to inform practicing dentists and oral specialists about the diagnostic potential of this procedure by presenting three case reports. The first case involved the identification of flakes of a metallic material claimed by a 14-year-old girl to appear periodically between her mandibular molars. In the second case, a periodontist was spared a lawsuit when a freely mobile mass in the antrum of his patient was found to be a calcium-phosphorus compound not related to the periodontal packing that had been used. The third case involved the differential diagnosis of amalgam tattoo and graphite tattoo in a pigmented lesion of the hard palate mucosa. The results of the analyses were significant and indicate a role for this technique in the assessment of selected cases. Potential for wider use of energy dispersive X-ray microanalysis in diagnostic oral pathology exists as research progresses.

  10. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    Science.gov (United States)

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  11. Research of CdZnTe detector based portable energy dispersive spectrometer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A kind of excellent CdZnTe crystal has been grown in Yinnel Tech, Inc. in recent years. Based on these CdZnTe crystals and some new techniques, a portable energy-dispersive spectrometer has been constructed which has yielded good results. CdZnTe detector has a 3% relative resolution in high-energy field and can detect gamma rays at room temperature. An integrated circuit based on preamplifier and shaping amplifier chips is connected to the detector.Voltage pulses are transformed into digital signals in MCA (multichannel analyzer) and are then transmitted to computer via USB bus. Data process algorithms are improved in this spectrometer. Fast Fourier transform (FFT) and numerical differentiation (ND) are used in energy peak's searching program. Sampling-based correction technique is used in X-ray energy calibration. Modified Gaussian-Newton algorithm is a classical method to solve nonlinear curve fitting problems, and it is used to compute absolute intensity of each detected characteristic line.

  12. Can gravitational infall energy lead to the observed velocity dispersion in DLAs?

    CERN Document Server

    Razoumov, Alexei O; Prochaska, Jason X; Sommer-Larsen, Jesper; Wolfe, Arthur M; Yang, Yi-Jung

    2007-01-01

    The median observed velocity width v_90 of low-ionization species in damped Ly-alpha systems is close to 90 km/s, with approximately 10% of all systems showing v_90 > 210 km/s at z=3. We show that a relative shortage of such high-velocity neutral gas absorbers in state-of-the-art galaxy formation models is a fundamental problem, present both in grid-based and particle-based numerical simulations. Using a series of numerical simulations of varying resolution and box size to cover a wide range of halo masses, we demonstrate that energy from gravitational infall alone is insufficient to produce the velocity dispersion observed in damped Ly-alpha systems, nor does this dispersion arise from an implementation of star formation and feedback in our highest resolution (~ 45 pc) models, if we do not put any galactic winds into our models by hand. We argue that these numerical experiments highlight the need to separate dynamics of different components of the multiphase interstellar medium at z=3.

  13. Validity and Reliability of Fitbit Flex for Step Count, Moderate to Vigorous Physical Activity and Activity Energy Expenditure

    Science.gov (United States)

    Sushames, Ashleigh; Edwards, Andrew; Thompson, Fintan; McDermott, Robyn; Gebel, Klaus

    2016-01-01

    Objectives To examine the validity and reliability of the Fitbit Flex against direct observation for measuring steps in the laboratory and against the Actigraph for step counts in free-living conditions and for moderate-to-vigorous physical activity (MVPA) and activity energy expenditure (AEE) overall. Methods Twenty-five adults (12 females, 13 males) wore a Fitbit Flex and an Actigraph GT3X+ during a laboratory based protocol (including walking, incline walking, running and stepping) and free-living conditions during a single day period to examine measurement of steps, AEE and MVPA. Twenty-four of the participants attended a second session using the same protocol. Results Intraclass correlations (ICC) for test-retest reliability of the Fitbit Flex were strong for walking (ICC = 0.57), moderate for stair stepping (ICC = 0.34), and weak for incline walking (ICC = 0.22) and jogging (ICC = 0.26). The Fitbit significantly undercounted walking steps in the laboratory (absolute proportional difference: 21.2%, 95%CI 13.0–29.4%), but it was more accurate, despite slightly over counting, for both jogging (6.4%, 95%CI 3.7–9.0%) and stair stepping (15.5%, 95%CI 10.1–20.9%). The Fitbit had higher coefficients of variation (Cv) for step counts compared to direct observation and the Actigraph. In free-living conditions, the average MVPA minutes were lower in the Fitbit (35.4 minutes) compared to the Actigraph (54.6 minutes), but AEE was greater from the Fitbit (808.1 calories) versus the Actigraph (538.9 calories). The coefficients of variation were similar for AEE for the Actigraph (Cv = 36.0) and Fitbit (Cv = 35.0), but lower in the Actigraph (Cv = 25.5) for MVPA against the Fitbit (Cv = 32.7). Conclusion The Fitbit Flex has moderate validity for measuring physical activity relative to direct observation and the Actigraph. Test-rest reliability of the Fitbit was dependant on activity type and had greater variation between sessions compared to the Actigraph. Physical

  14. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    Science.gov (United States)

    Artem'ev, V. A.; Nezvanov, A. Yu.; Nesvizhevsky, V. V.

    2016-01-01

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2-5 nm and for neutron energies 3 × 10-7-10-3 eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  15. Investigation of Detectability of Elementary Composition of Rainbow trout muscle with EDS (Energy Dispersive Spectroscopy Method

    Directory of Open Access Journals (Sweden)

    Saltuk Buğrahan CEYHUN

    2017-06-01

    Full Text Available In present study, it is investigated that detectability of elementary composition of rainbow trout muscle using Energy Dispersive Spectroscopy (EDS. EDS system which has worked with attached to scanning electron microscope can do qualitative and semi-quantitative elementary analyses on selected region of sample using characteristic X-rays. For this purpose, it was performed four point and two mapping analyses from four samples. According to results, it was detected 13 elements which are consist of C, N and O in 87.70 percentage. As a result, although the method is sensitive and reliable, it is concluded that not adequate for elemental analysis alone but can be used as a support for analyzes with systems such as especially atomic absorption and ICP-MS.

  16. Analysis of photographs and photo-paintings by energy-dispersive X-ray fluorescence spectroscopy

    Science.gov (United States)

    Neiva, Augusto Camara; Marcondes, Marli A.; Pinto, Herbert Prince Favero; Almeida, Paula Aline Durães

    2014-02-01

    A collection of Brazilian family photographs and photo-paintings from the beginning of the XX Century was analyzed by portable EDXRF (Energy-Dispersive X-Ray Fluorescence) spectroscopy. The spectrometer uses a Si-drift Amptek detector and an Oxford Cr-tube or an Oxford W-tube. For every region under analysis, spectra obtained with the W-tube were used to detect all the elements above Al, while the Cr-tube was used to obtain more accurate results for elements between Al and V. Thirty nine elements were identified in the photos, and the origin of the most important ones was discussed. These results can be used for cataloging, preservation and restoring procedures.

  17. Precise calculations in simulations of the interaction of low energy neutrons with nano-dispersed media

    Energy Technology Data Exchange (ETDEWEB)

    Artem’ev, V. A., E-mail: niitm@inbox.ru [Research Institute of Materials Technology (Russian Federation); Nezvanov, A. Yu. [Moscow State Industrial University (Russian Federation); Nesvizhevsky, V. V. [Institut Max von Laue—Paul Langevin (France)

    2016-01-15

    We discuss properties of the interaction of slow neutrons with nano-dispersed media and their application for neutron reflectors. In order to increase the accuracy of model simulation of the interaction of neutrons with nanopowders, we perform precise quantum mechanical calculation of potential scattering of neutrons on single nanoparticles using the method of phase functions. We compare results of precise calculations with those performed within first Born approximation for nanodiamonds with the radius of 2–5 nm and for neutron energies 3 × 10{sup -7}–10{sup -3} eV. Born approximation overestimates the probability of scattering to large angles, while the accuracy of evaluation of integral characteristics (cross sections, albedo) is acceptable. Using Monte-Carlo method, we calculate albedo of neutrons from different layers of piled up diamond nanopowder.

  18. Co marker determination in rumen liquid sample by energy dispersive X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Eduardo de; Nascimento Filho, Virgilio F.; Massoni, Paulo R. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear (LIN)]. E-mail: edualm@usp.br; Leite, Laudi C.; Lanna, Dante P.D. [Escola Superior de Agricultura ' Luiz de Queiroz' (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Zootecnia. Lab. de Anatomia e Fisiologia Animal (LAFA)]. E-mail: lcleite@ciagri.usp.br

    2007-07-01

    The Co element is used in nutritional studies as marker. This paper describes an analytical methodology for Co determination in rumen liquid sample using energy dispersive X-ray spectrometry (EDXRF). 200 {mu}L of the sample were dried at 60 deg C on 6.35 {mu}m Mylar film. Ga was used as internal standard. The excitation was carried out utilizing Mo target X-ray tube (Zr filter) at 30 kV / 20 mA. The acquisition time was 200 s. The accuracy of this methodology was assessed through standard addition method, the recovery obtained was 98.7 % for Co. The detection limit was 0.15 mg / L for this element. (author)

  19. Cr and Yb markers determination in animal feces by energy dispersive X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Eduardo de; Senicato, Luis A; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear (LIN)]. E-mail: edualm@usp.br; Gomide, Catarina A. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos (FZEA). Dept. de Zootecnia]. E-mail: cbgomide@usp.br

    2007-07-01

    Chromium and Ytterbium elements are utilized in animal nutritional studies as markers. This paper describes an analytical method for Cr and Yb determination in solid buffalo feces sample using standard addition method and energy dispersive X-ray spectrometry (EDXRF) technique. One gram dried sample was pressed manually in an XRF sample cup with Mylar film (6.3 {mu}m thickness) in the bottom. The experimental conditions were: Mo target X-ray tube with Zr filter, operated at 25 kV/10 mA, and 500 s of acquisition time. The limits of detection for Cr and Yb were 16.6 and 11.4 mg/kg, respectively. This methodology has showed appropriated for simultaneous Cr and Yb determination as marker in animal feces. (author)

  20. Analysis of stainless steel samples by energy dispersive X-ray fluorescence (EDXRF) spectrometry

    Indian Academy of Sciences (India)

    M K Tiwari; A K Singh; K J S Sawhney

    2001-12-01

    A simple method for the analysis of stainless steel samples is presented which is based on radioisotope excited energy dispersive X-ray fluorescence (EDXRF) spectrometry and does not require any type-standards. Both absorption and enhancement effects have been taken into account in the fundamental parameter method for quantitative analysis and an iterative approach is followed for calculation of concentrations in steel samples. Non-linear least square fitting (NL-LSF) procedures have been used to determine accurately the fluorescent peak intensities. The method has been tested by analysing several CRM standard reference samples and 304 and 316 steel samples assuming as unknown. The EDXRF results have also been compared with the results of analysis of same samples by vacuum emission spark spectrometry (VES). Obtained values for concentration in steel samples match quite well with their certified values.

  1. Traffic Vehicle Counting in Jam Flow Conditions Using Low-Cost and Energy-Efficient Wireless Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Xu Bao

    2016-11-01

    Full Text Available The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a “tailgating effect” between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II, the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments.

  2. Traffic Vehicle Counting in Jam Flow Conditions Using Low-Cost and Energy-Efficient Wireless Magnetic Sensors.

    Science.gov (United States)

    Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian

    2016-11-06

    The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a "tailgating effect" between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments.

  3. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.

    Science.gov (United States)

    Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G

    2016-03-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive detection system.

  4. MMS Observation of Inverse Energy Dispersion in Shock Drift Acceleration Ions

    Science.gov (United States)

    Lee, S. H.; Sibeck, D. G.; Hwang, K. J.; Wang, Y.; Silveira, M. D.; Mauk, B.; Cohen, I. J.; Chu, C. S.; Mason, G. M.; Gold, R. E.; Burch, J. L.; Giles, B. L.; Torbert, R. B.; Russell, C. T.; Wei, H.

    2016-12-01

    The Energetic Particle Detector (EPD) on the Magnetospheric Multiscale (MMS) spacecraft observed bursts of energetic ions (50 keV-1000 keV) both in the foreshock and in the magnetosheath near the bow shock on December 6, 2015. Three species (protons, helium, and oxygen) exhibit inverse energy dispersions. Angular distributions for all three species indicate acceleration at the perpendicular bow shock. Acceleration that energizes the seed solar population by a factor of 2 and 4 is required for the protons and helium ions, respectively. The energy of the ions increases with θBn (the angle between the IMF and the local shock normal) since the induced electric field that energizes the charged particles increases as θBn increases towards 90°. We compare events upstream and downstream from the bow shock. We compare the MMS observations with those of the solar wind seed populations by the Ultra Low Energy Isotope Spectrometer (ULEIS) instrument on the Advanced Composition Explorer (ACE) mission and by the WIND 3-D Plamsa and Energetic Particle Experiment.

  5. UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersion.

    Science.gov (United States)

    Hwang, Hyeon-Deuk; Kim, Hyun-Joong

    2011-10-15

    UV-curable low surface energy fluorinated polycarbonate-based polyurethane dispersions were synthesized by incorporating a hydroxy-terminated perfluoropolyether (PFPE) into the soft segment of polyurethane. The effects of the PFPE content on the UV-curing behavior, physical, surface, thermal properties and refractive index were investigated. The UV-curing behavior was analyzed by photo-differential scanning calorimetry. The surface free energy of the UV-cured film, which is related to the water or oil repellency, was calculated from contact angle measurements using the Lewis acid-base three liquids method. The surface free energy decreased significantly with increasing fluorine concentration because PFPE in the soft segment was tailored to the surface and produced a UV-cured film with a hydrophobic fluorine enriched surface, as confirmed by X-ray photoelectron spectroscopy. With increasing the fluorine content, the refractive indices of UV-cured films decreased. However, the UV-curing rate and final conversion was decreased with increasing contents of PFPE, which resulted in the decrease of the glass transition temperature (T(g)), crosslink density, tensile strength and surface hardness.

  6. Counting carbohydrates

    Science.gov (United States)

    Carb counting; Carbohydrate-controlled diet; Diabetic diet; Diabetes-counting carbohydrates ... Many foods contain carbohydrates (carbs), including: Fruit and fruit juice Cereal, bread, pasta, and rice Milk and milk products, soy milk Beans, legumes, ...

  7. Seal Counts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Database of seal counts from aerial photography. Counts by image, site, species, and date are stored in the database along with information on entanglements and...

  8. Platelet Count

    Science.gov (United States)

    ... their spleen removed surgically Use of birth control pills (oral contraceptives) Some conditions may cause a temporary (transitory) increased ... increased platelet counts include estrogen and birth control pills (oral contraceptives). Mildly decreased platelet counts may be seen in ...

  9. Energy allocation during the maturation of adults in a long-lived insect: implications for dispersal and reproduction.

    Science.gov (United States)

    David, G; Giffard, B; van Halder, I; Piou, D; Jactel, H

    2015-10-01

    Energy allocation strategies have been widely documented in insects and were formalized in the context of the reproduction process by the terms 'capital breeder' and 'income breeder'. We propose here the extension of this framework to dispersal ability, with the concepts of 'capital disperser' and 'income disperser', and explore the trade-off in resource allocation between dispersal and reproduction. We hypothesized that flight capacity was sex-dependent, due to a trade-off in energy allocation between dispersal and egg production in females. We used Monochamus galloprovincialis as model organism, a long-lived beetle which is the European vector of the pine wood nematode. We estimated the flight capacity with a flight mill and used the number of mature eggs as a proxy for the investment in reproduction. We used the ratio between dry weights of the thorax and the abdomen to investigate the trade-off. The probability of flying increased with the adult weight at emergence, but was not dependent on insect age or sex. Flight distance increased with age in individuals but did not differ between sexes. It was also positively associated with energy allocation to thorax reserves, which increased with age. In females, the abdomen weight and the number of eggs also increase with age with no negative effect on flight capacity, indicating a lack of trade-off. This long-lived beetle has a complex strategy of energy allocation, being a 'capital disperser' in terms of flight ability, an 'income disperser' in terms of flight performance and an 'income breeder' in terms of egg production.

  10. Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A., E-mail: dan-paiva@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: marcelo_rlm@hotmail.com, E-mail: maensoal@yahoo.com.br, E-mail: chazin@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)

  11. A novel portable energy dispersive X-ray fluorescence spectrometer with triaxial geometry

    Science.gov (United States)

    Pessanha, S.; Alves, M.; Sampaio, J. M.; Santos, J. P.; Carvalho, M. L.; Guerra, M.

    2017-01-01

    The X-ray fluorescence technique is a powerful analytical tool with a broad range of applications such as quality control, environmental contamination by heavy metals, cultural heritage, among others. For the first time, a portable energy dispersive X-ray fluorescence spectrometer was assembled, with orthogonal triaxial geometry between the X-ray tube, the secondary target, the sample and the detector. This geometry reduces the background of the measured spectra by reducing significantly the Bremsstrahlung produced in the tube through polarization in the secondary target and in the sample. Consequently, a practically monochromatic excitation energy is obtained. In this way, a better peak-background ratio is obtained compared to similar devices, improving the detection limits and leading to superior sensitivity. The performance of this setup is compared with the one of a benchtop setup with triaxial geometry and a portable setup with planar geometry. Two case studies are presented concerning the analysis of a 18th century paper document, and the bone remains of an individual buried in the early 19th century.

  12. The SLcam: A full-field energy dispersive X-ray camera

    CERN Document Server

    Bjeoumikhov, A; Langhoff, N; Ordavo, I; Radtke, M; Reinholz, U; Riesemeier, H; Scharf, O; Soltau, H; Wedell, R

    2012-01-01

    The color X-ray camera (SLcam) is a full-field single photon imager. As stand-alone camera, it is applicable for energy and space-resolved X-ray detection measurements. The exchangeable poly-capillary optics in front of a beryllium entrance window conducts X-ray photons from the probe to distinguished energy dispersive pixels on a pnCCD. The dedicated software enables the acquisition and the online processing of the spectral data for all 69696 pixels, leading to a real-time visualization of the element distribution in a sample. No scanning system is employed. A first elemental composition image of the sample is visible within minutes while statistics is improving in the course of time. Straight poly-capillary optics allows for 1:1 imaging with a space resolution of 50 um and no limited depth of sharpness, ideal to map uneven objects. Using conically shaped optics, a magnification of 6 times was achieved with a space resolution of 10 um. We present a measurement with a laboratory source showing the camera capa...

  13. Performing elemental microanalysis with high accuracy and high precision by scanning electron microscopy/silicon drift detector energy-dispersive X-ray spectrometry (SEM/SDD-EDS).

    Science.gov (United States)

    Newbury, Dale E; Ritchie, Nicholas W M

    Electron-excited X-ray microanalysis performed in the scanning electron microscope with energy-dispersive X-ray spectrometry (EDS) is a core technique for characterization of the microstructure of materials. The recent advances in EDS performance with the silicon drift detector (SDD) enable accuracy and precision equivalent to that of the high spectral resolution wavelength-dispersive spectrometer employed on the electron probe microanalyzer platform. SDD-EDS throughput, resolution, and stability provide practical operating conditions for measurement of high-count spectra that form the basis for peak fitting procedures that recover the characteristic peak intensities even for elemental combination where severe peak overlaps occur, such PbS, MoS2, BaTiO3, SrWO4, and WSi2. Accurate analyses are also demonstrated for interferences involving large concentration ratios: a major constituent on a minor constituent (Ba at 0.4299 mass fraction on Ti at 0.0180) and a major constituent on a trace constituent (Ba at 0.2194 on Ce at 0.00407; Si at 0.1145 on Ta at 0.0041). Accurate analyses of low atomic number elements, C, N, O, and F, are demonstrated. Measurement of trace constituents with limits of detection below 0.001 mass fraction (1000 ppm) is possible within a practical measurement time of 500 s.

  14. Rigorous quantitative elemental microanalysis by scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) with spectrum processing by NIST DTSA-II

    Science.gov (United States)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2014-09-01

    Quantitative electron-excited x-ray microanalysis by scanning electron microscopy/silicon drift detector energy dispersive x-ray spectrometry (SEM/SDD-EDS) is capable of achieving high accuracy and high precision equivalent to that of the high spectral resolution wavelength dispersive x-ray spectrometer even when severe peak interference occurs. The throughput of the SDD-EDS enables high count spectra to be measured that are stable in calibration and resolution (peak shape) across the full deadtime range. With this high spectral stability, multiple linear least squares peak fitting is successful for separating overlapping peaks and spectral background. Careful specimen preparation is necessary to remove topography on unknowns and standards. The standards-based matrix correction procedure embedded in the NIST DTSA-II software engine returns quantitative results supported by a complete error budget, including estimates of the uncertainties from measurement statistics and from the physical basis of the matrix corrections. NIST DTSA-II is available free for Java-platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  15. Universal breaking point asymptotic for energy spectrum of Riemann waves in weakly nonlinear non-dispersive media

    CERN Document Server

    Kartashova, Elena

    2013-01-01

    In this Letter we study the form of the energy spectrum of Riemann waves in weakly nonlinear non-dispersive media. For quadratic and cubic nonlinearity we demonstrate that the deformation of an Riemann wave over time yields an exponential energy spectrum which turns into power law asymptotic with the slope being approximately -8/3 at the last stage of evolution before breaking. We argue, that this is the universal asymptotic behaviour of Riemann waves in any nonlinear non-dispersive medium at the point of breaking. The results reported in this Letter can be used in various non-dispersive media, e.g. magneto-hydro dynamics, physical oceanography, nonlinear acoustics.

  16. A semiparametric negative binomial generalized linear model for modeling over-dispersed count data with a heavy tail: Characteristics and applications to crash data.

    Science.gov (United States)

    Shirazi, Mohammadali; Lord, Dominique; Dhavala, Soma Sekhar; Geedipally, Srinivas Reddy

    2016-06-01

    Crash data can often be characterized by over-dispersion, heavy (long) tail and many observations with the value zero. Over the last few years, a small number of researchers have started developing and applying novel and innovative multi-parameter models to analyze such data. These multi-parameter models have been proposed for overcoming the limitations of the traditional negative binomial (NB) model, which cannot handle this kind of data efficiently. The research documented in this paper continues the work related to multi-parameter models. The objective of this paper is to document the development and application of a flexible NB generalized linear model with randomly distributed mixed effects characterized by the Dirichlet process (NB-DP) to model crash data. The objective of the study was accomplished using two datasets. The new model was compared to the NB and the recently introduced model based on the mixture of the NB and Lindley (NB-L) distributions. Overall, the research study shows that the NB-DP model offers a better performance than the NB model once data are over-dispersed and have a heavy tail. The NB-DP performed better than the NB-L when the dataset has a heavy tail, but a smaller percentage of zeros. However, both models performed similarly when the dataset contained a large amount of zeros. In addition to a greater flexibility, the NB-DP provides a clustering by-product that allows the safety analyst to better understand the characteristics of the data, such as the identification of outliers and sources of dispersion.

  17. Energy-Dispersive X-Ray Diffraction Studies of the Texture in Cold-Rolled Alpha-Beta Brass

    DEFF Research Database (Denmark)

    Szpunar, J.; Gerward, L.

    1980-01-01

    It is shown that energy-dispersive X-ray diffraction can be used for simultaneous measurement of several pole figures and that the accuracy is sufficient for the determination of the crystallite orientation distribution. The method is applied to the study of the texture in Cu-43 wt % Zn duplex...... alpha-beta brass rolled to 80% reduction....

  18. Influence of Polarization of the Incident Beam on Integrated Intensities in X-Ray Energy-Dispersive Diffractometry

    DEFF Research Database (Denmark)

    Olsen, J. Staun; Buras, B.; Jensen, T.

    1978-01-01

    Polarization measurements of the primary X-ray beam produced by thick copper and tungsten anodes are reported and formulas derived for integrated intensities of Bragg reflections in energy-dispersive diffractometry with the polarization of the primary beam taken into account. It was found...

  19. High-energy pulse compressor using self-defocusing spectral broadening in anomalously dispersive media

    DEFF Research Database (Denmark)

    2015-01-01

    A method and a pulse compressor (1) for compressing an optical pulse, wherein the pulse compressor comprising a bulk quadratic nonlinear medium (2) adapted for generating a negative nonlinear phase variation on the optical pulse and having a negative group-velocity dispersion, and a dispersive un...... subsequently be compressed by providing normal dispersion. As KDP crystals can be glued together, large apertures of the pulse compressor are possible making this method suitable for pulse compression in Joule-class lasers....

  20. Energy dispersive X-ray diffraction to identify explosive substances: Spectra analysis procedure optimization

    Energy Technology Data Exchange (ETDEWEB)

    Crespy, C., E-mail: charles.crespy@insa-lyon.f [CNDRI-Insa Lyon, Universite de Lyon, F-69621, Villeurbanne cedex (France); Duvauchelle, P., E-mail: philippe.duvauchelle@insa-lyon.f [CNDRI-Insa Lyon, Universite de Lyon, F-69621, Villeurbanne cedex (France); Kaftandjian, V.; Soulez, F. [CNDRI-Insa Lyon, Universite de Lyon, F-69621, Villeurbanne cedex (France); Ponard, P. [Thales Components and Subsystems, 2 rue Marcel Dassault 78491, Velizy cedex (France)

    2010-11-21

    To detect the presence of explosives in packages, automated systems are required. Energy dispersive X-ray diffraction (EDXRD) represents a powerful non-invasive tool providing information on the atomic structure of samples. In this paper, EDXRD is investigated as a suitable technique for explosive detection and identification. To this end, a database has been constructed, containing measured X-ray diffraction spectra of several explosives and common materials. In order to quantify spectral resolution influence, this procedure is repeated with two different detectors which have different spectral resolution. Using our database, some standard spectrum analysis procedures generally used for this application have been implemented. Regarding to the results, it is possible to conclude on the robustness and the limits of each analysis procedure. The aim of this work is to define a robust and efficient sequence of EDXRD spectra analysis to discriminate explosive substances. Since our explosive substances are crystalline, the first step consists in using characteristic of the spectrum to estimate a crystallinity criterion which allows to remove a large part of common materials. The second step is a more detailed analysis, it consists in using similarity criterion and major peaks location to differentiate explosive from crystalline common materials. The influence of the spectral resolution on the detection is also examined.

  1. Energy-dispersive X-ray fluorescence – A tool for interdisciplinary research

    Indian Academy of Sciences (India)

    M Sudarshan; S S Ram; S Majumdar; J P Maity; J G Ray; A Chakraborty

    2011-02-01

    Trace elements have been at the focus of attention for decades with considerable emphasis on their role in biology and biomedical sciences, environmental sciences, geology, archaeology and material sciences. They comprise a large number of elements, some having essential physiological functions, whereas others are toxic, mutagenic or carcinogenic. A few even have antiproliferative and anticarciniogenic properties. The advent of various instrumental techniques and sophisticated instrumentations has made their detection to very low limits possible, making this a very important multidisciplinary study. Among these techniques the energy-dispersive X-ray fluorescence (EDXRF) technique is being widely used for trace element detection in various fields of science. Keeping the importance of trace elements in mind, the Kolkata centre of UGC-DAE Consortium for Scientific Research initiated several research schemes in different fields of trace element research using various techniques, EDXRF being one of the main techniques. A Xenemetrix (erstwhile Jordan Valley) EX 3600 EDXRF spectrometer is being used to carry out the research. This presentation aims to highlight some of the very recent applications of EDXRF in the study of the role of trace elements in pre-cancerous tissues, medicinal plants and also in some environmental studies.

  2. Elemental analysis of mining wastes by energy dispersive X-ray fluorescence (EDXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, O. [Laboratory of X-ray Analytical Applications, Institute of Earth Sciences ' Jaume Almera' , CSIC, Sole Sabaris s/n, 08028 Barcelona (Spain)]. E-mail: ogonzalez@ija.csic.es; Queralt, I. [Laboratory of X-ray Analytical Applications, Institute of Earth Sciences ' Jaume Almera' , CSIC, Sole Sabaris s/n, 08028 Barcelona (Spain); Carvalho, M.L. [Centro de Fisica Atomica, Universidade de Lisboa, Av. Prof. Gama Pinto, 21649-003 Lisboa (Portugal); Garcia, G. [Area Edafologia y Quimica Agricola, Departmento de Ciencia y Tecnologia Agraria, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena (Spain)

    2007-08-15

    An energy dispersive X-ray fluorescence (EDXRF) tri-axial geometry experimental spectrometer has been employed to determine the concentrations of 13 different elements (K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr and Pb) in mine wastes from different depths of two mine tailings from the Cartagena-La Union (Spain) mining district. The elements were determined and quantified using the fundamental parameters method. The concentrations of Cr, Ni, Cu, Zn and Pb were compared to the values from the European and Spanish legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control land-filled. The results obtained demonstrate that these wastes can be considered as inert for the considered elements, apart from the concentration levels of Zn and Pb. Whilst Zn slightly overpasses the regulatory levels, Pb mean value exceeds three to six times the value to be considered as Class I potential land-filling material.

  3. Influence of Zn and Pb on Rhizopogon roseolus mycelium - energy dispersion spectroscopy and cytochemical investigation

    Directory of Open Access Journals (Sweden)

    Katarzyna Turnau

    2014-01-01

    Full Text Available Mycelium isolated from fruitbodies of Rhizopogon roseolus, collected from calamine wastes in Poland, was cultivated on agar media supplemented with Zn or Pb salts. The stimulation of exudate production by the aerial mycelium and the mycelium growing on the surface of the media, accompanied by the change of mycelium pigmentation, was found as a result of Zn application. The presence of Pb resulted mainly in the stimulation of crystalloid production on the surface of mycelium, in direct contact with the medium. Exudate droplets formed on the surface of mycelium cultivated on media with and without the Zn addition, were investigated by means of cytochemical tests (PATAg and Gomori-Swift reaction. In the control media most droplets gave a diffused, positive reaction to both tests. In media supplemented with Zn salts, besides the droplet-like material described in the control also another kind of exudate was observed. It was characterized by the collar showing apositive Gomori-Swift reaction, while the rest of the exudate had an oily appearance and gave a faint or no reaction to both tests. Comparative research by means of scanning electron microscopy accompanied by energy dispersion spectroscopy, was carried out showing the differences in exudate and in mycelia composition as a result of the Zn and Pb presence in the medium.

  4. Biomedical and agricultural applications of energy dispersive X-ray spectroscopy in electron microscopy.

    Science.gov (United States)

    Wyroba, Elżbieta; Suski, Szymon; Miller, Karolina; Bartosiewicz, Rafał

    2015-09-01

    Energy dispersive X-ray spectroscopy (EDS) in electron microscopy has been widely used in many research areas since it provides precise information on the chemical composition of subcellular structures that may be correlated with their high resolution images. In EDS the characteristic X-rays typical of each element are analyzed and the new detectors - an example of which we describe - allow for setting precisely the area of measurements and acquiring signals as a point analysis, as a linescan or in the image format of the desired area. Mapping of the elements requires stringent methods of sample preparation to prevent redistribution/loss of the elements as well as elimination of the risk of overlapping spectra. Both qualitative and quantitative analyses may be performed at a low probe current suitable for thin biological samples. Descriptions of preparation techniques, drawbacks and precautions necessary to obtain reliable results are provided, including data on standards, effects of specimen roughness and quantification. Data on EPMA application in different fields of biomedical and agricultural studies are reviewed. In this review we refer to recent EDS/EPMA applications in medical diagnostics, studies on air pollution and agrochemicals as well as on plant models used to monitor the environment.

  5. Current-Temperature Scaling for a Schottky Interface with Nonparabolic Energy Dispersion

    Science.gov (United States)

    Ang, Y. S.; Ang, L. K.

    2016-09-01

    In this paper, we study the Schottky transport in a narrow-gap semiconductor and few-layer graphene in which the energy dispersions are highly nonparabolic. We propose that the contrasting current-temperature scaling relation of J ∝T2 in the conventional Schottky interface and J ∝T3 in graphene-based Schottky interface can be reconciled under Kane's k .p nonparabolic band model for narrow-gap semiconductors. Our model suggests a more general form of J ∝(T2+γ kBT3) , where the nonparabolicty parameter γ provides a smooth transition from T2 to T3 scaling. For few-layer graphene, we find that N -layer graphene with A B C stacking follows J ∝T2 /N +1 , while A B A stacking follows a universal form of J ∝T3 regardless of the number of layers. Intriguingly, the Richardson constant extracted from the Arrhenius plot using an incorrect scaling relation disagrees with the actual value by 2 orders of magnitude, suggesting that correct models must be used in order to extract important properties for many Schottky devices.

  6. Identification of inorganic dust particles in bronchoalveolar lavage macrophages by energy dispersive x-ray microanalysis.

    Science.gov (United States)

    Johnson, N F; Haslam, P L; Dewar, A; Newman-Taylor, A J; Turner-Warwick, M

    1986-01-01

    This study shows that energy dispersive x-ray microprobe analysis to identify and quantify intracellular particles in macrophages obtained by the minimally invasive method of bronchoalveolar lavage (BAL) can detect inorganic dust exposures of many different kinds. Bronchoalveolar lavage macrophages from 22 patients have been examined. Twelve patients had occupational exposure to asbestos, talc, silica, hard metal or printing ink, while 10 had no known history of dust exposure. X-ray microprobe analysis identified particles which related to the known exposures, superimposed on a background of other particles related to smoking (kaolinite and mica) or to the general environment (silicon, titanium, and iron). The particle identification provided useful objective confirmation of the known exposures, except for silica, which could not be distinguished from the general background levels. X-ray microanalysis using BAL macrophages can be helpful for clarification of mixed dust exposures, to identify particles when light microscopy indicates retained dust in patients with no known history of exposure, and to monitor retained particles after removal from exposure.

  7. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Science.gov (United States)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-04-01

    In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (ICo/IRa) and effective atomic numbers (Zeff) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between ICo/IRa and Zeff was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Zeff differing from each other by only 0.01. The linear relationship between the variation of Zeff and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔCC, ΔCSi, and ΔCO were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  8. Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping

    Science.gov (United States)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2016-11-01

    Energy dispersive X-ray fluorescence mapping (μ-EDXRF) is a fast and non-destructive method for chemical quantification and therefore used in many scientific fields. The combination of spatial and chemical information is highly valuable for understanding geological processes. Problems occur with crystalline samples due to diffraction, which appears according to Bragg's law, depending on the energy of the X-ray beam, the incident angle and the crystal parameters. In the spectra these peaks can overlap with element peaks suggesting higher element concentrations. The aim of this study is to investigate the effect of diffraction, the possibility of diffraction removal and potential geoscientific applications for X-ray mapping. In this work the μ-EDXRF M4 Tornado from Bruker was operated with a Rh-tube and polychromatic beam with two SDD detectors mounted each at ± 90° to the tube. Due to the polychromatic beam the Bragg condition fits for several mineral lattice planes. Since diffraction depends on the angle, it is shown that a novel correction approach can be applied by measuring from two different angles and calculating the minimum spectrum of both detectors gaining a better limit of quantification for this method. Furthermore, it is possible to use the diffraction information for separation of differently oriented crystallites within a monomineralic aggregate and obtain parameters like particle size distribution for the sample, as it is done by thin section image analysis in cross-polarized light. Only with μ-EDXRF this can be made on larger samples without preparation of thin sections.

  9. Comparison of quantitative k-edge empirical estimators using an energy-resolved photon-counting detector

    Science.gov (United States)

    Zimmerman, Kevin C.; Gilat Schmidt, Taly

    2016-03-01

    Using an energy-resolving photon counting detector, the amount of k-edge material in the x-ray path can be estimated using a process known as material decomposition. However, non-ideal effects within the detector make it difficult to accurately perform this decomposition. This work evaluated the k-edge material decomposition accuracy of two empirical estimators. A neural network estimator and a linearized maximum likelihood estimator with error look-up tables (A-table method) were evaluated through simulations and experiments. Each estimator was trained on system-specific calibration data rather than specific modeling of non-ideal detector effects or the x-ray source spectrum. Projections through a step-wedge calibration phantom consisting of different path lengths through PMMA, aluminum, and a k-edge material was used to train the estimators. The estimators were tested by decomposing data acquired through different path lengths of the basis materials. The estimators had similar performance in the chest phantom simulations with gadolinium. They estimated four of the five densities of gadolinium with less than 2mg/mL bias. The neural networks estimates demonstrated lower bias but higher variance than the A-table estimates in the iodine contrast agent simulations. The neural networks had an experimental variance lower than the CRLB indicating it is a biased estimator. In the experimental study, the k-edge material contribution was estimated with less than 14% bias for the neural network estimator and less than 41% bias for the A-table method.

  10. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    Energy Technology Data Exchange (ETDEWEB)

    Worley, Christopher G [Los Alamos National Laboratory

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  11. On the analogy between pulse-pile-up in energy-sensitive, photon-counting detectors and level-crossing of shot noise

    Science.gov (United States)

    Roessl, Ewald; Bartels, Matthias; Daerr, Heiner; Proksa, Roland

    2016-03-01

    Shot noise processes are omnipresent in physics and many of their properties have been extensively studied in the past, including the particular problem of level crossing of shot noise. Energy-sensitive, photon-counting detectors using comparators to discriminate pulse-heights are currently heavily investigated for medical applications, e.g. for x-ray computed tomography and x-ray mammography. Surprisingly, no mention of the close relation between the two topics can be found in the literature on photon-counting detectors. In this paper, we point out the close analogy between level crossing of shot noise and the problem of determining count rates of photon- counting detectors subject to pulse pile-up. The latter is very relevant for obtaining precise forward models for photon-counting detectors operated under conditions of very high x-ray flux employed in clinical x-ray computed tomography. Although several attempts have been made to provide reasonably accurate, approximative models for the registered number of counts in x-ray detectors under conditions of high flux and arbitrary x-ray spectra, see, e.g., no exact, analytic solution is given in the literature for general continuous pulse shapes. In this paper we present such a solution for arbitrary response functions, x-ray spectra and continuous pulse shapes based on a result from the theory of level crossing. We briefly outline the theory of level crossing including the famous Rice theorem and translate from the language of level crossing to the language of photon-counting detection.

  12. Multichannel spin polarimeter for energy- and angle-dispersive photoemission measurements; Vielkanal-Spinpolarimeter fuer energie- und winkeldispersive Photoemissionsmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolbe, Michaela

    2011-09-09

    Spin polarization measurements of free electrons remain challenging since their first realization by Mott. The relevant quantity of a spin polarimeter is its figure of merit, FoM=S{sup 2}I/I{sub 0}, with the asymmetry function S and the ratio between scattered and primary intensity I/I{sub 0}. State-of-the-art devices are based on single-channel scattering (spin-orbit or exchange interaction) which is characterized by FoM {approx_equal}10{sup -4}. On the other hand, modern hemispherical analyzers feature an efficient multichannel detection of spin-integral intensity with more than 10{sup 4} data points simultaneously. In comparison between spin-resolved and spin-integral electron spectroscopy we are thus faced with a difference in counting efficiency by 8 orders of magnitude. The present work concentrates on the development and investigation of a novel technique for increasing the efficiency in spin-resolved electron spectroscopy by multichannel detection. The spin detector was integrated in a {mu}-metal shielded UHV-chamber and mounted behind a conventional hemispherical analyzer. The electrostatic lens system's geometry was determined by electron-optical simulations. The basic concept is the k {sub parallel} -conserving elastic scattering of the (0,0)-beam on a W(100) scattering crystal under 45 impact angle. It could be demonstrated that app. 960 data points (15 energy and 64 angular points) could be displayed simultaneously on a delayline detector in an energy interval of {approx_equal}3 eV. This leads to a two-dimensional figure of merit of FoM{sub 2D}=1.7. Compared to conventional spin detectors, the new type is thus characterized by a gain in efficiency of 4 orders of magnitude. The operational reliability of the new spin polarimeter could be proven by measurements with a Fe/MgO(100) and O p(1 x 1)/Fe(100)-sample, where results from the literature were reproduced with strongly decreased measuring time. Due to the high intensity it becomes possible, to

  13. On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Caralis, George [InFlow, Wind Energy Consultants (Greece); Perivolaris, Yiannis [InFlow, Wind Energy Consultants (Greece); Rados, Konstantinos [Department of Pollution Control Technologies, Technological Educational Institute of West Macedonia (Greece); Zervos, Arthouros [School of Mechanical Engineering, National Technical University of Athens (Greece)

    2008-01-15

    Wind energy is now a mature technology and can be considered as a significant contributor in reducing CO{sub 2} emissions and protecting the environment. To meet the wind energy national targets, effective implementation of massive wind power installed capacity in the power supply system is required. Additionally, capacity credit is an important issue for an unstable power supply system as in Greece. To achieve high and reliable wind energy penetration levels into the system, the effect of spatial dispersion of wind energy installations within a very wide area (e.g. national level) on the power capacity credit should be accounted for. In the present paper, a methodology for estimating the effect of spatial dispersion of wind farm installations on the capacity credit is presented and applied for the power supply system of Greece. The method is based on probability theory and makes use of wind forecasting models to represent the wind energy potential over any candidate area for future wind farm installations in the country. Representative wind power development scenarios are studied and evaluated. Results show that the spatial dispersion of wind power plants contributes beneficially to the wind capacity credit.

  14. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    Science.gov (United States)

    Silva, A. L. M.; Figueroa, R.; Jaramillo, A.; Carvalho, M. L.; Veloso, J. F. C. A.

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues.

  15. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.L.M. [I3N, Physics Dept, University of Aveiro, 3810-193 Aveiro (Portugal); Figueroa, R.; Jaramillo, A. [Physics Department, Universidad de La Frontera, Temuco (Chile); Carvalho, M.L. [Atomic Physics Centre, University of Lisbon, 1649-03 Lisboa (Portugal); Veloso, J.F.C.A., E-mail: joao.veloso@ua.pt [I3N, Physics Dept, University of Aveiro, 3810-193 Aveiro (Portugal)

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm{sup 2} presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues. - Highlights: • Demonstration of an EDXRF imaging system based on a 2D-MHSP detector for biological analysis • Evaluation of the drift of the dental amalgam constituents, throughout the teeth • Observation of Hg diffusion, due to hydroxyapatite crystal defects that compose the teeth tissues.

  16. Energy exchange between (3+1)D colliding spatiotemporal optical solitons in dispersive media with cubic-quintic nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Yang Hong; Tang Yi

    2008-01-01

    We investigate the energy exchange between (3+1)D colliding spatiotemporal solitons (STSs) in dispersive media with cubic-quintic (CQ) nonlinearity by numerical simulations. Energy exchange between two (3+l)D head on colliding STSs caused by their phase difference is observed, just as occurring in other optical media. Moreover, energy exchange between two head-on colliding STSs with different speeds is firstly shown in the CQ and saturable media.This phenomenon, we believe, may arouse some interest in the future studies of soliton collision in optical media.

  17. Analysis of energy dispersive x-ray diffraction profiles for material identification, imaging and system control

    Science.gov (United States)

    Cook, Emily Jane

    2008-12-01

    This thesis presents the analysis of low angle X-ray scatter measurements taken with an energy dispersive system for substance identification, imaging and system control. Diffraction measurements were made on illicit drugs, which have pseudo- crystalline structures and thus produce diffraction patterns comprising a se ries of sharp peaks. Though the diffraction profiles of each drug are visually characteristic, automated detection systems require a substance identification algorithm, and multivariate analysis was selected as suitable. The software was trained with measured diffraction data from 60 samples covering 7 illicit drugs and 5 common cutting agents, collected with a range of statistical qual ities and used to predict the content of 7 unknown samples. In all cases the constituents were identified correctly and the contents predicted to within 15%. Soft tissues exhibit broad peaks in their diffraction patterns. Diffraction data were collected from formalin fixed breast tissue samples and used to gen erate images. Maximum contrast between healthy and suspicious regions was achieved using momentum transfer windows 1.04-1.10 and 1.84-1.90 nm_1. The resulting images had an average contrast of 24.6% and 38.9% compared to the corresponding transmission X-ray images (18.3%). The data was used to simulate the feedback for an adaptive imaging system and the ratio of the aforementioned momentum transfer regions found to be an excellent pa rameter. Investigation into the effects of formalin fixation on human breast tissue and animal tissue equivalents indicated that fixation in standard 10% buffered formalin does not alter the diffraction profiles of tissue in the mo mentum transfer regions examined, though 100% unbuffered formalin affects the profile of porcine muscle tissue (a substitute for glandular and tumourous tissue), though fat is unaffected.

  18. Quantification of metals in lipstick by energy dispersive X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Wouk, Luana Cristina; Melquiades, Fabio Luiz [Universidade Estadual do Centro Oeste (UNICENTRO), PR (Brazil). Dept. de Fisica

    2011-07-01

    Full text: The objective of this work is to analyze lipstick and lip balm by Energy Dispersive X-Ray Fluorescence and verify if the concentration of the found elements are in accordance with federal rules. Two lip balm and 30 lipstick commercially available were analyzed without preparation. The samples were rubbed on a mylar film until they form a relatively homogeneous layer over entire surface of the film. The superficial density of the samples ranged from 0,0004 to 0,015 g cm{sup -2} , which characterize thin film geometry. Sensitivity values were determined using MicroMatter standards. The measurement system, from Applied Nuclear Physics Laboratory of UEL, consists in a Si-PIN X-ray detector (221 eV resolution for 5,9 keV line, 25 {mu}m Be window) and a mini X-ray tube (4W, Ag target, 50 {mu}m Ag filter). One of the lip balm presented 2620 {+-} 477 {mu}g g{sup -1} of Ti and in the other sample none inorganic elements, which characterize a formulation based on organic compounds. In the lipstick were found the following elements and the number of samples in which it appears, with its respective range of concentration in {mu}g g{sup -1}: Ti (17) 691 to 12721, Fe (22) 237 to 16377, Zn (3) 105 to 2850, Br (2) 510 to 3097, Sr(4) 254 to 1170, Ba (2) 58170 to 90506 and Bi (1) 16275 {+-} 798. According to Brazilian federal rules (ANVISA 79.094) it is not permitted the presence of As and Pb in the formulations. The methodology demonstrated to be suitable for quantification of metals at in natura samples of lipsticks, discarding sample preparation. In sequence a detailed study of the influence of these elements on human health will be performed. (author)

  19. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi, E-mail: stx@bnu.edu.cn

    2016-04-15

    Highlights: • X-ray scattering was used for monitoring oxidation situation of SiC ceramics. • A calibration curve was obtained. • The confocal X-ray scattering technology was based on polycapillary X-ray optics. • The variations of contents of components of SiC ceramics were obtained. - Abstract: In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (I{sub Co}/I{sub Ra}) and effective atomic numbers (Z{sub eff}) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between I{sub Co}/I{sub Ra} and Z{sub eff} was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Z{sub eff} differing from each other by only 0.01. The linear relationship between the variation of Z{sub eff} and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔC{sub C}, ΔC{sub Si}, and ΔC{sub O} were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  20. Anisotropic Thermal Expansion of Zirconium Diboride: An Energy-Dispersive X-Ray Diffraction Study

    Directory of Open Access Journals (Sweden)

    William A. Paxton

    2016-01-01

    Full Text Available Zirconium diboride (ZrB2 is an attractive material due to its thermal and electrical properties. In recent years, ZrB2 has been investigated as a superior replacement for sapphire when used as a substrate for gallium nitride devices. Like sapphire, ZrB2 has an anisotropic hexagonal structure which defines its directionally dependent properties. However, the anisotropic behavior of ZrB2 is not well understood. In this paper, we use energy-dispersive synchrotron X-ray diffraction to measure the thermal expansion of polycrystalline ZrB2 powder from 300 to 1150 K. Nine Bragg reflections are fit using Pseudo-Voigt peak profiles and used to compute the a and c lattice parameters using a nonlinear least-squares approximation. The temperature-dependent instantaneous thermal expansion coefficients are determined for each a-axis and c-axis direction and are described by the following equations: αa = (4.1507×10-6 + 5.1086 × 10-9(T-293.15/(1+4.1507 × 10-6(T-293.15 + 2.5543×10-9(T-293.152 and αc = (4.5374×10-6 + 4.3004×10-9(T-293.15/(1+4.5374×10-6(T-293.15 + 2.1502×10-9(T-293.152. Our results are within range of previously reported values but describe the temperature anisotropy in more detail. We show that anisotropic expansion coefficients converge to the same value at about 780 K and diverge at higher temperatures. Results are compared with other reported values.

  1. Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-01

    This set of slides begins by giving background and a review of neutron counting; three attributes of a verification item are discussed: 240Pueff mass; α, the ratio of (α,n) neutrons to spontaneous fission neutrons; and leakage multiplication. It then takes up neutron detector systems – theory & concepts (coincidence counting, moderation, die-away time); detector systems – some important details (deadtime, corrections); introduction to multiplicity counting; multiplicity electronics and example distributions; singles, doubles, and triples from measured multiplicity distributions; and the point model: multiplicity mathematics.

  2. Neutron counting with cameras

    Energy Technology Data Exchange (ETDEWEB)

    Van Esch, Patrick; Crisanti, Marta; Mutti, Paolo [Institut Laue Langevin, Grenoble (France)

    2015-07-01

    A research project is presented in which we aim at counting individual neutrons with CCD-like cameras. We explore theoretically a technique that allows us to use imaging detectors as counting detectors at lower counting rates, and transits smoothly to continuous imaging at higher counting rates. As such, the hope is to combine the good background rejection properties of standard neutron counting detectors with the absence of dead time of integrating neutron imaging cameras as well as their very good spatial resolution. Compared to Xray detection, the essence of thermal neutron detection is the nuclear conversion reaction. The released energies involved are of the order of a few MeV, while X-ray detection releases energies of the order of the photon energy, which is in the 10 KeV range. Thanks to advances in camera technology which have resulted in increased quantum efficiency, lower noise, as well as increased frame rate up to 100 fps for CMOS-type cameras, this more than 100-fold higher available detection energy implies that the individual neutron detection light signal can be significantly above the noise level, as such allowing for discrimination and individual counting, which is hard to achieve with X-rays. The time scale of CMOS-type cameras doesn't allow one to consider time-of-flight measurements, but kinetic experiments in the 10 ms range are possible. The theory is next confronted to the first experimental results. (authors)

  3. Investigation of quad-energy high-rate photon counting for X-ray computed tomography using a cadmium telluride detector.

    Science.gov (United States)

    Matsukiyo, Hiroshi; Sato, Eiichi; Oda, Yasuyuki; Yamaguchi, Satoshi; Sato, Yuichi; Hagiwara, Osahiko; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2017-09-10

    To obtain four kinds of tomograms at four different X-ray energy ranges simultaneously, we have constructed a quad-energy (QE) X-ray photon counter with a cadmium telluride (CdTe) detector and four sets of comparators and microcomputers (MCs). X-ray photons are detected using the CdTe detector, and the event pulses produced using amplifiers are sent to four comparators simultaneously to regulate four threshold energies of 20, 33, 50 and 65keV. Using this counter, the energy ranges are 20-33, 33-50, 50-65 and 65-100keV; the maximum energy corresponds to the tube voltage. We performed QE computed tomography (QE-CT) at a tube voltage of 100kV. Using a 0.5-mm-diam lead pinhole, four tomograms were obtained simultaneously at four energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-50 and 50-65keV, respectively. At a tube voltage of 100kV and a current of 60 μA, the count rate was 15.2 kilocounts per second (kcps), and the minimum count rates after penetrating objects in QE-CT were regulated to approximately 2 kcps by the tube current. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Reticulocyte count

    Science.gov (United States)

    ... radiation therapy, or infection) Cirrhosis of the liver Anemia caused by low iron levels, or low levels of vitamin B12 or folate Chronic kidney disease Reticulocyte count may be higher during pregnancy.

  5. Backscattered electron imaging and windowless energy dispersive x-ray microanalysis: a new technique for gallstone analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, H.S.; Lillemoe, K.D.; Magnuson, T.H.; Frasca, P.; Pitt, H.A. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (USA))

    1990-12-01

    Scanning electron microscopy with or without conventional energy dispersive x-ray microanalysis is currently used to identify gallstone microstructure and inorganic composition. Organic calcium salts are among many biliary constituents thought to have a role in gallstone nidation and growth. However, current analytical techniques which identify these salts are destructive and compromise gallstone microstructural data. We have developed a new technique for gallstone analysis which provides simultaneous structural and compositional identification of calcium salts within gallstones. Backscattered electron imaging is used to localize calcium within cholesterol at minimum concentrations of 0.01%. Windowless energy dispersive x-ray microanalysis produces elemental spectra of gallstone calcium salts which are qualitatively and quantitatively different. These combined techniques provide simultaneous structural and compositional information obtained from intact gallstone cross-sections and have been used to identify calcium salts in gallstones obtained at cholecystectomy from 106 patients.

  6. Interface energy effect on the dispersion relation of nano-sized cylindrical piezoelectric/piezomagnetic composites.

    Science.gov (United States)

    Fang, Xue-Qian; Liu, Yue; Liu, Xiang-Lin; Liu, Jin-Xi

    2015-02-01

    Interface between the constituents plays an important role in the non-destructive detection of smart piezoelectric/piezomagnetic devices. The propagation of SH waves in nano-sized cylindrically multiferroic composites consisting of a piezoelectric layer and a piezomagnetic central cylinder is investigated, and the size-dependent dispersion relation with interface effect is derived. The general solutions of decoupled governing equation in different regions are expressed by using Bessel functions, and the unknown coefficients are determined by satisfying the boundary conditions at the inner interface with negligible thickness and the outer surface of the structure. Through the numerical examples of dispersion relation, it is found that the interface around the nano-cylinder may remarkably reduce the phase velocity, depending on the combination of the value of thickness ratio and the surface condition. The interface shows different effect on the first and second modes of dispersion relation.

  7. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gazder, Azdiar A., E-mail: azdiar@uow.edu.au [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Al-Harbi, Fayez; Spanke, Hendrik Th. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia); Mitchell, David R.G. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); Pereloma, Elena V. [Electron Microscopy Centre, University of Wollongong, New South Wales 2500 (Australia); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, New South Wales 2522 (Australia)

    2014-12-15

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. - Highlights: • Multi-condition segmentation of austenite, martensite, polygonal ferrite and ferrite in bainite. • Ferrites in granular bainite and bainitic ferrite segmented by variation in relative carbon counts. • Carbon partitioning during growth explains variation in carbon content of ferrites in bainites. • Developed EBSD image processing tools can be applied to the microstructures of a variety of alloys. • EBSD-based segmentation procedure verified by correlative TEM results.

  8. Optimization of K-edge imaging for vulnerable plaques using gold nanoparticles and energy resolved photon counting detectors: a simulation study.

    Science.gov (United States)

    Alivov, Yahya; Baturin, Pavlo; Le, Huy Q; Ducote, Justin; Molloi, Sabee

    2014-01-06

    We investigated the effect of different imaging parameters, such as dose, beam energy, energy resolution and the number of energy bins, on the image quality of K-edge spectral computed tomography (CT) of gold nanoparticles (GNP) accumulated in an atherosclerotic plaque. A maximum likelihood technique was employed to estimate the concentration of GNP, which served as a targeted intravenous contrast material intended to detect the degree of the plaque's inflammation. The simulation studies used a single-slice parallel beam CT geometry with an x-ray beam energy ranging between 50 and 140 kVp. The synthetic phantoms included small (3 cm in diameter) cylinder and chest (33 × 24 cm(2)) phantoms, where both phantoms contained tissue, calcium and gold. In the simulation studies, GNP quantification and background (calcium and tissue) suppression tasks were pursued. The x-ray detection sensor was represented by an energy resolved photon counting detector (e.g., CdZnTe) with adjustable energy bins. Both ideal and more realistic (12% full width at half maximum (FWHM) energy resolution) implementations of the photon counting detector were simulated. The simulations were performed for the CdZnTe detector with a pixel pitch of 0.5-1 mm, which corresponds to a performance without significant charge sharing and cross-talk effects. The Rose model was employed to estimate the minimum detectable concentration of GNPs. A figure of merit (FOM) was used to optimize the x-ray beam energy (kVp) to achieve the highest signal-to-noise ratio with respect to the patient dose. As a result, the successful identification of gold and background suppression was demonstrated. The highest FOM was observed at the 125 kVp x-ray beam energy. The minimum detectable GNP concentration was determined to be approximately 1.06 µmol mL(-1) (0.21 mg mL(-1)) for an ideal detector and about 2.5 µmol mL(-1) (0.49 mg mL(-1)) for a more realistic (12% FWHM) detector. The studies show the optimal

  9. Thickness-dependent dispersion parameters, energy gap and nonlinear refractive index of ZnSe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Deo [School of Computer Science & Engineering, Faculty of Engineering, SMVD University, Kakryal, Katra 182320, J& K (India); Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542 (Egypt); Shapaan, M. [Department of Physics, Faculty of Science, Al-Azahar University, Cairo (Egypt); Mohamed, S.H. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Othman, A.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Verma, K.D., E-mail: kdverma1215868@gmail.com [Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, U.P. (India)

    2016-08-15

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.

  10. Understanding Blood Counts

    Science.gov (United States)

    ... Lab and Imaging Tests Understanding Blood Counts Understanding Blood Counts Understanding Blood Counts SHARE: Print Glossary Blood cell counts give ... your blood that's occupied by red cells. Normal Blood Counts Normal blood counts fall within a range ...

  11. White Blood Cell Count

    Science.gov (United States)

    ... limited. Home Visit Global Sites Search Help? White Blood Cell Count Share this page: Was this page helpful? ... Count; Leukocyte Count; White Count Formal name: White Blood Cell Count Related tests: Complete Blood Count , Blood Smear , ...

  12. Modulational instability and nano-scale energy localization in ferromagnetic spin chain with higher order dispersive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, L., E-mail: louiskavitha@yahoo.co.in [Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 101, Tamil Nadu (India); Max-Planck Institute for the Physics of Complex Systems, Dresden (Germany); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mohamadou, A. [Max-Planck Institute for the Physics of Complex Systems, Dresden (Germany); Department of Physics, Faculty of Science, University of Douala, Douala (Cameroon); Parasuraman, E. [Department of Physics, Periyar University, Salem 636 011, Tamil Nadu (India); Center for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamil Nadu (India); Gopi, D. [Center for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamil Nadu (India); Department of Chemistry, Periyar University, Salem 636 011, Tamil Nadu (India); Akila, N.; Prabhu, A. [Department of Physics, Periyar University, Salem 636 011, Tamil Nadu (India)

    2016-04-15

    The nonlinear localization phenomena in ferromagnetic spin lattices have attracted a steadily growing interest and their existence has been predicted in a wide range of physical settings. We investigate the onset of modulational instability of a plane wave in a discrete ferromagnetic spin chain with physically significant higher order dispersive octupole–dipole and dipole–dipole interactions. We derive the discrete nonlinear equation of motion with the aid of Holstein–Primakoff (H–P) transformation combined with Glauber's coherent state representation. We show that the discrete ferromagnetic spin dynamics is governed by an entirely new discrete NLS model with complex coefficients not reported so far. We report the study of modulational instability (MI) of the ferromagnetic chain with long range dispersive interactions both analytically in the frame work of linear stability analysis and numerically by means of molecular dynamics (MD) simulations. Our numerical simulations explore that the analytical predictions correctly describe the onset of instability. It is found that the presence of the various exchange and dispersive higher order interactions systematically favors the local gathering of excitations and thus supports the growth of high amplitude, long-lived discrete breather (DB) excitations. We analytically compute the strongly localized odd and even modes. Further, we employ the Jacobi elliptic function method to solve the nonlinear evolution equation and an exact propagating bubble-soliton solution is explored. - Highlights: • Higher order dispersive interactions plays significant role in ferromagnetic spin chain. • The energy localization is studied both analytically and numerically. • The existence of DBs are studied under the effect of higher order dispersive interaction.

  13. Counting Penguins.

    Science.gov (United States)

    Perry, Mike; Kader, Gary

    1998-01-01

    Presents an activity on the simplification of penguin counting by employing the basic ideas and principles of sampling to teach students to understand and recognize its role in statistical claims. Emphasizes estimation, data analysis and interpretation, and central limit theorem. Includes a list of items for classroom discussion. (ASK)

  14. Counting Populations

    Science.gov (United States)

    Damonte, Kathleen

    2004-01-01

    Scientists use sampling to get an estimate of things they cannot easily count. A population is made up of all the organisms of one species living together in one place at the same time. All of the people living together in one town are considered a population. All of the grasshoppers living in a field are a population. Scientists keep track of the…

  15. $\\mu-H$ Lamb shift: dispersing the nucleon-excitation uncertainty with a finite energy sum rule

    CERN Document Server

    Gorchtein, Mikhail; Szczepaniak, Adam P

    2013-01-01

    We assess the two-photon exchange contribution to the Lamb shift in muonic hydrogen with forward dispersion relations. The subtraction constant $\\bar T(0,Q^2)$ that is necessary for a dispersive evaluation of the forward doubly-virtual Compton amplitude, through a finite energy sum rule, is related to the fixed J=0 pole generalized to the case of virtual photons. We evaluated this sum rule using excellent virtual photoabsorption data that are available. We find that the "proton polarizability correction" to the Lamb shift in muonic hydrogen is $-(40\\pm5)\\mu$eV. We conclude that nucleon structure-dependent uncertainty by itself is unlikely to resolve the large (300$\\mu$eV) discrepancy between direct measurement of the Lamb shift in $\\mu H$ and expectations based on conventional Hydrogen measurements.

  16. Energy-dispersive NEXAFS. A novel tool for the investigation of intermolecular interaction and structural phase dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Markus

    2013-06-27

    In the context of this thesis, the novel method soft X-ray energy-dispersive NEXAFS spectroscopy was explored and utilized to investigate intermolecular coupling and post-growth processes with a temporal resolution of seconds. 1,4,5,8- naphthalene tetracarboxylic acid dianhydride (NTCDA)multilayer films were the chosen model system for these investigations. The core hole-electron correlation in coherently coupled molecules was studied by means of energy-dispersive near-edge X-ray absorption fine-structure spectroscopy. A transient phase was found which exists during the transition between a disordered condensed phase and the bulk structure. This phase is characterized by distinct changes in the spectral line shape and energetic position of the X-ray absorption signal at the C K-edge. The findings were explained with the help of theoretical models based on the coupling of transition dipole moments, which are well established for optically excited systems. In consequence, the experimental results provides evidence for a core hole-electron pair delocalized over several molecules. Furthermore, the structure formation of NTCDA multilayer films on Ag(111) surfaces was investigated. With time-resolved and energy-dispersive NEXAFS experiments the intensity evolution in s- and p-polarization showed a very characteristic behavior. By combining these findings with the results of time-dependent photoemission measurements, several sub-processes were identified in the post- growth behavior. Upon annealing, the amorphous but preferentially flat-lying molecules flip into an upright orientation. After that follows a phase characterized by strong intermolecular coupling. Finally, three-dimensional islands are established. Employing the Kolmogorov-Johnson-Mehl-Avrami model, the activation energies of the sub-processes were determined.

  17. Influence of ultrasonic energy on dispersion of aggregates and released amounts of organic matter and polyvalent cations

    Science.gov (United States)

    Kaiser, M.; Kleber, M.; Berhe, A. A.

    2010-12-01

    Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.

  18. A Forging Hardness Dispersion Effect on the Energy Consumption of Machining

    Directory of Open Access Journals (Sweden)

    L. D. Mal'kova

    2015-01-01

    Full Text Available The aim of the work is to evaluate a hardness dispersion of forgings to be further machined, and analyse the impact of this dispersion on the resulting power consumption when cutting.The paper studies the hardness values of three kinds of parts for automotive manufacturing. Sample of each part was n = 100 pieces. Analysis of measurements showed that 46% - 93% of parts meet requirements for a range defined by the work-piece working drawing. It was found that hardness of one batch of forgings is under dispersion, which distribution is governed by the normal law.The work provides calculations for machining the external cylindrical surfaces of the considered parts. In the context of calculating are adopted parameters of the enterprise-processing rate. It is found that power consumption of machining because of the dispersion values of the work-piece hardness is a function of the random BH variable and it itself is a random variable. Two types of samples are considered, namely: the full sample and that of the values that meet requirements for hardness. The coefficient of variation for samples that meet the technical requirements for hardness is lower than for the full samples, so their average value is more reliable characteristic of a set. It was also found that to ensure a reliable prediction of power consumption in designing the manufacturing processes it is necessary to reduce a tolerance range of workpiece hardness to the limit.The work gives a comparative evaluation of electric power consumption per unit cylindrical surface of the parts under consideration. A relative change in the electric power consumed at the minimum and maximum levels of the hardness value was introduced as an evaluation criterion. It is found that with changing hardness of machined work-pieces within the tolerance, the change in power consumption in machining the unit surface reaches 16% while in the case its being out of the specified range it does 47%.

  19. High Count Rate Electron Probe Microanalysis

    Science.gov (United States)

    Geller, Joseph D.; Herrington, Charles

    2002-01-01

    Reducing the measurement uncertainty of quantitative analyses made using electron probe microanalyzers (EPMA) requires a careful study of the individual uncertainties from each definable step of the measurement. Those steps include measuring the incident electron beam current and voltage, knowing the angle between the electron beam and the sample (takeoff angle), collecting the emitted x rays from the sample, comparing the emitted x-ray flux to known standards (to determine the k-ratio) and transformation of the k-ratio to concentration using algorithms which includes, as a minimum, the atomic number, absorption, and fluorescence corrections. This paper discusses the collection and counting of the emitted x rays, which are diffracted into the gas flow or sealed proportional x-ray detectors. The representation of the uncertainty in the number of collected x rays collected reduces as the number of counts increase. The uncertainty of the collected signal is fully described by Poisson statistics. Increasing the number of x rays collected involves either counting longer or at a higher counting rate. Counting longer means the analysis time increases and may become excessive to get to the desired uncertainty. Instrument drift also becomes an issue. Counting at higher rates has its limitations, which are a function of the detector physics and the detecting electronics. Since the beginning of EPMA analysis, analog electronics have been used to amplify and discriminate the x-ray induced ionizations within the proportional counter. This paper will discuss the use of digital electronics for this purpose. These electronics are similar to that used for energy dispersive analysis of x rays with either Si(Li) or Ge(Li) detectors except that the shaping time constants are much smaller. PMID:27446749

  20. Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning

    Science.gov (United States)

    Knox, Andrew James

    Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis' innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario's former coal-fired generating stations is 5.74/MWh (using an upper-bound value of 265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario's Long-Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than air-quality externalities from Ontario's electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy's externalities form a complex situation in which today's decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and

  1. Dispersive Surface Energy and Acid-Base Parameters of Tosylate Functionalized Poly(ethylene glycol via Inverse Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Feyza Sesigur

    2014-01-01

    Full Text Available An inverse gas chromatographic (IGC study of the sorption properties of poly(ethylene glycol modified with tosylate (PEG-TOS was presented. PEG-TOS was synthesized via the tosylation of the corresponding poly(ethylene glycol (PEG with p-toluenesulfonyl chloride in the basic medium. The synthesized PEG-Tos was characterized by FTIR-ATR and 1HNMR techniques. The retention diagrams of n-hexane, n-heptane, n-octane, n-nonane, n-decane, dichloromethane, chloroform, acetone, tetrahydrofuran, ethyl acetate, and ethanol on the PEG and PEG-Tos were plotted at temperatures in K between 303 and 373 by inverse gas chromatography technique. The dispersive component of the surface-free energy, γSD, of studied adsorbent surface was estimated using retention times of different nonpolar organics in the infinite dilution region. Thermodynamic parameters of adsorption (free energy, ΔGAS, enthalpy, ΔHAS, and entropy, ΔSAS, dispersive components of the surface energies, γSD, and the acid, KA, and base, KD, constants for the PEG and PEG-Tos were calculated and the results were discussed.

  2. Criterion-Validity of Commercially Available Physical Activity Tracker to Estimate Step Count, Covered Distance and Energy Expenditure during Sports Conditions

    Directory of Open Access Journals (Sweden)

    Yvonne Wahl

    2017-09-01

    Full Text Available Background: In the past years, there was an increasing development of physical activity tracker (Wearables. For recreational people, testing of these devices under walking or light jogging conditions might be sufficient. For (elite athletes, however, scientific trustworthiness needs to be given for a broad spectrum of velocities or even fast changes in velocities reflecting the demands of the sport. Therefore, the aim was to evaluate the validity of eleven Wearables for monitoring step count, covered distance and energy expenditure (EE under laboratory conditions with different constant and varying velocities.Methods: Twenty healthy sport students (10 men, 10 women performed a running protocol consisting of four 5 min stages of different constant velocities (4.3; 7.2; 10.1; 13.0 km·h−1, a 5 min period of intermittent velocity, and a 2.4 km outdoor run (10.1 km·h−1 while wearing eleven different Wearables (Bodymedia Sensewear, Beurer AS 80, Polar Loop, Garmin Vivofit, Garmin Vivosmart, Garmin Vivoactive, Garmin Forerunner 920XT, Fitbit Charge, Fitbit Charge HR, Xaomi MiBand, Withings Pulse Ox. Step count, covered distance, and EE were evaluated by comparing each Wearable with a criterion method (Optogait system and manual counting for step count, treadmill for covered distance and indirect calorimetry for EE.Results: All Wearables, except Bodymedia Sensewear, Polar Loop, and Beurer AS80, revealed good validity (small MAPE, good ICC for all constant and varying velocities for monitoring step count. For covered distance, all Wearables showed a very low ICC (<0.1 and high MAPE (up to 50%, revealing no good validity. The measurement of EE was acceptable for the Garmin, Fitbit and Withings Wearables (small to moderate MAPE, while Bodymedia Sensewear, Polar Loop, and Beurer AS80 showed a high MAPE up to 56% for all test conditions.Conclusion: In our study, most Wearables provide an acceptable level of validity for step counts at different

  3. Energy and pitch-angle dispersions of LLBL/cusp ions seen at middle altitudes: predictions by the open magnetosphere model

    Directory of Open Access Journals (Sweden)

    M. Lockwood

    Full Text Available Numerical simulations are presented of the ion distribution functions seen by middle-altitude spacecraft in the low-latitude boundary layer (LLBL and cusp regions when reconnection is, or has recently been, taking place at the equatorial magnetopause. From the evolution of the distribution function with time elapsed since the field line was opened, both the observed energy/observation-time and pitch-angle/energy dispersions are well reproduced. Distribution functions showing a mixture of magnetosheath and magnetospheric ions, often thought to be a signature of the LLBL, are found on newly opened field lines as a natural consequence of the magnetopause effects on the ions and their flight times. In addition, it is shown that the extent of the source region of the magnetosheath ions that are detected by a satellite is a function of the sensitivity of the ion instrument . If the instrument one-count level is high (and/or solar-wind densities are low, the cusp ion precipitation detected comes from a localised region of the mid-latitude magnetopause (around the magnetic cusp, even though the reconnection takes place at the equatorial magnetopause. However, if the instrument sensitivity is high enough, then ions injected from a large segment of the dayside magnetosphere (in the relevant hemisphere will be detected in the cusp. Ion precipitation classed as LLBL is shown to arise from the low-latitude magnetopause, irrespective of the instrument sensitivity. Adoption of threshold flux definitions has the same effect as instrument sensitivity in artificially restricting the apparent source region

    Key words. Low-latitude boundary layer · Cusp regions · Open magnetosphere model · Mid-altitudes

  4. Probabilities and energies to obtain the counting efficiency of electron-capture nuclides. KLMN model; Probabilidades y energias de reestructuracion atomica subsiguientes a la captura electronica. Modelo KLMN

    Energy Technology Data Exchange (ETDEWEB)

    Galiano, G.; Grau, A.

    1994-07-01

    An intelligent computer program has been developed to obtain the mathematical formulae to compute the probabilities and reduced energies of the different atomic rearrangement pathways following electron-capture decay. Creation and annihilation operators for Auger and X processes have been introduced. Taking into account the symmetries associated with each process, 262 different pathways were obtained. This model allows us to obtain the influence of the M-electro capture in the counting efficiency when the atomic number of the nuclide is high. (Author)

  5. A reduced switch count UPF power conditioner for grid connected variable speed wind energy conversion system employing PM generators: a simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Raju, A.B.; Fernandes, B.G.; Chatterjee, K. [Indian Institute of Technology, Mumbai (India). Dept. of Electrical Engineering

    2004-07-01

    In this paper, modelling and simulation of a grid connected variable speed wind energy conversion system (VSWECS) with reduced switch count power converter is presented. The system consists of a permanent magnet synchronous generator (PMSG), two-pulse width modulated B-4 power converters and a maximum power point tracker (MPPT). Mathematical models of each element of the system are developed separately and are then integrated to simulate the whole system for various wind velocities. The complete system is simulated using MATLAB/SIMULINK and simulation results are presented. (author)

  6. Portable energy-dispersive X-ray fluorescence equipment for the analysis of cultural heritage

    Indian Academy of Sciences (India)

    Roberto Cesareo

    2011-02-01

    Energy-dispersive X-ray fluorescence (EDXRF) especially in its portable version, generally characterized by a small X-ray tube and a Si-PIN or Si-drift detector is particularly useful to analyse works of art. EDXRF technique is nondestructive, noninvasive and multielemental. A variety of works, such as paintings of all types (including frescos and illuminated manuscripts), bronzes and brasses, gold alloys, silver alloys, ceramics, porcelains and faiences, papers, ink, stones of all types (marbles, obsidians etc.), stamps, etc. can be studied using a portable EDXRF equipment. In this paper, examples are given for analysis of the works of art with a portable EDXRF equipment.

  7. An overview of quantification methods in energy-dispersive X-ray fluorescence analysis

    Indian Academy of Sciences (India)

    A Markowicz

    2011-02-01

    This paper reviews the major factors influencing the accuracy of the energy-dispersive X-ray fluorescence (EDXRF) analysis including physical and chemical matrix effects (resulting from particle size, surface irregularity, mineralogy, moisture, absorption and enhancement) as well as the correction procedures with emphasis on the analysis of unprepared samples. Quantification methods for thin samples, samples with intermediate thickness and thick samples are presented including fundamental parameter methods, influence coefficient algorithms, empirical coefficient algorithms and quantification methods based on scattered primary radiation. Quality control procedures are also reviewed.

  8. Dose-rate controlled energy dispersive x-ray spectroscopic mapping of the metallic components in a biohybrid nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuanyuan; Munro, Catherine J.; Olszta, Matthew J.; Edwards, Danny J.; Braunschweig, Adam B.; Knecht, Marc R.; Browning, Nigel D.

    2016-06-30

    In this work, we showcase that through precise control of the electron dose rate, state-of-the-art large solid angle energy dispersive X-ray spectroscopy (EDS) mapping in aberration-corrected scanning transmission electron microscope (STEM) is capable of faithful and unambiguous chemical characterization of the Pt and Pd distribution in a peptide-mediated nanosystem. This low-dose-rate recording scheme adds another dimension of flexibility to the design of elemental mapping experiments, and holds significant potential for extending its application to a wide variety of beam sensitive hybrid nanostructures.

  9. An Energy Dispersive X-ray Spectroscopy Analysis of Elemental Changes of a Persimmon Phytobezoar Dissolved in Coca-Cola.

    Science.gov (United States)

    Iwamuro, Masaya; Urata, Haruo; Higashi, Reiji; Nakagawa, Masahiro; Ishikawa, Shin; Shiraha, Hidenori; Okada, Hiroyuki

    To investigate the mechanism of phytobezoar dissolution by Coca-Cola(®), persimmon phytobezoar pieces removed from a 60-year-old Japanese woman were analyzed by energy dispersive X-ray spectroscopy. The amount of calcium significantly decreased after dissolution treatment using Coca-Cola(®), suggesting a potential contribution of calcium to dissolution mechanisms. Moreover, immersion in Coca-Cola(®) for 120 hours on the exterior surface revealed that Coca-Cola(®) did not permeate persimmon phytobezoars. This is the first study to investigate the mechanisms of persimmon phytobezoar permeability and dissolution induced by Coca-Cola(®).

  10. Determination of composition, residual stress and stacking fault depth profiles in expanded austenite with energy-dispersive diffraction

    DEFF Research Database (Denmark)

    Jegou, S.; Christiansen, Thomas Lundin; Klaus, M.;

    2013-01-01

    A methodology is proposed combining the scattering vector method with energy dispersive diffraction for the non-destructive determination of stress- and composition-depth profiles. The advantage of the present method is a relatively short measurement time and avoidance of tedious sublayer removal......; the disadvantage as compared to destructive methods is that depth profiles can only be obtained for depth shallower than half the layer thickness. The proposed method is applied to an expanded austenite layer on stainless steel and allows the separation of stress, composition and stacking fault density gradients....

  11. Energy Dispersive X-Ray Fluorescent Analysis of Soil in the Vicinity of Industrial Areas and Heavy Metal Pollution Assessment

    Science.gov (United States)

    Singh, V.; Joshi, G. C.; Bisht, D.

    2017-05-01

    The soil of two agricultural sites near an industrial area was investigated for heavy metal pollution using energy dispersive X-ray fluorescence (EDXRF). The concentration values for 17 elements were determined in the soil samples including eight heavy metal elements, i.e., Fe, Ni, As, Pb, Mn, Cr, Cu, and Zn. The soil near a pulp and paper mill was found to be highly polluted by the heavy metals. The concentration data obtained by EDXRF were further examined by calculating the pollution index and Nemerow integrated pollution index.

  12. [Results of an investigation of enamel fragments from Benvenuto Cellini's "Saliera" using energy-dispersive X-ray microanalysis (EDX)].

    Science.gov (United States)

    Ditrich, Hans

    2009-01-01

    A blackmail letter was submitted in the context of the theft of Cellini's salt cellar (Saliera) from the Museum of Fine Arts in Vienna. Dark blue enamel fragments were included in this letter as a proof of authenticity. The comparison of this material with enamel believed to originate from the original artwork, using microspectrography and energy-dispersive X-ray microanalysis (EDX) in the scanning electron microscope showed similar elemental composition. Accordingly, the further investigations could concentrate on this blackmail attempt in spite of numerous other confession letters received.

  13. Energy dispersive x-ray fluorescence analyzer with several x-ray tubes

    Science.gov (United States)

    Borisov, G. I.; Kondratenko, R. I.; Mikhin, V. A.; Odinov, B. V.; Pukhov, A. V.

    2005-07-01

    X-ray flurescent analyzer (XFA) has been developed and fabricated for determining sulphur, vanadium and nickel in oil. The instrument is equipped with three x-ray tubes with transmission Ti, Cu and Ag anodes, and aluminum, copper, and germanium filters, respectively, and one common switchable power supply. To excite characteristic radiation of determined elements, the characteristic radiation of the tube anode (titan, copper) is used, or the charactersitic radiation of the filter (germanium). XFA is fitted with one small-size electrically cooled semiconductor detector. The measuring device is based on a wide-angle geometry of characteristic radiation excitation and registration, where the x-ray tube focus illuminates the sample, and the registering detector 'sees' the illuminated area within the plane angle of 90° (it corresponds to 0.146 of 4p). Under such geometry, the dependence of the count rate for excited characteristic photons on the position of sample under study has a smooth maximum in the calculated sample position point. For one, the rate count changes by less than 1%. Quantitative results are obtained through the regression method. The instrument underwent metrology testing. It is designed for operation both in the laboratory and industrial environment. The instrument has been delivered for operation to the "Druzhba" pipeline.

  14. Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ.

    Science.gov (United States)

    Ruehl, Axel; Kuhn, Vincent; Wandt, Dieter; Kracht, Dietmar

    2008-03-03

    We report on an erbium-doped fiber oscillator mode-locked by nonlinear polarization evolution operating in the large normal dispersion regime. The setup produced highly chirped 10 nJ pulses at 37 MHz which can be compressed externally to below 75 fs. Hence, this simple and practical setup is capable of providing ultrashort pulses with a peak power of 140 kW. The pulse formation is indeed subject to intrapulse Raman-scattering but a clean and stable pulse train can be observed. The similarities as well as the differences of the output characteristics to the parabolic pulse and wave breaking-free regime are explicated.

  15. Energy-Saving Vibration Impulse Coal Degradation at Finely Dispersed Coal-Water Slurry Preparation

    Directory of Open Access Journals (Sweden)

    Moiseev V.A.

    2015-01-01

    Full Text Available Theoretical and experimental research results of processes of finely dispersed coal-water slurry preparation for further generation of energetic gas in direct flow and vortex gas generator plants have been presented. It has been stated that frequency parameters of parabolic vibration impulse mill influence degradation degree. Pressure influence on coal parameters in grinding cavity has been proven. Experimental researches have proven efficiency of vibration impulse mill with unbalanced mass vibrator generator development. Conditions of development on intergranular walls of coal cracks have been defined.

  16. [Estimation of energy expenditure and the validity of pitch counting during walking and jogging by piezoelectric materials].

    Science.gov (United States)

    Yoshida, T; Udo, M; Mizuno, C; Yamanaka, H; Tasaka, I

    1992-09-01

    The purpose of the present study was to assess the validity of Piezo-electric accelerometer for estimating energy expenditure in walking and jogging. Energy consumption by oxygen uptake was determined during steady state level of treadmill walking at the speed of 60, 80 and 100 m/min and jogging at the speed of 100, 120, 140, and 160 m/min for 10 subjects. There was a highly significant correlation between the energy consumption and the estimated energy expenditure by an accelerometer despite the attached position (r = 0.912 at the waist, r = 0.915 at the chest, P < 0.001), which suggests accurate estimating energy expenditure in the field.

  17. Demonstration of enhanced iodine K-edge imaging using an energy-dispersive X-ray computed tomography system with a 25 mm/s-scan linear cadmium telluride detector and a single comparator

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Eiichi, E-mail: dresato@iwate-med.ac.jp [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Oda, Yasuyuki [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694 (Japan); Abudurexiti, Abulajiang [Faculty of Software and Information Science, Iwate Prefectural University, 152-52 Sugo, Takizawa, Iwate 020-0193 (Japan); Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya [3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Ogawa, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka, Iwate 020-0023 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo, Miyagi 985-8537 (Japan)

    2012-05-15

    An energy-dispersive (ED) X-ray computed tomography (CT) system is useful for carrying out monochromatic imaging. To perform enhanced iodine K-edge CT, we developed an oscillation linear cadmium telluride (CdTe) detector with a scan velocity of 25 mm/s and an energy resolution of 1.2 keV. CT is performed by repeated linear scans and rotations of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. The lower photon energy is determined by a comparator device, and the maximum photon energy of 60 keV corresponds to the tube voltage. Rectangular-shaped comparator outputs are counted by a counter card. In the ED-CT, tube voltage and current were 60 kV and 0.30 mA, respectively, and X-ray intensity was 14.8 {mu}Gy/s at 1.0 m from the source at a tube voltage of 60 kV. Demonstration of enhanced iodine K-edge X-ray CT for cancer diagnosis was carried out by selecting photons with energies ranging from 34 to 60 keV. - Highlights: Black-Right-Pointing-Pointer We developed an energy-dispersive X-ray CT system with a 25 mm/s-scan CdTe detector. Black-Right-Pointing-Pointer CT is performed by repeated linear scans and rotations of an object. Black-Right-Pointing-Pointer Lower photon energy is determined by a comparator device. Black-Right-Pointing-Pointer Spatial resolutions were 0.5 Multiplication-Sign 0.5 mm{sup 2}. Black-Right-Pointing-Pointer Iodine K-edge CT was carried out by selecting photons from 34 to 60 keV.

  18. Effect of solution molarity on optical dispersion energy parameters and electrochromic performance of Co3O4 films

    Science.gov (United States)

    Dhas, C. Ravi; Venkatesh, R.; Sivakumar, R.; Raj, A. Moses Ezhil; Sanjeeviraja, C.

    2017-10-01

    Co3O4 films were deposited on glass and FTO (F:SnO2) substrates by different solution molarities (0.05-0.20 M) through nebulizer spray technique. The crystalline quality of the films was evaluated by X-ray diffraction. The morphological variation of Co3O4 films for different solution concentration was observed from scanning electron microscopy. Optical constants (n and k) and dispersion energy parameters were calculated by fitting the transmittance curves using Swanepoel envelope method. The electrical parameters such as sheet resistance and activation energy were estimated using four probe method. The electrochromic performance of the films was analyzed by electrochemical measurements such as cyclic voltammetry, chronoamperometry, chronocoulometry and optical contrast studies.

  19. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics.

    Science.gov (United States)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-14

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  20. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Cuevas, Ariadna, E-mail: ariadna@mail.or [Archaeometry Laboratory, Colegio Universitario San Geronimo de La Habana, Obispo, entre San Ignacio y Mercaderes, Habana Vieja, cp 10 100, Havana (Cuba); Perez Gravie, Homero, E-mail: homero.perezgravie@mail.co [Archaeometry Laboratory, Colegio Universitario San Geronimo de La Habana, Obispo, entre San Ignacio y Mercaderes, Habana Vieja, cp 10 100, Havana (Cuba)

    2011-03-21

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  1. One-loop omega-potential of quantum fields with ellipsoid constant-energy surface dispersion law

    Science.gov (United States)

    Kazinski, P. O.; Shipulya, M. A.

    2011-10-01

    Rapidly convergent expansions of a one-loop contribution to the partition function of quantum fields with ellipsoid constant-energy surface dispersion law are derived. The omega-potential is naturally decomposed into three parts: the quasiclassical contribution, the contribution from the branch cut of the dispersion law, and the oscillating part. The low- and high-temperature expansions of the quasiclassical part are obtained. An explicit expression and a relation of the contribution from the cut with the Casimir term and vacuum energy are established. The oscillating part is represented in the form of the Chowla-Selberg expansion of the Epstein zeta function. Various resummations of this expansion are considered. The general procedure developed is then applied to two models: massless particles in a box both at zero and nonzero chemical potential, and electrons in a thin metal film. Rapidly convergent expansions of the partition function and average particle number are obtained for these models. In particular, the oscillations of the chemical potential of conduction electrons in graphene and a thin metal film due to a variation of size of the crystal are described.

  2. Study of on-line analysis using energy dispersive X-ray fluorescence spectrometry for controlling lanthanum and neodymium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Wenli, Li; Ascenzo, G.D`; Curini, R. [Department of Chemistry, University of Rome `La Sapienza`, Rome (Italy); Gasparini, G.M.; Casarci, M.; Mattia, B.; Traverso, D.M.; Bellisario, F. [ENEA, CRE Casaccia INN-NUMA (Italy)

    1998-05-04

    Many rare-earth extraction processes require frequent control over separation process quality. Ideally, an analysis method for this type should be simple, rapid and reliable. Energy dispersive X-ray fluorescence (EDXRF) spectrometry, due to its relative simplicity of instrumentation, speed of analysis, and non-destructive nature, is well suited to this on-line analysis application. In particular, since the radioisotope energy dispersive XRF method eliminates the need to transport samples to a laboratory which houses the X-ray spectrometry, it is most commonly used for on-line analysis of extraction systems. The present paper describes an attempt to type the radioisotope source {sup 241}Am XRF on-line analysis arrangement coupled with a personal computer for controlling a lanthanum and neodymium separation process. From the HpGe detector (high-purity germanium) response, a continuous spectral signal is observed during loading of the feed samples. The separation process using countercurrent extraction consists of a 16-stage laboratory mixer-settler, a switching valve, and a pumping system. The performance of this control system is illustrated by extracting La, Nd acidic solutions with 100% tributyl phosphate

  3. Rainflow counting revisited

    Energy Technology Data Exchange (ETDEWEB)

    Soeker, H. [Deutsches Windenergie-Institut (Germany)

    1996-09-01

    As state of the art method the rainflow counting technique is presently applied everywhere in fatigue analysis. However, the author feels that the potential of the technique is not fully recognized in wind energy industries as it is used, most of the times, as a mere data reduction technique disregarding some of the inherent information of the rainflow counting results. The ideas described in the following aim at exploitation of this information and making it available for use in the design and verification process. (au)

  4. Counting Possibilia

    Directory of Open Access Journals (Sweden)

    Alfredo Tomasetta

    2010-06-01

    Full Text Available Timothy Williamson supports the thesis that every possible entity necessarily exists and so he needs to explain how a possible son of Wittgenstein’s, for example, exists in our world:he exists as a merely possible object (MPO, a pure locus of potential. Williamson presents a short argument for the existence of MPOs: how many knives can be made by fitting together two blades and two handles? Four: at the most two are concrete objects, the others being merely possible knives and merely possible objects. This paper defends the idea that one can avoid reference and ontological commitment to MPOs. My proposal is that MPOs can be dispensed with by using the notion of rules of knife-making. I first present a solution according to which we count lists of instructions - selected by the rules - describing physical combinations between components. This account, however, has its own difficulties and I eventually suggest that one can find a way out by admitting possible worlds, entities which are more commonly accepted - at least by philosophers - than MPOs. I maintain that, in answering Williamson’s questions, we count classes of physically possible worlds in which the same instance of a general rule is applied.

  5. ChromAIX: A high-rate energy-resolving photon-counting ASIC for Spectral Computed Tomography

    NARCIS (Netherlands)

    Steadman, R.; Herrmann, C.; Mülhens, O.

    2011-01-01

    X-ray attenuation properties of matter (i.e. human body in medicalComputed Tomography) are energy and material dependent. This dependency is largely neglected in conventional CT techniques, which require the introduction of correction algorithms in order to prevent image artefacts. The exploitatio

  6. A feasibility study of projection-based energy weighting based on a photon-counting detector in contrast-enhanced digital subtraction mammography: A simulation study

    Science.gov (United States)

    Choi, Sunghoon; Lee, Seungwan; Choi, Yu-Na; Kim, Hee-Joung

    2014-06-01

    Contrast media, such as iodine and gadolinium, are generally used in digital subtraction mammography to enhance the contrast between target and background materials. In digital subtraction mammography, where one image (with contrast medium) is subtracted from another (anatomical background) to facilitate visualization of the tumor structure, tumors can be more easily distinguished after the injection of a contrast medium. In order to have more an effective method to increase the contrast-to-noise ratio (CNR), we applied a projection-based energy-weighting method. The purpose of this study is to demonstrate the feasibility of using the projection-based energy-weighting method in digital subtraction mammography. Unlike some other previous studies, we applied the projection-based energy-weighting method to more practical mammography conditions by using the Monte Carlo method to simulate four different iodine solutions embedded in a breast phantom comprised of 50% adipose and 50% glandular tissues. We also considered an optimal tube voltage and anode/filter combination in digital iodine contrast media mammography in order to maximize the figure-of-merit (FOM). The simulated source energy was from 20 to 45 keV to prevent electronic noise and include the k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy-weighting improved the CNR by factors of 1.05-1.86 compared to the conventionally integrated images. Consequently, the CNR of digital subtraction mammography images can be improved by using projection-based energy-weighting with photon-counting detectors.

  7. Evaluation of Compton attenuation and photoelectric absorption coefficients by convolution of scattering and primary functions and counts ratio on energy spectra

    Science.gov (United States)

    Ashoor, Mansour; Asgari, Afrouz; Khorshidi, Abdollah; Rezaei, Ali

    2015-01-01

    Purpose: Estimation of Compton attenuation and the photoelectric absorption coefficients were explored at various depths. Methods: A new method was proposed for estimating the depth based on the convolution of two exponential functions, namely convolution of scattering and primary functions (CSPF), which the convolved result will conform to the photopeak region of energy spectrum with the variable energy-window widths (EWWs) and a theory on the scattering cross-section. The triple energy-windows (TEW) and extended triple energy-windows scatter correction (ETEW) methods were used to estimate the scattered and primary photons according to the energy spectra at various depths due to a better performance than the other methods in nuclear medicine. For this purpose, the energy spectra were employed, and a distinct phantom along with a technetium-99 m source was simulated by Monte Carlo method. Results: The simulated results indicate that the EWW, used to calculate the scattered and primary counts in terms of the integral operators on the functions, was proportional to the depth as an exponential function. The depth will be calculated by the combination of either TEW or ETEW and proposed method resulting in the distinct energy-window. The EWWs for primary photons were in good agreement with those of scattered photons at the same as depths. The average errors between these windows for both methods TEW, and ETEW were 7.25% and 6.03% at different depths, respectively. The EWW value for functions of scattered and primary photons was reduced by increasing the depth in the CSPF method. Conclusions: This coefficient may be an index for the scattering cross-section. PMID:26170567

  8. Foerster resonance energy transfer in inhomogeneous non-dispersive nanophotonic environments

    DEFF Research Database (Denmark)

    Wubs, Martijn; Vos, Willem L.

    A nondispersive inhomogeneous dielectric environment of a donor-acceptor pair of quantum emitters affects their Foerster resonance energy transfer (FRET) rate. We find that this rate does not depend on the emission frequency and hence not on the local optical density of states (LDOS...

  9. The SAMI Galaxy Survey: energy sources of the turbulent velocity dispersion in spatially resolved local star-forming galaxies

    Science.gov (United States)

    Zhou, Luwenjia; Federrath, Christoph; Yuan, Tiantian; Bian, Fuyan; Medling, Anne M.; Shi, Yong; Bland-Hawthorn, Joss; Bryant, Julia J.; Brough, Sarah; Catinella, Barbara; Croom, Scott M.; Goodwin, Michael; Goldstein, Gregory; Green, Andrew W.; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; Owers, Matt S.; Richards, Samuel N.; Sanchez, Sebastian F.

    2017-10-01

    We investigate the energy sources of random turbulent motions of ionized gas from H α emission in eight local star-forming galaxies from the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey. These galaxies satisfy strict pure star-forming selection criteria to avoid contamination from active galactic nuclei (AGNs) or strong shocks/outflows. Using the relatively high spatial and spectral resolution of SAMI, we find that - on sub-kpc scales, our galaxies display a flat distribution of ionized gas velocity dispersion as a function of star formation rate (SFR) surface density. A major fraction of our SAMI galaxies shows higher velocity dispersion than predictions by feedback-driven models, especially at the low SFR surface density end. Our results suggest that additional sources beyond star formation feedback contribute to driving random motions of the interstellar medium in star-forming galaxies. We speculate that gravity, galactic shear and/or magnetorotational instability may be additional driving sources of turbulence in these galaxies.

  10. A paraeducator glove for counting disabled-child behaviors that incorporates a Bluetooth Low Energy wireless link to a smart phone.

    Science.gov (United States)

    Luan, Shiwei; Gude, Dana; Prakash, Punit; Warren, Steve

    2014-01-01

    Behavior tracking with severely disabled children can be a challenge, since dealing directly with a child's behavior is more immediately pressing than the need to record an event for tracking purposes. By the time a paraeducator (`para') is able to break away and record events, behavior counts can be forgotten. This paper presents a paraeducator glove design that can help to track behaviors with minimal distraction by allowing a paraeducator to touch their thumb to one of their other four fingers, where each finger represents a different behavior. Count data are packaged by a microcontroller board on the glove and then sent wirelessly to a smart phone via a Bluetooth Low Energy (BLE) link. A customized BLE profile was designed for this application to promote real-time recording. These data can be forwarded to a database for further analysis. This para glove design addresses basic needs of a wearable device that employs BLE, including local data collection, BLE data transmission, and remote data recording. More functional sensors can be added to this platform to support other wearable scenarios.

  11. Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Tezotto, Tiago; Favarin, Jose Laercio; Neto, Ana Paula; Azevedo, Ricardo Antunes, E-mail: tiago.tezotto@usp.br [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil); Gratao, Priscila Lupino [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/ FCAV), Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada a Agropecuaria; Mazzafera, Paulo [Universidade Estadual de Campinas (UNICAMP/IB), SP (Brazil). Dept. Biologia Vegetal

    2013-07-15

    Nutrient analysis is used to estimate nutrient content of crop plants to manage fertilizer application for sustained crop production. Direct solid analysis of agricultural and environmental samples by energy dispersive X-ray fluorescence spectrometry (EDXRF) was chosen as alternative technique to evaluate the simultaneous multielemental quantification of the most important essential elements in coffee (Coffea arabica L.) plants. Inductively coupled plasma atomic emission spectrometry and certified reference materials made from leaves were used to calibrate and check the trueness of EDXRF method for the determination of the concentration of several nutrients in coffee leaves and branches. Fluorescence spectrometry proved to be advantageous and presented low cost as loose powder samples could be used. Samples collected from a field experiment where coffee plants were treated with excess of Ni and Zn were used to verify the practical application of the method. Good relationships were achieved between certified values and data obtained by EDXRF, with recoveries ranging from 82 to 117 %.(author)

  12. Trace elemental analysis of school chalk using energy dispersive X-ray florescence spectroscopy (ED-XRF)

    Science.gov (United States)

    Maruthi, Y. A.; Das, N. Lakshmana; Ramprasad, S.; Ram, S. S.; Sudarshan, M.

    2015-08-01

    The present studies focus the quantitative analysis of elements in school chalk to ensure the safety of its use. The elements like Calcium (Ca), Aluminum (Al), Iron (Fe), Silicon (Si) and Chromium (Cr) were analyzed from settled chalk dust samples collected from five classrooms (CD-1) and also from another set of unused chalk samples collected from local market (CD-2) using Energy Dispersive X-Ray florescence(ED-XRF) spectroscopy. Presence of these elements in significant concentrations in school chalk confirmed that, it is an irritant and occupational hazard. It is suggested to use protective equipments like filtered mask for mouth, nose and chalk holders. This study also suggested using the advanced mode of techniques like Digital boards, marker boards and power point presentations to mitigate the occupational hazard for classroom chalk

  13. Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique

    Science.gov (United States)

    Bhat, C. K.; Joseph, Daisy; Pandita, Sanjay; Kotru, P. N.

    2016-08-01

    Analysis of didymium (Di) and praseodymium molybdate crystals were carried out using energy dispersive X-ray fluorescence (EDXRF). The assigned empirical chemical formulae of the composites were tested and verified by the EDXRF technique by estimating experimental major elemental concentration ratios. On the Basis of these ratios, the established formulae for some of the composite materials have been verified and suggestions made for their refinement. Non-destructive technique used in this analysis enables to retain the original crystal samples and makes rapid simultaneous scan of major elements such as La, Pr, Ned and Mo as well as impurities such as Ce. Absence of samarium(Sm) in the spectrum during analysis of didymium molybdate crystals indicated an incomplete growth of mixed rare earth single crystal. These crystals (e.g.,Di) are shown to be of modified stoichiometry with Ce as trace impurity.

  14. [Line scanning analysis of white porcelain from Gong Kiln in early Tang dynasty by energy disperse X-ray fluorescence].

    Science.gov (United States)

    Ling, Xue; Mao, Zhen-wei; Feng, Min; Hu, Yao-wu; Wang, Chang-sui; Liu, Hong-miao

    2005-07-01

    Gong kiln, for its long porcelain-firing history, was one of three representative white porcelain kilns in northern China. In order to improve the quality and whiteness of white porcelain, a decorating layer or cosmetic earth was laid on the body surface in Gong kiln during early Tang dynasty, which was able to blot out rough surface and weaken the influence of fuscous body upon surface color. In this paper the main chemical composition of the white porcelain's profile was analyzed by using energy disperse X-Ray fluorescence. The result showed that different materials were used as cosmetic earth during early Tang dynasty, in accordance with the phenomenon under optical microscope. In addition, the glaze belongs to calcium glaze in which plant ash was added.

  15. Uranium aerosols at a nuclear fuel fabrication plant: Characterization using scanning electron microscopy and energy dispersive X-ray spectroscopy

    Science.gov (United States)

    Hansson, E.; Pettersson, H. B. L.; Fortin, C.; Eriksson, M.

    2017-05-01

    Detailed aerosol knowledge is essential in numerous applications, including risk assessment in nuclear industry. Cascade impactor sampling of uranium aerosols in the breathing zone of nuclear operators was carried out at a nuclear fuel fabrication plant. Collected aerosols were evaluated using scanning electron microscopy and energy dispersive X-ray spectroscopy. Imaging revealed remarkable variations in aerosol morphology at the different workshops, and a presence of very large particles (up to ≅ 100 × 50 μm2) in the operator breathing zone. Characteristic X-ray analysis showed varying uranium weight percentages of aerosols and, frequently, traces of nitrogen, fluorine and iron. The analysis method, in combination with cascade impactor sampling, can be a powerful tool for characterization of aerosols. The uranium aerosol source term for risk assessment in nuclear fuel fabrication appears to be highly complex.

  16. Nail Damage (Severe Onychodystrophy) Induced by Acrylate Glue: Scanning Electron Microscopy and Energy Dispersive X-Ray Investigations

    Science.gov (United States)

    Pinteala, Tudor; Chiriac, Anca Eduard; Rosca, Irina; Larese Filon, Francesca; Pinteala, Mariana; Chiriac, Anca; Podoleanu, Cristian; Stolnicu, Simona; Coros, Marius Florin; Coroaba, Adina

    2017-01-01

    Background Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques have been used in various fields of medical research, including different pathologies of the nails; however, no studies have focused on obtaining high-resolution microscopic images and elemental analysis of disorders caused by synthetic nails and acrylic adhesives. Methods Damaged/injured fingernails caused by the use of acrylate glue and synthetic nails were investigated using SEM and EDX methods. Results SEM and EDX proved that synthetic nails, acrylic glue, and nails damaged by contact with acrylate glue have a different morphology and different composition compared to healthy human nails. Conclusions SEM and EDX analysis can give useful information about the aspects of topography (surface sample), morphology (shape and size), hardness or reflectivity, and the elemental composition of nails. PMID:28232921

  17. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    Science.gov (United States)

    Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.

  18. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  19. New energy dispersive X-ray spectrometer developed in ATOMKI (Debrecen, Hungary)

    Energy Technology Data Exchange (ETDEWEB)

    Bacso, J.; Kalinka, G.; Kovacs, P.; Lakatos, T. (Magyar Tudomanyos Akademia Atommag Kutato Intezete, Debrecen)

    1982-06-01

    A new X-ray spectrometer developed in ATOMKI is described. The measuring head contains a p-type Si(Li) detector surrounded by an Al collimator, a charge sensitive preamplifier and a vacuum cryostat. The analog pulse processor uses filters with variable parameters. The characteristic properties of the spectrometer (energy resolution, its dependence on load, stability) are investigated. The background is measured using three different radioactive sources and the results are compared with those of other pulse forming techniques.

  20. Dispersed, Decentralized and Renewable Energy Sources: Alternatives to National Vulnerability and War.

    Science.gov (United States)

    1980-12-01

    precision in prime movers and early power machinery favored use of large amounts of fossil fuel for transportation and power processes. The energy could not... heliostats that direct sunlight to a central receiving point. Steam produced from these high temperatures can be used to generate electricity with a...double-axis tracking heliostats (flat mirrored tracking surfaces) is directed to a focal point on a central receiving tower. Figure 3.8-1 illustrates a

  1. Free energy landscapes and volumes of coexisting phases for a colloidal dispersion

    Science.gov (United States)

    Lang, Trinh Hoa; Wang, G. F.; Lai, S. K.

    2010-01-01

    Treating the repulsive part of a pairwise potential by the hard-sphere form and its attractive part by the effective depletion potential form, we calculate using this model potential the colloidal domains of phase separation. Differing from the usual recipe of applying the thermodynamic conditions of equal pressure and equal chemical potential where the branches of coexisting phases are the ultimate target, we employ the free energy density minimization approach [G. F. Wang and S. K. Lai, Phys. Rev. E 70, 051402 (2004)] to crosshatch the domains of equilibrium phases, which consist of the gas, liquid, and solid homogeneous phases as well as the coexistence of these phases. This numerical procedure is attractive since it yields naturally the colloidal volume of space occupied by each of the coexisting phases. In this work, we first examine the change in structures of the fluid and solid free energy density landscapes with the effective polymer concentration. We show by explicit illustration the link between the free energy density landscapes and the development of both the metastable and stable coexisting phases. Then, attention is paid to the spatial volumes predicted at the triple point. It is found here that the volumes of spaces of the three coexisting phases at the triple point vary one dimensionally, whereas for the two coexisting phases, they are uniquely determined.

  2. Energy-dependent crossover from anisotropic to isotropic magnetic dispersion in lightly-doped La1.96Sr0.04CuO4

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Masaaki [ORNL; Granroth, Garrett E [ORNL; Fujita, M. [Tohoku University, Japan; Yamada, K. [Tohoku University, Japan; Tranquada, John M. [Brookhaven National Laboratory (BNL)

    2013-01-01

    Inelastic neutron scattering experiments have been performed on lightly-doped La$_{1.96}$Sr$_{0.04}$CuO$_{4}$, which shows diagonal incommensurate spin correlations at low temperatures. We previously reported that this crystal, with a single orthorhombic domain, exhibits the ``hourglass" dispersion at low energies [Phys. Rev. Lett. 101, 197001 (2008)]. In this paper, we investigate in detail the energy evolution of the magnetic excitations up to 65 meV. It is found that the anisotropic excitations at low energies, dispersing only along the spin modulation direction, crossover to an isotropic, conical dispersion that resembles spin waves in the parent compound La$_2$CuO$_{4}$. The change from two-fold to full symmetry on crossing the waist of the hourglass reproduces behavior first identified in studies of underdoped YBa$_2$Cu$_3$O$_{6+x}$. We discuss the significance of these results.

  3. Modeling complex dispersed energy and clean water systems for the United States/Mexico border

    Science.gov (United States)

    Herrera, Hugo Francisco Lopez

    As world population grows, and its technology evolves, the demand for electricity inexorably increases. Until now most of this electricity has been produced via fossil fuels, non-renewable energy resources that are irreversibly deteriorating our environment. On the economical aspect it does not get any better. Let's not forget market rules, the higher the demand and lower the offer, the higher the price we will have to pay. Oil is an excellent example. Some countries try to solve this situation with Pharaohnic projects, i.e. investing absurd amounts of money in 'green electricity' building monstrous dams to power equally monstrous hydroelectric power plants. The only problem with this is that it is not green at all---it does have an enormous environmental impact---it is extremely complicated and expensive to implement. It is important to point out, that this research project does not try to solve world's thirst for electricity. It is rather aimed to help solve this problematic at a much lower scale---it should be considered as an extremely small step in the right direction. It focuses on satisfying the local electricity needs with renewable, non-contaminating and locally available resources. More concisely, this project focuses on the attainment and use of hydrogen as an alternate energy source in El Paso/Juarez region. Clean technology is nowadays available to produce hydrogen and oxygen, i.e. the photoelectrolysis process. Photovoltaic cells coupled with electrolytic devices can be used to produce hydrogen and oxygen in a sustainable manner. In this research, simulation models of hybrid systems were designed and developed. They were capable to compare, predict and evaluate different options for hydrogen generation. On the other hand, with the produced hydrogen from the electrolysis process it was possible to generate electricity through fuel cells. The main objectives of the proposed research were to define how to use the resources for the attainment of hydrogen

  4. Beta-gamma coincidence counting efficiency and energy resolution optimization by Geant4 Monte Carlo simulations for a phoswich well detector.

    Science.gov (United States)

    Zhang, Weihua; Mekarski, Pawel; Ungar, Kurt

    2010-12-01

    A single-channel phoswich well detector has been assessed and analysed in order to improve beta-gamma coincidence measurement sensitivity of (131m)Xe and (133m)Xe. This newly designed phoswich well detector consists of a plastic cell (BC-404) embedded in a CsI(Tl) crystal coupled to a photomultiplier tube (PMT). It can be used to distinguish 30.0-keV X-ray signals of (131m)Xe and (133m)Xe using their unique coincidence signatures between the conversion electrons (CEs) and the 30.0-keV X-rays. The optimum coincidence efficiency signal depends on the energy resolutions of the two CE peaks, which could be affected by relative positions of the plastic cell to the CsI(Tl) because the embedded plastic cell would interrupt scintillation light path from the CsI(Tl) crystal to the PMT. In this study, several relative positions between the embedded plastic cell and the CsI(Tl) crystal have been evaluated using Monte Carlo modeling for its effects on coincidence detection efficiency and X-ray and CE energy resolutions. The results indicate that the energy resolution and beta-gamma coincidence counting efficiency of X-ray and CE depend significantly on the plastic cell locations inside the CsI(Tl). The degraded X-ray and CE peak energy resolutions due to light collection efficiency deterioration by the embedded cell can be minimised. The optimum of CE and X-ray energy resolution, beta-gamma coincidence efficiency as well as the ease of manufacturing could be achieved by varying the embedded plastic cell positions inside the CsI(Tl) and consequently setting the most efficient geometry. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  5. Residual strain gradient determination in metal matrix composites by synchrotron X-ray energy dispersive diffraction

    Science.gov (United States)

    Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.

    1993-01-01

    An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.

  6. Enhancement of energy dispersive residual stress analysis by consideration of detector electronic effects

    Science.gov (United States)

    Denks, I. A.; Genzel, Ch.

    2007-08-01

    The effects of the germanium detector electronics on diffraction line patterns is investigated. It is shown that not only the detector resolution and the throughput but also the energy stability depend on both the specific detector settings and the dead time. For a moderate resolution versus throughput setting a correction function is proposed and applied to the near-surface residual stress analysis of three samples with considerably different stress states. It is demonstrated that without the correction function ghost stresses up to hundreds of MPa in the near-surface region are obtained. The correction procedure is verified by conventional X-ray measurements. In conclusion, the authors strongly suggest quantifying the electronic shifts of any individual detector systems prior to the analysis of residual stresses.

  7. Energy-dispersive small-angle X-ray scattering with cone collimation using X-ray capillary optics

    Science.gov (United States)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-09-01

    Energy-dispersive small-angle X-ray scattering (ED-SAXS) with an innovative design of cone collimation based on an ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL) had been explored. Using this new cone collimation system, scattering angle 2θ has a theoretical minimum angle related to the mean half-opening angle of the hollow cone beam of 1.42 mrad, and with the usable X-ray energy ranging from 4 to 30 keV, the resulting observable scattering vector q is down to a minimum value of about 0.003 Å-1 (or a Bragg spacing of about 2100 Å). However, the absorption of lower energies by X-ray capillary optics, sample transmission, and detector response function limits the application range to lower energy. Cone collimation ED-SAXS experiments carried out on pure water, Lupolen, and in situ temperature-dependent measurement of diacetylenic acid/melamine micelle solid were presented at three different scattering angles 2θ of 0.18°, 0.70° and 1.18° to illustrate the new opportunities offered by this technique as well as its limitations. Also, a comparison has been made by replacing the PPXRL with a pinhole, and the result shows that cone collimation ED-SAXS based on ESBC with PPXRL was helpful in improving the signal-to-noise ratio (i.e., reducing the parasitic background scattering) than ESBC with a pinhole. The cone collimation instrument based on X-ray capillary optics could be considered as a promising tool to perform SAXS experiments, especially cone collimation ED-SAXS has potential application for the in situ temperature-dependent studying on the kinetics of phase transitions.

  8. Photometric study of single-shot energy-dispersive X-ray diffraction at a laser plasma facility

    CERN Document Server

    Hoidn, O R

    2013-01-01

    The low repetition rates and possible shot-to-shot variations in laser-plasma studies place a high value on single-shot diagnostics. For example, white-beam scattering methods based on broadband backlighter x-ray sources are used to determine changes in the structure of laser-shocked crystalline materials by the evolution of coincidences of reciprocal lattice vectors and kinematically-allowed momentum transfers. Here, we demonstrate that white-beam techniques can be extended to strongly-disordered dense plasma and warm dense matter (WDM) systems where reciprocal space is only weakly structured and spectroscopic detection is consequently needed to determine the static structure factor and thus the ion-ion radial distribution function. Specifically, we report a photometric study of energy-dispersive diffraction (ED-XRD) for structural measurement of high energy density systems at large-scale laser facilities such as OMEGA and the National Ignition Facility. We find that structural information can be obtained in...

  9. Comparison of energy expenditure, economy, and pedometer counts between normal weight and overweight or obese women during a walking and jogging activity.

    Science.gov (United States)

    LeCheminant, James D; Heden, Timothy; Smith, John; Covington, N Kay

    2009-07-01

    This study compared energy expenditure (EE), economy of movement, and pedometer counts between normal weight and overweight or obese women during a treadmill walking and jogging activity. Participants were 13 normal weight (BMI 22.2 +/- 2.0 kg m(-2)) and 13 overweight or obese (BMI 27.2 +/- 2.1 kg m(-2)) women and all were non-smokers, not regularly active, and able to run 1.609 km continuously at 2.23 m s(-1). Each participant reported to the laboratory on three separate days within a 1-week period. During the first visit, tests for resting metabolic rate via indirect calorimetry, anthropometric measures, and VO(2)max were completed. On the subsequent two visits, participants were randomized to perform either a 1.609-km walk at 1.34 m s(-1) or a 1.609-km jog at 2.23 m s(-1). During each physical activity trial, all participants wore a pedometer to assess steps taken. EE during the 1.609-km walk was 280 +/- 29 kJ for the normal weight and 356 +/- 42 kJ for the overweight/obese women and during the 1.609-km jog was 393 +/- 46 kJ for the normal weight and 490 +/- 59 kJ for the overweight/obese women. In both trials, EE was statistically greater in the overweight/obese women. Economy of movement was not statistically different between the normal weight and overweight/obese women during the walk or jog. In both groups, pedometer counts were lower during the jog than the walk (P jogging activity.

  10. In situ characterization of ancient plaster and pigments on tomb walls in Egypt using energy dispersive X-ray diffraction and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Uda, M. E-mail: muda@waseda.jp

    2004-11-01

    A portable type of energy dispersive X-ray diffraction and fluorescence (ED-XRDF) spectrometer was developed, whose operation mode is completely different from that of an X-ray diffractometer commercially available. The former is operated in energy dispersive mode but the latter in angle dispersive mode. The performance of the ED-XRDF spectrometer was tested in the field, i.e. in the tomb of Amenhotep III, built in 1364 B.C. or earlier in Egypt. The crystal structure and chemical composition of ancient plaster and pigments were successfully determined in the field using the spectrometer. The same areas investigated by the ED-XRDF spectrometer were also examined with an optical microscope. The plaster is found to be composed of anhydrite, calcite and quartz. White and yellow pigments were identified as huntite and orpiment, respectively. Egyptian blue and goethite were found in the green colored parts.

  11. In-situ and operando characterization of batteries with energy-dispersive synchrotron x-ray diffraction

    Science.gov (United States)

    Paxton, William Arthur

    Batteries play a pivotal role in the low-carbon society that is required to thwart the effects of climate change. Alternative low-carbon energy sources, such as wind and solar, are often intermittent and unreliable. Batteries are able capture their energy and deliver it later when it is needed. The implementation of battery systems in grid-level and transportation sectors is essential for efficient use of alternative energy sources. Scientists and engineers need better tools to analyze and measure the performance characteristics of batteries. One of the main hindrances in the progress of battery research is that the constituent electrode materials are inaccessible once an electrochemical cell is constructed. This leaves the researcher with a limited number of available feedback mechanisms to assess the cell's performance, e.g., current, voltage, and impedance. These data are limited in their ability to reveal the more-localized smaller-scale structural mechanisms on which the batteries' performance is so dependent. Energy-dispersive x-ray diffraction (EDXRD) is one of the few techniques that can internally probe a sealed battery. By analyzing the structural behavior of battery electrodes, one is able to gain insight to the physical properties on which the battery's performance is dependent. In this dissertation, EDXRD with ultrahigh energy synchrotron radiation is used to probe the electrodes of manufactured primary and secondary lithium batteries under in-situ and operando conditions. The technique is then applied to solve specific challenges facing lithium ion batteries. Diffraction spectra are collected from within a battery at 40 micrometer resolution. Peak-fitting is used to quantitatively estimate the abundance of lithiated and non-lithiated phases. Through mapping the distribution of phases within, structural changes are linked to the battery's galvanic response. A three-dimensional spatial analysis of lithium iron phosphate batteries suggests that evolution

  12. Performance of hybrid angle-energy dispersive X-ray diffraction and fluorescence portable system for non-invasive surface-mineral identification in Archaeometry

    CERN Document Server

    Cuevas, Ariadna Mendoza

    2016-01-01

    Low power energy dispersive XRD-XRF portable instruments equipped with multiple angle scanning can take advantage of the shorter acquisition time of EDXRD with respect to ADXRD, and bring closer higher accuracy and resolution of inter-planar distance with those obtained by ADXRD. The data produced by this new hybrid configuration is correlated in the sense that a single XRF or XRD specimen appear in multiple spectra (the later shifted in energy for differing angles). Hence, for fully benefit from the richer data released by this configuration, the analysis should not be confined to the independent processing of the spectra, specialized hybrid data processing should be conceived. We previously reported some advances in the processing of the resulting 3D data (intensity, energy and angle). Here the analytical performance of the first hybrid angle-energy dispersive X-ray diffraction and fluorescence portable system is assessed for non-invasive surface mineral analysis of samples relevant for archaeometrical appl...

  13. Study of the pressure-time-temperature transformation of amorphous La6Ni5Al89 by the energy dispersive method for phase transition

    DEFF Research Database (Denmark)

    Paci, B.; Rossi-Albertini, V.; Sikorski, M.

    2005-01-01

    An energy dispersive X-ray diffraction method to observe phase transitions is applied to follow the crystallization of an amorphous alloy (La6Ni5Al89) in isothermal conditions. In this way, the diffraction-based configurational entropy (DCE) of the system undergoing the phase transformations...

  14. Characterization of the mode of incorporation of lipophilic compounds in solid dispersions at the nanoscale using fluorescence resonance energy transfer (FRET)

    NARCIS (Netherlands)

    van Drooge, Dirk Jan; Braeckmans, Kevin; Hinrichs, Wouter L. J.; Remaut, Katrien; De Smedt, Stefaan C.; Frijlink, Henderik W.

    2006-01-01

    Efficient engineering of solid dispersions stagnates by the current inability to establish the mode of drug distribution on a molecular level at a low drug load. This study describes the application of fluorescence resonance energy transfer (FRET) to characterize the mode of incorporation of dispers

  15. Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-11

    The confocal energy dispersive micro-X-ray diffraction (EDMXRD) based on polycapillary X-ray optics was used to determine the grain size of polycrystalline materials. The grain size of a metallographic specimen of nickel base alloy was measured by using the confocal EDMXRD. The experimental results demonstrated that the confocal EDMXRD had potential applications in measuring large grain size.

  16. Diagenetic alteration of natural Fe-Ti oxides identified by energy dispersive spectroscopy and low-temperature magnetic remanence and hysteresis measurements

    OpenAIRE

    Dillon, Melanie; Franke, Christine

    2008-01-01

    Diagenetic alteration of natural Fe-Ti oxides identified by energy dispersive spectroscopy and low-temperature magnetic remanence and hysteresis measurements GERMANY (Dillon, Melanie) GERMANY Received: 2007-12-20 Revised: 2008-07-24 Accepted: 2008-08-06

  17. A chemical signal possibly related to physiology in fossil cells detected by energy dispersive X-ray microanalysis.

    Science.gov (United States)

    Wang, X

    2006-02-01

    Energy dispersive X-ray microanalysis (EDXMA) is a widely used tool employed to detect elemental composition and its spatial distribution in a sample without causing damage. Charcoalified cytoplasm is a new type of fossil material that came to people's attention only recently. In this paper, EDXMA is used for the first time to detect the spatial elemental distribution in charcoalified cytoplasm of two fossil plants that are more than 100 million years old. The results demonstrate certain elemental distribution patterns within charcoalified cytoplasm and the surrounding cell walls. Based on the results from cytological studies of extant material, the heterogeneous spatial elemental distribution within the charcoalified cytoplasm has the potential to be related to the maturation of cells, the presence of certain organelles, and the physiology of these organelles. This is the first chemical signal detected in cytoplasm residue that can possibly be related to plant physiology. This paves the way for further research on fossil cytoplasm, which will better our understanding on the physiology of fossil plants.

  18. Evaluation of the composition of filters additional of equipment radiological intraoral by energy dispersive x-ray fluorescence (EDXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Alana Caroline; Torres, Catarina A.M.P.; Rocha, Ana S.S.; Deniak, Valeriy; Lara, Alessandro L.; Paschuk, Sergei A., E-mail: alanacarolinef@gmail.com, E-mail: sergei@utfpr.edu.br [Universidade Tecnologica Federal do Parana (CPGEI/UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial; Fernandes, Angela; Westphalen, Fernando Henrique, E-mail: angelafernandes@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Setor de Ciencias da Saude

    2013-07-01

    The need for high quality standards for radiographic images in order to make a diagnosis assertive, and being the additional filtration required in the intraoral X-ray equipment show the need of evaluating these filters. This study aims to examine the influence of the elemental composition of the filters of X-ray of dental intraoral equipment in the radiographic images quality. The filters analysis were performed by using the energy dispersive X-ray fluorescence method (EDXRF). Ten conventional filters were analysed. In this study, 33 radiographic exposures were performed using films: twenty radiographs in the incisor region and ten in the molar region, three exposures were also made in the same regions with same conditions without using filter. After radiographs development, optical density was measure and all radiographs were submitted to subjective evaluation by dental radiologists. Data obtained were correlated to effects evaluation of the elemental composition of all filters in the quality of the radiographic images. The elements found were: aluminum, cobalt, copper, sulfur, iron, manganese, titanium, zinc, and zirconium. The images obtained were identified in groups: Molars to 0.3 s; Incisors to 0.2 s; Incisors to 0.3 s, and for the group without filters. From the results obtained it was concluded that both unclear radiographs and ideal radiographs were produced by using filters of elementary common. Therefore, conventional filters evaluated were an acceptable option to produce quality images in dental radiology, despite differences in the composition of the alloys. (author)

  19. Determination of Nickel and Manganese Contaminants in Pharmaceutical Iron Supplements Using Energy Dispersive X-ray Fluorescence.

    Science.gov (United States)

    Cardoso, Pedro; Amaro, Pedro; Santos, José Paulo; de Assis, Joaquim T; Carvalho, Maria Luisa

    2017-03-01

    In this study, we investigate the capability of energy dispersive X-ray fluorescence (EDXF) spectrometry in a triaxial geometry apparatus as a fast and nondestructive determination method of both dominant and contaminant elements in pharmaceutical iron supplements. The following iron supplements brands with their respective active ingredients were analyzed: Neutrofer fólico (iron gylcinate), Anemifer (iron(II) sulfate monohydrate), Noripurum (iron(III)-hydroxide polymaltose complex), Sulferbel (iron(II) sulfate monohydrate), and Combiron Fólico (carbonyl iron). Although we observe a good agreement between the iron content obtained by the present method and that indicated in the supplement's prescribed dose, we observe contamination by manganese and nickel of up to 180 μg and 36 μg, respectively. These contents correspond to 7.2% and 14.4% of the permitted daily exposure of manganese and nickel, respectively, for an average adult individual as determined by the European Medicine Agency (EMEA). The method was successfully validated against the concentrations of several certified reference materials of biological light matrices with similar concentrations of contaminants. Moreover, we also validated our method by comparing the concentrations with those obtained with the inductively coupled plasma-atomic emission technique.

  20. Determination of selenium at trace levels in geologic materials by energy-dispersive X-ray fluorescence spectrometry

    Science.gov (United States)

    Wahlberg, J.S.

    1981-01-01

    Low levels of selenium (0.1-500 ppm) in both organic and inorganic geologic materials can be semiquantitatively measured by isolating Se as a thin film for presentation to an energy-dispersive X-ray fluorescence spectrometer. Suitably pulverized samples are first digested by fusing with a mixture of Na2CO3 and Na2O2. The fusion cake is dissolved in distilled water, buffered with NH4Cl, and filtered to remove Si and the R2O3 group. A carrier solution of Na2TeO4, plus solid KI, hydrazine sulfate and Na2SO3, is added to the filtrate. The solution is then vacuum-filtered through a 0.45-??m pore-size filter disc. The filter, with the thin film of precipitate, is supported between two sheets of Mylar?? film for analysis. Good agreement is shown between data reported in this study and literature values reported by epithermal neutron-activation analysis and spectrofluorimetry. The method can be made quantitative by utilizing a secondary precipitation to assure complete recovery of the Se. The X-ray method offers fast turn-around time and a reasonably high production rate. ?? 1981.

  1. Trace elements determination by energy dispersive X-ray fluorescence (EDXRF) in human placenta and membrane: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Custodio, P.J.; Carvalho, M.L. [Centro Fisica Atomica, Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003, Lisboa (Portugal); Nunes, F. [Hospital Garcia de Orta, Almada (Portugal)

    2003-04-01

    This work is an application of energy dispersive X-ray fluorescence (EDXRF) as an analytical technique for trace elemental determination in human membrane and placenta and elemental concentrations correlations in both tissues. Whole samples were collected during the delivery from healthy mothers and full-term pregnancies. The age of the mother was between 25 and 40 years old, and the weight of the infants ranged from 2.56 to 4.05 kg. Samples were lyophilised and analysed without any chemical treatment. No significant differences in elemental content of placenta and membrane samples were observed except for Ca. Very low levels of Se, As and Pb were observed in all the analysed samples. Zn, considered as one of the key elements in newborn health, was not significantly different in the analysed samples, all of which originated from healthy mothers and healthy babies. The obtained values agree with the literature except for Ca, which is much higher in the studied samples. (orig.)

  2. Energy-dispersive X-ray fluorescence study of elemental uptake in cauliflower

    Indian Academy of Sciences (India)

    D Gupta; J M Chatterjee; R Ghose; A K Mitra; S Roy; M Sarkar

    2011-02-01

    A109Cd radioisotope-induced energy-dispersive X-ray fluorescence (EDXRF) study has been performed on samples of cauliflower consisting of the flower, the leaves and the associated root soil. The cauliflowers were collected from farms near the main dumping site of municipal solid waste in the city of Kolkata, India and also from uncontaminated farms about 50 km away from the city. A unified calibration approach was undertaken for the elemental analysis of the samples of widely varying matrices. The present study suggests that the elemental concentrations in the root soils and leaves of the samples vary from farm to farm, whereby the concentrations of Cu, Zn and Pb in root soils of MSW-contaminated farms are higher by almost an order of magnitude compared to uncontaminated farms. But, the most notable feature of this study is the strikingly similar elemental concentrations in the edible flower part of all samples irrespective of the type of soil.

  3. Characterization of wood dust from furniture by scanning electron microscopy and energy-dispersive x-ray analysis.

    Science.gov (United States)

    Gómez Yepes, Milena Elizabeth; Cremades, Lázaro V

    2011-01-01

    Study characterized and analyzed form factor, elementary composition and particle size of wood dust, in order to understand its harmful health effects on carpenters in Quindío (Colombia). Once particle characteristics (size distributions, aerodynamic equivalent diameter (D(α)), elemental composition and shape factors) were analyzed, particles were then characterized via scanning electron microscopy (SEM) in conjunction with energy dispersive X-ray analysis (EDXRA). SEM analysis of particulate matter showed: 1) cone-shaped particle ranged from 2.09 to 48.79 µm D(α); 2) rectangular prism-shaped particle from 2.47 to 72.9 µm D(α); 3) cylindrically-shaped particle from 2.5 to 48.79 µm D(α); and 4) spherically-shaped particle from 2.61 to 51.93 µm D(α). EDXRA reveals presence of chemical elements from paints and varnishes such as Ca, K, Na and Cr. SEM/EDXRA contributes in a significant manner to the morphological characterization of wood dust. It is obvious that the type of particles sampled is a complex function of shapes and sizes of particles. Thus, it is important to investigate the influence of particles characteristics, morphology, shapes and D(α) that may affect the health of carpenters in Quindío.

  4. Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-10-01

    Graphene nanosheets (GNs) dispersed with SnO2 nanoparticles loaded multiwalled carbon nanotubes (SnO2-MWCNTs) were investigated as electrode materials for supercapacitors. SnO2-MWCNTs were obtained by a chemical method followed by calcination. GNs/SnO2-MWCNTs nanocomposites were prepared by ultrasonication of the GNs and SnO 2-MWCNTs. Electrochemical double layer capacitors were fabricated using the composite as the electrode material and aqueous KOH as the electrolyte. Electrochemical performance of the composite electrodes were compared to that of pure GNs electrodes and the results are discussed. Electrochemical measurements show that the maximum specific capacitance, power density and energy density obtained for supercapacitor using GNs/SnO 2-MWCNTs nanocomposite electrodes were respectively 224 F g -1, 17.6 kW kg-1 and 31 Wh kg-1. The fabricated supercapacitor device exhibited excellent cycle life with ∼81% of the initial specific capacitance retained after 6000 cycles. The results suggest that the hybrid composite is a promising supercapacitor electrode material. © 2011 Elsevier B.V. All rights reserved.

  5. NASA Li/CF(x) cell problem analysis: Scanning electron microscopy with energy dispersive x ray spectrometry

    Science.gov (United States)

    Baker, John

    1991-01-01

    An analysis was made of Lithium/carbon fluoride cell parts for possible chloride contamination induced by exposure to thionyl chloride (SOCl2); various samples were submitted for analysis. Only a portion of the analysis which has been conducted is covered, herein, namely analysis by scanning electron microscopy with energy dispersive x ray spectrometry (SEM/EDS). A strip of nickel was exposed to SOCl2 vapors to observe variations in surface concentrations of sulfur and chlorine with time. By detecting chlorine one can not infer contamination by SOCl2 only that contamination is present. Six samples of stainless steel foil were analyzed for chlorine using EDS. Chlorine was not detected on background samples but was detected on the samples which had been handled including those which had been cleaned. Cell covers suspected of being contaminated while in storage and covers which were not exposed to the same storage conditions were analyzed for chlorine. Although no chlorine was found on the covers from cells, it was found on all stored covers. Results are presented with techniques shown for analysis and identification. Relevant photomicrographs are presented.

  6. Micro energy-dispersive X-ray fluoresence mapping of enamel and dental materials after chemical erosion.

    Science.gov (United States)

    Soares, Luís Eduardo Silva; de Oliveira, Rodrigo; Nahórny, Sídnei; Santo, Ana Maria do Espírito; Martin, Airton Abrahão

    2012-10-01

    Energy-dispersive X-ray fluorescence was employed to test the hypothesis that beverage consumption or mouthwash utilization will change the chemical properties of dental materials and enamel mineral content. Bovine enamel samples (n = 45) each received two cavity preparations (n = 90), each pair filled with one of three dental materials (R: nanofilled composite resin; GIC: glass-ionomer cement; RMGIC: resin-modified GIC). Furthermore, they were treated with three different solutions (S: saliva; E: erosion/Pepsi Twist®; or EM: erosion+mouthwash/Colgate Plax®). It was found that mineral loss in enamel was greater in GICE samples than in RE > RMGICE > RMGICEM > REM > GICEM. An increased percentage of Zr was found in REM indicating organic matrix degradation. Dental materials tested (R, GIC, and RMGIC) were not able to protect adjacent enamel from acid erosion by the soft drink tested. The use of mouthwash promoted protection of enamel after erosion by the soft drink. To avoid chemical dissolution by mouthwashes, protection by resin composites with surface sealants is recommended.

  7. Quantitative characterization of the mesothelioma-inducing erionite series minerals by transmission electron microscopy and energy dispersive spectroscopy.

    Science.gov (United States)

    Dogan, Meral

    2012-01-01

    Air-collected erionite series minerals from Cappadocia region of Turkey were characterized quantitatively by using transmission electron microscopy (TEM) equipped with energy dispersive spectroscopy (EDS). Field emission scanning electron microscopy aided identification of fibrous minerals. Quantitative characterization guidelines for positive identification of erionites proposed by Dogan and Dogan (2008) was applied and the modified balance error formula (E%mineral is erionite-K and a mean chemical formula is proposed based upon the TEM-EDS results. Among the 60 analyses, 11 passed E% test (18.3%), 33 passed Mg-content test (55.0%), and only 3 passed both E% and Mg-content tests (5.0%). This shows difficulty of quantitative characterization of the erionite series minerals. However, as erionite is the most carcinogenic mineral known and is classified by IARC as a Group-I (human) carcinogen, it requires special attention from the mineralogical community to help establish its true mineralogical properties. Quantitatively characterized erionite data are very scarce in literature. Correctly identified erionite mineral types will be useful to medical researchers in their search to find a possible cure for the deadly disease of mesothelioma. © Wiley Periodicals, Inc.

  8. Distribution of toxic elements in teeth treated with amalgam using μ-energy dispersive X-ray fluorescence

    Science.gov (United States)

    Guerra, M.; Ferreira, C.; Carvalho, M. L.; Santos, J. P.; Pessanha, S.

    2016-08-01

    Over the years, the presence of mercury in amalgam fillings has raised some safety concerns. Amalgam is one of the most commonly used tooth fillings and contains approximately 50% of elemental mercury and 50% of other metals, mostly silver, tin and copper. Amalgam can release small amounts of mercury vapor over time, and patients can absorb these vapors by inhaling or ingesting them. In this study, 10 human teeth treated with dental amalgam were analyzed using energy dispersive X-ray fluorescence (EDXRF) to study the diffusion of its constituents, Ag, Cu, Sn and Hg. The used EDXRF setup, makes use of a polycapillary lens to focus radiation up to 25 μm allowing the mapping of the elemental distribution in the samples. Quantification was performed using the inbuilt software based on the Fundamental Parameters method for bulk samples, considering a hydroxyapatite matrix. The teeth were longitudinally cut and each slice was scanned from the surface enamel to the inner region (dentin and pulp cavity). Mercury concentration profiles show strong levels of this element close to the amalgam region, decreasing significantly in the dentin, and increasing again up to 40,000 μg·g- 1 in the cavity were the pulp used to exist when the tooth was vital.

  9. Faults and foibles of quantitative scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS)

    Science.gov (United States)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2012-06-01

    Scanning electron microscopy with energy dispersive x-ray spectrometry (SEM/EDS) is a powerful and flexible elemental analysis method that can identify and quantify elements with atomic numbers > 4 (Be) present as major constituents (where the concentration C > 0.1 mass fraction, or 10 weight percent), minor (0.01history of more than 40 years, and the sophistication of modern analytical software, the method is vulnerable to serious shortcomings that can lead to incorrect elemental identifications and quantification errors that significantly exceed reasonable expectations. This paper will describe shortcomings in peak identification procedures, limitations on the accuracy of quantitative analysis due to specimen topography or failures in physical models for matrix corrections, and quantitative artifacts encountered in xray elemental mapping. Effective solutions to these problems are based on understanding the causes and then establishing appropriate measurement science protocols. NIST DTSA II and Lispix are open source analytical software available free at www.nist.gov that can aid the analyst in overcoming significant limitations to SEM/EDS.

  10. The detection of food soils on stainless steel using energy dispersive X-ray and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Whitehead, K A; Benson, P S; Verran, J

    2011-09-01

    Organic soiling is a major issue in the food processing industries, causing a range of biofouling and microbiological problems. Energy dispersive X-ray (EDX) and Fourier transform infra red spectroscopy (FT-IR) were used to quantify and determine the biochemical groups of food soils on stainless steel surfaces. EDX quantified organic material on surfaces where oily based residues predominated, but was limited in its usefulness since other food soils were difficult to detect. FT-IR provided spectral 'fingerprints' for each of the soils tested. Key soiling components were associated with specific peaks, viz. oils at 3025 cm(-1)-3011 cm(-1), proteins at 1698 cm(-1)-1636 cm(-1) and carbohydrates at 1658 cm(-1)-1596 cm(-1), 783 cm(-1)-742 cm(-1). High concentrations of some soils (10%) were needed for detection by both EDX and FT-IR. The two techniques may be of use for quantifying and identifying specific recalcitrant soils on surfaces to improve cleaning and hygiene regimes.

  11. Atomic-resolution chemical mapping of ordered precipitates in Al alloys using energy-dispersive X-ray spectroscopy.

    Science.gov (United States)

    Wenner, Sigurd; Jones, Lewys; Marioara, Calin D; Holmestad, Randi

    2017-05-01

    Scanning transmission electron microscopy (STEM) coupled with energy-dispersive X-ray spectroscopy (EDS) is a common technique for chemical mapping in thin samples. Obtaining high-resolution elemental maps in the STEM is jointly dependent on stepping the sharply focused electron probe in a precise raster, on collecting a significant number of characteristic X-rays over time, and on avoiding damage to the sample. In this work, 80kV aberration-corrected STEM-EDS mapping was performed on ordered precipitates in aluminium alloys. Probe and sample instability problems are handled by acquiring series of annular dark-field (ADF) images and simultaneous EDS volumes, which are aligned and non-rigidly registered after acquisition. The summed EDS volumes yield elemental maps of Al, Mg, Si, and Cu, with sufficient resolution and signal-to-noise ratio to determine the elemental species of each atomic column in a periodic structure, and in some cases the species of single atomic columns. Within the uncertainty of the technique, S and β" phases were found to have pure elemental atomic columns with compositions Al2CuMg and Al2Mg5Si4, respectively. The Q' phase showed some variation in chemistry across a single precipitate, although the majority of unit cells had a composition Al6Mg6Si7.2Cu2.

  12. Simultaneous nondestructive analysis of palladium, rhodium, platinum, and gold nanoparticles using energy dispersive X-ray fluorescence.

    Science.gov (United States)

    Fiedler, Haidi D; Drinkel, Emma E; Orzechovicz, Beatriz; Leopoldino, Elder C; Souza, Franciane D; Almerindo, Gizelle I; Perdona, Cristian; Nome, Faruk

    2013-11-01

    A selective method is proposed for the determination of palladium, gold, and sulfur in catalytic systems, by direct liquid analysis using energy dispersive X-ray fluorescence (EDXRF), under an atmosphere of helium or air. This method allows a nondestructive analysis of palladium, rhodium, platinum, and gold nanoparticulate catalysts stabilized by imidazolium propane sulfonate based zwitterionic surfactants, allowing the samples to be reused for catalytic studies. The signals from palladium, rhodium, platinum, and gold samples in the presence of imidazolium propane sulfonate-based zwitterionic surfactants obtained using EDXRF before (Pd(2+), Rh(2+), Pt(2+), and Au(3+)) and after (Pd(0), Rh(0), Pt(0), and Au(0)) formation of nanoparticles are essentially identical. The results show that the EDXRF method is nondestructive and allows detection and quantification of the main components of platinum, gold, rhodium, and palladium NPs, including the surfactant concentration, with detection and quantification limits in the range of 0.4-3 mg L(-1). The matrices used in such samples present no problems, even allowing the detection and quantification of interfering elements.

  13. Use of the cerium chloride technique and energy dispersive X-ray microanalysis in plant peroxisome identification

    Energy Technology Data Exchange (ETDEWEB)

    Kausch, A.P.; Wagner, B.L.; Horner, H.T. (Iowa State Univ. of Science and Technology, Ames (USA))

    1983-01-01

    Glycolate oxidase activity is demonstrated cytochemically with the CeCl/sub 3/ technique in leaf peroxisomes of Nicotiana tabacum, Glycine max, Psychotria punctata and in unspecialized peroxisomes of Yucca torreyi roots. Reaction product deposition occurs throughout peroxisomal matrices, whereas nucleoid inclusion bodies, occurring in all four species, are cytochemically unreactive. We observed reactive and nonreactive microbodies within individual cells in these four plants despite prolonged incubation times and increased CeCl/sub 3/ concentration. These results may reflect differences in glycolate oxidase content or peroxisomal differentiation within individual cells of a given tissue. We demonstrate substrate-independent cerium deposits in cell walls, cytoplasmic hoop-shaped structures and chloroplast thylakoids at extended incubation times or increased CeCl/sub 3/ concentration, perhaps indicating the presence of endogenous H/sub 2/O/sub 2/. Elemental spectral analysis of electron-dense deposits with energy dispersive X-ray microanalysis using a STEM detects peaks generated from the L-series of cerium. SEM X-ray mapping for the Lsub(..cap alpha..1) peak of cerium verifies peroxisomal localization of reaction product in thin sections.

  14. NASA Li/CF(x) cell problem analysis: Scanning electron microscopy with energy dispersive x ray spectrometry

    Science.gov (United States)

    Baker, John

    1991-01-01

    An analysis was made of Lithium/carbon fluoride cell parts for possible chloride contamination induced by exposure to thionyl chloride (SOCl2); various samples were submitted for analysis. Only a portion of the analysis which has been conducted is covered, herein, namely analysis by scanning electron microscopy with energy dispersive x ray spectrometry (SEM/EDS). A strip of nickel was exposed to SOCl2 vapors to observe variations in surface concentrations of sulfur and chlorine with time. By detecting chlorine one can not infer contamination by SOCl2 only that contamination is present. Six samples of stainless steel foil were analyzed for chlorine using EDS. Chlorine was not detected on background samples but was detected on the samples which had been handled including those which had been cleaned. Cell covers suspected of being contaminated while in storage and covers which were not exposed to the same storage conditions were analyzed for chlorine. Although no chlorine was found on the covers from cells, it was found on all stored covers. Results are presented with techniques shown for analysis and identification. Relevant photomicrographs are presented.

  15. Evaluation of the effect of lichens on ceramic roofing tiles by scanning electron microscopy and energy-dispersive spectroscopy analyses.

    Science.gov (United States)

    Kiurski, Jelena S; Ranogajec, Jonjaua G; Ujhelji, Agnes L; Radeka, Miroslava M; Bokorov, Milos T

    2005-01-01

    The effect of the actions of some lichens on the quality of ceramic roofing tiles was investigated in view of textural and microstructural changes considering their biocorrosion resistance. Two types (extruded and pressed) of the real ceramic roofing tiles aged 6 to 10 years, as well as the ceramic model systems formed with the additives of the specific chemical composition Cu-slag powder (10 wt%) and CuO powder (1 wt%), treated with various concentrations of oxalic acid (0.01 wt%, 0.1 wt%, and 4 wt%) were investigated. The thalli of lichen (Verrucaria nigrescens) growth on ceramic roofing tile were examined by scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). Investigation by SEM and EDS gave information regarding the ultrastructure characteristics of the thallus and the lichen-ceramic tile contact zone, allowing the observation of the hyphal penetration and filling up of the fissures and cracks by the lichens' hyphae. The CuO as the raw mixture additive changed the quality of the surface of the ceramic model systems as it has increased resistance to oxalic acid actions. The textural changes in the ceramic model systems and the formation of the identified destructive crystal phase, whewellite, were slowed down. The fundamental interactions between lichens and ceramic materials of the model systems have been identified as physico-chemical processes based on oxalic acid actions, which could cause ceramic matrix deterioration and consequently aging of ceramic roofing tile systems.

  16. Standard test method for analysis of uranium and thorium in soils by energy dispersive X-Ray fluorescence spectroscopy

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers the energy dispersive X-ray fluorescence (EDXRF) spectrochemical analysis of trace levels of uranium and thorium in soils. Any sample matrix that differs from the general ground soil composition used for calibration (that is, fertilizer or a sample of mostly rock) would have to be calibrated separately to determine the effect of the different matrix composition. 1.2 The analysis is performed after an initial drying and grinding of the sample, and the results are reported on a dry basis. The sample preparation technique used incorporates into the sample any rocks and organic material present in the soil. This test method of sample preparation differs from other techniques that involve tumbling and sieving the sample. 1.3 Linear calibration is performed over a concentration range from 20 to 1000 μg per gram for uranium and thorium. 1.4 The values stated in SI units are to be regarded as the standard. The inch-pound units in parentheses are for information only. 1.5 This standard...

  17. Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Carreño-Gallardo, C.; Estrada-Guel, I. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología-Chihuahua, Miguel de Cervantes No. 120, CP 31109, Chihuahua, México (Mexico); López-Meléndez, C. [Universidad La Salle Chihuahua, Prol. Lomas de Majalca No. 11201, CP 31020, Chihuahua, México (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología-Chihuahua, Miguel de Cervantes No. 120, CP 31109, Chihuahua, México (Mexico)

    2014-02-15

    Highlights: • Synthesis of 2024-SiC{sub NP} nanocomposite by mechanical milling process. • SiC nanoparticles improved mechanical properties of aluminum alloy 2024 matrix. • A homogeneous distribution of SiC nanoparticles were observed in the matrix • Compressive and hardness properties of the composite are improved significantly. -- Abstract: Al{sub 2024} alloy was reinforced with silicon carbide nanoparticles (SiC{sub NP}), whose concentration was varied in the range from 0 to 5 wt.%; some composites were synthesized with the mechanical milling (MM) process. Structure and microstructure of the consolidated samples were studied by X-ray diffraction and transmission electron microscopy, while mechanical properties were investigated by compressive tests and hardness measurements. The microstructural evidence shows that SiC{sub NP} were homogeneously dispersed into the Al{sub 2024} alloy using high-energy MM after 2 h of processing. On the other hand, an increase of the mechanical properties (yield stress, maximum strength and hardness) was observed in the synthesized composites as a direct function of the SiC{sub NP} content. In this research several strengthening mechanisms were observed, but the main was the obstruction of dislocations movement by the addition of SiC{sub NP}.

  18. [Nephrotoxic effect of gold sodium thiomalate in rats--ultrastructual observations using electronmicroscopy and X-ray energy dispersive analysis].

    Science.gov (United States)

    Kaizu, K; Matsuno, K; Kodama, Y; Etoh, S

    1986-03-01

    The purpose of this study is to demonstrate renal injuries by gold sodium thiomalate (G) with ultrastructual changes and gold deposition in kidney tissue using X-ray energy dispersive analysis (XEDA). Twenty-five mg of G containing 12.1 mg of Au was injected into rats intraperitoneally. The rats were divided into 5 groups. Group 1 was sacrificed 6 hours after the injection of G, and group 2 after 24 hours, group 3 after 72 hours and group 4 after 144 hours. Group 5 consisted of the control-rats which were provided with injections of saline. Gold contents in kidneys, liver, lungs and spleen were measured using the flameless atomic absorption method. XEDA was also performed in order to confirm the gold deposition in tissue. Among the organs, only the kidney showed remarkable changes with increased weight. Group 1 already showed marked azotemia which reached to the maximum level in group 3. The amount of gold content in the organs did not change significantly in spite of a marked reduction of serum gold concentration among the 4 groups. Histological examinations revealed marked degeneration and necrosis of pars recta in proximal tubules, although no prominent abnormalities of glomeruli could be observed. Using an electron microscope, many electron dense particles in lysosome were noticed, mainly in proximal tubules. We also found these particles in lysosome of glomerular epithelial cells. Using XEDA, these electron dense particles were demonstrated to be gold, since characteristic energy of gold was found. In conclusion, the kidney was shown to be the most accumulative organ of gold. G caused acute extensive necrosis of proximal tubules. Gold was demonstrated as electron dense particles in lysosomes mainly in proximal tubules, but also partly in glomeruli. Therefore, it was confirmed that a large amount of G had a strong nephrotoxic effect in rats.

  19. Measurements of Ultra-Fast single photon counting chip with energy window and 75 μm pixel pitch with Si and CdTe detectors

    Science.gov (United States)

    Maj, P.; Grybos, P.; Kasinski, K.; Koziol, A.; Krzyzanowska, A.; Kmon, P.; Szczygiel, R.; Zoladz, M.

    2017-03-01

    Single photon counting pixel detectors become increasingly popular in various 2-D X-ray imaging techniques and scientific experiments mainly in solid state physics, material science and medicine. This paper presents architecture and measurement results of the UFXC32k chip designed in a CMOS 130 nm process. The chip consists of about 50 million transistors and has an area of 9.64 mm × 20.15 mm. The core of the IC is a matrix of 128 × 256 pixels of 75 μm pitch. Each pixel contains a CSA, a shaper with tunable gain, two discriminators with correction circuits and two 14-bit ripple counters operating in a normal mode (with energy window), a long counter mode (one 28-bit counter) and a zero-dead time mode. Gain and noise performance were verified with X-ray radiation and with the chip connected to Si (320 μm thick) and CdTe (750 μ m thick) sensors.

  20. Properties and applications of photon counting and energy resolved X-ray matrix detectors; Eigenschaften und Einsatzgebiete photonenzaehlender und energieaufloesender Roentgenmatrixdetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Walter, David; Zscherpel, Uwe; Ewert, Uwe [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Ullberg, Christer; Weber, Niclas; Urech, Mattias [XCounter AB, Danderyd (Sweden); Pantsar, Tuomas; Perez-Fuster, Katya [Ajat Oy Ltd., Espoo (Finland)

    2015-07-01

    The use of highly absorbing photoconductor materials (e.g. CdTe) for the production of matrix X-ray detectors allows for a number of years, the direct conversion of X-rays into evaluable electrical signals, for the NDT energy to 300 keV too. The conventional scintillator is omitted, resulting in a reduction of image blurring and an increase in efficiency due to the much larger absorption thicknesses result. Also can be at a sufficiently fast readout speed (50 - 100 ns dead time) count single photons and determine their energy. Thus, the readout noise and the dark image correction omitted. Furthermore, one can detect or hide selectively certain areas of the X-ray energy spectrum by defining energy threshold values. This feature allows one the one hand, the discrimination of materials through the dual energy technology and on the other hand, the reduction of the detected scattered radiation, thereby increasing the contrast sensitivity. In order to use these advantages efficiently, a special calibration procedure is required, which must take into account time-dependent processes in the detector layer. Presented here are the properties of this new generation of X-ray detectors matrix compared to traditional indirect converting detectors based on reference measurements on fiber composite components and thick-walled steel tubes (up to 35 mm). Further possible applications in NDT are discussed with regard to the material discrimination especially within fiber composites (eg CFRP and GFRP).(Contains PowerPoint slides). [German] Der Einsatz von hochabsorbierenden Photoleitermaterialien (z.B. CdTe) zur Herstellung von Roentgen-Matrixdetektoren ermoeglicht seit einigen Jahren die direkte Konvertierung von Roentgenstrahlen in auswertbare elektrische Signale, auch fuer den ZfP-Energiebereich bis 300 keV. Die herkoemmliche Szintillatorschicht entfaellt, was eine Verringerung der Bildunschaerfe und eine Effizienzsteigerung aufgrund der deutlich groesseren Absorptionsdicken zur

  1. Studies on the formation of polymeric nano-emulsions obtained via low-energy emulsification and their use as templates for drug delivery nanoparticle dispersions.

    Science.gov (United States)

    Calderó, G; Montes, R; Llinàs, M; García-Celma, M J; Porras, M; Solans, C

    2016-09-01

    Ethylcellulose nanoparticles have been obtained from O/W nano-emulsions of the water/polyoxyethylene 10 oleyl ether/[ethyl acetate+4wt% ethylcellulose] system by low energy-energy emulsification at 25°C. Nano-emulsions with droplet sizes below 200nm and high kinetic stability were chosen for solubilising dexamethasone (DXM). Phase behaviour, conductivity and optical analysis studies of the system have evidenced for the first time that both, the polymer and the drug play a role on the structure of the aggregates formed along the emulsification path. Nano-emulsion formation may take place by both, phase inversion and self-emulsification. Spherical polymeric nanoparticles containing surfactant, showing sizes below 160nm have been obtained from the nano-emulsions by organic solvent evaporation. DXM loading in the nanoparticles was high (>90%). The release kinetics of nanoparticle dispersions with similar particle size and encapsulated DXM but different polymer to surfactant ratio were studied and compared to an aqueous DXM solution. Drug release from the nanoparticle dispersions was slower than from the aqueous solution. While the DXM solution showed a Fickian release pattern, the release behaviour from the nanoparticle dispersions was faster than that expected from a pure Fickian release. A coupled diffusion/relaxation model fitted the results very well, suggesting that polymer chains undergo conformational changes enhancing drug release. The contribution of diffusion and relaxation to drug transport in the nanoparticle dispersions depended on their composition and release time. Surfactant micelles present in the nanoparticle dispersion may exert a mild reservoir effect. The small particle size and the prolonged DXM release provided by the ethylcellulose nanoparticle dispersions make them suitable vehicles for controlled drug delivery applications.

  2. Scanning transmission electron microscopy/energy-dispersive spectroscopy analysis of the dentin adhesive interface using a labeled 2-hydroxyethylmethacrylate analogue.

    Science.gov (United States)

    Eick, J D; Robinson, S J; Byerley, T J; Chappell, R P; Spencer, P; Chappelow, C C

    1995-06-01

    In an attempt to compare the morphology of the dentin adhesive interface and the wetting and penetration of the adhesive in relation to the dentin surface, we studied four dentin adhesive systems using scanning transmission electron microscopy (STEM) and energy-dispersive spectroscopy (EDS). 2-Hydroxyethylmethacrylate (HEMA), a monomer common to many commercial dentin adhesive systems, was altered to produce a thiolated analogue (HETMA). Sulfur, traceable by EDS and STEM, was substituted for the oxygen atom in the backbone of the HEMA molecule. The resulting analogue, with solubility parameters and other wetting and physical properties very similar to those of HEMA, was applied to four sets of tooth specimens, each pre-treated with a different primer or etchant. Three separate pre-treatments--nitric acid, maleic acid, and citric acid/ferric chloride--created a demineralized zone approximately 1 to 3 microns thick at the dentin surface. The HETMA was found to permeate freely into this zone when either of the latter two pre-treatments was used. However, the band of dentin that was demineralized by the nitric acid pre-treatment appeared impermeable to the HETMA. The fourth pre-treatment, an alcohol-based solution including the phosphorus acid ester PENTA and HEMA, modified the smear layer of the tooth slightly and did not appear to demineralize the dentin. HETMA applied to the specimens pre-treated with PENTA and HEMA was clearly in intimate contact with the dentin or modified smear layer; however, it did not penetrate or diffuse into these areas. It did flow into the dentinal tubules, as was also evident with each of the other systems. It was concluded that the acid pre-treatment of the dentin greatly influenced the wetting behavior of the dentin adhesive and thus could substantially affect the resultant bond strength of the dentin adhesive systems.

  3. X-ray fluorescence and energy dispersive x-ray diffraction for the quantification of elemental concentrations in breast tissue.

    Science.gov (United States)

    Geraki, K; Farquharson, M J; Bradley, D A

    2004-01-07

    This paper presents improvements on a previously reported method for the measurement of elements in breast tissue specimens (Geraki et al 2002 Phys. Med. Biol. 47 2327-39). A synchrotron-based system was used for the detection of the x-ray fluorescence (XRF) emitted from iron, copper, zinc and potassium in breast tissue specimens, healthy and cancerous. Calibration models resulting from the irradiation of standard aqueous solutions were used for the quantification of the elements. The present developments concentrate on increasing the convergence between the tissue samples and the calibration models, therefore improving accuracy. For this purpose the composition of the samples in terms of adipose and fibrous tissue was evaluated, using an energy dispersive x-ray diffraction (EDXRD) system. The relationships between the attenuation and scatter properties of the two tissue components and water were determined through Monte Carlo simulations. The results from the simulations and the EDXRD measurements allowed the XRF data from each specimen to be corrected according to its composition. The statistical analysis of the elemental concentrations of the different groups of specimens reveals that all four elements are found in elevated levels in the tumour specimens. The increase is less pronounced for iron and copper and most for potassium and zinc. Other observed features include the substantial degree of inhomogeneity of elemental distributions within the volume of the specimens, varying between 4% and 36% of the mean, depending on the element and the type of the sample. The accuracy of the technique, based on the measurement of a standard reference material, proved to be between 3% and 22% depending on the element, which presents only a marginal improvement (1%-3%) compared to the accuracy of the previously reported results. The measurement precision was between 1% and 9% while the calculated uncertainties on the final elemental concentrations ranged between 10% and 16%.

  4. Energy-dispersive spectroscopy and electron backscatter diffraction analysis of isothermally aged SAF 2507 type superduplex stainless steel

    Science.gov (United States)

    Dobranszky, J.; Szabo, P. J.; Berecz, T.; Hrotko, V.; Portko, M.

    2004-10-01

    Due to thermal effects, several precipitation and segregation processes are known in duplex stainless steels. These microstructural changes influence both of the original phases, but in different ways. Isothermal ageing in a large range of temperature was performed on SAF 2507 type steel. The temperature range was 300-1000 °C, the ageing time was between 100 s and 24 h. This paper discusses the results of ageing at 900 °C. Microstructural changes were investigated by electron microscopy, energy-dispersive spectroscopy and electron backscattered diffraction analysis. This technique allowed the determination of the microstructure of the secondary austenite and sigma phase and their mutual orientation properties. Beside this, thermoelectric power measurements were also performed, which gave information about the kinetics of the precipitation process. Results showed that sigma-phase precipitation started right after 200 s in the case of annealed steel, and faster than 100 s in the cold-rolled state. After 5000 s, the delta-ferrite disappeared. Chemical composition of sigma phase was independent on the ageing time. A small decrease in nickel content was observed with a slight increase of Cr content. Small amount of chi phase had also been observed on the ferrite-ferrite boundaries, but later they changed into sigma phase. Similarly to sigma phase, chi phase showed significant phosphorus enrichment. During ageing, small chrome nitride precipitates developed, which amount increased in time, and some vanadium could be measured in them. The orientation relationship between austenite and sigma phase deviated from Nenno-orientationship with about 24°, and seems to form a [110]‖[310] relationship, which was characteristic right from the beginning of the process, and remains more or less constant.

  5. Chemical elements characterization of root canal sealers using scanning electron microscopy and energy dispersive X-ray analysis.

    Science.gov (United States)

    Sampaio, Felipe Cavalcanti; Alencar, Ana Helena Gonçalves; Guedes, Orlando Aguirre; Veloso, Heloisa Helena Pinho; Santos, Tatiane Oliveira; Estrela, Carlos

    2014-03-01

    The aim of this study was to evaluate the chemical elements composition of root canal filling materials using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX). Eighteen standard polyethylene tubes were filled with the following materials: Sealapex(®), Sealer 26(®), MTA Fillapex(®), Pulp Canal Sealer(®), Endofill(®) and AH Plus(®). After 48 hours at 37°C and 95% relative humidity, the samples were surface-sputtered with gold and analyzed using SEM at 5000X magnification. Their chemical composition and element distributionwere determined using EDX. Results were evaluated qualitatively (SEM images and elemental mapping) and quantitatively (weight percentage). Calcium oxide- and hydroxide-based sealers (Sealapex(®) and Sealer 26(®)) had calcium peaks of 53.58 wt% and 65.00 wt%. MTA Fillapex(®) had 30.58 wt% of calcium and high amounts of silicon (31.02 wt%) and bismuth (27.38 wt%). Zinc oxide- and eugenol-based sealers, Pulp Canal Sealer(®) and Endofill(®), had 67.74 wt% and 63.16 wt% of zinc each. AH Plus(®) had a higher amount of zirconium (64.24 wt%). All materials had elements other than those described by the manufacturers. Surface analysis using EDX revealed that regularity varied, element distribution was uniform, and particles had similar sizes and variable shapes. Most chemical elements were those described by the manufacturers, but percentages were different. The surface of root canal sealers had different regularity findings, uniform distribution and particles of similar sizes but variable shapes.

  6. Energy-dispersive neutron imaging and diffraction of magnetically driven twins in a Ni2MnGa single crystal magnetic shape memory alloy

    Science.gov (United States)

    Kabra, Saurabh; Kelleher, Joe; Kockelmann, Winfried; Gutmann, Matthias; Tremsin, Anton

    2016-09-01

    Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation neutron source. Single crystal neutron diffraction showed that the crystal produces two twin variants with a specific crystallographic relationship. Transmission images were captured using a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions were clearly distinguishable in images corresponding to narrow-energy transmission images. Further, the spatially-resolved transmission spectra were used to elucidate the orientations of the crystallites in the different volumes of the crystal.

  7. Energy dispersive X-ray fluorescence analysis of ancient coins: The case of Greek silver drachmae from the Emporion site in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pitarch, A., E-mail: apitarch@ija.csic.e [Laboratory of X-ray Analytical Applications, Institute of Earth Sciences ' Jaume Almera' -ICTJA, Spanish Council for Scientific Research - CSIC, Lluis Sole Sabaris s/n, 08028 Barcelona (Spain); Queralt, I. [Laboratory of X-ray Analytical Applications, Institute of Earth Sciences ' Jaume Almera' -ICTJA, Spanish Council for Scientific Research - CSIC, Lluis Sole Sabaris s/n, 08028 Barcelona (Spain)

    2010-05-15

    Greek colonizers arrived at the Iberian Peninsula at the beginning of the sixth century B.C. and founded a small colony known as Emporion in north-east Spain. By the fifth century B.C., this colony became a small polis with a well-organized administrative structure. In this context, the necessity of coinage was a fact and the first coins were minted. Some of these coins were characterized by using energy dispersive X-ray fluorescence equipment. The analytical study focused on the elemental characterization of the coins minted from the fourth century to the first century B.C. and their compositional evolution during this period. The investigation has pointed out a very high fineness of the alloys throughout the time, with an average silver content around 98.32%, and the feasibility of energy dispersive X-ray fluorescence as a screening tool for the characterization of the alloys.

  8. Characterization of Roman glass tesserae from the Coriglia excavation site (Italy) via energy-dispersive X-ray fluorescence spectrometry and Raman spectroscopy

    Science.gov (United States)

    Donais, Mary Kate; Van Pevenage, Jolien; Sparks, Andrew; Redente, Monica; George, David B.; Moens, Luc; Vincze, Laszlo; Vandenabeele, Peter

    2016-12-01

    The combined use of handheld energy-dispersive X-ray fluorescence spectrometry, Raman spectroscopy, and micro-energy-dispersive X-ray fluorescence spectrometry permitted the characterization of Roman glass tesserae excavation from the Coriglia (Italy) archeological site. Analyses of ten different glass colors were conducted as spot analyses on intact samples and as both spot analyses and line scans on select cross-sectioned samples. The elemental and molecular information gained from these spectral measurements allowed for the qualitative chemical characterization of the bulk glass, decolorants, opacifiers, and coloring agents. The use of an antimony opacifier in many of the samples supports the late Imperial phasing as determined through numismatic, fresco, ceramics, and architectural evidence. And dealinization of the exterior glass layers caused by the burial environment was confirmed.

  9. Characterization of Roman glass tesserae from the Coriglia excavation site (Italy) via energy-dispersive X-ray fluorescence spectrometry and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Donais, Mary Kate; Sparks, Andrew; Redente, Monica [Saint Anselm College, Department of Chemistry, Manchester, NH (United States); Pevenage, Jolien van; Moens, Luc; Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, Ghent (Belgium); George, David B. [Saint Anselm College, Department of Classics, Manchester, NH (United States); Vandenabeele, Peter [Ghent University, Department of Archaeology, Ghent (Belgium)

    2016-12-15

    The combined use of handheld energy-dispersive X-ray fluorescence spectrometry, Raman spectroscopy, and micro-energy-dispersive X-ray fluorescence spectrometry permitted the characterization of Roman glass tesserae excavation from the Coriglia (Italy) archeological site. Analyses of ten different glass colors were conducted as spot analyses on intact samples and as both spot analyses and line scans on select cross-sectioned samples. The elemental and molecular information gained from these spectral measurements allowed for the qualitative chemical characterization of the bulk glass, decolorants, opacifiers, and coloring agents. The use of an antimony opacifier in many of the samples supports the late Imperial phasing as determined through numismatic, fresco, ceramics, and architectural evidence. And dealinization of the exterior glass layers caused by the burial environment was confirmed. (orig.)

  10. Quantitative energy-dispersive electron probe X-ray microanalysis for single-particle analysis and its application for characterizing atmospheric aerosol particles

    Indian Academy of Sciences (India)

    Shila Maskey; Chul-Un Ro

    2011-02-01

    An energy-dispersive electron probe X-ray microanalysis (ED-EPMA) technique using an energy-dispersive X-ray detector with an ultra-thin window, designated as low-Z particle EPMA, has been developed. The low-Z particle EPMA allows the quantitative determination of concentrations of low-Z elements such as C, N and O, as well as higher-Z elements that can be analysed by conventional ED-EPMA. The quantitative determination of low-Z elements (using full Monte Carlo simulations, from the electron impact to the X-ray detection) in individual particles has improved the applicability of single-particle analysis, especially in atmospheric environmental aerosol research; many environmentally important atmospheric particles, e.g. sulphates, nitrates, ammonium and carbonaceous particles, contain low-Z elements. To demonstrate its practical applicability, the application of the low-Z particle EPMA for the characterization of Asian Dust, urban and subway aerosol particles is shown herein. In addition, it is demonstrated that the Monte Carlo calculation can also be applied in a quantitative single-particle analysis using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectrometry (EDX), showing that the technique is useful and reliable for the characterization of submicron aerosol particles

  11. Energy-dependent crossover from anisotropic to isotropic magnetic dispersion in lightly doped La1.96Sr0.04CuO4

    Science.gov (United States)

    Matsuda, M.; Granroth, G. E.; Fujita, M.; Yamada, K.; Tranquada, J. M.

    2013-02-01

    Inelastic neutron-scattering experiments have been performed on lightly doped La1.96Sr0.04CuO4, which shows diagonal incommensurate spin correlations at low temperatures. We previously reported that this crystal, with a single orthorhombic domain, exhibits the “hourglass” dispersion at low energies [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.101.197001 101, 197001 (2008)]. In this paper, we investigate in detail the energy evolution of the magnetic excitations up to 65 meV. It is found that the anisotropic excitations at low energies, dispersing only along the spin modulation direction, cross over to an isotropic, conical dispersion that resembles spin waves in the parent compound La2CuO4. The change from twofold to full symmetry on crossing the waist of the hourglass reproduces behavior first identified in studies of underdoped YBa2Cu3O6+x. We discuss the significance of these results.

  12. Low-energy dispersion of dynamic charge stripes in La1.75Sr0.25NiO4 observed with inelastic neutron scattering

    Science.gov (United States)

    Zhong, Ruidan; Tranquada, John; Gu, Genda; Reznik, Dmitry; Winn, Barry

    The dynamic stripe correlations have been the subject of intense research, owing to the possible links with high-Tc superconductivity. In light of a recently published, direct observation of charge-stripe fluctuations in La2-xSrxNiO4 using inelastic neutron scattering, we did a follow-up neutron experiment on a x=0.25 sample to characterize the low-energy dispersion of these dynamic charge stripes using the HYSPEC instrument at the Spallation Neutron Source. The scattering signals are collected in the vicinity of a charge-order peak with a large wave vector (4.4, 3, 0), where dynamic spin-stripe correlations are negligible. Mapping the low-energy charge-stripe fluctuations in a wide temperature range, we observe a finite dispersion along the stripe-modulation direction at T >=160K where the charge stripes become disordered, while the steep dispersion in the orthogonal direction is not resolved. Work at BNL supported by Office of Basic Energy Sciences, US DOE, under Contract No. DE-SC00112704.

  13. Trace elements as tumor biomarkers and prognostic factors in breast cancer: a study through energy dispersive x-ray fluorescence

    Directory of Open Access Journals (Sweden)

    Silva Marina P

    2012-07-01

    Full Text Available Abstract Background The application and better understanding of traditional and new breast tumor biomarkers and prognostic factors are increasing due to the fact that they are able to identify individuals at high risk of breast cancer, who may benefit from preventive interventions. Also, biomarkers can make possible for physicians to design an individualized treatment for each patient. Previous studies showed that trace elements (TEs determined by X-Ray Fluorescence (XRF techniques are found in significantly higher concentrations in neoplastic breast tissues (malignant and benign when compared with normal tissues. The aim of this work was to evaluate the potential of TEs, determined by the use of the Energy Dispersive X-Ray Fluorescence (EDXRF technique, as biomarkers and prognostic factors in breast cancer. Methods By using EDXRF, we determined Ca, Fe, Cu, and Zn trace elements concentrations in 106 samples of normal and breast cancer tissues. Cut-off values for each TE were determined through Receiver Operating Characteristic (ROC analysis from the TEs distributions. These values were used to set the positive or negative expression. This expression was subsequently correlated with clinical prognostic factors through Fisher’s exact test and chi-square test. Kaplan Meier survival curves were also evaluated to assess the effect of the expression of TEs in the overall patient survival. Results Concentrations of TEs are higher in neoplastic tissues (malignant and benign when compared with normal tissues. Results from ROC analysis showed that TEs can be considered a tumor biomarker because, after establishing a cut-off value, it was possible to classify different tissues as normal or neoplastic, as well as different types of cancer. The expression of TEs was found statistically correlated with age and menstrual status. The survival curves estimated by the Kaplan-Meier method showed that patients with positive expression for Cu presented a poor

  14. Methanol clusters (CH3OH)n: putative global minimum-energy structures from model potentials and dispersion-corrected density functional theory.

    Science.gov (United States)

    Kazachenko, Sergey; Bulusu, Satya; Thakkar, Ajit J

    2013-06-14

    Putative global minima are reported for methanol clusters (CH3OH)n with n ≤ 15. The predictions are based on global optimization of three intermolecular potential energy models followed by local optimization and single-point energy calculations using two variants of dispersion-corrected density functional theory. Recurring structural motifs include folded and/or twisted rings, folded rings with a short branch, and stacked rings. Many of the larger structures are stabilized by weak C-H···O bonds.

  15. On the accuracy of DFT methods in reproducing ligand substitution energies for transition metal complexes in solution: The role of dispersive interactions

    KAUST Repository

    Jacobsen, Heiko

    2011-12-23

    The performance of a series of density functionals when tested on the prediction of the phosphane substitution energy of transition metal complexes is evaluated. The complexes Fe-BDA and Ru-COD (BDA=benzylideneacetone, COD=cyclooctadiene) serve as reference systems, and calculated values are compared with the experimental values in THF as obtained from calorimetry. Results clearly indicate that functionals specifically developed to include dispersion interactions usually outperform other functionals when BDA or COD substitution is considered. However, when phosphanes of different sizes are compared, functionals including dispersion interactions, at odd with experimental evidence, predict that larger phosphanes bind more strongly than smaller phosphanes, while functionals not including dispersion interaction reproduce the experimental trends with reasonable accuracy. In case of the DFT-D functionals, inclusion of a cut-off distance on the dispersive term resolves this issue, and results in a rather robust behavior whatever ligand substitution reaction is considered. Ne quid nimis: Describing chemical reactions in solution by computational techniques developed for gas-phase scenarios might produce erroneous results (see histogram). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Adjustable rheology of fumed silica dispersion in urethane prepolymers: Composition-dependent sol and gel behaviors and energy-mediated shear responses

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zhong, E-mail: 11329038@zju.edu.cn; Song, Yihu, E-mail: s-yh0411@zju.edu.cn; Wang, Xiang, E-mail: 11229036@zju.edu.cn; Zheng, Qiang, E-mail: zhengqiang@zju.edu.cn [MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2015-07-15

    Variation of colloidal and interfacial interactions leads to a microstructural diversity in fumed silica dispersions exhibiting absolutely different sol- or gel-like rheological responses. In this study, fumed silicas with different surface areas (200–400 m{sup 2}/g) and surface characteristics (hydrophilic or hydrophobic) are dispersed into moisture-cured polyurethane. The microstructures investigated using transmission electron microscope are associated perfectly with three different rheological behaviors: (i) Sols with well-dispersed silica aggregates, (ii) weak gels with agglomerate-linked networks, and (iii) strong gels with concentrated networks of large agglomerates. Though sols and gels are well distinguished by shear thickening or sustained thinning response through steady shear flow test, it is interesting that the sols and weak gels exhibit a uniform modulus plateau-softening-hardening-softening response with increasing dynamic strain at frequency 10 rad s{sup −1} while the strong gels show a sustained softening beyond the linear regime. Furthermore, the onset of softening and hardening can be normalized: The two softening are isoenergetic at mechanical energies of 0.3 J m{sup −3} and 10 kJ m{sup −3}. On the other hand, the hardening is initiated by a critical strain of 60%. The mechanisms involved in the generation of the sol- and the gel-like dispersions and their structural evolutions during shear are thoroughly clarified in relation to the polyols, the characteristic and content of silica and the curing catalysts.

  17. Evaluation of two-stage system for neutron measurement aiming at increase in count rate at Japan Atomic Energy Agency-Fusion Neutronics Source

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K., E-mail: shinohara.koji@jaea.go.jp; Ochiai, K.; Sukegawa, A. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Ishii, K.; Kitajima, S. [Department of Quantum Science and Energy Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Baba, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Sasao, M. [Organization for Research Initiatives and Development, Doshisha University, Kyoto 602-8580 (Japan)

    2014-11-15

    In order to increase the count rate capability of a neutron detection system as a whole, we propose a multi-stage neutron detection system. Experiments to test the effectiveness of this concept were carried out on Fusion Neutronics Source. Comparing four configurations of alignment, it was found that the influence of an anterior stage on a posterior stage was negligible for the pulse height distribution. The two-stage system using 25 mm thickness scintillator was about 1.65 times the count rate capability of a single detector system for d-D neutrons and was about 1.8 times the count rate capability for d-T neutrons. The results suggested that the concept of a multi-stage detection system will work in practice.

  18. Method development for analysis of urban dust using scanning electron microscopy with energy dispersive x-ray spectrometry to detect the possible presence of world trade center dust constituents

    Science.gov (United States)

    Bern, A.M.; Lowers, H.A.; Meeker, G.P.; Rosati, J.A.

    2009-01-01

    The collapse of the World Trade Center Towers on September 11, 2001, sent dust and debris across much of Manhattan and in the surrounding areas. Indoor and outdoor dust samples were collected and characterized by U.S. Geological Survey (USGS) scientists using scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS). From this characterization, the U.S. Environmental Protection Agency and USGS developed a particulate screening method to determine the presence of residual World Trade Center dust in the indoor environment using slag wool as a primary "signature". The method describes a procedure that includes splitting, ashing, and sieving of collected dust. From one split, a 10 mg/mL dust/ isopropanol suspension was prepared and 10-30 ??L aliquots of the suspension placed on an SEM substrate. Analyses were performed using SEM/EDS manual point counting for slag wool fibers. Poisson regression was used to identify some of the sources of uncertainty, which are directly related to the small number of fibers present on each sample stub. Preliminary results indicate that the procedure is promising for screening urban background dust for the presence of WTC dust. Consistent sample preparation of reference materials and samples must be performed by each laboratory wishing to use this method to obtain meaningful and accurate results. ?? 2009 American Chemical Society.

  19. Generation of high energy square-wave pulses in all anomalous dispersion Er:Yb passive mode locked fiber ring laser.

    Science.gov (United States)

    Semaan, Georges; Ben Braham, Fatma; Salhi, Mohamed; Meng, Yichang; Bahloul, Faouzi; Sanchez, François

    2016-04-18

    We have experimentally demonstrated square pulses emission from a co-doped Er:Yb double-clad fiber laser operating in anomalous dispersion DSR regime using the nonlinear polarization evolution technique. Stable mode-locked pulses have a repetition rate of 373 kHz with 2.27 µJ energy per pulse under a pumping power of 30 W in cavity. With the increase of pump power, both the duration and the energy of the output square pulses broaden. The experimental results demonstrate that the passively mode-locked fiber laser operating in the anomalous regime can also realize a high-energy pulse, which is different from the conventional low-energy soliton pulse.

  20. Dispersive liquid-liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry

    Science.gov (United States)

    Kocot, Karina; Zawisza, Beata; Sitko, Rafal

    2012-07-01

    Dispersive liquid-liquid microextraction (DLLME) using sodium diethyldithiocarbamate (DDTC) as a chelating agent was investigated for the simultaneous determination of iron, cobalt, nickel, copper, zinc, selenium and lead ions in water samples. The procedure was performed using 5 mL of the sample, 100 μL of a 0.5% solution of DDTC, 30 μL of carbon tetrachloride (extraction phase) and 500 μL of methanol (disperser solvent). The experiments showed that Fe, Co, Ni, Cu, Zn and Pb can be simultaneously extracted at a pH of 5 and that Se can be extracted at a pH of 2-3. The results were compared with those obtained using ammonium pyrrolidine dithiocarbamate as a chelating agent. For all analytes, a linear range was observed up to 0.4 μg mL- 1. If Fe and Zn are present in concentrations 10 times higher than those of the other analytes, then the linearity is observed up to 0.2 μg mL- 1. In the present study, the organic phase that contained preconcentrated elements was deposited onto a Millipore filter and measured using energy-dispersive X-ray fluorescence spectrometry. The obtained detection limits were 2.9, 1.5, 2.0, 2.3, 2.5, 2.0 and 3.9 ng mL- 1 for Fe, Co, Ni, Cu, Zn, Se and Pb, respectively. This combination of DLLME and the dried-spot technique is promising for multielement analyses using other spectroscopy techniques, such as laser ablation-inductively coupled plasma-mass spectrometry, laser-induced breakdown spectroscopy or total-reflection X-ray fluorescence spectrometry.

  1. The Big Pumpkin Count.

    Science.gov (United States)

    Coplestone-Loomis, Lenny

    1981-01-01

    Pumpkin seeds are counted after students convert pumpkins to jack-o-lanterns. Among the activities involved, pupils learn to count by 10s, make estimates, and to construct a visual representation of 1,000. (MP)

  2. On the method of calibration of the energy dispersive EXAFS beamline at Indus-2 and fitting theoretical model to the EXAFS spectrum

    Indian Academy of Sciences (India)

    Abhijeet Gaur; Ajita Johari; B D Shrivastava; D C Gaur; S N Jha; D Bhattacharyya; A Poswal; S K Deb

    2011-06-01

    A procedure for calibration of the recently developed energy dispersive EXAFS beamline at the Indus-2 synchrotron source at RRCAT, Indore, India has been described. The procedure involves recording of absorption spectra of two standard samples, whose absorption edge energies are well-established. Two methods have been considered for calibration. In the first method, the position of the first maximum of the derivative of absorption curve is taken as the position of the edge energy. In the second method, the position of the point at half edge step in the absorption curve is taken as the position of the edge energy. It has been shown that only the first method gives same values of dispersion even when the beam current is varied and should be used for calibrating the experimental spectra. Further, it is recommended that the performance of the beamline for a particular setting should be checked by recording and analysing EXAFS of a standard. Hence, the procedure for analysis and extracting information about the various parameters that can be determined by fitting the EXAFS data with a theoretical model has also been described, by taking the example of -absorption spectra of copper metal foil recorded on this beamline.

  3. Evaluation of Root Canal Dentin Erosion after Different Irrigation Methods Using Energy-dispersive X-ray Spectroscopy.

    Science.gov (United States)

    Wang, Zhejun; Maezono, Hazuki; Shen, Ya; Haapasalo, Markus

    2016-12-01

    The purpose of this study was to examine the level of erosion in root dentin caused by different irrigation methods and protocols. Thirty-five extracted upper molar teeth were instrumented and divided into 7 groups to undergo treatment by different methods: negative control, GentleWave System (Sonendo Inc, Laguna Hills, CA), and syringe needle irrigation following different protocols. The teeth were instrumented to size #25/.08 or #30/.09 for needle irrigation groups and to ProTaper size S1 for the GentleWave group under 5% sodium hypochlorite (NaOCl). The needle irrigation groups were subjected to final rinses of 2 minutes of 3% NaOCl + 2 minutes of 8% EDTA (3% N2 + 8% E2), 2 minutes of 3% NaOCl + 2 minutes of 8% EDTA + 1 minute of 3% NaOCl (3% N2 + 8% E2 + 3% N1), 2 minutes of 5% NaOCl + 2 minutes of 17% EDTA (5% N2 + 17% E2), 2 minutes of 5% NaOCl + 2 minutes of 17% EDTA + 1 minute of 5% NaOCl (5% N2 + 17% E2 + 5% N1), and 5 minutes of 5% NaOCl + 5 minutes of 17% EDTA + 5 minutes of 5% NaOCl (5% N5 + 17% E5 + 5% N5), respectively. The root canal surface was observed by scanning electron microscopy, and the dentin composition was analyzed by continuous line scanning for 300 μm into dentin using energy-dispersive X-ray spectroscopy. A slight but statistically significant decrease of calcium and an increase of carbon was measured in the 5% N2 + 17% E2 group in comparison with the control; no significant difference was found among GentleWave, 3% N2 + 8% E2, and 5% N2 + 17% E2 (P > .05). A final 1-minute rinse with 3% or 5% NaOCl reduced calcium and phosphorus to a significantly lower level than in groups without a 1-minute final rinse (P irrigation with 5% NaOCl for 5 minutes removed almost all calcium and phosphorus. Scanning electron microscopy showed canal wall erosion when an additional final irrigation with NaOCl was done. NaOCl followed by final EDTA irrigation performed either by syringe needle or the GentleWave System caused

  4. Dispersive liquid-liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kocot, Karina; Zawisza, Beata; Sitko, Rafal, E-mail: rafal.sitko@us.edu.pl

    2012-07-15

    Dispersive liquid-liquid microextraction (DLLME) using sodium diethyldithiocarbamate (DDTC) as a chelating agent was investigated for the simultaneous determination of iron, cobalt, nickel, copper, zinc, selenium and lead ions in water samples. The procedure was performed using 5 mL of the sample, 100 {mu}L of a 0.5% solution of DDTC, 30 {mu}L of carbon tetrachloride (extraction phase) and 500 {mu}L of methanol (disperser solvent). The experiments showed that Fe, Co, Ni, Cu, Zn and Pb can be simultaneously extracted at a pH of 5 and that Se can be extracted at a pH of 2-3. The results were compared with those obtained using ammonium pyrrolidine dithiocarbamate as a chelating agent. For all analytes, a linear range was observed up to 0.4 {mu}g mL{sup -1}. If Fe and Zn are present in concentrations 10 times higher than those of the other analytes, then the linearity is observed up to 0.2 {mu}g mL{sup -1}. In the present study, the organic phase that contained preconcentrated elements was deposited onto a Millipore filter and measured using energy-dispersive X-ray fluorescence spectrometry. The obtained detection limits were 2.9, 1.5, 2.0, 2.3, 2.5, 2.0 and 3.9 ng mL{sup -1} for Fe, Co, Ni, Cu, Zn, Se and Pb, respectively. This combination of DLLME and the dried-spot technique is promising for multielement analyses using other spectroscopy techniques, such as laser ablation-inductively coupled plasma-mass spectrometry, laser-induced breakdown spectroscopy or total-reflection X-ray fluorescence spectrometry. - Highlights: Black-Right-Pointing-Pointer Multielement trace analysis using dried-spot technique and dispersive liquid-liquid microextraction. Black-Right-Pointing-Pointer Possibility of combination of LPME with EDXRF, LIBS or LA-ICP-MS. Black-Right-Pointing-Pointer Comparison of APDC and DDTC as chelating agents.

  5. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  6. The ground states of iron(III) porphines: Role of entropy–enthalpy compensation, Fermi correlation, dispersion, and zero-point energies

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2011-01-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based...... on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0–10kJ/mol, respectively. When...... these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3...

  7. Single-shot full strain tensor determination with microbeam X-ray Laue diffraction and a two-dimensional energy-dispersive detector.

    Science.gov (United States)

    Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U

    2017-06-01

    The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.

  8. Hanford whole body counting manual

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  9. The ground states of iron(III) porphines: role of entropy-enthalpy compensation, Fermi correlation, dispersion, and zero-point energies.

    Science.gov (United States)

    Kepp, Kasper P

    2011-10-01

    Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results.

  10. Feasibility for direct rapid energy dispersive X-ray fluorescence (EDXRF) and scattering analysis of complex matrix liquids by partial least squares.

    Science.gov (United States)

    Angeyo, K H; Gari, S; Mustapha, A O; Mangala, J M

    2012-11-01

    The greatest challenge to material characterization by XRF technique is encountered in direct trace analysis of complex matrices. We exploited partial least squares (PLS) in conjunction with energy dispersive X-ray fluorescence and scattering (EDXRFS) spectrometry to rapidly (200 s) analyze lubricating oils. The PLS-EDXRFS method affords non-invasive quality assurance (QA) analysis of complex matrix liquids as it gave optimistic results for both heavy- and low-Z metal additives. Scatter peaks may further be used for QA characterization via the light elements.

  11. Tautomerism in liquid 1,2,3-triazole: a combined Energy-Dispersive X-Ray Diffraction, Molecular Dynamics and FTIR study

    CERN Document Server

    Bellagamba, Marco; Gontrani, Lorenzo; Guidoni, Leonardo; Sadun, Claudia

    2013-01-01

    In this work, we report a multitechnique (energy-dispersive X-Ray diffraction, computational methods and FT-IR spectroscopy) study of the tautomeric equilibrium of 1,2,3-triazole, one of the few small nitrogen-containing eterocycles liquid at room temperature. The T-2H form (C2v symmetry) is found to be strongly favored in gas and solid phases, whereas the neat liquid gives diffraction patterns that can be interpreted satisfactorily with the structure functions calculated from some molecular dynamics results for both T-2H and T-1H tautomers, although the T-2H form gives a slightly better agreement.

  12. Characterisation of Reticon and Hamamatsu photodiode array and the subsequent development of high performance VME-based detector systems optimised for energy dispersive EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Bogg, D.; Dent, A.J.; Derbyshire, G.E.; Farrow, R.C.; Ramsdale, C.A.; Salvini, G. [Daresbury Lab., Warrington (United Kingdom). CCLRC

    1997-06-21

    Energy dispersive EXAFS is an established and successful technique employed at Daresbury Laboratory for the study of dynamic experiments. At the heart of this technique is an in house developed high-performance VME-based detector system using a photodiode array. This system originally used a Reticon RL1024S array but extensive investigation of three other photodiode arrays namely the Reticon 512T, 512SB and the Hamamatsu S3904 has enabled their characterisation and the subsequent development of optimised drive and signal processing electronics. This has provided two further systems which exhibit improved signal to noise, excellent linearity and increased operational speed. (orig.).

  13. Data on Heavy metal in coastal sediments from South East Coast of Tamilnadu, India using Energy Dispersive X-ray Fluorescence (EDXRF) Technique.

    Science.gov (United States)

    Chandramohan, J; Senthilkumar, G; Gandhi, M Suresh; Ravisankar, R

    2016-12-01

    This article contains the chemical and geographical data and figures for the chemical data in sediments of East Coast (Pattipulam to Dhevanampattinam) of Tamilnadu. The obtained data are related to the research article "Heavy Metal Assessment in Sediment Samples Collected From Pattipulam to Dhevanampattinam along the East Coast of Tamil Nadu Using EDXRF Technique" (Chandramohan et al., 2016) [1]. Chemical data are collected from Energy dispersive X-ray fluorescence spectrometer (EDXRF). Furthermore, the obtained chemical data describes it in more detail in the figures.

  14. In situ analysis of electrocrystallization process of metal electrodeposition with confocal energy dispersive X-ray diffraction based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fangzuo; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Yang, Chaolin; Sun, Weiyuan; Sun, Xuepeng [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-06-11

    The confocal energy dispersive X-ray diffraction (EDXRD) based on a polycapillary focusing X-ray lens (PFXRL) in excitation channel and a polycapillary parallel X-ray lens (PPXRL) in detection channel was presented to study the electrocrystallization process of metal electrodeposition. The input focal spot of the PPXRL and the output focal spot of the PFXRL was adjusted in a confocal configuration, and only the X-rays from the volume overlapped by the two foci could be accordingly detected by the detector. The experimental results demonstrated the confocal EDXRD could be used to in situ real-time analysis of electrochemical crystal growth process.

  15. Supervised Mineral Classification with Semi-automatic Training and Validation Set Generation in Scanning Electron Microscope Energy Dispersive Spectroscopy Images of Thin Sections

    DEFF Research Database (Denmark)

    Flesche, Harald; Nielsen, Allan Aasbjerg; Larsen, Rasmus

    2000-01-01

    This paper addresses the problem of classifying minerals common in siliciclastic and carbonate rocks. Twelve chemical elements are mapped from thin sections by energy dispersive spectroscopy in a scanning electron microscope (SEM). Extensions to traditional multivariate statistical methods...... are applied to perform the classification. First, training and validation sets are grown from one or a few seed points by a method that ensures spatial and spectral closeness of observations. Spectral closeness is obtained by excluding observations that have high Mahalanobis distances to the training class...

  16. A correlative approach to segmenting phases and ferrite morphologies in transformation-induced plasticity steel using electron back-scattering diffraction and energy dispersive X-ray spectroscopy.

    Science.gov (United States)

    Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V

    2014-12-01

    Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. An energy-dispersive X-ray analysis and SEM study of debris remaining on endodontic instruments after ultrasonic cleaning and autoclave sterilization.

    Science.gov (United States)

    Parirokh, Masoud; Asgary, Saeed; Eghbal, Mohammad Jafar

    2005-08-01

    This study was carried out to investigate metallic and non-metallic debris remaining on endodontic files after ultrasonic cleaning and autoclave processing. Forty-eight unused rotary and hand endodontic files, including eight different brands, were tested. Instruments were cleaned with ultrasound, autoclaved and before and after each step were observed by scanning electron microscopy (SEM). Adherent debris was analysed by energy-dispersive X-ray analysis (EDXA). All of the instruments before ultrasound cleaning were contaminated with metallic and non-metallic debris. Although most non-metallic debris was removed by ultrasonic cleaning, most of the metallic debris remained even after the final step of sterilization.

  18. Optical Dispersion Behavior and Band Gap Energy of Relaxor Ferroelectric 0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3 Single Crystal

    Institute of Scientific and Technical Information of China (English)

    LIN Yan-Ting; REN Bo; ZHAO Xiang-Yong; WANG Fei-Fei; WANG Yao-Jin; XU Hai-Qing; LIN Di; LUO Hao-Su

    2009-01-01

    Refractive indices and extinction coefficients of 0.92Pb(Mg1/3 Nb2/a )O3-0.08Pb Ti03 (PMN-0.08PT) single crystal are investigated by variable angle spectroscopic ellipsometry (VASE) at different wavelengths. The parameters relative to the energy band structure are obtained by fitting to the single-oscillator dispersion equation, and the band gap energy is also deduced from the Tauc equation. Similar to most oxygen-octahedra ferroelectrics,PMN-0.08PT has the same dispersion behavior described by the refractive-index dispersion parameters.

  19. Statistical modelling for falls count data.

    Science.gov (United States)

    Ullah, Shahid; Finch, Caroline F; Day, Lesley

    2010-03-01

    Falls and their injury outcomes have count distributions that are highly skewed toward the right with clumping at zero, posing analytical challenges. Different modelling approaches have been used in the published literature to describe falls count distributions, often without consideration of the underlying statistical and modelling assumptions. This paper compares the use of modified Poisson and negative binomial (NB) models as alternatives to Poisson (P) regression, for the analysis of fall outcome counts. Four different count-based regression models (P, NB, zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB)) were each individually fitted to four separate fall count datasets from Australia, New Zealand and United States. The finite mixtures of P and NB regression models were also compared to the standard NB model. Both analytical (F, Vuong and bootstrap tests) and graphical approaches were used to select and compare models. Simulation studies assessed the size and power of each model fit. This study confirms that falls count distributions are over-dispersed, but not dispersed due to excess zero counts or heterogeneous population. Accordingly, the P model generally provided the poorest fit to all datasets. The fit improved significantly with NB and both zero-inflated models. The fit was also improved with the NB model, compared to finite mixtures of both P and NB regression models. Although there was little difference in fit between NB and ZINB models, in the interests of parsimony it is recommended that future studies involving modelling of falls count data routinely use the NB models in preference to the P or ZINB or finite mixture distribution. The fact that these conclusions apply across four separate datasets from four different samples of older people participating in studies of different methodology, adds strength to this general guiding principle.

  20. Uranium Determination by Delayed Neutron Counting

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Uranium is a very important resource in nuclear industry, especially in the exploiture of nuclear energy. Determination of uranium using delayed neutron counting (DNC) is simple, non-destructive, and

  1. Trace and ultratrace determination of heavy metal ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid sorbent in dispersive micro solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kocot, Karina; Sitko, Rafal, E-mail: rafal.sitko@us.edu.pl

    2014-04-01

    In this paper, the adsorptive properties of graphene nanosheets were used for simultaneous preconcentration of cobalt, nickel, copper and lead ions from water samples. The developed methodology is based on dispersive micro-solid phase extraction (DMSPE) which is miniaturized and a simplified version of classical solid phase extraction technique. In proposed procedure only 200 μL of suspension containing graphene (0.2 mg), ammonium pyrrolidine dithiocarbamate (APDC) (0.8 mg) and Triton-X-100 (0.1 mg) is rapidly injected to 50 mL of water sample. Then, graphene nanosheets with adsorbed metal-APDC chelates are collected on membrane filter and measured using energy-dispersive X-ray fluorescence (EDXRF) spectrometry. The various parameters including pH, amount of APDC, sample volume, amount of Triton-X-100 and sorption time were optimized in order to obtain the best recoveries. The experiment shows that Co, Ni, Cu and Pb can be simultaneously preconcentrated at pH of 5 with high recoveries (97%, 96%, 99% and 96% for Co, Ni, Cu and Pb, respectively) and very good precision (RSDs within 2.6–3.4%). Due to the excellent enrichment factors ranging from 400 to 2500 the proposed DMSPE–EDXRF procedure offers low detection limits. For optimized measurement conditions (voltage and current of X-ray tube, primary beam filter) the detection limits are even 0.08, 0.07, 0.08 and 0.20 ng mL{sup −1} for Co, Ni, Cu and Pb, respectively. - Highlights: • Excellent detection limits using EDXRF • A new preconcentration procedure combining DMSPE and EDXRF measurement • Graphene as a promising and efficient solid sorbent in DMSPE • Simple, fast, inexpensive and environmental friendly method.

  2. Health Physics counting room

    CERN Multimedia

    1970-01-01

    The Health Physics counting room, where the quantity of induced radioactivity in materials is determined. This information is used to evaluate possible radiation hazards from the material investigated.

  3. A Study on Collaborative Operation Methods between New Energy Type Dispersed Power Supply System and SMES by Modified Euler Type Moving Average Prediction Model

    Science.gov (United States)

    Monai, Toshiharu; Takano, Ichiro; Nishikawa, Hisao; Sawada, Yoshio

    In this paper, the modified Euler type Moving Average Prediction (EMAP) model is proposed in order to operate a dispersed power supply system using new energy in autonomous mode. Furthermore, EMAP model is applied to operate a new type dispersed power supply system consisting of a large scale photovoltaic system (PV), a fuel cell (FC) as well as a small scale superconducting magnetic energy storage system (SMES). This distributed power supply system can meet the multi-quality electric power requirements of customers, and ensures voltage stability and UPS (Uninterruptible Power Supply) function as well. Each sub-system of this distributed power supply contributes to the above-mentioned system performance with its own excellent characteristics. Moreover, response characteristics of this system are confirmed with simulation by software PSIM, and, under collaborative operation methods by EMAP model, the required capacity of SMES to compensate the fluctuation of both PV output and load demand is examined by the simulation using software MATLAB/Simulink.

  4. Dispersion-correcting potentials can significantly improve the bond dissociation enthalpies and noncovalent binding energies predicted by density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    DiLabio, Gino A., E-mail: Gino.DiLabio@nrc.ca [National Institute for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9 (Canada); Department of Chemistry, University of British Columbia, Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Koleini, Mohammad [National Institute for Nanotechnology, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G 2M9 (Canada); Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 (Canada)

    2014-05-14

    Dispersion-correcting potentials (DCPs) are atom-centered Gaussian functions that are applied in a manner that is similar to effective core potentials. Previous work on DCPs has focussed on their use as a simple means of improving the ability of conventional density-functional theory methods to predict the binding energies of noncovalently bonded molecular dimers. We show in this work that DCPs developed for use with the LC-ωPBE functional along with 6-31+G(2d,2p) basis sets are capable of simultaneously improving predicted noncovalent binding energies of van der Waals dimer complexes and covalent bond dissociation enthalpies in molecules. Specifically, the DCPs developed herein for the C, H, N, and O atoms provide binding energies for a set of 66 noncovalently bonded molecular dimers (the “S66” set) with a mean absolute error (MAE) of 0.21 kcal/mol, which represents an improvement of more than a factor of 10 over unadorned LC-ωPBE/6-31+G(2d,2p) and almost a factor of two improvement over LC-ωPBE/6-31+G(2d,2p) used in conjunction with the “D3” pairwise dispersion energy corrections. In addition, the DCPs reduce the MAE of calculated X-H and X-Y (X,Y = C, H, N, O) bond dissociation enthalpies for a set of 40 species from 3.2 kcal/mol obtained with unadorned LC-ωPBE/6-31+G(2d,2p) to 1.6 kcal/mol. Our findings demonstrate that broad improvements to the performance of DFT methods may be achievable through the use of DCPs.

  5. Ether, Luminosity and Galactic Source Counts

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    An interpretation of the cosmological redshift in terms of a cosmic ether is given. We study a Robertson-Walker cosmology in which the ether is phenomenologically defined by a homogeneous and isotropic permeability tensor. The speed of light becomes so a function of cosmic time like in a dielectric medium. However, the cosmic ether is dispersion free, it does not lead to a broadening of spectral lines. Locally, in Euclidean frames, the scale factors of the permeability tensor get absorbed in the fundamental constants. Mass and charge scale with cosmic time, and so do atomic energy levels. This substantially changes the interpretation of the cosmological redshift as a Doppler shift. Photon frequencies are independent of the expansion factor; their time scaling is determined by the permeability tensor. The impact of the ether on the luminosity-distance, on the distance-redshift relation, and on galactic number counts is discussed. The Hubble constant is related to the scale factors of the metric and the permeab...

  6. A new method for polychromatic X-ray μLaue diffraction on a Cu pillar using an energy-dispersive pn-junction charge-coupled device.

    Science.gov (United States)

    Abboud, A; Kirchlechner, C; Send, S; Micha, J S; Ulrich, O; Pashniak, N; Strüder, L; Keckes, J; Pietsch, U

    2014-11-01

    μLaue diffraction with a polychromatic X-ray beam can be used to measure strain fields and crystal orientations of micro crystals. The hydrostatic strain tensor can be obtained once the energy profile of the reflections is measured. However, this remains a challenge both on the time scale and reproducibility of the beam position on the sample. In this review, we present a new approach to obtain the spatial and energy profiles of Laue spots by using a pn-junction charge-coupled device, an energy-dispersive area detector providing 3D resolution of incident X-rays. The morphology and energetic structure of various Bragg peaks from a single crystalline Cu micro-cantilever used as a test system were simultaneously acquired. The method facilitates the determination of the Laue spots' energy spectra without filtering the white X-ray beam. The synchrotron experiment was performed at the BM32 beamline of ESRF using polychromatic X-rays in the energy range between 5 and 25 keV and a beam size of 0.5 μm × 0.5 μm. The feasibility test on the well known system demonstrates the capabilities of the approach and introduces the "3D detector method" as a promising tool for material investigations to separate bending and strain for technical materials.

  7. Acoustic Rectification in Dispersive Media

    Science.gov (United States)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  8. A Study on Collaborative Operation Method for a New Energy Type Dispersed Power Supply System by AC-EMAP Model

    Science.gov (United States)

    Hidese, Koichi; Takano, Ichiro; Nishikawa, Hisao; Sawada, Yoshio

    Application of a dispersed power supply system combined with a large scale photovoltaic system (PV), a fuel cell (FC) and an electric double layer capacitor (EDLC) is studied in this paper. This system is operated in autonomous mode, taking account of time delay characteristics of FC. The modified Euler type Moving Average Prediction (EMAP) model is improved using short time fast fourier transform (ST-FFT). The Adaptive Control type EMAP (AC-EMAP) model is introduced to reduce the capacity of EDLC. This system can meet the multi-quality electric power requirements of customers, and compensate voltage stability and uninterruptible power supply (UPS) function as well. Moreover, the required capacity of EDLC to compensate the fluctuation of both PV output and load demand is clarified by the simulation based on collaborative operation method by a prediction model using software MATLAB/Simulink.

  9. Dipole polarizability, sum rules, mean excitation energies, and long-range dispersion coefficients for buckminsterfullerene C 60

    Science.gov (United States)

    Kumar, Ashok; Thakkar, Ajit J.

    2011-11-01

    Experimental photoabsorption cross-sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and the high-energy behavior of the dipole-oscillator-strength density are used to construct dipole oscillator strength distributions for buckminsterfullerene (C60). The distributions are used to predict dipole sum rules Sk, mean excitation energies Ik, the frequency dependent polarizability, and C6 coefficients for the long-range dipole-dipole interactions of C60 with a variety of atoms and molecules.

  10. Anarthria impairs subvocal counting.

    Science.gov (United States)

    Cubelli, R; Nichelli, P; Pentore, R

    1993-12-01

    We studied subvocal counting in two pure anarthric patients. Analysis showed that they performed definitively worse than normal subjects free to articulate subvocally and their scores were in the lower bounds of the performances of subjects suppressing articulation. These results suggest that subvocal counting is impaired after anarthria.

  11. EcoCount

    Directory of Open Access Journals (Sweden)

    Phillip P. Allen

    2014-05-01

    Full Text Available Techniques that analyze biological remains from sediment sequences for environmental reconstructions are well established and widely used. Yet, identifying, counting, and recording biological evidence such as pollen grains remain a highly skilled, demanding, and time-consuming task. Standard procedure requires the classification and recording of between 300 and 500 pollen grains from each representative sample. Recording the data from a pollen count requires significant effort and focused resources from the palynologist. However, when an adaptation to the recording procedure is utilized, efficiency and time economy improve. We describe EcoCount, which represents a development in environmental data recording procedure. EcoCount is a voice activated fully customizable digital count sheet that allows the investigator to continuously interact with a field of view during the data recording. Continuous viewing allows the palynologist the opportunity to remain engaged with the essential task, identification, for longer, making pollen counting more efficient and economical. EcoCount is a versatile software package that can be used to record a variety of environmental evidence and can be installed onto different computer platforms, making the adoption by users and laboratories simple and inexpensive. The user-friendly format of EcoCount allows any novice to be competent and functional in a very short time.

  12. Dispersion Interactions in Water Clusters.

    Science.gov (United States)

    Guidez, Emilie B; Gordon, Mark S

    2017-05-18

    The importance of dispersion forces in water clusters is examined using the effective fragment potential (EFP) method. Since the original EFP1 water potential does not include dispersion, a dispersion correction to the EFP1 potential (EFP1-D) was derived and implemented. The addition of dispersion to the EFP1 potential yields improved geometries for water clusters that contain 2-6 molecules. The importance of the odd E7 contribution to the dispersion energy is investigated. The E7 dispersion term is repulsive for all of the water clusters studied here and can have a magnitude that is as large as half of the E6 value. The E7 term therefore contributes to larger intermolecular distances for the optimized geometries. Inclusion of many-body effects and/or higher order terms may be necessary to further improve dispersion energies and optimized geometries.

  13. Effects of density functionals and dispersion interactions on geometries, bond energies and harmonic frequencies of Etbnd UX3 (E = N, P, CH; X = H, F, Cl)

    Science.gov (United States)

    Pandey, Krishna Kumar; Patidar, Pankaj; Patidar, Sunil Kumar; Vishwakarma, Ravi

    2014-12-01

    Quantum-chemical calculations have been performed to evaluate the geometries, bonding nature and harmonic frequencies of the compounds [Etbnd UX3] at DFT, DFT-D3, DFT-D3(BJ) and DFT-dDSc levels using different density functionals BP86, BLYP, PBE, revPBE, PW91, TPSS and M06-L. The stretching frequency of Utbnd N bond in [Ntbnd UF3] calculated with DFT/BLYP closely resembles with the experimental value. The performance of different density functionals for accurate Utbnd N vibrational frequencies follows the order BLYP > revPBE > BP86 > PW91 > TPSS > PBE > M06-L. The BLYP functional gives accurate value of the Utbnd E bond distances. The uranium atom in the studied compounds [Etbnd UX3] is positively charged. Upon going from [Etbnd UF3] to [Etbnd UCl3], the partial Hirshfeld charge on uranium atom decreases because of the lower electronegativity of chlorine compared to flourine. The Gopinathan-Jug bond order for Utbnd E bonds ranges from 2.90 to 3.29. The Utbnd E bond dissociation energies vary with different density functionals as M06-L UX3] are larger than the electrostatic interaction ΔEelstat, which means the Utbnd N bonds in these compound have greater degree of covalent character (in the range 63.8-77.2%). The Usbnd E σ-bonding interaction is the dominant bonding interaction in the nitride and methylidyne complexes while it is weaker in [Ptbnd UX3]. The dispersion energy contributions to the total bond dissociation energies are rather small. Compared to the Grimme's D3(BJ) corrections, the Corminboeuf's dispersion corrections are larger with metaGGA functionals (TPSS, M06-L) while smaller with GGA functionals.

  14. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    CERN Document Server

    Cesareo, R; Castellano, A

    1999-01-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd sub 1 sub - sub x Zn sub x Te and HgI sub 2 , coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 mu m, an area of about 2x3 mm sup 2 , an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 mu m. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching approx 9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd sub 1 sub - sub x Zn sub x Te detector ha...

  15. Analysis of ancient masterly pieces of work by means of X-ray fluorescence analysis by dispersion in the energy; Analisis de obras de arte antiguas mediante fluorescencia de rayos X por dispersion en la energia

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, R.; Cappio B, C.; Brunetti, A. [Istituto di Matematica e Fisica, Universita di Sassari (Italy); Rosales, M.A. [INAOE, Tonantzintla, Puebla (Mexico); Castellano, A. [Dipartimento di Scienza dei Materiali, Universita di Lecce (Italy); Gigante, G.E. [Dipartimento di Fisica, Universita La Sapienza, Roma (Italy); Fiorini, C. [Dip. di Elettronica ed Informazione, Politecnico di Milano (Italy)

    2004-07-01

    Energy dispersive X-ray fluorescence (EDXRF) analysis has been widely used for the analysis of works of art because it is non-destructive, multi-elemental, simple to utilize, and relatively inexpensive. In the last few years, miniaturized and portable X-ray tubes and high-resolution semiconductor detectors have been developed. This progress allowed the design and construction of portable equipments that can be easily transported all over the world, for use in museums, excavations, etc. In this work, these portable systems will be described and their usefulness demonstrated in the analysis of objects of archaeological value. First, we present the analysis of a lot of gold prehispanic jewels from the Museo del Templo Mayor in Mexico City; in the second place we present the results of analysis of the golden altar of St. Ambrogio in Milan, which is considered one of the most important goldsmith's works ever realized and the gold pigments from the fresco 'The chapel of the Scrovegni' by Giotto. In the third place we give a brief account of Mycenaean and pre-Mycenaean gold objects from the Museum Benaki in Athens. Finally, the results of bulk nuragic copper based ingots from the nuragic village of St. Imbenia are presented. (Author) 19 refs., 5 tabs., 8 figs.

  16. A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, Alexander J.G., E-mail: alexander.lunt@chch.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Mohanty, Gaurav, E-mail: gaurav.mohanty@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Ying, Siqi, E-mail: siqi.ying@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Dluhoš, Jiří, E-mail: jiri.dluhos@tescan.cz [TESCAN Brno, s.r.o., Libušina tř. 1, 623 00 Brno-Kohoutovice (Czech Republic); Sui, Tan, E-mail: tan.sui@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Neo, Tee K., E-mail: neophyte@singnet.com.sg [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, 228510 (Singapore); Michler, Johann, E-mail: johann.michler@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Korsunsky, Alexander M., E-mail: alexander.korsunsky@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom)

    2015-12-01

    Recent studies into the origins of failure of yttria partially stabilised zirconia–porcelain veneered prosthesis have revealed the importance of micro-to-nano scale characterisation of this interface zone. Current understanding suggests that the heat treatment, residual stresses and varying microstructure at this location may contribute to near-interface porcelain chipping. In this study the chemical, microstructural and mechanical property variation across the interfacial zone has been characterised at two differing length scales and using three independent techniques; energy dispersive X-ray spectroscopy, transmission electron microscopy and micropillar compression. Energy dispersive X-ray spectroscopy mapping of the near-interface region revealed, for the first time, that the diffusional lengths of twelve principal elements are limited to within 2–6 μm of the interface. This study also revealed that 0.2–2 μm diameter zirconia grains had become detached from the bulk and were embedded in the near-interface porcelain. Transmission electron microscopy analysis demonstrated the presence of nanoscale spherical features, indicative of tensile creep induced voiding, within the first 0.4–1.5 μm from the interface. Within zirconia, variations in grain size and atomistic structure were also observed within the 3 μm closest to the interface. Micropillar compression was performed over a 100 μm range on either side of the interface at the spatial resolution of 5 μm. This revealed an increase in zirconia and porcelain loading modulus at close proximities (< 5 μm) to the interface and a decrease in zirconia modulus at distances between 6 and 41 μm from this location. The combination of the three experimental techniques has revealed intricate details of the microstructural, chemical and consequently mechanical heterogeneities in the YPSZ–porcelain interface, and demonstrated that the length scales typically associated with this behaviour are approximately ± 5

  17. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage.

    Science.gov (United States)

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-21

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω□(-1) and a conductivity of 11.6 S m(-1). The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF(6)) displays a high capacity of 252 F g(-1) at a current density of 1 A g(-1) with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.

  18. Enhanced creation of dispersive monolayer phonons in Xe/Pt(111) by inelastic helium atom scattering at low energies

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2007-01-01

    Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of He-4 atoms by a monolayer solid of Xe/Pt(111) at incident energies of 2-25 meV. ...

  19. High-Energy-Density Fuel Blending Strategies and Drop Dispersion for Fuel Cost Reduction and Soot Propensity Control

    Science.gov (United States)

    Bellan, J.; Harstad, K.

    1998-01-01

    The idea that low soot propensity of high-energy-density (HED) liquid sooting fuels and cost reduction of a multicomponent energetic fuel can be achieved by doping a less expensive, less sooting liquid fuel with HED is tested through numerical simulations.

  20. Electrostatic Dispersion and Evaporation of Dense and Dilute Clusters of Drops of High-Energy Fuel For Soot Control

    Science.gov (United States)

    Bellan, J.; Harstad, K.

    1997-01-01

    The high-energy-density (HED) fuels developed under U.S. Navy sponsorship as a replacement for conventional liquid fuels, in its missile propulsion systems have the drawback of high soot propensity: this makes misiles visible and thus strategically unacceptabel.

  1. Sublattice Counting and Orbifolds

    CERN Document Server

    Hanany, Amihay; Reffert, Susanne

    2010-01-01

    Abelian orbifolds of C^3 are known to be encoded by hexagonal brane tilings. To date it is not known how to count all such orbifolds. We fill this gap by employing number theoretic techniques from crystallography, and by making use of Polya's Enumeration Theorem. The results turn out to be beautifully encoded in terms of partition functions and Dirichlet Series. The same methods apply to counting orbifolds of any toric non-compact Calabi-Yau singularity. As additional examples, we count the orbifolds of the conifold, of the L^{aba} theories, and of C^4.

  2. Strong Energy-momentum Dispersion of Phonon Dressed Carriers in the Lightly Doped Band Insulator SrTiO3

    Energy Technology Data Exchange (ETDEWEB)

    Meevasana, Warawat

    2010-05-26

    Much progress has been made recently in the study of the effects of electron-phonon (el-ph) coupling in doped insulators using angle resolved photoemission (ARPES), yielding evidence for the dominant role of el-ph interactions in underdoped cuprates. As these studies have been limited to doped Mott insulators, the important question arises how this compares with doped band insulators where similar el-ph couplings should be at work. The archetypical case is the perovskite SrTiO{sub 3} (STO), well known for its giant dielectric constant of 10000 at low temperature, exceeding that of La{sub 2}CuO{sub 4} by a factor of 500. Based on this fact, it has been suggested that doped STO should be the archetypical bipolaron superconductor. Here we report an ARPES study from high-quality surfaces of lightly doped SrTiO{sub 3}. Comparing to lightly doped Mott insulators, we find the signatures of only moderate electron-phonon coupling: a dispersion anomaly associated with the low frequency optical phonon with a {lambda}{prime} {approx} 0.3 and an overall bandwidth renormalization suggesting an overall {lambda}{prime} {approx} 0.7 coming from the higher frequency phonons. Further, we find no clear signatures of the large pseudogap or small polaron phenomena. These findings demonstrate that a large dielectric constant itself is not a good indicator of el-ph coupling and highlight the unusually strong effects of the el-ph coupling in doped Mott insulators.

  3. Characterization of the Carancas-Puno meteorite by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ceron Loayza, Maria L., E-mail: malucelo@hotmail.com; Bravo Cabrejos, Jorge A. [Universidad Nacional Mayor de San Marcos, Laboratorio de Analisis de Suelos, Facultad de Ciencias Fisicas (Peru)

    2011-11-15

    We report the results of the study of a meteorite that impacted an inhabited zone on 15 September 2007 in the neighborhood of the town of Carancas, Puno Region, about 1,300 km south of Lima. The analysis carried out by energy dispersive X-ray fluorescence, X-ray diffractometry and transmission Moessbauer spectroscopy (at room temperature and at 4.2 K), reveal the presence in the meteorite sample of magnetic sites assigned to taenite (Fe,Ni) and troilite (Fe,S) phases, and of two paramagnetic doublets assigned to Fe{sup 2 + }, one associated with olivine and the other to pyroxene. In accord with these results, this meteorite is classified as a type IV chondrite meteorite.

  4. Combination of Raman, infrared, and X-ray energy-dispersion spectroscopies and X-ray d diffraction to study a fossilization process

    Energy Technology Data Exchange (ETDEWEB)

    Sousa Filho, Francisco Eduardo de [Departamento de Fisica, Universidade Regional do Cariri, Crato, CE (Brazil); Joao Herminio da Silva [Universidade Federal do Ceara, Cariri, Juazeiro do Norte, CE (Brazil); Saraiva, Antonio Alamo Feitosa; Brito, Deyvid Dennys S. [Departamento de Ciencias Biologicas, Universidade Regional do Cariri, Crato, CE (Brazil); Viana, Bartolomeu Cruz [Departamento de Fisica, Universidade Federal do Piaui, Teresina, PI, (Brazil); Abagaro, Bruno Tavares de Oliveira; Freire, Paulo de Tarso Cavalcante, E-mail: tarso@fisica.ufc.br [Departamento de Fisica, Universidade Federal do Ceara, Fortaleza, CE (Brazil)

    2011-12-15

    X-ray diffraction was combined with X-ray energy-dispersion, Fourier-transform infrared, and Raman spectroscopies to study the fossilization of a Cretaceous specimen of the plant Brachyphyllum castilhoi, a fossil from the Ipubi Formation, in the Araripe Sedimentary Basin, Northeastern Brazil. Among the possible fossilization processes, which could involve pyrite, silicon oxide, calcium oxide, or other minerals, we were able to single out pyritization as the central mechanism producing the fossil, more than 100 million years ago. In addition to expanding the knowledge of the Ipubi Formation, this study shows that, when combined with other experimental techniques, Raman spectroscopy is a valuable tool at the paleontologist's disposal. (author)

  5. Supervised Mineral Classification with Semi-automatic Training and Validation Set Generation in Scanning Electron Microscope Energy Dispersive Spectroscopy Images of Thin Sections

    DEFF Research Database (Denmark)

    Flesche, Harald; Nielsen, Allan Aasbjerg; Larsen, Rasmus

    2000-01-01

    This paper addresses the problem of classifying minerals common in siliciclastic and carbonate rocks. Twelve chemical elements are mapped from thin sections by energy dispersive spectroscopy in a scanning electron microscope (SEM). Extensions to traditional multivariate statistical methods...... are applied to perform the classification. First, training and validation sets are grown from one or a few seed points by a method that ensures spatial and spectral closeness of observations. Spectral closeness is obtained by excluding observations that have high Mahalanobis distances to the training class......–Matusita distance and the posterior probability of a class mean being classified as another class. Fourth, the actual classification is carried out based on four supervised classifiers all assuming multinormal distributions: simple quadratic, a contextual quadratic, and two hierarchical quadratic classifiers...

  6. Material-specific imaging system using energy-dispersive X-ray diffraction and spatially resolved CdZnTe detectors with potential application in breast imaging

    Science.gov (United States)

    Barbes, Damien; Tabary, Joachim; Paulus, Caroline; Hazemann, Jean-Louis; Verger, Loïck

    2017-03-01

    This paper presents a coherent X-ray-scattering imaging technique using a multipixel energy-dispersive system. Without any translation, the technique produces specific 1D image from data recorded by a single CdZnTe detector pixel using subpixelation techniques. The method is described in detail, illustrated by a simulation and then experimentally validated. As the main considered application of our study is breast imaging, this validation involves 2D imaging of a phantom made of plastics mimicking breast tissues. The results obtained show that our system can specifically image the phantom using a single detector pixel. For the moment, in vivo breast imaging applications remain difficult, as the dose delivered by the system is too high, but some adjustments are considered for further work.

  7. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Py, J. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France); Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Hubinois, J.-C.; Cardona, D. [Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France)

    2015-04-21

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1–20 g L{sup −1} is given.

  8. Characterization of Japanese color sticks by energy dispersive X-ray fluorescence, X-ray diffraction and Fourier transform infrared analysis

    Energy Technology Data Exchange (ETDEWEB)

    Manso, M. [Centro de Fisica Atomica, Universidade de Lisboa, Faculdade de Ciencias, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Valadas, S. [Chemistry Department, Evora Chemistry Centre and HERCULES Centre, University of Evora, Rua Romao Ramalho, 59 Evora (Portugal); Pessanha, S.; Guilherme, A. [Centro de Fisica Atomica, Universidade de Lisboa, Faculdade de Ciencias, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); Queralt, I. [Laboratory of X-ray Analytical Applications, Institute of Earth Sciences ' Jaume Almera' , CSIC, Sole Sabaris s/n. 08028 Barcelona (Spain); Candeias, A.E. [Chemistry Department, Evora Chemistry Centre and HERCULES Centre, University of Evora, Rua Romao Ramalho, 59 Evora (Portugal); Carvalho, M.L., E-mail: luisa@cii.fc.ul.p [Centro de Fisica Atomica, Universidade de Lisboa, Faculdade de Ciencias, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal)

    2010-04-15

    This work comprises the use of energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques for the study of the composition of twentieth century traditional Japanese color sticks. By using the combination of analytical techniques it was possible to obtain information on inorganic and organic pigments, binders and fillers present in the sticks. The colorant materials identified in the sticks were zinc and titanium white, chrome yellow, yellow and red ochre, vermillion, alizarin, indigo, Prussian and synthetic ultramarine blue. The results also showed that calcite and barite were used as inorganic mineral fillers while Arabic gum was the medium used. EDXRF offered great potential for such investigations since it allowed the identification of the elements present in the sample preserving its integrity. However, this information alone was not enough to clearly identify some of the materials in study and therefore it was necessary to use XRD and FTIR techniques.

  9. On the authenticity of eight Reales 1730 Mexican silver coins by X-ray diffraction and by energy dispersion spectroscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Rodriguez, I.; Herrera, A.; Vazquez-Lopez, C.; Apolo, R.; Gonzalez-Hernandez, J.; Hernandez-Landaverde, M.A.; Rodriguez, M.E. E-mail: marioga@fata.unam.mx

    2004-02-01

    Ancient silver Mexican coins made during the years 1730-1734, were analyzed non-destructively by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and by optical microscopy. Nine coins of denomination eight Reales were studied. These coins belong to the numismatic private collection in Mexico. Six elements (copper, aluminum, magnesium, silicon, chromium and silver) were determined quantitatively. The coins reveal a uniform Ag concentration. Some of the items are covered with patina. A strong positive correlation between Al and Cu content and also a strong negative correlation between S and Ag were determined. The weight of the coins varied between 26.1344 and 26.9913 g, which is a good indicator of the authenticity of the items. The purpose of this work is to investigate by precise means if some of the coins were falsified or if really all of them are authentic.

  10. Study of the pressure-time-temperature transformation of amorphous La6Ni5Al89 by the energy dispersive method for phase transition

    DEFF Research Database (Denmark)

    Paci, B.; Rossi-Albertini, V.; Sikorski, M.

    2005-01-01

    An energy dispersive X-ray diffraction method to observe phase transitions is applied to follow the crystallization of an amorphous alloy (La6Ni5Al89) in isothermal conditions. In this way, the diffraction-based configurational entropy (DCE) of the system undergoing the phase transformations...... was measured and the curves describing the transitions, qualitatively equivalent to a differential scanning calorimetry (DSC) thermogram, could be drawn. Finally, the analysis of such curves allowed calculation of some points of the alloy pressure-time-temperature transformation (PTTT) diagram. More...... importantly, the present work shows that the DCE method can be successfully applied even when DSC can no longer be used. As a consequence, regions of the phase diagram that could not be reached up to now become accessible, opening the way to the study of transition phenomena under extreme conditions....

  11. Spatially resolved energy dispersive x-ray spectroscopic method for in-situ evaluation of mechanical properties during the growth of a C - Pt composite nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Amit; Banerjee, S. S., E-mail: satyajit@iitk.ac.in [Department of Physics, Indian Institute of Technology Kanpur, Kanpur, 208016 (India)

    2014-05-15

    A core-shell type C-Pt composite nanowire is fabricated using focused ion and electron beam induced chemical vapor deposition techniques. Using information from spatially resolved energy dispersive x-ray spectra, we detect the resonance vibration in the C-Pt composite nanowire. We use this method to measure the Young's moduli of the constituents (C, Pt) of the composite nanowire and also estimate the density of the FEB CVD grown Pt shell surrounding the C core. By measuring the resonance characteristics of the composite nanowire we estimate a Pt shell growth rate of ∼0.9 nms{sup −1}. The study is analyzed to suggest that the Pt shell growth mechanism is primarily governed by the sticking coefficient of the organometallic vapor on the C nanowire core.

  12. [Research on the content prediction model for the determination of nickel in soil by portable energy dispersive X-ray fluorescence analyzer].

    Science.gov (United States)

    Wang, Guang-Xi; Li, Dan; Lai, Wan-Chang; Zhai, Juan; Yang, Zhong-Jian; Hou, Xin; Cao, Fa-Ming

    2013-08-01

    The present paper discusses the influence of matrix effect on measurement results when portable energy dispersive X-ray fluorescence analyzer is used for the determination of Ni in soil. Based on the scattered X-ray intensity of WL(alpha) emitted from the X-ray tube on the sample, a correction method was proposed, and it combines with the correction of absorption element, which can effectively overcome the matrix effect. The correlation coefficient of the content prediction model based on this method is 0.999 and the residual standard deviation is 2.541. The average relative error is 3.90 when the content prediction model is used to measure the content of Ni in the national standard soil samples, so the results coincide well with standard values, and the precision is high.

  13. The effect of primycin on the intracellular monovalent ion and water contents of rat hepatocytes as revealed by energy dispersive X-ray microanalysis and interference microscopy.

    Science.gov (United States)

    Horváth, I; Nagy, I; Lustyik, G; Váradi, G

    1983-01-01

    Using energy-dispersive X-ray microanalytic and interference microscopic techniques, the intracellular concentration of the monovalent ions (Na+, K+, Cl+) as well as the intracytoplasmic and intracellular water contents were studied in normal and adrenalectomized rat hepatocytes with and without primycin treatment. Although primycin influenced significantly only the intracellular potassium content of the adrenalectomized group, it exerted a marked influence on the intranuclear water content in both the normal and adrenalectomized rats. The intranuclear water content increased significantly in the primycin-treated animals. The conclusion is drawn that the increased level of hydration of the nuclear substances reflects a 'decondensation' of the chromatin which on the other hand, may represent the basis for the various effects of primycin on the induction of certain hepatic enzymes.

  14. Determination of elements in some lichens growing in Giresun and Ordu province (Turkey) using energy dispersive X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Aslan, A. [Department of Biology, Education Faculty, Atatuerk University, 25240 Erzurum (Turkey); Budak, G. [Department of Physics, Science and Art Faculty, Atatuerk University, 25240 Erzurum (Turkey)]. E-mail: gbudak@atauni.edu.tr; Tirasoglu, E. [Department of Physics, Faculty of Arts and Sciences, Karadeniz Technical University, Trabzon (Turkey); Karabulut, A. [Department of Physics, Science and Art Faculty, Atatuerk University, 25240 Erzurum (Turkey)

    2006-01-15

    The concentration of five different elements in six lichens species of different regions in Giresun and Ordu (Turkey) was determined using the energy dispersive X-ray fluorescence method. A radioisotope excited X-ray fluorescence analysis using the method of multiple standard addition is applied to the elemental analysis of lichens. An annular 50 mCi {sup 241}Am radioactive source and an annular 50 mCi {sup 55}Fe radioactive source were used for excitation of characteristic K X-rays. An Si(Li)detector which has a 147 eV full-width at half-maximum for 5.9 keV photons was used for intensity measurements. A qualitative analysis of spectral peaks showed that the samples contained potassium, calcium, titanium, iron, and barium.

  15. Analysis of Heavy Metal in Electrocoagulated Metal Hydroxide Sludge (EMHS from the Textile Industry by Energy Dispersive X-Ray Fluorescence (EDXRF

    Directory of Open Access Journals (Sweden)

    Tanveer Mehedi Adyel

    2012-12-01

    Full Text Available Environmental pollution due to discharges of heavy metal containing sludge from textile industries is a common nuisance in Bangladesh, where no treatment of sludge is carried out before final disposals. Energy Dispersive X-ray Fluorescence (EDXRF was employed in the present study to analyze the heavy metal content of Electrocoagulated Metal Hydroxide Sludge (EMHS collected from a composite textile industry. Thirteen heavy metals, viz., Mn, Ti, Cu, Zn, Ni, Sr, V, Cr, Zr, Hg, Cd, Nb and Ga, were detected. Mn, Ni, Cu, Zn and Cd exceeded the permissible limit to apply the EMHS in agricultural land. Cr, Ni, Cu and Zn were compared to the values of the European legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control landfilled. EMHS was categorized as class I and needs to be deposited in controlled landfills.

  16. Energy-dispersive x-ray fluorescence spectroscopy and inductively coupled plasma emission spectrometry evaluated for multielement analysis in complex biological matrices.

    Science.gov (United States)

    Irons, R D; Schenk, E A; Giauque, R D

    1976-12-01

    Energy-dispersive x-ray spectroscopy and inductively coupled plasma emission spectrometry were evaluated as methods for routine multielement analysis of biological material. Standard samples included Standard Reference Materials (National Bureau of Standards), compounded mixtures, and supplements that provided a wide range of elemental concentrations for analysis. Elements included in this study were Zn, Pb, Ni, Mn, Fe, Mg, Cu, Ca, As, Se, Br, Rb, and Sr. Standards were analyzed as unknowns by participating laboratories. The two methods were evaluated for sensitivity, precision, and accuracy, and the results compared to those obtained for atomic absorption spectrometric analysis of identical standard unknowns. Both methods compared favorably and both were determined to be highly reliable for such an application. Advantages and disadvantages of each method are compared and discussed.

  17. Application of energy dispersive X-ray fluorescence spectrometry to polychrome terracotta sculptures from the Alcobaça Monastery, Portugal

    Directory of Open Access Journals (Sweden)

    Agnès Le Gac

    2015-02-01

    Full Text Available Portable energy dispersive X-ray fluorescence spectrometry (EDXRF was used in the Alcobaça Monastery, in order to study the chromatic coatings applied to terracotta statues that belong to two seventeenth-century monumental groupings. The main goal of this scientific approach consisted in determining the elemental composition of the constitutive layers and in trying to reconstitute the existing polychromy, taking into account the technical aspects observed at naked eye. The measurements carried out by EDXRF allowed a first material characterization of these artworks. By comparing the results obtained in each statue, it was possible to attest the application of a seventeenth-century coating to each one and at least a subsequent intervention in the form of a refurbishment or a new polychromy. According to the materials employed in their production, it appears that the refurbishment is likely dated from the 19th century while the new polychromy is still dated from the 18th century.

  18. Test of the rem-counter WENDI-II from Eberline in different energy-dispersed neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Gutermuth, F.; Radon, T.; Fehrenbacher, G.; Siekmann, R.

    2004-03-01

    The neutron rem-counter WENDI-II from Eberline was tested in high-energy particle accelerator produced neutron fields. A radioactive {sup 241}Am-Be({alpha}n) source was used as a reference. The experimentally determined responses are compared to Monte-Carlo simulations of the response function done by R. H. Olsher et al. (2000). The energy spectra of the accelerator produced neutron fields were determined employing Monte-Carlo simulations, too. According to the simulations done by C. Birattari et al. (1998) and in this work these neutron fields exhibit large contributions to the ambient dose equivalent resulting from neutrons with kinetic energy of more than 20 MeV up to a few 100 MeV. The WENDI-II detector proved to show a response of approximately 3.10{sup 9} pulses per Sievert ambient dose equivalent. Considering the experimental and statistical uncertainties the results are consistent with the assumption that the dose response of the WENDI-II reproduces quite accurately the function for the ambient dose equivalent of the ICRP 74.

  19. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi

    2012-01-01

    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  20. 1996 : Track Count Protocol

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The goal of St. Vincent National Wildlife Refuge's Track Count Protocol is to provide an index to the population size of game animals inhabiting St. Vincent Island.

  1. Blood Count Tests

    Science.gov (United States)

    Your blood contains red blood cells (RBC), white blood cells (WBC), and platelets. Blood count tests measure the number and types of cells in your blood. This helps doctors check on your overall health. ...

  2. Counting Belief Propagation

    CERN Document Server

    Kersting, Kristian; Natarajan, Sriraam

    2012-01-01

    A major benefit of graphical models is that most knowledge is captured in the model structure. Many models, however, produce inference problems with a lot of symmetries not reflected in the graphical structure and hence not exploitable by efficient inference techniques such as belief propagation (BP). In this paper, we present a new and simple BP algorithm, called counting BP, that exploits such additional symmetries. Starting from a given factor graph, counting BP first constructs a compressed factor graph of clusternodes and clusterfactors, corresponding to sets of nodes and factors that are indistinguishable given the evidence. Then it runs a modified BP algorithm on the compressed graph that is equivalent to running BP on the original factor graph. Our experiments show that counting BP is applicable to a variety of important AI tasks such as (dynamic) relational models and boolean model counting, and that significant efficiency gains are obtainable, often by orders of magnitude.

  3. Analog multivariate counting analyzers

    CERN Document Server

    Nikitin, A V; Armstrong, T P

    2003-01-01

    Characterizing rates of occurrence of various features of a signal is of great importance in numerous types of physical measurements. Such signal features can be defined as certain discrete coincidence events, e.g. crossings of a signal with a given threshold, or occurrence of extrema of a certain amplitude. We describe measuring rates of such events by means of analog multivariate counting analyzers. Given a continuous scalar or multicomponent (vector) input signal, an analog counting analyzer outputs a continuous signal with the instantaneous magnitude equal to the rate of occurrence of certain coincidence events. The analog nature of the proposed analyzers allows us to reformulate many problems of the traditional counting measurements, and cast them in a form which is readily addressed by methods of differential calculus rather than by algebraic or logical means of digital signal processing. Analog counting analyzers can be easily implemented in discrete or integrated electronic circuits, do not suffer fro...

  4. Housing Inventory Count

    Data.gov (United States)

    Department of Housing and Urban Development — This report displays the data communities reported to HUD about the nature of their dedicated homeless inventory, referred to as their Housing Inventory Count (HIC)....

  5. Allegheny County Traffic Counts

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Traffic sensors at over 1,200 locations in Allegheny County collect vehicle counts for the Pennsylvania Department of Transportation. Data included in the Health...

  6. Liquid Scintillation Counting

    OpenAIRE

    Carlsson, Sten

    1993-01-01

    In liquid scintillation counting (LSC) we use the process of luminescense to detect ionising radiation emit$ed from a radionuclide. Luminescense is emission of visible light of nonthermal origin. 1t was early found that certain organic molecules have luminescent properties and such molecules are used in LSC. Today LSC is the mostwidespread method to detect pure beta-ernitters like tritium and carbon-14. 1t has unique properties in its efficient counting geometry, deteetability and the lack of...

  7. Counting curves on surfaces

    OpenAIRE

    2015-01-01

    In this paper we consider an elementary, and largely unexplored, combinatorial problem in low-dimensional topology. Consider a real 2-dimensional compact surface $S$, and fix a number of points $F$ on its boundary. We ask: how many configurations of disjoint arcs are there on $S$ whose boundary is $F$? We find that this enumerative problem, counting curves on surfaces, has a rich structure. For instance, we show that the curve counts obey an effective recursion, in the general framework of to...

  8. Counting RG flows

    OpenAIRE

    Gukov, Sergei

    2016-01-01

    Interpreting renormalization group flows as solitons interpolating between different fixed points, we ask various questions that are normally asked in soliton physics but not in renormalization theory. Can one count RG flows? Are there different "topological sectors" for RG flows? What is the moduli space of an RG flow, and how does it compare to familiar moduli spaces of (supersymmetric) dowain walls? Analyzing these questions in a wide variety of contexts --- from counting RG walls to AdS/C...

  9. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces.

    Science.gov (United States)

    Fumino, Koichi; Reimann, Sebastian; Ludwig, Ralf

    2014-10-28

    Ionic liquids are defined as salts composed solely of ions with melting points below 100 °C. These remarkable liquids have unique and fascinating properties and offer new opportunities for science and technology. New combinations of ions provide changing physical properties and thus novel potential applications for this class of liquid materials. To a large extent, the structure and properties of ionic liquids are determined by the intermolecular interaction between anions and cations. In this perspective we show that far infrared and terahertz spectroscopy are suitable methods for studying the cation-anion interaction in these Coulomb fluids. The interpretation of the measured low frequency spectra is supported by density functional theory calculations and molecular dynamics simulations. We present results for selected aprotic and protic ionic liquids and their mixtures with molecular solvents. In particular, we focus on the strength and type of intermolecular interaction and how both parameters are influenced by the character of the ions and their combinations. We show that the total interaction between cations and anions is a result of a subtle balance between Coulomb forces, hydrogen bonds and dispersion forces. For protic ionic liquids we could measure distinct vibrational modes in the low frequency spectra indicating clearly the cation-anion interaction characterized by linear and medium to strong hydrogen bonds. Using isotopic substitution we have been able to dissect frequency shifts related to pure interaction strength between cations and anions and to different reduced masses only. In this context we also show how these different types of interaction may influence the physical properties of ionic liquids such as the melting point, viscosity or enthalpy of vaporization. Furthermore we demonstrate that low frequency spectroscopy can also be used for studying ion speciation. Low vibrational features can be assigned to contact ion pairs and solvent separated

  10. Spurious dispersion effects at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Prat, Eduard

    2009-07-15

    The performance of the Free-Electron Laser (FEL) process imposes stringent demands on the transverse trajectory and size of the electron beam. Since transverse dispersion changes off-energy particle trajectories and increases the effective beam size, dispersion must be controlled. This thesis treats the concept of dispersion in linacs, and analyses the impact of dispersion on the electron beam and on the FEL process. It presents generation mechanisms for spurious dispersion, quantifying its importance for FLASH (Free-electron Laser in Hamburg) and the XFEL (European X-ray Free-Electron Laser). A method for measuring and correcting dispersion and its implementation in FLASH is described. Experiments of dispersion e ects on the transverse beam quality and on the FEL performance are presented. (orig.)

  11. Iron-centered ten-vertex germanium clusters: the ubiquity of low energy pentagonal prismatic structures with various skeletal electron counts.

    Science.gov (United States)

    Uţă, M M; Cioloboc, D; King, R B

    2012-09-13

    One of the most significant recent developments (in 2009) is the discovery of the clusters M@Ge10(3-) (M = Fe, Co) in which the outer Ge10 polyhedron is a pentagonal prism rather than a deltahedral structure of the type predicted by the Wade-Mingos rules. Consistent with this experimental observation, density functional theory shows the lowest energy structures to be pentagonal prisms for the iron-centered clusters Fe@Ge10(z) in all nine charge states ranging from -5 to +3. This contrasts with the previously studied cobalt-centered germanium clusters Co@Ge10(z) for which the lowest energy structures are pentagonal prisms only for the electron richest systems where z ranges from -3 to -5. The C3v structures derived from the tetracapped trigonal prism found as lowest energy structures of the electron poorer Co@Ge10(z) (z = 0, -1, -2) systems are higher energy structures for the iron-centered germanium clusters Fe@Ge10(z) (z = 0, -1, -2). The strong energetic preference for pentagonal prismatic structures in the Fe@Ge10(z) clusters can be attributed to the need for the larger volume of the pentagonal prism relative to other 10-vertex closed polyhedra to accommodate the interstitial iron atom.

  12. CHARACTERISTICS OF SPILLED OILS, FUELS, AND PETROLEUM PRODUCTS: 2A. DISPERSANT EFFECTIVENESS DATA FOR A SUITE OF ENVIRONMENTAL CONDITIONS - THE EFFECTS OF TEMPERATURE, VOLATILIZATION, AND ENERGY

    Science.gov (United States)

    Chemical dispersants are used in oil spill response operations to enhance the dispersion of oil slicks at sea as small oil droplets in the water column. To assess the impacts of dispersant usage on oil spills, US EPA is developing a simulation model called the EPA Research Object...

  13. Possible indicators for bio-mass burning in a small Swedish city as studied by energy dispersive fluorescence (EDXRF) spectrometry

    DEFF Research Database (Denmark)

    Selin Lindgren, Eva; Henriksson, Dag; Lundin, Magnus

    2006-01-01

    development. Hence there is ongoing research on the effects of biomass burning on the air quality in Swedish cities. The relative contributions of anthropogenic sources to pollution in the urban environment are usually difficult to evaluate owing to the complexity of the ambient aerosol. In order......Biomass is increasingly used in energy plants of different size and sophistication in Sweden. Biomass is also available in Sweden owing to its large forest-covered areas. Incineration of biomass in an environmentally friendly manner is one of the key issues in Swedish policy for sustainable...... of biomass burning to particulate air pollution. In order to identify typical indicators for biomass burning, principle component analysis was performed on data on elemental contents and black carbon. Analysis suggests that the K/Zn ratio will be useful as an indicator for biomass incineration....

  14. Possible indicators for bio-mass burning in a small Swedish city as studied by energy dispersive fluorescence (EDXRF) spectrometry

    DEFF Research Database (Denmark)

    Selin Lindgren, Eva; Henriksson, Dag; Lundin, Magnus

    2006-01-01

    Biomass is increasingly used in energy plants of different size and sophistication in Sweden. Biomass is also available in Sweden owing to its large forest-covered areas. Incineration of biomass in an environmentally friendly manner is one of the key issues in Swedish policy for sustainable...... development. Hence there is ongoing research on the effects of biomass burning on the air quality in Swedish cities. The relative contributions of anthropogenic sources to pollution in the urban environment are usually difficult to evaluate owing to the complexity of the ambient aerosol. In order...... of biomass burning to particulate air pollution. In order to identify typical indicators for biomass burning, principle component analysis was performed on data on elemental contents and black carbon. Analysis suggests that the K/Zn ratio will be useful as an indicator for biomass incineration....

  15. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO{sub 3} films grown by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Punitha, K. [Department of Physics, Alagappa University, Karaikudi 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi 630 004 (India)

    2014-03-21

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO{sub 3}) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO{sub 3} films deposited on SnO{sub 2}:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO{sub 3} film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10{sup −3}. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (E{sub o}) of WO{sub 3} films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The E{sub o} is change between 6.30 and 3.88 eV, while the E{sub d} varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm{sup −1} attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  16. Examination of growth kinetics of copper rich Cu(In,Ga)Se{sub 2}-films using synchrotron energy dispersive X-ray diffractometry

    Energy Technology Data Exchange (ETDEWEB)

    Rissom, Thorsten; Mainz, Roland; Kaufmann, Christian A.; Caballero, Raquel; Schock, Hans-Werner [Helmholtz Zentrum Berlin fuer Materialien und Energie, Solar Energy Research, Institute for Technology, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Efimova, Varvara; Hoffmann, Volker [IFW Dresden, Institut fuer Komplexe Materialen, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2011-01-15

    Multistage evaporation processes are capable of producing state of the art Cu(In,Ga)Se{sub 2}-thin-films for use in solar cells. The morphology of films grown by this process changes in a rapid manner as soon as their composition becomes copper rich beyond stoichiometry. For investigation of the structural changes, synchrotron radiation energy-dispersive X-ray diffractometry was used. Cu-rich and Cu-poor absorbers with an in-depth gallium gradient were grown by physical vapor deposition. These were transferred to a thermal processing reaction chamber which allows in-situ characterization. In the Cu-rich case changes in energy and shape of the measured diffraction signals caused by heating the samples could be attributed to the leveling of indium and gallium gradients within the layer. As a secondary method glow discharge optical emission spectroscopy was used to confirm this result. Cu-poor reference samples did not show a similarly significant intermixing of indium and gallium during annealing. We conclude, that the presence of excess copper in the layer at elevated temperatures (>470 C) causes interdiffusion of indium and gallium. (author)

  17. Dipole oscillator strength distributions with improved high-energy behavior: Dipole sum rules and dispersion coefficients for Ne, Ar, Kr, and Xe revisited

    Science.gov (United States)

    Kumar, Ashok; Thakkar, Ajit J.

    2010-02-01

    The construction of the dipole oscillator strength distribution (DOSD) from theoretical and experimental photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and molar refractivity data is a well-established technique that has been successfully applied to more than 50 species. Such DOSDs are insufficiently accurate at large photon energies. A novel iterative procedure is developed that rectifies this deficiency by using the high-energy asymptotic behavior of the dipole oscillator strength density as an additional constraint. Pilot applications are made for the neon, argon, krypton, and xenon atoms. The resulting DOSDs improve the agreement of the predicted S2 and S1 sum rules with ab initio calculations while preserving the accuracy of the remainder of the moments. Our DOSDs exploit new and more accurate experimental data. Improved estimates of dipole properties for these four atoms and of dipole-dipole C6 and triple-dipole C9 dispersion coefficients for the interactions among them are reported.

  18. [Blood Count Specimen].

    Science.gov (United States)

    Tamura, Takako

    2015-12-01

    The circulating blood volume accounts for 8% of the body weight, of which 45% comprises cellular components (blood cells) and 55% liquid components. We can measure the number and morphological features of blood cells (leukocytes, red blood cells, platelets), or count the amount of hemoglobin in a complete blood count: (CBC). Blood counts are often used to detect inflammatory diseases such as infection, anemia, a bleeding tendency, and abnormal cell screening of blood disease. This count is widely used as a basic data item of health examination. In recent years, clinical tests before consultation have become common among outpatient clinics, and the influence of laboratory values on consultation has grown. CBC, which is intended to count the number of raw cells and to check morphological features, is easily influenced by the environment, techniques, etc., during specimen collection procedures and transportation. Therefore, special attention is necessary to read laboratory data. Providing correct test values that accurately reflect a patient's condition from the laboratory to clinical side is crucial. Inappropriate medical treatment caused by erroneous values resulting from altered specimens should be avoided. In order to provide correct test values, the daily management of devices is a matter of course, and comprehending data variables and positively providing information to the clinical side are important. In this chapter, concerning sampling collection, blood collection tubes, dealing with specimens, transportation, and storage, I will discuss their effects on CBC, along with management or handling methods.

  19. Photon counting digital holography

    Science.gov (United States)

    Demoli, Nazif; Skenderović, Hrvoje; Stipčević, Mario; Pavičić, Mladen

    2016-05-01

    Digital holography uses electronic sensors for hologram recording and numerical method for hologram reconstruction enabling thus the development of advanced holography applications. However, in some cases, the useful information is concealed in a very wide dynamic range of illumination intensities and successful recording requires an appropriate dynamic range of the sensor. An effective solution to this problem is the use of a photon-counting detector. Such detectors possess counting rates of the order of tens to hundreds of millions counts per second, but conditions of recording holograms have to be investigated in greater detail. Here, we summarize our main findings on this problem. First, conditions for optimum recording of digital holograms for detecting a signal significantly below detector's noise are analyzed in terms of the most important holographic measures. Second, for time-averaged digital holograms, optimum recordings were investigated for exposures shorter than the vibration cycle. In both cases, these conditions are studied by simulations and experiments.

  20. Optical angular momentum in dispersive media

    CERN Document Server

    Philbin, T G

    2012-01-01

    The angular momentum density and flux of light in a dispersive, rotationally symmetric medium are derived from Noether's theorem. Optical angular momentum in a dispersive medium has no simple relation to optical linear momentum, even if the medium is homogeneous. A circularly polarized monochromatic beam in a homogeneous, dispersive medium carries a spin angular momentum per unit energy of $\\pm\\omega^{-1}$, as in vacuum. This result demonstrates the non-trivial interplay of dispersive contributions to optical angular momentum and energy.

  1. Analysis of General Power Counting Rules in Effective Field Theory

    CERN Document Server

    Gavela, B M; Manohar, A V; Merlo, L

    2016-01-01

    We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.

  2. Dispersion Modeling.

    Science.gov (United States)

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  3. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil biodeg

  4. Chemical dispersants

    NARCIS (Netherlands)

    Rahsepar, Shokouhalsadat; Smit, Martijn P.J.; Murk, Albertinka J.; Rijnaarts, Huub H.M.; Langenhoff, Alette A.M.

    2016-01-01

    Chemical dispersants were used in response to the Deepwater Horizon oil spill in the Gulf of Mexico, both at the sea surface and the wellhead. Their effect on oil biodegradation is unclear, as studies showed both inhibition and enhancement. This study addresses the effect of Corexit on oil

  5. Low-energy shelf response in thin energy-dispersive X-ray detectors from Compton scattering of hard X-rays

    Science.gov (United States)

    Michel-Hart, N.; Elam, W. T.

    2017-08-01

    Silicon drift detectors have been successfully employed in both soft and hard X-ray spectroscopy. The response function to incident radiation at soft X-ray levels has been well studied and modeled, but less research has been published on response functions for these detectors to hard X-ray input spectra above 20 keV. When used with hard X-ray sources a significant low energy, non-peak response exists which can adversely affect detection limits for lighter elements in, for example, X-ray fluorescence spectroscopy. We present a numerical model that explains the non-peak response function of silicon drift detectors to hard X-rays based on incoherent Compton scattering within the detector volume. Experimental results are presented and numerically compared to model results.

  6. What Counts as Evidence?

    Science.gov (United States)

    Dougherty Stahl, Katherine A.

    2014-01-01

    Each disciplinary community has its own criteria for determining what counts as evidence of knowledge in their academic field. The criteria influence the ways that a community's knowledge is created, communicated, and evaluated. Situating reading, writing, and language instruction within the content areas enables teachers to explicitly…

  7. Reticulocyte Count Test

    Science.gov (United States)

    ... may be ordered when: CBC results show a decreased RBC count and/or a decreased hemoglobin and hematocrit A healthcare practitioner wants to ... and hematocrit, to help determine the degree and rate of overproduction of RBCs ... during pregnancy . Newborns have a higher percentage of reticulocytes, but ...

  8. What Counts as Prostitution?

    Directory of Open Access Journals (Sweden)

    Stuart P. Green

    2016-08-01

    Full Text Available What counts, or should count, as prostitution? In the criminal law today, prostitution is understood to involve the provision of sexual services in exchange for money or other benefits. But what exactly is a ‘sexual service’? And what exactly is the nature of the required ‘exchange’? The key to answering these questions is to recognize that how we choose to define prostitution will inevitably depend on why we believe one or more aspects of prostitution are wrong or harmful, or should be criminalized or otherwise deterred, in the first place. These judgements, in turn, will often depend on an assessment of the contested empirical evidence on which they rest. This article describes a variety of real-world contexts in which the ‘what counts as prostitution’ question has arisen, surveys a range of leading rationales for deterring prostitution, and demonstrates how the answer to the definition question depends on the answer to the normative question. The article concludes with some preliminary thoughts on how analogous questions about what should count as sexual conduct arise in the context of consensual offences such as adultery and incest, as well as non-consensual offences such as sexual assault.

  9. Analysis of general power counting rules in effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, Belen; Merlo, Luca [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Jenkins, Elizabeth E.; Manohar, Aneesh V. [University of California at San Diego, Department of Physics, La Jolla, CA (United States); CERN TH Division, Geneva 23 (Switzerland)

    2016-09-15

    We derive the general counting rules for a quantum effective field theory (EFT) in d dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ power counting of EFT, not by chiral counting, even for chiral perturbation theory (χPT). The relation between Λ and f is generalized to d dimensions. We show that the naive dimensional analysis 4π counting is related to ℎ counting. The EFT counting rules are applied to χPT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT. (orig.)

  10. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry for quick detection of sulfur-oxidizing bacteria in environmental water samples

    Science.gov (United States)

    Sun, Chengjun; Jiang, Fenghua; Gao, Wei; Li, Xiaoyun; Yu, Yanzhen; Yin, Xiaofei; Wang, Yong; Ding, Haibing

    2017-01-01

    Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry (EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time (within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.

  11. Pre-Columbian alloys from the royal tombs of Sipan; energy dispersive X-ray fluorescence analysis with a portable equipment

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, R. [Dip. di Matematica e Fisica, Universita di Sassari, via Vienna 2, 07100, Sassari (Italy)], E-mail: cesareo@uniss.it; Calza, C.; Dos Anjos, M.; Lopes, R.T. [Nuclear Instrumentation Laboratory, COPPE, Universidade Federal do Rio de Janeiro (Brazil); Bustamante, A.; Fabian S, J. [Universidad Nacional Mayor de San Marcos, Lima (Peru); Alva, W.; Chero Z, L. [Museo ' Tumbas Reales de Sipan' , Lambayeque (Peru)

    2010-04-15

    On the north coast of present-day Peru flourished approximately between 50 and 700 AD, the Moche civilization. It was an advanced culture and the Moche were sophisticated metalsmiths, so that they are considered as the finest producers of jewels and artefacts of the region. The Moche metalworking ability was impressively demonstrated by the objects discovered by Walter Alva and coworkers in 1987, in the excavations of the 'Tumbas Reales de Sipan'. About 50 metal objects from these excavations, now at the namesake Museum, in Lambayeque, north of Peru, were analyzed with a portable equipment using energy-dispersive X-ray fluorescence. This portable equipment is mainly composed of a small size X-ray tube and a thermoelectrically cooled X-ray detector. Standard samples of gold and silver alloys were employed for quantitative analysis. It was determined that the analyzed artefacts from the 'Tumbas Reales de Sipan' are mainly composed of gold, silver and copper alloys, of gilded copper and of tumbaga, the last being a poor gold alloy enriched at the surface by depletion gilding, i.e. removing copper from the surface.

  12. Chemical characterization of groundwater in the area occupied by the cemetery: use of fluorescence spectrometry X-ray energy dispersive (EDXRF

    Directory of Open Access Journals (Sweden)

    Fernando Ernesto Ucker

    2012-12-01

    Full Text Available Generally, the burial of human corpses can contribute to groundwater pollution by the contact of leachate generated from the decomposition of bodies in the unsaturated zone of the subsoil. This process has been investigated in this work that aimed to determine the overall quality of groundwater in the zone occupied by the cemetery. The fluorescence spectrometry X-ray Energy Dispersive (EDXRF technique was used for groundwater chemical characterization. Five monitoring wells were constructed according to Brazilian norms. The water level fluctuation, the potentiometric surface and the concentrations of the elements calcium, copper, iron, phosphorus and silicon were estimated. The water level appeared quite shallow, ranging between 0.48 to 0.95 m in the dry season. The concentrations range for calcium varied from 4.65 to 17.85 mg L-1, for copper 0.02 ± 0.29 mg L-1, iron 0.57 to 15.96 mg L-1, phosphorus 12.00 to 13.98 mg L-1, and silicon 35.55 to 79.12 mg L-1. It is concluded that the use of EDXRF techniques proved to be rapid and efficient for monitoring the constituents in the groundwater collected in wells under the influence of graveyard in silt-clay soil.

  13. Computer-aided screening system for cervical precancerous cells based on field emission scanning electron microscopy and energy dispersive x-ray images and spectra

    Science.gov (United States)

    Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi

    2016-10-01

    The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.

  14. Chemometric classification of gunshot residues based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, S. [Bundeskriminalamt (BKA), Forensic Science Institute KT23, Thaerstr. 11, D - 65193 Wiesbaden (Germany); Otto, M. [TU Bergakademie Freiberg (TU BAF), Institute for Analytical Chemistry, Leipziger Str. 29, D - 09599 Freiberg (Germany)], E-mail: matthias.otto@chemie.tu-freiberg.de; Niewoehner, L.; Barth, M. [Bundeskriminalamt (BKA), Forensic Science Institute KT23, Thaerstr. 11, D - 65193 Wiesbaden (Germany); Brozek-Mucha, Z. [Instytut Ekspertyz Sadowych (IES), Westerplatte St. 9, PL - 31-033 Krakow (Poland); Biegstraaten, J. [Nederlands Forensisch Instituut (NFI), Fysische Technologie, Laan van Ypenburg 6, NL-2497 GB Den Haag (Netherlands); Horvath, R. [Kriminalisticky a Expertizny Ustav (KEU PZ), Institute of Forensic Science, Sklabinska 1, SK - 812 72 Bratislava (Slovakia)

    2007-09-15

    A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification.

  15. An Energy-Dispersive X-Ray Fluorescence Spectrometry and Monte Carlo simulation study of Iron-Age Nuragic small bronzes ("Navicelle") from Sardinia, Italy

    Science.gov (United States)

    Schiavon, Nick; de Palmas, Anna; Bulla, Claudio; Piga, Giampaolo; Brunetti, Antonio

    2016-09-01

    A spectrometric protocol combining Energy Dispersive X-Ray Fluorescence Spectrometry with Monte Carlo simulations of experimental spectra using the XRMC code package has been applied for the first time to characterize the elemental composition of a series of famous Iron Age small scale archaeological bronze replicas of ships (known as the ;Navicelle;) from the Nuragic civilization in Sardinia, Italy. The proposed protocol is a useful, nondestructive and fast analytical tool for Cultural Heritage sample. In Monte Carlo simulations, each sample was modeled as a multilayered object composed by two or three layers depending on the sample: when all present, the three layers are the original bronze substrate, the surface corrosion patina and an outermost protective layer (Paraloid) applied during past restorations. Monte Carlo simulations were able to account for the presence of the patina/corrosion layer as well as the presence of the Paraloid protective layer. It also accounted for the roughness effect commonly found at the surface of corroded metal archaeological artifacts. In this respect, the Monte Carlo simulation approach adopted here was, to the best of our knowledge, unique and enabled to determine the bronze alloy composition together with the thickness of the surface layers without the need for previously removing the surface patinas, a process potentially threatening preservation of precious archaeological/artistic artifacts for future generations.

  16. Microsecond time-resolved energy-dispersive EXAFS measurement and its application to film the thermolysis of (NH₄)₂[PtCl₆].

    Science.gov (United States)

    Kong, Qingyu; Baudelet, Francois; Han, Jun; Chagnot, Sebastien; Barthe, Laurent; Headspith, Jon; Goldsbrough, Roger; Picca, Frederic E; Spalla, Olivier

    2012-01-01

    Microsecond (μs) time-resolved extended X-ray absorption fine structure spectroscopy (EXAFS) has been developed using an energy-dispersive EXAFS (EDE) setup equipped with a silicon Quantum Detector ULTRA. The feasibility was investigated with a prototypical thermally driven redox reaction, the thermal decomposition of (NH₄)₂[PtCl₆]. EXAFS data were collected with snapshots every 60 μs during the course of the thermolysis reaction, then averaged for 100 times along the reaction to get better signal to noise ratio which reduces the time resolution to 6 millisecond (ms). Our results provide direct structural evidence of cis-PtCl₂(NH₃)₂ as the intermediate, together with continuous electronic and geometric structure dynamics of the reactant, intermediate and final product during the course of the thermolysis of ((NH₄)₂[PtCl₆]. The thermal effect on EXAFS signals at high temperatures is considered in the data analysis, which is essential to follow the reaction process correctly. This method could also be applied to other reaction dynamics.

  17. Microsecond time-resolved energy-dispersive EXAFS measurement and its application to film the thermolysis of (NH4)2[PtCl6

    Science.gov (United States)

    Kong, Qingyu; Baudelet, Francois; Han, Jun; Chagnot, Sebastien; Barthe, Laurent; Headspith, Jon; Goldsbrough, Roger; Picca, Frederic E.; Spalla, Olivier

    2012-01-01

    Microsecond (μs) time-resolved extended X-ray absorption fine structure spectroscopy (EXAFS) has been developed using an energy-dispersive EXAFS (EDE) setup equipped with a silicon Quantum Detector ULTRA. The feasibility was investigated with a prototypical thermally driven redox reaction, the thermal decomposition of (NH4)2[PtCl6]. EXAFS data were collected with snapshots every 60 μs during the course of the thermolysis reaction, then averaged for 100 times along the reaction to get better signal to noise ratio which reduces the time resolution to 6 millisecond (ms). Our results provide direct structural evidence of cis-PtCl2(NH3)2 as the intermediate, together with continuous electronic and geometric structure dynamics of the reactant, intermediate and final product during the course of the thermolysis of (NH4)2[PtCl6]. The thermal effect on EXAFS signals at high temperatures is considered in the data analysis, which is essential to follow the reaction process correctly. This method could also be applied to other reaction dynamics. PMID:23264880

  18. Scanning electron microscopy and energy-dispersive X-ray microanalysis studies of early dental calculus on resin plates exposed to human oral cavities.

    Science.gov (United States)

    Kodaka, T; Ohohara, Y; Debari, K

    1992-06-01

    Dental calculus formed after 10 days on resin plates, applied to the lingual sides of the mandibular gingival regions in eight human subjects, was investigated by means of scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). The mineral deposits were mainly divided into three types: A, B, and C. The type A deposits showing an average Ca/P molar ratio of 1.42 were densely packed with fine needle-shaped crystals formed by the intra- and extra-cellular calcification. The type A deposits, probably composed of Ca-deficient apatites and the transitional forms between apatite and octacalcium phosphate (OCP), were observed in all subjects. The type B deposits showing an average Ca/P molar ratio of 0.96 were aggregated with polygonal column, triangular plate-shaped, and rhombohedral crystals. These crystals identified as brushite (CaHPO4-2H2O:dicalcium phosphate dihydrate: DCPD) were found in four subjects. Platelet-shaped crystals of the type C deposits were observed in three subjects. Their Ca/P molar ratio of 1.26 and the crystal shape were similar to those of OCP. Whitlockite crystals were not found although Mg-containing hexagonal disk-like crystals were observed in two subjects.

  19. PERBEDAAN KANDUNGAN FLUOR PADA EMAIL GIGI SULUNG YANG DITUMPAT SEMEN IONOMER KACA KONVENSIONAL DAN SEMEN IONOMER KACA VISKOSITAS TINGGI EVALUASI ENERGY DISPERSIVE X-RAY SPECTROPHOTOMETRY (Laporan Penelitian

    Directory of Open Access Journals (Sweden)

    Asmaraningtyas Asmaraningtyas

    2015-08-01

    Full Text Available The purpose of this study was to determine the different fluor uptake in enamel of primary teeth filled with Conventional and High Viscosity Glass Ionomer Cement. Samples in this study were 20 non-carious primary maxillary incisors. Samples were divided into 2 groups (10 samples for each group which were; group 1 filled with Conventional Glass Ionomer Cement and group II filled with High Viscosity. All samples were put in saline solution for 7 days. Each sample was divided into 3 areas in 20 µm2 square, making 30 data for every group. The different fluor uptake was observed with Energy Dispersive X-Ray Spectrophotometry (EDS and the results are in graphic . T-test showed significant difference of fluor uptake in enamel of primary teeth between Conventional Glass Ionomer Cement and High Viscosity Glass Ionomer Cement filling (t=2.36, p=0,025. Fluor uptake in enamel of primary teeth filled with High Viscosity Glass Ionomer Cement was much more than Conventional Glass Ionomer Cement.

  20. Portable equipment for energy dispersive X-ray fluorescence analysis of Giotto's frescoes in the Chapel of the Scrovegni

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, Roberto E-mail: cesareo@ssmain.uniss.it; Castellano, Alfredo; Buccolieri, Giovanni; Quarta, Stefano; Marabelli, Maurizio; Santopadre, Paola; Leole, Marcella; Brunetti, Antonio

    2004-01-01

    Photon induced energy dispersive X-ray fluorescence (EDXRF) analysis is a valuable technique for the study of works of art, because it is nondestructive, multielemental, simple and relatively inexpensive. For this reason EDXRF is a very popular analytical technique in archaeometry. Portability of EDXRF equipments is extremely useful and almost mandatory in many cases, such as analysis of frescoes, of large paintings, bronzes, brasses and gold alloys, and so on, especially when located in museums. EDXRF analysis generally involves an area of a few mm{sup 2}, and a thickness between {mu}m and fractions of mm and, therefore, the analysis is superficial and dependent on the surface conditions. The frescoes by Giotto in the 'Chapel of the Scrovegni' in Padua were systematically analysed in the period July 2001-March 2002 in more than 300 points, before, during and after restoration, in order to detect the possible presence of superficial sulphur and to test various sulphur cleaning procedures. Further all pigments were systematically analysed in order to determine their composition. Golden haloes were also analysed and different pigment layers were detected under the gold leaf; from the EDXRF analysis the attribution of chemical elements to the proper layer was possible.

  1. Investigation of Sn surface segregation during GeSn epitaxial growth by Auger electron spectroscopy and energy dispersive x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Takahiro; Suda, Yoshiyuki [Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Hirose, Nobumitsu; Kasamatsu, Akifumi; Mimura, Takashi; Matsui, Toshiaki [National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795 (Japan)

    2015-02-02

    The mechanism of Sn surface segregation during the epitaxial growth of GeSn on Si (001) substrates was investigated by Auger electron spectroscopy and energy dispersive X-ray spectroscopy. Sn surface segregation depends on the growth temperature and Sn content of GeSn layers. During Sn surface segregation, Sn-rich nanoparticles form and move on the surface during the deposition, which results in a rough surface owing to facet formation. The Sn-rich nanoparticles moving on the surface during the deposition absorb Sn from the periphery and yield a lower Sn content, not on the surface but within the layer, because the Sn surface segregation and the GeSn deposition occur simultaneously. Sn surface segregation can occur at a lower temperature during the deposition compared with that during postannealing. This suggests that the Sn surface segregation during the deposition is strongly promoted by the migration of deposited Ge and Sn adatoms on the surface originating from the thermal effect of substrate temperature, which also suggests that limiting the migration of deposited Ge and Sn adatoms can reduce the Sn surface segregation and improve the crystallinity of GeSn layers.

  2. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry for quick detection of sulfur-oxidizing bacteria in environmental water samples

    Science.gov (United States)

    Sun, Chengjun; Jiang, Fenghua; Gao, Wei; Li, Xiaoyun; Yu, Yanzhen; Yin, Xiaofei; Wang, Yong; Ding, Haibing

    2016-03-01

    Detection of sulfur-oxidizing bacteria has largely been dependent on targeted gene sequencing technology or traditional cell cultivation, which usually takes from days to months to carry out. This clearly does not meet the requirements of analysis for time-sensitive samples and/or complicated environmental samples. Since energy-dispersive X-ray spectrometry (EDS) can be used to simultaneously detect multiple elements in a sample, including sulfur, with minimal sample treatment, this technology was applied to detect sulfur-oxidizing bacteria using their high sulfur content within the cell. This article describes the application of scanning electron microscopy imaging coupled with EDS mapping for quick detection of sulfur oxidizers in contaminated environmental water samples, with minimal sample handling. Scanning electron microscopy imaging revealed the existence of dense granules within the bacterial cells, while EDS identified large amounts of sulfur within them. EDS mapping localized the sulfur to these granules. Subsequent 16S rRNA gene sequencing showed that the bacteria detected in our samples belonged to the genus Chromatium, which are sulfur oxidizers. Thus, EDS mapping made it possible to identify sulfur oxidizers in environmental samples based on localized sulfur within their cells, within a short time (within 24 h of sampling). This technique has wide ranging applications for detection of sulfur bacteria in environmental water samples.

  3. Quick Detection of Sulfur Bacteria in Environmental Water Sample with SEM(scanning electron microscopy) coupled with Energy Dispersive X-ray Spectrometry

    Science.gov (United States)

    Sun, C.; Ding, H.; Wang, Y.; Jiang, F.; Li, X.; Gao, W.; Yin, X.

    2015-12-01

    Sulfur-oxidizing bacteria play important roles in global sulfur cycle. Sulfur bacteria detection has been largely dependent on targeted gene sequencing technology or traditional cell cultivation which usually takes from days to months to finish. This cannot meet the requirements of some time-sensitive samples and/or complicated environmental samples. Since Energy-Dispersive X-ray Spectrometry (EDS) can be used to simultaneously detect multiple elements including sulfur in a sample with minimal sample treatment, the technology was applied to detect sulfur bacteria through the high sulfur content in the bacteria cell. We report the application of SEM (scanning electron microscopy) imaging coupled with EDS mapping for direct and quick detection of sulfur oxidizer in contaminated environmental water samples. The presence of sulfur bacteria can be confirmed within 24 hours after sampling. Subsequent 16S RNA gene sequencing results found the bacteria detected had over 99% similarity to Chromatium Okenii, confirming the bacterium was a sulfur oxidizer. The developed technique made it possible to quickly detect sulfur oxidizer in environmental sample and could have wide applications in sulfur bacteria detection in environmental water samples.

  4. Application of Scanning Electron Microscopy/Energy-Dispersive X-Ray Spectroscopy for Characterization of Detrital Minerals in Karst Cave Speleothems.

    Science.gov (United States)

    Zupančič, Nina; Miler, Miloš; Šebela, Stanka; Jarc, Simona

    2016-02-01

    Micro-scale observations in karst caves help to identify different processes that shaped local morphology. Scanning electron microscopy/energy-dispersive X-ray spectroscopy inspection of speleothems from two karst caves in Slovenia, Predjama and Črna Jama, confirmed the presence of sub-angular to sub-rounded detrital fragments of clay minerals, feldspars, quartz, Fe-oxides/hydroxides, rutile and Nb-rutile, xenotime, kassite, allanite, fluorapatite, epidote, ilmenite, monazite, sphene, and zircon, between 2 and 50 μm across. These occur in porous layers separating calcite laminae in the clayey coating on the layer below the surface of the speleothems, and are also incorporated within actual crystals. It is likely that they are derived from the weathered rocks of the Eocene flysch. Probably they were first transported into the caves by floodwaters forming cave sediments. Later, depending upon the climate conditions, they were moved by air currents or by water to the surface of active speleothems. They might also be redeposited from overlying soils enriched with wind-transported minerals from the flysch, or from higher passages filled with weathered flysch sediment, by drip water percolating through the fissured limestone. As some of the identified minerals are carriers of rare earth elements, Ti and Zr, their presence could affect any palaeoclimatic interpretations that are based upon the geochemical composition of the speleothems.

  5. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    Science.gov (United States)

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.

  6. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens.

    Science.gov (United States)

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    2017-02-01

    Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.

  7. Chemical Differentiation of Osseous and Nonosseous Materials Using Scanning Electron Microscopy-Energy-Dispersive X-Ray Spectrometry and Multivariate Statistical Analysis.

    Science.gov (United States)

    Meizel-Lambert, Cayli J; Schultz, John J; Sigman, Michael E

    2015-11-01

    Identification of osseous materials is generally established on gross anatomical features. However, highly fragmented or taphonomically altered materials may be problematic and may require chemical analysis. This research was designed to assess the use of scanning electron microscopy-energy-dispersive X-ray spectrometry (SEM/EDX), elemental analysis, and multivariate statistical analysis (principal component analysis) for discrimination of osseous and nonosseous materials of similar chemical composition. Sixty samples consisting of osseous (human and nonhuman bone and dental) and non-osseous samples were assessed. After outliers were removed a high overall correct classification of 97.97% was achieved, with 99.86% correct classification for osseous materials. In addition, a blind study was conducted using 20 samples to assess the applicability for using this method to classify unknown materials. All of the blind study samples were correctly classified resulting in 100% correct classification, further demonstrating the efficiency of SEM/EDX and statistical analysis for differentiation of osseous and nonosseous materials. © 2015 American Academy of Forensic Sciences.

  8. Evaluation of the Forensic Utility of Scanning Electron Microscopy-Energy Dispersive Spectroscopy and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Printing Ink Examinations.

    Science.gov (United States)

    Corzo, Ruthmara; Subedi, Kiran; Trejos, Tatiana; Almirall, José R

    2016-05-01

    Improvements in printing technology have exacerbated the problem of document counterfeiting, prompting the need for analytical techniques that better characterize inks for forensic analysis and comparisons. In this study, 319 printing inks (toner, inkjet, offset, and Intaglio) were analyzed directly on the paper substrate using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). As anticipated, the high sensitivity of LA-ICP-MS pairwise comparisons resulted in excellent discrimination (average of ~ 99.6%) between different ink samples from each of the four ink types and almost 100% correct associations between ink samples known to originate from the same source. SEM-EDS analysis also resulted in very good discrimination for different toner and intaglio inks (>97%) and 100% correct association for samples from the same source. SEM-EDS provided complementary information to LA-ICP-MS for certain ink types but showed limited utility for the discrimination of inkjet and offset inks.

  9. In-situ energy dispersive x-ray diffraction study of the growth of CuO nanowires by annealing method

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Himanshu; Ganguli, Tapas; Deb, S. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced technology, Indore-452013 (India); Sant, Tushar; Poswal, H. K.; Sharma, Surinder M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai (India)

    2013-10-14

    The in-situ growth of CuO nanowires was studied by Energy Dispersive X-ray Diffraction (EDXRD) to observe the mechanism of growth. The study was carried out for comparison at two temperatures—at 500 °C, the optimum temperature of the nanowires growth, and at 300 °C just below the temperature range of the growth. The in situ observation revealed the successive oxidation of Cu foil to Cu{sub 2}O layer and finally to CuO layer. Further analysis showed the presence of a compressive stress in CuO layer due to interface at CuO and Cu{sub 2}O layers. The compressive stress was found to increase with the growth of the nanowires at 500 °C while it relaxed with the growth of CuO layer at 300 °C. The present results do not support the existing model of stress relaxation induced growth of nanowires. Based on the detailed Transmission Electron Microscope, Scanning Electron Microscope, and EDXRD results, a microstructure based growth model has been suggested.

  10. Generation of high-quality parabolic pulses with optimized duration and energy by use of dispersive frequency-to-time mapping.

    Science.gov (United States)

    Huh, Jeonghyun; Azaña, José

    2015-10-19

    We propose and demonstrate a novel linear-optics method for high-fidelity parabolic pulse generation with durations ranging from the picosecond to the sub-nanosecond range. This method is based on dispersion-induced frequency-to-time mapping combined with spectral shaping in order to overcome constraints of previous linear shaping approaches. Temporal waveform distortions associated with the need to satisfy a far-field condition are eliminated by use of a virtual time-lens process, which is directly implemented in the linear spectral shaping stage. Using this approach, the generated parabolic pulses are able to maintain most energy spectrum available from the input pulse frequency bandwidth, regardless of the target pulse duration, which is not anymore limited by the finest spectral resolution of the optical pulse spectrum shaper. High-quality parabolic pulses, with durations from 25ps to 400ps and output powers exceeding 4dBm before amplification, have been experimentally synthesized from a picosecond mode-locked optical source using a commercial optical pulse shaper with a frequency resolution >10GHz. In particular, we report the synthesis of full-duty cycle parabolic pulses that match up almost exactly with an ideal fitting over the entire pulse period.

  11. A case of hut lung: scanning electron microscopy with energy dispersive x-ray spectroscopy analysis of a domestically acquired form of pneumoconiosis.

    Science.gov (United States)

    Mukhopadhyay, Sanjay; Gujral, Manmeet; Abraham, Jerrold L; Scalzetti, Ernest M; Iannuzzi, Michael C

    2013-07-01

    Hut lung is a pneumoconiosis caused by exposure to smoke derived from biomass fuels used for cooking in poorly ventilated huts. We report, to our knowledge, the first analysis of the dust deposited in the lungs in hut lung by scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDS). A Bhutanese woman presented with shortness of breath and an abnormal chest radiograph. Chest CT scan showed innumerable tiny bilateral upper lobe centrilobular nodules. Transbronchial biopsy revealed mild interstitial fibrosis with heavy interstitial deposition of black dust. SEM/EDS showed that the dust was carbonaceous, with smaller yet substantial numbers of silica and silicate particles. Additional history revealed use of a wood/coal-fueled stove in a small, poorly ventilated hut for 45 years. The possibility of hut lung should be considered in women from countries where use of biomass-fueled stoves for cooking is common. Our findings support the classification of this condition as a mixed-dust pneumoconiosis.

  12. Analysis of agricultural soils by using energy dispersive X-ray fluorescence; Analise de solos agricolas por fluorescencia de raios-X por dispersao de energia

    Energy Technology Data Exchange (ETDEWEB)

    Anjos, Marcelino Jose dos

    2000-03-01

    In this work, we describe an Energy Dispersive x-ray Fluorescence System with a x-ray tube excitation for trace analysis of environmental samples (soil). The system was used to analyze the contamination of metals in treated soils with doses of 10, 20 and 30 ton/ha of compound organic of urban garbage of the type Fertilurb and 10 ton/ha of aviary bed (manure of birds). Samples of roots and foliages of plant radishes cultivated in these soils were also analyzed. The soil samples were collected in five different depths of 0,5, 5-10, 10-20, 20-40 and 40-60 cm. The experimental set-up is composed by an OXFORD X-ray (30 kV, 50 {mu}A and W anode), an ORTEC Si-Li detector, with an energy resolution of about 180 eV at 5.9 keV and an ORTEC multichannel-analyser. The X-ray spectrum tube is quasi-monochromatic by using of Ti filter. Samples were prepared in pellet form with superficial density in the range of 100 mg/cm{sup 2}. The fundamental parameter method was used in order to verify the elemental concentration. It was possible to determine the concentrations of thirteen elements: K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr, Y, Zr and Pb in the treated soils with compounds organic. The results indicate that the values found for K, Ca, Rb, Sr, Zr and Pb are significantly above the upper confidence limits for the control soil ({alpha} = 0.05). There is a real different between these elements compared to their relationship in the control soils, ({alpha}=0,05). There is a real difference between these elements compared to their relationship in the control soils, confirming the influence of the organic compounds in the soil. (author)

  13. Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence characterizations of nuclear materials

    Indian Academy of Sciences (India)

    N L Misra

    2011-02-01

    Nuclear energy is one of the clean options of electricity generation for the betterment of human life. India has an ambitious program for such electricity generation using different types of nuclear reactors. The safe and efficient generation of electricity from these reactors requires quality control of different nuclear materials, e.g. nuclear fuel, structural materials, coolant, moderators etc. These nuclear materials have to undergo strict quality control and should have different specified parameters for their use in nuclear reactors. The concentration of major and trace elements present in these materials should be within specified limits. For such chemical quality control of these materials, major and trace elemental analytical techniques are required. Since some of these materials are radioactive, the ideal chemical characterization techniques should have multielement analytical capability, should require very less sample (micrograms level) for analysis so that the radioactive waste generated, and radiation exposure to the detector and operator are minimum. Total reflection X-ray fluorescence (TXRF) and energy dispersive X-ray fluorescence (EDXRF) with improved features, e.g. application of filters, secondary target and instrumental geometry require very small amount of sample and thus can be suitably used for the characterization of nuclear materials mainly for the determination of elements at trace and major concentration levels. In Fuel Chemistry Division, TXRF analytical methods have been developed for trace element determinations in uranium and thorium oxides, chlorine determination in nuclear fuel and cladding materials, sulphur in uranium, uranium in sea water etc. Similarly, EDXRF analytical methods with radiation filters (to reduce background) and improved sample preapartion techniques, e.g. fusion bead and taking samples in the form of solution on filter papers have been used for developing analytical methods for the determination of U

  14. Remineralization effect of casein phosphopeptide-amorphous calcium phosphate on enamel white spot lesions. A quantitative energy dispersive X ray elemental analysis: An in vitro study

    Directory of Open Access Journals (Sweden)

    Fabrizio Guerra

    2014-06-01

    Full Text Available Background: The objective of this study was to evaluate, by means of elemental analysis the mineral density, calcium, and phosphorus weight percent of sound enamel, demineralized and CPP-ACP treated enamel. Elemental analysis allows elemental and isotopic composition of a biologic sample. It can be qualitative (determining what elements are present, and quantitative (determining how much of each are present. INCA Energy 250, Oxford Analytical Instruments Ltd. (UK, energy-dispersive X-ray spectroscopy system for elemental analysis was performed on random assigned samples. Methods: 12 sound premolars were extracted for orthodontic reason. Each tooth was sectioned by using a double-faced diamond microtome under water cooling into three section for a total of 36 samples and randomly assigned to three groups: Group 1 (control, Group 2 (WS: white spot , Group 3 (WST white spot treated of 12 samples each. Samples (Group 2 and Group 3 underwent equally to 24 h and 48 h of acid bath duration. Then all the treated samples (Group 3 were coated with CPP-ACP for 5 min before immersion into water twice a day. Group 2 served as control for enamel damage evaluation. Inca Point & ID, an analytic platform software for SEM was used for elemental analysis on samples from Group 1 (C, 2 (WS and Group 3 (WST in order to determine the weight % and atomic % presence of Ca and P. Results: The results of the samples analysis from the three Groups show different weight % and atomic% of Ca and P, and clearly reflect the different mineralization rates. Conclusions: 10% Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP complex, promotes remineralization in vitro. The results of this in vitro study completely agree with this statement. Clinical studies to investigate the intraoral effectiveness of topical applications of CPP-ACP on white spot lesions are required to confirm these results.

  15. Random Phases and Energy Dispersion

    Institute of Scientific and Technical Information of China (English)

    刘全慧; 刘天贵; 班卫全

    2003-01-01

    Using 2N + 1 successive stationary states centred at nth, we construct a rectangular wavepacket in which the stationary states are superimposed with the equal weight √2N + 1. With the requirement of the wavepacket to be a quasi-classical state, the number N is determined by minimizing the uncertainty △x△p. Since the stationary state can only be determined to within an arbitrary multiplicative complex phase factor of unit magnitude, a number of N is obtained as a set of the phases are given. For a harmonic oscillator, when all of the phase factors are essentially the same, we have N ≈ [61/3n2/3] with [x] signifying the integral part of positive number x. When every phase in the phase factors is given by a random number generated in a closed interval [0, 2π] and when n ≥ 10, the probability of appearance of N is roughly 1/2N when N = 1 to 7, and does not exceed 0.01 whenN ≥ 8.

  16. Count rate performance of a silicon-strip detector for photon-counting spectral CT

    Science.gov (United States)

    Liu, X.; Grönberg, F.; Sjölin, M.; Karlsson, S.; Danielsson, M.

    2016-08-01

    A silicon-strip detector is developed for spectral computed tomography. The detector operates in photon-counting mode and allows pulse-height discrimination with 8 adjustable energy bins. In this work, we evaluate the count-rate performance of the detector in a clinical CT environment. The output counts of the detector are measured for x-ray tube currents up to 500 mA at 120 kV tube voltage, which produces a maximum photon flux of 485 Mphotons/s/mm2 for the unattenuated beam. The corresponding maximum count-rate loss of the detector is around 30% and there are no saturation effects. A near linear relationship between the input and output count rates can be observed up to 90 Mcps/mm2, at which point only 3% of the input counts are lost. This means that the loss in the diagnostically relevant count-rate region is negligible. A semi-nonparalyzable dead-time model is used to describe the count-rate performance of the detector, which shows a good agreement with the measured data. The nonparalyzable dead time τn for 150 evaluated detector elements is estimated to be 20.2±5.2 ns.

  17. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Cesareo, Roberto; Ettore Gigante, Giovanni; Castellano, Alfredo

    1999-06-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd{sub 1-x}Zn{sub x}Te and HgI{sub 2}, coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 {mu}m, an area of about 2x3 mm{sup 2}, an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 {mu}m. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching {approx}9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd{sub 1-x}Zn{sub x}Te detector has an area of 4 mm{sup 2} and a thickness of 3 mm. It has an energy resolution of about 300 eV at 5.9 keV, and an efficiency of 100% over the whole range of X-rays. Finally the HgI{sub 2} detector has an efficiency of about 100% in the whole range of X-rays, and an energy resolution of about 200 eV at 5.9 keV. Coupled to a small 50-60 kV, 1 mA, W-anode X-ray tube, portable systems can be constructed, for the analysis of practically all elements. These systems were applied to analysis in the field of archaeometry and in all applications for which portable systems are needed or at least useful (for example X-ray transmission measurements, X-ray microtomography and so on). Results of in-field use of these detectors and a comparison among these room temperature detectors in relation to concrete applications are presented. More specifically, concerning EDXRF analysis, ancient gold samples were analysed in Rome, in Mexico City and in Milan, ancient bronzes in Sassari, in Bologna, in

  18. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    Science.gov (United States)

    Cesareo, Roberto; Ettore Gigante, Giovanni; Castellano, Alfredo

    1999-06-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd1-xZnxTe and HgI 2, coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 μm, an area of about 2×3 mm 2, an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 μm. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching ˜9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd 1- xZn xTe detector has an area of 4 mm 2 and a thickness of 3 mm. It has an energy resolution of about 300 eV at 5.9 keV, and an efficiency of 100% over the whole range of X-rays. Finally the HgI 2 detector has an efficiency of about 100% in the whole range of X-rays, and an energy resolution of about 200 eV at 5.9 keV. Coupled to a small 50-60 kV, 1 mA, W-anode X-ray tube, portable systems can be constructed, for the analysis of practically all elements. These systems were applied to analysis in the field of archaeometry and in all applications for which portable systems are needed or at least useful (for example X-ray transmission measurements, X-ray microtomography and so on). Results of in-field use of these detectors and a comparison among these room temperature detectors in relation to concrete applications are presented. More specifically, concerning EDXRF analysis, ancient gold samples were analysed in Rome, in Mexico City and in Milan, ancient bronzes in Sassari, in Bologna, in Chieti and in Naples, and sulfur (due to pollution

  19. The right to count does not always count

    DEFF Research Database (Denmark)

    Sodemann, Morten

    2013-01-01

    The best prescription against illness is learning to read and to count. People who are unable to count have a harder time learning to read. People who have difficulty counting make poorer decisions, are less able to combine information and are less likely to have a strategy for life...

  20. Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches.

    Science.gov (United States)

    Kaniu, M I; Angeyo, K H; Mwala, A K; Mwangi, F K

    2012-08-30

    Soil quality assessment (SQA) calls for rapid, simple and affordable but accurate analysis of soil quality indicators (SQIs). Routine methods of soil analysis are tedious and expensive. Energy dispersive X-ray fluorescence and scattering (EDXRFS) spectrometry in conjunction with chemometrics is a potentially powerful method for rapid SQA. In this study, a 25 m Ci (109)Cd isotope source XRF spectrometer was used to realize EDXRFS spectrometry of soils. Glycerol (a simulate of "organic" soil solution) and kaolin (a model clay soil) doped with soil micro (Fe, Cu, Zn) and macro (NO(3)(-), SO(4)(2-), H(2)PO(4)(-)) nutrients were used to train multivariate chemometric calibration models for direct (non-invasive) analysis of SQIs based on partial least squares (PLS) and artificial neural networks (ANN). The techniques were compared for each SQI with respect to speed, robustness, correction ability for matrix effects, and resolution of spectral overlap. The method was then applied to perform direct rapid analysis of SQIs in field soils. A one-way ANOVA test showed no statistical difference at 95% confidence interval between PLS and ANN results compared to reference soil nutrients. PLS was more accurate analyzing C, N, Na, P and Zn (R(2)>0.9) and low SEP of (0.05%, 0.01%, 0.01%, and 1.98 μg g(-1)respectively), while ANN was better suited for analysis of Mg, Cu and Fe (R(2)>0.9 and SEP of 0.08%, 4.02 μg g(-1), and 0.88 μg g(-1) respectively).

  1. Assessment of Ca and P content variation in enamel during an eight-week bleaching protocol using energy dispersive X-ray fluorescence

    Science.gov (United States)

    Sorozini, M.; Dos Santos, R. S.; Silva, E. M.; Dos Anjos, M. J.; Perez, C. R.

    2017-05-01

    Tooth bleaching is a simple technique performed with gels based on hydrogen peroxide molecules responsible for removing the tooth structure's pigmentation. The effects of the overuse of these agents on the tooth structure are not well established. Energy dispersive X-ray fluorescence (EDXRF) can be employed to analyze objects of biological origin as bone and tooth. It is very suitable analytical technique to detect demineralization processes in these tissues. The objective of this study was to use x-ray fluorescence to evaluate the effects on mineral content of enamel submitted to eight-week protocols of home bleaching gels (10% carbamide peroxide and 9.5% hydrogen peroxide), as well as bleaching strips. Four enamel fragments obtained from five teeth were subjected to bleaching for 8 weeks: Group 1- artificial saliva; Group 2-10% carbamide peroxide gel, 6 h daily; Group 3-9.5% hydrogen peroxide gel, two 30-minute applications; and Group 4-bleaching strips, twice daily for 30 min. The change in mineral content was assessed weekly using X-ray fluorescence (Artax 200). Differences were basically found in Group 4 for the concentrations of Ca and P after treatment with bleaching strips containing 10% hydrogen peroxide. For the Ca/P ratio, the differences were found in Group 2-15% carbamide peroxide (p < 0.05). X-ray fluorescence proved to be a suitable method for the evaluation of the mineral content, presenting the advantage of being able to evaluate the same area at different stages of the methodology.

  2. Use of X-ray fluorescence energy dispersive technique in the lead determination and other metals in excrements of otters (Lontra longicaudis)

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Liz Mary B.; Silva, Richard M.C.; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: lizmaryb@cena.usp.br; Ferreira, Carla Josef; Adriano, Leonardo R.; Ferreira, Jose Roberto [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Ecotoxicologia

    2005-07-01

    This work had for objective to evaluate the contamination for Pb and other metals (Ti, Mn, Fe, Ni, Cu and Zn) in excrement samples of a neotropical otter population specie, found in river Betari, Alto Vale do Ribeira basin, Southeast Sao Paulo State. This river is a tributary of the Ribeira de Iguape river and part of its passage meets inside of the Parque Estadual Turistico do Alto Ribeira, one of the most conserved area of Brazilian Atlantic Forest. As the diet of these animals is based in fishes, it is an environmental interest in the determination of Pb in its excrements, since that is accumulating on the tropical chain path and in this region (in the decade of 1970) had the implanted a Pb extraction from galena mining. The analysis of the samples requires frequently the chemical digestion, with the disadvantages of being weak and expense. Aiming at to eliminate these disadvantages, the objective of the work was to use the X-ray fluorescence energy dispersive technique (EDXRF), for demanding a minimum preparation of the sample. Six excrement samples had been frozen, lyophilized and cryogenically milled, and after analyzed as pellet form, using a X-ray tube (target Mo, Zr filter, 25 kV/10 mA) and Si(Li) semiconductor spectrometer. The concentration was varied from 5.0 to 15.4 {mu}g g{sup -1} and it was possible also quantified other metals, showing maximum concentrations: Ti - 308, Mn - 38, Fe - 1131, Ni - 44, Cu . 2.8 and Zn . 92.4 {mu}g g{sup -1}. (author)

  3. Effect of foliar spray from seaweed liquid fertilizer of Ulva reticulata (Forsk.) on Vigna mungo L. and their elemental composition using SEM- energy dispersive spectroscopic analysis

    Institute of Scientific and Technical Information of China (English)

    G Ganapathy Selvam; K Sivakumar

    2013-01-01

    Objective: To identify the effect of seaweed liquied fertilizer (SLF) of Ulva reticulata, as biochemical characteristics of Vigna mungo as well as leaf morphometric analysis such as epidermal and stomata cell variation and distribution of minerals in the leaf. Methods:Experiments were conducted on black gram to study the potential green alga of Ulva reticulata as a biofertilizer. The seeds were sown in soil and SLF were added to soil bed in five different concentrations separately (1%, 2%, 4%, 6% and 8% w/v). Results: Seaweed extract was applied as a foliar spray, the SLF treated plants show maximum growth in 2% of SLF among the various experimental concentrations as well as control. Biochemical profiles like chlorophyll a and b, protein, sugar and starch were found to be higher at 2%. A significant increase in the number of epidermal and stomata cells were observed in 2% SLF treated plants. Whereas at higher concentrations of SLF such as 4%, 6%, and 8% the values of all the parameters were significantly decreased than in the control group. Further the leaf of 2% SLF treated V. mungo have subjected to Scanning Electron Microscopy with Energy Dispersive Spectroscopic analysis it reveals that thepresence of ten elements in the following order: Ca>P>N>Na>K>Mg>Mn>S>Fe>Zn in treated and Ca>N>P>Na>Mg>Mn>K>Zn>S>Fe in control plant. The data generated from study reveal that SLF of U. reticulatea could be used as foliar spray at low concentration of 2% to maximize the growth and yield of V. mungo and also increase the number of stomata in the leaf. Conclusion:The main objective of study result would be the manorial requirement for organic forming and serve as a cost effective ecofriendliness for sustainable agriculture and environment.

  4. Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Daniel; Davis, Richard L.; Crawford, Judith A.; Abraham, Jerrold L. (Dept. of Pathology, SUNY Upstate Medical Univ., Syracuse, NY (United States)), e-mail: abrahamj@upstate.edu

    2010-12-15

    Background: Gadolinium (Gd)-containing MRI contrast agents (GdCA) are widely used in studies of brain tumors, and a number of reports suggest that under certain conditions, such as renal failure, Gd may be released from GdCA into patient's tissues. Whether this may happen in abnormal tissues in the absence of renal failure has not been studied. Purpose: To test the hypothesis that the local retention of GdCA resulting from brain tumor-associated alterations in the blood-brain barrier (BBB) may result in the deposition of Gd released from the GdCA, depending on stability. Material and Methods: In this retrospective study, 30 selected brain tumor biopsies from 28 patients (taken before and after an institutional switch from a less stable to an intermediate stable GdCA) were searched for Gd-containing deposits using scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Relevant histories and laboratory results were obtained through institutional electronic records. Associations between the presence of deposits and other variables were tested for statistical significance using the two-tailed Fisher's exact test. Results: Insoluble deposits containing Gd associated with phosphorus and calcium were found in seven biopsies from five patients. These deposits were found in patients with estimated GFRs above 53 ml/min, and were detected more often in those receiving GdCA before the switch from a less stable to an intermediate stable GdCA (P = 0.04), and may be more frequent in patients receiving more than one contrast-enhanced MR scan (P = 0.15). Conclusion: Gd-containing deposits are present in brain tumors following contrast-enhanced MR scans in patients without severe renal disease. Further studies are needed to assess the clinical importance of the deposits we observed and to determine whether they are also found in other conditions that alter the integrity of the BBB

  5. Adsorption of N/S heterocycles in the flexible metal-organic framework MIL-53(Fe(III)) studied by in situ energy dispersive X-ray diffraction.

    Science.gov (United States)

    Van de Voorde, Ben; Munn, Alexis S; Guillou, Nathalie; Millange, Franck; De Vos, Dirk E; Walton, Richard I

    2013-06-14

    The adsorption of N/S-containing heterocyclic organic molecules in the flexible iron(III) terephthalate MIL-53, Fe(III)(OH)(0.6)F(0.4)(O2C-C6H4-CO2)·(H2O), from the liquid phase was studied with in situ energy dispersive X-ray diffraction (EDXRD), in order to follow the adsorption-induced expansion of the structure. For comparison with the diffraction data, liquid phase adsorption isotherms were recorded for uptake of benzothiophene, benzothiazole and indole in isopropanol and in heptane. The solvent not only influences pore opening but is also a competing guest. The in situ EDXRD experiments allow the kinetics of guest uptake and the competition with solvent to be monitored directly. Indole uptake is limited; this adsorbate is barely capable of opening the closed, either hydrated or dehydrated, MIL-53(Fe) structure, or of penetrating the isopropanol-containing material in the concentration range under study. When isopropanol is used as a solvent, the guest molecules benzothiophene and benzothiazole must be present at a certain threshold concentration before substantial adsorption into the metal-organic framework takes place, eventually resulting in full opening of the structure. The fully expanded structures of benzothiophene or benzothiazole loaded MIL-53(Fe) materials have Imcm symmetry and a unit cell volume of ca. 1600 Å(3), and upon uptake of the guest molecules by the closed form (unit cell volume ~1000 Å(3)) no intermediate crystalline phases are seen. Successful uptake by MIL-53(Fe) requires that the adsorbate is primarily a good hydrogen bond acceptor; additionally, based on UV-visible spectroscopy, a charge-transfer interaction between the S atoms of benzothiophene and the aromatic rings in the MOF pore wall is proposed.

  6. Quantitative determinations and imaging in different structures of buried human bones from the XVIII-XIXth centuries by energy dispersive X-ray fluorescence - Postmortem evaluation.

    Science.gov (United States)

    Guimarães, D; Dias, A A; Carvalho, M; Carvalho, M L; Santos, J P; Henriques, F R; Curate, F; Pessanha, S

    2016-08-01

    In this work, a non-commercial triaxial geometry energy dispersive X-ray Fluorescence (EDXRF) setup and a benchtop µ-XRF system were used to identify postmortem contamination in buried bones. For two of the individuals, unusually high concentrations of Cu and Pb, but also Zn (in one individual) were observed. The pigments of the burial shroud coverings have been identified as the source of contamination. Accurate and precise quantitative results were obtained by nondestructive process using fundamental parameters method taking into account the matrix absorption effects. A total of 30 bones from 13 individuals, buried between the mid-XVIIIth to early XIXth centuries, were analyzed to study the elemental composition and elemental distribution. The bones were collected from a church in Almada (Portugal), called Ermida do Espírito Santo, located near the Tagus River and at the sea neighbourhood. The triaxial geometry setup was used to quantify Ca, Fe, Cu, Zn, Br, Sr and Pb of powder pressed bone pellets (n=9 for each bone). Cluster analysis was performed considering the elemental concentrations for the different bones. There was a clear association between some bones regarding Fe, Cu, Zn, Br and Pb content but not a categorization between cortical and trabecular bones. The elemental distribution of Cu, Zn and Pb were assessed by the benchtop μ-analysis, the M4 Tornado, based on a polycapillary system which provides multi-elemental 2D maps. The results showed that contamination was mostly on the surface of the bone confirming that it was related to the burial shroud covering the individuals.

  7. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    Science.gov (United States)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  8. A rapid and multi-element method for the analysis of major nutrients in grass (Lolium perenne using energy-dispersive X-ray fluorescence spectroscopy

    Directory of Open Access Journals (Sweden)

    Daly K.

    2017-04-01

    Full Text Available Elemental analysis of grass (Lolium perenne is essential in agriculture to ensure grass quality and animal health. Energy-dispersive X-ray fluorescence (EDXRF spectroscopy is a rapid, multi-element alternative to current methods using acid digestion and inductively coupled plasma optical emission spectrometry (ICP-OES. Percentage phosphorus (P, potassium (K, magnesium (Mg and calcium (Ca, determined from grass samples using EDXRF, were within 0.035, 0.319, 0.025 and 0.061, respectively, of ICP-OES values. Concordance correlation coefficients computed using agreement statistics ranged from 0.4379 to 0.9669 (values close to one indicate excellent agreement; however, the level of agreement for each element depended on the calibrations used in EDXRF. Empirical calibrations gave excellent agreement for percentage P, K and Ca, but moderate agreement for percentage Mg due to a weaker correlation between standards and intensities. Standardless calibration using the fundamental parameters (FP approach exhibited bias, with consistently lower values reported for percentage P and Mg, when compared with ICP-OES methods. The relationship between the methods was plotted as scatter plots with the line of equality included, and although correlation coefficients indicated strong relationships, these statistics masked the effects of consistent bias in the data for percentage P and Mg. These results highlight the importance of distinguishing agreement from correlation when using statistical methods to compare methods of analysis. Agreement estimates improved when a matching library of grass samples was added to the FP method. EDXRF is a comparable alternative to conventional methods for grass analysis when samples of similar matrix type are used as empirical standards or as a matching library.

  9. Carbohydrate Counting and Diabetes

    Science.gov (United States)

    ... as cakes, cookies, candy, and other desserts juices, soft drinks, fruit drinks, sports drinks, and energy drinks that ... of added sugars for Americans are sugar-sweetened soft drinks, fruit drinks, sports drinks, and energy drinks grain- ...

  10. Hyperspectral Imaging at the Micro- and Nanoscale using Energy-dispersive Spectroscopy (EDS) with Silicon Drift Detector (SDD) and EBSD Analysis

    Science.gov (United States)

    Salge, T.; Goran, D.

    2010-12-01

    SDD systems have become state of the art technology in the field of EDS. The main characteristic of the SDDs is their extremely high pulse load capacity of up to 750,000 counts per second at good energy resolution (processing allows not only high speed mapping but also hyperspectral analysis. Here, a database is created that contains an EDS spectrum and/or EBSD pattern for each pixel of the SEM image setting the stage for innovative analysis options: The Maximum Pixel Spectrum function [1] synthesizes a spectrum out of the EDS database, consisting of the highest count level found in each spectrum channel. Here, (trace) elements which occur in only one pixel can be detected qualitatively. Areas of similar EDS composition can be made visible with Autophase, a spectroscopic phase detection system. In cases where the crystallographic phase assessment by EBSD is problematic due to pattern similarity, the EDS signal can be used as additional information for phase separation. This paper presents geoscience applications with the QUANTAX system with EDS SDD and EBSD detector using the options described above: (1) Drill core analysis of a Chicxulub impact ejecta sequence from the K/Pg boundary at ODP leg 207 [2] using fast, high resolution element maps. (2) Detection of monazite in granite by the Maximum Pixel Spectrum function. (3) Distribution of elements with overlapping peaks by deconvolution at the example of rare earth elements in zoned monazite. (4) Spectroscopic phase analysis of a sulfate-carbonate-dominated impact matrix at borehole UNAM-7 from the Chicxulub impact crater [3]. (5) EBSD studies with examples of iron meteorites and impact-induced, recrystallized carbonate melts [4]. In addition, continuing technological advances require the elemental analysis of increasingly smaller structures in many fields, including geosciences. It will be demonstrated that using low accelerating voltages, the element distribution of structures at the nanoscale in bulk samples can

  11. CalCOFI Egg Counts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fish egg counts and standardized counts for eggs captured in CalCOFI icthyoplankton nets (primarily vertical [Calvet or Pairovet], oblique [bongo or ring nets], and...

  12. High Red Blood Cell Count

    Science.gov (United States)

    Symptoms High red blood cell count By Mayo Clinic Staff A high red blood cell count is an increase in oxygen-carrying cells in your bloodstream. Red blood cells transport oxygen from your lungs to tissues throughout ...

  13. Counting and Topological Order

    Institute of Scientific and Technical Information of China (English)

    陈阳军

    1997-01-01

    The counting method is a simple and efficient method for processing linear recursive datalog queries.Its time complexity is bounded by O(n,e)where n and e denote the numbers the numbers of nodes and edges,respectively,in the graph representing the input.relations.In this paper,the concepts of heritage appearance function and heritage selection function are introduced,and an evaluation algorithm based on the computation of such functions in topological order is developed .This new algorithm requires only linear time in the case of non-cyclic data.

  14. Departures from the Energy-Biodiversity Relationship in South African Passerines: Are the Legacies of Past Climates Mediated by Behavioral Constraints on Dispersal?: e0133992

    National Research Council Canada - National Science Library

    Guillaume Péron; Res Altwegg

    2015-01-01

    ... of geographical or physical constraints. If paleoclimatic legacies also occurred at the regional scale in the distributions of vagile organisms within biomes, they would rather suggest behavioral constraints on dispersal, i.e...

  15. Departures from the Energy-Biodiversity Relationship in South African Passerines: Are the Legacies of Past Climates Mediated by Behavioral Constraints on Dispersal?

    National Research Council Canada - National Science Library

    Péron, Guillaume; Altwegg, Res

    2015-01-01

    ... of geographical or physical constraints. If paleoclimatic legacies also occurred at the regional scale in the distributions of vagile organisms within biomes, they would rather suggest behavioral constraints on dispersal, i.e...

  16. Laboratory effectiveness testing of oil spill dispersants

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.F.; Kyle, D.A.; Wang, Z.; Handfield, D.; Ianuzzi, D.; Ackerman, F. [Environment Canada, Ottawa, Ontario (Canada)

    1995-06-01

    Dispersant effectiveness tests are reviewed. Studies have been conducted of the variances among several standard regulatory tests. Three main causes of differences have been identified, oil-to-water ratio, settling time and energy. Energy can be partially compensated for in high energy tests by correcting for natural dispersion. With this correction and with high oil-to-water ratios and a settling time of at least 10 minutes, five apparatuses yield very similar results for a variety of oils and dispersants. Recent studies into the energy variation of dispersant tests show that the energy level varies in many apparatuses. The repeatability of energy levels in apparatus is largely responsible for the variation in dispersant effectiveness values in certain apparatus. Studies of analytical procedures show that traditional extraction and analysis methods cause a bias to results. Methods to overcome these difficulties are presented.

  17. Composition variations in Cu{sub 2}ZnSnSe{sub 4} thin films analyzed by X-ray diffraction, energy dispersive X-ray spectroscopy, particle induced X-ray emission, photoluminescence, and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Dahyun [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of); Opanasyuk, A.S.; Koval, P.V.; Ponomarev, A.G. [Department of Electronics and Computer Technology, Sumy State University, Sumy UA-40007 (Ukraine); Jeong, Ah Reum; Kim, Gee Yeong; Jo, William [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Cheong, Hyeonsik, E-mail: hcheong@sogang.ac.kr [Department of Physics, Sogang University, Seoul 121-742 (Korea, Republic of)

    2014-07-01

    Compositional and structural studies of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) thin films were carried out by X-ray diffraction, energy dispersive X-ray spectroscopy (EDS), particle induced X-ray emission (PIXE), photoluminescence, and Raman spectroscopy. CZTSe thin films with different compositions were deposited on sodalime glass by co-evaporation. The composition of the films measured by two different methods, EDS and PIXE, showed significant differences. Generally, the Zn/Sn ratio measured by EDS is larger than that measured by PIXE. Both the micro-PIXE and the micro-Raman imaging results indicated the compositional and structural inhomogeneity of the sample. - Highlights: • Particle induced X-ray emission was used to analyze the composition of CZTSe films. • Energy dispersive X-ray spectroscopy tends to underestimate the Sn composition. • Local Raman intensity is related with the composition rather than the crystallinity.

  18. CERN_DxCTA counting mode chip

    CERN Document Server

    Moraes, D; Nygård, E

    2008-01-01

    This ASIC is a counting mode front-end electronic optimized for the readout of CdZnTe/CdTe and silicon sensors, for possible use in applications where the flux of ionizing radiation is high. The chip is implemented in 0.25 μm CMOS technology. The circuit comprises 128 channels equipped with a transimpedance amplifier followed by a gain shaper stage with 21 ns peaking time, two discriminators and two 18-bit counters. The channel architecture is optimized for the detector characteristics in order to achieve the best energy resolution at counting rates of up to 5 M counts/second. The amplifier shows a linear sensitivity of 118 mV/fC and an equivalent noise charge of about 711 e−, for a detector capacitance of 5 pF. Complete evaluation of the circuit is presented using electronic pulses and pixel detectors.

  19. Total lymphocyte count and subpopulation lymphocyte counts in relation to dietary intake and nutritional status of peritoneal dialysis patients.

    Science.gov (United States)

    Grzegorzewska, Alicja E; Leander, Magdalena

    2005-01-01

    Dietary deficiency causes abnormalities in circulating lymphocyte counts. For the present paper, we evaluated correlations between total and subpopulation lymphocyte counts (TLC, SLCs) and parameters of nutrition in peritoneal dialysis (PD) patients. Studies were carried out in 55 patients treated with PD for 22.2 +/- 11.4 months. Parameters of nutritional status included total body mass, lean body mass (LBM), body mass index (BMI), and laboratory indices [total protein, albumin, iron, ferritin, and total iron binding capacity (TIBC)]. The SLCs were evaluated using flow cytometry. Positive correlations were seen between TLC and dietary intake of niacin; TLC and CD8 and CD16+56 counts and energy delivered from protein; CD4 count and beta-carotene and monounsaturated fatty acids 17:1 intake; and CD19 count and potassium, copper, vitamin A, and beta-carotene intake. Anorexia negatively influenced CD19 count. Serum albumin showed correlations with CD4 and CD19 counts, and LBM with CD19 count. A higher CD19 count was connected with a higher red blood cell count, hemoglobin, and hematocrit. Correlations were observed between TIBC and TLC and CD3 and CD8 counts, and between serum Fe and TLC and CD3 and CD4 counts. Patients with a higher CD19 count showed a better clinical-laboratory score, especially less weakness. Patients with a higher CD4 count had less expressed insomnia. Quantities of ingested vitamins and minerals influence lymphocyte counts in the peripheral blood of PD patients. Evaluation of TLC and SLCs is helpful in monitoring the effectiveness of nutrition in these patients.

  20. Application Of Some Chemometric Methods To Energy Dispersive X-ray Fluorescence Spectrometry [aplicação De Alguns Modelos Quimiométricos à Espectroscopia De Fluorescência De Raios-x De Energia Dispersiva

    OpenAIRE

    Schimidt F.; Bueno M.I.M.S.; Poppi R.J.

    2002-01-01

    The objective of this work was to accomplish the simultaneous determination of some chemical elements by Energy Dispersive X-ray Fluorescence (EDXRF) Spectroscopy through multivariate calibration in several sample types. The multivariate calibration models were: Back Propagation neural network, Levemberg-Marquardt neural network and Radial Basis Function neural network, fuzzy modeling and Partial Least Squares Regression. The samples were soil standards, plant standards, and mixtures of lead ...

  1. Photon-counting spaceborne altimeter simulator

    Science.gov (United States)

    Blazej, Josef

    2004-11-01

    We are presenting of a photon counting laser altimeter simulator. The simulator is designed to be a theoretical and numerical complement for a Technology Demonstrator of the space born laser altimeter for planetary studies built on our university. The European Space Agency has nominated the photon counting altimeter as one of the attractive devices for planetary research. The device should provide altimetry in the range 400 to 1400 km with one meter range resolution under rough conditions - Sun illumination, radiation, etc. The general altimeter concept expects the photon counting principle laser radar. According to this concept, the simulator is based on photon counting radar simulation, which has been enhanced to handle planetary surface roughness, vertical terrain profile and its reflectivity. The simulator is useful complement for any photon counting altimeter both for altimeter design and for measured data analysis. Our simulator enables to model the orbital motion, range, terrain profile, reflectivity, and their influence on the over all energy budget and the ultimate signal to noise ratio acceptable for the altimetry. The simulator can be adopted for various air or space born application.

  2. Counting coalescent histories.

    Science.gov (United States)

    Rosenberg, Noah A

    2007-04-01

    Given a species tree and a gene tree, a valid coalescent history is a list of the branches of the species tree on which coalescences in the gene tree take place. I develop a recursion for the number of valid coalescent histories that exist for an arbitrary gene tree/species tree pair, when one gene lineage is studied per species. The result is obtained by defining a concept of m-extended coalescent histories, enumerating and counting these histories, and taking the special case of m = 1. As a sum over valid coalescent histories appears in a formula for the probability that a random gene tree evolving along the branches of a fixed species tree has a specified labeled topology, the enumeration of valid coalescent histories can considerably reduce the effort required for evaluating this formula.

  3. Oscillations in counting statistics

    CERN Document Server

    Wilk, Grzegorz

    2016-01-01

    The very large transverse momenta and large multiplicities available in present LHC experiments on pp collisions allow a much closer look at the corresponding distributions. Some time ago we discussed a possible physical meaning of apparent log-periodic oscillations showing up in p_T distributions (suggesting that the exponent of the observed power-like behavior is complex). In this talk we concentrate on another example of oscillations, this time connected with multiplicity distributions P(N). We argue that some combinations of the experimentally measured values of P(N) (satisfying the recurrence relations used in the description of cascade-stochastic processes in quantum optics) exhibit distinct oscillatory behavior, not observed in the usual Negative Binomial Distributions used to fit data. These oscillations provide yet another example of oscillations seen in counting statistics in many different, apparently very disparate branches of physics further demonstrating the universality of this phenomenon.

  4. Assessment of the effects of laser photobiomodulation on peri-implant bone repair through energy dispersive x-ray fluorescence: A study of dogs

    Science.gov (United States)

    Menezes, R. F.; Araújo, N. C.; Carneiro, V. S. M.; Moreno, L. M.; Guerra, L. A. P.; Santos Neto, A. P.; Gerbi, M. E. M.

    2016-03-01

    Bone neoformation is essential in the osteointegration of implants and has been correlated with the repair capacity of tissues, the blood supply and the function of the cells involved. Laser therapy accelerates the mechanical imbrication of peri-implant tissue by increasing osteoblastic activity and inducing ATP, osteopontin and the expression of sialoproteins. Objective: The aim of the present study was to assess peri-implant bone repair using the tibia of dogs that received dental implants and laser irradiation (AsGaAl 830nm - 40mW, CW, f~0.3mm) through Energy Dispersive X-ray Fluorescence (EDXRF). Methodology: Two groups were established: G1 (Control, n=20; two dental implants were made in the tibia of each animal; 10 animals); G2 (Experimental, n=20, two dental implants were made in the tibia each animal + Laser therapy; 10 animals). G2 was irradiated every 48 hours for two weeks, with a total of seven sessions. The first irradiation was conducted during the surgery, at which time a point in the surgical alveolus was irradiated prior to the placement of the implant and four new spatial positions were created to the North, South, East and West (NSEW) of the implant. The subsequent sessions involved irradiation at these four points and at one infra-implant point (in the direction of the implant apex). Each point received 4J/cm2 and a total dose of 20J/cm2 per session (treatment dose=140J/cm2). The specimens were removed 15 and 30 days after the operation for the EDXRF test. The Mann- Whitney statistical test was used to assess the results. Results: The increase in the calcium concentration in the periimplant region of the irradiated specimens (G2) was statistically significant (p < 0.05), when compared with the control group (G1). Conclusion: The results of the present study show that irradiation with the AsGaAl laser promoted an acceleration in bone repair in the peri-implant region.

  5. Chemical Analysis of Reaction Rims on Olivine Crystals in Natural Samples of Black Dacite Using Energy-Dispersive X-Ray Spectroscopy, Lassen Peak, CA.

    Science.gov (United States)

    Graham, N. A.

    2014-12-01

    Lassen Volcanic Center is the southernmost volcanic region in the Cascade volcanic arc formed by the Cascadia Subduction Zone. Lassen Peak last erupted in 1915 in an arc related event producing a black dacite material containing xenocrystic olivine grains with apparent orthopyroxene reaction rims. The reaction rims on these olivine grains are believed to have formed by reactions that ensued from a mixing/mingling event that occurred prior to eruption between the admixed mafic andesitic magma and a silicic dacite host material. Natural samples of the 1915 black dacite from Lassen Peak, CA were prepared into 15 polished thin sections and carbon coated for analysis using a FEI Quanta 250 Scanning Electron Microscope (SEM) to identify and measure mineral textures and disequilibrium reaction rims. Observed mineralogical textures related to magma mixing include biotite and amphibole grains with apparent dehydration/breakdown rims, pyroxene-rimmed quartz grains, high concentration of microlites in glass matrix, and pyroxene/amphibole reaction rims on olivine grains. Olivine dissolution is evidenced as increased iron concentration toward convolute edges of olivine grains as observed by Backscatter Electron (BSE) imagery and elemental mapping using NSS spectral imaging software. In an attempt to quantify the area of reaction rim growth on olivine grains within these samples, high-resolution BSE images of 30 different olivine grains were collected along with Energy-Dispersive X-Ray Spectroscopy (EDS) of different phases. Olivine cores and rims were extracted from BSE images using Photoshop and saved as separate image files. ImageJ software was used to calculate the area (μm2) of the core and rim of these grains. Average pyroxene reaction rim width for 30 grains was determined to be 11.68+/-1.65 μm. Rim widths of all 30 grains were averaged together to produce an overall average rim width for the Lassen Peak black dacite. By quantifying the reaction rims on olivine grains

  6. Instabilities of dispersion-managed solitons in the normal dispersion regime

    OpenAIRE

    Pelinovsky, Dmitry

    2000-01-01

    Dispersion-managed solitons are reviewed within a Gaussian variational approximation and an integral evolution model. In the normal regime of the dispersion map (when the averaged path dispersion is negative), there are two solitons of different pulse duration and energy at a fixed propagation constant. We show that the short soliton with a larger energy is linearly (exponentially) unstable. The other (long) soliton with a smaller energy is linearly stable but hits a resonance with excitation...

  7. HEPS-BPIX, a single photon counting pixel detector with a high frame rate for the HEPS project

    Science.gov (United States)

    Wei, Wei; Zhang, Jie; Ning, Zhe; Lu, Yunpeng; Fan, Lei; Li, Huaishen; Jiang, Xiaoshan; Lan, Allan K.; Ouyang, Qun; Wang, Zheng; Zhu, Kejun; Chen, Yuanbo; Liu, Peng

    2016-11-01

    China's next generation light source, named the High Energy Photon Source (HEPS), is currently under construction. HEPS-BPIX (HEPS-Beijing PIXel) is a dedicated pixel readout chip that operates in single photon counting mode for X-ray applications in HEPS. Designed using CMOS 0.13 μm technology, the chip contains a matrix of 104×72 pixels. Each pixel measures 150 μm×150 μm and has a counting depth of 20 bits. A bump-bonded prototyping detector module with a 300-μm thick silicon sensor was tested in the beamline of Beijing Synchrotron Radiation Facility. A fast stream of X-ray images was demonstrated, and a frame rate of 1.2 kHz was proven, with a negligible dead time. The test results showed an equivalent noise charge of 115 e- rms after bump bonding and a threshold dispersion of 55 e- rms after calibration.

  8. Dispersed Indeterminacy

    CERN Document Server

    Fayngold, Moses

    2013-01-01

    A state of a single particle can be represented by a quantum blob in the corresponding phase space, or a patch (granule) in its 2-D subspace. Its area is frequently stated to be no less than, implying that such a granule is an indivisible quantum of the 2-D phase space. But this is generally not true, as is evident, for instance, from representation of some states in the basis of innately discrete observables like angular momentum. Here we consider some dispersed states involving the evanescent waves different from that in the total internal reflection. Such states are represented by a set of separated granules with individual areas, but with the total indeterminacy . An idealized model has a discrete Wigner function and is described by a superposition of eigenstates with eigenvalues and forming an infinite periodic array of dots on the phase plane. The question about the total indeterminacy in such state is discussed. We argue that the eigenstates corresponding to the considered EW cannot be singled out by a...

  9. Use of Feedback to Maximize Photon Count Rate in XRF Spectroscopy

    CERN Document Server

    Lucas, Benjamin A

    2016-01-01

    The effective bandwidth of an energy dispersive x-ray fluorescence spectroscopy system is limited by the timing of incident photons. When multiple photons strike the detector within the processing time of the detector photon pile-up occurs and the signal received by the detector during this interval must be ignored. In conventional ED-XRF systems the probability of a photon being incident upon the detector is uniform over time, and thus pile-up follows Poisson statistics. In this paper we present a mathematical treatment of the relationship between photon timing statistics and the count rate of an XRF system. We show that it is possible to increase the maximum count rates by applying feedback from the detector to the x-ray source to alter the timing statistics of photon emission. Monte-Carlo simulations, show that this technique can increase the maximum count rate of an XRF spectroscopy system by a factor of 2.94 under certain circumstances.

  10. Five and counting...

    CERN Multimedia

    Chown, M

    1998-01-01

    Some physicists believe it may be possible to observe the particle collisions which would provide evidence of fifth and higher dimensions at energies achievable with the next class of particle accelerators such as the LHC (4 pages).

  11. Resolved SZE Cluster Count

    Institute of Scientific and Technical Information of China (English)

    Jia-Yu Tang; Zu-Hui Fan

    2003-01-01

    We study the counts of resolved SZE (Sunyaev-Zel'dovich effect) clus-ters expected from an interferometric survey in different cosmological models underdifferent conditions. The self-similar universal gas model and Press-Schechter massfunction are used. We take the observing frequency to be 90 GHz, and consider twodish diameters, 1.2 m and 2.5 m. We calculate the number density of the galaxyclusters dN/(dΩdz) at a high flux limit Slimv = 100mJy and at a relative lowSlimv = 10 mJy. The total numbers of SZE clusters N in two low-Ω0 models arecompared. The results show that the influence of the resolved effect depends notonly on D, but also on Slimv: at a given D, the effect is more significant for a highthan for a low Slim Also, the resolved effect for a flat universe is more impressivethan that for an open universe. For D = 1.2m and Slimv= 10mJy, the resolvedeffect is very weak. Considering the designed interferometers which will be used tosurvey SZE clusters, we find that the resolved effect is insignificant when estimatingthe expected yield of the SZE cluster surveys.

  12. Multivariate ultrametric root counting

    CERN Document Server

    Avendano, Martin

    2011-01-01

    Let $K$ be a field, complete with respect to a discrete non-archimedian valuation and let $k$ be the residue field. Consider a system $F$ of $n$ polynomial equations in $K\\vars$. Our first result is a reformulation of the classical Hensel's Lemma in the language of tropical geometry: we show sufficient conditions (semiregularity at $w$) that guarantee that the first digit map $\\delta:(K^\\ast)^n\\to(k^\\ast)^n$ is a one to one correspondence between the solutions of $F$ in $(K^\\ast)^n$ with valuation $w$ and the solutions in $(k^\\ast)^n$ of the initial form system ${\\rm in}_w(F)$. Using this result, we provide an explicit formula for the number of solutions in $(K^\\ast)^n$ of a certain class of systems of polynomial equations (called regular), characterized by having finite tropical prevariety, by having initial forms consisting only of binomials, and by being semiregular at any point in the tropical prevariety. Finally, as a consequence of the root counting formula, we obtain the expected number of roots in $(K...

  13. Making environmental DNA count.

    Science.gov (United States)

    Kelly, Ryan P

    2016-01-01

    The arc of reception for a new technology or method--like the reception of new information itself--can pass through predictable stages, with audiences' responses evolving from 'I don't believe it', through 'well, maybe' to 'yes, everyone knows that' to, finally, 'old news'. The idea that one can sample a volume of water, sequence DNA out of it, and report what species are living nearby has experienced roughly this series of responses among biologists, beginning with the microbial biologists who developed genetic techniques to reveal the unseen microbiome. 'Macrobial' biologists and ecologists--those accustomed to dealing with species they can see and count--have been slower to adopt such molecular survey techniques, in part because of the uncertain relationship between the number of recovered DNA sequences and the abundance of whole organisms in the sampled environment. In this issue of Molecular Ecology Resources, Evans et al. (2015) quantify this relationship for a suite of nine vertebrate species consisting of eight fish and one amphibian. Having detected all of the species present with a molecular toolbox of six primer sets, they consistently find DNA abundances are associated with species' biomasses. The strength and slope of this association vary for each species and each primer set--further evidence that there is no universal parameter linking recovered DNA to species abundance--but Evans and colleagues take a significant step towards being able to answer the next question audiences tend to ask: 'Yes, but how many are there?'

  14. LAWRENCE RADIATION LABORATORY COUNTING HANDBOOK

    Energy Technology Data Exchange (ETDEWEB)

    Group, Nuclear Instrumentation

    1966-10-01

    The Counting Handbook is a compilation of operational techniques and performance specifications on counting equipment in use at the Lawrence Radiation Laboratory, Berkeley. Counting notes have been written from the viewpoint of the user rather than that of the designer or maintenance man. The only maintenance instructions that have been included are those that can easily be performed by the experimenter to assure that the equipment is operating properly.

  15. Counting Frequencies from Zotero Items

    Directory of Open Access Journals (Sweden)

    Spencer Roberts

    2013-04-01

    Full Text Available In Counting Frequencies you learned how to count the frequency of specific words in a list using python. In this lesson, we will expand on that topic by showing you how to get information from Zotero HTML items, save the content from those items, and count the frequencies of words. It may be beneficial to look over the previous lesson before we begin.

  16. Nuclear Energy Center: upper St. Lawrence region. Part I. Siting. Part II. Fort Drum surrogate site, description and impact assessment. Part III. Dispersed sites impact assessment and comparison with the NEC

    Energy Technology Data Exchange (ETDEWEB)

    Merry, P.A.; Luner, C.; Hong, S.W.; Canham, H.O.; Boggs, J.F.; McCool, T.P.

    1976-12-01

    This report is one of many supporting documents used by the Nuclear Regulatory commission in the preparation of the Nuclear Energy Center Site Survey (NECSS) mandated by Congress. While the overall study focuses on the feasibility and practicability of nuclear energy centers (NECs), this report is directed towards choosing a suitable surrogate site in the upper St. Lawrence region of New York State, assessing the probable impacts associated with construction and operation of the NEC, and comparing these impacts with those associated with small dispersed nuclear power stations. The upper St. Lawrence region is surveyed to identify a specific site that might be suitable for a surrogate NEC. Several assumptions about the basic design of an NEC are delineated, and a general overview of the characteristics of the region is given. The Fort Drum Military Reservation is chosen as a suitable surrogate site. Fort Drum and the surrounding area are described in terms of land use and population patterns, terrestrial and aquatic ecology, water use and quality, meteorology, institutional framework, and socioeconomic structure. The impacts associated with NEC development are assessed. Then the impacts associated with smaller dispersed nuclear power stations located throughout New York State are assessed and compared with the impacts associated with the NEC. Finally, the impacts due to development of the transmission line networks associated with the NEC and with the dispersed power stations are assessed and compared.

  17. SUMS Counts-Related Projects

    Data.gov (United States)

    Social Security Administration — Staging Instance for all SUMs Counts related projects including: Redeterminations/Limited Issue, Continuing Disability Resolution, CDR Performance Measures, Initial...

  18. Characterization of toners and inkjets by laser ablation spectrochemical methods and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trejos, Tatiana, E-mail: trejost@fiu.edu; Corzo, Ruthmara, E-mail: rcorz001@fiu.edu; Subedi, Kiran, E-mail: ksube001@fiu.edu; Almirall, José, E-mail: almirall@fiu.edu

    2014-02-01

    Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (∼ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has

  19. Characterization of toners and inkjets by laser ablation spectrochemical methods and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy

    Science.gov (United States)

    Trejos, Tatiana; Corzo, Ruthmara; Subedi, Kiran; Almirall, José

    2014-02-01

    Detection and sourcing of counterfeit currency, examination of counterfeit security documents and determination of authenticity of medical records are examples of common forensic document investigations. In these cases, the physical and chemical composition of the ink entries can provide important information for the assessment of the authenticity of the document or for making inferences about common source. Previous results reported by our group have demonstrated that elemental analysis, using either Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) or Laser Ablation Induced Breakdown Spectroscopy (LIBS), provides an effective, practical and robust technique for the discrimination of document substrates and writing inks with minimal damage to the document. In this study, laser-based methods and Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) methods were developed, optimized and validated for the forensic analysis of more complex inks such as toners and inkjets, to determine if their elemental composition can differentiate documents printed from different sources and to associate documents that originated from the same printing source. Comparison of the performance of each of these methods is presented, including the analytical figures of merit, discrimination capability and error rates. Different calibration strategies resulting in semi-quantitative and qualitative analysis, comparison methods (match criteria) and data analysis and interpretation tools were also developed. A total of 27 black laser toners originating from different manufacturing sources and/or batches were examined to evaluate the discrimination capability of each method. The results suggest that SEM-EDS offers relatively poor discrimination capability for this set (~ 70.7% discrimination of all the possible comparison pairs or a 29.3% type II error rate). Nonetheless, SEM-EDS can still be used as a complementary method of analysis since it has

  20. Light dispersion in space

    Science.gov (United States)

    Barbosa, L. C.

    2015-09-01

    Considering an idea of F. Arago in 1853 regarding light dispersion through the light ether in the interstellar space, this paper presents a new idea on an alternative interpretation of the cosmological red shift of the galaxies in the universe. The model is based on an analogy with the temporal material dispersion that occurs with light in the optical fiber core. Since intergalactic space is transparent, according to the model, this phenomenon is related to the gravitational potential existing in the whole space. Thus, it is possible to find a new interpretation to Hubble's constant. In space, light undergoes a dispersion process in its path, which is interpreted by a red shift equation of the type Δz = HL, since H = (d2n/dλ2 Δv Δλ), where H means the Hubble constant, n is the refractive index of the intergalactic space, Δλ is the spectral width of the extragalactic source, and Δv is the variation of the speed of light caused by the gravitational potential. We observe that this "constant" is governed by three new parameters. Light traveling the intergalactic space undergoes red shift due to this mechanism, while light amplitude decreases with time, and the wavelength always increases, thus producing the same type of behavior given by Hubble's Law. It can be demonstrated that the dark matter phenomenon is produced by the apparent speed of light of the stars on the periphery of the galaxies, without the existence of dark energy. Based on this new idea, the model of the universe is static, lacking expansion. Other phenomena may be interpreted based on this new model of the universe. We have what we call temporal gravitational dispersion of light in space produced by the variations of the speed of light, due to the presence of the gravitational potential in the whole space.

  1. Seed dispersal in fens

    NARCIS (Netherlands)

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and

  2. Reference counting for reversible languages

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2014-01-01

    deallocation. This requires the language to be linear: A pointer can not be copied and it can only be eliminated by deallocating the node to which it points. We overcome this limitation by adding reference counts to nodes: Copying a pointer to a node increases the reference count of the node and eliminating...

  3. Coinductive counting with weighted automata

    NARCIS (Netherlands)

    Rutten, J.J.M.M.

    2002-01-01

    A general methodology is developed to compute the solution of a wide variety of basic counting problems in a uniform way: (1) the objects to be counted are enumerated by means of an infinite weighted automaton; (2) the automaton is reduced by means of the quantitative notion of stream bisimulation;

  4. Low White Blood Cell Count

    Science.gov (United States)

    Symptoms Low white blood cell count By Mayo Clinic Staff A low white blood cell count (leukopenia) is a decrease in disease-fighting cells ( ... a decrease in a certain type of white blood cell (neutrophil). The definition of low white blood cell ...

  5. A first-principles-based correlation functional for harmonious connection of short-range correlation and long-range dispersion

    CERN Document Server

    Modrzejewski, Marcin; Rajchel, Łukasz; Szczęśniak, Małgorzata M; Chałasiński, Grzegorz

    2014-01-01

    We present a physically motivated correlation functional belonging to the meta-generalized gradient approximation (meta-GGA) rung, which can be supplemented with long-range dispersion corrections without introducing double-counting of correlation contributions. The functional is derived by the method of constraint satisfaction, starting from an analytical expression for a real-space spin-resolved correlation hole. The model contains a position-dependent function that controls the range of the interelectronic correlations described by the semilocal functional. With minimal empiricism, this function may be adjusted so that the correlation model blends with a specific dispersion correction describing long-range contributions. For a preliminary assessment, our functional has been combined with the DFT-D3 dispersion correction and full Hartree-Fock (HF)-like exchange. Despite the HF-exchange approximation, its predictions compare favorably with reference interaction energies in an extensive set of non-covalently b...

  6. Hanford whole body counting manual

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, H.E.; Brim, C.P.; Rieksts, G.A.; Rhoads, M.C.

    1987-05-01

    This document, a reprint of the Whole Body Counting Manual, was compiled to train personnel, document operation procedures, and outline quality assurance procedures. The current manual contains information on: the location, availability, and scope of services of Hanford's whole body counting facilities; the administrative aspect of the whole body counting operation; Hanford's whole body counting facilities; the step-by-step procedure involved in the different types of in vivo measurements; the detectors, preamplifiers and amplifiers, and spectroscopy equipment; the quality assurance aspect of equipment calibration and recordkeeping; data processing, record storage, results verification, report preparation, count summaries, and unit cost accounting; and the topics of minimum detectable amount and measurement accuracy and precision. 12 refs., 13 tabs.

  7. Electrical counting redux

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, J.E.

    2013-12-15

    Measuring the energy of particle emission from radioactive substances accurately has been a crucial endeavour in nuclear science. Quantitative measurement began with the electroscope, galvanometer and zinc sulphide screen. Because the detector signals were very small, progress in measurement accelerated with their amplification by means of the vacuum tube. In turn this enabled the use of digital techniques and then computers. Today the measurement process is completely automated with digital signal processing and software run on personal computers. Although the measurement processes now appear to be straightforward, they have had a long and interesting history of development which can be divided into three eras for discussion: early, middle and modern. (author)

  8. The origins of counting algorithms.

    Science.gov (United States)

    Cantlon, Jessica F; Piantadosi, Steven T; Ferrigno, Stephen; Hughes, Kelly D; Barnard, Allison M

    2015-06-01

    Humans' ability to count by verbally labeling discrete quantities is unique in animal cognition. The evolutionary origins of counting algorithms are not understood. We report that nonhuman primates exhibit a cognitive ability that is algorithmically and logically similar to human counting. Monkeys were given the task of choosing between two food caches. First, they saw one cache baited with some number of food items, one item at a time. Then, a second cache was baited with food items, one at a time. At the point when the second set was approximately equal to the first set, the monkeys spontaneously moved to choose the second set even before that cache was completely baited. Using a novel Bayesian analysis, we show that the monkeys used an approximate counting algorithm for comparing quantities in sequence that is incremental, iterative, and condition controlled. This proto-counting algorithm is structurally similar to formal counting in humans and thus may have been an important evolutionary precursor to human counting. © The Author(s) 2015.

  9. High Count Rate Single Photon Counting Detector Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An optical communications receiver requires efficient and high-rate photon-counting capability so that the information from every photon, received at the aperture,...

  10. Regression Models for Count Data in R

    Directory of Open Access Journals (Sweden)

    Christian Kleiber

    2008-06-01

    Full Text Available The classical Poisson, geometric and negative binomial regression models for count data belong to the family of generalized linear models and are available at the core of the statistics toolbox in the R system for statistical computing. After reviewing the conceptual and computational features of these methods, a new implementation of hurdle and zero-inflated regression models in the functions hurdle( and zeroinfl( from the package pscl is introduced. It re-uses design and functionality of the basic R functions just as the underlying conceptual tools extend the classical models. Both hurdle and zero-inflated model, are able to incorporate over-dispersion and excess zeros-two problems that typically occur in count data sets in economics and the social sciences—better than their classical counterparts. Using cross-section data on the demand for medical care, it is illustrated how the classical as well as the zero-augmented models can be fitted, inspected and tested in practice.

  11. Vote Counting as Mathematical Proof

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Pattinson, Dirk

    2015-01-01

    Trust in the correctness of an election outcome requires proof of the correctness of vote counting. By formalising particular voting protocols as rules, correctness of vote counting amounts to verifying that all rules have been applied correctly. A proof of the outcome of any particular election......-based formalisation of voting protocols inside a theorem prover, we synthesise vote counting programs that are not only provably correct, but also produce independently verifiable certificates. These programs are generated from a (formal) proof that every initial set of ballots allows to decide the election winner...

  12. White blood cell counting system

    Science.gov (United States)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  13. Applications of some discrete regression models for count data

    Directory of Open Access Journals (Sweden)

    B. M. Golam Kibria

    2006-01-01

    Full Text Available In this paper we have considered several regression models to fit the count data that encounter in the field of Biometrical, Environmental, Social Sciences and Transportation Engineering. We have fitted Poisson (PO, Negative Binomial (NB, Zero-Inflated Poisson (ZIP and Zero-Inflated Negative Binomial (ZINB regression models to run-off-road (ROR crash data which collected on arterial roads in south region (rural of Florida State. To compare the performance of these models, we analyzed data with moderate to high percentage of zero counts. Because the variances were almost three times greater than the means, it appeared that both NB and ZINB models performed better than PO and ZIP models for the zero inflated and over dispersed count data.

  14. Bayesian inference from count data using discrete uniform priors.

    Science.gov (United States)

    Comoglio, Federico; Fracchia, Letizia; Rinaldi, Maurizio

    2013-01-01

    We consider a set of sample counts obtained by sampling arbitrary fractions of a finite volume containing an homogeneously dispersed population of identical objects. We report a Bayesian derivation of the posterior probability distribution of the population size using a binomial likelihood and non-conjugate, discrete uniform priors under sampling with or without replacement. Our derivation yields a computationally feasible formula that can prove useful in a variety of statistical problems involving absolute quantification under uncertainty. We implemented our algorithm in the R package dupiR and compared it with a previously proposed Bayesian method based on a Gamma prior. As a showcase, we demonstrate that our inference framework can be used to estimate bacterial survival curves from measurements characterized by extremely low or zero counts and rather high sampling fractions. All in all, we provide a versatile, general purpose algorithm to infer population sizes from count data, which can find application in a broad spectrum of biological and physical problems.

  15. Make My Trip Count 2015

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Make My Trip Count (MMTC) commuter survey, conducted in September and October 2015 by GBA, the Pittsburgh 2030 District, and 10 other regional transportation...

  16. The Mayan Long Count Calendar

    OpenAIRE

    Chanier, Thomas

    2015-01-01

    The Maya were known for their astronomical proficiency. This is demonstrated in the Mayan codices where ritual practices were related to astronomical events/predictions. Whereas Mayan mathematics were based on a vigesimal system, they used a different base when dealing with long periods of time, the Long Count Calendar (LCC), composed of different Long Count Periods: the Tun of 360 days, the Katun of 7200 days and the Baktun of 144000 days. There were two other calendars used in addition to t...

  17. Counting Word Frequencies with Python

    Directory of Open Access Journals (Sweden)

    William J. Turkel

    2012-07-01

    Full Text Available Your list is now clean enough that you can begin analyzing its contents in meaningful ways. Counting the frequency of specific words in the list can provide illustrative data. Python has an easy way to count frequencies, but it requires the use of a new type of variable: the dictionary. Before you begin working with a dictionary, consider the processes used to calculate frequencies in a list.

  18. Super-flat coherent supercontinuum source in Assub>38.8sub>Sesub>61.2sub> chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy.

    Science.gov (United States)

    Diouf, Mbaye; Salem, Amine Ben; Cherif, Rim; Saghaei, Hamed; Wague, Ahmadou

    2017-01-10

    We numerically report super-flat coherent mid-infrared supercontinuum (MIR-SC) generation in a chalcogenide Assub>38.8sub>Sesub>61.2sub> photonic crystal fiber (PCF). The dispersion and nonlinear parameters of Assub>38.8sub>Sesub>61.2sub> chalcogenide PCFs by varying the diameter of the air holes are engineered to obtain all-normal dispersion (ANDi) with high nonlinearities. We show that launching low-energy 50 fs optical pulses with 0.88 kW peak power (corresponding to pulse energy of 0.05 nJ) at a central wavelength of 3.7 μm into a 5 cm long ANDi-PCF generates a flat-top coherent MIR-SC spanning from 2900 to 4575 nm with a high spectral flatness of 3 dB. This ultra-wide and flattened spectrum has excellent stability and coherence properties that can be used for MIR applications such as medical diagnosis of diseases, atmospheric pollution monitoring, and drug detection.

  19. Power Counting and Wilsonian Renormalization in Nuclear Effective Field Theory

    CERN Document Server

    Valderrama, Manuel Pavon

    2016-01-01

    Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental ---perhaps unknown or unsolvable--- high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding ...

  20. Energy

    CERN Document Server

    Foland, Andrew Dean

    2007-01-01

    Energy is the central concept of physics. Unable to be created or destroyed but transformable from one form to another, energy ultimately determines what is and isn''t possible in our universe. This book gives readers an appreciation for the limits of energy and the quantities of energy in the world around them. This fascinating book explores the major forms of energy: kinetic, potential, electrical, chemical, thermal, and nuclear.

  1. The assessment and application of an approach to noncovalent interactions: the energy decomposition analysis (EDA) in combination with DFT of revised dispersion correction (DFT-D3) with Slater-type orbital (STO) basis set.

    Science.gov (United States)

    Gao, Wei; Feng, Huajie; Xuan, Xiaopeng; Chen, Liuping

    2012-10-01

    An assessment study is presented about energy decomposition analysis (EDA) in combination with DFT including revised dispersion correction (DFT-D3) with Slater-type orbital (STO) basis set. There has been little knowledge about the performance of the EDA + DFT-D3 concerning STOs. In this assessment such an approach was applied to calculate noncovalent interaction energies and their corresponding components. Complexes in S22 set were used to evaluate the performance of EDA in conjunction with four representative types of GGA-functionals of DFT-D3 (BP86-D3, BLYP-D3, PBE-D3 and SSB-D3) with three STO basis sets ranging in complexity from DZP, TZ2P to QZ4P. The results showed that the approach of EDA + BLYP-D3/TZ2P has a better performance not only in terms of calculating noncovalent interaction energy quantitatively but also in analyzing corresponding energy components qualitatively. This approach (EDA + BLYP-D3/TZ2P) was thus applied further to two representative large-system complexes including porphine dimers and fullerene aggregates to gain a better insight into binding characteristics.

  2. Characterization of the count rate performance of modern gamma cameras

    Science.gov (United States)

    Silosky, M.; Johnson, V.; Beasley, C.; Cheenu Kappadath, S.

    2013-01-01

    Purpose: Evaluation of count rate performance (CRP) is an integral component of gamma camera quality assurance and system deadtime (τ) may be utilized for image correction in quantitative studies. This work characterizes the CRP of three modern gamma cameras and estimates τ using two established methods (decay and dual source) under a variety of experimental conditions. Methods: For the decay method, uncollimated detectors were exposed to a Tc-99m source of relatively high activity and count rates were sampled regularly over 48 h. Input count rate at each time point was based on the lowest observed count rate data point. The input count rate was plotted against the observed count rate and fit via least-squares to the paralyzable detector model (PDM) to estimate τ (rates method). A novel expression for observed counts as a function of measurement time interval was derived, taking into account the PDM and the presence of background but making no assumption regarding input count rate. The observed counts were fit via least-squares to this novel expression to estimate τ (counts method). Correlation and Bland-Altman analyses were performed to assess agreement in estimates of τ between the rates and counts methods. The dependence of τ on energy window definition and incident energy spectrum were characterized. The dual source method was also used to estimate τ and its agreement with estimates from the decay method under identical conditions was also investigated. The dependences of τ on the total activity and the ratio of source activities were characterized. Results: The observed CRP curves for each gamma camera agreed with the PDM at low count rates but deviated substantially from it at high count rates. The estimates of τ determined from the paralyzable portion of the CPR curve using the rates method and the counts method were found to be highly correlated (r = 0.999) but with a small (∼6%) difference. No statistically significant difference was observed

  3. VersaCount: customizable manual tally software for cell counting

    Directory of Open Access Journals (Sweden)

    DeRisi Joseph L

    2010-01-01

    Full Text Available Abstract Background The manual counting of cells by microscopy is a commonly used technique across biological disciplines. Traditionally, hand tally counters have been used to track event counts. Although this method is adequate, there are a number of inefficiencies which arise when managing large numbers of samples or large sample sizes. Results We describe software that mimics a traditional multi-register tally counter. Full customizability allows operation on any computer with minimal hardware requirements. The efficiency of counting large numbers of samples and/or large sample sizes is improved through the use of a "multi-count" register that allows single keystrokes to correspond to multiple events. Automatically updated multi-parameter values are implemented as user-specified equations, reducing errors and time required for manual calculations. The user interface was optimized for use with a touch screen and numeric keypad, eliminating the need for a full keyboard and mouse. Conclusions Our software provides an inexpensive, flexible, and productivity-enhancing alternative to manual hand tally counters.

  4. Optimization of high count rate event counting detector with Microchannel Plates and quad Timepix readout

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu; Vallerga, J.V.; McPhate, J.B.; Siegmund, O.H.W.

    2015-07-01

    Many high resolution event counting devices process one event at a time and cannot register simultaneous events. In this article a frame-based readout event counting detector consisting of a pair of Microchannel Plates and a quad Timepix readout is described. More than 10{sup 4} simultaneous events can be detected with a spatial resolution of ~55 µm, while >10{sup 3} simultaneous events can be detected with <10 µm spatial resolution when event centroiding is implemented. The fast readout electronics is capable of processing >1200 frames/sec, while the global count rate of the detector can exceed 5×10{sup 8} particles/s when no timing information on every particle is required. For the first generation Timepix readout, the timing resolution is limited by the Timepix clock to 10–20 ns. Optimization of the MCP gain, rear field voltage and Timepix threshold levels are crucial for the device performance and that is the main subject of this article. These devices can be very attractive for applications where the photon/electron/ion/neutron counting with high spatial and temporal resolution is required, such as energy resolved neutron imaging, Time of Flight experiments in lidar applications, experiments on photoelectron spectroscopy and many others.

  5. Dispersing powders in liquids

    CERN Document Server

    Nelson, RD

    1988-01-01

    This book provides powder technologists with laboratory procedures for selecting dispersing agents and preparing stable dispersions that can then be used in particle size characterization instruments. Its broader goal is to introduce industrial chemists and engineers to the phenomena, terminology, physical principles, and chemical considerations involved in preparing and handling dispersions on a commercial scale. The book introduces novices to: - industrial problems due to improper degree of dispersion; - the nomenclature used in describing particles; - the basic physica

  6. Alpha-actinin expression at different differentiating time points from temporal lobe cerebral cortex neural stem cells to neuron-like cells using energy dispersive X-ray analysis

    Institute of Scientific and Technical Information of China (English)

    Bo YU; Hua Li; Zhe Du; Yang Hong; Meng Sang; Yuxiu Shi

    2009-01-01

    BACKGROUND: Alpha-actinin (a-actinin) plays a key role in neuronal growth cone migration during directional differentiation from neural stem cells (NSCs) to neurons.OBJECTIVE: To detect in situ microdistribution and quantitative expression of a-actinin during directional differentiation of NSCs to neurons in the temporal lobe cerebral cortex of neonatal rats.DESIGN, TIME AND SETTING: Between January 2006 and December 2008, culture and directional differentiation of NSCs were performed at Department of Histology and Embryology, Preclinical Medical College, China Medical University. Immune electron microscopy was performed at Department of Histology and Embryology and Department of Electron Micrology, Preclinical Medical College, China Medical University. Spectrum analysis was performed at Laboratory of Electron Microscopy, Mental Research Institute, Chinese Academy of Sciences.MATERIALS: Basic fibroblast growth factor, epidermal growth factor, brain-derived nerve growth factor, type-1 insulin like growth factor, and a-actinin antibody were provided by Gibco BRL, USA; rabbit-anti-rat nestin monoclonal antibody, rabbit-anti-rat neuron specific enolase polyclonal antibody, and EDAX-9100 energy dispersive X-ray analysis were provided by PHILIPS Company, Netherlands.METHODS: NSCs, following primary and passage culture, were differentiated with serum culture medium (DMEM/F12+10% fetal bovine serum+2 ng/mL brain-derived nerve growth factor+2 ng/mL type-1 insulin like growth factor).MAIN OUTCOME MEASURES: Expression of a-actinin in neuron-like cells was quantitatively and qualitatively detected with immunocytochemistry using energy dispersive X-ray analysis. RESULTS: Immunocytochemistry, combined with electron microscopy, indicated that positive a-actinin expression was like a spheroid particle with high electron density. In addition, the expression was gradually concentrated from the nuclear edge to the cytoplasm and expanded into developing neurites, during

  7. The Origins of Counting Algorithms

    OpenAIRE

    Cantlon, Jessica F.; Piantadosi, Steven T.; Ferrigno, Stephen; Hughes, Kelly D.; Allison M Barnard

    2015-01-01

    Humans’ ability to ‘count’ by verbally labeling discrete quantities is unique in animal cognition. The evolutionary origins of counting algorithms are not understood. We report that non-human primates exhibit a cognitive ability that is algorithmically and logically similar to human counting. Monkeys were given the task of choosing between two food caches. Monkeys saw one cache baited with some number of food items, one item at a time. Then, a second cache was baited with food items, one at a...

  8. Tree modules and counting polynomials

    CERN Document Server

    Kinser, Ryan

    2011-01-01

    We give a formula for counting tree modules for the quiver S_g with g loops and one vertex in terms of tree modules on its universal cover. This formula, along with work of Helleloid and Rodriguez-Villegas, is used to show that the number of d-dimensional tree modules for S_g is polynomial in g with the same degree and leading coefficient as the counting polynomial A_{S_g}(d, q) for absolutely indecomposables over F_q, evaluated at q=1.

  9. Dispersion y dinamica poblacional

    Science.gov (United States)

    Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...

  10. Seed dispersal in fens

    NARCIS (Netherlands)

    Middleton, Beth; van Diggelen, Rudy; Jensen, Kai

    2006-01-01

    Question: How does seed dispersal reduce fen isolation and contribute to biodiversity? Location: European and North American fens. Methods: This paper reviews the literature on seed dispersal to fens. Results: Landscape fragmentation may reduce dispersal opportunities thereby isolating fens and redu

  11. Time domain dispersion of underwater optical wireless communication

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Xiaohui Zhang; Jionghui Rao; Wenbo Wang

    2011-01-01

    @@ A new method to count the expected value and variance of time dispersion is presented for time dispersion of underwater optical wireless communication.Instead of the typically used Gamma distribution, inverse-Gaussian distribution is suggested for underwater optical impulse response time waveform function.The expectation of this method is in good agreement with experimental data.Future works may include water absorption to the model.%A new method to count the expected value and variance of time dispersion is presented for time dispersion of underwater optical wireless communication.Instead of the typically used Gamma distribution, inverseGaussian distribution is suggested for underwater optical impulse response time waveform function.The expectation of this method is in good agreement with experimental data.Future works may include water absorption to the model.

  12. Energy

    CERN Document Server

    Robertson, William C

    2002-01-01

    Confounded by kinetic energy? Suspect that teaching about simple machines isn t really so simple? Exasperated by electricity? If you fear the study of energy is beyond you, this entertaining book will do more than introduce you to the topic. It will help you actually understand it. At the book s heart are easy-to-grasp explanations of energy basics work, kinetic energy, potential energy, and the transformation of energy and energy as it relates to simple machines, heat energy, temperature, and heat transfer. Irreverent author Bill Robertson suggests activities that bring the basic concepts of energy to life with common household objects. Each chapter ends with a summary and an applications section that uses practical examples such as roller coasters and home heating systems to explain energy transformations and convection cells. The final chapter brings together key concepts in an easy-to-grasp explanation of how electricity is generated. Energy is the second book in the Stop Faking It! series published by NS...

  13. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    OpenAIRE

    Koop, G.; Dik, N; Nielen, M; Lipman, L. J. A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms, 3 bulk milk samples were collected at intervals of 2 wk. The samples were cultured for SPC, coliform count, and staphylococcal count and for the presence of Staphylococcus aureus. Furthermore, SCC ...

  14. Calibrating photon counts from a single image

    CERN Document Server

    Heintzmann, Rainer; Nieuwenhuizen, Robert P J; Lidke, Keith A; Rieger, Bernd

    2016-01-01

    Most image capturing devices do not directly report the number of detected photons, but a value proportional to the photoelectron charge produced in a photomultiplier tube or collected in a camera pixel. In order to establish the photon count, the gain of the device must be measured, typically by recording tens of calibration images and exploiting the linear relationship between mean intensity and its variance [vanVliet1998]. Here we propose and evaluate a method that obtains the gain from a single acquired image by quantifying out-of-band information. As noise is not limited to the cut-off frequency of the optical transfer function (OTF), estimation of the out-of-band energy relative to the total energy enables computation of the gain. We show on simulation and experimental data that this much simpler procedure, which can be retroactively applied to any image, is comparable in precision to traditional gain calibration procedures.

  15. A high-pressure study of phase stability in La sub 0 sub . sub 5 sub - sub x Bi sub x Ca sub 0 sub . sub 5 MnO sub 3 by energy-dispersive x-ray diffraction

    CERN Document Server

    Wang Xin; Pan Yue Wu; Zou Guang Tian

    2002-01-01

    Energy-dispersive x-ray diffraction studies are carried out on the distorted perovskite La sub 0 sub . sub 5 sub - sub x Bi sub x Ca sub 0 sub . sub 5 MnO sub 3 (x = 0, 0.05, 0.1, 0.15, 0.2, 0.25) under high pressure at room temperature. The unusual expansion of the 202-040 d-spacing under pressure is observed, and the change of the Mn-O bond angle brings about the disappearance of the basal-plane Q sub 2 distortion mode. With doping content increasing, a shoulder peak appears in the observed main peak of La sub 0 sub . sub 2 sub 5 Bi sub 0 sub . sub 2 sub 5 Ca sub 0 sub . sub 5 MnO sub 3 at 43.9 GPa. The pressure-enhanced interactions between charge, orbital, and coupling with the lattice distortion are discussed.

  16. The (CuGaSe{sub 2}){sub 1-x}(MgSe){sub x} alloy system (0{<=}x{<=}0.5): X-ray diffraction, energy dispersive spectrometry and differential thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Grima Gallardo, P.; Munoz, M.; Ruiz, J. [Centro de Estudios en Semiconductores (C.E.S.), Dpto. Fisica, Fac. Ciencias, La Hechicera, Merida (Venezuela); Delgado, G.E. [Laboratorio de Cristalografia, Dpto. Quimica, Fac. Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela); Briceno, J.M. [Laboratorio de Analisis Quimico y Estructural (LAQUEM), Dpto. Fisica, Fac. Ciencias, La Hechicera, Merida (Venezuela)

    2004-07-01

    The (CuGaSe{sub 2}){sub 1-x}(MgSe){sub x} alloy system (0energy dispersion spectrometry and differential thermal analysis. The solubility of MgSe in CuGaSe{sub 2} was found to be nearly complete for all the compositions studied, although traces of MgSe appear as a secondary phase at x{>=}0.15. All the alloys showed the chalcopyrite structure and the lattice parameters of the unit cell do not follow a linear behavior but showed a soft local maximum at x {proportional_to} 0.15. In the single-phase field, the increasing behavior of the lattice parameters can be reproduced using an extension for quaternary alloys of Jaffe and Zunger's model for chalcopyrites. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Scanning Electron Microscopy Coupled with Energy Dispersive Spectrometric Analysis Reveals for the First Time Weddellite and Sylvite Crystals on the Surface of Involucral Bracts and Petals of two Xeranthemum L. (Compositae) Species.

    Science.gov (United States)

    Gavrilović, Milan; Erić, Suzana; Marin, Petar D; Garcia-Jacas, Núria; Susanna, Alfonso; Janaćković, Pedja

    2017-06-01

    In this work, weddellite and sylvite crystals are identified for the first time on the involucral bracts and petals of Xeranthemum annuum and Xeranthemum cylindraceum using scanning electron microscopy coupled with energy dispersive spectrometric (SEM-EDS) analysis. Well-developed crystals of weddellite (CaC2O4·2H2O) occur in the form of a tetragonal bipyramid (hhl), rarely in combination of a bipyramid and tetragonal prism (h00). Indumentum of involucral bracts of X. cylindraceum consists of nonglandular and glandular trichomes. Sylvite (KCl) crystals are observed only on the petal surface of X. cylindraceum. The crystals of sylvite occur in the form of perfect cubes (hexahedrons), but some crystals are deformed, i.e., partially elongated. Taxonomic significance of investigated microcharacters as well as the use of SEM-EDS analysis in taxonomic studies of plants are discussed.

  18. The identification of the pigments used to paint statues of Feixiange Cliff in China in late 19th century by micro-Raman spectroscopy and scanning electron microscopy/energy dispersive X-ray analysis

    Science.gov (United States)

    Jin, Pu-jun; Huang, Wei; Jianhua-Wang; Zhao, Gang; Wang, Xiao-ling

    2010-11-01

    The application of micro-Raman spectroscopy (μ-RS) and scanning electron microscopy (SEM)/energy dispersive X-ray spectrometer (EDS) to the research of pigments collected from Statues of Feixiange Cliff No. 67 and No. 69 niche of Tang Dynasty in China is reported. Five kinds of pigments were found in the experimental data, including black (carbon), white (gypsum + quartz), blue (lapis lazuli) and green (Paris green + Barium sulphate). After synthesized in 1814, Paris green was reported for a large import as a light and bright green pigment to paint architectures in China from the late 19th century. The analyzed blue pigment demonstrated the similar Raman spectra to the Lâjvardina blue glazed ceramics, which indicated lapis lazuli was an artificial product. This confirmed the painting of Feixiange Cliff in the early Republic of China as the historical record, and also reveals that some pigments were imported from abroad.

  19. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  20. Crystallizations, solid-state phase transformations and dissolution behavior explained by dispersive kinetic models based on a Maxwell-Boltzmann distribution of activation energies: theory, applications, and practical limitations.

    Science.gov (United States)

    Skrdla, Peter J

    2009-08-20

    The potential applications of dispersive kinetic models range from solid-state conversions to gas-phase chemical physics and to microbiology. Here, the derivation and application of two such models, for use in solid-state applications, is presented. The models are based on the concept of a Maxwell-Boltzmann distribution of activation energies. The ability of the models to fit/explain an assortment of asymmetric, sigmoidal conversion-versus-time transients presented in the recent literature, as well as to provide physicochemical interpretations of the kinetics via the two fit parameters, alpha and beta, makes them a powerful tool for understanding nucleation/denucleation rate-limited processes that are involved in many phase transformations, dissolutions and crystallizations.