Coulomb displacement energies as a probe for nucleon pairing in the f7/2 shell
Kankainen, A.; Eronen, T.; Gorelov, D.; Hakala, J.; Jokinen, A.; Kolhinen, V. S.; Reponen, M.; Rissanen, J.; Saastamoinen, A.; Sonnenschein, V.; ńystö, J.
2014-05-01
Coulomb displacement energies of T =1/2 mirror nuclei have been studied via a series of high-precision QEC-value measurements with the double Penning trap mass spectrometer JYFLTRAP. Most recently, the QEC values of the f7/2-shell mirror nuclei V45 (QEC=7123.82(22) keV) and Mn49 (QEC=7712.42(24) keV) have been measured with unprecedented precision. The data reveal a 16-keV (1.6σ) offset in the adopted Atomic Mass Evaluation 2012 value of Mn49, suggesting the need for further measurements to verify whether there is a breakdown of the quadratic form of the isobaric multiplet mass equation in the fp shell. Precisely measured QEC values confirm that the pairing effect in the Coulomb energies is quenched when entering the f7/2 shell and reaches a minimum in the midshell.
Hamzavi, Majid
2012-01-01
The exact Dirac equation for the energy-dependent Coulomb (EDC) potential including a Coulomb-like tensor (CLT) potential has been studied in the presence of spin and pseudospin (p-spin) symmetries with arbitrary spin-orbit quantum number The energy eigenvalues and corresponding eigenfunctions are obtained in the framework of asymptotic iteration method (AIM). Some numerical results are obtained in the presence and absence of EDC and CLT potentials.
Variation in displacement energies due to isospin nonconserving forces
Kaneko, K; Mizusaki, T; Tazaki, S
2013-01-01
For mirror nuclei with masses A=42-95, the effects of isospin nonconserving nuclear forces are studied with nuclear shell model using the Coulomb displacement energy and triplet displacement energy as probes. It is shown that the characteristic behavior of the displacement energies can be well reproduced if the isovector and isotensor nuclear interactions with J=0 and T=1 are introduced into the f7/2 shell. These forces, with their strengths being found consistent with the nucleon-nucleon scattering data, tend to modify nuclear binding energies near the N=Z line. At present, no evidence is found that these forces are needed for the upper fp-shell. Theoretical one- and two-proton separation energies are predicted accordingly, and locations of the proton drip-line are thereby suggested.
Quasiparticle Gaps and Exciton Coulomb Energies in Si Nanoshells
Energy Technology Data Exchange (ETDEWEB)
Frey, K. [University of Illinois, Chicago; Idrobo Tapia, Juan C [ORNL; Tiago, Murilo L [ORNL; Reboredo, Fernando A [ORNL; Ogut, Serdar [University of Illinois, Chicago
2009-01-01
Quasiparticle gaps and exciton Coulomb energies of H-passivated spherical Si nanoshells are computed using rst principles SCF and GW methods. We nd that the quasiparticle gap of a nanoshell depends on both its inner radius R1 (weakly) and outer radius R2 (strongly). These dependences on R1 and R2 are mostly consistent with electrostatics of a metallic shell. We also nd that the unscreened Coulomb energy ECoul in Si nanoshells has a somewhat unexpected size dependence at xed outer radius R2: ECoul decreases as the nanoshell becomes more conning, contrary to what one would expect from quantum connement eects. We show that this is a consequence of an increase in the average electron-hole distance, giving rise to reduced exciton Coulomb energies in spite of the reduction in the conning nanoshell volume.
Coulomb and Nuclear Breakup at Low Energies: Scaling Laws
Directory of Open Access Journals (Sweden)
Hussein M. S.
2013-12-01
Full Text Available We report on a recent work on the low-energy behavior of the breakup cross section in so far as it has important role in the fusion of weakly bound and halo nuclei at near-barrier energies. We assess the way the nuclear component of this cross section scales with the target mass. In complete accord with previous finding at higher energies we verify that the low energy behavior of the breakup cross section for a given projectile and relative center of mass energy with respect to the Coulomb barrier height scales as the cubic root of the mass number of the target. Surprisingly we find that the Coulomb component of the breakup cross section at these low energies also obeys scaling, but with a linear dependence on the target charge. Our findings are important when planning for experiments involving these exotic nuclei.
Coulomb effects in low-energy nuclear fragmentation
Wilson, John W.; Chun, Sang Y.; Badavi, Francis F.; John, Sarah
1993-01-01
Early versions of the Langley nuclear fragmentation code NUCFRAG (and a publicly released version called HZEFRG1) assumed straight-line trajectories throughout the interaction. As a consequence, NUCFRAG and HZEFRG1 give unrealistic cross sections for large mass removal from the projectile and target at low energies. A correction for the distortion of the trajectory by the nuclear Coulomb fields is used to derive fragmentation cross sections. A simple energy-loss term is applied to estimate the energy downshifts that greatly alter the Coulomb trajectory at low energy. The results, which are far more realistic than prior versions of the code, should provide the data base for future transport calculations. The systematic behavior of charge-removal cross sections compares favorably with results from low-energy experiments.
Low-energy Coulomb excitation of Sr,9896 beams
Clément, E.; Zielińska, M.; Péru, S.; Goutte, H.; Hilaire, S.; Görgen, A.; Korten, W.; Doherty, D. T.; Bastin, B.; Bauer, C.; Blazhev, A.; Bree, N.; Bruyneel, B.; Butler, P. A.; Butterworth, J.; Cederkäll, J.; Delahaye, P.; Dijon, A.; Ekström, A.; Fitzpatrick, C.; Fransen, C.; Georgiev, G.; Gernhäuser, R.; Hess, H.; Iwanicki, J.; Jenkins, D. G.; Larsen, A. C.; Ljungvall, J.; Lutter, R.; Marley, P.; Moschner, K.; Napiorkowski, P. J.; Pakarinen, J.; Petts, A.; Reiter, P.; Renstrøm, T.; Seidlitz, M.; Siebeck, B.; Siem, S.; Sotty, C.; Srebrny, J.; Stefanescu, I.; Tveten, G. M.; Van de Walle, J.; Vermeulen, M.; Voulot, D.; Warr, N.; Wenander, F.; Wiens, A.; De Witte, H.; Wrzosek-Lipska, K.
2016-11-01
The structure of neutron-rich Sr,9896 nuclei was investigated by low-energy safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E 2 matrix elements, including those for non-yrast structures, has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N =60 , giving rise to the coexistence of a highly deformed prolate and a spherical configuration in 98Sr, and are compared to predictions from several theoretical calculations. The experimental data suggest a significant contribution of the triaxal degree of freedom in the ground state of both isotopes. In addition, experimental information on low-lying states in 98Rb has been obtained.
Evaluation of Coulomb Energy Difference for Light Mirror Nuclei Using Slater—Type Orbitals
Institute of Scientific and Technical Information of China (English)
F.Oner; R.A.Mamedoy
2002-01-01
Behavior of the Coulomb energy difference for light nuclei is explained in terms of the different values of the average Coulomb interaction between two particles.Coulomb energy difference according to shell model of light mirror nuclei in the Coulomb and exchange integrals in the formula can be explained with exponential-type wavefunctions.In this study,using the one-center expansion of exponential-type wavefunctions in terms of Slater-type orbitals with the same center,we derived formula for Coulomb energy difference of light mirror nuclei.
Evaluation of Coulomb Energy Difference for Light Mirror Nuclei Using Slater-Type Orbitals
Institute of Scientific and Technical Information of China (English)
F. Oner; B.A. Mainedov
2002-01-01
Behavior of the Coulomb energy difference for light nuclei is explained in terms of the different values of theaverage Coulomb interaction between two particles. Coulomb energy difference according to shell model of light mirrornuclei in the Coulomb and exchange integrals in the formula can be explained with exponential-type wavefunctions. Inthis study, using the one-center expansion of exponential-type wavcfunctions in terms of Slater-type orbitals with thesame center, we derived formula for Coulomb energy difference of light mirror mulei.
On the Analysis of Intermediate-Energy Coulomb Excitation Experiments
Scheit, Heiko; Glasmacher, Thomas; Motobayashi, Tohru
2008-01-01
In a recent publication (Bertulani et al., PLB 650 (2007) 233 and arXiv:0704.0060v2) the validity of analysis methods used for intermediate-energy Coulomb excitation experiments was called into question. Applying a refined theory large corrections of results in the literature seemed needed. We show that this is not the case and that the large deviations observed are due to the use of the wrong experimental parameters. We furthermore show that an approximate expression derived by Bertulani et al. is in fact equivalent to the theory of Winther and Alder (NPA 319 (1979) 518), an analysis method often used in the literature.
Intermediate-energy Coulomb excitation of Na30
Ettenauer, S.; Zwahlen, H.; Adrich, P.; Bazin, D.; Campbell, C. M.; Cook, J. M.; Davies, A. D.; Dinca, D.-C.; Gade, A.; Glasmacher, T.; Lecouey, J.-L.; Mueller, W. F.; Otsuka, T.; Reynolds, R. R.; Riley, L. A.; Terry, J. R.; Utsuno, Y.; Yoneda, K.
2008-07-01
The neutron-rich nucleus Na30 in the vicinity of the “Island of Inversion” was investigated using intermediate-energy Coulomb excitation. A single γ-ray transition was observed and attributed to the 31+→2gs+ decay. A transition probability of B(E2;2gs+→31+)=147(21)e2fm4 was determined and found in agreement with a previous experiment and with large-scale shell-model calculations. Evidence for the strong excitation of the 41+ state predicted by the shell-model calculations was not observed.
On the role of deformed Coulomb potential in fusion using energy density formalism
Indian Academy of Sciences (India)
Lavneet Kaur; Raj Kumari
2015-10-01
Using the Skyrme energy density formalism, the effect of deformed Coulomb potential on fusion barriers and fusion cross-sections is studied. Our detailed study reveals that the fusion barriers as well as fusion probabilities depend on the shape deformation (due to deformed Coulomb potential) of the colliding nuclei. However, this dependence due to deformed Coulomb potential is found to be very weak.
Coulomb collisional effects on high energy particles in the presence of driftwave turbulence
Huang, B; Cheng, C Z
2013-01-01
High energy particles' behavior including fusion born alpha particles in an ITER like tokamak in the presence of background driftwave turbulence is investigated by an orbit following calculation. The background turbulence is given by the toroidal driftwave eigenmode combined with a random number generator. The transport level is reduced as the particle energy increase; the widths of the guiding center islands produced by the passing particles are inverse proportional to the square root of parallel velocities. On the other hand, the trapped particles are sensitive to $E \\times B$ drift at the banana tips whose radial displacement is larger for lower energy particles. Coulomb collisional effects are incorporated which modifies the transport process of the trapped high energy particles whose radial excursion resides in limited radial domains without collisions.
Controllability of the Coulomb charging energy in close-packed nanoparticle arrays.
Duan, Chao; Wang, Ying; Sun, Jinling; Guan, Changrong; Grunder, Sergio; Mayor, Marcel; Peng, Lianmao; Liao, Jianhui
2013-11-07
We studied the electronic transport properties of metal nanoparticle arrays, particularly focused on the Coulomb charging energy. By comparison, we confirmed that it is more reasonable to estimate the Coulomb charging energy using the activation energy from the temperature-dependent zero-voltage conductance. Based on this, we systematically and comprehensively investigated the parameters that could be used to tune the Coulomb charging energy in nanoparticle arrays. We found that four parameters, including the particle core size, the inter-particle distance, the nearest neighboring number, and the dielectric constant of ligand molecules, could significantly tune the Coulomb charging energy.
Plunger lifetime measurements after Coulomb excitation at intermediate beam energies
Energy Technology Data Exchange (ETDEWEB)
Hackstein, Matthias; Dewald, Alfred; Fransen, Christoph; Ilie, Gabriela; Jolie, Jan; Melon, Barbara; Pissulla, Thomas; Rother, Wolfram; Zell, Karl-Oskar [University of Cologne (Germany); Petkov, Pavel [University of Cologne (Germany); INRNE (Bulgaria); Chester, Aaron; Adrich, Przemyslaw; Bazin, Daniel; Bowen, Matt; Gade, Alexandra; Glasmacher, Thomas; Miller, Dave; Moeller, Victoria; Starosta, Krzysztof; Stolz, Andreas; Vaman, Constantin; Voss, Philip; Weissharr, Dirk [Michigan State Univerity (United States); Moeller, Oliver [TU Darmstadt (Germany)
2008-07-01
Two recoil-distance-doppler-shift (RDDS) experiments were performed at the NSCL/MSU using Coulomb excitations of the projectile nuclei {sup 110}Pd, {sup 114}Pd at beam energies of 54 MeV/u in order to investigate the evolution of deformation of neutron rich paladium isotopes. The experimental set-up consisted of a dedicated plunger device, developed at the University of Cologne, the SEGA Ge-array and the S800 spectrometer. Lifetimes of the 2{sub 1}{sup +}-states in {sup 110}Pd and {sup 114}Pd were derived from the analysis of the {gamma}-line-shapes as well as from the measured decay-curves. Special features of the data analysis, e.g. features originating from the very high recoil velocities, are discussed.
Atomic displacement energy in amorphous compounds
Sanditov, D. S.; Mashanov, A. A.
2016-12-01
Atomic displacement energy Δɛe in multicomponent sheet and lead-silicate glasses is calculated from the free activation energy of a viscous flow. The value of Δɛe is shown to remain constant in a rather wide range of temperatures in the glass transition region. Satisfactory agreement with calculations of Δɛe using the current formula incorporating the glass transition temperature and the fluctuation volume fraction frozen at this temperature is obtained. The validity of the above formula not only at the glass transition temperature but also in the temperature region adjacent to it is confirmed.
Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy
Kharchenko, V. F.
2016-11-01
Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.
Matsumoto, T; Iseri, Y; Kamimura, M; Ogata, K; Yahiro, M
2006-01-01
We accurately analyze the $^6$He+$^{209}$Bi scattering at 19 and 22.5 MeV near the Coulomb barrier energy, using the continuum-discretized coupled-channels method (CDCC) based on the $n$+$n$+$^4$He+$^{209}$Bi four-body model. The three-body breakup continuum of $^6$He is discretized by diagonalizing the internal Hamiltonian of $^6$He in a space spanned by the Gaussian basis functions. The calculated elastic and total reaction cross sections are in good agreement with the experimental data, while the CDCC calculation based on the di-neutron model of $^6$He, i.e., the $^2n$+$^{4}$He+$^{209}$Bi three-body model, does not reproduce the data.
Configurational and energy landscape in one-dimensional Coulomb systems.
Varela, Lucas; Téllez, Gabriel; Trizac, Emmanuel
2017-02-01
We study a one-dimensional Coulomb system, where two charged colloids are neutralized by a collection of point counterions, with global neutrality. With temperature being given, two situations are addressed: Either the colloids are kept at fixed positions (canonical ensemble) or the force acting on the colloids is fixed (isobaric-isothermal ensemble). The corresponding partition functions are worked out exactly, in view of determining which arrangement of counterions is optimal. How many counterions should be in the confined segment between the colloids? For the remaining ions outside, is there a left-right symmetry breakdown? We evidence a cascade of transitions as system size is varied in the canonical treatment or as pressure is increased in the isobaric formulation.
Institute of Scientific and Technical Information of China (English)
LIU Jian-Ye; GUO Wen-Jun; XING Yong-Zhong; Li Xi-Guo
2004-01-01
We investigate the isospin effect of Coulomb interaction on the momentum dissipation or nuclear stopping in the intermediate energy heavy ion collisions by using the isospin-dependent quantum molecular dynamics model. The calculated results show that the Coulomb interaction induces obviously the reductions of the momentum dissipation. We also find that the variation amplitude of momentum dissipation induced by the Coulomb interaction depends sensitively on the form and strength of symmetry potential. However, the isospin effect of Coulomb interaction on the momentum dissipation is less than that induced by the in-medium nucleon-nucleon cross section.In this case, Coulomb interaction does not change obviously the isospin effect of momentum dissipation induced by the in-medium two-body collision. In particular, the Coulomb interaction is preferable for standing up the isospin effect of in-medium nucleon-nucleon cross section on the momentum dissipation and reducing the isospin effect of symmetry potential on it, which is important for obtaining the feature about the sensitive dependence of momentum dissipation on the in-medium nucleon-nucleon cross section and weakly on the symmetry potential.
Neutrino energy estimates from multiple Coulomb scattering of upthroughgoing muons in MACRO
Bakari, D; Giorgini, M; Spurio, M
2002-01-01
Summary form only given. Estimates of the energies of neutrino induced muons in MACRO were made by measuring the multiple Coulomb scattering (MCS) in the rock absorbers in the lower part of the MACRO detector. The deflections of muons inside the detector depend on the muon energy. (1 refs).
Dirac-Coulomb scattering with plane wave energy eigenspinors on de Sitter expanding universe
Cotaescu, Ion I
2007-01-01
The lowest order contribution of the amplitude of Dirac-Coulomb scattering in de Sitter spacetime is calculated assuming that the initial and final states of the Dirac field are described by exact solutions of the free Dirac equation on de Sitter spacetime with a given energy and helicity. We find that the total energy is conserved in the scattering process.
Coulomb explosion of nanodroplets drives the conversion of laser energy to nuclear energy
Institute of Scientific and Technical Information of China (English)
Isidore; Last; Shlomo; Ron; Andreas; Heidenreich; Joshua; Jortner
2013-01-01
Theoretical–computational studies of table-top laser-driven nuclear fusion of high-energy(up to 15 MeV)deuterons with7Li,6Li,and D nuclei demonstrate the attainment of high fusion yields within a source–target reaction design.This constitutes a source of Coulomb-exploding deuterium nanodroplets driven by an ultraintense femtosecond near-infrared laser and a solid hollow cylindrical target containing the second element.The source–target reaction design attains the highest table-top fusion efficiencies(up to 4×109J 1per laser pulse)obtained to date.The highest conversion efficiency of laser energy to nuclear energy(10 2–10 3)for table-top DD fusion attained in the source–target design is comparable to that for DT fusion currently accomplished for‘big science’inertial fusion setups.
A New Method for the Atomic Ground-State Energy in the Screened Coulomb Potential
Institute of Scientific and Technical Information of China (English)
YU Peng-Peng; GUO Hua
2001-01-01
The new method proposed recently by Friedberg,Lee and Zhao is applied to the derivation of the atomic ground-state energy with the inclusion of the screening effect.The present results are compared with those obtained in the pure Coulomb potential and by the variational approach.The overall good results are obtained with this new method.``
Multilayer ΔE-E Telescope for Breakup Reactions at Energies around Coulomb Barrier
Institute of Scientific and Technical Information of China (English)
MA; Nan-ru; LIN; Cheng-jian; YANG; Lei; WANG; Dong-xi; SUN; Li-jie; JIA; Hui-ming
2015-01-01
The reaction mechanisms of weakly-bound nuclear systems have attracted much attention lately.To study the Breakup reactions induced by loosely bound nuclei at energies around the Coulomb barrier,a new kind IC-based detector telescope was designed and manufactured,as shown in Fig.1.The combination of a PCB-made
^{11}Li Breakup on ^{208}Pb at Energies Around the Coulomb Barrier
DEFF Research Database (Denmark)
Fernández-García, J.P.; Cubero, M.; Rodríguez-Gallardo, M.
2013-01-01
The inclusive breakup for the 11Li+208Pb reaction at energies around the Coulomb barrier has been measured for the first time. A sizable yield of 9Li following the 11Li dissociation has been observed, even at energies well below the Coulomb barrier. Using the first-order semiclassical perturbatio...
Scattering of light halo nuclei on heavy target at energies around the Coulomb barrier
Directory of Open Access Journals (Sweden)
Tengblad O.
2014-03-01
Full Text Available We report here on experiments performed at TRIUMF to study the scattering of the light halo nuclei 11Li on lead at energies below and around the Coulomb barrier. The the elastic and break-up differential cross section are interpreted in the framework of Continuum-Discretized Coupled-Channel calculations. The departure from Rutherford scattering at energies below the barrier is well beyond the behavior of normal nuclei.
Scattering of light halo nuclei on heavy target at energies around the Coulomb barrier
Tengblad O.; Borge M.J.G.; Cubero M.; Nacher E.; Pesudo V.; Perea A.; Gomez-Camacho J.; Moro A. M.; Fernandez-Garcia J.P.; Alvarez M.A.G.; Rodriguez-Gallardo M.; Lay J. A.; Martel I.; Acosta L.; Sanchez-Benitez A.M.
2014-01-01
INPC 2013 – International Nuclear Physics Conference We report here on experiments performed at TRIUMF to study the scattering of the light halo nuclei 11Li on lead at energies below and around the Coulomb barrier. The the elastic and break-up differential cross section are interpreted in the framework of Continuum-Discretized Coupled-Channel calculations. The departure from Rutherford scattering at energies below the barrier is well beyond the behavior of normal nuclei Consejo Interins...
Energy Technology Data Exchange (ETDEWEB)
Kumar, Rajiv; Sharma, Shagun [DAV University, Physics Department, Jalandhar (India); Singh, Pradeep [Deenbandhu Chhotu Ram University of Science and Technology, Department of Physics, Murthal (India); Kharab, Rajesh [Kurukshetra University, Department of Physics, Kurukshetra (India)
2016-02-15
The energy-independent touching spheres schemes commonly used for the determination of the safe minimum value of the impact parameter for Coulomb excitation experiments are modified through the inclusion of an energy-dependent term. The touching spheres+3fm scheme after modification emerges out to be the best one while touching spheres+4fm scheme is found to be better in its unmodified form. (orig.)
Coulomb charging energy of vacancy-induced states in graphene
Miranda, V. G.; Dias da Silva, Luis G. G. V.; Lewenkopf, C. H.
2016-08-01
Vacancies in graphene have been proposed to give rise to π -like magnetism in carbon materials, a conjecture which has been supported by recent experimental evidence. A key element in this "vacancy magnetism" is the formation of magnetic moments in vacancy-induced electronic states. In this work we compute the charging energy U of a single-vacancy-generated localized state for bulk graphene and graphene ribbons. We use a tight-binding model to calculate the dependency of the charging energy U on the amplitudes of the localized wave function on the graphene lattice sites. We show that for bulk graphene U scales with the system size L as (lnL) -2, confirming the predictions in the literature, based on heuristic arguments. In contrast, we find that for realistic system sizes U is of the order of eV, a value that is orders of magnitude higher than the previously reported estimates. Finally, when edges are considered, we show that U is very sensitive to the vacancy position with respect to the graphene flake boundaries. In the case of armchair nanoribbons, we find a strong enhancement of U in certain vacancy positions as compared to the value for vacancies in bulk graphene.
Asymptotic regimes for diffractive scatterings at ultrahigh energies and coulomb interaction
Anisovich, V V; Nyiri, J
2016-01-01
Comparative analysis of the interplay of hadron and Coulomb interactions in $pp^\\pm$ scattering amplitudes is performed for two extreme cases: for the asymptotic interaction of hadrons in black disk and resonant disk modes. The interactions are discussed in terms of the $K$-matrix function technique, the interference effects are estimated in the energy interval $\\sqrt{s}=1-10^6$ TeV. In both cases the real part of the hadronic amplitude is concentrated on the boundary of the disks in the impact parameter space that causes a growth of interference effects with the energy increase. For the $pp$ scattering at $\\sqrt{s}\\sim 10$ TeV an interplay of the hadron and Coulomb interactions in the resonant disk modes is realized in a specific shoulder in $d\\sigma_{el}/d{\\bf q}^2$ at ${\\bf q}^2\\sim 0.0025-0.0075$ GeV$^2$.
Probing shape coexistence in neutron-deficient $^{72}$Se via low-energy Coulomb excitation
We propose to study the evolution of nuclear structure in neutron-deficient $^{72}$Se by performing a low-energy Coulomb excitation measurement. Matrix elements will be determined for low-lying excited states allowing for a full comparison with theoretical predictions. Furthermore, the intrinsic shape of the ground state, and the second 0$^{+}$ state, will be investigated using the quadrupole sum rules method.
Programmable energy landscapes for kinetic control of DNA strand displacement.
Machinek, Robert R F; Ouldridge, Thomas E; Haley, Natalie E C; Bath, Jonathan; Turberfield, Andrew J
2014-11-10
DNA is used to construct synthetic systems that sense, actuate, move and compute. The operation of many dynamic DNA devices depends on toehold-mediated strand displacement, by which one DNA strand displaces another from a duplex. Kinetic control of strand displacement is particularly important in autonomous molecular machinery and molecular computation, in which non-equilibrium systems are controlled through rates of competing processes. Here, we introduce a new method based on the creation of mismatched base pairs as kinetic barriers to strand displacement. Reaction rate constants can be tuned across three orders of magnitude by altering the position of such a defect without significantly changing the stabilities of reactants or products. By modelling reaction free-energy landscapes, we explore the mechanistic basis of this control mechanism. We also demonstrate that oxDNA, a coarse-grained model of DNA, is capable of accurately predicting and explaining the impact of mismatches on displacement kinetics.
Off-energy-shell p-p scattering at sub-Coulomb energies via the Trojan horse method
Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A.; Rapisarda, G. G.; Campajola, L.; Cherubini, S.; Crucillá, V.; Elekes, Z.; Fülöp, Z.; Gialanella, L.; Gulino, M.; Gyürky, G.; Kiss, G.; Cognata, M. La; Lamia, L.; Ordine, A.; Pizzone, R. G.; Romano, S.; Sergi, M. L.; Somorjai, E.
2008-12-01
Two-proton scattering at sub-Coulomb energies has been measured indirectly via the Trojan horse method applied to the p+d→p+p+n reaction to investigate off-energy shell effects for scattering processes. The three-body experiment was performed at 5 and 4.7 MeV corresponding to a p-p relative energy ranging from 80 to 670 keV. The free p-p cross section exhibits a deep minimum right within this relative energy region due to Coulomb plus nuclear destructive interference. No minimum occurs instead in the Trojan horse p-p cross section, which was extracted by employing a simple plane-wave impulse approximation. A detailed formalism was developed to build up the expression of the theoretical half-off-shell p-p cross section. Its behavior agrees with the Trojan horse data and in turn formally fits the n-n, n-p, and nuclear p-p cross sections given the fact that in its expression the Coulomb amplitude is negligible with respect to the nuclear one. These results confirm the Trojan horse suppression of the Coulomb amplitude for scattering due to the off-shell character of the process.
Probing core polarization around 78Ni: intermediate energy Coulomb excitation of 74Ni
Directory of Open Access Journals (Sweden)
Marchi T.
2013-12-01
We have recently measured the B(E2; 0+ → 2+ of the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment performed at the National Superconducting Cyclotron Laboratory of the Michigan State University. The 74Ni secondary beam has been produced by fragmentation of 86Kr at 140 AMeV on a thick Be target. Selected radioactive fragments impinged on a secondary 197Au target where the measurement of the emitted γ-rays allows to extract the Coulomb excitation cross section and related structure information. Preliminary B(E2 values do not point towards an enhancement of the transition matrix element and the comparison to what was already measured by Aoi and co-workers in [1] opens new scenarios in the interpretation of the shell evolution of the Z=28 isotopes.
Mirror and triplet displacement energies within nuclear DFT: numerical stability
Baczyk, Pawel; Konieczka, Maciej; Nakatsukasa, Takashi; Sato, Koichi; Satula, Wojciech
2016-01-01
Isospin-symmetry-violating class II and III contact terms are introduced into the Skyrme energy density functional to account for charge dependence of the strong nuclear interaction. The two new coupling constants are adjusted to available experimental data on triplet and mirror displacement energies, respectively. We present preliminary results of the fit, focusing on its numerical stability with respect to the basis size.
Study of the elastic scattering of 6He on 208Pb at energies around the Coulomb barrier
Sanchez-Benitez, A M; Escrig, D.; Alvarez, M. A.; Andres, M. V.; Angulo, Carmen; Borge, M. J. G.; J. Cabrera; Cherubini, F.; Demaret, P; Espino, J. M.; Figuera, P.; Freer, Martin; Garcia-Ramos, J. E.; Gomez-Camacho, J.; Gulino, M.
2008-01-01
The elastic scattering of 6He on 208Pb has been measured at laboratory energies of 14, 16, 18 and 22 MeV. These data were analyzed using phenomenological Woods- Saxon form factors and optical model calculations. A semiclassical polarization po- tential was used to study the e ect of the Coulomb dipole polarizability. Evidence for long range absorption, partially arising from Coulomb dipole polarizability, is reported. The energy variation of the optical potential was found to b...
Peculiarities of electron energy spectrum in Coulomb field of super heavy nucleus
Gitman, D M; Ferreira, R; Levin, A D
2015-01-01
Just after the Dirac equation was established, a number of physicists tried to comment on and solve the spectral problem for the Dirac Hamiltonian with the Coulomb field of arbitrarily large charge $Z$, especially with $Z$ that is more than the critical value $Z_{\\mathrm{c}}=\\alpha^{-1}\\simeq137,04$, making sometimes contradictory conclusions and presenting doubtful solutions. It seems that there is no consesus on this problem up until now and especially on the way of using corresponding solutions of the Dirac equation in calculating physical processes. That is why in the present article, we turn once again to discussing peculiarities of electron energy spectrum in the Coulomb field of superheavy nucleus. In the beginning, we remind the reader of a long story with a wrong interpretation of the problem in the case of a point nucleus and its present correct solution. We then turn to the spectral problem in the case of a regularized Coulomb field. Under a specific regularization, we derive an exact spectrum equa...
Hergenhahn, Uwe
2012-12-01
The paper gives an introduction into Interatomic and Intermolecular Coulombic Decay (ICD). ICD is an autoionization process, which contrary to Auger decay involves neighbouring sites of the initial vacancy as an integral part of the decay transition. As a result of ICD, slow electrons are produced which generally are known to be active in radiation damage. The author summarizes the properties of ICD and reviews a number of important experiments performed in recent years. Intermolecular Coulombic Decay can generally take place in weakly bonded aggregates in the presence of ionizing particles or ionizing radiation. Examples collected here mostly use soft X-rays produced by synchrotron radiation to ionize, and use rare-gas clusters, water clusters or solutes in a liquid jet to observe ICD after irradiation. Intermolecular Coulombic Decay is initiated by single ionization into an excited state. The subsequent relaxation proceeds via an ultra-fast energy transfer to a neighbouring site, where a second ionization occurs. Secondary electrons from ICD have clearly been identified in numerous systems. ICD can take place after primary ionization, as the second step of a decay cascade which also involves Auger decay, or after resonant excitation with an energy which exceeds the ionization potential of the system. ICD is expected to play a role whenever particles or radiation with photon energies above the ionization energies for inner valence electrons are present in weakly bonded matter, e.g., biological tissue. The process produces at the same time a slow electron and two charged atomic or molecular fragments, which will lead to structural changes around the ionized site.
Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.
Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M
2015-03-27
An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19} W/ cm^{2}. Highly charged gold ions with kinetic energies up to >200 MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.
Optimal Load and Stiffness for Displacement-Constrained Vibration Energy Harvesters
Halvorsen, Einar
2016-01-01
The power electronic interface to a vibration energy harvester not only provides ac-dc conversion, but can also set the electrical damping to maximize output power under displacement-constrained operation. This is commonly exploited for linear two-port harvesters by synchronous switching to realize a Coulomb-damped resonant generator, but has not been fully explored when the harvester is asynchronously switched to emulate a resistive load. In order to understand the potential of such an approach, the optimal values of load resistance and other control parameters need to be known. In this paper we determine analytically the optimal load and stiffness of a harmonically driven two-port harvester with displacement constraints. For weak-coupling devices, we do not find any benefit of load and stiffness adjustment beyond maintaining a saturated power level. For strong coupling we find that the power can be optimized to agree with the velocity damped generator beyond the first critical force for displacement-constra...
Horizontal displacements contribution to tsunami wave energy balance
Dutykh, Denys; Chubarov, Leonid; Shokin, Yuriy
2010-01-01
The main reason for the generation of tsunamis is the deformation of the bottom of the ocean caused by an underwater earthquake. Usually, only the vertical bottom motion is taken into accound while the horizontal displacements are neglected. In the present paper we study both the vertical and the horizontal bottom motion while we propose a novel methodology for reconstructing the bottom coseismic displacements field which is transmitted to the free surface using a new three-dimensional Weakly Nonlinear (WN) approach. We pay a special attention to the evolution of kinetic and potential energies of the resulting wave while the contribution of horizontal displacements into wave energy balance is also quantified. Approaches proposed in this study are illustrated on the July 17, 2006 Java tsunami.
Scattering of {sup 6}He at energies around the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Sanchez-BenItez, A M [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Escrig, D [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Alvarez, M A G [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla (Spain)] [and others
2005-10-01
We have measured elastic cross sections of the scattering of {sup 6}He at E{sub Lab} = 14, 16, 17, 18 and 22 MeV on {sup 208}Pb in the angular ranges of 20 deg. - 64 deg. and 135 deg. - 170 deg. A significant amount of {sup 4}He events is found at energies well below the Coulomb barrier, that becomes dominant above it. Optical model calculations have been performed including a dynamic polarization potential. Very large imaginary diffuseness parameter is needed in order to describe the experimental distributions.
A new recoil distance technique using low energy coulomb excitation in inverse kinematics
Energy Technology Data Exchange (ETDEWEB)
Rother, W., E-mail: wolfram.rother@googlemail.com [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Dewald, A.; Pascovici, G.; Fransen, C.; Friessner, G.; Hackstein, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Ilie, G. [Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520 (United States); National Institute of Physics and Nuclear Engineering, P.O. Box MG-6, Bucharest-Magurele (Romania); Iwasaki, H. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Jolie, J. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Melon, B. [Dipartimento di Fisica, Universita di Firenze and INFN Sezione di Firenze, Sesto Fiorentino (Firenze) I-50019 (Italy); Petkov, P. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); INRNE-BAS, Sofia (Bulgaria); Pfeiffer, M. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Pissulla, Th. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Bundesumweltministerium, Robert-Schuman-Platz 3, D - 53175 Bonn (Germany); Zell, K.-O. [Institut fuer Kernphysik der Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Jakobsson, U.; Julin, R.; Jones, P.; Ketelhut, S.; Nieminen, P.; Peura, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FI-40014 (Finland); and others
2011-10-21
We report on the first experiment combining the Recoil Distance Doppler Shift technique and multistep Coulomb excitation in inverse kinematics at beam energies of 3-10 A MeV. The setup involves a standard plunger device equipped with a degrader foil instead of the normally used stopper foil. An array of particle detectors is positioned at forward angles to detect target-like recoil nuclei which are used as a trigger to discriminate against excitations in the degrader foil. The method has been successfully applied to measure lifetimes in {sup 128}Xe and is suited to be a useful tool for experiments with radioactive ion beams.
7Be- and 8B-reaction dynamics at Coulomb barrier energies
Directory of Open Access Journals (Sweden)
Mazzocco M.
2016-01-01
Full Text Available We investigated the reaction dynamics induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at energies around the Coulomb barrier. The two measurements are strongly interconnected, being 7Be (Sα = 1.586 MeV the loosely bound core of the even more exotic 8B (Sp = 0.1375 MeV nucleus. Here we summarize the present status of the data analysis for the measurement of the elastic scattering process for both reactions and the preliminary results for the optical model analysis of the collected data.
7Be- and 8B-reaction dynamics at Coulomb barrier energies
Mazzocco, M.; Boiano, A.; Boiano, C.; La Commara, M.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Acosta, L.; Di Meo, P.; Fernandez-Garcia, J. P.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Keeley, N.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lay, J. A.; Lin, C. J.; Marquinez-Duran, G.; Martel, I.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Pakou, A.; Rusek, K.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Sava, T.; Sgouros, O.; Stefanini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Stroe, L.; Teranishi, T.; Toniolo, N.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.
2016-05-01
We investigated the reaction dynamics induced by the Radioactive Ion Beams 7Be and 8B on a 208Pb target at energies around the Coulomb barrier. The two measurements are strongly interconnected, being 7Be (Sα = 1.586 MeV) the loosely bound core of the even more exotic 8B (Sp = 0.1375 MeV) nucleus. Here we summarize the present status of the data analysis for the measurement of the elastic scattering process for both reactions and the preliminary results for the optical model analysis of the collected data.
Quadrupole Collectivity beyond N=28: Intermediate-Energy Coulomb Excitation of Ar47,48
Winkler, R.; Gade, A.; Baugher, T.; Bazin, D.; Brown, B. A.; Glasmacher, T.; Grinyer, G. F.; Meharchand, R.; McDaniel, S.; Ratkiewicz, A.; Weisshaar, D.
2012-05-01
We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei Ar47,48 using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly magic Ca to collective S and Si isotopes, a critical region of shell evolution and structural change. The deduced B(E2) transition strengths are confronted with large-scale shell-model calculations in the sdpf shell using the state-of-the-art SDPF-Uand EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.
Potential displacement of petroleum imports by solar energy technologies
Energy Technology Data Exchange (ETDEWEB)
DeLeon, P.; Jackson, B.L.; McNown, R.F.; Mahrenholz, G.J.
1980-05-01
The United States currently imports close to half of its petroleum requirements. This report delineates the economic, social, and political costs of such a foreign oil dependency. These costs are often intangible, but combined they clearly constitute a greater price for imported petroleum than the strictly economic cost. If we can assume that imported oil imposes significant socioeconomic costs upon the American economy and society, one way to reduce these costs is to develop alternative, domestic energy sources - such as solar energy technologies - which can displace foreign petroleum. The second half of this report estimates that by the year 2000, solar energy technologies can displace 3.6 quads of petroleum. This figure includes solar energy applications in utilities, industrial and agricultural process heat, and transportation. The estimate can be treated as a lower bound; if the United States were to achieve the proposed goal of 20 quads by 2000, the amount of displaced oil probably would be greater. Although all the displaced oil would not be imported, the reduction in imported petroleum would relieve many of the conditions that increase the present cost of foreign oil to the American consumer.
Bohr Hamiltonian with an energy dependent $\\gamma$-unstable Coulomb-like potential
Budaca, R
2016-01-01
An exact analytical solution for the Bohr Hamiltonian with an energy dependent Coulomb-like $\\gamma$-unstable potential is presented. Due to the linear energy dependence of the potential's coupling constant, the corresponding spectrum in the asymptotic limit of the slope parameter resembles the spectral structure of the spherical vibrator, however with a different state degeneracy. The parameter free energy spectrum as well as the transition rates for this case are given in closed form and duly compared with those of the harmonic $U(5)$ dynamical symmetry. The model wave functions are found to exhibit properties that can be associated to shape coexistence. A possible experimental realization of the model is found in few medium nuclei with a very low second $0^{+}$ state known to exhibit competing prolate, oblate and spherical shapes.
Bohr Hamiltonian with an energy-dependent γ-unstable Coulomb-like potential
Energy Technology Data Exchange (ETDEWEB)
Budaca, R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele (Romania)
2016-10-15
An exact analytical solution for the Bohr Hamiltonian with an energy-dependent Coulomb-like γ-unstable potential is presented. Due to the linear energy dependence of the potential's coupling constant, the corresponding spectrum in the asymptotic limit of the slope parameter resembles the spectral structure of the spherical vibrator, however with a different state degeneracy. The parameter free energy spectrum as well as the transition rates for this case are given in closed form and duly compared with those of the harmonic U(5) dynamical symmetry. The model wave functions are found to exhibit properties that can be associated to shape coexistence. A possible experimental realization of the model is found in few medium nuclei with a very low second 0{sup +} state known to exhibit competing prolate, oblate and spherical shapes. (orig.)
Scattering of 9Li on 208Pb at energies around the Coulomb barrier
Directory of Open Access Journals (Sweden)
Moro A.
2011-10-01
Full Text Available In order to study the dynamics of 11Li and 9Li beams in a strong electric ﬁeld at energies around the Coulomb barrier, we measured at the ISACII-TRIUMF Facility the angular distribution of elastic and inelastic scattering of 11Li+208Pb at 24.2 and 29.7 MeV and 9Li+208Pb at 24, 29.5 and 33 MeV laboratory energies. We present here the ﬁrst determination of the angular distribution of the cross section of 9Li+208Pb. The results are compared with theoretical calculations using the double-folding São Paulo Potential (SPP for the real part and a for the imaginary part a Woods-Saxon potential. A good overall agreement is obtained.
Fusion and Direct Reactions of Halo Nuclei at Energies around the Coulomb Barrier
Keeley, N; Raabe, R; Sida, J L
2007-01-01
The present understanding of reaction processes involving light unstable nuclei at energies around the Coulomb barrier is reviewed. The effect of coupling to direct reaction channels on elastic scattering and fusion is investigated, with the focus on halo nuclei. A list of definitions of processes is given, followed by a review of the experimental and theoretical tools and information presently available. The effect of couplings on elastic scattering and fusion is studied with a series of model calculations within the coupled-channels framework. The experimental data on fusion are compared to "bare" no-coupling one-dimensional barrier penetration model calculations. On the basis of these calculations and comparisons with experimental data, conclusions are drawn from the observation of recurring features. The total fusion cross sections for halo nuclei show a suppression with respect to the "bare" calculations at energies just above the barrier that is probably due to single neutron transfer reactions. The dat...
Evolution of collectivity in the 78Ni region: Coulomb excitation of 74Ni at intermediate energies.
Directory of Open Access Journals (Sweden)
Marchi T.
2014-03-01
Full Text Available The study of the collective properties of nuclear excitations far from stability provides information about the shell structure at extreme conditions. Spectroscopic observables such as the energy or the transition probabilities of the lowest states, in nuclei with large neutron excess, allow to probe the density and isospin dependence of the effective interaction. Indeed, it was recently shown that tensor and three-body forces play an important role in breaking and creating magic numbers. Emblematic is the case of the evolution of the Ni isotopic chain where several features showed up moving from the most neutron rich stable isotope (64Ni towards the 78Ni nucleus where the large neutron excess coincides with a double shell closure. In this framework, we have recently performed an experiment with the goal to extract the B(E2; 0+ → 2+ value for the 74Ni nucleus in an intermediate-energy Coulomb excitation experiment: preliminary results are discussed.
Universal trend for heavy-ion total reaction cross sections at energies above the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Tavares, O.A.P.; Medeiros, E.L., E-mail: emil@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Morcelle, V. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica
2010-06-15
Heavy-ion total reaction cross section measurements for more than one thousand one hundred reaction cases covering 61 target nuclei in the range {sup 6}Li-{sup 238}U, and 158 projectile nuclei from {sup 2}H up to {sup 84}Kr (mostly exotic ones) have been analysed in a systematic way by using an empirical, three-parameter formula which is applicable to cases for projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities which describe the cross section patterns. A great number of cross section data (87%) has been quite satisfactorily reproduced by the proposed formula, therefore total reaction cross section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25 percent (or much less) of uncertainty (author)
Coulomb Interaction Effect in Weyl Fermions with Tilted Energy Dispersion in Two Dimensions
Isobe, Hiroki; Nagaosa, Naoto
2016-03-01
Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α -(BEDT -TTF )2I3 and three-dimensional WTe2 . The Coulomb interaction between electrons modifies the velocities in an essential way in the low-energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the speed of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.
Study of the elastic scattering of {sup 6}He on {sup 208}Pb at energies around the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Sanchez-Benitez, A.M. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Centre de Recherches du Cyclotron, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Escrig, D. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Alvarez, M.A.G.; Andres, M.V. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla (Spain); Angulo, C. [Centre de Recherches du Cyclotron, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Borge, M.J.G. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Cabrera, J. [Centre de Recherches du Cyclotron, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Cherubini, S. [INFN Laboratori Nazionali del Sud, I-95123 Catania (Italy); Demaret, P. [Centre de Recherches du Cyclotron, Universite Catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Espino, J.M. [Dept. de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla (Spain); Figuera, P. [INFN Laboratori Nazionali del Sud, I-95123 Catania (Italy); Freer, M. [School of Physics and Astronomy, University of Birmingham, B15 2TT Birmingham (United Kingdom); Garcia-Ramos, J.E. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Gomez-Camacho, J. [Dept. de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla (Spain); Gulino, M. [INFN Laboratori Nazionali del Sud, I-95123 Catania (Italy); Kakuee, O.R. [Van der Graaff Laboratory, Nuclear Research Centre, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Martel, I. [Dept. de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain)], E-mail: imartel@uhu.es; Metelko, C. [School of Physics and Astronomy, University of Birmingham, B15 2TT Birmingham (United Kingdom); Moro, A.M. [Dept. de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, E-41080 Sevilla (Spain)] (and others)
2008-04-15
The elastic scattering of {sup 6}He on {sup 208}Pb has been measured at laboratory energies of 14, 16, 18 and 22 MeV. These data were analyzed using phenomenological Woods-Saxon form factors and optical model calculations. A semiclassical polarization potential was used to study the effect of the Coulomb dipole polarizability. Evidence for long range absorption, partially arising from Coulomb dipole polarizability, is reported. The energy variation of the optical potential was found to be consistent with the dispersion relations which connect the real and imaginary parts of the potential.
Intermediate-energy Coulomb excitation of 104Sn: Moderate E2 strength decrease approaching 100Sn
Doornenbal, P; Aoi, N; Matsushita, M; Obertelli, A; Steppenbeck, D; Wang, H; Audirac, L; Baba, H; Bednarczyk, P; Boissinot, S; Ciemala, M; Corsi, A; Furumoto, T; Isobe, T; Jungclaus, A; Lapoux, V; Lee, J; Matsui, K; Motobayashi, T; Nishimura, D; Ota, S; Pollacco, E C; Sakurai, H; Santamaria, C; Shiga, Y; Sohler, D; Taniuchi, R
2013-01-01
The reduced transition probability B(E2) of the first excited 2+ state in the nucleus 104Sn was measured via Coulomb excitation in inverse kinematics at intermediate energies. A value of 0.163(26) e^2b^2 was extracted from the absolute cross-section on a Pb target, while the method itself was verified with the stable 112Sn isotope. Our result deviates significantly from the earlier reported value of 0.10(4) e^2b^2 and corresponds to a moderate decrease of excitation strength relative to the almost constant values observed in the proton-rich, even-A 106-114Sn isotopes. Present state-of-the-art shell-model predictions, which include proton and neutron excitations across the N=Z=50 shell closures as well as standard polarization charges, underestimate the experimental findings
Intrinsic deep hole trap levels in Cu2O with self-consistent repulsive Coulomb energy
Huang, Bolong
2016-03-01
The large error of the DFT+U method on full-filled shell metal oxides is due to the residue of self-energy from the localized d orbitals of cations and p orbitals of the anions. U parameters are selfconsistently found to achieve the analytical self-energy cancellation. The improved band structures based on relaxed lattices of Cu2O are shown based on minimization of self-energy error. The experimentally reported intrinsic p-type trap levels are contributed by both Cu-vacancy and the O-interstitial defects in Cu2O. The latter defect has the lowest formation energy but contributes a deep hole trap level while the Cuvacancy has higher energy cost but acting as a shallow acceptor. Both present single-particle levels spread over nearby the valence band edge, consistent to the trend of defects transition levels. By this calculation approach, we also elucidated the entanglement of strong p-d orbital coupling to unravel the screened Coulomb potential of fully filled shells.
Elastic scattering of 17O+208Pb at energies near the Coulomb barrier
Directory of Open Access Journals (Sweden)
Torresi D.
2016-01-01
Full Text Available Within the frame of the commissioning of a new experimental apparatus EXPADES we undertook the measurement of the elastic scattering angular distribution for the system 17O+208Pb at energy around the Coulomb barrier. The reaction dynamics induced by loosely bound Radioactive Ion Beams is currently being extensively studied [4]. In particular the study of the elastic scattering process allows to obtain direct information on the total reaction cross section of the exotic nuclei. In order to understand the effect of the low binding energy on the reaction mechanism it is important to compare radioactive weakly bound nuclei with stable strongly-bound nuclei. In this framework the study of the 17O+208Pb elastic scattering can be considered to be complementary to a previous measurement of the total reaction cross section for the system 17F+208Pb at energies of 86, 90.4 MeV [5, 6]. The data will be compared with those obtained for the neighboring systems 16,18O+208Pb and others available in literature.
Elastic scattering of 17O+208Pb at energies near the Coulomb barrier
Torresi, D.; Strano, E.; Mazzocco, M.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Nicoletto, M.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Soramel, F.; Toniolo, N.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Jeong, S.; Kim, Y. H.; Lay, J. A.; Miyatake, H.; Pakou, A.; Sgouros, O.; Soukeras, V.; Stroe, L.; Vitturi, A.; Watanabe, Y.; Zerva, K.
2016-05-01
Within the frame of the commissioning of a new experimental apparatus EXPADES we undertook the measurement of the elastic scattering angular distribution for the system 17O+208Pb at energy around the Coulomb barrier. The reaction dynamics induced by loosely bound Radioactive Ion Beams is currently being extensively studied [4]. In particular the study of the elastic scattering process allows to obtain direct information on the total reaction cross section of the exotic nuclei. In order to understand the effect of the low binding energy on the reaction mechanism it is important to compare radioactive weakly bound nuclei with stable strongly-bound nuclei. In this framework the study of the 17O+208Pb elastic scattering can be considered to be complementary to a previous measurement of the total reaction cross section for the system 17F+208Pb at energies of 86, 90.4 MeV [5, 6]. The data will be compared with those obtained for the neighboring systems 16,18O+208Pb and others available in literature.
Escrig, Diego; Sánchez Benítez, Ángel Miguel; Moro, A. M.; González Álvarez, Marcos A.; Andrés, M. V.; Angulo, C.; García Borge, María José; Cabrera Caño, Jesús; Cherubini, S.; Damaret, P.; Espino, José Manuel; Figuera, P.; Freer, M.; García Ramos, José Enrique; Gómez Camacho, Joaquín
2007-01-01
New experimental data from the scattering of 6He + 208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of α particles. The energy and angular distribution of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the α particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakly bound state...
alpha-particle production in the scattering of 6He by 208Pb at energies around the Coulomb barrier
Escrig, D.; Sanchez-Benitez, A M; Moro, A. M.; Alvarez, M. A. G.; Andres, M. V.; Angulo, C.; Borge, M. J. G.; J. Cabrera; Cherubini, S.; Demaret, P; Espino, J. M.; Figuera, P.; Freer, M.; Garcia-Ramos, J. E.; Gomez-Camacho, J.
2007-01-01
New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of $\\alpha$ particles. The energy and angular distributions of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the $\\alpha$ particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakl...
Kinetic energy distribution of multiply charged ions in Coulomb explosion of Xe clusters.
Heidenreich, Andreas; Jortner, Joshua
2011-02-21
We report on the calculations of kinetic energy distribution (KED) functions of multiply charged, high-energy ions in Coulomb explosion (CE) of an assembly of elemental Xe(n) clusters (average size (n) = 200-2171) driven by ultra-intense, near-infrared, Gaussian laser fields (peak intensities 10(15) - 4 × 10(16) W cm(-2), pulse lengths 65-230 fs). In this cluster size and pulse parameter domain, outer ionization is incomplete∕vertical, incomplete∕nonvertical, or complete∕nonvertical, with CE occurring in the presence of nanoplasma electrons. The KEDs were obtained from double averaging of single-trajectory molecular dynamics simulation ion kinetic energies. The KEDs were doubly averaged over a log-normal cluster size distribution and over the laser intensity distribution of a spatial Gaussian beam, which constitutes either a two-dimensional (2D) or a three-dimensional (3D) profile, with the 3D profile (when the cluster beam radius is larger than the Rayleigh length) usually being experimentally realized. The general features of the doubly averaged KEDs manifest the smearing out of the structure corresponding to the distribution of ion charges, a marked increase of the KEDs at very low energies due to the contribution from the persistent nanoplasma, a distortion of the KEDs and of the average energies toward lower energy values, and the appearance of long low-intensity high-energy tails caused by the admixture of contributions from large clusters by size averaging. The doubly averaged simulation results account reasonably well (within 30%) for the experimental data for the cluster-size dependence of the CE energetics and for its dependence on the laser pulse parameters, as well as for the anisotropy in the angular distribution of the energies of the Xe(q+) ions. Possible applications of this computational study include a control of the ion kinetic energies by the choice of the laser intensity profile (2D∕3D) in the laser-cluster interaction volume.
Analytical structure and properties of Coulomb wave functions for real and complex energies
Humblet, J.
1984-07-01
The radical Coulomb wave functions are analysed in their dependence on the energy E considered as a complex parameter. Repulsive and attractive fields are both considered. First turning to the function Φl ∝ r- l-1 Fl introduced by Briet, slightly modifying its definition, and assuming that the angular momentum is also a complex parameter, for which the notation L is used, it is proved that ΦL is an entire function of both E and L. From an expansion of the regular Whittaker function given by Buchholz, the Taylor expansion of ΦL in powers of E and a simple recurrence relation for its coefficients are easily obtained. The expansion of the regular function Fl is readily obtained from that of ΦL for L = l, but the irregular function Gl contains Φl and ∂Φ L/∂L for L = l and - l-1. Having proved that the expansion obtained for ΦL in powers of E can also be regarded as a uniformly convergent series of entire functions of L, the derivative ∂Φ L/∂L can be obtained by term-by-term derivation. This method for obtaining the expansion of Gl is straightforward and leads to a final result involving essentially: (i) the conventional function h(η) = 1/2ψ(1 + iη) + 1/2ψ(1 - iη) - ln η which is singular at η = ∞, i.e., at k = 0; (ii) two entire functions of E, namely Φl and Ψl; the terms of the expansion of the latter in powers of E contain only Bessel functions multiplied by Bernoulli numbers and coefficients easily obtained from a simple recurrence relation. As an application of the above results, the last sections contain: (i) an alternate from of Gl expansion useful in numerical computations; (ii) the definition and expansion of two linearly independent solutions of the Coulomb equation which are entire in E; (iii) the expansion and threshold properties of the outgoing and incoming solutions, Ol and Il, corresponding to those we have obtained for Fl and Gl.
Fermi and Coulomb correlation effects upon the interacting quantum atoms energy partition
Ruiz, Isela; Holguín-Gallego, Fernando José; Francisco, Evelio; Pendás, Ángel Martín; Rocha-Rinza, Tomás
2016-01-01
The Interacting Quantum Atoms (IQA) electronic energy partition is an important method in the field of quantum chemical topology which has given important insights of different systems and processes in physical chemistry. There have been several attempts to include Electron Correlation (EC) in the IQA approach, for example, through DFT and Hartree-Fock/Coupled-Cluster (HF/CC) transition densities. This work addresses the separation of EC in Fermi and Coulomb correlation and its effect upon the IQA analysis by taking into account spin-dependent one- and two-electron matrices $D^{\\mathrm{HF/CC}}_{p\\sigma q \\sigma}$ and $d^{\\mathrm{HF/CC}}_{p\\sigma q\\sigma r\\tau s\\tau}$ wherein $\\sigma$ and $\\tau$ represent either of the $\\alpha$ and $\\beta$ spin projections. We illustrate this approach by considering BeH$_2$,BH, CN$^-$, HF, LiF, NO$^+$, LiH, H$_2$O$\\cdots$H$_2$O and C$_2$H$_2$, which comprise non-polar covalent, polar covalent, ionic and hydrogen bonded systems. The same and different spin contributions to ($i$...
Indian Academy of Sciences (India)
Karan Singh Vinayak; Suneel Kumar
2014-03-01
Within the framework of isospin-dependent quantum molecular dynamics (IQMD) model, we demonstrate the evolution of intermediate mass fragments in heavy-ion collisions. In this paper, we study the time evolution, impact parameter, and excitation energy dependence of IMF production for the different forms of density-dependent symmetry energy. The IMF production and charge distribution show a minor but considerable sensitivity towards various forms of densitydependent symmetry energy. The Coulomb interactions affect the IMF production significantly at peripheral collisions. The IMF production increases with the stiffness of symmetry energy.
Effect of compound nuclear reaction mechanism in 12C(6Li,d) reaction at sub-Coulomb energy
Mondal, Ashok; Adhikari, S.; Basu, C.
2017-09-01
The angular distribution of the 12C(6Li,d) reaction populating the 6.92 and 7.12 MeV states of 16O at sub-Coulomb energy (Ecm=3 MeV) are analysed in the framework of the Distorted Wave Born Approximation (DWBA). Recent results on excitation function measurements and backward angle angular distributions derive ANC for both the states on the basis of an alpha transfer mechanism. In the present work, we show that considering both forward and backward angle data in the analysis, the 7.12 MeV state at sub-Coulomb energy is populated from Compound nuclear process rather than transfer process. The 6.92 MeV state is however produced from direct reaction mechanism.
Chakraborty, Baishali; Sen, Siddhartha
2012-01-01
We study the combined effect of a conical topological defect and a Coulomb charge impurity on the dynamics of Dirac fermions in gapped graphene. Beyond a certain strength of the Coulomb charge, quantum instability sets in, which demarcates the boundary between sub and supercritical values of the charge. In the subcritical regime, for certain values of the system parameters, the allowed boundary conditions in gapped graphene cone can be classified in terms of a single real parameter. We show that the observables such as local density of states, scattering phase shifts and the bound state spectra are sensitive to the value of this real parameter, which is interesting from an empirical point of view. For a supercritical Coulomb charge, we analyze the system with a regularized potential as well as with a zigzag boundary condition and find the effect of the sample topology on the observable features of the system.
Coulomb Explosion and Energy Loss of Energetic C_(20) Clusters in Dense Plasmas
Institute of Scientific and Technical Information of China (English)
WANG Gui-Qiu; LI Wen-Kun; WANG You-Nian
2009-01-01
The molecular dynamics(MD)method is used to simulate the interactions of energetic C_(20) clusters with the dense plasma targets within the framework of the linear Vlasov-Poisson theory.The influences of various clusters(H_2,N_2,C_(20) and C_(60) respectively)on stopping power are discussed.The simulation results show that the vicinage effects in the Coulomb explosion dynamics and the stopping power are strongly affected by the variations in the cluster speed and the plasma parameters.Coulomb explosions axe found to proceed faster for higher speeds,lower plasma densities and higher electron temperatures.In addition,the cluster stopping power is strongly enhanced in the early stages of Coulomb explosions due to the vicinage effect,but this enhancement eventually diminishes,after the cluster constituent ions are sufficiently separated.For the large and heavy clusters,the stopping power ratio reaches much higher values in the early stage of Coulomb explosion owing to the constructive interferences in the vicinage effect.
Escrig, D; Moro, A M; Alvarez, M A G; Andrés, M V; Angulo, C; García-Borge, M J; Cabrera, J; Cherubini, S; Demaret, P; Espino, J M; Figuera, P; Freer, M; García-Ramos, J E; Gómez-Camacho, J; Gulino, M; Kakuee, O R; Martel, I; Metelko, C; Pérez-Bernal, F; Rahighi, J; Rusek, K; Smirnov, D; Tengblad, O; Ziman, V
2007-01-01
New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of $\\alpha$ particles. The energy and angular distributions of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the $\\alpha$ particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakly bound states of the final nucleus.
First measurement with a new setup for low-energy Coulomb excitation studies at INFN LNL
Rocchini, M.; Hadyńska-Klȩk, K.; Nannini, A.; Valiente-Dobón, J. J.; Goasduff, A.; Testov, D.; John, P. R.; Mengoni, D.; Zielińska, M.; Bazzacco, D.; Benzoni, G.; Boso, A.; Cocconi, P.; Chiari, M.; Doherty, D. T.; Galtarossa, F.; Jaworski, G.; Komorowska, M.; Matejska-Minda, M.; Melon, B.; Menegazzo, R.; Napiorkowski, P.; Napoli, D. R.; Ottanelli, M.; Perego, A.; Ramina, L.; Rampazzo, M.; Recchia, F.; Riccetto, S.; Rosso, D.; Siciliano, M.; Sona, P.
2017-07-01
A new segmented particle detector, SPIDER, has been designed to be used as an ancillary device with the GALILEO γ-ray spectrometer, as well as with other multi-detector γ-ray arrays that will be available at LNL in the future (e.g. AGATA). To commission the SPIDER-GALILEO experimental setup, a multi-step Coulomb excitation experiment was carried out with a 240 MeV beam of 66Zn produced by the Tandem-XTU accelerator at INFN Laboratori Nazionali di Legnaro. The measured particle and γ-ray spectra are compared with the results of detailed GEANT4 simulations which used the Coulomb excitation cross sections, estimated with the computer code GOSIA, as an input. The preliminary results indicate that precise transition probabilities will be obtained which are essential for solving discrepancies reported in the literature for this nucleus.
Ferreira, Lizé-Mari; Eaby, Alan; Dillen, Jan
2017-09-30
The topology of the Coulomb potential density has been studied within the context of the theory of Atoms in Molecules and has been compared with the topologies of the electron density, the virial energy density and the Ehrenfest force density. The Coulomb potential density is found to be mainly structurally homeomorphic with the electron density. The Coulomb potential density reproduces the non-nuclear attractor which is observed experimentally in the molecular graph of the electron density of a Mg dimer, thus, for the first time ever providing an alternative and energetic foundation for the existence of this critical point. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Buehring, W.
1983-03-01
Non-relativistic scattering phase shifts, bound state energies, and wave function normalization factors for a screened Coulomb potential of the Hulthen type are presented in the form of relatively simple analytic expressions. These formulae have been obtained by a suitable renormalization procedure applied to the quantities derived from an approximate Schroedinger equation which contains the exact Hulthen potential together with an approximate angular momentum term. When the screening exponent vanishes, our formulae reduce to the exact Coulomb expresions. The interrelation between our formulae and Pratt's analytic perturbation theory for screened Coulomb potentials' is discussed.
Wang, Bing; Diaz-Torres, Alexis; Zhao, En-Guang; Zhou, Shan-Gui
2016-01-01
Complete fusion excitation functions of reactions involving breakup are studied by using the empirical coupled-channel (ECC) model with breakup effects considered. An exponential function with two parameters is adopted to describe the prompt-breakup probability in the ECC model. These two parameters are fixed by fitting the measured prompt-breakup probability or the complete fusion cross sections. The suppression of complete fusion at energies above the Coulomb barrier is studied by comparing the data with the predictions from the ECC model without the breakup channel considered. The results show that the suppression of complete fusion are roughly independent of the target for the reactions involving the same projectile.
Mukherjee, Arup K
2011-01-01
Bending of DNA from a straight rod to a circular form in presence of any of the mono-, di-, tri- or tetravalent counterions has been simulated in strong Coulomb coupling environment employing a previously developed energy minimization simulation technique. The inherent characteristics of the simulation technique allow monitoring the required electrostatic contribution to the bending. The curvature of the bending has been found to play crucial roles in facilitating electrostatic attractive potential energy. The total electrostatic potential energy has been found to decrease with bending which indicates that bending a straight DNA to a circular form or to a toroidal form in presence of neutralizing counterions is energetically favorable and practically is a spontaneous phenomenon.
Nishida, Yusuke
2014-10-01
We study massless Dirac fermions in a supercritical Coulomb potential with the emphasis on that its low-energy physics is universal and parametrized by a single quantity per supercritical angular momentum channel. This low-energy parameter with the dimension of length is defined only up to multiplicative factors and thus each supercritical channel exhibits the discrete scale invariance. In particular, we show that the induced vacuum polarization has a power-law tail whose coefficient is a sum of log-periodic functions with respect to the distance from the potential center. This coefficient can also be expressed in terms of the energy and width of so-called atomic collapse resonances. Our universal predictions on the vacuum polarization and its relationship to atomic collapse resonances shed light on the longstanding fundamental problem of quantum electrodynamics and can in principle be tested by graphene experiments with charged impurities.
Influence of subcascade formation on displacement damage at high PKA energies
Energy Technology Data Exchange (ETDEWEB)
Stoller, R.E. [Oak Ridge National Lab., TN (United States); Greenwood, L.R. [Pacific Northwest National Lab., Richland, WA (United States)
1997-08-01
The design of first generation fusion reactors will have to be rely on radiation effects data obtained from experiments conducted in fission reactors. Two issues must be addressed to use this data with confidence. The first is differences in the neutron energy spectrum, and the second is differences in nuclear transmutation rates. Differences in the neutron energy spectra are reflected in the energy spectra of the primary knockon atoms (PKA). The issue of PKA energy effects has been addressed through the use of displacement cascade simulations using the method of molecular dynamics (MD). Although MD simulations can provide a detailed picture of the formation and evolution of displacement cascades, they impose a substantial computational burden. However, recent advances in computing equipment permit the simulation of high energy displacement events involving more than one-million atoms; the results presented here encompass MD cascade simulation energies from near the displacement threshold to as high as 40 keV. Two parameters have been extracted from the MD simulations: the number of point defects that remain after the displacement event is completed and the fraction of the surviving interstitials that are contained in clusters. The MD values have been normalized to the number of atomic displacements calculated with the secondary displacement model by Norgett, Robinson, and Torrens (NRT).
Amador-Valenzuela, P.; Aguilera, E. F.; Martinez-Quiroz, E.; Lizcano, D.; Morales-Rivera, J. C.
2017-07-01
Recently, experimental measurements of elastic scattering angular distributions for the system7Li+58Ni at ten different energies around the Coulomb barrier were made by the Heavy-Ion Group. The measurements were made at the Tandem Van de Graaff Particle Accelerator Laboratory in the National Institute for Nuclear Research (ININ) in Mexico. In this work, preliminary elastic scattering angular distributions for five energies (E lab , = 12.0, 12.5, 13.0, 13.5 and 14.22 MeV) are presented. The preliminary experimental data were analyzed using the São Paulo Optical Model Potential (SPP) which is based on a double-folding potential, reproducing very well these data. A comparison is made with old data reported back in 1973 and in 2012. Further analysis is in progress in order to fully understand this particular system, specially because7Li is known to be a weakly bound nucleus.
Reaction study of {sup 11}Li on {sup 208}Pb target at energies close the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Cubero, Mario; Jose Borge, Maria; Tengblad, Olof; Alcorta, Martin; Madurga, Miguel [Instituto de Estructura de la Materia, Madrid (Spain); Camacho, Joaquin [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Sevilla (Spain); Martel, Ismael [Departamento de Fisica Aplicada, Universidad de Huelva, Huelva (Spain); Walden, Pat [TRI-University Meson Facilities, University of British Columbia, Vancouver (Canada)
2009-07-01
In the past 20 years there has been interest among the nuclear physics community to study the exotic properties observed in halo nuclei such as {sup 11}Li. Recent theoretical calculations predicted a deviation of the elastic cross section from the standard Rutherford formula, expected due to the dipole structure formed by the {sup 9}Li core and the halo neutrons when passing near the strong Coulomb produced by the Pb target. To explore this effect, the scattering and breakup reactions of the two-neutron halo nucleus {sup 11}Li were measured at ISACII-TRIUMF. Data was obtained at energies around, below and above the Coulomb barrier, 2.7 MeV/u. We used a set of four telescopes with PAD silicon detectors behind in order to clearly identified all fragments in the full detection angles covering 10-140 degree.In this contribution we present the analysis of the {sup 9}Li scattering data that it is needed to understand the effect on the {sup 11}Li cross sections. We also present preliminary results of the {sup 11}Li scattering.
Coulomb energy difference as a probe of isospin-symmetry breaking in the upper fp-shell nuclei
Kaneko, K; Sun, Y; Tazaki, S; de Angelis, G
2012-01-01
The anomaly in Coulomb energy differences (CED) between the isospin T=1 states in the odd-odd N=Z nucleus 70Br and the analogue states in its even-even partner 70Se has remained a puzzle. This is a direct manifestation of isospin-symmetry breaking in effective nuclear interactions. Here, we perform large-scale shell-model calculations for nuclei with A=66-78 using the new filter diagonalization method based on the Sakurai-Sugiura algorithm. The calculations reproduce well the experimental CED. The observed negative CED for A=70 are accounted for by the cross-shell neutron excitations from the fp-shell to the g9/2 intruder orbit with the enhanced electromagnetic spin-orbit contribution at this special nucleon number.
Effect of strain and temperature on the threshold displacement energy in body-centered cubic iron
Beeler, Benjamin; Asta, Mark; Hosemann, Peter; Grønbech-Jensen, Niels
2016-06-01
The threshold displacement energy (TDE) is the minimum amount of kinetic energy required to displace an atom from its lattice site. The magnitude of the TDE displays significant variance as a function of the crystallographic direction, system temperature and applied strain, among a variety of other factors. It is critically important to determine an accurate value of the TDE in order to calculate the total number of displacements due to a given irradiation condition, and thus to understand the materials response to irradiation. In this study, molecular dynamics simulations have been performed to calculate the threshold displacement energy in body-centered cubic iron as a function of strain and temperature. With applied strain, a decrease of the TDE of up to approximately 14 eV was observed. A temperature increase from 300 K to 500 K can result in an increase of the TDE of up to approximately 9 eV.
Tsunami Energy, Ocean-Bottom Pressure, and Hydrodynamic Force from Stochastic Bottom Displacement
Ramadan, Khaled T.; Omar, M. A.; Allam, Allam A.
2017-03-01
Tsunami generation and propagation due to a randomly fluctuating of submarine earthquake modeled by vertical time-dependent of a stochastic bottom displacement are investigated. The increase in oscillations and amplitude in the free surface elevation are controlled by the noise intensity parameter of the stochastic bottom displacement. Evolution of kinetic and potential energy of the resulting waves by the stochastic bottom displacement is examined. Exchange between potential and kinetic energy was achieved in the propagation process. The dynamic ocean-bottom pressure during tsunami generation is investigated. As the vertical displacement of the stochastic bottom increases, the peak amplitude of the ocean-bottom pressure increases through the dynamic effect. Time series of the maximum tsunami wave amplitude, kinetic and potential energy, wave and ocean-bottom pressure gauges and the hydrodynamic force caused by the stochastic source model under the effect of the water depth of the ocean are investigated.
Scaling of the Coulomb Energy Due to Quantum Fluctuations in the Charge on a Quantum Dot
DEFF Research Database (Denmark)
Molenkamp, L. W; Flensberg, Karsten; Kemerink, M.
1995-01-01
The charging energy of a quantum dot is measured through the effect of its potential on the conductance of a second dot. This technique allows a measurement of the scaling of the dot's charging energy with the conductance of the tunnel barriers leading to the dot. We find that the charging energy...... scales quadratically with the reflection probability of the barriers. The observed power law agrees with a recent theory....
Coulomb crystals in the magnetic field
Baiko, D A
2009-01-01
The body-centered cubic Coulomb crystal of ions in the presence of a uniform magnetic field is studied using the rigid electron background approximation. The phonon mode spectra are calculated for a wide range of magnetic field strengths and for several orientations of the field in the crystal. The phonon spectra are used to calculate the phonon contribution to the crystal energy, entropy, specific heat, Debye-Waller factor of ions, and the rms ion displacements from the lattice nodes for a broad range of densities, temperatures, chemical compositions, and magnetic fields. Strong magnetic field dramatically alters the properties of quantum crystals. The phonon specific heat increases by many orders of magnitude. The ion displacements from their equilibrium positions become strongly anisotropic. The results can be relevant for dusty plasmas, ion plasmas in Penning traps, and especially for the crust of magnetars (neutron stars with superstrong magnetic fields $B \\gtrsim 10^{14}$ G). The effect of the magnetic ...
Coulomb driven energy boost of heavy ions for laser plasma acceleration
Braenzel, J; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M
2014-01-01
An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultra thin gold foils have been irradiated by an ultra short laser pulse at an intensity of $6\\times 10^{19}$ W/cm$^{2}$. Highly charged gold ions with kinetic energies up to $> 200$ MeV and a bandwidth limited energy distribution have been reached by using $1.3$ Joule laser energy on target. $1$D and $2$D Particle in Cell simulations show how a spatial dependence on the ions ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a varying charge density along the target normal and is capable of explaining the energy boost of highly charged ions, leading to a higher efficiency in laser acceleration of heavy ions.
Intrinsic deep hole trap levels in $Cu_{2}O$ with self-consistent repulsive Coulomb energy
Huang, Bolong
2015-01-01
The large error of the DFT+U method on full-filled shell metal oxides is due to the residue of self-energy from the localized d orbitals of cations and p orbitals of the anions. U parameters are self-consistently found to achieve the analytical self-energy cancellation. The improved band structures based on relaxed lattices of ${Cu_{2}O}$ are shown based on minimization of self-energy error. The experimentally reported intrinsic p-type trap levels are contributed by both Cu-vacancy and the O-...
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
Hu, Yuanan; Cheng, Hefa
2017-01-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10–50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy. PMID:28211467
Displacement efficiency of alternative energy and trans-provincial imported electricity in China.
Hu, Yuanan; Cheng, Hefa
2017-02-17
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
Hu, Yuanan; Cheng, Hefa
2017-02-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Universal trend for heavy-ion total reaction cross-sections at energies above the Coulomb barrier
Tavares, O. A. P.; Medeiros, E. L.; Morcelle, V.
2010-08-01
Heavy-ion total reaction cross-section measurements for more than 1100 reaction cases covering 61 target nuclei in the range 6Li-238U and 158 projectile nuclei from 2H to 84Kr (mostly exotic ones) have been analyzed in a systematic way by using an empirical, three-parameter formula that is applicable to the cases of projectile kinetic energies above the Coulomb barrier. The analysis has shown that the average total nuclear binding energy per nucleon of the interacting nuclei and their radii are the chief quantities that describe the cross-section patterns. A great amount of cross-section data (87%) has been quite satisfactorily reproduced by the proposed formula; therefore, the total reaction cross-section predictions for new, not yet experimentally investigated reaction cases can be obtained within 25% (or much less) uncertainty. Dedicated to CBPF—Centro Brasileiro de Pesquisas Físicas in its celebration of the 60th anniversary of its foundation.
Vladimirov, P. V.; Borodin, V. A.
2017-02-01
Beryllium selected as a neutron multiplier material for the tritium breeding blanket of fusion reactor should withstand high doses of fast neutron irradiation. The damage produced by irradiation is usually evaluated assuming that the number of atomic displacements to the threshold displacement energy, Ed, which is considered as an intrinsic material parameter. In this work the value of Ed for hcp beryllium is estimated simultaneously from classical and first-principles molecular dynamics simulations. Quite similar quantitative pictures of defect production are observed in both simulation types, though the predicted displacement threshold values seem to be approximately two times higher in the first-principles approach. We expect that, after more detailed first-principles investigations, this approach can be used for scaling the damage prediction predictions by classical molecular dynamics, opening a way for more consistent calculations of displacement damage in materials.
Decrypting the charge-resolved kinetic-energy spectrum in the Coulomb explosion of argon clusters
Rajeev, R.; Rishad, K. P. M.; Trivikram, T. Madhu; Narayanan, V.; Brabec, T.; Krishnamurthy, M.
2012-02-01
Ion emissions from clusters in intense ultrashort laser fields have been studied predominantly using time-of-flight (TOF) spectroscopy so far. Assuming atomic ion emission, arrival time signal is converted to a charge-integrated kinetic-energy spectrum. We present here a Thomson parabola spectrum that decrypts the charge-integrated energy distribution to the charge-resolved kinetic-energy spectra (CRKES). TOF measurements compare well with the spectrum generated by encrypting back the CRKES. A quantitative measure of ionization probabilities of Ar36000 clusters to varied charge states at 7×1015 W cm-2 is compared with three-dimensional microscopic particle-in-cell simulations. A good agreement between these detailed measurements and the simulations shows the possibility for the retrieval of charge distribution within a nanocluster.
Elastic scattering and transfer reactions for the system 7Be + 58Ni at Coulomb barrier energies
Mazzocco, M.; Torresi, D.; Acosta, L.; Boiano, A.; Boiano, C.; Glodariu, T.; Guglielmetti, A.; Keeley, N.; La Commara, M.; Lay, J. A.; Martel, I.; Mazzocchi, C.; Molini, P.; Parascandolo, C.; Parkar, V. V.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Strano, E.; Stroe, L.
2015-09-01
We investigated the reaction induced by the Radioactive Ion Beam 7Be on the closed proton shell nucleus 58Ni at 22.0 MeV bombarding energy. The 7Be beam was produced by means of the in-flight technique with the facility EXOTIC at INFN-LNL (Italy). Charged reaction products were mass and charge identified in a rather wide angular range and their energy distributions were analyzed to infer some information on the production mechanism. The relevance of direct processes, especially 3He- and 4He-stripping, as well as compound nucleus reactions is critically reviewed.
DEFF Research Database (Denmark)
Fang, Lei; Olesen, Bjarne W.; Wu, Xiaozhou
2014-01-01
ventilation compared to those for displacement ventilation. Due to the heat emission from equipments and occupants, heating system was not needed in the low energy office building in a mild winter. In such a situation, indoor thermal environment was still acceptable in terms of the general thermal comfort......The present study investigated the performance of mixing and displacement ventilation systems in a low energy office building during heating season. Measurements were performed with regard to air distribution and ventilation effectiveness. The results show that indoor air temperatures in occupied...
The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited
Singleton, Robert L
2008-01-01
The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated to leading and next-to-leading order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas behind this calculation, we use a Fokker-Planck equation derived by BPS to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion -- more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible, as this could have implications for the Laser Megajoule (LMJ) facility in France and the National Ignition Facility (NIF) in the United States. The traditional method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows d...
Piantelli, S; Olmi, A; Bardelli, L; Bini, M; Casini, G; Mangiarotti, A; Pasquali, G; Poggi, G; Stefanini, A A
2007-01-01
Light charged particles emitted at about 90 deg in the frame of the projectile-like fragment in semi-peripheral collisions of 93Nb+93Nb at 38A MeV give evidence for the simultaneous occurrence of two different production mechanisms. This is demonstrated by differences in the kinetic energy spectra and in the isotopic composition of the particles. The emission with a softer kinetic energy spectrum and a low N/Z ratio for the hydrogen isotopes is attributed to an evaporation process. The harder emission, with a much higher N/Z ratio, can be attributed to a ``midvelocity'' process consisting of a non-isotropic emission, on a short time-scale, from the surface of the projectile-like fragment.
Piantelli, S.; Maurenzig, P. R.; Olmi, A.; Bardelli, L.; Bini, M.; Casini, G.; Mangiarotti, A.; Pasquali, G.; Poggi, G.; Stefanini, A. A.
2007-12-01
Light charged particles emitted at about 90° in the frame of the projectile-like fragment in semiperipheral collisions of Nb93+Nb93 at 38A MeV give evidence for the occurrence, in the same class of events, of two different production mechanisms. This is demonstrated by differences in the kinetic energy spectra and in the isotopic composition of the particles. The emission with a softer kinetic energy spectrum and a low N/Z ratio for the hydrogen isotopes is attributed to an evaporation process. The harder emission, with a much higher N/Z ratio, can be attributed to a midvelocity process consisting of a nonisotropic emission, on a short time-scale, from the projectile-like fragment.
Di Toro, M; Greco, V; Ferini, G; Rizzo, C; Rizzo, J; Baran, V; Gaitanos, T; Prassa, V; Wolter, H H; Zielinska-Pfabé, M
2007-01-01
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. Important Iso-EOS effects are stressed. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. New Isospin sensitive observables are also presented for deep-inelastic, fragmentation collisions and Isospin equilibration measurements (Imbalance Ratios). The high density symmetry term can be derive...
Reaction mechanism study of 7Li(7Li, 6He) reaction at above Coulomb barrier energies
Indian Academy of Sciences (India)
V V Parkar; V Jha; S Santra; B J Roy; K Ramachandran; A Shrivastava; K Mahata; A Chatterjee; S Kailas
2009-02-01
The elastic scattering and the 6He angular distributions were measured in 7Li + 7Li reaction at two energies, lab = 20 and 25 MeV. FRDWBA calculations have been performed to explain the measured 6He data. The calculations were very sensitive to the choice of the optical model potentials in entrance and exit channels. The one-step proton transfer was found to be the dominant reaction mechanism in 6He production.
DEFF Research Database (Denmark)
Fang, Lei; Olesen, Bjarne W.; Wu, Xiaozhou;
2014-01-01
The present study investigated the performance of mixing and displacement ventilation systems in a low energy office building during heating season. Measurements were performed with regard to air distribution and ventilation effectiveness. The results show that indoor air temperatures in occupied....../s for both ventilation systems. In addition, local ventilation effectiveness ranged from 0.91 to 0.94 for mixing ventilation and from 1.03 to 1.17 for displacement ventilation. Distributions of vertical air temperature and velocity and horizontal contaminant concentration were more uniform for mixing...... ventilation compared to those for displacement ventilation. Due to the heat emission from equipments and occupants, heating system was not needed in the low energy office building in a mild winter. In such a situation, indoor thermal environment was still acceptable in terms of the general thermal comfort...
A multilayer ΔE-E R telescope for breakup reactions at energies around the Coulomb barrier
Ma, Nan-Ru; Lin, Cheng-Jian; Wang, Jian-Song; Yang, Lei; Wang, Dong-Xi; Zheng, Lei; Xu, Shi-Wei; Sun, Li-Jie; Jia, Hui-Ming; Ma, Jun-Bing; Ma, Peng; Jin, Shi-Lun; Bai, Zhen; Yang, Yan-Yun; Xu, Xin-Xing; Zhang, Gao-Long; Yang, Feng; He, Jian-Jun; Zhang, Huan-Qiao; Liu, Zu-Hua
2016-11-01
The breakup reactions of weakly-bound nuclei at energies around the Coulomb barrier and the corresponding coupling effect on the other reaction channels are hot topics nowadays. To overcome the difficulty in identifying both heavier and lighter fragments simultaneously, a new kind of ionization-chamber based detector telescope has been designed and manufactured. It consists of a PCB ionization chamber and three different thickness silicon detectors installed inside the chamber, which form a multilayer ΔE-E R telescope. The working conditions were surveyed by using an α source. An in-beam test experiment shows that the detector has good particle identification for heavy particles like 17F and 16O as well as light particles like protons and alpha particles. The measured quasi-elastic scattering angular distribution and the related discussions for 17F+208Pb are presented. Supported by National Key Basic Research Development Program of China (2013CB834404) and National Natural Science Foundation of China (11375268, 11475263, U1432127, U1432246).
Exact solution to the 1d one component Coulomb gas at fixed energy
Andersen, Timothy D
2011-01-01
The one dimensional one component plasma has applications to one dimensional particle systems with logarithmic interactions such as charges in a single channel wire or vortex filaments in a fluid convection stream. The exact integral of this plasma in the canonical ensemble with a gaussian confining potential has already been computed. In this paper, I compute the exact volume of the phase space of the plasma of N particles at fixed energy without a confining potential using a microcanonical ensemble and show that, as in the two-dimensional case, it has negative temperature states, suggesting that one dimensional turbulence can occur from vortex/electron clustering.
Boucerredj, N.; Beggas, K.
2016-10-01
We present our study of high intensity femtosecond laser field interaction with large cluster of Kr and Na (contained 2.103 to 2.107 atoms). When laser intensity is above a critical value, it blows off all of electrons from the cluster and forms a non neutral ion cloud. The irradiation of these clusters by the intense laser field leads to highly excitation energy which can be the source of energetic electrons, electronic emission, highly charge, energetic ions and fragmentation process. During the Coulomb explosion of the resulting highly ionized, high temperature nanoplasma, ions acquire again their energy. It is shown that ultra fast ions are produced. The goal of our study is to investigate in detail a comparative study of the expansion and explosion then the ion energy of metallic and rare gas clusters irradiated by an intense femtosecond laser field. We have found that ions have a kinetic energy up to 105 eV and the Coulomb pressure is little than the hydrodynamic pressure. The Coulomb explosion of a cluster may provide a new high energy ion source.
Laser-driven micro-Coulomb charge movement and energy conversion to relativistic electrons
Cobble, J. A.; Palaniyappan, S.; Johnson, R. P.; Shimada, T.; Huang, C.; Gautier, D. C.; Clark, D. D.; Falk, K.; Jung, D.
2016-09-01
Development of robust instrumentation has shown evidence for a multi-μC expulsion of relativistic electrons from a sub-μm-thick foil, laser illuminated with 60-70 J on target at 2 × 1020 W/cm2. From previous work and with electron spectroscopy, it is seen that an exponential electron energy distribution is accurate enough to calculate the emitted electron charge and energy content. The 5-10-μC charge for the >100-TW Trident Laser represents the first active measurement of the >50% laser-light-to-electron conversion efficiency. By shorting out the TV/m electric field usually associated with accelerating multi-MeV ions from such targets, one finds that this charge is representative of a multi-MA current of relativistic electrons for diverse applications from electron fast ignition to advanced radiography concepts. Included with the details of the discoveries of this research, shortcomings of the diagnostics and means of improving their fidelity are discussed.
Coulomb blockade and Coulomb staircase behavior observed at room temperature
Uky Vivitasari, Pipit; Azuma, Yasuo; Sakamoto, Masanori; Teranishi, Toshiharu; Majima, Yutaka
2017-02-01
A single-electron transistor (SET) consists of source, drain, Coulomb island, and gate to modulate the number of electrons and control the current. For practical applications, it is important to operate a SET at room temperature. One proposal towards the ability to operate at room temperature is to decrease Coulomb island size down to a few nanometres. We investigate a SET using Sn-porphyrin (Sn-por) protected gold nanoparticles (AuNPs) with 1.4 nm in core diameter as a Coulomb island. The fabrication method of nanogap electrodes uses the combination of a top-down technique by electron beam lithography (EBL) and a bottom-up process through electroless gold plating (ELGP) as our group have described before. The electrical measurement was conducted at room temperature (300 K). From current-voltage (I d-V d) characteristics, we obtained clear Coulomb blockade phenomena together with a Coulomb staircase due to a Sn-por protected gold NP as a Coulomb island. Experimental results of I d-V d characteristics agree with a theoretical curve based on using the orthodox model. Clear dI d/dV d peaks are observed in the Coulomb staircase at 9 K which suggest the electron transports through excited energy levels of Au NPs. These results are a big step for obtaining SETs that can operate at room temperature.
Institute of Scientific and Technical Information of China (English)
SUNG Wen-Pei; SHIH Ming-Hsiang
2008-01-01
A passive energy-dissipating device,velocity,and displacement dependent hydraulic damper (VDHD),is developed to reduce the seismic response of structure.This device is cemprised of a hydraulic jack,check valve,relief valve,and throttle valve.The numerical analysis model for SAP2000 nonlinear analysis program is proposed to simulate the energy-dissipating characteristics of VDHD.The analysis re-sults of this model compared with the seismic resistant tests reveal that this proposed model can accurately describe the actual energy-dissipating behavior of VDHD.The efficiency of VDHD is confirmed using this proposed model for carrying out numerical analyses of bare building,building added with bulking resistant bracing(BBR),and VDHD.The energy-dissipating capabilities of VDHD are performing excellent displace-ment and acceleration control with various ground magnitudes;being an energy absorber to absorb me-chanical energy in the structure and resist structural movement;and gathering the advantage of BRB.
A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors
Energy Technology Data Exchange (ETDEWEB)
Vannoy, Charles H.; Chong, Lori; Le, Connie [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, Ontario L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd. North, Mississauga, Ontario L5L 1C6 (Canada)
2013-01-08
Highlights: Black-Right-Pointing-Pointer Demonstration of oligonucleotide displacement assay using quantum dots and FRET. Black-Right-Pointing-Pointer Demonstration of a displacement assay that avoids labeling of target. Black-Right-Pointing-Pointer Displacement assay targeting short strand embedded within a longer strand. - Abstract: The unique optoelectronic properties of semiconductor quantum dots (QDs) make them well-suited as fluorescent bioprobes for use in various biological applications. Modification of CdSe/ZnS QDs with biologically relevant molecules provides for multipotent probes that can be used for cellular labeling, bioassays, and localized optical interrogation by means of fluorescence resonance energy transfer (FRET). Herein, we demonstrate the use of red-emitting streptavidin-coated QDs (QD{sub 605}) as donors in FRET to introduce a competitive displacement-based assay for the detection of oligonucleotides. Various QD-DNA bioconjugates featuring 25-mer probe sequences diagnostic of Hsp23 were prepared. The single-stranded oligonucleotide probes were hybridized to dye-labeled (Alexa Fluor 647) reporter sequences, which were provided for a FRET-sensitized emission signal due to proximity of the QD and dye. The dye-labeled sequence was designed to be partially complementary and include base-pair mismatches to facilitate displacement by a more energetically favorable, fully complementary recognition motif embedded within a 98-mer displacer sequence. Overall, this study demonstrates proof-of-concept at the nM level for competitive displacement hybridization assays in vitro by reduction of fluorescence intensity that directly correlates to the presence of oligonucleotides of interest. This work demonstrates an analytical method that could potentially be implemented for monitoring of intracellular gene expression in the future.
Liliani, N.; Nugraha, A. M.; Diningrum, J. P.; Sulaksono, A.
2016-05-01
We have studied the effects of tensor coupling of ω and ρ meson terms, the Coulomb exchange term in local density approximation, and various isoscalar-isovector coupling terms of relativistic mean-field model on the properties of nuclear matter, finite nuclei, and superheavy nuclei. We found that for the same fixed value of symmetry energy J or its slope L the presence of tensor coupling of ω and ρ meson terms and the Coulomb exchange term yields thicker neutron skin thickness of 208Pb. We also found that the roles of tensor coupling of ω and ρ meson terms, the Coulomb-exchange term in local density approximation, and various isoscalar-isovector coupling terms on the bulk properties of finite nuclei vary depending on the corresponding nucleus mass. However, on average, tensor coupling terms play a significant role in predicting the bulk properties of finite nuclei in a quite wide mass range, especially in binding energies. We also observed that for some particular nuclei, the corresponding experimental data of binding energies are rather less compatible with the presence of the Coulomb-exchange term in local density approximation and they tend to disfavor the presence of isoscalar-isovector coupling term with too-high Λ value. Furthermore, we have found that these terms influence the detail properties of 292120 superheavy nucleus such as binding energies, the magnitude of two-nucleon gaps, single-particle spectra, neutron densities, neutron skin thicknesses, and mean-square charge radii. However, the shell-closure predictions of 208Pb and 292120 nuclei are not affected by the presence of these terms.
DEFF Research Database (Denmark)
Fang, Lei; Olesen, Bjarne W.; Wu, Xiaozhou
2014-01-01
The present study investigated the performance of mixing and displacement ventilation systems in a low energy office building during heating season. Measurements were performed with regard to air distribution and ventilation effectiveness. The results show that indoor air temperatures in occupied...... zone was 21.0°C for mixing ventilation and 20.8°C for displacement ventilation when supply air temperature was 19°C and air change rate was 4.2 h-. Vertical air temperature difference between the head level and the foot level were all less than 3°C and local air velocity were all less than 0.2m....../s for both ventilation systems. In addition, local ventilation effectiveness ranged from 0.91 to 0.94 for mixing ventilation and from 1.03 to 1.17 for displacement ventilation. Distributions of vertical air temperature and velocity and horizontal contaminant concentration were more uniform for mixing...
Socrates, A; Stone, J M; Socrates, Aristotle; Parrish, Ian J.; Stone, James M.
2007-01-01
We perform a linear magnetohydrodynamic perturbation analysis for a stratified magnetized envelope where the diffusion of heat is mediated by charged particles that are confined to flow along magnetic field lines. We identify an instability, the ``coulomb bubble instability,'' which may be thought of as standard magnetosonic fast and slow waves, driven by the rapid diffusion of heat along the direction of the magnetic field. We calculate the growth rate and stability criteria for the coulomb bubble instability for various choices of equilibrium conditions. The coulomb bubble instability is most strongly driven for weakly magnetized atmospheres that are strongly convectively stable. We briefly discuss a possible application of astrophysical interest: diffusion of interstellar cosmic rays in the hot T ~ 10^6 K Galactic corona. We show that for commonly accepted values of the cosmic ray and gas pressure as well as its overall characteristic dimensions, the Galactic corona is in a marginal state of stability with...
Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering
Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo
2011-01-01
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy
Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter
DEFF Research Database (Denmark)
Hansen, Rico Hjerm; Kramer, Morten; Vidal, Enrique
2013-01-01
The Wavestar Wave Energy Converter (WEC) is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO) system, converting the wave induced motion of the floats into a steady power output to the grid....... In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy...
Liliani, N; Diningrum, J P; Sulaksono, A
2016-01-01
We have studied the effects of tensor coupling of $\\omega$ and $\\rho$ meson terms, Coulomb exchange term in local density approximation and various isoscalar-isovector coupling terms of relativistic mean field model on the properties of nuclear matter, finite nuclei, and super-heavy nuclei. We found that for the same fixed value of symmetry energy $J$ or its slope $L$ the presence of tensor coupling of $\\omega$ and $\\rho$ meson terms and Coulomb exchange term yields thicker neutron skin thickness of $^{208}$Pb. We also found that the roles of tensor coupling of $\\omega$ and $\\rho$ meson terms, Coulomb exchange term in local density approximation and various isoscalar-isovector coupling terms on the bulk properties of finite nuclei varies depending on the corresponding nucleus mass. However, on average, tensor coupling terms play a significant role in predicting the bulk properties of finite nuclei in a quite wide mass range especially in binding energies. We also observed that for some particular nuclei, the ...
Energy Technology Data Exchange (ETDEWEB)
Escrig, D. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Sanchez-Benitez, A.M. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Institut de Physique Nucleaire and Centre de Recherches du Cyclotron, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Moro, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Apdo. 1065, E-41080 Sevilla (Spain)]. E-mail: moro@us.es (and others)
2007-08-01
New experimental data from the scattering of {sup 6}He + {sup 208}Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of {alpha} particles. The energy and angular distribution of this group have been analyzed and compared with theoretical calculations. This analysis indicates that the {alpha} particles emitted at backward angles in this reaction are mainly due to two-neutron transfer to weakly bound states of the final nucleus.
Vaman, C.; Andreoiu, C.; Bazin, D.; Becerril, A.; Brown, B. A.; Campbell, C. M.; Chester, A.; Cook, J. M.; Dinca, D. C.; Gade, A.; Galaviz, D.; Glasmacher, T.; Hjorth-Jensen, M.; Horoi, M.; Miller, D.; Moeller, V.; Mueller, W. F.; Schiller, A.; Starosta, K.; Stolz, A.; Terry, J. R.; Volya, A.; Zelevinsky, V.; Zwahlen, H.
2007-10-01
Rare isotope beams of neutron-deficient Sn106,108,110 from the fragmentation of Xe124 were employed in an intermediate-energy Coulomb excitation experiment. The measured B(E2,01+→21+) values for Sn108 and Sn110 and the results obtained for the Sn106 show that the transition strengths for these nuclei are larger than predicted by current state-of-the-art shell-model calculations. This discrepancy might be explained by contributions of the protons from within the Z=50 shell to the structure of low-energy excited states in this region.
Energy Technology Data Exchange (ETDEWEB)
Wang, Dong; Gao, Ning; Setyawan, W.; Kurtz, R. J.; Wang, Zhi-Guang; Gao, Xing; He, Wen-Hao; Pang, Li-Long
2016-09-01
The influence of strain field on defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten (W) has been studied with molecular dynamics simulations. Two different W potentials (Fikar and Juslin) were compared and the results indicate that the connection distance and selected function linking the short-range and long-range portions of the potentials affects the threshold displacement energy and its direction-specific values. The minimum Ed direction calculated with the Fikar-potential is <100> and with the Juslin-potential is <111>. Nevertheless, the most stable self-interstitial configuration is found to be a <111>-crowdion for both potentials. This stable configuration does not change with applied strain. Varying the strain from compression to tension increases the vacancy formation energy but decreases the self-interstitial formation energy. The formation energy of a self-interstitial changes more significantly than a vacancy such that Ed decreases with applied hydrostatic strain from compression to tension.
Energy Technology Data Exchange (ETDEWEB)
Wang, D.; Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Gao, X.; He, W. H.
2016-03-31
The influence of hydrostatic strain on point defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten was studied with molecular dynamics simulations. Two different tungsten potentials (Fikar and Juslin) were used. The minimum Ed direction calculated with the Fikar-potential was <100>, but with the Juslin-potential it was <111>. The most stable self-interstitial (SIA) configuration was a <111>-crowdion for both potentials. The stable SIA configuration did not change with applied strain. Varying the strain from compression to tension increased the vacancy formation energy but decreased the SIA formation energy. The SIA formation energy changed more significantly than for a vacancy such that Ed decreased with applied strain from compression to tension.
Energy displacement function as a signature for octupole deformation in excited states
Raduta, A A; Ursu, I I
2003-01-01
Energies for three positive and three negative parity bands predicted by the extended coherent states model (ECSM) in sup 2 sup 2 sup 6 Ra are calculated and used to point out new signatures for octupole deformation in ground as well as in beta and gamma bands. A beat pattern is found by using a new displacement energy function which is more appropriate for a spectrum which exhibits large deviation from a linear J(J+1) dependence. The stability against octupole deformation is revisited from a new point of view. (authors)
Structural dependence of threshold displacement energies in rutile, anatase and brookite TiO{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Robinson, M., E-mail: marc.robinson@curtin.edu.au [Nanochemistry Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Marks, N.A. [Discipline of Physics and Astronomy, Curtin University, Perth, WA 6845 (Australia); Lumpkin, G.R. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)
2014-09-15
Systematic molecular dynamics simulations of low energy cascades have been performed to examine how threshold displacement events are effected by changes in crystal structure. Exploiting the structural proximity of the rutile, anatase and brookite polymorphs of TiO{sub 2}, a quantitative examination of defect production has been carried out including detailed defect analysis and the determination of values of the threshold displacement energy (E{sub d}). Across all polymorphs comparable values of E{sub d} are reported for oxygen at around 20 eV, with the value for Ti in rutile (73 ± 2 eV) significantly higher than that in brookite (34 ± 1 eV) and anatase (39 ± 1 eV). Quantifying defect formation probability as a function of Primary Knock-on Atom (PKA) energy, simulations in rutile indicate a consistent reduction in defect formation at energies higher than E{sub d} relative to anatase and brookite. Defect cluster analysis reveals a significant proportion of di-Frenkel pairs in anatase at Ti PKA energies around E{sub d}. These clusters, which are stabilised by the localisation of two Frenkel pairs, are associated with a recombination barrier of approximately 0.19 eV. As such, annihilation is likely under typical experimental conditions which suggests an expected increase in the measured Ti value of E{sub d}. Identical O defect populations produced at the threshold by the O PKA in both rutile and anatase explain the comparable values of E{sub d}. At higher O PKA energies, the commencement of defect production on both sublattices in anatase is observed in contrast to the confinement of defects to the O sublattice in rutile. The overall trends reported are consistent with in-situ irradiation experiments and thermal spike simulations, suggesting the contrasting radiation response of the polymorphs of TiO{sub 2} is apparent during the initial stages of defect production. - Highlights: • Systematic calculation of threshold displacement energies (E{sub d
Truong, Binh Duc; Phu Le, Cuong; Halvorsen, Einar
2015-12-01
This paper presents experiments on how to approach the physical limits on power from vibration energy harvesting under displacement-constrained operation. A MEMS electrostatic vibration energy harvester with voltage-control of the system stiffness is used for this purpose. The power saturation problem, when the proof mass displacement reaches maximum amplitude for sufficient acceleration amplitude, is shifted to higher accelerations by use of load optimization and tunable electromechanical coupling k2. Measurement results show that harvested power can be made to follow the optimal velocity-damped generator also for a range of accelerations that implies displacement constraints. Comparing to the saturated power, the power increases 1.5 times with the optimal load and an electromechanical coupling k2=8.7%. This value is 2.3 times for a higher coupling k2=17.9%. The obtained system effectiveness is beyond 60% under the optimization. This work also shows a first demonstration of reaching optimal power in the intermediate acceleration-range between the two extremes of maximum efficiency and maximum power transfer.
Coulomb explosion of "hot spot"
Oreshkin, V I; Chaikovsky, S A; Artyomov, A P
2016-01-01
The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed and estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.
Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan
2015-04-01
Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.
A variance analysis of the capacity displaced by wind energy in Europe
DEFF Research Database (Denmark)
Giebel, Gregor
2007-01-01
Wind energy generation distributed all over Europe is less variable than generation from a single region. To analyse the benefits of distributed generation, the whole electrical generation system of Europe has been modelled including varying penetrations of wind power. The model is chronologically...... simulating the scheduling of the European power plants to cover the demand at every hour of the year. The wind power generation was modelled using wind speed measurements from 60 meteorological stations, for 1 year. The distributed wind power also displaces fossil-fuelled capacity. However, every assessment...
Directory of Open Access Journals (Sweden)
Parascandolo C.
2011-10-01
Full Text Available The scattering processes of two mirror projectiles, the well bound 17O (Sn = 4.143 MeV and the loosely bound radioactive 17F (Sp = 0.600 MeV, on the proton closed shell target 58Ni were measured at several energies around the Coulomb barrier. The experimental data were analyzed within the framework of the optical model to extract the reaction cross section and to investigate the role played by direct reaction channels at near-barrier energies. The comparison shows a similar behaviour for the two A = 17 projectiles despite their very different binding energies and suggests a rather small effect of the 17F breakup channel on the reaction dynamics.
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Arup K, E-mail: akmukherjee11@hotmail.com [Department of Physics, Chancellor College, University of Malawi, Box 280, Zomba (Malawi)
2011-08-17
The process of bending of straight DNA to a circular form in the presence of any of the mono-, di-, tri- or tetravalent counterions has been simulated in a strong Coulomb coupling environment, employing a previously developed energy minimization simulation technique. The inherent characteristics of the simulation technique allow the monitoring of the required electrostatic contribution to the bending. The curvature of the bending has been found to play a crucial role in facilitating the electrostatic attractive potential energy. The total electrostatic potential energy has been found to decrease with bending, which indicates that bending straight DNA to a circular form or to a toroidal form in the presence of neutralizing counterions is energetically favourable and is practically a spontaneous phenomenon.
Truong, Binh Duc; Phu Le, Cuong; Halvorsen, Einar
2016-12-01
This paper presents experiments on how to approach the physical limits on power from vibration energy harvesting under displacement-constrained operation. A MEMS electrostatic vibration energy harvester with voltage-control of the system stiffness is used for this purpose. The power saturation problem, when the proof-mass displacement reaches a maximum amplitude for sufficient acceleration amplitude, is shifted to higher accelerations by use of load optimization. In addition, we demonstrate the effect of varying the electromechanical coupling k 2. Measurement results show that harvested power can also be made to follow the optimal power of the velocity-damped generator for a range of accelerations, which implies displacement constraints. Compared to the saturated power, the power increases 1.5 times with the optimal load for electromechanical coupling at k 2 = 8.7%. This is improved 2.3 times for a higher coupling of {{k}2}=17.9 % . The obtained system effectiveness exceeds 60%. This work shows a first demonstration of reaching optimal power in the intermediate acceleration-range between the two extremes of maximum efficiency and maximum power transfer. The experimental results follow the theoretical results for a device with both load and stiffness tuning surprisingly well, despite only optimizing the load here. We compared a linearized lumped-model of the device with the same augmented by end-stop nonlinearities. The comparison shows that an effective stiffness due to end-stop impacts in the latter model closely matches the optimal stiffness for the former model, and therefore can explain why the experimental output power is close to optimal despite the lack of deliberate stiffness tuning.
Low-energy Coulomb excitation of $^{62}$Fe and $^{62}$Mn following in-beam decay of $^{62}$Mn
Gaffney, L P; Bastin, B; Bildstein, V; Blazhev, A; Bree, N; Darby, I; De Witte, H; DiJulio, D; Diriken, J; Fedosseev, V N; Fransen, Ch; Gernhäuser, R; Gustafsson, A; Hess, H; Huyse, M; Kesteloot, N; Kröll, Th; Lutter, R; Marsh, B A; Reiter, P; Seidlitz, M; Van Duppen, P; Voulot, D; Warr, N; Wenander, F; Wimmer, K; Wrzosek-Lipska, K
2015-01-01
Sub-barrier Coulomb-excitation was performed on a mixed beam of $^{62}$Mn and $^{62}$Fe, following in-trap $\\beta^{-}$ decay of $^{62}$Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418 keV, which has been tentatively associated to a $2^{(+)},3^{(+)}\\rightarrow1^{+}_{g.s.}$ transition. This fixes the relative positions of the $\\beta$-decaying $4^{(+)}$ and $1^{+}$ states in $^{62}$Mn for the first time. Population of the $2^{+}_{1}$ state was observed in $^{62}$Fe and the cross-section determined by normalisation to the $^{109}$Ag target excitation. Combining this Coulomb-excitation cross-section with previously measured lifetimes of the $2^{+}_{1}$ state, the spectroscopic quadrupole moment, $Q_{s}(2^{+}_{1})$, is extracted, albeit with a large uncertainty.
Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter
Directory of Open Access Journals (Sweden)
Enrique Vidal
2013-08-01
Full Text Available The Wavestar Wave Energy Converter (WEC is a multiple absorber concept, consisting of 20 hemisphere shaped floats attached to a single platform. The heart of the Wavestar WEC is the Power Take-Off (PTO system, converting the wave induced motion of the floats into a steady power output to the grid. In the present work, a PTO based on a novel discrete displacement fluid power technology is explored for the Wavestar WEC. Absorption of power from the floats is performed by hydraulic cylinders, supplying power to a common fixed pressure system with accumulators for energy smoothing. The stored pressure energy is converted into electricity at a steady pace by hydraulic motors and generators. The storage, thereby, decouples the complicated process of wave power absorption from power generation. The core for enabling this PTO technology is implementing a near loss-free force control of the energy absorbing cylinders. This is achieved by using special multi-chambered cylinders, where the different chambers may be connected to the available system pressures using fast on/off valves. Resultantly, a Discrete Displacement Cylinder (DDC is created, allowing near loss free discrete force control. This paper presents a complete PTO system for a 20 float Wavestar based on the DDC. The WEC and PTO is rigorously modeled from incident waves to the electric output to the grid. The resulting model of +600 states is simulated in different irregular seas, showing that power conversion efficiencies above 70% from input power to electrical power is achievable for all relevant sea conditions.
DEFF Research Database (Denmark)
Nerini, Francesco Fuso; Valentini, Francesco; Modi, Anish
2015-01-01
The world has faced many natural and man-made disasters in the past few years, resulting in millions of people living in temporary camps across the globe. The energy and clean water needs of the relief operators in such emergency situations are primarily satisfied by diesel engine based generators...... hybrid generation from solar, wind and biomass, with the possibility of using fossil sources too thanks to a dual fuel gas engine. The module can work both in grid connected and stand-alone mode. In addition the module includes a water purification unit to meet the water needs of displaced population...
Institute of Scientific and Technical Information of China (English)
GUSEINOV I.Israfil; AKSU Hüseyin
2008-01-01
@@ Using formulae for one-and two-electron integrals of Coulomb interaction potential fk(r)=r-k with non-integer indices k established by one of the authors with the help of complete orthonormal sets of Ψa-exponential-type orbitals(a=1,0,-1,-2,…),we perform the calculations for isoelectronic series of the He atom containing nuclear charges from 2 to 10,where k=1-μ(-1＜μ＜0).For this purpose we have used the dogble-zeta approximation,the configuration interaction and coupled-cluster methods employing the integer-n Slater-type orbitals as basis sets.It is demonstrated that the results of calculations obtained are better than the numerical Hartree-Fock values.
Vaman, C; Bazin, D; Becerril, A; Brown, A; Campbell, C M; Chester, A; Cook, J M; Dinca, D C; Gade, A; Galaviz, D; Glasmacher, T; Hjorth-Jensen, M; Horoi, M; Miller, D; Moeller, V; Müller, W F; Schiller, A; Starosta, K; Stolz, A; Terry, J R; Volya, A; Zelevinsky, V; Zwahlen, H
2006-01-01
Rare isotope beams of neutron-deficient $^{106,108,110}$Sn nuclei from the fragmentation of $^{124}$Xe were employed in an intermediate-energy Coulomb excitation experiment yielding $B(E2, 0^+_1 \\to 2^+_1)$ transition strengths. The results indicate that these $B(E2,0^+_1 \\to 2^+_1)$ values are much larger than predicted by current state-of-the-art shell model calculations. This discrepancy can be explained if protons from within the Z = 50 shell are contributing to the structure of low-energy excited states in this region. Such contributions imply a breaking of the doubly-magic $^{100}$Sn core in the light Sn isotopes.
Shkel, Irina A; Record, M Thomas
2012-08-23
We investigate how the coulombic Gibbs free energy and salt ion association per phosphate charge of DNA oligomers vary with oligomer size (i.e. number of charged residues ∣ZD∣) at 0.15 M univalent salt by non-linear Poisson Boltzmann (NLPB) analysis of all-atom DNA models. Calculations of these quantities ([Formula: see text], [Formula: see text]) are performed for short and long double-stranded (ds) and single-stranded (ss) DNA oligomers, ranging from 4 to 118 phosphates (ds) and from 2 to 59 phosphates (ss). Behaviors of [Formula: see text] and [Formula: see text] as functions of ∣ZD∣ provide a measure of the range of the coulombic end effect and determine the size of an oligomer at which an interior region with the properties (per charge) of the infinite-length polyelectrolyte first appears. This size (10-11 phosphates at each end for ds DNA and 6-9 for ss DNA at 0.15 M salt) is in close agreement with values obtained previously by Monte Carlo and NLPB calculations for cylindrical models of polyions, and by analysis of binding of oligocations to DNA oligomers. Differences in [Formula: see text] and in [Formula: see text] between ss and ds DNA are used to predict effects of oligomeric size and salt concentration on duplex stability in the vicinity of 0.15 M salt. Results of all-atom calculations are compared with results of less structurally detailed models and with experimental data.
DEFF Research Database (Denmark)
Dyre, Jeppe; Jacobsen, Jacob M.
1995-01-01
This paper presents a calculation of the time dependence of the mean-square displacement for symmetric random energy barrier hopping models at low temperatures, where the frequency dependence of the normalized diffusion constant D-tilde becomes universal, i.e., independent of the energy barrier p...
Fumino, Koichi; Reimann, Sebastian; Ludwig, Ralf
2014-10-28
Ionic liquids are defined as salts composed solely of ions with melting points below 100 °C. These remarkable liquids have unique and fascinating properties and offer new opportunities for science and technology. New combinations of ions provide changing physical properties and thus novel potential applications for this class of liquid materials. To a large extent, the structure and properties of ionic liquids are determined by the intermolecular interaction between anions and cations. In this perspective we show that far infrared and terahertz spectroscopy are suitable methods for studying the cation-anion interaction in these Coulomb fluids. The interpretation of the measured low frequency spectra is supported by density functional theory calculations and molecular dynamics simulations. We present results for selected aprotic and protic ionic liquids and their mixtures with molecular solvents. In particular, we focus on the strength and type of intermolecular interaction and how both parameters are influenced by the character of the ions and their combinations. We show that the total interaction between cations and anions is a result of a subtle balance between Coulomb forces, hydrogen bonds and dispersion forces. For protic ionic liquids we could measure distinct vibrational modes in the low frequency spectra indicating clearly the cation-anion interaction characterized by linear and medium to strong hydrogen bonds. Using isotopic substitution we have been able to dissect frequency shifts related to pure interaction strength between cations and anions and to different reduced masses only. In this context we also show how these different types of interaction may influence the physical properties of ionic liquids such as the melting point, viscosity or enthalpy of vaporization. Furthermore we demonstrate that low frequency spectroscopy can also be used for studying ion speciation. Low vibrational features can be assigned to contact ion pairs and solvent separated
Coulomb Distortion in the Inelastic Regime
Energy Technology Data Exchange (ETDEWEB)
Patricia Solvignon, Dave Gaskell, John Arrington
2009-09-01
The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.
Energy Technology Data Exchange (ETDEWEB)
Morcelle, Viviane; Gomes, P.R.S.; Lubian, J.; Mendes Junior, D.R. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lichtenthaeler, R.; Guimaraes, V.; Lepine-Szily, A.; Camargo, O.; Faria, P.N. de; Gasquez, L.; Morais, M.C.; Condori, R.P.; Pires, K.C.C.; Scarduelli, V. [Universidade de Sao Paulo (USP), SP (Brazil); Barioni, A. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Shorto, J.M.B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Zamora, J.C. [Technische Universitaet Darmstadt (Germany); Aguilera, E.; Martinez-Quiroz, E. [Instituto Nacional de Investigaciones Nucleares (Mexico); Kolata, J.; Jiang, H. [University of Notre Dame, IN (United States); Bechetti, F.D.; Lamm, L.O. [Michigan University, MI (United States); Lizcano, D. [Universidad Autonoma del Estado de Mexico (Mexico)
2012-07-01
Full text: Elastic scattering measurements were performed at energies around the Coulomb barrier at the Tandem Accelerators of the Sao Paulo (USP - Brazil ) and Notre Dame (UND - USA) Universities. The {sup 7}Be is a radioactive nucleus and has been produced by the reaction {sup 6}He({sup 6}Li,{sup 9}Be) and impinged on {sup 27}Al and {sup 197}Au secondary targets using a double superconducting systems RIBRAS ( USP ) and Twinsol (UND). The elastic scattering angular distributions were analyzed through the optical model calculations, using the Woods- Saxon form factors [1] and the Sao Paulo potential [2] to fit the experimental data. The total reaction cross sections were also derived and compared with others presented at the literature for other systems. In addition, a study of the nuclear potential energy dependence has been carried out in this work in the dispersion relation context. Due to the fact that {sup 7}Be has a small breakup threshold energy, the results can provide significant information of the influence of the breakup channel on the reactions involving this projectile. For this purpose, {chi}{sup 2}- data analysis with different kind of potentials were performed to identify the energy dependence of the real (V) and imaginary (W) parts of the potential. [1] L.C. Chamon et al., Phys. Rev. C 66, (2002) 014610. [2] R.D. Wood e D.S. Saxon, Phys. Rev. 95 ( 1954) 577. (author)
Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.
2014-10-01
Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.
Diriken, J.; Stefanescu, I.; Balabanski, D.; Blasi, N.; Blazhev, A.; Bree, N.; Cederkaell, J.; Cocolios, T. E.; Davinson, T.; Eberth, J.; Ekstrom, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Georgiev, G.; Gladnishki, K.; Huyse, M.; Ivanov, O. V.; Ivanov, V. S.; Iwanicki, J.; Jolie, J.; Konstantinopoulos, T.; Kroell, Th.; Kruecken, R.; Koester, U.; Lagoyannis, A.; Lo Bianco, G.; Maierbeck, P.; Marsh, B. A.; Napiorkowski, P.; Patronis, N.; Pauwels, D.; Reiter, P.; Seliverstov, M.; Sletten, G.; Van de Walle, J.; Van Duppen, P.; Voulot, D.; Walters, W. B.; Warr, N.; Wenander, F.; Wrzosek, K.
2010-01-01
The B(E2; I-i -> I-f) values for transitions in Ga-71(31)40 and Ga-73(31)42 were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of Ga-71,Ga-73 at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were dete
Chiniforooshan, Ehsan; Kari, Lila; Seki, Shinnosuke
2010-01-01
We propose a novel theoretical biomolecular design to implement any Boolean circuit using the mechanism of DNA strand displacement. The design is scalable: all species of DNA strands can in principle be mixed and prepared in a single test tube, rather than requiring separate purification of each species, which is a barrier to large-scale synthesis. The design is time-responsive: the concentration of output species changes in response to the concentration of input species, so that time-varying inputs may be continuously processed. The design is digital: Boolean values of wires in the circuit are represented as high or low concentrations of certain species, and we show how to construct a single-input, single-output signal restoration gate that amplifies the difference between high and low, which can be distributed to each wire in the circuit to overcome signal degradation. This means we can achieve a digital abstraction of the analog values of concentrations. Finally, the design is energy-efficient: if input sp...
Coulomb Thrusting Application Study
2006-01-20
this formation about the orbit radial direction. From this point on- wards, this will be referred to as the Coulomb tether regulation problem . These...m2 m2 (6.13) For the Coulomb tether regulation problem , L is taken as a sum of a constant reference length Lref and a small varying length δL...be noted that in the Coulomb tether regulation problem Lref is constant and the dif- ferential equation given in Eq. (6.13) is lin- earized by
Gao, Yanfei; Larson, Bennett C.
2015-10-01
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown that the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental-theoretical investigations.
Surface absorption in the {sup 32}S+{sup 24}Mg interactions at energies near the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Pacheco, J.C.; Sanchez, F.; Diaz, J.; Ferrero, J.L. [Valencia Univ. (Spain); Bilwes, B. [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Ruiz, J.A. [Universidad Publica de Navarra, Pamplona (Spain); Kadi-Hanifi, D. [Universite de Blida (Algeria)
1995-12-31
Elastic scattering {sup 32} S on {sup 24} Mg has been measured at 65.0, 75.0, 86.3, 95.0 and 110.0 MeV-lab energies, and the data were systematically analysed with semi-phenomenological potentials. Using microscopic potentials we found similar results at the lowest incident energies, for which we have compared both the microscopic and semi-phenomenological potentials. It appears that the absorption takes place in a narrow range at the nuclear surface and is mainly due to the low lying collective surface states. (author). 41 refs., 11 figs., 4 tabs.
Excitation Functions of Fusion and Fission for 32S+170Er at Energies Near and Below Coulomb Barrier
Institute of Scientific and Technical Information of China (English)
BAO; Peng-fei; LIN; Cheng-jian; YANG; Feng; JIA; Hui-ming; XU; Xin-xing; YANG; Lei; SUN; Li-jie; MA; Nan-ru; ZHANG; Huan-qiao; LIU; Zu-hua
2013-01-01
Excitation functions of fusion evaporation residue(ER)and fission for 32S+170Er system at near barrier energy region were measured,respectively.With the comparison to the calculations of coupledchannels effects,it is accessible to investigate the impacts on the fusion and fission processes of target deformation and the dependence on the entrance-channel.The experiment was performed at Beijing HI-13 Tandem Accelerator.Fission and fusion evaporation
2002-01-01
QED predicts copious direct electron pair production by ultrarelativistic heavy nuclei in a high Z medium such as nuclear emulsion. First order QED calculations (combined screening and non-screening) for this process show that 1000@+32 electron pairs above 100~keV energy) should be emitted for a total |1|6O track length of 10.9~m in nuclear emulsion at 200~GeV/AMU. Emulsion exposures with oxygen (and other nuclei if available) at 60 and 200~GeV/AMU will be used to calibrate the energy dependent cross section @s~@j~(1n~E)|2|-|3, whose exponent depends on atomic screening. The oxygen tracks in the developed emulsions will be scanned with a microscope, and the number of direct electron pairs will be counted for individual tracks. The exposed stacks will contain sufficient emulsion (and CR39 plastic to check for possible interactions) that adequate path length will be available for exposures to @$>$~10|4~ions at each energy and ion species. \\\\ \\\\ If the absolute value of this cross section is confirmed as large a...
Stefanescu, I.; Chilug, A.; Tudor, D.; Trache, L.; Straticiuc, M.; Burducea, I.; Focsa, I. M.; Ghita, D. G.; Zhang, N.; Tang, X.; Chen, H.
2017-06-01
The reaction cross section of the 12C+12C system is difficult to measure because of the presence of the resonances in the Gamow energy window. It has been proved that the 13C+12C reaction is a good alternative to study the behavior of the reaction cross section at energies relevant for astrophysics. We have measured it with activation and online techniques. During online measurements we were interested to determine the relative contributions of the open channels of the 13C+12C reaction. These determinations are necessary to evaluate the total fusion reaction cross section. Therefore, we have measured the γ-ray yields of proton, neutron and alpha particle evaporation channels from the resulting 25Mg compound nucleus using prompt γ-rays measurements. This complements the activation method. The irradiations took place at the 3 MV Tandetron Accelerator at IFIN-HH [1], Bucharest and the prompt gamma-rays were measured using a hyper-pure germanium detector with 100% relative efficiency, shielded with lead bricks. The energy range for the irradiation was from 4.6 up to 11 MeV (in laboratory frame), in steps of 0.2 MeV and the online measurements were performed from 6.4 up to 11 MeV.
Energy Technology Data Exchange (ETDEWEB)
Singh, D., E-mail: dsinghiuac@gmail.com [Centre for Applied Physics, Central University of Jharkhand, Ranchi-835 205 (India); Ali, R. [Department of Physics, G.F.(P.G.), College, Shahjahanpur-242 001 (India); Kumar, Harish; Ansari, M. Afzal [Department of Physics, Aligarh Muslim University, Aligarh-202 002 (India); Rashid, M. H.; Guin, R. [Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata-700 064 (India)
2014-08-14
Experiment has been performed to explore the complete and incomplete fusion dynamics in heavy ion collisions using stacked foil activation technique. The measurement of excitation functions of the evaporation residues produced in the {sup 20}Ne+{sup 165}Ho system at projectile energies ranges ≈ 4-8 MeV/nucleon have been done. Measured cumulative and direct cross-sections have been compared with the theoretical model code PACE-2, which takes into account only the complete fusion process. The analysis indicates the presence of contributions from incomplete fusion processes in some α-emission channels following the break-up of the projectile {sup 20}Ne in the nuclear field of the target nucleus {sup 165}Ho.
Coulomb effects in Fermi {beta} decay of {sup 74}Rb
Energy Technology Data Exchange (ETDEWEB)
Oinonen, M. [CERN, EP Div., Geneva (Switzerland)
2003-07-01
Coulomb effects in the {beta} decay of {sup 74}Rb have been studied at ISOLDE. The observation of the non-analog feeding in the {beta} decay allows for an estimation of the Coulomb mixing parameter {delta}{sub IM}{sup 1}. The analysis of the total Coulomb correction {delta}{sub C} is still hampered by the uncertainty in the decay energy. (orig.)
New approach to folding with the Coulomb wave function
Energy Technology Data Exchange (ETDEWEB)
Blokhintsev, L. D.; Savin, D. A. [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Kadyrov, A. S. [Department of Physics, Astronomy and Medical Radiation Sciences, Curtin University, GPO Box U1987, Perth 6845 (Australia); Mukhamedzhanov, A. M. [Cyclotron Institute, Texas A and M University, College Station, Texas 77843 (United States)
2015-05-15
Due to the long-range character of the Coulomb interaction theoretical description of low-energy nuclear reactions with charged particles still remains a formidable task. One way of dealing with the problem in an integral-equation approach is to employ a screened Coulomb potential. A general approach without screening requires folding of kernels of the integral equations with the Coulomb wave. A new method of folding a function with the Coulomb partial waves is presented. The partial-wave Coulomb function both in the configuration and momentum representations is written in the form of separable series. Each term of the series is represented as a product of a factor depending only on the Coulomb parameter and a function depending on the spatial variable in the configuration space and the momentum variable if the momentum representation is used. Using a trial function, the method is demonstrated to be efficient and reliable.
Goldman, Saul
1983-10-01
A method we call energy-scaled displacement Monte Carlo (ESDMC) whose purpose is to improve sampling efficiency and thereby speed up convergence rates in Monte Carlo calculations is presented. The method involves scaling the maximum displacement a particle may make on a trial move to the particle's configurational energy. The scaling is such that on the average, the most stable particles make the smallest moves and the most energetic particles the largest moves. The method is compared to Metropolis Monte Carlo (MMC) and Force Bias Monte Carlo of (FBMC) by applying all three methods to a dense Lennard-Jones fluid at two temperatures, and to hot ST2 water. The functions monitored as the Markov chains developed were, for the Lennard-Jones case: melting, radial distribution functions, internal energies, and heat capacities. For hot ST2 water, we monitored energies and heat capacities. The results suggest that ESDMC samples configuration space more efficiently than either MMC or FBMC in these systems for the biasing parameters used here. The benefit from using ESDMC seemed greatest for the Lennard-Jones systems.
Derrickson, J. H.; Wu, J.; Christl, M. J.; Fountain, W. F.; Parnell, T. A.
1999-01-01
The "all-particle" cosmic ray energy spectrum appears to be exhibiting a significant change in the spectral index just above approximately 3000 TeV. This could indicate (1) a change in the propagation of the cosmic rays in the galactic medium, and/or (2) the upper limit of the supernova shock wave acceleration mechanism, and/or (3) a new source of high-energy cosmic rays. Air shower and JACEE data indicate the spectral change is associated with a composition change to a heavier element mixture whereas DICE does not indicate this. A detector concept will be presented that utilizes the energy dependence of the production of direct Coulomb electron-positron pairs by energetic heavy ions. Monte Carlo simulations of a direct electron pair detector consisting of Pb target foils interleaved with planes of 1-mm square scintillating optical fibers will be discussed. The goal is to design a large area, non-saturating instrument to measure the energy spectrum of the individual cosmic ray elements in the "VH-group" for energies greater than 10 TeV/nucleon.
Ivanov, D Yu
1999-01-01
The size of $\\pi^+\\pi^-$ atom in the low lying states is considerably smaller than the radius of atomic screening. Due to that we can neglect this screening calculating the contribution of multi-photon exchanges. We obtain the analytic formula for Coulomb corrections which works with a very good accuracy for the ground state of $\\pi^+\\pi^-$ atom.
Coulomb gauge ghost propagator and the Coulomb form factor
Quandt, M; Chimchinda, S; Reinhardt, H
2008-01-01
The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0--propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0-propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.
Coulomb gauge ghost propagator and the Coulomb form factor
Quandt, M.; Burgio, G.; Chimchinda, S.; Reinhardt, H.
The ghost propagator and the Coulomb potential are evaluated in Coulomb gauge on the lattice, using an improved gauge fixing scheme which includes the residual symmetry. This setting has been shown to be essential in order to explain the scaling violations in the instantaneous gluon propagator. We find that both the ghost propagator and the Coulomb potential are insensitive to the Gribov problem or the details of the residual gauge fixing, even if the Coulomb potential is evaluated from the A0 -propagator instead of the Coulomb kernel. In particular, no signs of scaling violations could be found in either quantity, at least to well below the numerical accuracy where these violations were visible for the gluon propagator. The Coulomb potential from the A0 -propagator is shown to be in qualitative agreement with the (formally equivalent) expression evaluated from the Coulomb kernel.
National Research Council Canada - National Science Library
Staffan A Qvist; Barry W Brook
2015-01-01
There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more...
Coulomb Logarithm, Version 1.0
Energy Technology Data Exchange (ETDEWEB)
2016-11-23
Clog is a library of charged particle stopping powers and related Coulomb logarithm processes in a plasma. The stopping power is a particularly useful quantity for plasma physics, as it measures the energy loss of per unit length of charged particle as it traverses a plasma. Clog's primary stopping power is the BPS (Brown-Preston-Singleton) theory.
Maj, Radoslaw
2009-01-01
The correlation function of two identical particles - pions or kaons - interacting via Coulomb potential is computed. The particles are emitted from an anisotropic particle's source of finite lifetime. In the case of pions, the effect of halo is taken into account as an additional particle's source of large spatial extension. The relativistic effects are discussed in detail. The Bowler-Sinyukov procedure to remove the Coulomb interaction is carefully tested. In the absence of halo the procedure is shown to work very well even for an extremely anisotropic source. When the halo is taken into account the free correlation function, which is extracted by means of the Bowler-Sinyukov procedure, is distorted at small relative momenta but the source parameters are still correctly reproduced.
Traceable Coulomb Blockade Thermometry
Hahtela, Ossi; Kemppinen, Antti; Meschke, Matthias; Prunnila, Mika; Gunnarsson, David; Roschier, Leif; Penttila, Jari; Pekola, Jukka
2016-01-01
We present a measurement and analysis scheme for determining traceable thermodynamic temperature at cryogenic temperatures using Coulomb blockade thermometry. The uncertainty of the electrical measurement is improved by utilizing two sampling digital voltmeters instead of the traditional lock-in technique. The remaining uncertainty is dominated by that of the numerical analysis of the measurement data. Two analysis methods, the numerical fitting of the full conductance curve and measuring the height of the conductance dip yield almost identical results. The complete uncertainty analysis shows that the relative expanded uncertainty (k = 2) in determining the thermodynamic temperature in the temperature range from 20 mK to 200 mK is below 1 %. A good agreement within the measurement uncertainty is experimentally demonstrated between the Coulomb blockade thermometer and a superconducting reference point device that has been directly calibrated against the Provisional Low Temperature Scale of 2000.
Abdelmadjid Maireche
2016-01-01
A novel theoretical study for the exact solvability of nonrelativistic quantum spectrum systems for potential containing coulomb and quadratic terms is discussed used both Boopp’s shift method and standard perturbation theory in both noncommutativity two dimensional real space and phase (NC-2D: RSP), it has been observed that the exact corrections for the ground states spectrum of studied potential was depended on two infinitesimals parameters and which plays an opposite rolls, and we ha...
Adams, Josh; Kelsey, Emily C.; Felis, Jonathan J.; Pereksta, David M.
2016-10-27
With growing climate change concerns and energy constraints, there is an increasing need for renewable energy sources within the United States and globally. Looking forward, offshore wind-energy infrastructure (OWEI) has the potential to produce a significant proportion of the power needed to reach our Nation’s renewable energy goal. Offshore wind-energy sites can capitalize open areas within Federal waters that have persistent, high winds with large energy production potential. Although there are few locations in the California Current System (CCS) where it would be acceptable to build pile-mounted wind turbines in waters less than 50 m deep, the development of technology able to support deep-water OWEI (>200 m depth) could enable wind-energy production in the CCS. As with all human-use of the marine environment, understanding the potential impacts of wind-energy infrastructure on the marine ecosystem is an integral part of offshore wind-energy research and planning. Herein, we present a comprehensive database to quantify marine bird vulnerability to potential OWEI in the CCS (see https://doi.org/10.5066/F79C6VJ0). These data were used to quantify marine bird vulnerabilities at the population level. For 81 marine bird species present in the CCS, we created three vulnerability indices: Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability. Population Vulnerability was used as a scaling factor to generate two comprehensive indicies: Population Collision Vulnerability (PCV) and Population Displacement Vulnerability (PDV). Within the CCS, pelicans, terns (Forster’s [Sterna forsteri], Caspian [Hydroprogne caspia], Elegant [Thalasseus elegans], and Least Tern [Sternula antillarum]), gulls (Western [Larus occidentalis] and Bonaparte’s Gull [Chroicocephalus philadelphia]), South Polar Skua (Stercorarius maccormicki), and Brandt’s Cormorant (Phalacrocorax penicillatus) had the greatest PCV scores. Brown Pelican (Pelicanus occidentalis
Adams, Josh; Kelsey, Emily C.; Felis, Jonathan J.; Pereksta, David M.
2016-10-27
With growing climate change concerns and energy constraints, there is an increasing need for renewable energy sources within the United States and globally. Looking forward, offshore wind-energy infrastructure (OWEI) has the potential to produce a significant proportion of the power needed to reach our Nation’s renewable energy goal. Offshore wind-energy sites can capitalize open areas within Federal waters that have persistent, high winds with large energy production potential. Although there are few locations in the California Current System (CCS) where it would be acceptable to build pilemounted wind turbines in waters less than 50 m deep, the development of technology able to support deep-water OWEI (>200 m depth) could enable wind-energy production in the CCS. As with all humanuse of the marine environment, understanding the potential impacts of wind-energy infrastructure on the marine ecosystem is an integral part of offshore wind-energy research and planning. Herein, we present a comprehensive database to quantify marine bird vulnerability to potential OWEI in the CCS (see http://dx.doi.org/10.5066/F79C6VJ0). These data were used to quantify marine bird vulnerabilities at the population level. For 81 marine bird species present in the CCS, we created three vulnerability indices: Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability. Population Vulnerability was used as a scaling factor to generate two comprehensive indicies: Population Collision Vulnerability (PCV) and Population Displacement Vulnerability (PDV). Within the CCS, pelicans, terns (Forster’s [Sterna forsteri], Caspian [Hydroprogne caspia], Elegant [Thalasseus elegans], and Least Tern [Sternula antillarum]), gulls (Western [Larus occidentalis] and Bonaparte’s Gull [Chroicocephalus philadelphia]), South Polar Skua (Stercorarius maccormicki), and Brandt’s Cormorant (Phalacrocorax penicillatus) had the greatest PCV scores. Brown Pelican (Pelicanus occidentalis
Lieber, Michael
1989-06-01
It is something of a miracle that the nonrelativistic Schrodinger equation with a Coulomb potential can be solved for the wavefunction in exact analytic form. Even more miraculous is the result of Schwinger which enables the Green's function to be solved in closed form, for this is in effect, an infinite sum of wavefunction products. In the relativistic case too the wavefunction can be found in closed form, but as yet no such result for the Green's function has been found. This lecture provides a brief overview of the situation with an emphasis on the ``hidden symmetry'' which underlies the nonrelativisitic problem and its degenerate form which carries over to the relativistic case.
Control of a 420 KN Discrete Displacement Cylinder Drive for the Wavestar Wave Energy Converter
DEFF Research Database (Denmark)
Hansen, Rico H.; Andersen, Torben Ole; Pedersen, Henrik C.
2014-01-01
To improve the power production of their 1 MW wave energy converter, Wavestar is developing a new transmission based on discrete hydraulics. The discrete hydraulic system allows all cylinders to supply a common accumulator storage while maintaining low-loss individual force control of the 20 abso...
Traceable Coulomb blockade thermometry
Hahtela, O.; Mykkänen, E.; Kemppinen, A.; Meschke, M.; Prunnila, M.; Gunnarsson, D.; Roschier, L.; Penttilä, J.; Pekola, J.
2017-02-01
We present a measurement and analysis scheme for determining traceable thermodynamic temperature at cryogenic temperatures using Coulomb blockade thermometry. The uncertainty of the electrical measurement is improved by utilizing two sampling digital voltmeters instead of the traditional lock-in technique. The remaining uncertainty is dominated by that of the numerical analysis of the measurement data. Two analysis methods are demonstrated: numerical fitting of the full conductance curve and measuring the height of the conductance dip. The complete uncertainty analysis shows that using either analysis method the relative combined standard uncertainty (k = 1) in determining the thermodynamic temperature in the temperature range from 20 mK to 200 mK is below 0.5%. In this temperature range, both analysis methods produced temperature estimates that deviated from 0.39% to 0.67% from the reference temperatures provided by a superconducting reference point device calibrated against the Provisional Low Temperature Scale of 2000.
Classical and quantum Coulomb crystals
Bonitz, M; Baumgartner, H; Henning, C; Filinov, A; Block, D; Arp, O; Piel, A; Kading, S; Ivanov, Y; Melzer, A; Fehske, H; Filinov, V
2008-01-01
Strong correlation effects in classical and quantum plasmas are discussed. In particular, Coulomb (Wigner) crystallization phenomena are reviewed focusing on one-component non-neutral plasmas in traps and on macroscopic two-component neutral plasmas. The conditions for crystal formation in terms of critical values of the coupling parameters and the distance fluctuations and the phase diagram of Coulomb crystals are discussed.
Coulomb Breakup of Nucleus 6 Li on Ion 208Pb
Irgaziev, B. F.; ERGASHBAEV, H. T.
1998-01-01
In the framework of the three-body approach the A(a,bc)A Coulomb breakup has been investigated. The three-body Coulomb dynamic is taken into account to derive the expression for the reaction matrix element. The mechanism of the breakup includes the direct process and the excitation of resonance state of the particle a. The calculation of the triple differential cross section of the 208Pb(6Li, a d)208Pb Coulomb dissociation have been performed in the energy region Ea d < 1MeV. Cal...
Elastic Coulomb breakup of $^{34}$Na
Singh, G; Chatterjee, R
2016-01-01
Purpose : The aim of this paper is to study the elastic Coulomb breakup of $^{34}$Na on $^{208}$Pb to give us a core of $^{33}$Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of $^{34}$Na. Method : A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of $^{34}$Na on $^{208}$Pb at 100 MeV/u. The triple differential cross-section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum and angular distributions as well as the average momenta, along with the energy-angular distributions. Results : The total one neutron removal cross-section is calculated to test the possible ground state configurations of $^{34}$Na. The average momentum results along with energy-angular calculations indicate $^{34}$Na to ha...
Stefańska, Patrycja
2016-01-01
The Sturmian expansion of the generalized Dirac--Coulomb Green function [R.\\/~Szmytkowski, J.\\ Phys.\\ B \\textbf{30}, 825 (1997); \\textbf{30}, 2747(E) (1997)] is exploited to derive a closed-form expression for the magnetizability of the relativistic one-electron atom in an arbitrary discrete state, with a point-like, spinless and motionless nucleus of charge $Ze$. The result has the form of a double finite sum involving the generalized hypergeometric functions ${}_3F_2$ of the unit argument. Our general expression agrees with formulas obtained analytically earlier by other authors for some particular states of the atom. We present also numerical values of the magnetizability for some excited states of selected hydrogenlike ions with $1 \\leqslant Z \\leqslant 137$ and compare them with data available in the literature.
Thermodynamic properties of the magnetized Coulomb crystal lattices
Kozhberov, A. A.
2016-08-01
It is thought that Coulomb crystals of ions with hexagonal close-packed lattice may form in the crust of strongly-magnetized neutron stars (magnetars). In this work we are trying to verify this prediction assuming that the direction of the magnetic field corresponds to the minimum of the zero-point energy. We also continue a detailed study of vibration modes and thermodynamic properties of magnetized Coulomb crystals in a wide range of temperatures and magnetic fields. It is demonstrated that the total Helmholtz free energy of the body-centered cubic Coulomb crystal is always lower than that of the Coulomb crystal with hexagonal close-packed or face-centered cubic lattice, which casts doubt on the hypothesis above.
Frictional Coulomb drag in strong magnetic fields
DEFF Research Database (Denmark)
Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang;
1997-01-01
A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21......) is evaluated using diagrammatic techniques. The transresistivity is given by an integral over energy and momentum transfer weighted by the product of the screened interlayer interaction and the phase space for scattering events. We demonstrate, by a numerical analysis of the transresistivity, that for well...
DEFF Research Database (Denmark)
Nielsen, Peter Vilhelm
Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...
Low-energy Coulomb excitation of {sup 62}Fe and {sup 62}Mn following in-beam decay of {sup 62}Mn
Energy Technology Data Exchange (ETDEWEB)
Gaffney, L.P.; Bree, N.; Witte, H. de; Huyse, M.; Duppen, P. van [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Walle, J.V. de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); CERN-ISOLDE, CERN, Geneva (Switzerland); Bastin, B. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); GANIL CEA/DSM-CNRS/IN2P3, Caen (France); Bildstein, V.; Wimmer, K. [Technische Universitaet Muenchen, Physics Department E12, Garching (Germany); Blazhev, A.; Fransen, C.; Gernhaeuser, R.; Hess, H.; Reiter, P.; Seidlitz, M.; Warr, N. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Cederkaell, J.; DiJulio, D. [University of Lund, Physics Department, Lund (Sweden); Darby, I. [University of Jyvaskyla, Department of Physics, Jyvaskyla (Finland); Diriken, J.; Kesteloot, N. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); Belgian Nuclear Research Centre SCK-CEN, Mol (Belgium); Fedosseev, V.N.; Gustafsson, A.; Marsh, B.A.; Voulot, D.; Wenander, F. [CERN-ISOLDE, CERN, Geneva (Switzerland); Kroell, T. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Lutter, R. [Ludwig-Maximilians-Universitaet-Muenchen, Muenchen (Germany); Wrzosek-Lipska, K. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Leuven (Belgium); University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland)
2015-10-15
Sub-barrier Coulomb excitation was performed on a mixed beam of {sup 62}Mn and {sup 62}Fe, following in-trap β{sup -} decay of {sup 62}Mn at REX-ISOLDE, CERN. The trapping and charge breeding times were varied in order to alter the composition of the beam, which was measured by means of an ionisation chamber at the zero-angle position of the Miniball array. A new transition was observed at 418 keV, which has been tentatively associated to a (2{sup +},3{sup +}) → 1{sub g.s.}{sup +} transition. This fixes the relative positions of the β-decaying 4{sup +} and 1{sup +} states in {sup 62}Mn for the first time. Population of the 2{sub 1}{sup +} state was observed in {sup 62}Fe and the cross-section determined by normalisation to the {sup 109}Ag target excitation, confirming the B(E2) value measured in recoil-distance lifetime experiments. (orig.)
Heavy ion reactions around the Coulomb barrier
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The angular distributions of fission fragments for the 32S+184W reaction near Coulomb barrier energies are measured. The ex perimental fission excitation function is obtained. The measured fission cross sections are decomposed into fusion-fission, quasi-fission and fast fission contributions by the dinuclear system (DNS) model. The hindrance to completing fusion both at small and large collision energies is explained. The fusion excitation functions of 32S+90,96Zr in an energy range from above to below the Coulomb barrier are measured and analyzed within a semi-classical model. The obvious effect of positive Q-value multi-neutron transfers on the sub-barrier fusion enhancement is observed in the 32S+96Zr system. In addition, the excitation functions of quasi-elastic scattering at a backward angle have been measured with high precision for the systems of 16O+208Pb, 196Pt, 184W, and 154,152Sm at energies well below the Coulomb barrier. Considering the deformed coupling effects, the extracted diffuseness parameters are close to the values extracted from the systematic analysis of elastic and inelastic scattering data. The elastic scattering angular distribution of 17F+12C at 60 MeV is measured and calculated by using the continuum-discretized coupled-channels (CDCC) approach. It is found that the diffuseness parameter of the real part of core-target potential has to be increased by 20% to reproduce the experimental result, which corresponds to an increment of potential depth at the surface re gion. The breakup cross section and the coupling between breakup and elastic scattering are small.
Shell correction energy for bubble nuclei
Yu, Y; Magierski, P; Bulgac, Aurel; Magierski, Piotr
2000-01-01
The positioning of a bubble inside a many fermion system does not affect the volume, surface or curvature terms in the liquid drop expansion of the total energy. Besides possible Coulomb effects, the only other contribution to the ground state energy of such a system arises from shell effects. We show that the potential energy surface is a rather shallow function of the displacement of the bubble from the center and in most cases the preferential position of a bubble is off center. Systems with bubbles are expected to have bands of extremely low lying collective states, corresponding to various bubble displacements.
Energy Technology Data Exchange (ETDEWEB)
Doran, D G; Graves, N J
1976-12-01
Damage energy cross sections to 20 MeV are given for aluminum, vanadium, chromium, iron, nickel, copper, zirconium, niobium, molybdenum, tantalum, tungsten, lead, and 18Cr10Ni stainless steel. They are based on ENDF/B-IV nuclear data and the Lindhard energy partition model. Primary knockon atom (PKA) spectra are given for aluminum, iron, niobium, tantalum, and lead for neutron energies up to 15 MeV at approximately one-quarter lethargy intervals. The contributions of various reactions to both the displacement cross sections (taken to be proportional to the damage energy cross sections) and the PKA spectra are presented graphically. Spectral-averaged values of the displacement cross sections are given for several spectra, including approximate maps for the Experimental Breeder Reactor-II (EBR-II) and several positions in the Fast Test Reactor (FTR). Flux values are included to permit estimation of displacement rates. Graphs show integral PKA spectra for the five metals listed above for neutron spectra corresponding to locations in the EBR-II, the High Flux Isotope Reactor (HFIR), and a conceptual fusion reactor (UWMAK-I). Detailed calculations are given only for cases not previously documented. Uncertainty estimates are included.
Nanoplasmonic renormalization and enhancement of Coulomb interactions
Energy Technology Data Exchange (ETDEWEB)
Durach, M; Rusina, A; Stockman, M I [Department of Physics and Astronomy, Georgia State University, Atlanta, GA (United States); Klimov, V I [Chemistry Division, C-PCS, Los Alamos National Laboratory, Los Alamos, NM (United States)], E-mail: mstockman@gsu.edu
2008-10-15
In this paper, we propose a general and powerful theory of the plasmonic enhancement of the many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. We illustrate this theory by computing the dressed interaction explicitly for an important example of metal-dielectric nanoshells which exhibits a rich resonant behavior in magnitude and phase. This interaction is used to describe the nanoplasmonic-enhanced Foerster resonant energy transfer (FRET) between nanocrystal quantum dots near a nanoshell.
Nanoplasmonic renormalization and enhancement of Coulomb interactions
Durach, M.; Rusina, A.; Klimov, V. I.; Stockman, M. I.
2008-10-01
In this paper, we propose a general and powerful theory of the plasmonic enhancement of the many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. We illustrate this theory by computing the dressed interaction explicitly for an important example of metal-dielectric nanoshells which exhibits a rich resonant behavior in magnitude and phase. This interaction is used to describe the nanoplasmonic-enhanced Förster resonant energy transfer (FRET) between nanocrystal quantum dots near a nanoshell.
Action principle for Coulomb collisions in plasmas
Hirvijoki, Eero
2016-09-01
An action principle for Coulomb collisions in plasmas is proposed. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth-MacDonald-Judd potentials. Conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles.
Action principle for Coulomb collisions in plasmas
Hirvijoki, Eero
2015-01-01
In this letter we derive an action principle for Coulomb collisions in plasmas. Although no natural Lagrangian exists for the Landau-Fokker-Planck equation, an Eulerian variational formulation is found considering the system of partial differential equations that couple the distribution function and the Rosenbluth potentials. Exact conservation laws are derived after generalizing the energy-momentum stress tensor for second order Lagrangians and, in the case of a test-particle population in a given plasma background, the action principle is shown to correspond to the Langevin equation for individual particles. Being suitable for discretization, the presented action allows construction of variational integrators. Numerical implementation is left for a future study.
Resonances in the two centers Coulomb system
Energy Technology Data Exchange (ETDEWEB)
Seri, Marcello
2012-09-14
In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schroedinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.
DEFF Research Database (Denmark)
Bjørn, Erik; Mattsson, Magnus; Sandberg, Mats
Full-scale experiments were made in a displacement ventilated room with two breathing thermal manikins to study the effect of movements and breathing on the vertical contaminant distribution, and on the personal exposure of occupants. Concentrations were measured with tracer gas equipment...
Correlated Coulomb drag in capacitively coupled quantum-dot structures
DEFF Research Database (Denmark)
Kaasbjerg, Kristen; Jauho, Antti-Pekka
2016-01-01
We study theoretically Coulomb drag in capacitively coupled quantum dots (CQDs) -- a biasdriven dot coupled to an unbiased dot where transport is due to Coulomb mediated energy transfer drag. To this end, we introduce a master-equation approach which accounts for higher-order tunneling (cotunneling....... Interestingly, the direction of the drag current is not determined by the drive current, but by an interplay between the energy-dependent lead couplings. Studying the drag mechanism in a graphene-based CQD heterostructure, we show that the predictions of our theory are consistent with recent experiments...
Reconciling Coulomb breakup and neutron radiative capture
Capel, P.; Nollet, Y.
2017-07-01
The Coulomb-breakup method to extract the cross section for neutron radiative capture at astrophysical energies is analyzed in detail. In particular, its sensitivity to the description of the neutron-core continuum is ascertained. We consider the case of 14C(n ,γ )15C for which both the radiative capture at low energy and the Coulomb breakup of 15C into 14C+n on Pb at 68 MeV/nucleon have been measured with accuracy. We confirm the direct proportionality of the cross section for both reactions to the square of the asymptotic normalization constant of 15C observed by Summers and Nunes [Phys. Rev. C 78, 011601(R) (2008), 10.1103/PhysRevC.78.011601], but we also show that the 14C-n continuum plays a significant role in the calculations. Fortunately, the method proposed by Summers and Nunes can be improved to absorb that continuum dependence. We show that a more precise radiative-capture cross section can be extracted selecting the breakup data at forward angles and low 14C-n relative energies.
National Research Council Canada - National Science Library
Fields, David A; Demerath, Ellen W; Pietrobelli, Angelo; Chandler-Laney, Paula C
2012-01-01
...) and air displacement plethysmography (ADP) at 6 months old. We assessed the agreement between whole body composition using DXA and ADP in 84 full-term average-for-gestational-age boys and girls using DXA (Lunar iDXA v11-30.062...
Coulomb excitation of {sup 8}Li
Energy Technology Data Exchange (ETDEWEB)
Assuncao, Marlete; Britos, Tatiane Nassar [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Ciencias Exatas e da Terra; Descouvemont, Pierre [Universite Libre de Bruxelles (ULB), Brussels (Belgium). Physique Nucleaire Theorique et Physique Mathematique; Lepine-Szily, Alinka; Lichtenthaler Filho, Rubens; Barioni, Adriana; Silva, Diego Medeiros da; Pereira, Dirceu; Mendes Junior, Djalma Rosa; Pires, Kelly Cristina Cezaretto; Gasques, Leandro Romero; Morais, Maria Carmen; Added, Nemitala; Neto Faria, Pedro; Rec, Rafael [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica. Dept. de Fisica Nuclear
2012-07-01
Full text: This work shows the Coulomb Excitation of {sup 8}Li on targets that have effectively behavior of Rutherford in angles and energies of interest for determining the value of the B(E2) electromagnetic transition. Theoretical aspects involved in this type of measure, known as COULEX [1], and some results in the literature [2-3] will be presented. Some problems with the targets and measurement system while performing an experiment on Coulomb Excitation of {sup 8}Li will be discussed: the energy resolution, background, possible contributions of the primary beam and also the excited states of the target near the region of elastic and inelastic peaks. They will be illustrated by measurements of the Coulomb Excitation of {sup 8}Li on targets of {sup 197}Au and {sup 208}Pb using the system RIBRAS(Brazilian Radioactive Ion Beam). In this case, the {sup 8}Li beam(T{sub 1/2} = 838 ms)is produced by {sup 9}Be({sup 7}Li;{sup 8} Li){sup 8}Be reaction from RIBRAS system which is installed at Instituto de Fisica of the Universidade de Sao Paulo. The primary {sup 7L}i beam is provided by Pelletron Accelerator. [1] K. Alder and A. Winther, Electromagnetic Excitation, North-Holland, New York, 1975; [2] P. Descouvemont and D. Baye, Phys. Letts. B 292, 235-238, 1992; [3] J. A. Brown, F. D. Becchetti, J. W. Jaenecke, K, Ashktorab, and D. A. Roberts, J. J. Kolata, R. J. Smith, and K. Lamkin, R. E. Warner, Phys. Rev. Letts., 66, 19, 1991; [4] R. J. Smith, J. J Kolata, K. Lamkin and A. Morsard, F. D. Becchetti, J. A. Brown, W. Z. Liu, J. W. Jaenecke, and D. A. Roberts, R. E. Warner, Phys. Rev. C, 43, 5, 1991. (author)
Coulomb excitation effects on alpha-particle optical potential below the Coulomb barrier
Avrigeanu, V; Mănăilescu, C
2016-01-01
A competition of the low-energy Coulomb excitation (CE) with the compound nucleus (CN) formation in alpha-induced reactions below the Coulomb barrier has recently been assumed in order to make possible the description of the latter as well as the alpha-particle emission by the same optical model (OM) potential. On the contrary, we show in the present work that the corresponding partial waves and integration radii provide evidence for the distinct account of the CE cross section and OM total-reaction cross section $\\sigma_R$. Thus the largest contribution to CE cross section comes by far from partial waves larger than the ones contributing to the $\\sigma_R$ values.
Momentum-space treatment of Coulomb distortions in a multiple-scattering expansion
Energy Technology Data Exchange (ETDEWEB)
Chinn, C.R. (Physics Department, Lawrence Livermore National Laboratory, Livermore, California (USA)); Elster, C. (Department of Physics, Ohio State University, Columbus, Ohio (USA)); Thaler, R.M. (Los Alamos National Laboratory, Los Alamos, New Mexico (USA) Department of Physics, Case Western Reserve University, Cleveland, Ohio (USA))
1991-10-01
The momentum-space treatment of the Coulomb interaction within the framework of the Watson multiple-scattering expansion is derived and tested numerically. By neglecting virtual Coulomb excitations and higher-order terms, the lowest-order optical potential for proton-nucleus scattering is shown to be the sum of the convolutions of a two-body nucleon-nucleon {ital t} matrix with the nuclear density and the point Coulomb interaction with the nuclear charge density. The calculation of the optical potential, as well as the treatment of the Coulomb interaction, is performed entirely in momentum space in an exact and numerically stable procedure. Elastic-scattering observables are presented for {sup 16}O, {sup 40}Ca, and {sup 208}Pb at energies up to 500 MeV. Comparisons are made with approximate treatments of the Coulomb interaction. The interference of nonlocality effects in the nuclear optical potential with different treatments of the Coulomb interaction is investigated.
Momentum-space treatment of Coulomb distortions in a multiple-scattering expansion
Chinn, C. R.; Elster, Ch.; Thaler, R. M.
1991-10-01
The momentum-space treatment of the Coulomb interaction within the framework of the Watson multiple-scattering expansion is derived and tested numerically. By neglecting virtual Coulomb excitations and higher-order terms, the lowest-order optical potential for proton-nucleus scattering is shown to be the sum of the convolutions of a two-body nucleon-nucleon t matrix with the nuclear density and the point Coulomb interaction with the nuclear charge density. The calculation of the optical potential, as well as the treatment of the Coulomb interaction, is performed entirely in momentum space in an exact and numerically stable procedure. Elastic-scattering observables are presented for 16O, 40Ca, and 208Pb at energies up to 500 MeV. Comparisons are made with approximate treatments of the Coulomb interaction. The interference of nonlocality effects in the nuclear optical potential with different treatments of the Coulomb interaction is investigated.
Study on Coulomb explosions of ion mixtures
Boella, E; D'Angola, A; Coppa, G; Silva, L O
2015-01-01
The paper presents a theoretical work on the dynamics of Coulomb explosion for spherical nanoplasmas composed by two different ion species. Particular attention has been dedicated to study the energy spectra of the ions with the larger charge-to-mass ratio. The connection between the formation of shock shells and the energy spread of the ions has been the object of a detailed analysis, showing that under particular conditions the width of the asymptotic energy spectrum tends to become very narrow, which leads to a multi-valued ion phase-space. The conditions to generate a quasi mono-energetic ion spectrum have been rigorously demonstrated and verifed by numerical simulations, using a technique that, exploiting the spherical symmetry of the problem, allows one to obtain very accurate and precise results.
Prokhorova, E V; Itkis, M G; Kondratev, N A; Kozulin, E M; Krupa, L; Oganessian, Yu T; Pashkevich, V V; Pokrovsky, I V; Rusanov, A Ya; Oganessian, Yu.Ts.
2003-01-01
The capture-fission cross-sections in an energy range of 206-242 MeV of 48Ca-projectiles and mass-energy distributions (MEDs) of reaction products in an energy range of 211-242 MeV have been measured in the 48Ca+208Pb reaction using the double-arm time-of-flight spectrometer CORSET. The MEDs of fragments for heated fission were shown to consist of two components. One component, which is due to classical fusion-fission, is associated with the symmetric fission of the 256No compound nucleus. The other component, which appears as ''shoulders'', is associated with the quasi-fission process and can be named ''quasi-fission shoulders''. Those quasi-fission shoulders enclose light fragments whose masses are 60-90 a.m.u. The total kinetic energy (TKE) of the fragments that belong to the shoulders is higher than the value expected for a classical fusion-fission process. We have come to the conclusion that in quasi-fission, spherical shells with Z=28 and N=50 play a great role. It has also been demonstrated that the pr...
Coulomb interaction in multiple scattering theory
Ray, L.; Hoffmann, G. W.; Thaler, R. M.
1980-10-01
The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+208Pb elastic scattering and compared with experimental data. NUCLEAR REACTIONS 208Pb(p, p), E=0.8 GeV, Kerman, McManus, and Thaler, and Watson multiple scattering theories, Coulomb correction terms, high momentum transfer.
Energy Technology Data Exchange (ETDEWEB)
Muri, C.; Anjos, R.M.; Cabezas, R.; Gomes, P.R.S.; Moraes, S.B.; Maciel, A.M.M.; Santos, G.M.; Lubian, J.; Sant`Anna, M.M. [Universidade Federal Fluminense, Niteroi (Brazil). Inst. de Fisica; Tenreiro, C.; Liguori Neto, R.; Acquadro, J.C.; Freitas, P.A.B. [Instituto de Fisica, Universidade de Sao Paulo, C.P. 20516, S. Paulo, 01498-970 (Brazil)
1998-02-01
Elastic and inelastic scattering differential cross sections were measured in the energy range 30 MeV{<=}E{sub lab}{<=}55 MeV, for the {sup 14}N+{sup 59}Co system. Ambiguities of the optical potential derived from the analysis of the elastic scattering data were removed by performing calculations at the radius of sensitivity and by comparison with the available fusion cross section data. A simultaneous analysis of the three mechanisms was performed by coupled channel calculations, and a unique energy independent nuclear potential was found to be able to fit the data. Discussions and comparisons concerning the optical model, the threshold anomaly, full and approximated coupled channel calculations are presented. (orig.) With 8 figs., 4 tabs., 13 refs.
Mazzocco, M.; Torresi, D.; Acosta, L.; Boiano, A.; Boiano, C.; Fierro, N.; Glodariu, T.; Guglielmetti, A.; Keeley, N.; La Commara, M.; Martel, I.; Mazzocchi, C.; Molini, P.; Pakou, A.; Parascandolo, C.; Parkar, V. V.; Patronis, N.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Stiliaris, E.; Strano, E.; Stroe, L.; Zerva, K.
2014-03-01
We measured for the first time 7Be elastically scattered nuclei as well as 3,4He reaction products from a 58Ni target at 22.3 MeV beam energy. The data were analyzed within the optical model formalism to extract the total reaction cross section. Extensive kinematical, Distorted Wave Born Approximation (DWBA)and Continuum Discretized Coupled Channel (CDCC) calculations were performed to investigate the 3,4He originating mechanisms and the interplay between different reaction channels.
Mazzocco M.; Torresi D.; Acosta L.; Boiano A.; Boiano C.; Fierro N.; Glodariu T.; Guglielmetti A.; Keeley N.; La Commara M.; Martel I.; Mazzocchi C.; Molini P.; Pakou A.; Parascandolo C.
2014-01-01
We measured for the first time 7Be elastically scattered nuclei as well as 3,4He reaction products from a 58Ni target at 22.3 MeV beam energy. The data were analyzed within the optical model formalism to extract the total reaction cross section. Extensive kinematical, Distorted Wave Born Approximation (DWBA)and Continuum Discretized Coupled Channel (CDCC) calculations were performed to investigate the 3,4He originating mechanisms and the interplay between different reaction channels.
New measurement of the 8Li(α ,n )11B reaction in a lower-energy region below the Coulomb barrier
Das, S. K.; Fukuda, T.; Mizoi, Y.; Ishiyama, H.; Miyatake, H.; Watanabe, Y. X.; Hirayama, Y.; Jeong, S. C.; Ikezoe, H.; Matsuda, M.; Nishio, K.; Hashimoto, T.
2017-05-01
The 8Li(α ,n )11B reaction is regarded as the key reaction in the inhomogeneous big bang and in type-II supernova nucleosynthesis. Recently, the importance of this reaction to solving the 7Li problem, i.e., the inconsistency between the predicted and the observed primordial 7Li abundances, has also been noted. The most recent cross-section data published by our collaboration group in 2006 [H. Ishiyama et al., Phys. Lett. B 640, 82 (2006), 10.1016/j.physletb.2006.07.036] cover the 0.7- to 2.6-MeV energy region in the center-of-mass system. Here, we present additional data spanning the 0.45- to 1.8-MeV energy region. Thus, the predominant energy region for the big bang nucleosynthesis, corresponding to T9=1 (where T9 is a temperature unit equivalent to 109 K), is almost completely spanned by the previous [H. Ishiyama et al., Phys. Lett. B 640, 82 (2006), 10.1016/j.physletb.2006.07.036] and present results together.
Quantum Effects on the Coulomb Logarithm for Energetic IonsDuring the Initial Thermalization Phase
Institute of Scientific and Technical Information of China (English)
邓柏权; 严建成; 邓梅根; 彭利林
2002-01-01
We have discussed the quantum mechanical effects for the energetic charged particles produced in D - He3 fusionreactions. Our results show that it is better to use the proper Coulomb logarithm at the high-energy end indescribing the thermalization process, because the quantum mechanical effects on the Coulomb logarithm are notnegligible, based on an assumption of binary collision.
Influence of gun design on Coulomb interactions in a field emission gun
Verduin, T.; Cook, B.; Kruit, P.
2011-01-01
The authors investigate by simulation the Coulomb effects on brightness and energy spread for cold field emitters. At first, we show that brightness is ultimately limited by Coulomb interactions. The authors analyze the maximum attainable brightness for tip radii ranging from 1 nm to 1 μm. Remarkabl
Energy Technology Data Exchange (ETDEWEB)
Bauer, H.
1998-12-31
The scattering system {sup 162}Dy {yields} {sup 116}Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high {gamma}-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in {sup 162}Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)
Directory of Open Access Journals (Sweden)
Mazzocco M.
2014-03-01
Full Text Available We measured for the first time 7Be elastically scattered nuclei as well as 3,4He reaction products from a 58Ni target at 22.3 MeV beam energy. The data were analyzed within the optical model formalism to extract the total reaction cross section. Extensive kinematical, Distorted Wave Born Approximation (DWBAand Continuum Discretized Coupled Channel (CDCC calculations were performed to investigate the 3,4He originating mechanisms and the interplay between different reaction channels.
Lyapunov spectra of Coulombic and gravitational periodic systems
Kumar, Pankaj
2016-01-01
We compute Lyapunov spectra for Coulombic and gravitational versions of the one-dimensional systems of parallel sheets with periodic boundary conditions. Exact time evolution of tangent-space vectors are derived and are utilized toward computing Lypaunov characteristic exponents using an event-driven algorithm. The results indicate that the energy dependence of the largest Lyapunov exponent emulates that of Kolmogorov-entropy density for each system at different degrees of freedom. Our approach forms an effective and approximation-free tool toward studying the dynamical properties exhibited by the Coulombic and gravitational systems and finds applications in investigating indications of thermodynamic transitions in large versions of the spatially periodic systems.
DEFF Research Database (Denmark)
Kelly, Janet; Matthews, Ben
2014-01-01
-centred design process. We identified alternative design-relevant relationships between people and devices that are not specifically tied to the functions/uses of the devices, e.g. relationships between the healthcare professional and the device, between doctors and patients, and between patients and their own......This paper critically discusses the concept of use in design, suggesting that relevant relationships other than use are sometimes obscured by the usercentredness of design processes. We present a design case from the medical device domain that displaced the concept of use from the centre of a human...
No confinement without Coulomb confinement
Zwanziger, D
2003-01-01
We compare the physical potential $V_D(R)$ of an external quark-antiquark pair in the representation $D$ of SU(N), to the color-Coulomb potential $V_{\\rm coul}(R)$ which is the instantaneous part of the 44-component of the gluon propagator in Coulomb gauge, $D_{44}(\\vx,t) = V_{\\rm coul}(|\\vx|) \\delta(t)$ + (non-instantaneous). We show that if $V_D(R)$ is confining, $\\lim_{R \\to \\infty}V_D(R) = + \\infty$, then the inequality $V_D(R) \\leq - C_D V_{\\rm coul}(R)$ holds asymptotically at large $R$, where $C_D > 0$ is the Casimir in the representation $D$. This implies that $ - V_{\\rm coul}(R)$ is also confining.
Thermodynamic Functions of Magnetized Coulomb Crystals
Baiko, D A
2013-01-01
Free energy, internal energy, and specific heat for each of the three phonon spectrum branches of a magnetized Coulomb crystal with body-centered cubic lattice are calculated by numerical integration over the Brillouin zone in the range of magnetic fields $B$ and temperatures $T$, such that $0 \\le \\omega_{\\rm B}/\\omega_{\\rm p}\\le 10^3$ and $10^{-4} \\le T/T_{\\rm p} \\le 10^4$. In this case, $\\omega_{\\rm B}$ is the ion cyclotron frequency, $\\omega_{\\rm p}$ and $T_{\\rm p}$ are the ion plasma frequency and plasma temperature, respectively. The results of numerical calculations are approximated by simple analytical formulas. For illustration, these formulas are used to analyze the behavior of the heat capacity in the crust of a neutron star with strong magnetic field. Thermodynamic functions of magnetized neutron star crust are needed for modeling various observational phenomena in magnetars and high magnetic field pulsars.
Coulomb drag in quantum circuits
Levchenko, Alex; Kamenev, Alex
2008-01-01
We study drag effect in a system of two electrically isolated quantum point contacts (QPC), coupled by Coulomb interactions. Drag current exhibits maxima as a function of QPC gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the non-linear regime the drag current is proportional to the shot noise of the driving circuit,...
Elementary excitations and avalanches in the Coulomb glass
Palassini, Matteo; Goethe, Martin
2012-07-01
We study numerically the statistics of elementary excitations and charge avalanches in the classical Coulomb glass model of localized charges with unscreened Coulomb interaction and disorder. We compute the single-particle density of states with an energy minimization algorithm for systems of up to 1003 sites. The shape of the Coulomb gap is consistent with a power-law with exponent δ simeq 2.4 and marginally consistent with exponential behavior. The results are also compared with a recently proposed self-consistent approach. We then analyze the size distribution of the charge avalanches produced by a small perturbation of the system. We show that the distribution decays as a power law in the limit of large system size, and explain this behavior in terms of the elementary excitations. Similarities and differences with the scale-free avalanches observed in mean-field spin glasses are discussed.
Elastic Coulomb breakup of 34Na
Singh, G.; Shubhchintak, Chatterjee, R.
2016-08-01
Background: 34Na is conjectured to play an important role in the production of seed nuclei in the alternate r -process paths involving light neutron rich nuclei very near the β -stability line, and as such, it is important to know its ground state properties and structure to calculate rates of the reactions it might be involved in, in the stellar plasma. Found in the region of `island of inversion', its ground state might not be in agreement with normal shell model predictions. Purpose: The aim of this paper is to study the elastic Coulomb breakup of 34Na on 208Pb to give us a core of 33Na with a neutron and in the process we try and investigate the one neutron separation energy and the ground state configuration of 34Na. Method: A fully quantum mechanical Coulomb breakup theory within the architecture of post-form finite range distorted wave Born approximation extended to include the effects of deformation is used to research the elastic Coulomb breakup of 34Na on 208Pb at 100 MeV/u. The triple differential cross section calculated for the breakup is integrated over the desired components to find the total cross-section, momentum, and angular distributions as well as the average momenta, along with the energy-angular distributions. Results: The total one neutron removal cross section is calculated to test the possible ground state configurations of 34Na. The average momentum results along with energy-angular calculations indicate 34Na to have a halo structure. The parallel momentum distributions with narrow full widths at half-maxima signify the same. Conclusion: We have attempted to analyze the possible ground state configurations of 34Na and in congruity with the patterns in the `island of inversion' conclude that even without deformation, 34Na should be a neutron halo with a predominant contribution to its ground state most probably coming from 33Na(3 /2+)⊗ 2 p3 /2ν configuration. We also surmise that it would certainly be useful and rewarding to test our
Transport Through a Coulomb Blockaded Majorana Nanowire
Zazunov, Alex; Egger, Reinhold; Yeyati, Alfredo Levy; Hützen, Roland; Braunecker, Bernd
In one-dimensional (1D) quantum wires with strong spin-orbit coupling and a Zeeman field, a superconducting substrate can induce zero-energy Majorana bound states located near the ends of the wire. We study electronic properties when such a wire is contacted by normal metallic or superconducting electrodes. A special attention is devoted to Coulomb blockade effects. We analyze the "Majorana single-charge transistor" (MSCT), i.e., a floating Majorana wire contacted by normal metallic source and drain contacts, where charging effects are important. We describe Coulomb oscillations in this system and predict that Majorana fermions could be unambiguously detected by the emergence of sideband peaks in the nonlinear differential conductance. We also study a superconducting variant of the MSCT setup with s-wave superconducting (instead of normal-conducting) leads. In the noninteracting case, we derive the exact current-phase relation (CPR) and find π-periodic behavior with negative critical current for weak tunnel couplings. Charging effects then cause the anomalous CPR I(\\varphi ) = Ic\\cos \\varphi, where the parity-sensitive critical current I c provides a signature for Majorana states.
Konovalikhin, S. V.; Ponomarev, V. I.
2016-10-01
The activation energy of displacement of Mg atoms through channels of B25C4Mg1.42 crystals is estimated using quantum chemical calculations (DFT (B3LYP potential), RHF, and UHF methods, 3-21G basis set) of the element of the structure modeling the channel and location of Mg atoms in it. The changes in the activation energy at the replacement of Mg atoms by Na and Li atoms were estimated. The greatest decreasing in the activation energy was detected for Li atoms. The obtained results can be regarded as a theoretical background for development of conducting systems based on B25C4Mg1.42 crystals.
Coulomb crystallization in classical and quantum systems
Bonitz, Michael
2007-11-01
Coulomb crystallization occurs in one-component plasmas when the average interaction energy exceeds the kinetic energy by about two orders of magnitude. A simple road to reach such strong coupling consists in using external confinement potentials the strength of which controls the density. This has been succsessfully realized with ions in traps and storage rings and also in dusty plasma. Recently a three-dimensional spherical confinement could be created [1] which allows to produce spherical dust crystals containing concentric shells. I will give an overview on our recent results for these ``Yukawa balls'' and compare them to experiments. The shell structure of these systems can be very well explained by using an isotropic statically screened pair interaction. Further, the thermodynamic properties of these systems, such as the radial density distribution are discussed based on an analytical theory [3]. I then will discuss Coulomb crystallization in trapped quantum systems, such as mesoscopic electron and electron hole plasmas in coupled layers [4,5]. These systems show a very rich correlation behavior, including liquid and solid like states and bound states (excitons, biexcitons) and their crystals. On the other hand, also collective quantum and spin effects are observed, including Bose-Einstein condensation and superfluidity of bound electron-hole pairs [4]. Finally, I consider Coulomb crystallization in two-component neutral plasmas in three dimensions. I discuss the necessary conditions for crystals of heavy charges to exist in the presence of a light component which typically is in the Fermi gas or liquid state. It can be shown that their exists a critical ratio of the masses of the species of the order of 80 [5] which is confirmed by Quantum Monte Carlo simulations [6]. Familiar examples are crystals of nuclei in the core of White dwarf stars, but the results also suggest the existence of other crystals, including proton or α-particle crystals in dense matter
PREFACE: Strongly Coupled Coulomb Systems Strongly Coupled Coulomb Systems
Neilson, David; Senatore, Gaetano
2009-05-01
This special issue contains papers presented at the International Conference on Strongly Coupled Coulomb Systems (SCCS), held from 29 July-2 August 2008 at the University of Camerino. Camerino is an ancient hill-top town located in the Apennine mountains of Italy, 200 kilometres northeast of Rome, with a university dating back to 1336. The Camerino conference was the 11th in a series which started in 1977: 1977: Orleans-la-Source, France, as a NATO Advanced Study Institute on Strongly Coupled Plasmas (hosted by Marc Feix and Gabor J Kalman) 1982: Les Houches, France (hosted by Marc Baus and Jean-Pierre Hansen) 1986: Santa Cruz, California, USA (hosted by Forrest J Rogers and Hugh E DeWitt) 1989: Tokyo, Japan (hosted by Setsuo Ichimaru) 1992: Rochester, New York, USA (hosted by Hugh M Van Horn and Setsuo Ichimaru) 1995: Binz, Germany (hosted by Wolf Dietrich Kraeft and Manfred Schlanges) 1997: Boston, Massachusetts, USA (hosted by Gabor J Kalman) 1999: St Malo, France (hosted by Claude Deutsch and Bernard Jancovici) 2002: Santa Fe, New Mexico, USA (hosted by John F Benage and Michael S Murillo) 2005: Moscow, Russia (hosted by Vladimir E Fortov and Vladimir Vorob'ev). The name of the series was changed in 1996 from Strongly Coupled Plasmas to Strongly Coupled Coulomb Systems to reflect a wider range of topics. 'Strongly Coupled Coulomb Systems' encompasses diverse many-body systems and physical conditions. The purpose of the conferences is to provide a regular international forum for the presentation and discussion of research achievements and ideas relating to a variety of plasma, liquid and condensed matter systems that are dominated by strong Coulomb interactions between their constituents. Each meeting has seen an evolution of topics and emphases that have followed new discoveries and new techniques. The field has continued to see new experimental tools and access to new strongly coupled conditions, most recently in the areas of warm matter, dusty plasmas
Coulomb dissociation of light unstable nuclei
Energy Technology Data Exchange (ETDEWEB)
Kido, Toshihiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yabana, Kazuhiro; Suzuki, Yoshiyuki
1997-05-01
The aim of this study is that a simulation method applicable to the atomic nucleus with neutron halo structure developed till now is applied to a wider range unstable nucleus containing proton excess nucleus to also attribute understanding of nuclear reaction with interest in astronomical nuclear reaction. The proton dissociation energy in {sup 8}B nucleus is small value of 138 eV, which is thought to have a structure of proton at the most outer shell bound much weakly by core nucleus and spread in thinner thickness. For the coulomb excitation of such weak bound system, quantum theoretical and non-perturbational treatment is important. Therefore, 3-dimensional time-dependent Schroedinger equation on relative wave function of the core nucleus {sup 7}Be and halo proton p will be dissolved in time space and will execute a time developmental simulation. (G.K.)
Deep inelastic scattering near the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Gehring, J.; Back, B.; Chan, K. [and others
1995-08-01
Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.
Coulomb impurity effects on the zero-Landau level splitting of graphene on polar substrates
Xiao, Yao; Li, Wei-Ping; Li, Zhi-Qing; Wang, Zi-Wu
2017-04-01
We theoretically investigate the effects of the Coulomb impurity on the zero-Landau level splitting of graphene on different polar substrates basing on the Fröhlich polaron model, in which the polaron is formed due to the carriers-surface optical phonon coupling. We discuss the influence of Coulomb impurity on the zero-Landau level splitting in the case of weak and strong coupling limits. We find that the splitting energy can be varied in a large scale due to the Coulomb impurity, which provides the possible theoretical explanation for the experimental measurements regarding the energy gap opened and zero-Landau level splitting in Landau quantized graphene.
Active Precharge Hammering to Monitor Displacement Damage Using High-Energy Protons in 3x-nm SDRAM
Lim, Chulseung; Park, Kyungbae; Baeg, Sanghyeon
2017-02-01
This paper proposes the Active Precharge Hammering on a Row (APHR) test to evaluate displacement damage (DD) in 3x-nm DRAM components. Irradiated SDRAM devices could have multiple current leakage paths, partly owing to DD effects. The degree of leakage from cells with DD can be differentiated from undamaged cells by the difference in the number of hammered accesses to the two types of cells. Proton-based SER tests were performed with DDR3 SDRAM components made using 3x-nm technologies. The experimental results showed that bit errors caused by the APHR test (APHR errors) were more than five times higher in the irradiated sample compared to the non-irradiated sample, and APHR errors were not detectable within 64-ms retention time using the traditional retention test method. In the worst case, the number of hammerings required to cause an APHR error in the irradiated sample reduced by 36 times compared to that in the non-irradiated sample even after the irradiated sample was annealed at 150° C so as to have no retention errors within the maximum retention time of 64-ms.
Hijazi, Hussein; Bannister, Mark E.; Parish, Chad M.; Meyer, Harry M., III; Meyer, Fred W.
2014-10-01
Measurements of nano-fuzz growth on linear plasma devices have shown that below the displacement damage energy threshold, a minimum He-ion flux is required for nano-fuzz formation. We report comparative measurements of nano-fuzz flux thresholds below and above the displacement damage energy threshold using well characterized He ion beams at the ORNL MIRF. He-ion-beam flux distributions were optimized and measured at 218 and 2000 eV prior to ion beam impact on W coupons heated to about 1000 deg. C. After exposure times ranging from 4200 to 7200 seconds, the beam spots were examined by SEM over a 0.5 mm×0.5 mm grid, which was spatially correlated to the measured flux distributions. In this manner, we were able to obtain, in a single ion beam exposure, the flux dependence of the observed surface morphology changes at each of the two energies. At 218 eV, for fluxes below 1.5×1016/cm2s, ordered surface structures are observed, with great grain-to-grain variability, together with blisters and pinholes, while above this flux value, individual grain characteristics disappear, and nano-fuzz growth is observed. At 2 keV, very similar surface morphologies are observed, but the flux threshold for nano-fuzz formation has almost doubled, to 2.5 -- 3×1016/cm2s. Possible reasons for this increase will be discussed. Research sponsored by the LDRD Program of ORNL, managed by UT Battelle, LLC, for the US DOE.
Second Order Darboux Displacements
Samsonov, B F; Negro, J; Nieto, L M
2003-01-01
The potentials for a one dimensional Schroedinger equation that are displaced along the x axis under second order Darboux transformations, called 2-SUSY invariant, are characterized in terms of a differential-difference equation. The solutions of the Schroedinger equation with such potentials are given analytically for any value of the energy. The method is illustrated by a two-soliton potential. It is proven that a particular case of the periodic Lame-Ince potential is 2-SUSY invariant. Both Bloch solutions of the corresponding Schroedinger equation equation are found for any value of the energy. A simple analytic expression for a family of two-gap potentials is derived.
Energy Technology Data Exchange (ETDEWEB)
Meiners, Dennis [Alaska Industrial Development and Export Authority, Anchorage, AK (United States); Drouhilet, Steve [National Renewable Energy Lab. (NREL), Golden, CO (United States); Reeve, Brad [Alaska Industrial Development and Export Authority, Anchorage, AK (United States); Bergen, Matt [Kotzebue Electric Association, Kotzebue, AK (United States)
2002-03-11
The basic concept behind this project was to construct a wind diesel hybrid power system which combines and maximizes the intermittent and variable energy output of wind turbine(s) with diesel generator(s) to provide continuous high quality electric power to weak isolated mini-grids.
DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN UP TO 200 KEV OF DAMAGE ENERGY AT 300, 1025, AND 2050 K
Energy Technology Data Exchange (ETDEWEB)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.
2015-09-22
We generated molecular dynamics database of primary defects that adequately covers the range of tungsten recoil energy imparted by 14-MeV neutrons. During this semi annual period, cascades at 150 and 200 keV at 300 and 1025 K were simulated. Overall, we included damage energy up to 200 keV at 300 and 1025 K, and up to 100 keV at 2050 K. We report the number of surviving Frenkel pairs (NF) and the size distribution of defect clusters. The slope of the NF curve versus cascade damage energy (EMD), on a log-log scale, changes at a transition energy (μ). For EMD > μ, the cascade forms interconnected damage regions that facilitate the formation of large clusters of defects. At 300 K and EMD = 200 keV, the largest size of interstitial cluster and vacancy cluster is 266 and 335, respectively. Similarly, at 1025 K and EMD = 200 keV, the largest size of interstitial cluster and vacancy cluster is 296 and 338, respectively. At 2050 K, large interstitial clusters also routinely form, but practically no large vacancy clusters do
Forbis, Robert Earl, Jr.
Academic literature analyzing the Bureau of Land Management (BLM) land-use subgovernment stops at the Taylor Grazing Act and concludes that the historical development of administering grazing on public lands led to the capture of the BLM by ranching interests. Using a two-pronged methodological approach of process tracing and elite interviews this dissertation seeks to advance our collective knowledge of subgovernment theory by (a) clarifying the impact executive decision-making has on subgovernments and (b) identifying the conditions under which strategically competitive behavior between two competing subgovernment actors occurs. The dissertation seeks to update the literature by explaining what has caused the BLM to shift from a rancher-dominated agency to an energy dominated agency by identifying conditions under which subgovernment actors strategically respond to a political conflict. The research poses two questions: (1) how have executive actions disrupted an existing balance of power in a so-called "strong corner" of an entrenched subgovernment system and (2) what happens when conflict and competition break out between allied members of the system? Analysis indicates that as the BLM responded to Executive actions emphasizing domestic energy production, a conflict emerged between traditional allies: ranching and energy. Triggered by the unintended consequence of awakening long-dormant legislation, split-estate energy development---where property rights are severed between private surface and federal mineral estates---expanded across the West. In turn, this expansion helped establish the conditions for conflict and in doing so disrupted the balance of power between large public resource use interests in the relatively stable land-use subgovernment of the BLM. Indicative of energy's emerging dominance of the BLM's subgovernment, split-estate energy development led ranching interests to seek the protection of their Western state legislatures. This shift in
Coulomb dissociation of N-20,N-21
Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Golubev, Pavel; Diaz, D. Gonzalez; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hakan; Jonson, Bjorn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knoebel, Ronja; Kroell, Thorsten; Kruecken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; del Rio Saez, Jose Sanchez; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai
2016-01-01
Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a
Coulomb dissociation of N-20,N-21
Roeder, Marko; Adachi, Tatsuya; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M.; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J. G.; Burgunder, G.; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S.; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A.; Farinon, F.; Fraile, Luis M.; Freer, Martin; Freudenberger, M.; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhaeuser, Roman; Goebel, Kathrin; Golubev, Pavel; Diaz, D. Gonzalez; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G.; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hakan; Jonson, Bjorn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knoebel, Ronja; Kroell, Thorsten; Kruecken, Reiner; Kurcewicz, J.; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Le Bleis, Tudi; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Mostazo Caro, Magdalena; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S.; Plag, Ralf; Prochazka, A.; Rahaman, Md. Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M. Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; del Rio Saez, Jose Sanchez; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V.; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J.; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G.; Wimmer, Christine; Winfield, J. S.; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai
2016-01-01
Neutron-rich light nuclei and their reactions play an important role in the creation of chemical elements. Here, data from a Coulomb dissociation experiment on N-20,N-21 are reported. Relativistic N-20,N-21 ions impinged on a lead target and the Coulomb dissociation cross section was determined in a
Coulomb Effects in Few-Body Reactions
Directory of Open Access Journals (Sweden)
Deltuva A.
2010-04-01
Full Text Available The method of screening and renormalization is used to include the Coulomb interaction between the charged particles in the momentum-space description of three- and four-body nuclear reactions. The necessity for the renormalization of the scattering amplitudes and the reliability of the method is demonstrated. The Coulomb eﬀect on observables is discussed.
DEFF Research Database (Denmark)
Bennett, Patrick; Ouazad, Amine
that displaced workers' propensity to commit crime is higher than non-displaced workers before the displacement event; but it is significantly higher afterwards. Displacement impacts crime over and above what is explained by earnings losses and weeks of unemployment following displacement....
Directory of Open Access Journals (Sweden)
David W Lowry
Full Text Available Accurately estimating fat percentage is important for assessing health and determining treatment course. Methods of estimating body composition such as hydrostatic weighing or dual-energy x-ray absorptiometry (DXA, however, can be expensive, require extensive operator training, and, in the case of hydrostatic weighing, be highly burdensome for patients. Our objective was to evaluate air displacement plethysmography via the Bod Pod, a less burdensome method of estimating body fat percentage. In particular, we filled a gap in the literature by testing the Bod Pod at the lower extreme of the Body Mass Index (BMI distribution.Three BMI groups were recruited and underwent both air displacement plethysmography and dual-energy x-ray absorptiometry. We recruited 30 healthy adults at the lower BMI distribution from the Calorie Restriction (CR Society and followers of the CR Way. We also recruited 15 normal weight and 19 overweight/obese healthy adults from the general population. Both Siri and Brozek equations derived body fat percentage from the Bod Pod, and Bland-Altman analyses assessed agreement between the Bod Pod and DXA. Compared to DXA, the Bod Pod overestimated body fat percentage in thinner participants and underestimated body fat percentage in heavier participants, and the magnitude of difference was larger for underweight BMI participants, reaching 13% in some. The Bod Pod and DXA had smaller discrepancies in normal weight and overweight/obese participants.While less burdensome, clinicians should be aware that Bod Pod estimates may deviate from DXA estimates particularly at the lower end of the BMI distribution.
Scaling laws for near barrier Coulomb and Nuclear Breakup
Hussein, M S; Lubian, J; Otomar, D R; Canto, L F
2013-01-01
We investigate the nuclear and the Coulomb contributions to the breakup cross sections of $^6$Li in collisions with targets in different mass ranges. Comparing cross sections for different targets at collision energies corresponding to the same $E/V_{\\mathrm{\\scriptscriptstyle B}}$, we obtain interesting scaling laws. First, we derive an approximate linear expression for the nuclear breakup cross section as a function of $A_{\\mathrm{% \\scriptscriptstyle T}}^{1/3}$. We then confirm the validity of this expression performing CDCC calculations. Scaling laws for the Coulomb breakup cross section are also investigated. In this case, our CDCC calculations indicate that this cross section has a linear dependence on the atomic number of the target. This behavior is explained by qualitative arguments. Our findings, which are consistent with previously obtained results for higher energies, are important when planning for experiments involving exotic weakly bound nuclei.
Low-Temperature Kinetics and Dynamics with Coulomb Crystals
Heazlewood, Brianna R.; Softley, Timothy P.
2015-04-01
Coulomb crystals-as a source of translationally cold, highly localized ions-are being increasingly utilized in the investigation of ion-molecule reaction dynamics in the cold regime. To develop a fundamental understanding of ion-molecule reactions, and to challenge existing models that describe the rates, product branching ratios, and temperature dependence of such processes, investigators need to exercise full control over the experimental reaction parameters. This requires not only state selection of the reactants, but also control over the collision process (e.g., the collisional energy and angular momentum) and state-selective product detection. The combination of Coulomb crystals in ion traps with cold neutral-molecule sources is enabling the measurement of state-selective reaction rates in a diverse range of systems. With the development of appropriate product detection techniques, we are moving toward the ultimate goal of examining low-energy, state-to-state ion-molecule reaction dynamics.
OIL DISPLACEMENT IN MISCIBLE CONDITION
Directory of Open Access Journals (Sweden)
Ivanka Juttner
1997-12-01
Full Text Available After primary oil recovery in reservoirs remains about 70% of unexploited oil. To improve the recovery of the remaining reserves, injection of a fluid provide the extra energy in a mchunical form. Oil displacement can he achieved by gas injection of lean natural gas, mainly methane, carbon dioxide etc. Oil displacement can be in immiscible or miscible conditions. This paper deals with mechanism of miscible gas drive. On the basis of simulation of the oil displacement process by gas injection into oil field Žutica the character of process, i. c. a degree of miscibility or immiscibility between the injected fluid and reservoir oil was determined.
Resonant neutron-induced atomic displacements
Elmaghraby, Elsayed K.
2017-05-01
A model for displacement cascade function was modified to account for the continuous variation of displacement density in the material in response to neutron exposure. The model is based on the Gaussian distribution of displacement energies of atoms in a material. Analytical treatment for moderated epithermal neutron field was given in which the displacement density was divided into two terms, discrete-resonance term and continuum term. Calculation are done for all isotopes using ENDF/B VII.1 data files and temperature dependent cross section library. Weighted elemental values were reported a fitting was performed to obtain energy-dependent formula of displacement density and reduce the number of parameters. Results relevant the present specification of the cascade function are tabulated for each element to enable calculation of displacement density at any value of displacement energy in the between 5 eV and 55 eV.
Coulomb Interactions and Mesoscopic Effects in Carbon Nanotubes
Kane, Charlie; Balents, Leon; Fisher, Matthew
1997-01-01
We argue that long-range Coulomb forces convert an isolated (N,N) armchair carbon nanotube into a strongly-renormalized *Luttinger liquid*. At high temperatures, we find anomalous temperature dependences for the interaction and impurity contributions to the resistivity, and similar power-law dependences for the local tunneling density of states. At low temperatures, the nanotube exhibits spin-charge separation, visible as an extra energy scale in the discrete tunneling density of states (for ...
PT-invariant one-dimensional Coulomb problem
Sinha, A K; Sinha, Anjana; Roychoudhury, Rajkumar
2002-01-01
The one-dimensional Coulomb-like potential with a real coupling constant beta, and a centrifugal-like core of strength G = alpha^2 - {1/4}, viz. V(x) = {alpha^2 - (1/4)}/{(x-ic)^2} + beta/|x-ic|, is discussed in the framework of PT-symmetry. The PT-invariant exactly solvable model so formed, is found to admit a double set of real and discrete energies, numbered by a quasi-parity q = +/- 1.
Energy Technology Data Exchange (ETDEWEB)
Belov, Alexey; Mikhaylov, Alexey; Korolev, Dmitry; Guseinov, Davud; Gryaznov, Eugeny; Okulich, Eugenia; Sergeev, Victor; Antonov, Ivan; Kasatkin, Alexandr; Gorshkov, Oleg [Lobachevsky University, 23/3 Gagarin prospect, 603950 Nizhny Novgorod (Russian Federation); Tetelbaum, David, E-mail: tetelbaum@phys.unn.ru [Lobachevsky University, 23/3 Gagarin prospect, 603950 Nizhny Novgorod (Russian Federation); Kozlovski, Vitali [St. Petersburg State Polytechnic University, 29 Polytechnicheskaya street, 195251 St. Petersburg (Russian Federation)
2016-07-15
The principles of ion-beam simulation of the effect of fast (fission) neutrons and high-energy protons based on medium-energy ion irradiation have been developed for the Au/Zr/SiO{sub 2}/TiN/Ti capacitor-like memristive nanostructures demonstrating the repeatable resistive switching phenomenon. By using the Monte-Carlo approach, the irradiation fluences of H{sup +}, Si{sup +} and O{sup +} ions at the energy of 150 keV are determined that provide the ionization and displacement damage equivalent to the cases of space protons (15 MeV) and fission neutrons (1 MeV) irradiation. No significant change in the resistive switching parameters is observed under ion irradiation up to the fluences corresponding to the extreme fluence of 10{sup 17} cm{sup −2} of space protons or fission neutrons. The high-level radiation tolerance of the memristive nanostructures is experimentally confirmed with the application of 15 MeV proton irradiation and is interpreted as related to the local nature of conducting filaments and high concentration of the initial field-induced defects in oxide film.
The Coulombic Lattice Potential of Ionic Compounds: The Cubic Perovskites.
Francisco, E.; And Others
1988-01-01
Presents coulombic models representing the particles of a system by point charges interacting through Coulomb's law to explain coulombic lattice potential. Uses rubidium manganese trifluoride as an example of cubic perovskite structure. Discusses the effects on cluster properties. (CW)
Effect of Cluster Coulomb Fields on Electron Acceleration in Laser-Cluster Interaction
Institute of Scientific and Technical Information of China (English)
CANG Yu; DONG Quan-Li; WU Hui-Chun; SHENG Zheng-Ming; YU Wei; ZHANG Jie
2004-01-01
@@ Single particle simulations are used to investigate electron acceleration in the laser-clusterinteraction, taking into account the Coulomb fields around individual clusters. These Coulomb fields are induced from the cluster cores with positive charge when electrons escape from the cluster cores through ponderomotive push from the laser field. These Coulomb fields enable some stripped electrons to be stochastically in phases with the laser fields so that they can gain net energy from the laser efficiently. In this heating mechanism, circularly polarized lasers, larger cluster size and higher cluster densities make the acceleration more efficient.
Adams, Josh; Kelsey, Emily; Felis, Jonathan J.; Pereksta, David M.
2016-01-01
The U.S. Geological Survey, Western Ecological Research Center (USGS-WERC) was requested by the Bureau of Ocean Energy Management (BOEM) to create a database for marine birds of the California Current System (CCS) that would allow quantification and species ranking regarding vulnerability to offshore wind energy infrastructure (OWEI). This was needed so that resource managers could evaluate potential impacts associated with siting and construction of OWEI within the California Current System section of the Pacific Offshore Continental Shelf, including California, Oregon, and Washington. Along with its accompanying Open File Report (OFR), this comprehensive database can be used (and modified or updated) to quantify marine bird vulnerability to OWEIs in the CCS at the population level. For 81 marine bird species present in the CCS, we generated numeric scores to represent three vulnerability indices associated with potential OWEI: population vulnerability, collision vulnerability, and displacement vulnerability. The metrics used to produce these scores includes global population size, proportion of the population in the CCS, threat status, adult survival, breeding score, annual occurrence in the CCS, nocturnal and diurnal flight activity, macro-avoidance behavior, flight height, and habitat flexibility; values for these metrics can be updated and adjusted as new data become available. The scoring methodology was peer-reviewed to evaluate if the metrics identified and the values generated were appropriate for each species considered. The numeric vulnerability scores in this database can readily be applied to areas in the CCS with known species distributions and where offshore renewable energy development is being considered. We hope that this information can be used to assist meaningful planning decisions that will impact seabird conservation. These data support the following publication: Adams, J., Kelsey, E.C., Felis J.J., and Pereksta, D.M., 2016
Coulomb string tension, asymptotic string tension, and the gluon chain
Greensite, Jeff; Szczepaniak, Adam P.
2015-02-01
We compute, via numerical simulations, the nonperturbative Coulomb potential of pure SU(3) gauge theory in Coulomb gauge. We find that the Coulomb potential scales nicely in accordance with asymptotic freedom, that the Coulomb potential is linear in the infrared, and that the Coulomb string tension is about four times larger than the asymptotic string tension. We explain how it is possible that the asymptotic string tension can be lower than the Coulomb string tension by a factor of four.
Partial-wave Coulomb transition matrices for attractive interaction by Fock's method
Kharchenko, V F
2016-01-01
Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states. Keywords: Partial wave Coulomb transition matrix; Lippmann-Schwinger equation; Fock method; Analytical solution PACS Nos. 03.65.-w; 03.65.Nk; 34.20.Cf
The investigation of the Coulomb breakup effect on the 6-He elastic scattering
Energy Technology Data Exchange (ETDEWEB)
Kucuk, Yasemin; Boztosun, Ismail [Erciyes University, Department of Physics, Kayseri (Turkey); Keeley, Nicholas [Andrzej Soltan Institute, Department of Nuclear Reactions (Poland)
2009-07-01
The elastic scattering of the halo nuclei from the heavier target exhibits a different behavior from the standart Fresnel-type diffraction at energies near the Coulomb barrier. In this paper, we have performed the CDCC calculations for 6-He elastic scattering from the different targets to investigate the effect of the Coulomb breakup coupling and we have observed that the deviation from the standard diffraction behavior due to strong breakup coupling starts at around ZT= 60.
Coulomb dissociation of {sup 8}B at 254 A MeV
Energy Technology Data Exchange (ETDEWEB)
Suemmerer, K.; Boue, F.; Baumann, T.; Geissel, H.; Hellstroem, M.; Koczon, P.; Schwab, E.; Schwab, W.; Senger, P.; Surowiecz, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany); Iwasa, N.; Ozawa, A. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)]|[RIKEN Institute of Physical and Chemical Research, Saitama (Japan); Surowka, G. [Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt (Germany)]|[Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Blank, B.; Czajkowski, S.; Marchand, C.; Pravikoff, M.S. [Centre d`Etudes Nucleaires de Bordeaux-Gradignan, 33 (France); Foerster, A.; Lauer, F.; Oeschler, H.; Speer, J.; Sturm, C.; Uhlig, F.; Wagner, A. [Technische Univ. Darmstadt (Germany); Gai, M. [Connecticut Univ., Storrs, CT (United States). Dept. of Physics; Grosse, E. [Inst. fuer Kern- und Hadronenphysik, Forschungszentrum Rossendorf, Dresden (Germany); Kohlmeyer, B. [Philipps Univ., Marburg (Germany). Fachbereich Physik; Kulessa, R.; Walus, W. [Jagiellonian Univ., Krakow (Poland). Inst. of Physics; Motobayashi, T. [Rikkyo Univ., Tokyo (Japan). Dept. of Physics; Teranishi, T. [RIKEN Institute of Physical and Chemical Research, Saitama (Japan)
1998-06-01
As an alternative method for determining the astrophysical S-factor for the {sup 7}Be(p,{gamma}){sup 8}B reaction we have measured the Coulomb dissociation of {sup 8}B at 254 A MeV. From our preliminary results, we obtain good agreement with both the accepted direct-reaction measurements and the low-energy Coulomb dissociation study of Iwasa et al. performed at about 50 A MeV. (orig.)
Smooth models for the Coulomb potential
González-Espinoza, Cristina E; Karwowski, Jacek; Savin, Andreas
2016-01-01
Smooth model potentials with parameters selected to reproduce the spectrum of one-electron atoms are used to approximate the singular Coulomb potential. Even when the potentials do not mimic the Coulomb singularity, much of the spectrum is reproduced within the chemical accuracy. For the Hydrogen atom, the smooth approximations to the Coulomb potential are more accurate for higher angular momentum states. The transferability of the model potentials from an attractive interaction (Hydrogen atom) to a repulsive one (Harmonium and the uniform electron gas) is discussed.
Structure of light neutron-rich nuclei through Coulomb dissociation
Indian Academy of Sciences (India)
U Datta Pramanik; T Aumann; D Cortina; H Emling; H Geissel; M Hellström; R Holzmann; N Iwasa; Y Leifels; G Münzenberg; M Rejmund; C Scheidenberger; K Sümmerer; A Leistenschneider; Th W Elze; A Grünschloss; S Ilievski; K Boretzky; J V Kratz; R Kulessa; E Lubkiewicz; E Wajda; W Walus; P Reiter; H Simon
2001-08-01
Coulomb breakup of neutron-rich nuclei around mass ∼ 20 has been studied experimentally using secondary beams (∼ 500–600 MeV/u) of unstable nuclei produced at GSI. The spectroscopic factor deduced for the neutron occupying 1/2 level in 15C ground state is consistent with the earlier reported value. The data analysis for Coulomb breakup of 17C shows that most of the cross section yields the 16C core in its excited state. For 17-22O, the low-lying E1 strength amounts up to about 12% of the energy weighted dipole sum rule strength depending on neutron excess. The cluster sum rule limit with 16O as a core is almost exhausted for 17,18O, while for more neutron rich isotopes the strength with respect to that limit decreases.
Coulomb oscillations in three-layer graphene nanostructures
Energy Technology Data Exchange (ETDEWEB)
Guettinger, J; Stampfer, C; Molitor, F; Graf, D; Ihn, T; Ensslin, K [Solid State Physics Laboratory, ETH Zurich, 8093 Zurich (Switzerland)], E-mail: guettinj@phys.ethz.ch
2008-12-15
We present transport measurements on a tunable three-layer graphene single electron transistor (SET). The device consists of an etched three-layer graphene flake with two narrow constrictions separating the island from source and drain contacts. Three lateral graphene gates are used to electrostatically tune the device. An individual three-layer graphene constriction has been investigated separately showing a transport gap near the charge neutrality point. The graphene tunneling barriers show a strongly nonmonotonic coupling as a function of gate voltage indicating the presence of localized states in the constrictions. We show Coulomb oscillations and Coulomb diamond measurements proving the functionality of the graphene SET. A charging energy of {approx}0.6 meV is extracted.
Femtosecond Studies Of Coulomb Explosion Utilizing Covariance Mapping
Card, D A
2000-01-01
The studies presented herein elucidate details of the Coulomb explosion event initiated through the interaction of molecular clusters with an intense femtosecond laser beam (≥1 PW/cm2). Clusters studied include ammonia, titanium-hydrocarbon, pyridine, and 7-azaindole. Covariance analysis is presented as a general technique to study the dynamical processes in clusters and to discern whether the fragmentation channels are competitive. Positive covariance determinations identify concerted processes such as the concomitant explosion of protonated cluster ions of asymmetrical size. Anti- covariance mapping is exploited to distinguish competitive reaction channels such as the production of highly charged nitrogen atoms formed at the expense of the protonated members of a cluster ion ensemble. This technique is exemplified in each cluster system studied. Kinetic energy analyses, from experiment and simulation, are presented to fully understand the Coulomb explosion event. A cutoff study strongly suggests that...
Renormalization group analysis of graphene with a supercritical Coulomb impurity
Nishida, Yusuke
2016-01-01
We develop a field theoretical approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.
Interplay of Coulomb interaction and spin-orbit coupling
Bünemann, Jörg; Linneweber, Thorben; Löw, Ute; Anders, Frithjof B.; Gebhard, Florian
2016-07-01
We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures of Hund's atomic rules for spin, orbital, and total angular momentum. For a finite local Hund's rule exchange interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from the easy axis (1 ,1 ,1 ) .
Renormalization group analysis of graphene with a supercritical Coulomb impurity
Nishida, Yusuke
2016-08-01
We develop a field-theoretic approach to massless Dirac fermions in a supercritical Coulomb potential. By introducing an Aharonov-Bohm solenoid at the potential center, the critical Coulomb charge can be made arbitrarily small for one partial-wave sector, where a perturbative renormalization group analysis becomes possible. We show that a scattering amplitude for reflection of particle at the potential center exhibits the renormalization group limit cycle, i.e., log-periodic revolutions as a function of the scattering energy, revealing the emergence of discrete scale invariance. This outcome is further incorporated in computing the induced charge and current densities, which turn out to have power-law tails with coefficients log-periodic with respect to the distance from the potential center. Our findings are consistent with the previous prediction obtained by directly solving the Dirac equation and can in principle be realized by graphene experiments with charged impurities.
Coulomb-Born-Oppenheimer approximation in Ps-H scattering
Indian Academy of Sciences (India)
Hasi Ray
2006-02-01
To improve the Coulomb-Born approximation (CBA) theory of ionization in positronium (Ps) and atom scattering, the effect of exchange is introduced. The nine-dimensional exchange amplitude for ionization of Ps in Ps-H scattering is reduced to a two-dimensional integral using the present Coulomb-Born-Oppenheimer approximation (CBOA). The methodology is extremely useful to evaluate ionization parameters for different target systems and for different types of ionization processes. It is then applied to evaluate the Ps-ionization cross-section and to estimate the effect of exchange on Ps-ionization in Ps-H system. We establish the importance of exchange at lower energy region.
Coulomb screening in linear coasting nucleosynthesis
Singh, Parminder
2015-01-01
We investigate the impact of coulomb screening on primordial nucleosynthesis in a universe having scale factor that evolves linearly with time. Coulomb screening affects primordial nucleosynthesis via enhancement of thermonuclear reaction rates. This enhancement is determined by the solving Poisson equation within the context of mean field theory (under appropriate conditions during the primordial nucleosynthesis). Using these results, we claim that the mean field estimates of coulomb screening hardly affect the predicted element abundances and nucleosynthesis parameters$, \\{\\eta_9,\\xi_e\\}$. The deviations from mean field estimates are also studied in detail by boosting genuine screening results with the screening parameter ($\\omega_s$). These deviations show negligible effect on the element abundances and on nucleosynthesis parameters. This work thus rules out the coulomb screening effects on primordial nucleosynthesis in slow evolving models and confirms that constraints in ref.[7] on nucleosynthesis parame...
Comments on Coulomb pairing in aromatic hydrocarbons
Huber, D L
2013-01-01
Recently reported anomalies in the double-photonionization spectra of aromatic molecules such as benzene, naphthalene, anthracene and coronene are attributed to Coulomb-pair resonances of pi electrons.
Cavity QED experiments with ion Coulomb crystals
DEFF Research Database (Denmark)
Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan
2009-01-01
Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....
Propagating Uncertainties from Source Model Estimations to Coulomb Stress Changes
Baumann, C.; Jonsson, S.; Woessner, J.
2009-12-01
Multiple studies have shown that static stress changes due to permanent fault displacement trigger earthquakes on the causative and on nearby faults. Calculations of static stress changes in previous studies have been based on fault parameters without considering any source model uncertainties or with crude assumptions about fault model errors based on available different source models. In this study, we investigate the influence of fault model parameter uncertainties on Coulomb Failure Stress change (ΔCFS) calculations by propagating the uncertainties from the fault estimation process to the Coulomb Failure stress changes. We use 2500 sets of correlated model parameters determined for the June 2000 Mw = 5.8 Kleifarvatn earthquake, southwest Iceland, which were estimated by using a repeated optimization procedure and multiple data sets that had been modified by synthetic noise. The model parameters show that the event was predominantly a right-lateral strike-slip earthquake on a north-south striking fault. The variability of the sets of models represents the posterior probability density distribution for the Kleifarvatn source model. First we investigate the influence of individual source model parameters on the ΔCFS calculations. We show through a correlation analysis that for this event, changes in dip, east location, strike, width and in part north location have stronger impact on the Coulomb failure stress changes than changes in fault length, depth, dip-slip and strike-slip. Second we find that the accuracy of Coulomb failure stress changes appears to increase with increasing distance from the fault. The absolute value of the standard deviation decays rapidly with distance within about 5-6 km around the fault from about 3-3.5 MPa down to a few Pa, implying that the influence of parameter changes decrease with increasing distance. This is underlined by the coefficient of variation CV, defined as the ratio of the standard deviation of the Coulomb stress
Electron attraction mediated by Coulomb repulsion.
Hamo, A; Benyamini, A; Shapir, I; Khivrich, I; Waissman, J; Kaasbjerg, K; Oreg, Y; von Oppen, F; Ilani, S
2016-07-21
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed 'excitonic', promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the 'glue' that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.
Dirac Hamiltonian with superstrong Coulomb field
Voronov, B L; Tyutin, I V
2006-01-01
We consider the quantum-mechanical problem of a relativistic Dirac particle moving in the Coulomb field of a point charge $Ze$. In the literature, it is often declared that a quantum-mechanical description of such a system does not exist for charge values exceeding the so-called critical charge with Z=137 based on the fact that the standard expression for energy eigenvalues yields complex values at overcritical charges. We show that from the mathematical standpoint, there is no problem in defining a self-adjoint Hamiltonian for any value of charge. What is more, the transition through the critical charge does not lead to any qualitative changes in the mathematical description of the system. A specific feature of overcritical charges is the nonuniqueness of the self-adjoint Hamiltonian, but this nonuniqueness is also characteristic for charge values less than the critical one (and larger than the subcritical charge with Z=118). We present the spectra and (generalized) eigenfunctions for all self-adjoint Hamilt...
Electron attraction mediated by Coulomb repulsion
Hamo, A.; Benyamini, A.; Shapir, I.; Khivrich, I.; Waissman, J.; Kaasbjerg, K.; Oreg, Y.; von Oppen, F.; Ilani, S.
2016-07-01
One of the defining properties of electrons is their mutual Coulomb repulsion. However, in solids this basic property may change; for example, in superconductors, the coupling of electrons to lattice vibrations makes the electrons attract one another, leading to the formation of bound pairs. Fifty years ago it was proposed that electrons can be made attractive even when all of the degrees of freedom in the solid are electronic, by exploiting their repulsion from other electrons. This attraction mechanism, termed ‘excitonic’, promised to achieve stronger and more exotic superconductivity. Yet, despite an extensive search, experimental evidence for excitonic attraction has yet to be found. Here we demonstrate this attraction by constructing, from the bottom up, the fundamental building block of the excitonic mechanism. Our experiments are based on quantum devices made from pristine carbon nanotubes, combined with cryogenic precision manipulation. Using this platform, we demonstrate that two electrons can be made to attract each other using an independent electronic system as the ‘glue’ that mediates attraction. Owing to its tunability, our system offers insights into the underlying physics, such as the dependence of the emergent attraction on the underlying repulsion, and the origin of the pairing energy. We also demonstrate transport signatures of excitonic pairing. This experimental demonstration of excitonic pairing paves the way for the design of exotic states of matter.
Cavity QED experiments with ion Coulomb crystals
DEFF Research Database (Denmark)
Herskind, Peter Fønss; Dantan, Aurélien; Marler, Joan
2009-01-01
Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained.......Cavity QED experimental results demonstrating collective strong coupling between ensembles of atomic ions cooled into Coulomb crystals and optical cavity fields have been achieved. Collective Zeeman coherence times of milliseconds have furthermore been obtained....
Gaussian expansion approach to Coulomb breakup
Egami, T; Matsumoto, T; Iseri, Y; Kamimura, M; Yahiro, M
2004-01-01
An accurate treatment of Coulomb breakup reactions is presented by using both the Gaussian expansion method and the method of continuum discretized coupled channels. As $L^2$-type basis functions for describing Coulomb breakup processes, we take complex-range Gaussian functions, which form in good approximation a complete set in a large configuration space being important for the processes. Accuracy of the method is tested quantitatively for $^{8}{\\rm B}+^{58}$Ni scattering at 25.8 MeV.
Proton radiography, nuclear cross sections and multiple Coulomb scattering
Energy Technology Data Exchange (ETDEWEB)
Sjue, Sky K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-11-04
The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.
Directory of Open Access Journals (Sweden)
Staffan A Qvist
Full Text Available There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.
Constantinescu, E.; Oanta, E.; Panait, C.
2017-08-01
The paper presents an initial study concerning the form factors for shear, for a rectangular and for a circular cross section, being used an analytical method and a numerical study. The numerical study considers a division of the cross section in small areas and uses the power of the definitions in order to compute the according integrals. The accurate values of the form factors are increasing the accuracy of the displacements computed by the use of the strain energy methods. The knowledge resulted from this study will be used for several directions of development: calculus of the form factors for a ring-type cross section of variable ratio of the inner and outer diameters, calculus of the geometrical characteristics of an inclined circular segment and, using a Bool algebra that operates with geometrical shapes, for an inclined circular ring segment. These shapes may be used to analytically define the geometrical model of a complex composite section, i.e. a ship hull cross section. The according calculus relations are also useful for the development of customized design commands in CAD commercial applications. The paper is a result of the long run development of original computer based instruments in engineering of the authors.
Qvist, Staffan A; Brook, Barry W
2015-01-01
There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.
Directory of Open Access Journals (Sweden)
Paszota Zygmunt
2015-04-01
Full Text Available Powers of energy losses in a variable capacity displacement pump are compared with or without taking into account the power of hydraulic oil compression. Evaluation of power of liquid compression in the pump was made possible by the use of method, proposed by the Author, of determining the degree of liquid aeration in the pump. In the method of determining the liquid aeration in the pump and of powers of volumetric losses of liquid compression a simplified formula (qPvc × ΔpPi/2 was used describing the field of indicated work of volumetric losses qPvc of liquid compression during one shaft revolution at indicated increase ΔpPi of pressure in the chambers. Three methods were used for comparing the sum of powers of volumetric losses ΔPPvl due to leakage and ΔPPvc of compression and also ΔPPm|ΔpPi of mechanical losses resulting from increase ΔpPi of indicated pressure in the working chambers.
Yang-Mills theory in Coulomb gauge; Yang-Mills-theorie in Coulombeichung
Energy Technology Data Exchange (ETDEWEB)
Feuchter, C.
2006-07-01
In this thesis we study the Yang-Mills vacuum structure by using the functional Schroedinger picture in Coulomb gauge. In particular we discuss the scenario of colour confinement, which was originally formulated by Gribov. After a short introduction, we recall some basic aspects of Yang-Mills theories, its canonical quantization in the Weyl gauge and the functional Schroedinger picture. We then consider the minimal Coulomb gauge and the Gribov problem of the gauge theory. The gauge fixing of the Coulomb gauge is done by using the Faddeev-Popov method, which enables the resolution of the Gauss law - the constraint on physical states. In the third chapter, we variationally solve the stationary Yang-Mills Schroedinger equation in Coulomb gauge for the vacuum state. Therefor we use a vacuum wave functional, which is strongly peaked at the Gribov horizon. The vacuum energy functional is calculated and minimized resulting in a set of coupled Schwinger-Dyson equations for the gluon energy, the ghost and Coulomb form factors and the curvature in gauge orbit space. Using the angular approximation these integral equations have been solved analytically in both the infrared and the ultraviolet regime. The asymptotic analytic solutions in the infrared and ultraviolet regime are reasonably well reproduced by the full numerical solutions of the coupled Schwinger-Dyson equations. In the fourth chapter, we investigate the dependence of the Yang-Mills wave functional in Coulomb gauge on the Faddeev-Popov determinant. (orig.)
Institute of Scientific and Technical Information of China (English)
宣永梅; 王海亮; 黄翔
2012-01-01
Radiant cooling with displacement ventilation air conditioning system not only provides high thermal comfort, but also is energy efficient. Energy consumption model of this hybrid system was built and analyzed by software EnergyPlus. By comparison of simulation results and experimental data, the simulated indoor air temperature and cooling capacity provided by radiant floor was ±7% deviated from the experimental data. Based on the simulation model, it is deduced that the cooling capacity provided by radiant floor increased with the supply air temperature of displacement ventilation. When the supply air temperature increased by 1 ℃ , the corresponding cooling capacity of radiant floor increased by 1.9%.%辐射供冷与置换通风复合系统不仅能提供较高的热舒适性,并且具有很大的节能潜力,本文建立了复合系统的能耗分析模型,并采用EnergyPlus能耗分析软件对该复合系统进行能耗模拟,模拟得到的室内温度和辐射地板所承担冷量与实验结果的误差小于±7％,在此基础上,改变置换通风的送风温度,得到辐射地板提供冷量随置换通风送风温度提高而增加的变化规律,置换通风送风每增加1℃,辐射地板提供的冷量增加1.9％左右.
The EMC effect of Nuclear Matter with Coulomb Corrections
Li, Shujie; Solvignon, Patricia; Arrington, John; Gaskell, Dave
2016-09-01
Extraction of the EMC effect for nuclear matter is of great interest since it allows comparison to theoretical calculations in a regime where ``exact'' nuclear wave functions can be used. Earlier extractions from (e,e') cross sections ignored the contribution of the Coulomb distortion, which can be approximated as an electron energy shift on the order of MeV. Though small, this shift can cause a noticeable change in cross sections in certain kinematic regimes. In this study, we applied Coulomb corrections on the per-nucleon ratios from the published SLAC E139 data and preliminary JLAB E03-103 data. I will show preliminary results for an extrapolation of the EMC ratios from finite nuclei to symmetric nuclear matter, including Coulomb Corrections and examining the sensitivity to different approximations for the nuclear density. The data from two experiments will also be combined to study the nuclear dependence of R =σL /σT . Supported in part by DOE Grant No. DE-AC05-06OR23177, No. DE-AC02-06CH11357, and No. DE-SC0014168.
Implosive Interatomic Coulombic decay in the simplest molecular anion
Greene, Chris H.; Perez-Rios, Jesus; Slipchenko, Lyudmila
2016-05-01
Interatomic Coulombic decay (ICD) has been extensively studied in different systems: from diatomic systems such as He2 up to more complex chemical systems with interest in biochemistry. Independently of the size and complexity of the system, the ICD process proposed involves the emission of an electron through exchange of a virtual photon. The present theoretical study investigates the ICD process in the helium hydride anion, which involves two final product states that can be produced through a Coulomb implosion following high energy ejection of a He 1s electron accompanied by excitation to He+(n = 2) . One of the subsequent decay channels is associated with the usual emission of a single electron, to produce a stable molecule: HeH+, which can compete with the usual dissociated final state of the system. The second channel involves the emission of two electrons, leading to the usual Coulomb explosion of the final product ions He+(1 s) + H + . In addition, the process of formation of the helium hydride anion is analyzed in terms of the existing technology of ionic molecular beams and buffer gas cooling techniques. This work is supported by the National Science Foundation under Grant PHY-1306905.
Hakobyan, Tigran
2015-01-01
We define the integrable N-dimensional Calogero-Coulomb-Stark and two-center Calogero-Coulomb systems and construct their constants of motion via the Dunkl operators. Their Schroedinger equations decouple in parabolic and elliptic coordinates, respectively, into the set of three differential equations like for the Coulomb-Stark and two-center Coulomb problems.
DEFF Research Database (Denmark)
Bennett, Patrick; Ouazad, Amine
individuals, i.e. high-tenure workers with strong attachment to their firm, who lose employment during a mass-layoff event. Pre-displacement data suggests no evidence of endogenous selection of workers for displacement during mass-layoffs: displaced workers’ propensity to commit crime exhibits...... theory of crime. Marital dissolution is more likely post-displacement, and we find small intra-family externalities of adult displacement on younger family members’ crime. The impact of displacement on crime is stronger in municipalities with higher capital and labor income inequalities....
Gaussian and finite-element Coulomb method for the fast evaluation of Coulomb integrals.
Kurashige, Yuki; Nakajima, Takahito; Hirao, Kimihiko
2007-04-14
The authors propose a new linear-scaling method for the fast evaluation of Coulomb integrals with Gaussian basis functions called the Gaussian and finite-element Coulomb (GFC) method. In this method, the Coulomb potential is expanded in a basis of mixed Gaussian and finite-element auxiliary functions that express the core and smooth Coulomb potentials, respectively. Coulomb integrals can be evaluated by three-center one-electron overlap integrals among two Gaussian basis functions and one mixed auxiliary function. Thus, the computational cost and scaling for large molecules are drastically reduced. Several applications to molecular systems show that the GFC method is more efficient than the analytical integration approach that requires four-center two-electron repulsion integrals. The GFC method realizes a near linear scaling for both one-dimensional alanine alpha-helix chains and three-dimensional diamond pieces.
Coulomb screening in graphene with topological defects
Chakraborty, Baishali; Gupta, Kumar S.; Sen, Siddhartha
2015-06-01
We analyze the screening of an external Coulomb charge in gapless graphene cone, which is taken as a prototype of a topological defect. In the subcritical regime, the induced charge is calculated using both the Green's function and the Friedel sum rule. The dependence of the polarization charge on the Coulomb strength obtained from the Green's function clearly shows the effect of the conical defect and indicates that the critical charge itself depends on the sample topology. Similar analysis using the Friedel sum rule indicates that the two results agree for low values of the Coulomb charge but differ for the higher strengths, especially in the presence of the conical defect. For a given subcritical charge, the transport cross-section has a higher value in the presence of the conical defect. In the supercritical regime we show that the coefficient of the power law tail of polarization charge density can be expressed as a summation of functions which vary log periodically with the distance from the Coulomb impurity. The period of variation depends on the conical defect. In the presence of the conical defect, the Fano resonances begin to appear in the transport cross-section for a lower value of the Coulomb charge. For both sub and supercritical regime we derive the dependence of LDOS on the conical defect. The effects of generalized boundary condition on the physical observables are also discussed.
Statelessness and environmental displacement
Directory of Open Access Journals (Sweden)
Jessie Connell
2015-05-01
Full Text Available Stateless people and migrants are at greater risk of displacement and are less likely to receive assistance; in turn, environmental displacement (especially multiple migrations heightens the risk of becoming stateless.
Quantum confinement and Coulomb blockade in isolated nanodiamond crystallites
Bolker, Asaf; Saguy, Cecile; Tordjman, Moshe; Kalish, Rafi
2013-07-01
We present direct experimental evidence of quantum confinement effects in single isolated nanodiamonds by scanning tunneling spectroscopy. For grains smaller than 4.5 nm, the band gap was found to increase with decreasing nanodiamond size and a well-defined, evenly spaced, 12-peak structure was observed on the conduction band side of the conductance curves. We attribute these peaks to the Coulomb blockade effect, reflecting the 12-fold degeneracy of the first electron-energy level in the confined nanodiamond. The present results shed light on the size dependence of the electronic properties of single nanodiamonds and are of major importance for future nanodiamond-based applications.
The distinguishable cluster approach from a screened Coulomb formalism.
Kats, Daniel
2016-01-28
The distinguishable cluster doubles equations have been derived starting from an effective screened Coulomb formalism and a particle-hole symmetric formulation of the Fock matrix. A perturbative triples correction to the distinguishable cluster with singles and doubles (DCSD) has been introduced employing the screened integrals. It is shown that the resulting DCSD(T) method is more accurate than DCSD for reaction energies and is less sensitive to the static correlation than coupled cluster with singles and doubles with a perturbative triples correction.
Observation of ionic Coulomb blockade in nanopores
Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra
2016-08-01
Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.
Leading order QCD in Coulomb gauge
Watson, Peter
2011-01-01
Coulomb gauge QCD in the first order formalism can be written in terms of a ghost-free, nonlocal action that ensures total color charge conservation via Gauss' law. Making an Ansatz whereby the nonlocal term (the Coulomb kernel) is replaced by its expectation value, the resulting Dyson-Schwinger equations can be derived. With a leading order truncation, these equations reduce to the gap equations for the static gluon and quark propagators obtained from a quasi-particle approximation to the canonical Hamiltonian approach. Moreover a connection to the heavy quark limit can be established, allowing an intuitive explanation for the charge constraint and infrared divergences.
Coulomb drag in coherent mesoscopic systems
DEFF Research Database (Denmark)
Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2001-01-01
, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...
Coulomb drag in coherent mesoscopic systems
DEFF Research Database (Denmark)
Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2001-01-01
We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as th......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...
Dynamic gap generation in graphene under the long-range Coulomb interaction
Energy Technology Data Exchange (ETDEWEB)
Wang Jingrong; Liu Guozhu, E-mail: wangjr@mail.ustc.edu.cn, E-mail: gzliu@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026 (China)
2011-08-31
Dynamic gap generation in graphene under the long-range Coulomb interaction is studied by the Dyson-Schwinger gap equation beyond the instantaneous approximation. Once the dependence of the dynamic gap on the energy has been considered, the critical interaction strength {alpha}{sub c} decreases to 0.542. If the renormalization of the fermion velocity is considered, {alpha}{sub c} will become {alpha}{sub c} = 1.02. This indicates that the dependence on the energy and the renormalization of the fermion velocity are both important for dynamic gap generation in graphene under long-range Coulomb interaction. (paper)
Numerical Study of Coulomb Scattering Effects on Electron Beamfrom a Nano-Tip
Energy Technology Data Exchange (ETDEWEB)
Qiang, Ji; Corlett, John N.; Lidia, Steven M.; Padmore, HowardA.; Wan, Weishi; Zholent, Andrew A.; Zolotorev, Max
2007-06-25
Nano-tips with high acceleration gradient around the emission surface have been proposed to generate high brightness beams. However, due to the small size of the tip, the charge density near the tip is very high even for a small number of electrons. The stochastic Coulomb scattering near the tip can degrade the beam quality and cause extra emittance growth and energy spread. In the paper, we present a numerical study of these effects using a direct relativistic N-body model. We found that emittance growth and energy spread, due to Coulomb scattering, can be significantly enhanced with respect to mean-field space-charge calculations.
A Coulomb-Like Off-Shell T-Matrix with the Correct Coulomb Phase Shift
Oryu, Shinsho; Watanabe, Takashi; Hiratsuka, Yasuhisa; Togawa, Yoshio
2017-03-01
We confirm the reliability of the well-known Coulomb renormalization method (CRM). It is found that the CRM is only available for a very-long-range screened Coulomb potential (SCP). However, such an SCP calculation in momentum space is considerably difficult because of the cancelation of significant digits. In contrast to the CRM, we propose a new method by using an on-shell equivalent SCP and the rest term. The two-potential theory with r-space is introduced, which defines fully the off-shell Coulomb amplitude.
Interatomic Coulombic decay in helium nanodroplets
DEFF Research Database (Denmark)
Shcherbinin, Mykola; Laforge, Aaron; Sharma, Vandana
2017-01-01
Interatomic Coulombic decay (ICD) is induced in helium nanodroplets by photoexciting the n=2 excited state of He+ using XUV synchrotron radiation. By recording multiple-coincidence electron and ion images we find that ICD occurs in various locations at the droplet surface, inside the surface region...
Coulomb drag between helical Luttinger liquids
Kainaris, N.; Gornyi, I. V.; Levchenko, A.; Polyakov, D. G.
2017-01-01
We theoretically study Coulomb drag between two helical edges with broken spin-rotational symmetry, such as would occur in two capacitively coupled quantum spin Hall insulators. For the helical edges, Coulomb drag is particularly interesting because it specifically probes the inelastic interactions that break the conductance quantization for a single edge. Using the kinetic equation formalism, supplemented by bosonization, we find that the drag resistivity ρD exhibits a nonmonotonic dependence on the temperature T . In the limit of low T ,ρD vanishes with decreasing T as a power law if intraedge interactions are not too strong. This is in stark contrast to Coulomb drag in conventional quantum wires, where ρD diverges at T →0 irrespective of the strength of repulsive interactions. Another unusual property of Coulomb drag between the helical edges concerns higher T for which, unlike in the Luttinger liquid model, drag is mediated by plasmons. The special type of plasmon-mediated drag can be viewed as a distinguishing feature of the helical liquid—because it requires peculiar umklapp scattering only available in the presence of a Dirac point in the electron spectrum.
Coulomb's Electrical Measurements. Experiment No. 14.
Devons, Samuel
Presented is information related to the life and work of Charles Coulomb as well as detailed notes of his measurements of the distribution of electricity on conductors. The two methods that he used (the large torsion balance, and the timing of "force" oscillations) are described. (SA)
Singh, P.; Kharb, S.; Singh, M.
2014-02-01
The effects of electric quadrupole ( E2) and dipole-quadrupole interference ( E1- E2) terms in the Coulomb breakup of 15C have been investigated within the framework of eikonal approximation. The sensitivity of Coulomb breakup cross section, differential in relative energy and Longitudinal Momentum Distribution (LMD) of core fragments, towards these terms have been examined. A very small (1% of E1) contribution of E2 transition has been predicted in integrated Coulomb breakup cross section. Further it is also found that the inclusion of E2 and E1- E2 terms introduces a small asymmetry in the peak of relative energy spectrum and also increases the peak height of the spectrum. The contribution of dipole-quadrupole interference terms is clearly shown in LMD, as it introduces an asymmetry in the shape of LMD and enhances the matching between the data and predictions.
On the Coulomb effect in laser-assisted proton scattering by a stationary atomic nucleus
Hrour, E.; Taj, S.; Chahboune, A.; El Idrissi, M.; Manaut, B.
2017-06-01
In the framework of the first Born approximation, we investigate the scenario where in addition to a laser field, a nuclear Coulomb field is also present to affect a proton. We work in the approximation in which the proton is considered to be a structureless spin 1/2 Dirac particle with a mass m p . Furthermore, in the laboratory system, the fixed nucleus is treated as a point-like Coulomb potential. In the presence of a laser field, and taking into account the Coulomb effect, the proton will be described by distorted Dirac-Volkov wave functions. The introduction of the Coulomb effect to both the incident and scattered proton will enhance the relativistic differential cross sections (RDCSs). Regarding the physical picture, it is found that for the various kinetic energies of the incident proton, the Coulomb effect can be neglected at high kinetic energies in this particular geometry. Therefore, Dirac-Volkov states are largely sufficient to describe the laser-dressed protons. The behavior of the various RDCSs versus the atomic number Z is also presented.
Three-Body Coulomb Functions in the Hyperspherical Adiabatic Expansion Method
Garrido, E.; Kievsky, A.; Viviani, M.
2016-10-01
In this work we describe a numerical method devised to compute continuum three-body wave functions. The method is implemented using the hyperspherical adiabatic expansion for the three-body wave function imposing a box boundary condition. The continuum energy spectrum results discretized and, for specific quantum number values, all the possible incoming and outgoing channels are simultaneously computed. For a given energy, the hyperradial continuum functions form a matrix whose ij-term refers to specific incoming and outgoing channels. When applied to three-body systems interacting only through the Coulomb potential, this method provides the adiabatic representation of the regular three-body Coulomb wave function. The computation of the irregular Coulomb wave function representation is also discussed. These regular and irregular Coulomb functions can be used to extract the {S} -matrix for those reactions where, together with some short-range potential, the Coulomb interaction is also present. The method is illustrated in the case of the 3→ 3 process of three alpha particles.
Coulomb and nuclear excitations of narrow resonances in 17Ne
Directory of Open Access Journals (Sweden)
J. Marganiec
2016-08-01
Full Text Available New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the O15+p+p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of data from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. The resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.
DEFF Research Database (Denmark)
Gjørup, Caroline; Zerahn, B.; Hendel, Helle Westergren
2010-01-01
Background: Following treatment for breast cancer 12%-60% develop breast cancer-related lymphedema (BCRL). There are several ways of assessing BCRL. Circumference measurement (CM) and water displacement (WD) for volume measurements (VM) are frequently used methods in practice and research...
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots
Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.
Sensor Craft Control Using Drone Craft with Coulomb Propulsion System
Joe, Hyunsik
2005-01-01
The Coulomb propulsion system has no exhaust plume impingement problem with neighboring spacecraft and does not contaminate their sensors because it requires essentially no propellant. It is suitable to close formation control on the order of dozens of meters. The Coulomb forces are internal forces of the formation and they influence all charged spacecraft at the same time. Highly nonlinear and strongly coupled equations of motion of Coulomb formation makes creating a Coulomb control method a...
Coulomb excitations of monolayer germanene
Shih, Po-Hsin; Chiu, Yu-Huang; Wu, Jhao-Ying; Shyu, Feng-Lin; Lin, Ming-Fa
2017-01-01
The feature-rich electronic excitations of monolayer germanene lie in the significant spin-orbit coupling and the buckled structure. The collective and single-particle excitations are diversified by the magnitude and direction of transferred momentum, the Fermi energy and the gate voltage. There are four kinds of plasmon modes, according to the unique frequency- and momentum-dependent phase diagrams. They behave as two-dimensional acoustic modes at long wavelength. However, for the larger momenta, they might change into another kind of undamped plasmons, become the seriously suppressed modes in the heavy intraband e–h excitations, keep the same undamped plasmons, or decline and then vanish in the strong interband e–h excitations. Germanene, silicene and graphene are quite different from one another in the main features of the diverse plasmon modes. PMID:28091555
Przybytek, Michal; Helgaker, Trygve
2013-08-07
We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems
Modified Poisson-Nernst-Planck model with accurate Coulomb correlation in variable media
Liu, Pei; Xu, Zhenli
2016-01-01
We derive a set of modified Poisson-Nernst-Planck (PNP) equations for ion transport from the variation of the free energy functional which includes the many-body Coulomb correlation in media of variable dielectric coefficient. The correlation effects are considered through the Debye charging process in which the self energy of an ion is governed by the generalized Debye-H\\"uckel equation. We develop the asymptotic expansions of the self energy taking the ion radius as the small parameter such that the multiscale model can be solved efficiently by numerical methods. We show that the variations of the energy functional give the self-energy-modified PNP equations which satisfy a proper energy law. We present the numerical results from different asymptotic expansions with a semi-implicit conservative numerical method and investigate the effect of the Coulomb correlation.
Quantum partner-dance in the 12C + 12C system yields sub-Coulomb fusion resonances
Diaz-Torres, Alexis; Wiescher, Michael
2014-03-01
A preliminary study of the 12C + 12C sub-Coulomb fusion reaction using the time-dependent wave-packet method is presented. The theoretical sub-Coulomb fusion resonances seem to correspond well with observations. The present method might be a more suitable tool for expanding the cross-section predictions towards lower energies than the commonly used potential-model approximation.
DEFF Research Database (Denmark)
Bennett, Patrick; Ouazad, Amine
This paper matches a comprehensive Danish employer-employee data set with individual crime information (timing of offenses, charges, convictions, and prison terms by crime type) to estimate the impact of job displacement on an individual’s propensity to commit crime. We focus on displaced individ...
Heerens, W.C.; Laham, C.D.; Holman, A.E.
1997-01-01
An XY-displacement device (1) with a four-fold symmetry comprises a reference frame (10); an object mount (20) for holding an object (22) to be displaced; an X-manipulator (100) coupled between the reference frame (10) and the object mount (20), which provides a rigid coupling between the object mou
Displacement data assimilation
Rosenthal, W. Steven; Venkataramani, Shankar; Mariano, Arthur J.; Restrepo, Juan M.
2017-02-01
We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.
Effect of Coulomb Interaction on Dynamical Localization in a Two-Electron Quantum-Dot Molecule
Institute of Scientific and Technical Information of China (English)
WANG Li-Min; DUAN Su-Qing; ZHAO Xian-Geng; LIU Cheng-Shi
2004-01-01
The combined interaction of Coulomb interaction and ac fields with two electrons in a quantum dot molecule is studied respectively with numerical simulation, perturbation theory and the approximation of driven two-level model. The dynamical localization occurs with the ac field whose ratio of the amplitude to the angular frequency is a root of n-order Bessel functions, where n is determined by the Coulomb interaction energy. Such results are explained with either the driven two-level approximation or the degenerated three-level model and verified by the numerical simulations.
Directory of Open Access Journals (Sweden)
Ye Ning
2015-12-01
Full Text Available In the present work, we report calculations of resonances in the positron-hydrogen system interacting with screened Coulomb potentials using the method of complex scaling together with employing correlated Hylleraas wave functions. Resonances with natural and unnatural parities are investigated. For the natural parity case, resonance parameters (energy and width for D-wave resonance states with even parity lying below various positronium and hydrogen thresholds up to the H(N = 4 level are determined. For the unnatural parity case, results for P-even and D-odd resonance states with various screened Coulomb interaction strengths are located below different lower-lying Ps and H thresholds.
Effects of the Lorentz Invariance Violation on Coulomb Interactions in Nuclei and Atoms
Flambaum, V. V.; Romalis, M. V.
2017-04-01
Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in Ne2110 are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10-28.
Limits on Lorentz Invariance Violation from Coulomb Interactions in Nuclei and Atoms.
Flambaum, V V; Romalis, M V
2017-04-07
Anisotropy in the speed of light that has been constrained by Michelson-Morley-type experiments also generates anisotropy in the Coulomb interactions. This anisotropy can manifest itself as an energy anisotropy in nuclear and atomic experiments. Here the experimental limits on Lorentz violation in _{10}^{21}Ne are used to improve the limits on Lorentz symmetry violations in the photon sector, namely, the anisotropy of the speed of light and the Coulomb interactions, by 7 orders of magnitude in comparison with previous experiments: the speed of light is isotropic to a part in 10^{28}.
On the role of the Coulomb potential in strong field atomic ionization dynamics
Energy Technology Data Exchange (ETDEWEB)
Tetchou Nganso, H.M. [Laboratoire de Physique Atomique, Moleculaire et Optique (PAMO), Universite Catholique de Louvain, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium)], E-mail: htetchou@yahoo.com; Giraud, S. [Ecole Normale Superieure de Cachan, Antenne de Bretagne, Avenue Robert Schuman, Campus de Ker Lann, F-35170 Bruz (France); Piraux, B. [Laboratoire de Physique Atomique, Moleculaire et Optique (PAMO), Universite Catholique de Louvain, 2 Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Popov, Yu.V. [Nuclear Physics Institute, Moscow State University, Moscow 119992 (Russian Federation); Kwato Njock, M.G. [Centre for Atomic Molecular Physics and Quantum Optics (CEPAMOQ), Faculty of Science, University of Douala, P.O. Box 8580 Douala (Cameroon)
2007-10-15
In this paper, we present a model aimed at exploring the role of the Coulomb potential in the mechanism of ionization of atomic hydrogen exposed to a strong low frequency pulsed laser field. Our approach is based on the solution of the time-dependent Schroedinger equation in momentum space. Although we are in a frequency and intensity regime where tunnelling is expected to dominate, our results indicate that the atomic structure associated to the Coulomb potential plays a significant role for low energy ejected electrons.
A shortcut through the Coulomb gas method for spectral linear statistics on random matrices
Deelan Cunden, Fabio; Facchi, Paolo; Vivo, Pierpaolo
2016-04-01
In the last decade, spectral linear statistics on large dimensional random matrices have attracted significant attention. Within the physics community, a privileged role has been played by invariant matrix ensembles for which a two-dimensional Coulomb gas analogy is available. We present a critical revision of the Coulomb gas method in random matrix theory (RMT) borrowing language and tools from large deviations theory. This allows us to formalize an equivalent, but more effective and quicker route toward RMT free energy calculations. Moreover, we argue that this more modern viewpoint is likely to shed further light on the interesting issues of weak phase transitions and evaporation phenomena recently observed in RMT.
A practical calculational method for treating Coulomb scattering in momentum space
Energy Technology Data Exchange (ETDEWEB)
Elster, Ch. (Ohio Univ., Athens, OH (United States). Dept. of Physics and Astronomy); Liu, L.C. (Los Alamos National Lab., NM (United States)); Thaler, R.M. (Los Alamos National Lab., NM (United States) Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Physics)
1993-12-01
An exact and practical numerical procedure for treating the Coulomb interaction in momentum-space calculations of elastic scattering of charged particles is presented. The method is tested for various interactions over a wide charge, energy and angular momentum range and found to be accurate. (Author).
Comment on an application of the asymptotic iteration method to a perturbed Coulomb model
Energy Technology Data Exchange (ETDEWEB)
Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima (Mexico); Fernandez, Francisco M [INIFTA (Conicet, UNLP), Blvd. 113 y 64 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)
2006-08-18
We discuss a recent application of the asymptotic iteration method (AIM) to a perturbed Coulomb model. Contrary to what was argued before we show that the AIM converges and yields accurate energies for that model. We also consider alternative perturbation approaches and show that one of them is equivalent to that recently proposed by another author.
An su(1, 1) algebraic approach for the relativistic Kepler-Coulomb problem
Energy Technology Data Exchange (ETDEWEB)
Salazar-Ramirez, M; Granados, V D [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Ed. 9, Unidad Profesional Adolfo Lopez Mateos, 07738 Mexico DF (Mexico); MartInez, D [Universidad Autonoma de la Ciudad de Mexico, Plantel Cuautepec, Av. La Corona 320, Col. Loma la Palma, Delegacion Gustavo A. Madero, 07160 Mexico DF (Mexico); Mota, R D, E-mail: dmartinezs77@yahoo.com.m [Unidad Profesional Interdisciplinaria de Ingenieria y TecnologIas Avanzadas, IPN. Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, Delegacion Gustavo A. Madero, 07340 Mexico DF (Mexico)
2010-11-07
We apply the Schroedinger factorization method to the radial second-order equation for the relativistic Kepler-Coulomb problem. From these operators we construct two sets of one-variable radial operators which are realizations for the su(1, 1) Lie algebra. We use this algebraic structure to obtain the energy spectrum and the supersymmetric ground state for this system.
Pumping of Vibrational Excitations in the Coulomb-Blockade Regime in a Suspended Carbon Nanotube
Hüttel, A.K.; Witkamp, B.; Leijnse, M.; Wegewijs, M.R.; Van der Zant, H.S.J.
2009-01-01
Low-temperature transport spectroscopy measurements on a suspended few-hole carbon nanotube quantum dot are presented, showing a gate-dependent harmonic excitation spectrum which, strikingly, occurs in the Coulomb-blockade regime. The quantized excitation energy corresponds to the scale expected for
Coulomb breakup of B-8 and the flux of B-8 neutrinos from the Sun
Davids, B; Austin, SM; Bazin, D; Esbensen, H; Sherrill, BM; Thompson, IJ; Tostevin, JA
2002-01-01
A kinematically complete measurement was made of the Coulomb dissociation of 813 nuclei on a Pb target at 83 MeV/nucleon. The cross-section was measured at low relative energies in order to infer the astrophysical S-factor for the Be-7(p,gamma)B-8 reaction. A first-order perturbation theory analysis
Coulomb crystallization of highly charged ions.
Schmöger, L; Versolato, O O; Schwarz, M; Kohnen, M; Windberger, A; Piest, B; Feuchtenbeiner, S; Pedregosa-Gutierrez, J; Leopold, T; Micke, P; Hansen, A K; Baumann, T M; Drewsen, M; Ullrich, J; Schmidt, P O; López-Urrutia, J R Crespo
2015-03-13
Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically (40)Ar(13+)) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be(+) ions. We also demonstrate cooling of a single Ar(13+) ion by a single Be(+) ion-the prerequisite for quantum logic spectroscopy with a potential 10(-19) accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.
Photodetachment Microscope with Repulsive Coulomb Field
Golovinski, P A
2011-01-01
Investigation of electronic waves with high coherence in photodetachment of a negative ion gives a physical basis to develop the holographic electronic microscopy with high resolution. The interference pattern is considered in the framework of steady-state wave approach. In semiclassical approximation, an outgoing wave is described by the amplitude slowly varying along a trajectory. Quantum description of electron photodetachment from negative ion is formulated with the help of the inhomogeneous Schr\\"odinger equation. Its asymptotic solution is expressed in terms of the Green function that has exact expression for the homogeneous electric field and the Coulomb field. It is demonstrated that repulsive Coulomb field is effective for magnification of the interference pattern at a short distance from an ion. For the first time, as shown for this case, the interference pattern in asymptotic area can be calculated by means of global semiclassical approximation or, a little more roughly, by simple uniform field app...
Non-linear conductivity in Coulomb glasses
Energy Technology Data Exchange (ETDEWEB)
Voje, A.; Bergli, J. [Department of Physics, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo (Norway); Ortuno, M.; Somoza, A.M. [Departamento de Fisica - CIOyN, Universidad de Murcia, Murcia 30.071 (Spain); Caravaca, M.
2009-12-15
We have studied the nonlinear conductivity of two-dimensional Coulomb glasses. We have used a Monte Carlo algorithm to simulate the dynamic of the system under an applied electric field E. We have compared results for two different models: a regular square lattice with only diagonal disorder and a random array of sites with diagonal and off-diagonal disorder. We have found that for moderate fields the logarithm of the conductivity is proportional to {radical}(E)/T{sup 2}, reproducing experimental results. We have also found that in the nonlinear regime the site occupancy in the Coulomb gap follows a Fermi-Dirac distribution with an effective temperature T{sub eff} higher than the phonon bath temperature T. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Coulomb dissociation of $^{20,21}$N
Röder, Marko; Aksyutina, Yulia; Alcantara, Juan; Altstadt, Sebastian; Alvarez-Pol, Hector; Ashwood, Nicholas; Atar, Leyla; Aumann, Thomas; Avdeichikov, Vladimir; Barr, M; Beceiro, Saul; Bemmerer, Daniel; Benlliure, Jose; Bertulani, Carlos; Boretzky, Konstanze; Borge, Maria J G; Burgunder, G; Caamano, Manuel; Caesar, Christoph; Casarejos, Enrique; Catford, Wilton; Cederkall, Joakim; Chakraborty, S; Chartier, Marielle; Chulkov, Leonid; Cortina-Gil, Dolores; Crespo, Raquel; Pramanik, Ushasi Datta; Diaz-Fernandez, Paloma; Dillmann, Iris; Elekes, Zoltan; Enders, Joachim; Ershova, Olga; Estrade, A; Farinon, F; Fraile, Luis M; Freer, Martin; Freudenberger, M; Fynbo, Hans; Galaviz, Daniel; Geissel, Hans; Gernhäuser, Roman; Göbel, Kathrin; Golubev, Pavel; Diaz, Diego Gonzalez; Hagdahl, Julius; Heftrich, Tanja; Heil, Michael; Heine, Marcel; Heinz, Andreas; Henriques, Ana; Holl, Matthias; Ickert, G; Ignatov, Alexander; Jakobsson, Bo; Johansson, Hakan; Jonson, Björn; Kalantar-Nayestanaki, Nasser; Kanungo, Rituparna; Kelic-Heil, Aleksandra; Knöbel, Ronja; Kröll, Thorsten; Krücken, Reiner; Kurcewicz, J; Kurz, Nikolaus; Labiche, Marc; Langer, Christoph; Bleis, Tudi Le; Lemmon, Roy; Lepyoshkina, Olga; Lindberg, Simon; Machado, Jorge; Marganiec, Justyna; Caro, Magdalena Mostazo; Movsesyan, Alina; Najafi, Mohammad Ali; Nilsson, Thomas; Nociforo, Chiara; Panin, Valerii; Paschalis, Stefanos; Perea, Angel; Petri, Marina; Pietri, S; Plag, Ralf; Prochazka, A; Rahaman, Md Anisur; Rastrepina, Ganna; Reifarth, Rene; Ribeiro, Guillermo; Ricciardi, M Valentina; Rigollet, Catherine; Riisager, Karsten; Rossi, Dominic; Saez, Jose Sanchez del Rio; Savran, Deniz; Scheit, Heiko; Simon, Haik; Sorlin, Olivier; Stoica, V; Streicher, Branislav; Taylor, Jon; Tengblad, Olof; Terashima, Satoru; Thies, Ronja; Togano, Yasuhiro; Uberseder, Ethan; Van de Walle, J; Velho, Paulo; Volkov, Vasily; Wagner, Andreas; Wamers, Felix; Weick, Helmut; Weigand, Mario; Wheldon, Carl; Wilson, G; Wimmer, Christine; Winfield, J S; Woods, Philip; Yakorev, Dmitry; Zhukov, Mikhail; Zilges, Andreas; Zuber, Kai
2016-01-01
Neutron-rich light nuclei and their reactions play an important role for the creation of chemical elements. Here, data from a Coulomb dissociation experiment on $^{20,21}$N are reported. Relativistic $^{20,21}$N ions impinged on a lead target and the Coulomb dissociation cross section was determined in a kinematically complete experiment. Using the detailed balance theorem, the $^{19}\\mathrm{N}(\\mathrm{n},\\gamma)^{20}\\mathrm{N}$ and $^{20}\\mathrm{N}(\\mathrm{n},\\gamma)^{21}\\mathrm{N}$ excitation functions and thermonuclear reaction rates have been determined. The $^{19}\\mathrm{N}(\\mathrm{n},\\gamma)^{20}\\mathrm{N}$ rate is up to a factor of 5 higher at $T<1$\\,GK with respect to previous theoretical calculations, leading to a 10\\,\\% decrease in the predicted fluorine abundance.
Energy Technology Data Exchange (ETDEWEB)
Gunawan, H.; Puspito, N. T.; Ibrahim, G.; Harjadi, P. J. P. [ITB, Faculty of Earth Sciences and Tecnology (Indonesia); BMKG (Indonesia)
2012-06-20
The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance ({Delta}) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determination of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log {Delta}+ 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.
Coulomb interaction effect in tilted Weyl fermion in two dimensions
Isobe, Hiroki; Nagaosa, Naoto
Weyl fermions with tilted linear dispersions characterized by several different velocities appear in some systems including the quasi-two-dimensional organic semiconductor α-(BEDT-TTF)2I3 and three-dimensional WTe2. The Coulomb interaction between electrons modifies the velocities in an essential way in the low energy limit, where the logarithmic corrections dominate. Taking into account the coupling to both the transverse and longitudinal electromagnetic fields, we derive the renormalization group equations for the velocities of the tilted Weyl fermions in two dimensions, and found that they increase as the energy decreases and eventually hit the velocity of light c to result in the Cherenkov radiation. Especially, the system restores the isotropic Weyl cone even when the bare Weyl cone is strongly tilted and the velocity of electrons becomes negative in certain directions.
Laser-driven recollisions under the Coulomb barrier
Keil, Th; Bauer, D
2016-01-01
Photoelectron spectra obtained from the ab initio solution of the time-dependent Schr\\"odinger equation can be in striking disagreement with predictions by the strong-field approximation (SFA) not only at low energy but also around twice the ponderomotive energy where the transition from the direct to the rescattered electrons is expected. In fact, the relative enhancement of the ionization probability compared to the SFA in this regime can be several orders of magnitude. We show for which laser and target parameters such an enhancement occurs and for which the SFA prediction is reasonably good. The enhancement is analyzed in terms of the Coulomb-corrected action along analytic quantum orbits in the complex-time plane, taking branch cuts due to soft-recollisions properly into account.
Module of System Galactica with Coulomb's Interaction
Directory of Open Access Journals (Sweden)
Joseph J. Smulsky
2014-12-01
Full Text Available The system Galactica of free access is supplemented module for the Coulomb interaction. It is based on a high-precision method for solving differential equations of motion of N charged particles. The paper presents all the theoretical and practical issues required to use this module of system Galactica so that even the beginning researcher could study the motion of particles, atoms and molecules.
Coulomb collision effects on linear Landau damping
Energy Technology Data Exchange (ETDEWEB)
Callen, J. D., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison, Wisconsin 53706-1609 (United States)
2014-05-15
Coulomb collisions at rate ν produce slightly probabilistic rather than fully deterministic charged particle trajectories in weakly collisional plasmas. Their diffusive velocity scattering effects on the response to a wave yield an effective collision rate ν{sub eff} ≫ ν and a narrow dissipative boundary layer for particles with velocities near the wave phase velocity. These dissipative effects produce temporal irreversibility for times t ≳ 1/ν{sub eff} during Landau damping of a small amplitude Langmuir wave.
Coulomb dissociation studies for astrophysical thermonuclear reactions
Energy Technology Data Exchange (ETDEWEB)
Motobayashi, T. [Dept. of Physics, Rikkyo Univ., Toshima, Tokyo (Japan)
1998-06-01
The Coulomb dissociation method was applied to several radiative capture processes of astrophysical interest. The method has an advantage of high experimental efficiency, which allow measurements with radioactive nuclear beams. The reactions {sup 13}N(p,{gamma}){sup 14}O and {sup 7}Be(p,{gamma}){sup 8}B are mainly discussed. They are the key reaction in the hot CNO cycle in massive stars and the one closely related to the solar neutrino problem, respectively. (orig.)
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
Marshall, J. R.
1999-09-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this
"Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications
Marshall, J. R.
1999-01-01
The term "Coulombic viscosity" is introduced here to define an empirically observed phenomenon from experiments conducted in both microgravity, and in ground-based 1-g conditions. In the latter case, a sand attrition device was employed to test the longevity of aeolian materials by creating two intersecting grain-circulation paths or cells that would lead to most of the grain energy being expended on grain-to-grain collisions (simulating dune systems). In the areas in the device where gravitationally-driven grain-slurries recycled the sand, the slurries moved with a boundary-layer impeded motion down the chamber walls. Excessive electrostatic charging of the grains during these experiments was prevented by the use of an a.c. corona (created by a Tesla coil) through which the grains passed on every cycle. This created both positive and negative ions which neutralized the triboelectrically-generated grain charges. When the corona was switched on, the velocity of the wall-attached slurries increased by a factor of two as approximately determined by direct observation. What appeared to be a freely-flowing slurry of grains impeded only by intergranular mechanical friction, had obviously been significantly retarded in its motion by electrostatic forces between the grains; with the charging reduced, the grains were able to move past one another without a flow "viscosity" imposed by the Coulombic intergranular forces. A similar phenomenon was observed during microgravity experiments aboard Space Shuttle in USML-1 & USML-2 spacelabs where freely-suspended clouds of sand were being investigated for their potential to for-m aggregates. In this environment, the grains were also charged electrostatically (by natural processes prior to flight), but were free from the intervention of gravity in their interactions. The grains were dispersed into dense clouds by bursts of air turbulence and allowed to form aggregates as the ballistic and turbulent motions damped out. During this
Low rank factorization of the Coulomb integrals for periodic coupled cluster theory
Hummel, Felix; Grüneis, Andreas
2016-01-01
We study the decomposition of the Coulomb integrals of periodic systems into a tensor contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O(N^4) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions.
Treating Coulomb exchange contributions in relativistic mean field calculations: why and how
Van Giai, Nguyen; Gu, Huai-Qiang; Long, Wenhui; Meng, Jie
2014-01-01
The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow 'mock up' the effects of meson-induced exchange terms by adjusting the meson-nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this note, we show that the Coulomb exchange effects can be easily included with a good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation.
Analysis of Spent Nuclear Fuel Imaging Using Multiple Coulomb Scattering of Cosmic Muons
Chatzidakis, Stylianos; Tsoukalas, Lefteri H
2016-01-01
Cosmic ray muons passing through matter lose energy from inelastic collisions with electrons and are deflected from nuclei due to multiple Coulomb scattering. The strong dependence of scattering on atomic number Z and the recent developments on position sensitive muon detectors indicate that multiple Coulomb scattering could be an excellent candidate for spent nuclear fuel imaging. Muons present significant advantages over existing monitoring and imaging techniques and can play a central role in monitoring nuclear waste and spent nuclear fuel stored in dense well shielded containers. The main purpose of this paper is to investigate the applicability of multiple Coulomb scattering for imaging of spent nuclear fuel dry casks stored within vertical and horizontal commercial storage dry casks. Calculations of muon scattering were performed for various scenarios, including vertical and horizontal fully loaded dry casks, half loaded dry casks, dry casks with one row of fuel assemblies missing, dry casks with one fu...
Directory of Open Access Journals (Sweden)
Kaoru Miura
2011-01-01
Full Text Available We have investigated the role of the Ti–O Coulomb repulsions in the appearance of the ferroelectric state in BaTiO3 as well as the role of the Zn–O Coulomb repulsions in BiZn0.5Ti0.5O3, using a first-principles calculation with optimized structures. In tetragonal BaTiO3, it is found that the Coulomb repulsions between Ti 3s and 3p states and O 2s and 2p states have an important role for the appearance of Ti ion displacement. In BiZn0.5Ti0.5O3, on the other hand, the stronger Zn–O Coulomb repulsions, which are due to the 3s, 3p, and 3d (d10 states of the Zn ion, have more important role than the Ti–O Coulomb repulsions for the appearance of the tetragonal structure. Our suggestion is consistent with the other ferroelectric perovskite oxides ABO3 in the appearance of tetragonal structures as well as rhombohedral structures.
Super-Coulombic atom-atom interactions in hyperbolic media
Cortes, Cristian L
2016-01-01
Dipole-dipole interactions which govern phenomena like cooperative Lamb shifts, superradiant decay rates, Van der Waals forces, as well as resonance energy transfer rates are conventionally limited to the Coulombic near-field. Here, we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic (QED) interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a Super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media and propose practical implementations with phonon-polaritonic hexagonal boron nitride in the infrared spectral range and plasmonic super-lattice structures in the visible range. Our work paves the way for the control of cold atoms in hyperbolic media and the study of many-body atomic states where optical phonons mediate qua...
Super-Coulombic atom–atom interactions in hyperbolic media
Cortes, Cristian L.; Jacob, Zubin
2017-01-01
Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media. PMID:28120826
Coulomb explosion of CS2 molecule under an intense femtosecond laser field
Xiao, Wang; Jian, Zhang; Shi-An, Zhang; Zhen-Rong, Sun
2016-05-01
We experimentally demonstrate the Coulomb explosion process of CS2 molecule under a near-infrared (800 nm) intense femtosecond laser field by a DC-sliced ion imaging technique. We obtain the DC-sliced images of these fragment ions S+, S2+, CS+, and CS2+ by breaking one C-S bond, and assign their Coulomb explosion channels by considering their kinetic energy release and angular distribution. We also numerically simulate the dissociation dynamics of parent ions by a Coulomb potential approximation, and obtain the time evolution of Coulomb energy and kinetic energy release, which indicates that the dissociation time of parent ions decreases with the increase of the charge number k. These experimental and theoretical results can serve as a useful benchmark for those researchers who work in the related area. Project supported by the National Natural Science Foundation of China (Grant Nos. 51132004 and 11474096), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14JC1401500). We acknowledge the support of the NYU-ECNU Institute of Physics at NYU Shanghai, China.
Creation of planar charged fermions in Coulomb and Aharonov-Bohm potentials
Khalilov, V R
2013-01-01
The creation of charged fermions from the vacuum by a Coulomb field in the presence of an Aharonov--Bohm (AB) potential are studied in 2+1 dimensions. The process is governed by a (singular) Dirac Hamiltonian that requires the supplementary definition in order for it to be treated as a self-adjoint quantum-mechanical operator. By constructing a one-parameter self-adjoint extension of the Dirac Hamiltonian, specified by boundary conditions, we describe the (virtual bound) quasistationary states with "complex energy" emerging in an attractive Coulomb potential, derive for the first time, complex equations (depending upon the electron spin and the extension parameter) for the quasistationary state "complex energy". The constructed self-adjoint Dirac Hamiltonians in Coulomb and AB potentials are applied to provide a correct description to the low-energy electron excitations, as well as the creation of charged quasiparticles from the vacuum in graphene by the Coulomb impurity in the presence of AB potential. It is...
Coulomb-blockade transport in single-crystal organic thin-film transistors
Schoonveld, W. A.; Wildeman, J.; Fichou, D.; Bobbert, P. A.; van Wees, B. J.; Klapwijk, T. M.
2000-04-01
Coulomb-blockade transport-whereby the Coulomb interaction between electrons can prohibit their transport around a circuit-occurs in systems in which both the tunnel resistance, RT, between neighbouring sites is large (>>h/e2) and the charging energy, EC (EC = e2/2C, where C is the capacitance of the site), of an excess electron on a site is large compared to kT. (Here e is the charge of an electron, k is Boltzmann's constant, and h is Planck's constant.) The nature of the individual sites-metallic, superconducting, semiconducting or quantum dot-is to first order irrelevant for this phenomenon to be observed. Coulomb blockade has also been observed in two-dimensional arrays of normal-metal tunnel junctions, but the relatively large capacitances of these micrometre-sized metal islands results in a small charging energy, and so the effect can be seen only at extremely low temperatures. Here we demonstrate that organic thin-film transistors based on highly ordered molecular materials can, to first order, also be considered as an array of sites separated by tunnel resistances. And as a result of the sub-nanometre sizes of the sites (the individual molecules), and hence their small capacitances, the charging energy dominates at room temperature. Conductivity measurements as a function of both gate bias and temperature reveal the presence of thermally activated transport, consistent with the conventional model of Coulomb blockade.
Papp, Z
1996-01-01
We demonstrate the feasibility and efficiency of the Coulomb-Sturmian separable expansion method for generating accurate solutions of the Faddeev equations. Results obtained with this method are reported for several benchmark cases of bosonic and fermionic three-body systems. Correct bound-state results in agreement with the ones established in the literature are achieved for short-range interactions. We outline the formalism for the treatment of three-body Coulomb systems and present a bound-state calculation for a three-boson system interacting via Coulomb plus short-range forces. The corresponding result is in good agreement with the answer from a recent stochastic-variational-method calculation.
Towards parameter limits of displacement boundary value problems for Mohr-Coulomb models
Rohe, A.
2013-01-01
To solve problems in geotechnical engineering often numerical methods such as the Finite Element Method (FEM) are used. This method can be applied for example for the calculation of the strength of dikes, the determination of the stability of (rail)road embankments, the prediction of deformations du
Coulomb-oscillator explanation of striped STM images of superconductive copper oxides
Bucher, Manfred
2013-01-01
Asymmetric scanning tunneling microscopy (STM) of the CuO2 plane of Ca2-xNaxCuO2Cl2, x = 0.125, shows a square domain structure with edge length four times the compound's lattice constant a0 (Cu-O-Cu distance). The domain structure is a direct consequence of the 4a0 by 4a0 superlattice formed by vertical Na+ pairs (oriented parallel to the crystal's c axis) that substitute Ca2+ ions. The surrounding O2- ions are displaced away from, and the Cu2+ ions toward the Na+ pairs. Contrary to the fourfold symmetry of the CuO2 plane, the stable displacement configuration has a twofold symmetry, dominated by large and, respectively, small displacement of opposite O2- ions being nearest neighbors to each vertical Na+ pair. The ion displacements give rise to sufficient squeeze of certain O2- ions that, by the Coulomb-oscillator model of superconductivity, prevents lateral overswing of their excited 3s electrons. The axial 3s oscillations are predominantly oriented in the directions of O2- ion displacements. The observed l...
Advanced Triangulation Displacement Sensors
Poteet, Wade M.; Cauthen, Harold K.
1996-01-01
Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.
Displacement Data Assimilation
Rosenthal, W Steven; Mariano, Arthur J; Restrepo, Juan M
2016-01-01
We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information important. While the displacement transformation is not tied to any particular assimilation scheme, here we implement it within an ensemble Kalman Filter and demonstrate its effectiveness in tracking stochastically perturbed vortices.
Iraqi Population Displacement Analysis
2016-11-01
CENTER FOR ARMY ANALYSIS 6001 GOETHALS ROAD FORT BELVOIR, VA 22060-5230 CAA-2015098 IRAQI POPULATION DISPLACEMENT ANALYSIS NOVEMBER 2016...designated by other official documentation. Comments or suggestions should be addressed to: Director Center for Army Analysis ATTN: CSCA-OA...CONTRACT NUMBER Iraqi Population Displacement Analysis PDMC 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Ms
Advanced Triangulation Displacement Sensors
Poteet, Wade M.; Cauthen, Harold K.
1996-01-01
Advanced optoelectronic triangulation displacement sensors undergoing development. Highly miniaturized, more stable, more accurate, and relatively easy to use. Incorporate wideband electronic circuits suitable for real-time monitoring and control of displacements. Measurements expected to be accurate to within nanometers. In principle, sensors mass-produced at relatively low unit cost. Potential applications numerous. Possible industrial application in measuring runout of rotating shaft or other moving part during fabrication in "zero-defect" manufacturing system, in which measured runout automatically corrected.
Internal displacement in Burma.
Lanjouw, S; Mortimer, G; Bamforth, V
2000-09-01
The internal displacement of populations in Burma is not a new phenomenon. Displacement is caused by numerous factors. Not all of it is due to outright violence, but much is a consequence of misguided social and economic development initiatives. Efforts to consolidate the state by assimilating populations in government-controlled areas by military authorities on the one hand, while brokering cease-fires with non-state actors on the other, has uprooted civilian populations throughout the country. Very few areas in which internally displaced persons (IDPs) are found are not facing social turmoil within a climate of impunity. Humanitarian access to IDP populations remains extremely problematic. While relatively little information has been collected, assistance has been focused on targeting accessible groups. International concern within Burma has couched the problems of displacement within general development modalities, while international attention along its borders has sought to contain displacement. With the exception of several recent initiatives, few approaches have gone beyond assistance and engaged in the prevention or protection of the displaced.
Topological defect motifs in two-dimensional Coulomb clusters
Radzvilavičius, A; 10.1088/0953-8984/23/38/385301
2012-01-01
The most energetically favourable arrangement of low-density electrons in an infinite two-dimensional plane is the ordered triangular Wigner lattice. However, in most instances of contemporary interest one deals instead with finite clusters of strongly interacting particles localized in potential traps, for example, in complex plasmas. In the current contribution we study distribution of topological defects in two-dimensional Coulomb clusters with parabolic lateral confinement. The minima hopping algorithm based on molecular dynamics is used to efficiently locate the ground- and low-energy metastable states, and their structure is analyzed by means of the Delaunay triangulation. The size, structure and distribution of geometry-induced lattice imperfections strongly depends on the system size and the energetic state. Besides isolated disclinations and dislocations, classification of defect motifs includes defect compounds --- grain boundaries, rosette defects, vacancies and interstitial particles. Proliferatio...
Properties of nuclear and Coulomb breakup of 8B
Ogata, K; Iseri, Y; Yahiro, M
2008-01-01
Dependence of breakup cross sections of 8B at 65 MeV/nucleon on target mass number A_T is investigated by means of the continuum-discretized coupled-channels method (CDCC) with more reliable distorting potentials than in preceding study. The scaling law of the nuclear breakup cross section as A_T^(1/3) is found to be satisfied only in the middle A_T region of 40 < A_T < 150. Interference between nuclear and Coulomb breakup amplitudes turns out to vanish at very forward angles with respect to the center-of-mass of 8B, independent of target nucleus. Truncation of the relative energy between the p and 7Be fragments slightly reduces contribution from nuclear breakup at very forward angles, while the angular region in which the first-order perturbation theory works well does not change essentially.
Conductance of a superconducting Coulomb-blockaded Majorana nanowire
Chiu, Ching-Kai; Sau, Jay D.; Das Sarma, S.
2017-08-01
In the presence of an applied magnetic field introducing Zeeman spin splitting, a superconducting (SC) proximitized one-dimensional (1D) nanowire with spin-orbit coupling can pass through a topological quantum phase transition developing zero-energy topological Majorana bound states (MBSs) on the wire ends. One of the promising experimental platforms in this context is a Coulomb-blockaded island, where by measuring the two-terminal conductance one can in principle investigate the MBS properties. Here, we theoretically study the tunneling transport of a single electron across the superconducting Coulomb-blockaded nanowire at finite temperature in order to obtain the generic conductance equation. By considering all possible scenarios where only MBSs are present at the ends of the nanowire, we compute the nanowire conductance as a function of the magnetic field, the temperature, and the gate voltage. In the simplest 1D topological SC model, the oscillations of the conductance peak spacings (OCPSs) arising from the Majorana overlap from the two wire ends manifest an increasing oscillation amplitude with increasing magnetic field (in disagreement with a recent experimental observation). We develop a generalized finite-temperature master-equation theory including not only multiple subbands in the nanowire, but also the possibility of ordinary Andreev bound states in the nontopological regime. Inclusion of all four effects (temperature, multiple subbands, Andreev bound states, and MBSs) provides a complete picture of the tunneling transport properties of the Coulomb-blockaded nanowire. Based on this complete theory, we indeed obtain OCPSs whose amplitudes decrease with increasing magnetic field in qualitative agreement with recent experimental results, but this happens only for rather high temperatures with multisubband occupancy and the simultaneous presence of both Andreev bound states and MBSs in the system. Thus, the experimentally observed OCPSs manifesting
Localized Coulomb Descriptors for the Gaussian Approximation Potential
Barker, James; Hamaekers, Jan; Mathias, Sonja
2016-01-01
We introduce a novel class of localized atomic environment representation functions, based upon the global Coulomb matrix, which have dimensionality either quadratic or linear in the number of atoms in the local atomic environment. By combining these functions with the Gaussian approximation potential approach, we present LC-GAP, a new system for generating atomic potentials through machine learning (ML). Tests on the QM7, QM7b and GDB9 biomolecular datasets demonstrate that potentials created with LC-GAP can successfully predict atomization energies for molecules larger than those used for training to chemical accuracy, and can (in the case of QM7b) also be used to predict a range of other atomic properties with accuracy in line with the recent literature.
Imaging of Coulomb-Driven Quantum Hall Edge States
Lai, Keji
2011-10-01
The edges of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime are divided into alternating metallic and insulating strips, with their widths determined by the energy gaps of the QHE states and the electrostatic Coulomb interaction. Local probing of these submicrometer features, however, is challenging due to the buried 2DEG structures. Using a newly developed microwave impedance microscope, we demonstrate the real-space conductivity mapping of the edge and bulk states. The sizes, positions, and field dependence of the edge strips around the sample perimeter agree quantitatively with the self-consistent electrostatic picture. The evolution of microwave images as a function of magnetic fields provides rich microscopic information around the ν=2 QHE state. © 2011 American Physical Society.
Quasi-exactly solvable relativistic soft-core Coulomb models
Agboola, Davids
2013-01-01
By considering a unified treatment, we present quasi exact polynomial solutions to both the Klein-Gordon and Dirac equations with the family of soft-core Coulomb potentials $V_q(r)=-Z/\\left(r^q+\\beta^q\\right)^{1/q}$, $Z>0$, $\\beta>0$, $q\\geq 1$. We consider cases $q=1$ and $q=2$ and show that both cases are reducible to the same basic ordinary differential equation. A systematic and closed form solution to the basic equation is obtain using the Bethe ansatz method. For each case, the expressions for the energies and the allowed parameters are obtained analytically and the wavefunctions are derive in terms of the roots of a set of Bethe ansatz equations.
Screening phase transitions in two-dimensional Coulomb gas
Energy Technology Data Exchange (ETDEWEB)
Gallavotti, G.; Nicolo, F.
1984-07-01
Infrared properties of a Coulomb gas in two dimensions and with fixed ultraviolet cutoff are studied. The existence of infinitely many thresholds Tu = 1/Ke 1/8 pi (1-1/zu)sup-1 in the interval of temperatures 1/Ke1/8 pi, 1/4 pi, where K is the Boltzmann constant and e = /e/ is the charge of the positive particle, is proved. Such thresholds are conjectured to reflect a sequence of transitions from a pure multipole phase (the Koesterlitz-Thouless region) to the plasma phase via an infinite number of intermediate phases. Mathematically the free energy becomes more and more differentiable as a function of the activity lambda, near lambda = 0, as the temperature decreases.
Overlap Quark Propagator in Coulomb Gauge QCD
Mercado, Ydalia Delgado; Schröck, Mario
2014-01-01
The chirally symmetric Overlap quark propagator is explored in Coulomb gauge. This gauge is well suited for studying the relation between confinement and chiral symmetry breaking, since confinement can be attributed to the infrared divergent Lorentz-vector dressing function. Using quenched gauge field configurations on a $20^4$ lattice, the quark propagator dressing functions are evaluated, the dynamical quark mass is extracted and the chiral limit of these quantities is discussed. By removing the low-lying modes of the Dirac operator, chiral symmetry is artificially restored. Its effect on the dressing functions is discussed.
Coulomb drag in multiwall armchair carbon nanotubes
DEFF Research Database (Denmark)
Lunde, A.M.; Jauho, Antti-Pekka
2004-01-01
We calculate the transresistivity rho(21) between two concentric armchair nanotubes in a diffusive multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F). We approximate the tight-binding band structure by two crossing bands with a linear dispersion near the Fermi...... surface. The cylindrical geometry of the nanotubes and the different parities of the Bloch states are accounted for in the evaluation of the effective Coulomb interaction between charges in the concentric nanotubes. We find a broad peak in rho(21) as a function of temperature at roughly T similar to 0.4T...
Coulombic dragging of molecular assemblies on nanotubes
Kral, Petr; Sint, Kyaw; Wang, Boyang
2009-03-01
We show by molecular dynamics simulations that polar molecules, ions and their assemblies could be Coulombically dragged on the surfaces of single-wall carbon and boron-nitride nanotubes by ionic solutions or individual ions moving inside the nanotubes [1,2]. We also briefly discuss highly selective ionic sieves based on graphene monolayers with nanopores [3]. These phenomena could be applied in molecular delivery, separation and desalination.[3pt] [1] Boyang Wang and Petr Kral, JACS 128, 15984 (2006). [0pt] [2] Boyang Wang and Petr Kral, Phys. Rev. Lett. 101, 046103 (2008). [0pt] [3] Kyaw Sint, Boyang Wang and Petr Kral, JACS, ASAP (2008).
Coulomb field in a constant electromagnetic background
Adorno, T C; Shabad, A E
2016-01-01
Nonlinear Maxwell equations are written up to the third-power deviations from a constant-field background, valid within any local nonlinear electrodynamics including QED with Euler-Heisenberg effective Lagrangian. Linear electric response to imposed static finite-sized charge is found in the vacuum filled by an arbitrary combination of constant and homogeneous electric and magnetic fields. The modified Coulomb field, corrections to the total charge and to the charge density are given in terms of derivatives of the effective Lagrangian with respect to the field invariants.
Coulomb Corrections to the Parameters of the Moliere Multiple Scattering Theory
Kuraev, Eduard; Tarasov, Alexander
2013-01-01
High-energy Coulomb corrections to the parameters of the Moliere multiple scattering theory are obtained. Numerical calculations are presented in the range of the nuclear charge number of the target atom 4
Enhanced current noise correlations in a Coulomb-Majorana device
Lü, Hai-Feng; Lu, Hai-Zhou; Shen, Shun-Qing
2016-06-01
Majorana bound states (MBSs) nested in a topological nanowire are predicted to manifest nonlocal correlations in the presence of a finite energy splitting between the MBSs. However, the signal of the nonlocal correlations has not yet been detected in experiments. A possible reason is that the energy splitting is too weak and seriously affected by many system parameters. Here we investigate the charging energy induced nonlocal correlations in a hybrid device of MBSs and quantum dots. The nanowire that hosts the MBSs is assumed in proximity to a mesoscopic superconducting island with a finite charging energy. Each end of the nanowire is coupled to one lead via a quantum dot with resonant levels. With a floating superconducting island, the devices show a negative differential conductance and giant super-Poissonian shot noise, due to the interplay between the nonlocality of the MBSs and dynamical Coulomb blockade effect. When the island is strongly coupled to a bulk superconductor, the current cross correlations at small lead chemical potentials are negative by tuning the dot energy levels. In contrast, the cross correlation is always positive in a non-Majorana setup. This difference may provide a signature for the existence of the MBSs.
Barbarino, M.; Warrens, M.; Bonasera, A.; Lattuada, D.; Bang, W.; Quevedo, H. J.; Consoli, F.; de Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.
2016-08-01
In this work, we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is highly disordered enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is “nearly” isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell-Boltzmann (MB) distribution, a shifted MB distribution (sMB), and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly disordered and practically not distinguishable from a thermalized one.
The proton-proton scattering without Coulomb force renormalization
Directory of Open Access Journals (Sweden)
Glöckle W.
2010-04-01
Full Text Available We demonstrate numerically that proton-proton (pp scattering observables can be determined directly by standard short range methods using a screened pp Coulomb force without renormalization. We numerically investigate solutions of the 3-dimensional Lippmann-Schwinger (LS equation for an exponentially screened Coulomb potential. For the limit of large screening radii we conﬁrm analytically predicted properties for oﬀ-shell, half-shell and on-shell elements of the Coulomb t-matrix.
Coulomb excitation of radioactive {sup 79}Pb
Energy Technology Data Exchange (ETDEWEB)
Lister, C.J.; Blumenthal, D.; Davids, C.N. [and others
1995-08-01
The technical challenges expected in experiments with radioactive beams can already be explored by using ions produced in primary reactions. In addition, the re-excitation of these ions by Coulomb excitation allows a sensitive search for collective states that are well above the yrast line. We are building an experiment to study Coulomb excitation of radioactive ions which are separated from beam particles by the Fragment Mass Analyzer. An array of gamma detectors will be mounted at the focal plane to measure the gamma radiation following re-excitation. Five Compton-suppressed Ge detectors and five planar LEPS detectors will be used. The optimum experiment of this type appears to be the study of {sup 79}Rb following the {sup 24}Mg ({sup 58}Ni,3p) reaction. We calculate that about 5 x 10{sup 5} {sup 79}Rb nuclei/second will reach the excitation foil. This rubidium isotope was selected for study as it is strongly produced and is highly deformed, so easily re-excited. The use of a {sup 58}Ni re-excitation foil offers the best yields. After re-excitation the ions will be subsequently transported into a shielded beamdump to prevent the accumulation of activity.
Effect of Coulomb interaction on multi-electronwave packet dynamics
Energy Technology Data Exchange (ETDEWEB)
Shiokawa, T. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571 (Japan); Takada, Y. [Faculty of Engineering, Tokyo University of Science, Chiyoda, Tokyo, 102-0073, Japan and CREST, Japan Science and Technology Agency (Japan); Konabe, S.; Hatsugai, Y. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and CREST, Japan Science and Technology Agency (Japan); Muraguchi, M. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and CREST, Japan Science and Technology Agency (Japan); Endoh, T. [Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan and Center for Spintronics Integrated Systems, Tohoku University, Sendai, 980-8577, Japan and CREST, Japan Science and Technology Agency (Japan); Shiraishi, K. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan and Center for Computational Science, University of Tsukuba, Tsukuba, 305-8577, Japan and CREST, Japan Science and Technology Agency (Japan)
2013-12-04
We have investigated the effect of Coulomb interaction on electron transport in a one-dimensional nanoscale structure using a multi-electron wave packet approach. To study the time evolution, we numerically solve the time-dependent Hartree-Fock equation, finding that the electron wave packet dynamics strongly depends on the Coulomb interaction strength. When the Coulomb interaction is large, each electron wave packet moves separately in the presence of an electric field. With weak Coulomb interaction, however, the electron wave packets overlap, forming and moving as one collective wave packet.
Quantum transport through a Coulomb blockaded quantum emitter coupled to a plasmonic dimer.
Goker, A; Aksu, H
2016-01-21
We study the electron transmission through a Coulomb blockaded quantum emitter coupled to metal nanoparticles possessing plasmon resonances by employing the time-dependent non-crossing approximation. We find that the coupling of the nanoparticle plasmons with the excitons results in a significant enhancement of the conductance through the discrete state with higher energy beyond the unitarity limit while the other discrete state with lower energy remains Coulomb blockaded. We show that boosting the plasmon-exciton coupling well below the Kondo temperature increases the enhancement adding another quantum of counductance upon saturation. Finite bias and increasing emitter resonance energy tend to reduce this enhancement. We attribute these observations to the opening of an additional transport channel via the plasmon-exciton coupling.
Supersymmetric Displaced Number States
Directory of Open Access Journals (Sweden)
Fredy R. Zypman
2015-06-01
Full Text Available We introduce, generate and study a family of supersymmetric displaced number states (SDNS that can be considered generalized coherent states of the supersymmetric harmonic oscillator. The family is created from the seminal supersymmetric boson-fermion entangling annihilation operator introduced by Aragone and Zypman and later expanded by Kornbluth and Zypman. Using the momentum representation, the states are obtained analytically in compact form as displaced supersymmetric number states. We study their position-momentum uncertainties, and their bunchiness by classifying them according to their Mandel Q-parameter in phase space. We were also able to find closed form analytical representations in the space and number basis.
Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources
Energy Technology Data Exchange (ETDEWEB)
Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)
2016-02-15
To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.
Application of finite field-dependent BRS transformations to problems of the Coulomb gauge
Joglekar, S D
2001-01-01
We discuss the Coulomb propagator in the formalism developed recently in which we construct the Coulomb gauge path-integral by correlating it with the well-defined Lorentz gauge path-integrals through a finite field-dependent BRS transformation. We discover several features of the Coulomb gauge from it. We find that the singular Coulomb gauge HAS to be treated as the gauge parameter lambda --> 0 limit. We further find that the propagator so obtained has good high energy behavior (k_0^{-2}) for lambda and epsilon nonzero. We further find that the behavior of the propagator so obtained is sensitive to the order of limits k_0 -->infinity, lambda -->0 and epsilon --> 0; so that these have to be handled carefully in a higher loop calculation. We show that we can arrive at the result of Cheng and Tsai for the ambiguous two loop Feynman integrals without the need for an extra ad hoc regularization and within the path integral formulation.
Probing single-particle and collective states in atomic nuclei with Coulomb excitation
DiJulio, Douglas
A series of experiments and developments, related to stable and radioactive isotopes, have been carried out. These studies have focused on measuring the low-lying excitations of spherical and deformed nuclei using electromagnetic (Coulomb) excitation and also on developments in detector technology for upcoming radioactive ion beams facilities. The low-lying excitations in the nuclei 107,109Sn and 107In have been investigated using low-energy Coulomb excitation at the REX-ISOLDE facility at CERN. The measured reduced transition probabilities were compared to predictions of nuclear structure models. In addition, a relativistic Coulomb excitation experiment was carried out using the FRS at GSI with the nucleus 104Sn. These radioactive ion beam experiments provide important constraints for large-scale-shell-model calculations in the region of the doubly magic nucleus 100Sn. A stable Coulomb excitation experiment was also carried out in order to explore the properties of low-lying structures in the nucleus 170Er...
Coulomb traction on a penny-shaped crack in a three dimensional piezoelectric body
Energy Technology Data Exchange (ETDEWEB)
Li, Qun; Kuna, Meinhard [TU Bergakademie Freiberg, Institute of Mechanics and Fluid Dynamics, Freiberg (Germany); Ricoeur, Andreas [University of Kassel, Institute of Mechanics, Kassel (Germany)
2011-06-15
The axisymmetric problem of a penny-shaped crack embedded in an infinite three-dimensional (3D) piezoelectric body is considered. A general formulation of Coulomb traction on the crack surfaces can be obtained based on thermodynamical considerations of electromechanical systems. Three-dimensional electroelastic solutions are derived by the classical complex potential theory when Coulomb traction is taken into account and the poling direction of piezoelectric body is perpendicular to the crack surfaces. Numerical results show that the magnitude of Coulomb tractions can be large, especially when a large electric field in connection with a small mechanical load is applied. Unlike the traditional traction-free crack model, Coulomb tractions induced by an applied electric field influence the Mode I stress intensity factor for a penny-shaped crack in 3D piezoelectric body. Moreover, compared to the current model, the traditional traction-free crack model always overestimates the effect of the applied electric load on the field intensity factors and energy release rates, which has consequences for 3D piezoelectric fracture mechanics. (orig.)
DEFF Research Database (Denmark)
Bennett, Patrick; Ouazad, Amine
We use a detailed employer-employee data set matched with detailed crime information (timing of crime, fines, convictions, crime type) to estimate the impact of job loss on an individual's probability to commit crime. We focus on job losses due to displacement, i.e. job losses in firms losing...
Displacement compressors - acceptance tests
International Organization for Standardization. Geneva
1996-01-01
ISO 1217:2009 specifies methods for acceptance tests regarding volume rate of flow and power requirements of displacement compressors. It also specifies methods for testing liquid-ring type compressors and the operating and testing conditions which apply when a full performance test is specified.
U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey, Western Ecological Research Center (USGS-WERC) was requested by the Bureau of Ocean Energy Management (BOEM) to create a database for...
U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey, Western Ecological Research Center (USGS-WERC) was requested by the Bureau of Ocean Energy Management (BOEM) to create a database for...
Gauge Theories on the Coulomb Branch
Schwarz, John H.
We construct the world-volume action of a probe D3-brane in AdS5 × S5 with N units of flux. It has the field content, symmetries, and dualities of the U(1) factor of 𝒩 = 4 U(N + 1) super Yang-Mills theory, spontaneously broken to U(N) × U(1) by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a highly effective action (HEA). We construct an SL(2, Z) multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that they reproduce the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a soliton bubble, which is interpreted as a phase boundary.
Gauge Theories on the Coulomb branch
Schwarz, John H
2014-01-01
We construct the world-volume action of a probe D3-brane in $AdS_5 \\times S^5$ with $N$ units of flux. It has the field content, symmetries, and dualities of the $U(1)$ factor of ${\\cal N} =4$ $U(N+1)$ super Yang--Mills theory, spontaneously broken to $U(N) \\times U(1)$ by being on the Coulomb branch, with the massive fields integrated out. This motivates the conjecture that it is the exact effective action, called a `highly effective action' (HEA). We construct an $SL(2,Z)$ multiplet of BPS soliton solutions of the D3-brane theory (the conjectured HEA) and show that it reproduces the electrically charged massive states that have been integrated out as well as magnetic monopoles and dyons. Their charges are uniformly spread on a spherical surface, called a `soliton bubble', which is interpreted as a phase boundary.
Ion Coulomb Crystals and Their Applications
Drewsen, Michael
The following text will give a brief introduction to the physics of the spatially ordered structures, so-called Coulomb crystals, that appear when confined ions are cooled to sufficiently low temperatures. It will as well briefly comment on the very diverse scientific applications of such crystals, which have emerged in the past two decades. While this document lacks figures and many specific references, it is the hope, not the text will stimulate the reader to dig deeper into one or more of the discussed subjects, and inspire her/him to think about new potential applications. A fully referenced journal article of essentially the same text can be found in Physica B 460, 105 (2015) [1].
Distorted Coulomb field of the scattered electron
Thomsen, H D; Andersen, K K; Lund, M D; Knudsen, H; Uggerhøj, E; Uggerhøj1, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Ballestrero, S; Connell, S H
2010-01-01
Experimental results for the radiation emission from ultrarelativistic electrons in targets of 0.03%–5% radiation length is presented. For the thinnest targets, the radiation emission is in accordance with the Bethe-Heitler formulation of bremsstrahlung, the target acting as a single scatterer. In this regime, the radiation intensity is proportional to the thickness. As the thickness increases, the distorted Coulomb field of the electron that is the result of the first scattering events, leads to a suppressed radiation emission per interaction, upon subsequent scattering events. In that case, the radiation intensity becomes proportional to a logarithmic function of the thickness, due to the suppression. Eventually, once the target becomes sufficiently thick, the entire radiation process becomes influenced by multiple scattering and the radiation intensity is again proportional to the thickness, but with a different constant of proportionality. The observed logarithmic thickness dependence of radiation inten...
Relativistic Coulomb scattering of spinless bosons
Garcia, M G
2015-01-01
The relativistic scattering of spin-0 bosons by spherically symmetric Coulomb fields is analyzed in detail with an arbitrary mixing of vector and scalar couplings. It is shown that the partial wave series reduces the scattering amplitude to the closed Rutherford formula exactly when the vector and scalar potentials have the same magnitude, and as an approximation for weak fields. The behavior of the scattering amplitude near the conditions that furnish its closed form is also discussed. Strong suppressions of the scattering amplitude when the vector and scalar potentials have the same magnitude are observed either for particles or antiparticles with low incident momentum. We point out that such strong suppressions might be relevant in the analysis of the scattering of fermions near the conditions for the spin and pseudospin symmetries. From the complex poles of the partial scattering amplitude the exact closed form of bound-state solutions for both particles and antiparticles with different scenarios for the ...
Pair distribution of ions in Coulomb lattice
Witt, H E D; Chugunov, A I; Baiko, D A; Yakovlev, D G
2003-01-01
The pair distribution function g(r) ident to g(x, y, z) and the radial pair distribution function g(r) of ions in body-centred-cubic and face-centred-cubic Coulomb crystals are calculated within the harmonic-lattice (HL) approximation in a wide temperature range, from the high-temperature classical limit (T >> h-bar w sub p , w sub p being the ion plasma frequency) to the low-temperature quantum limit (T || h-bar w sub p). In the classical limit, g(r) is also calculated by the Monte Carlo (MC) method. MC and HL results are demonstrated to be in good agreement. With decreasing T, the correlation peaks of g(r) and g(r) become narrower. At T || h-bar w sub p they become temperature independent (determined by zero-point ion vibrations).
Energy Technology Data Exchange (ETDEWEB)
Cari, C., E-mail: cari@staff.uns.ac.id; Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Yunianto, M., E-mail: muhtaryunianto@staff.uns.ac.id; Husein, A. S. [Physics Department, Faculty of Mathematics and Science, SebelasMaret University, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia)
2016-02-08
The analytical solution of Ddimensional Dirac equation for Coulombic potential is investigated using Nikiforov-Uvarov method. The D dimensional relativistic energy spectra are obtained from relativistic energy eigenvalue equation by using Mat Lab software.The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi and Laguerre Polynomials. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy which will be applied to determine some thermodynamical properties of the system. The thermodynamical properties of the system are expressed in terms of error function and imaginary error function.
Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems
Sleutels, T.H.J.A.; Darus, L.; Hamelers, H.V.M.; Buisman, C.J.N.
2011-01-01
To create an efficient bioelectrochemical system, a high Coulombic efficiency is required. This efficiency is a direct measure for the competition between electrogens and methanogens when acetate is used as substrate. In this study the Coulombic efficiency in a microbial electrolysis cell was invest
Coulomb distortion effects in deep-inelastic electron scattering
Co', Giampaolo; Heisenberg, Jochen
1987-11-01
The effects of the Coulomb distortion of the electron wave functions in the description of the electron scattering processes in the quasi-elastic region are discussed. A method to extract longitudinal and transverse response functions considering these effects is presented. While the transverse response function is remarkably affected by the Coulomb distortion, the values of the longitudinal response function are practically unchanged.
Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems
DEFF Research Database (Denmark)
Badalyan, S. M.; Shylau, A. A.; Jauho, Antti-Pekka
2017-01-01
We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon...
Antilocalization of Coulomb Blockade in a Ge-Si Nanowire
DEFF Research Database (Denmark)
Higginbotham, Andrew P.; Kuemmeth, Ferdinand; Larsen, Thorvald Wadum
2014-01-01
The distribution of Coulomb blockade peak heights as a function of magnetic field is investigated experimentally in a Ge-Si nanowire quantum dot. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak...
Spherical Calogero model with oscillator/Coulomb potential: classical case
Correa, Francisco; Lechtenfeld, Olaf; Nersessian, Armen
2016-01-01
We construct the Hamiltonians and symmetry generators of Calogero-oscillator and Calogero-Coulomb models on the N-dimensional sphere within the matrix-model reduction approach. Our method also produces the integrable Calogero-Coulomb-Stark model on the sphere and proves the integrability of the spin extensions of all these systems.
Quantum Dynamics of Biological Plasma in the External Coulomb Field
Lasukov, V. V.; Lasukova, T. V.; Lasukova, O. V.
2013-10-01
A quantum solution to the truncated Fisher-Kolmogorov-Petrovskii-Piskunov equation with Coulomb convection and linear diffusion is derived. The quantum radiation of biological systems, individual microorganisms (cells, bacteria), and dust plasma particles in the Coulomb field is studied using the foregoing solution.
Magneto-Coulomb effect in spin-valve devices
van der Molen, SJ; Tombros, N; van Wees, BJ
2006-01-01
We discuss the influence of the magneto-Coulomb effect (MCE) on the magnetoconductance of spin-valve devices. We show that the MCE can induce magnetoconductances of several percent or more, depending on the strength of the Coulomb blockade. Furthermore, the MCE-induced magnetoconductance changes sig
Thermal and chaotic distributions of plasma in laser driven Coulomb explosions of deuterium clusters
Barbarino, M; Bonasera, A; Lattuada, D; Bang, W; Quevedo, H J; Consoli, F; De Angelis, R; Andreoli, P; Kimura, S; Dyer, G; Bernstein, A C; Hagel, K; Barbui, M; Schmidt, K; Gaul, E; Donovan, M E; Natowitz, J B; Ditmire, T
2015-01-01
In this work we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is chaotic enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is nearly isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell- Boltzmann (MB) distribution, a shifted MB distribution (sMB) and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise be...
Sharma, M K; Prasad, R; Gupta, S; Musthafa, M M; Bhardwaj, H D; Sinha, A K
2003-01-01
In order to study complete and incomplete fusion in heavy ion induced reactions the experiment has been carried out for measuring excitation functions (EF's) for several reactions in the system sup 1 sup 2 C + sup 1 sup 2 sup 8 Te, in the energy range approx = 42 - 82 MeV, using activation technique. To the best of our knowledge EF's for presently measured reactions are being reported for the first time. The measured EF's have been compared with those calculated theoretically using codes CASCADE and ALICE-91. Effect of variation of parameters, of the codes, on calculated EF's has also been studied. The analysis of the present data indicates presence of contributions from incomplete fusion in some cases. In general, theoretical calculations agree well with the experimental data.
Yu, Zhixian
2013-01-01
The Maxwell stress analysis is used for the calculation of displacement induced temporary electric force of a single charge. This force comes from the variation of the charge's electric intensities that follow Coulomb's inverse square law, and is a kind of displacement dependent temporary restore force. The possibility of natural self-oscillation of a free electron which is driven by this self-force is also suggested.
On the decoupling between classical Coulomb matter and radiation
Alastuey, Angel; Appel, Walter
2000-02-01
We consider a model of matter coupled to radiation at equilibrium. Matter is described by a one-component plasma of classical point charges with Coulomb interactions, while radiation is represented by the classical transverse potential vector in Coulomb gauge. Using a straightforward generalization of the Bohr-van Leeuwen theorem, we show that the equilibrium properties of classical Coulomb matter remain unaffected by the presence of the classical radiation. As far as the real world is concerned, this decoupling does survive at large distances where both matter and radiation can be treated classically. This invalidates all the large-distances predictions, for the charge correlations, of the so-called Darwin models which incorporate retarded electromagnetic interactions beyond the instantaneous Coulomb potential. A second related important consequence is that the first relativistic corrections to the Coulomb thermodynamical quantities must be evaluated within the theory of quantum electrodynamics at finite temperature, even in a weakly relativistic and almost classical regime for matter.
Application of the complex scaling method in solving three-body Coulomb scattering problem
Lazauskas, R.
2017-03-01
The three-body scattering problem in Coulombic systems is a widespread, yet unresolved problem using the mathematically rigorous methods. In this work this long-term challenge has been undertaken by combining distorted waves and Faddeev–Merkuriev equation formalisms in conjunction with the complex scaling technique to overcome the difficulties related with the boundary conditions. Unlike the common belief, it is demonstrated that the smooth complex scaling method can be applied to solve the three-body Coulomb scattering problem in a wide energy region, including the fully elastic domain and extending to the energies well beyond the atom ionization threshold. A newly developed method is used to study electron scattering on the ground states of hydrogen and positronium atoms as well as a {e}++{{H}}({n}=1)\\rightleftarrows {{p}}+{Ps}({n}=1) reaction. Where available, obtained results are compared with the experimental data and theoretical predictions, proving the accuracy and efficiency of the newly developed method.
Institute of Scientific and Technical Information of China (English)
NIU Dongmei; LI Haiyang; LIANG Feng; WEN Lihua; LUO Xiaolin
2005-01-01
The Coulomb explosion of ammonia clusters induced by nanosecond laser at 532 nm with an intensity of ~1012 Wcm-2 has been studied by time of flight mass spectrometry. The dominant multiply charged ions are N3+ and N2+ with kinetic energies of 110 and 50 eV respectively. The electrons generated from the multiphoton ionization are heated through inverse bremsstrahlung by the laser field when colliding with neutral or ionic particles. When their energies surpass the corresponding ionization potentials of the molecules or ions, the subsequent electron impact ionization may take place thus resulting in multi-charged nitrogen ions. Covariance analysis is made to study the possible pathways of the Coulomb explosion.
Elastic scattering and reaction mechanisms of the halo nucleus $^{11}$Be around the Coulomb barrier
Di Pietro, A; Fisichella, M; Borge, M J G; Randisi, G; Milin, M; Figuera, P; Gomez-Camacho, J; Raabe, R; Amorini, F; Fraile, L M; Rizzo, F; Zadro, M; Torresi, D; Wenander, F; Pellegriti, M G; Papa, M; Jeppesen, H; Santonocito, D; Scuderi, V; Acosta, L; Perez-Bernal, F; Tengblad, O; Lattuada, M; Musumarra, A; Scalia, G; Maira Vidal, A; Voulot, D
2010-01-01
Collisions induced by $^{9}$Be, $^{10}$Be, $^{11}$Be on a $^{64}$Zn target at the same c. m. energy were studied. For the first time, strong effects of the $^{11}$Be halo structure on elastic-scattering and reaction mechanisms at energies near the Coulomb barrier are evidenced experimentally. The elastic-scattering cross section of the $^{11}$Be halo nucleus shows unusual behavior in the Coulomb-nuclear interference peak angular region. The extracted total-reaction cross section for the $^{11}$Be collision is more than double the ones measured in the collisions induced by $^{9}$Be, $^{10}$Be. It is shown that such a strong enhancement of the total-reaction cross section with $^{11}$Be is due to transfer and breakup processes.
Many-body effects of Coulomb interaction on Landau levels in graphene
Sokolik, A. A.; Zabolotskiy, A. D.; Lozovik, Yu. E.
2017-03-01
In strong magnetic fields, massless electrons in graphene populate relativistic Landau levels with the square-root dependence of each level energy on its number and magnetic field. Interaction-induced deviations from this single-particle picture were observed in recent experiments on cyclotron resonance and magneto-Raman scattering. Previous attempts to calculate such deviations theoretically using the unscreened Coulomb interaction resulted in overestimated many-body effects. This work presents many-body calculations of cyclotron and magneto-Raman transitions in single-layer graphene in the presence of Coulomb interaction, which is statically screened in the random-phase approximation. We take into account self-energy and excitonic effects as well as Landau level mixing, and achieve good agreement of our results with the experimental data for graphene on different substrates. The important role of a self-consistent treatment of the screening is found.
Ritchie, W. J.; Dowlatabadi, H.
2016-12-01
Twenty years ago, global coal assessments indicated reserve-to-production (R-P) ratios of more than 300 years. Consequently, most studies of energy futures established coal as a virtually unlimited backstop to meet the world's projected energy needs. Coal was modeled to offset oil and gas production declines and provide a source of energy which renewables and lower carbon supply strategies needed to outcompete. Over the past two decades, increasingly consistent methodologies have been applied globally to assess recoverable coal. Coal production has also witnessed significant mechanization to meet higher demand. Each of these has led to a significant reduction in estimates of economically recoverable coal reserves despite a doubling of market prices over this period. The current reserve to production ratio for coal is now around 100 years. It is time to reconsider coal as the inexhaustible energy backstop The energy models which develop long-term estimates of renewable energy needs and projections of greenhouse gas (GHG) emissions still adopt the characteristics of vintage coal assessments. By convention, baseline GHG emissions used by the IPCC and others, project combustion of most known coal reserves before the year 2100. When vintage assessments are used, this involves extraction of all currently known coal reserves plus twice again from resources invalidated as recoverable for geologic, environmental, social, legal, technical or economic reasons. We provide evidence for rejecting these projections of unbounded growth in coal consumption. Legacy pathways of implausibly high coal use upwardly bias long-term scenarios for total cumulative GHG emissions and subsequent research on climate change. This bias has precluded consideration of much more ambitious climate mitigation targets without significant socio-economic dislocation and unnecessarily diminishes possible future contributions from renewables.
Dissociation of deuteron, 6He and 11Be from Coulomb dissociation reaction cross-section
Indian Academy of Sciences (India)
Ramendra Nath Majumdar
2008-05-01
The fragmentation of deuteron, 6He and 11Be have been studied during interaction with the 208Pb nucleus at various projectile energies. The Coulomb dissociation cross-sections and the momentum distribution of the break-up fragments have been analysed within the framework of the direct fragmentation model. The post-acceleration effect of deuteron during break-up and the halo structures of both the 6He and 11Be have been investigated.
The photoelectric displacement converter
Dragoner, Valeriu V.
2005-02-01
In the article are examined questions of constructing photoelectric displacement converter satisfying demands that are stated above. Converter has channels of approximate and precise readings. The approximate reading may be accomplished either by the method of reading from a code mask or by the method of the consecutive calculation of optical scale gaps number. Phase interpolator of mouar strips" gaps is determined as a precise measuring. It is shown mathematical model of converter that allow evaluating errors and operating speed of conversion.
HIGH TEMPERATURE DISPLACEMENT SENSOR
Institute of Scientific and Technical Information of China (English)
Xu Longxiang; Zhang Jinyu; Schweitzer Gerhard
2005-01-01
A high temperature displacement sensor based on the principle of eddy-current is investigated. A new temperature compensation technique by using eddy-current effect is presented to satisfy the special requirement at high temperature up to 550℃. The experiment shows that the temperature compensation technique leads to good temperature stability for the sensors. The variation of the sensitivity as well as the temperature drift of the sensor with temperature compensation technique is only about 7.4% and 90～350 mV at 550℃ compared with that at room temperature, and that of the sensor without temperature compensation technique is about 31.2% and 2～3 V at 550℃ compared with that at room temperature. A new dynamic calibration method for the eddy-current displacement sensor is presented, which is very easy to be realized especially in high frequency and at high temperatures. The high temperature displacement sensors developed are successfully used at temperature up to 550℃ in a magnetic bearing system for more than 100 h.
Wang, Jianhao; Fan, Jie; Li, Jinchen; Liu, Li; Wang, Jianpeng; Jiang, Pengju; Liu, Xiaoqian; Qiu, Lin
2017-02-01
Herein, a Förster resonance energy transfer system was designed, which consisted of CdSe/ZnS quantum dots donor and mCherry fluorescent protein acceptor. The quantum dots and the mCherry proteins were conjugated to permit Förster resonance energy transfer. Capillary electrophoresis with fluorescence detection was used for the analyses for the described system. The quantum dots and mCherry were sequentially injected into the capillary, while the real-time fluorescence signal of donor and acceptor was simultaneously monitored by two channels with fixed wavelength detectors. An effective separation of complexes from free donor and acceptor was achieved. Results showed quantum dots and hexahistidine tagged mCherry had high affinity and the assembly was affected by His6 -mCherry/quantum dot molar ratio. The kinetics of the self-assembly was calculated using the Hill equation. The microscopic dissociation constant values for out of- and in-capillary assays were 10.49 and 23.39 μM, respectively. The capillary electrophoresis with fluorescence detection that monitored ligands competition assay further delineated the different binding capacities of histidine containing peptide ligands for binding sites on quantum dots. This work demonstrated a novel approach for the improvement of Förster resonance energy transfer for higher efficiency, increased sensitivity, intuitionistic observation, and low sample requirements of the in-capillary probing system.
A new graphene composite with a high coulombic efficiency
Protich, Z.; Wong, P.; Santhanam, K. S. V.
2016-11-01
Zinc-graphene composite has been electrolytically produced for the first time using a graphene quantum dot (GQD) electrode. The electrochemical reduction of zinc ion at a GQD electrode is shifted to a lesser negative potential with the complimentary anodic peak due to the oxidation of the composite shifted towards a positive potential as compared to zinc ion reduction in the GQD bath. The coulombic efficiency of the composite represents a gain of nearly 10% over the conventional Zn/Zn2+ in the energy storage systems. In galvanostatic electrolysis, the deposition of zinc-graphene composite is carried out under neutral and acidic conditions. The X-ray diffraction of the electrolytically prepared composite shows distinct features of 2 theta reflection at 8° due to (001) plane of graphene, in addition to the characteristic reflections at 38.9°,43.2°, 54.3°, 70.1° and 90° arising from Zn at (002), (100), (101), (102) and (110). A large scale preparation of the zinc-graphene composite has been achieved at a zinc plate as the working electrode in the GQD bath. The composite is stable up to 250 °C. Scanning electron microscopic (SEM) and energy dispersion X-ray analysis (EDAX) shows a string like structure with peaks for carbon and zinc in EDAX.
Coulomb pairing resonances in multiple-ring aromatic molecules
Huber, D L
2015-01-01
We present an analysis of the Coulomb pairing resonances observed in photo-double-ionization studies of CnHm aromatic molecules with multiple benzene-like rings. It is applied to naphthalene, anthracene, phenanthrene, pyrene and coronene, all of which have six-member rings, and azulene which is comprised of a five-member and a seven-member ring. There is a high energy resonance at ~ 40 eV that is found in all of the molecules cited and is associated with paired electrons localized on carbon sites on the perimeter of the molecule, each of which having two carbon sites as nearest neighbors. The low energy resonance at 10 eV, which is found only in pyrene and coronene, is attributed to the formation of paired electrons localized on arrays of interior carbon atoms that have the point symmetry of the molecule with each carbon atom having three nearest neighbors. The origin of the anomalous increase in the doubly charged to singly charged parent-ion ratio that is found above the 40 eV resonance in all of the cited ...
Three-body quantum Coulomb problem: Analytic continuation
Turbiner, A. V.; Lopez Vieyra, J. C.; Olivares Pilón, H.
2016-08-01
The second (unphysical) critical charge in the three-body quantum Coulomb system of a nucleus of positive charge Z and mass mp, and two electrons, predicted by Stillinger has been calculated to be equal to ZB∞ = 0.904854 and ZBmp = 0.905138 for infinite and finite (proton) mass mp, respectively. It is shown that in both cases, the ground state energy E(Z) (analytically continued beyond the first critical charge Zc, for which the ionization energy vanishes, to ReZ
Coulomb excitation of exotic nuclei at the R3B-LAND setup
Rossi, D M; Aksouh, F; Alvarez-Pol, H; Aumann, T; Benlliure, J; Böhmer, M; Boretzky, K; Casarejos, E; Chartier, M; Chatillon, A; Cortina-Gil, D; Pramanik, U Datta; Emling, H; Ershova, O; Fernandez-Dominguez, B; Geissel, H; Gorska, M; Heil, M; Johansson, H; Junghans, A; Kiselev, O; Klimkiewicz, A; Kratz, J V; Kurz, N; Labiche, M; Bleis, T Le; Lemmon, R; Litvinov, Yu A; Mahata, K; Maierbeck, P; Movsesyan, A; Nilsson, T; Nociforo, C; Palit, R; Paschalis, S; Plag, R; Reifarth, R; Simon, H; Sümmerer, K; Wagner, A; Walus, W; Weick, H; Winkler, M
2012-01-01
Exotic Ni isotopes have been measured at the R3B-LAND setup at GSI in Darmstadt, using Coulomb excitation in inverse kinematics at beam energies around 500 MeV/u. As the experimental setup allows kinematically complete measurements, the excitation energy was reconstructed using the invariant mass method. The GDR and additional low-lying strength have been observed in 68Ni, the latter exhausting 4.1(1.9)% of the E1 energy-weighted sum rule. Also, the branching ratio for the non-statistical decay of the excited 68Ni nuclei was measured and amounts to 24(4)%.
Origin of the Low Energy Structure in Above Threshold Ionization
Titi, Atef S
2015-01-01
We present an ab initio analytic theory to account for both the very low energy structure (VLES) [C. Y. Wu et al., Phys. Rev. Lett. 109, 043001 (2012); W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009)], and the low energy structure (LES) [W. Quan et al. Phys. Rev. Lett. 103, 093001 (2009); C.I. Blaga et al., Nat. Phys. 5, 335 2009)] of above threshold ionization. The origin of both VLES and LES lies in a forward scattering mechanism by the Coulomb potential. We parameterize the S matrix in terms of ?, which is the displacement of the the classical motion of an electron in the laser field. When ? = 0, the S matrix is singular, which we attribute to be forward Coulomb scattering without absorption of light quanta. By devising a regularization scheme, the resulting S matrix is non-singular when ? = 0, and the origins of VLES and LES are revealed. We attribute VLES to multiple forward scattering of near-threshold electrons by the Coulomb potential, with no absorption of light quanta, signifying the role of the...
Energy Technology Data Exchange (ETDEWEB)
Lizcano, D.; Aguilera, E.F.; Garcia M, H.; Martinez Q, E. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)
2004-07-01
Protons, alpha particles and deuterons coming from the reactions {sup 6} Li + {sup 58} Ni are detected to three different energy around the Coulomb barrier. The possible effects of the weakly bound character of the projectile are studied and the results are compared with previous data for the system {sup 6} Li + {sup 59} Co. (Author)
Spectroscopic observations of the displacement dynamics of physically adsorbed molecules-CO on C60
Yuan, Chunqing; Yates, John T.
2016-10-01
In this paper, we observed physically adsorbed CO molecules on C60 surface being displaced by impinging noble gas atoms (He, Ne, Ar, Kr), either through a dynamic displacement process or an exothermic replacement process, depending on their adsorption energies. This displacement mechanism could shift from one to the other depending on the surface coverage and temperature. Furthermore, rotational energy of the impinging molecules may also contribute to the dynamic displacement process by supplying additional energy.
Ionic Coulomb Blockade and Resonant Conduction in Biological Ion Channels
Kaufman, I Kh; Eisenberg, R S
2014-01-01
The conduction and selectivity of calcium/sodium ion channels are described in terms of ionic Coulomb blockade, a phenomenon based on charge discreteness and an electrostatic model of an ion channel. This novel approach provides a unified explanation of numerous observed and modelled conductance and selectivity phenomena, including the anomalous mole fraction effect and discrete conduction bands. Ionic Coulomb blockade and resonant conduction are similar to electronic Coulomb blockade and resonant tunnelling in quantum dots. The model is equally applicable to other nanopores.
Theory and simulation of strong correlations in quantum Coulomb systems
Bonitz, M; Filinov, A V; Golubnychiy, V O; Kremp, D; Gericke, D O; Murillo, M S; Filinov, V S; Fortov, V; Hoyer, W; Koch, S W
2003-01-01
Strong correlations in quantum Coulomb systems (QCS) are attracting increasing interest in many fields ranging from dense plasmas and semiconductors to metal clusters and ultracold trapped ions. Examples are bound states in dense plasmas (atoms, molecules, clusters) and semiconductors (excitons, trions, biexcitons) or Coulomb crystals. We present first-principle simulation results of these systems including path integral Monte Carlo simulations of the equilibrium behaviour of dense hydrogen and electron-hole plasmas and molecular dynamics and quantum kinetic theory simulations of the nonequilibrium properties of QCS. Finally, we critically assess potential and limitations of the various methods in their application to Coulomb systems.
Coulomb crystals in the harmonic lattice approximation
Baiko, D A; De Witt, H E; Slattery, W L
2000-01-01
The dynamic structure factor ${\\tilde S}({\\bf k},\\omega)$ and the two-particle distribution function $g({\\bf r},t)$ of ions in a Coulomb crystal are obtained in a closed analytic form using the harmonic lattice (HL) approximation which takes into account all processes of multi-phonon excitation and absorption. The static radial two-particle distribution function $g(r)$ is calculated for classical ($T \\gtrsim \\hbar \\omega_p$, where $\\omega_p$ is the ion plasma frequency) and quantum ($T \\ll \\hbar \\omega_p$) body-centered cubic (bcc) crystals. The results for the classical crystal are in a very good agreement with extensive Monte Carlo (MC) calculations at $1.5 \\lesssim r/a calculated for classical and quantum bcc and face-centered cubic crystals, and anharmonic corrections are discussed. The inelastic part of the HL static structure factor $S''(k)$, averaged over orientations of wave-vector {\\bf k}, is shown to contain pronounced singularities at Bragg diffraction positions. The type of the singularities is di...
Relativistic Coulomb excitation of {sup 88}Kr
Energy Technology Data Exchange (ETDEWEB)
Moschner, Kevin; Blazhev, Andrey; Jolie, Jan; Warr, Nigel; Wendt, Andreas [IKP, Universitaet zu Koeln, 50937 Koeln (Germany); Collaboration: PreSPEC-Collaboration
2015-07-01
Within the scope of the PreSPEC campaign we performed a Coulomb-excitation experiment to determine absolute E2 transition strengths to 2{sup +} states in the radioactive nucleus {sup 88}Kr. The aim of our studies was to identify the one quadruple-phonon mixed-symmetry 2{sub MS}{sup +} state in order to extend our knowledge on these states to lighter N = 52 isotones and to track their evolution over different proton shells. The investigated ions were provided through projectile fission of a 650 MeV {sup 238}U beam on a primary target consisting of 0.6 g/cm{sup 2} {sup 9}Be and subsequent separation and identification of the reaction products via the FRS at GSI. The secondary target consisted of 0.4 g/cm{sup 2} {sup 197}Au. De-exciting γ radiation was detected by the PreSPEC array, consisting of 15 EUROBALL Cluster detectors. The Lund-York-Cologne-CAlorimeter LYCCA was used for particle identification after the secondary target. Absolute transition strengths of the transitions depopulating the 2{sup +}{sub 3} state in {sup 88}Kr which suggest the mixed symmetric character of this state are presented and discussed within the systematics of the N = 52 isotones.
Strong Coulomb Coupling in the Todorov Equation
Bawin, M.; Cugnon, J.; Sazdjian, H.
A positronium-like system with strong Coulomb coupling, considered in its pseudoscalar sector, is studied in the framework of relativistic quantum constraint dynamics with the Todorov choice for the potential. Case’s method of self-adjoint extension of singular potentials, which avoids explicit introduction of regularization cut-offs, is adopted. It is found that, as the coupling constant α increases, the bound state spectrum undergoes an abrupt change at the critical value α=αc=1/2. For α>αc, the mass spectrum displays, in addition to the existing states for α<αc, a new set of an infinite number of bound states concentrated in a narrow band starting at mass W=0; all the states have indefinitely oscillating wave functions near the origin. In the limit α→αc from above, the oscillations disappear and the narrow band of low-lying states shrinks to a single massless state with a mass gap with the rest of the spectrum. This state has the required properties to represent a Goldstone boson and to signal spontaneous breakdown of chiral symmetry.
Coulomb gauge model for hidden charm tetraquarks
Xie, W.; Mo, L. Q.; Wang, Ping; Cotanch, Stephen R.
2013-08-01
The spectrum of tetraquark states with hidden charm is studied within an effective Coulomb gauge Hamiltonian approach. Of the four independent color schemes, two are investigated, the (qcbar)1(cqbar)1 singlet-singlet (molecule) and the (qc)3(qbarcbar)3 triplet-triplet (diquark), for selected JPC states using a variational method. The predicted masses of triplet-triplet tetraquarks are roughly a GeV heavier than the singlet-singlet states. There is also an interesting flavor dependence with (qqbar)1 (ccbar1) states about half a GeV lighter than (qcbar)1(qbarc)1. The lightest 1++ and 1-- predictions are in agreement with the observed X (3872) and Y (4008) masses suggesting they are molecules with ωJ / ψ and ηhc, rather than D*Dbar* and DDbar, type structure, respectively. Similarly, the lightest isovector 1++ molecule, having a ρJ / ψ flavor composition, has mass near the recently observed charged Zc (3900) value. These flavor configurations are consistent with observed X, Y and Zc decays to ππJ / ψ.
Coulomb fission in multiply charged molecular clusters: Experiment and theory
Harris, Christopher; Baptiste, Joshua; Lindgren, Eric B.; Besley, Elena; Stace, Anthony J.
2017-04-01
A series of three multiply charged molecular clusters, (C6H6)nz+ (benzene), (CH3CNnz) + (acetonitrile), and (C4H8O)nz+ (tetrahydrofuran), where the charge z is either 3 or 4, have been studied for the purpose of identifying the patterns of behaviour close to the charge instability limit. Experiments show that on a time scale of ˜10-4 s, ions close to the limit undergo Coulomb fission where the observed pathways exhibit considerable asymmetry in the sizes of the charged fragments and are all associated with kinetic (ejection) energies of between 1.4 and 2.2 eV. Accurate kinetic energies have been determined through a computer simulation of peak profiles recorded in the experiments and the results modelled using a theory formulated to describe how charged particles of dielectric materials interact with one another [E. Bichoutskaia et al., J. Chem. Phys. 133, 024105 (2010)]. The calculated electrostatic interaction energy between separating fragments gives an accurate account for the measured kinetic energies and also supports the conclusion that +4 ions fragment into +3 and +1 products as opposed to the alternative of two +2 fragments. This close match between the theory and experiment reinforces the assumption that a significant fraction of excess charge resides on the surfaces of the fragment ions. It is proposed that the high degree of asymmetry seen in the fragmentation patterns of the multiply charged clusters is due, in part, to limits imposed by the time window during which observations are made.
McLerran, Larry; Skokov, Vladimir V.
2017-01-01
We modify the McLerran-Venugopalan model to include only a finite number of sources of color charge. In the effective action for such a system of a finite number of sources, there is a point-like interaction and a Coulombic interaction. The point interaction generates the standard fluctuation term in the McLerran-Venugopalan model. The Coulomb interaction generates the charge screening originating from well known evolution in x. Such a model may be useful for computing angular harmonics of flow measured in high energy hadron collisions for small systems. In this paper we provide a basic formulation of the problem on a lattice.
S-17(0) determined from the Coulomb breakup of 83 MeV/nucleon B-8
Davids, B; Anthony, DW; Aumann, T; Austin, SM; Baumann, T; Bazin, D; Clement, RRC; Davids, CN; Esbensen, H; Lofy, PA; Nakamura, T; Sherrill, BM; Yurkon, J
2001-01-01
A kinematically complete measurement was made of the Coulomb dissociation of SE nuclei on a Pb target at 83 MeV/nucleon. The cross section was measured at low relative energies in order to infer the astrophysical S factor for the Be-7(p, gamma)B-8 reaction. A first-order perturbation theory analysis
DEFF Research Database (Denmark)
Pors, Anja Svejgaard
2012-01-01
This analysis is based on an empirical study of a Danish hospital‟s communication programme entitled: 'The Perspective of the Patient'. The paper explores how strategic documents of the programme organize the communication work through situated displacements of the patient. Based on methodological...... elements from situational analysis (Clarke 2005) the analysis examines how the hospital‟s patient communication is not only about disease treatment, but rather about information treatment of the patient in order to attain a high level of patient satisfaction. The goal of patient satisfaction addresses both...
DEFF Research Database (Denmark)
Pors, Anja Svejgaard
The analysis is based on an empirical study of a hospital’s communication strategy entitled: 'The Perspective of the Patient'. The paper asks how the strategy organizes communication work as situated displacements of the patient. Based on methodological elements from situational analysis (Clarke...... 2005) the analysis examines how the hospital’s patient communication is not just about disease treatment, but rather about information treatment of the patient in order to attain a high level of patient satisfaction. The goal of patient satisfaction addresses care-oriented understandings of the patient...
Kagan, M. Yu.; Val'kov, V. V.; Aksenov, S. V.
2017-01-01
We present an analytical and numerical investigation of the spectral and transport properties of a quadruple quantum-dot (QQD) structure which is one of the popular low-dimensional systems in the context of fundamental quantum physics study, future electronic applications, and quantum calculations. The density of states, occupation numbers, and conductance of the structure were analyzed using the nonequilibrium Green's functions in the tight-binding approach and the equation-of-motion method. In particular the anisotropy of hopping integrals and on-site electron energies as well as the effects of the finite intra- and interdot Coulomb interactions were investigated. It was found out that the anisotropy of the kinetic processes in the system leads to the Fano-Feshbach asymmetrical peak. We demonstrated that the conductance of the QQD device has a wide insulating band with steep edges separating triple-peak structures if the intradot Coulomb interactions are taken into account. The interdot Coulomb correlations between the central QDs result in the broadening of this band and the occurrence of an additional band with low conductance due to the Fano antiresonances. It was shown that in this case the conductance of the anisotropic QQD device can be dramatically changed by tuning the anisotropy of on-site electron energies.
From the Coulomb breakup of halo nuclei to neutron radiative capture
Capel, Pierre
2016-01-01
Coulomb breakup is used to infer radiative-capture cross sections at astrophysical energies. We test theoretically the accuracy of this indirect technique in the particular case of 15C, for which both the Coulomb breakup to ^{14}C+n and the radiative capture 14C(n,{\\gamma})15C have been measured. We analyse the dependance of Coulomb-breakup calculations on the projectile description in both its initial bound state and its continuum. Our calculations depend not only on the Asymptotic Normalisation Coefficient (ANC) of the 15C ground state, but also on the 14C-n continuum. This questions the method proposed by Summers and Nunes [Phys. Rev. C 78, 011601 (2008), ibid. 78, 069908 (2008)], which assumes that an ANC can be directly extracted from the comparison of calculations to breakup data. Fortunately, the sensitivity to the continuum description can be absorbed in a normalisation constant obtained by a simple {\\chi}2 fit of our calculations to the measurements. By restricting this fit to low 14C-n energy in the...
Coulomb breakup of neutron-rich $^{29,30}$Na isotopes near the island of inversion
Rahaman, A; Aumann, T; Beceiro-Novo, S; Boretzky, K; Caesar, C; Carlson, B V; Catford, W N; Chakraborty, S; Chartier, M; Cortina-Gil, D; Angelis, G De; Gonzalez-Diaz, D; Emling, H; Fernandez, P Diaz; Fraile, L M; Ershova, O; Geissel, H; Jonson, B; Johansson, H; Kalantar-Nayestanaki, N; Krücken, R; Kröll, T; Kurcewicz, J; Langer, C; Bleis, T Le; Leifels, Y; Münzenberg, G; Marganiec, J; Nilsson, T; Nociforo, C; Nowacki, F; Najafi, A; Panin, V; Paschalis, S; Plag, R; Poves, A; Ray, I; Reifarth, R; Rigollet, C; Ricciardi, V; Rossi, D; Scheit, H; Simon, H; Scheidenberger, C; Typel, S; Taylor, J; Togano, Y; Volkov, V; Weick, H; Wagner, A; Wamers, F; Weigand, M; Winfield, J S; Yakorev, D; Zoric, M
2016-01-01
First results are reported on the ground state configurations of the neutron-rich $^{29,30}$Na isotopes, obtained via Coulomb dissociation (CD) measurements as a method of the direct probe. The invariant mass spectra of those nuclei have been obtained through measurement of the four-momentum of all decay products after Coulomb excitation on a $^{208}Pb$ target at energies of 400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated Coulomb-dissociation cross-sections (CD) of 89 $(7)$ mb and 167 $(13)$ mb up to excitation energy of 10 MeV for one neutron removal from $^{29}$Na and $^{30}$Na respectively, have been extracted. The major part of one neutron removal, CD cross-sections of those nuclei populate core, in its' ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of $^{29}$Na${(3/2^+)}$ and $^{30}$Na${(2^+)}$ is the $d$ orbital with small contribution in the $s$-orbital which are coupled with ground ...
Study of Ground State Wave-function of the Neutron-rich 29,30Na Isotopes through Coulomb Breakup
Directory of Open Access Journals (Sweden)
Rahaman A.
2014-03-01
Full Text Available Coulomb breakup of unstable neutron rich nuclei 29,30Na around the ‘island of inversion’ has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s⊗νs1/2 and 29Na(g.s⊗νs1/2,respectively.
Wave functions of a particle with polarizability in the Coulomb potential
Kisel, V; Ovsiyuk, E; Amirfachrian, M; Red'kov, V
2011-01-01
Quantum mechanical scalar particle with polarizability is considered in the presence of the Coulomb field. Separation of variables is performed with the use of Wigner $D$-functions, the radial system of 15 equations is reduced to a single second order differential equation, which among the Coulomb term includes an additional interaction term of the form \\sigma \\alpha^{2} / M^{2}r^{4}. Various physical regimes exist that is demonstrated by examining the behavior of the curves of generalized squared radial momentum P^{2}(r). Eigenstates of the equations can be constructed in terms of double confluent Heun functions. Numerical analysis proves the existence of the bound states in the system; the lowest energy level and corresponding solution are calculated based on generalization of Ritz variational procedure.
Energy Technology Data Exchange (ETDEWEB)
Turrell, A.E., E-mail: a.turrell09@imperial.ac.uk; Sherlock, M.; Rose, S.J.
2015-10-15
Large-angle Coulomb collisions allow for the exchange of a significant proportion of the energy of a particle in a single collision, but are not included in models of plasmas based on fluids, the Vlasov–Fokker–Planck equation, or currently available plasma Monte Carlo techniques. Their unique effects include the creation of fast ‘knock-on’ ions, which may be more likely to undergo certain reactions, and distortions to ion distribution functions relative to what is predicted by small-angle collision only theories. We present a computational method which uses Monte Carlo techniques to include the effects of large-angle Coulomb collisions in plasmas and which self-consistently evolves distribution functions according to the creation of knock-on ions of any generation. The method is used to demonstrate ion distribution function distortions in an inertial confinement fusion (ICF) relevant scenario of the slowing of fusion products.
Casal, J; Arias, J M; Gómez-Camacho, J
2016-01-01
A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for weakly-bound three-body systems is established. This direct link provides a robust procedure to estimate the reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement of $B(E1)$ distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The procedure is applied to $^{11}$Li ($^{9}$Li+n+n) and $^6$He ($^{4}$He+n+n) three-body systems for which some data exist.
Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Gómez-Camacho, J.
2016-04-01
A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for weakly bound three-body systems is established. This direct link provides a robust procedure to estimate the reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement of B (E 1 ) distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The procedure is applied to 11Li (9Li+n +n ) and 6He (4He+n +n ) three-body systems for which some data exist.
Nemati Aram, Tahereh; Asgari, Asghar; Mayou, Didier
2016-07-01
Bulk heterojunction (BHJ) organic photovoltaic cells are analysed within a simple efficient model that includes the important physical properties of such photovoltaic systems. In this model, in contrast with most of the previous studies, we take into account the motion of both the electron and the hole in the separation process at the donor-acceptor interface. We theoretically examine the exciton dissociation yield under the influences of charge Coulomb interaction and non-radiative recombination. We find that the electron-hole local Coulomb attraction and charge carriers' coupling parameters play an important role in the system performance and in the optimal energy conversion efficiency of the BHJ photocell. We show that the fixed-hole models tend to underestimate the yield.
Ergun, A; Buyukcizmeci, N; Ogul, R; Botvina, A S
2014-01-01
Theoretical calculations are performed to investigate the angular momentum and Coulomb effects on fragmentation and multifragmentation in peripheral heavy-ion collisions at Fermi energies. Inhomogeneous distributions of hot fragments in the freeze-out volume are taken into account by microcanonical Markov chain calculations within the Statistical Multifragmentation Model (SMM). Including an angular momentum and a long-range Coulomb interaction between projectile and target residues leads to new features in the statistical fragmentation picture. In this case, one can obtain specific correlations of sizes of emitted fragments with their velocities and an emission in the reaction plane. In addition, one may see a significant influence of these effects on the isotope production both in the midrapidity and in the kinematic regions of the projectile/target. The relation of this approach to the simulations of such collisions with dynamical models is also discussed.
Coulomb Excitation of Neutron Deficient Sn-Isotopes using REX-ISOLDE
Di julio, D D; Kownacki, J M; Marechal, F; Andreoiu, C; Siem, S; Perrot, F; Van duppen, P L E; Napiorkowski, P J; Iwanicki, J S
2002-01-01
It is proposed to study the evolution of the reduced transition probabilities, B(E2; 0$^{+} \\rightarrow$ 2$^{+}$), for neutron deficient Sn isotopes by Coulomb excitation in inverse kinematics using REX-ISOLDE and the MINIBALL detector array. Measurements of the reduced transition matrix element for the transition between the ground state and the first excited 2$^{+}$ state in light even-even Sn isotopes provide a means to study e.g. core polarization effects in the $^{100}$Sn core. Previous attempts to measure this quantity have been carried out using the decay of isomeric states populated in fusion evaporation reactions. We thus propose to utilize the unique opportunity provided by REX-ISOLDE, after the energy upgrade to 3.1 MeV/u, to use the more model-independent approach of Coulomb excitation to measure this quantity in a number of isotopes in this region.
Analysis of uncertainties in alpha-particle optical-potential assessment below the Coulomb barrier
Avrigeanu, V
2016-01-01
Background: Recent high-precision measurements of alpha-induced reaction data below the Coulomb barrier have pointed out questions of the alpha-particle optical-model potential (OMP) which are yet open within various mass ranges. Purpose: The applicability of a previous optical potential and eventual uncertainties and/or systematic errors of the OMP assessment at low energies can be further considered on this basis. Method: Nuclear model parameters based on the analysis of recent independent data, particularly gamma-ray strength functions, have been involved within statistical model calculation of the (alpha,x) reaction cross sections. Results: The above-mentioned potential provides a consistent description of the recent alpha-induced reaction data with no empirical rescaling factors of the and/or nucleon widths. Conclusions: A suitable assessment of alpha-particle optical potential below the Coulomb barrier should involve the statistical-model parameters beyond this potential on the basis of a former analysi...
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Yu, Xianhuan; Yang, Weifeng; Hu, Shilin; Chen, Jing; Xu, SongPo; Chen, YongJu; Quan, Wei; Liu, XiaoJun
2016-01-01
A novel and universal interference structure is found in the photoelectron momentum distribution of atoms in intense infrared laser field. Theoretical analysis shows that this structure can be attributed to a new form of Coulomb-field-driven backward-scattering of photoelectrons in the direction perpendicular to the laser field, in contrast to the conventional rescattering along the laser polarization direction. This transverse backward-scattering process is closely related to a family of photoelectrons initially ionized within a time interval of less than 200 attosecond around the crest of the laser electric field. Those electrons, acquiring near-zero return energy in the laser field, will be pulled back solely by the ionic Coulomb field and backscattered in the transverse direction. Moreover, this rescattering process mainly occurs at the first or the second return times, giving rise to different phases of the photoelectrons. The interference between these photoelectrons leads to unique curved interference ...
Directory of Open Access Journals (Sweden)
V. Mohammadi
2015-01-01
Full Text Available We study the two-dimensional Klein-Gordon equation with spin symmetry in the presence of the superintegrable potentials. On Euclidean space, the SO(3 group generators of the Schrödinger-like equation with the Kepler-Coulomb potential are represented. In addition, by Levi-Civita transformation, the Schrödinger-like equation with harmonic oscillator which is dual to the Kepler-Coulomb potential and the SU(2 group generators of associated system are studied. Also, we construct the quadratic algebra of the hyperboloid superintegrable system. Then, we obtain the corresponding Casimir operators and the structure functions and the relativistic energy spectra of the corresponding quasi-Hamiltonians by using the quadratic algebra approach.
The Thermodynamic Limit of Quantum Coulomb Systems. Part I. General Theory
Hainzl, Christian; Solovej, Jan Philip
2008-01-01
This article is the first in a series dealing with the thermodynamic properties of quantum Coulomb systems. In this first part, we consider a general real-valued function $E$ defined on all bounded open sets of $\\R^3$. Our aim is to give sufficient conditions such that $E$ has a thermodynamic limit. This means that the limit $E(\\Omega_n)|\\Omega_n|^{-1}$ exists for all `regular enough' sequence $\\Omega_n$ with growing volume, $|\\Omega_n|\\to\\ii$, and is independent of the considered sequence. The sufficient conditions presented in our work all have a clear physical interpretation. In the next paper, we show that the free energies of many different quantum Coulomb systems satisfy these assumptions, hence have a thermodynamic limit.
Nonlocal Coulomb interaction in the two-dimensional spin-1/2 Falicov–Kimball model
Indian Academy of Sciences (India)
S K Bhowmick; N K Ghosh
2012-02-01
The two-dimensional (2D) extended Falicov–Kimball model has been studied to observe the role of nonlocal Coulomb interaction (nc) using an exact diagonalization technique. The f-state occupation ($n^f$), the f–d intersite correlation function (fd), the speciﬁc heat (), entropy () and the speciﬁc heat coefﬁcient () have been examined. Nonlocal Coulomb interaction-induced discontinuous insulator-to-metal transition occurs at a critical f-level energy. More ordered state is obtained with the increase of nc. In the speciﬁc heat curves, two-peak structure as well as a singlepeak structure appears. At low-temperature region, a sharp rise in the speciﬁc heat coefﬁcient is observed. The peak value of shifts to the higher temperature region with nc.
Optimal Tuning of Amplitude Proportional Coulomb Friction Damper for Maximum Cable Damping
DEFF Research Database (Denmark)
Weber, Felix; Høgsberg, Jan Becker; Krenk, Steen
2010-01-01
This paper investigates numerically the optimal tuning of Coulomb friction dampers on cables, where the optimality criterion is maximum additional damping in the first vibration mode. The expression for the optimal friction force level of Coulomb friction dampers follows from the linear viscous...... damper via harmonic averaging. It turns out that the friction force level has to be adjusted in proportion to cable amplitude at damper position which is realized by amplitude feedback in real time. The performance of this adaptive damper is assessed by simulated free decay curves from which the damping...... is estimated. It is found that the damping efficiency agrees well with the expected value at the theoretical optimum. However, maximum damping is larger and achieved at a force to amplitude ratio of 1.4 times the analytical value. Investigations show that the increased damping results from energy spillover...
Della Rocca, Gregory J
2013-10-01
Displaced patella fractures often result in disruption of the extensor mechanism of the knee. An intact extensor mechanism is a requirement for unassisted gait. Therefore, operative treatment of the displaced patella fracture is generally recommended. The evaluation of the patella fracture patient includes examination of extensor mechanism integrity. Operative management of patella fractures normally includes open reduction with internal fixation, although partial patellectomy is occasionally performed, with advancement of quadriceps tendon or patellar ligament to the fracture bed. Open reduction with internal fixation has historically been performed utilizing anterior tension band wiring, although comminution of the fracture occasionally makes this fixation construct inadequate. Supplementation or replacement of the tension band wire construct with interfragmentary screws, cerclage wire or suture, and/or plate-and-screw constructs may add to the stability of the fixation construct. Arthrosis of the patellofemoral joint is very common after healing of patella fractures, and substantial functional deficits may persist long after fracture healing has occurred. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
The Coulomb Branch of 3d N= 4 Theories
Bullimore, Mathew; Dimofte, Tudor; Gaiotto, Davide
2017-09-01
We propose a construction for the quantum-corrected Coulomb branch of a general 3d gauge theory with N=4 supersymmetry, in terms of local coordinates associated with an abelianized theory. In a fixed complex structure, the holomorphic functions on the Coulomb branch are given by expectation values of chiral monopole operators. We construct the chiral ring of such operators, using equivariant integration over BPS moduli spaces. We also quantize the chiral ring, which corresponds to placing the 3d theory in a 2d Omega background. Then, by unifying all complex structures in a twistor space, we encode the full hyperkähler metric on the Coulomb branch. We verify our proposals in a multitude of examples, including SQCD and linear quiver gauge theories, whose Coulomb branches have alternative descriptions as solutions to Bogomolnyi and/or Nahm equations.
Modelos exactamente solubles en mecanica estadistica de sistemas de Coulomb
National Research Council Canada - National Science Library
Tellez, Gabriel
2013-01-01
Se presenta una revision de modelos exactamente solubles de fisica estadistica clasica en dos dimensiones de sistemas de Coulomb, que son sistemas compuestos por un gran numero de particulas cargadas electricamente...
The generalized Coulomb interactions for relativistic scalar bosons
Zarrinkamar, S.; Panahi, H.; Rezaei, M.
2016-07-01
Approximate analytical solutions of Duffin-Kemmer-Petiau (DKP) equation are obtained for the truncated Coulomb, generalized Cornell, Richardson and Song-Lin potentials via the quasi-exact analytical ansatz approach.
Atomic displacements in bcc dilute alloys
Indian Academy of Sciences (India)
Hitesh Sharma; S Prakash
2007-04-01
We present here a systematic investigation of the atomic displacements in bcc transition metal (TM) dilute alloys. We have calculated the atomic displacements in bcc (V, Cr, Fe, Nb, Mo, Ta and W) transition metals (TMs) due to 3d, 4d and 5d TMs at the substitutional site using the Kanzaki lattice static method. Wills and Harrison interatomic potential is used to calculate the atomic force constants, the dynamical matrix and the impurity-induced forces. We have thoroughly investigated the atomic displacements using impurities from 3d, 4d and 5d series in the same host metal and the same impurity in different hosts. We have observed a systematic pattern in the atomic displacements for Cr-, Fe-, Nb-, Mo-, Ta- and W-based dilute alloys. The atomic displacements are found to increase with increase in the number of d electrons for all alloys considered except for V dilute alloys. The 3d impurities are found to be more easily dissolved in the 3d host metals than 4d or 5d TMs whereas 4d and 5d impurities show more solubility in 4d and 5d TMs. In general, the relaxation energy calculation suggests that impurities may be easily solvable in 5d TM hosts when compared to 3d or 4d TMs.
Shape determination in Coulomb excitation of $^{72}$Kr
Reiter, P; Kruecken, R; Paul, E S; Wadsworth, R; Heenen, P
Nuclei with oblate shapes at low spins are very special in nature because of their rarity. Both theoretical and experimental shape co-existence studies in the mass 70 region for near proton drip-line nuclei suggest $^{72}$Kr to be the unique case with oblate low-lying and prolate high-lying levels. However, there is no direct experimental evidence in the literature to date for the oblate nature predicted for the first 2$^+$ state in $^{72}$Kr. We propose to determine the sign of the spectroscopic quadrupole moment of this state via the re-orientation effect in a low-energy Coulomb excitation measurement. In the inelastic excitation of the 2$^+$ state in $^{72}$Kr beam of 3.1 MeV/u with an intensity of 800 pps at REX-ISOLDE impinging on $^{104}$Pd target, the re-orientation effect plays a significant role. The cross section measurement for the 2$^+$ state should thus allow the model-independent determination of the sign of the quadrupole moment unambiguously and will shed light on the co-existing prolate and o...
The Thermodynamic Limit of Quantum Coulomb Systems. Part II. Applications
Hainzl, Christian; Solovej, Jan Philip
2008-01-01
In a previous paper, we have developed a general theory of thermodynamic limits. We apply it here to three different Coulomb quantum systems, for which we prove the convergence of the free energy per unit volume. The first system is the crystal for which the nuclei are classical particles arranged periodically in space and only the electrons are quantum particles. We recover and generalize a previous result of Fefferman. In the second example, both the nuclei and the electrons are quantum particles, submitted to a periodic magnetic field. We thereby extend a seminal result of Lieb and Lebowitz. Finally, in our last example we take again classical nuclei but optimize their position. To our knowledge such a system was never treated before. The verification of the assumptions introduced in the previous paper uses several tools which have been introduced before in the study of large quantum systems. In particular, an electrostatic inequality of Graf and Schenker is one main ingredient of our new approach.
Simple field theoretical approach of Coulomb systems. Entropic effects
Energy Technology Data Exchange (ETDEWEB)
Di Caprio, D; Badiali, J P [Laboratory of Electrochemistry and Analytical Chemistry, University Paris 6, CNRS, ENSCP, BP 39, 4, Place Jussieu, 75252 Paris, Cedex 05 (France); Holovko, M [Institute for Condensed Matter Physics, National Academy of Sciences, 1 Svientsitskii Str, 79011 Lviv (Ukraine)], E-mail: dung.di_caprio@upmc.fr
2009-05-29
We discuss a new simple field theory approach of Coulomb systems. Using a description in terms of fields, we introduce in a new way the statistical degrees of freedom in relation to the quantum mechanics. We show by a series of examples that these fundamental entropic effects can help account for physical phenomena in relation to Coulomb systems whether symmetric or asymmetric in valence. Overall, this gives a new understanding of these systems.
COULOMB BLOCKADE OSCILLATIONS OF Si SINGLE-ELECTRON TRANSISTORS
Institute of Scientific and Technical Information of China (English)
王太宏; 李宏伟; 周均铭
2001-01-01
Coulomb blockade oscillations of Si single-electron transistors, which are fabricated completely by the conventional photolithography technique, have been investigated. Most of the single-electron transistors clearly show Coulomb blockade oscillations and these oscillations can be periodic by applying negative voltages to the in-plane gates. A shift of the peak positions is observed at high temperatures. It is also found that the fluctuation of the peak spacing cannot be neglected.
Institute of Scientific and Technical Information of China (English)
郝平; 傅征祥; 田勤俭; 刘杰; 刘桂萍
2004-01-01
The great Kunlun earthquake occurred on Nov. 14, 2001 in Qinghai Province, China. Five large aftershocks with magnitude larger than 5.0 occurred near the Kunlun fault after main shock. Calculations of the change in Coulomb failure stress reveal that 4 of 5 large aftershocks occurred in areas with △σf>0 ～10(2～10-1 MPa) and one aftershock occurred in an area with △σf =-0.56 MPa. It is concluded that the permanent fault displacement due to the main shock is the main cause of activity of large aftershocks, but not the whole cause.
Multiple solutions of stick and separation type in the Signorini model with Coulomb friction
Energy Technology Data Exchange (ETDEWEB)
Hild, P. [Univ. de Franche-Comte, 25 - Besancon (France). Lab. de Mathematiques
2005-09-01
This paper proves the existence of multiple solutions to the Coulomb friction problem with Signorini contact conditions in continuum linear elasticity. We consider a body lying on a rigid foundation and we propose a method in order to exhibit two solutions to the frictional contact problem when the friction coefficient is large enough: one solution which separates from the foundation and another one which remains stuck on the foundation. We apply the method to the simple class of problems with triangular bodies and linear displacement fields and we describe the cases in which such multiple solutions exist. Denoting by {mu} the friction coefficient, we come to the conclusion that such nonuniqueness cases may appear when {mu}>1. (orig.)
DEFF Research Database (Denmark)
Rolle, Massimo; Muniruzzaman, Muhammad
Diffusion and compound-specific mixing significantly affect conservative and reactive transport in groundwater at different scales, not only under diffusion-dominated regimes but also under advection-dominated flow through conditions [1]. When dissolved species are charged, besides the magnitude...... of their aqueous diffusion coefficients also the electrostatic interactions significantly affect solute displacement. We investigated electrostatic interactions between ionic species under flow-through conditions resulting in multicomponent ionic dispersion: the dispersive fluxes of the different ions in the pore...... water are cross-coupled due to the effects of Coulombic interactions. Such effects are illustrated in flow-through experiments in saturated porous media. Simple strong electrolytes (i.e., salts and strong acid solutions) were selected as tracers and their transport was studied under different advection...
Coulomb sink effect on coarsening of metal nanostructures on surfaces
Institute of Scientific and Technical Information of China (English)
Yong HAN; Feng LIU
2008-01-01
We discuss Coulomb effects on the coarsening of metal nanostructures on surfaces. We have proposed a new concept of a "Coulomb sink" [Phys. Rev. Lett., 2004, 93: 106102] to elucidate the effect of Coulomb charging on the coarsening of metal mesas grown on semiconductor surfaces. A charged mesa, due to its reduced chemical potential, acts as a Coulomb sink and grows at the expense of neighboring neu-tral mesas. The Coulomb sink provides a potentially useful method for the controlled fabrication of metal nanostructures. In this article, we will describe in detail the proposed physical models, which can explain qualitatively the most salient fea-tures of coarsening of charged Pb mesas on the Si(111) sur-face, as observed by scanning tunneling microscopy (STM). We will also describe a method of precisely fabricating large-scale nanocrystals with well-defined shape and size. By using the Coulomb sink effect, the artificial center-full-hol-lowed or half-hollowed nanowells can be created.
Klein-Gordon Equation with Coulomb Potential in the Presence of a Minimal Length
Bouaziz, Djamil
2013-01-01
We study the Klein-Gordon equation for Coulomb potential, V(r)=(-Ze^{2})/r, in quantum mechanics with a minimal length. The zero energy solution is obtained analytically in momentum space in terms of Heun's functions. The asymptotic behavior of the solution shows that the presence of a minimal length regularize the potential in the strong attractive regime, Z>68. The equation with nonzero energy is established in a particular case in the first order of the deformation parameter; it is a generalized Heun's equation.
Can Hall drag be observed in Coulomb coupled quantum wells in a magnetic field?
DEFF Research Database (Denmark)
Hu, Ben Yu-Kuang
1997-01-01
We study the transresistivity rho(21) (or equivalently, the drag rate) of two Coulomb-coupled quantum wells in the presence of a perpendicular magnetic field, using semi-classical transport theory. Elementary arguments seem to preclude any possibility of observation of ''Hall drag'' (i.e., a non......-zero off-diagonal component in rho(21)). We show that these arguments are specious, and in fact Hall drag can be observed at sufficiently high temperatures when the intralayer transport time tau has significant energy-dependence around the Fermi energy epsilon(F). The ratio of the Hall to longitudinal...
Bookout, Charles C.; Stotts, Robert E.; Waring, Douglass R.; Folsom, Lawrence R.
1986-01-01
A blower having a stationary casing for rotatably supporting a rotor assembly having a series of open ended chambers arranged to close against the surrounding walls of the casing. Pistons are slidably mounted within each chamber with the center of rotation of the pistons being offset in regard to the center of rotation of the rotor assembly whereby the pistons reciprocate in the chambers as the rotor assembly turns. As inlet port communicates with the rotor assembly to deliver a working substance into the chamber as the pistons approach a top dead center position in the chamber while an outlet port also communicates with the rotor to exhaust the working substance as the pistons approach a bottom dead center position. The displacement of the blower is varied by adjusting the amount of eccentricity between the center of rotation of the pistons and the center of rotation of the rotor assembly.
Displacement Parameter Inversion for a Novel Electromagnetic Underground Displacement Sensor
Directory of Open Access Journals (Sweden)
Nanying Shentu
2014-05-01
Full Text Available Underground displacement monitoring is an effective method to explore deep into rock and soil masses for execution of subsurface displacement measurements. It is not only an important means of geological hazards prediction and forecasting, but also a forefront, hot and sophisticated subject in current geological disaster monitoring. In previous research, the authors had designed a novel electromagnetic underground horizontal displacement sensor (called the H-type sensor by combining basic electromagnetic induction principles with modern sensing techniques and established a mutual voltage measurement theoretical model called the Equation-based Equivalent Loop Approach (EELA. Based on that work, this paper presents an underground displacement inversion approach named “EELA forward modeling-approximate inversion method”. Combining the EELA forward simulation approach with the approximate optimization inversion theory, it can deduce the underground horizontal displacement through parameter inversion of the H-type sensor. Comprehensive and comparative studies have been conducted between the experimentally measured and theoretically inversed values of horizontal displacement under counterpart conditions. The results show when the measured horizontal displacements are in the 0–100 mm range, the horizontal displacement inversion discrepancy is generally tested to be less than 3 mm under varied tilt angles and initial axial distances conditions, which indicates that our proposed parameter inversion method can predict underground horizontal displacement measurements effectively and robustly for the H-type sensor and the technique is applicable for practical geo-engineering applications.
Ivanov, K. G.
2010-12-01
A more detailed scenario of one stage (August-November 2004) of the quasibiennial MHD process "Origination ... and dissipation of the four-sector structure of the solar magnetic field" during the decline phase of cycle 23 has been constructed. It has been indicated that the following working hypothesis on the propagation of an MHD disturbance westward (in the direction of solar rotation) and eastward (toward the zone of active longitudes) with the displacement of the large-scale open solar magnetic field (LOSMF) from this zone can be constructed based on LOSMF model representations and data on sunspot formation, flares, active filaments, and coronal ejections as well as on the estimated contribution of sporadic energy release to the flare luminosity and kinetic energy of ejections: (1) The "explosion" of the LOSMF singularity and the formation in the explosion zone of an anemone active region (AR), which produced the satellite sunspot formation that continued west and east of the "anemone," represented a powerful and energy-intensive source of MHD processes at this stage. (2) This resulted in the origination of two "governing" large-scale MHD processes, which regulated various usual manifestations of solar activity: the fast LOSMF along the neutral line in the solar atmosphere, strongly affecting the zone of active longitudes, and the slow LOSMF in the outer layers of the convection zone. The fronts of these processes were identified by powerful (about 1031 erg) coronal ejections. (3) The collision of a wave reflected from the zone of active longitudes with the eastern front of the hydromagnetic impulse of the convection zone resulted in an increase in LOSMF magnetic fluxes, origination of an active sector boundary in the zone of active longitudes, shear-convergent motions, and generation and destabilization of the flare-productive AR 10696 responsible for the heliospheric storm of November 3-10, 2004.
Measuring vulnerability to disaster displacement
Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann
2015-04-01
Large scale disasters can cause devastating impacts in terms of population displacement. Between 2008 and 2013, on average 27 million people were displaced annually by disasters (Yonetani 2014). After large events such as hurricane Katrina or the Port-au-Prince earthquake, images of inadequate public shelter and concerns about large scale and often inequitable migration have been broadcast around the world. Population displacement can often be one of the most devastating and visible impacts of a natural disaster. Despite the importance of population displacement in disaster events, measures to understand the socio-economic vulnerability of a community often use broad metrics to estimate the total socio-economic risk of an event rather than focusing on the specific impacts that a community faces in a disaster. Population displacement is complex and multi-causal with the physical impact of a disaster interacting with vulnerability arising from the response, environmental issues (e.g., weather), cultural concerns (e.g., expectations of adequate shelter), and many individual factors (e.g., mobility, risk perception). In addition to the complexity of the causes, population displacement is difficult to measure because of the wide variety of different terms and definitions and its multi-dimensional nature. When we speak of severe population displacement, we may refer to a large number of displaced people, an extended length of displacement or associated difficulties such as poor shelter quality, risk of violence and crime in shelter communities, discrimination in aid, a lack of access to employment or other difficulties that can be associated with large scale population displacement. We have completed a thorough review of the literature on disaster population displacement. Research has been conducted on historic events to understand the types of negative impacts associated with population displacement and also the vulnerability of different groups to these impacts. We
Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26
Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F
2015-01-01
Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...
Influence of long-range Coulomb interaction in velocity map imaging
Barillot, T.; Brédy, R.; Celep, G.; Cohen, S.; Compagnon, I.; Concina, B.; Constant, E.; Danakas, S.; Kalaitzis, P.; Karras, G.; Lépine, F.; Loriot, V.; Marciniak, A.; Predelus-Renois, G.; Schindler, B.; Bordas, C.
2017-07-01
The standard velocity-map imaging (VMI) analysis relies on the simple approximation that the residual Coulomb field experienced by the photoelectron ejected from a neutral or ion system may be neglected. Under this almost universal approximation, the photoelectrons follow ballistic (parabolic) trajectories in the externally applied electric field, and the recorded image may be considered as a 2D projection of the initial photoelectron velocity distribution. There are, however, several circumstances where this approximation is not justified and the influence of long-range forces must absolutely be taken into account for the interpretation and analysis of the recorded images. The aim of this paper is to illustrate this influence by discussing two different situations involving isolated atoms or molecules where the analysis of experimental images cannot be performed without considering long-range Coulomb interactions. The first situation occurs when slow (meV) photoelectrons are photoionized from a neutral system and strongly interact with the attractive Coulomb potential of the residual ion. The result of this interaction is the formation of a more complex structure in the image, as well as the appearance of an intense glory at the center of the image. The second situation, observed also at low energy, occurs in the photodetachment from a multiply charged anion and it is characterized by the presence of a long-range repulsive potential. Then, while the standard VMI approximation is still valid, the very specific features exhibited by the recorded images can be explained only by taking into consideration tunnel detachment through the repulsive Coulomb barrier.
Analysis of Spent Nuclear Fuel Imaging Using Multiple Coulomb Scattering of Cosmic Muons
Chatzidakis, Stylianos; Choi, Chan K.; Tsoukalas, Lefteri H.
2016-12-01
Cosmic ray muons passing through matter lose energy from inelastic collisions with electrons and are deflected from nuclei due to multiple Coulomb scattering. The strong dependence of scattering on atomic number Z and the recent developments on position sensitive muon detectors indicate that multiple Coulomb scattering could be an excellent candidate for spent nuclear fuel imaging. Muons present significant advantages over existing monitoring and imaging techniques and can play a central role in monitoring nuclear waste and spent nuclear fuel stored in dense well shielded containers. The main purpose of this paper is to investigate the applicability of multiple Coulomb scattering for imaging of spent nuclear fuel dry casks stored within vertical and horizontal commercial storage dry casks. Calculations of muon scattering were performed for various scenarios, including vertical and horizontal fully loaded dry casks, half loaded dry casks, dry casks with one row of fuel assemblies missing, dry casks with one fuel assembly missing and empty dry casks. Various detector sizes (1.2 m ×1.2 m, 2.4 m ×2.4 m and 3.6 m ×3.6 m) and number of muons (105, 5 · 105, 106 and 107) were used to assess the effect on image resolution. The Point-of-Closest-Approach (PoCA) algorithm was used for the reconstruction of the stored contents. The results demonstrate that multiple Coulomb scattering can be used to successfully reconstruct the dry cask contents and allow identification of all scenarios with the exception of one fuel assembly missing. In this case, an indication exists that a fuel assembly is not present; however, the resolution of the imaging algorithm was not enough to identify exact location.
Stable and Critical Noncohesive Coulomb Wedges: Exact Elastic Solutions
Wang, K.; Hu, Y.
2004-12-01
The theory of critically tapered Coulomb wedge has been successfully applied to model active fold-and-thrust belts or submarine accretionary prisms. Brittle mountain building is episodic in nature, controlled by changes in basal friction, erosion and sedimentation, and hydrogeology. Sediment accretion may be modulated by great subduction earthquakes. Between deformation episodes and/or during transition between compressional and extensional tectonics, the Coulomb wedges are stable (i.e., supercritical), to which the critical taper theory does not apply. In this work, we provide an exact elastic solution for stable wedges based on Airy stress functions. The stress equilibrium equation and definition of basal friction and basal and internal pore fluid pressure ratios are exactly the same as those used for Dahlen's [1984] exact solution for critical noncohesive Coulomb wedges, but internal friction μ becomes irrelevant. Given elastic - perfectly Coulomb-plastic rheology, for stresses in a wedge on the verge of Coulomb failure there must co-exist a critical taper solution involving μ and a unique equivalent elastic solution not involving μ . Our elastic solution precisely reduces to Dahlen's critical taper solution for critical conditions. For stable conditions, normal stress perpendicular to the surface slope σ z and shear stress τ xz are identical with those in a critical taper, but the slope-parallel normal stress is different. The elastic solution is also generally applicable to purely elastic wedges and useful for modeling geodetic observations. A stable noncohesive Coulomb wedge differs from a general elastic wedge in that its upper and lower surfaces stay at zero curvature during loading. Dahlen, F.A. (1984), Noncohesive critical Coulomb wedges: An exact solution, JGR, 89, 10,125-10,133.
Point Coupled Displacement Sensor Project
National Aeronautics and Space Administration — Real-time displacement measurement techniques are needed to acquire aerodynamic and structural system characteristics in flight. This proposal describes the...
Yu, Zhizhou; Chen, Jian; Zhang, Lei; Wang, Jian
2013-12-11
We report an investigation of Coulomb blockade transport through an endohedral N@C60 weakly coupled with aluminum leads, employing the first-principles method combined with the Keldysh non-equilibrium Green's function derived from the equation of motion beyond the Hartree-Fock approximation. The differential conductance characteristics of the molecular device are calculated within the Coulomb blockade regime, which shows the Coulomb diamond as observed experimentally. When the gate voltage is less than that of the degeneracy point, there are two peaks in the differential conductance with an excited state induced by the change of the exchange interaction between the spin of C60 and the encapsulated nitrogen atom due to the transition from N@C(1-)(60) to N@C(2-)(60), while for a gate voltage larger than that of the degeneracy point, no excited state is available due to the quenching of exchange energy. As a result, there is only one Coulomb blockade peak in the differential conductance from the electron tunneling through the highest energy level below the Fermi level. Our first-principles results are in good agreement with experimental data obtained by an endohedral N@C60 molecular device.
Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.
Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva
2016-03-11
The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}.
Coulomb interaction in multiple scattering theory. [Kerman-McManus-Thaler and Watson theories
Energy Technology Data Exchange (ETDEWEB)
Ray, L.; Hoffmann, G.W.; Thaler, R.M.
1980-10-01
The treatment of the Coulomb interaction in the multiple scattering theories of Kerman-McManus-Thaler and Watson is examined in detail. By neglecting virtual Coulomb excitations, the lowest order Coulomb term in the Watson optical potential is shown to be a convolution of the point Coulomb interaction with the distributed nuclear charge, while the equivalent Kerman-McManus-Thaler Coulomb potential is obtained from an averaged, single-particle Coulombic T matrix. The Kerman-McManus-Thaler Coulomb potential is expressed as the Watson Coulomb term plus additional Coulomb-nuclear and Coulomb-Coulomb cross terms, and the omission of the extra terms in usual Kerman-McManus-Thaler applications leads to negative infinite total reaction cross section predictions and incorrect pure Coulomb scattering limits. Approximations are presented which eliminate these anomalies. Using the two-potential formula, the full projectile-nucleus T matrix is separated into two terms, one resulting from the distributed nuclear charge and the other being a Coulomb distorted nuclear T matrix. It is shown that the error resulting from the omission of the Kerman-McManus-Thaler Coulomb terms is effectively removed when the pure Coulomb T matrix in Kerman-McManus-Thaler is replaced by the analogous quantity in the Watson approach. Using the various approximations, theoretical angular distributions are obtained for 800 MeV p+/sup 208/Pb elastic scattering and compared with experimental data.
Ogloblya, O. V.; Kuznietsova, H. M.; Strzhemechny, Y. M.
2017-01-01
We performed numerical studies for the conductance of a heterojunction carbon nanotube quantum dot (QD) with an extra spin orbital quantum number and a conventional QD in which the electron state is determined only by the spin quantum number. Our computational approach took into account the spin-orbit interaction and the Coulomb repulsion both between electrons on a QD as well as between the QD electron and the contacts. We utilized an approach based on the Keldysh non-equilibrium Green's function formalism as well as the equation of motion technique. We focused on the case of a finite Coulombic on-site repulsion and considered two possible cases of applied voltage: spin bias and conventional bias. For the system of interest we obtained bias spectroscopy diagrams, i.e. contour charts showing dependence of conductivity on two variables - voltage and the energy level position in a QD - which can be controlled by the plunger gate voltage. The finite Coulombic repulsion splits the density of states into two distinct maxima with the energy separation between them controlled by that parameter. It was also shown that an increase of either the value of the on-site Coulomb repulsion in a QD or the parameter of the Coulomb repulsion between the electrons in the QD and the contacts leads to an overall shift of the density of electronic states dependence toward higher energy values. Presence of the QD-lead interaction yields formation of a new pair of peaks in the differential conductance dependence. We also show that existence of four quantum states in a QD leads to abrupt changes in the density of states. These results could be beneficial for potential applications in nanotube-based amperometric sensors.
Energy Technology Data Exchange (ETDEWEB)
Ogloblya, O.V., E-mail: olexandr.ogloblya@gmail.com [Taras Shevchenko National University, 64/13 Volodymyrska St., Kyiv 01601 (Ukraine); Kuznietsova, H.M. [Taras Shevchenko National University, 64/13 Volodymyrska St., Kyiv 01601 (Ukraine); Strzhemechny, Y.M. [Dept. of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States)
2017-01-01
We performed numerical studies for the conductance of a heterojunction carbon nanotube quantum dot (QD) with an extra spin orbital quantum number and a conventional QD in which the electron state is determined only by the spin quantum number. Our computational approach took into account the spin-orbit interaction and the Coulomb repulsion both between electrons on a QD as well as between the QD electron and the contacts. We utilized an approach based on the Keldysh non-equilibrium Green's function formalism as well as the equation of motion technique. We focused on the case of a finite Coulombic on-site repulsion and considered two possible cases of applied voltage: spin bias and conventional bias. For the system of interest we obtained bias spectroscopy diagrams, i.e. contour charts showing dependence of conductivity on two variables - voltage and the energy level position in a QD - which can be controlled by the plunger gate voltage. The finite Coulombic repulsion splits the density of states into two distinct maxima with the energy separation between them controlled by that parameter. It was also shown that an increase of either the value of the on-site Coulomb repulsion in a QD or the parameter of the Coulomb repulsion between the electrons in the QD and the contacts leads to an overall shift of the density of electronic states dependence toward higher energy values. Presence of the QD-lead interaction yields formation of a new pair of peaks in the differential conductance dependence. We also show that existence of four quantum states in a QD leads to abrupt changes in the density of states. These results could be beneficial for potential applications in nanotube-based amperometric sensors.
Intrinsic Mean Square Displacements in Proteins
VURAL, Derya; Glyde, Henry R.
2012-01-01
The thermal mean square displacement (MSD) of hydrogen in proteins and its associated hydration water is measured by neutron scattering experiments and used an indicator of protein function. The observed MSD as currently determined depends on the energy resolution width of the neutron scattering instrument employed. We propose a method for obtaining the intrinsic MSD of H in the proteins, one that is independent of the instrument resolution width. The intrinsic MSD is defined as the infinite ...
Coulomb and nuclear effects in breakup and reaction cross sections
Descouvemont, P.; Canto, L. F.; Hussein, M. S.
2017-01-01
We use a three-body continuum discretized coupled channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li+208Pb . For breakup, we investigate various aspects, such as the role of the α +t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the Coulomb and nuclear breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest a third method which could be efficiently used to address convergence problems at large angular momentum. For reaction cross sections, interference effects are smaller, and the nuclear contribution is dominant above the Coulomb barrier. We also draw attention to different definitions of the reaction cross section which exist in the literature and which may induce small, but significant, differences in the numerical values.
Coulomb-influenced collisions in aerosols and dusty plasmas.
Gopalakrishnan, Ranganathan; Hogan, Christopher J
2012-02-01
In aerosol and dusty plasma systems, the behavior of suspended particles (grains) is often strongly influenced by collisions occurring between ions and particles, as well as between particles themselves. In determining the collision kernel or collision rate coefficient for such charged entities, complications arise in that the collision process can be completely described neither by continuum transport mechanics nor by free molecular (ballistic) mechanics; that is, collisions are transition regime processes. Further, both the thermal energy and the potential energy between colliding entities can strongly influence the collision rate and must be considered. Flux-matching theory, originally developed by Fuchs, is frequently applied for calculation of collision rate coefficients under these circumstances. However, recent work suggests that crucial assumptions in flux-matching theory are not appropriate to describe transition regime collisions in the presence of potential interactions. Here, we combine dimensional analysis and mean first passage time calculations to infer the collision kernel between dilute charged entities suspended in a light background gas at thermal equilibrium. The motion of colliding entities is described by a Langevin equation, and Coulombic interactions are considered. It is found that the dimensionless collision kernel for these conditions, H, is a function of the diffusive Knudsen number, Kn(D) (in contrast to the traditional Knudsen number), and the potential energy to thermal energy ratio, Ψ(E). For small and large Kn(D), it is found that the dimensionless collision kernels inferred from mean first passage time calculations collapse to the appropriate continuum and free molecular limiting forms, respectively. Further, for repulsive collisions (Ψ(E) negative) or attractive collisions with Ψ(E)0.5, it is found that flux-matching theory predictions substantially underestimate the collision kernel. We find that the collision process in this
Dispossession and displacement in Libya
Directory of Open Access Journals (Sweden)
Rhodri C Williams
2012-06-01
Full Text Available Inability to access pre-displacement housing, land and property poses a significant obstacle to the achievement of durable solutions for most IDPs in Libya. Displacement and dispossession cannot be separated from the legacy of the Gaddafi era.
Displacement, Substitution, Sublimation: A Bibliography.
Pedrini, D. T.; Pedrini, Bonnie C.
Sigmund Freund worked with the mechanisms of displacement, substitution, and sublimation. These mechanisms have many similarities and have been studied diagnostically and therapeutically. Displacement and substitution seem to fit in well with phobias, hysterias, somatiyations, prejudices, and scapegoating. Phobias, prejudices, and scapegoating…
Efros-Shklovskii Coulomb gap in the absence of disorder
Rademaker, Louk; Mahmoudian, Samiyeh; Ralko, Arnaud; Fratini, Simone; Dobrosavljevic, Vladimir
2015-03-01
Certain models of frustrated electron systems have been shown to self-generate glassy behavior, in the absence of disorder. Possible candidate materials contain quarter-filled triangular lattices with long-range Coulomb interactions, as found in the θ-family of organic BEDT-TTF crystals. In disordered insulators with localized electronic states, the so-called Coulomb glass, the single particle excitation spectrum displays the well-known Efros-Shklovskii gap. The same excitation spectrum is investigated in a class of models that display self-generated electronic glassiness, showing pseudogap formation related to the Efros-Shklovskii Coulomb gap. Our study suggests universal characteristics of all electron glasses, regardless of disorder.
CubeSat testing of Coulomb drag propulsion
Janhunen, Pekka; Toivanen, Petri; Rauhala, Timo; Haeggström, Edward; Grönland, Tor-Arne
2016-01-01
In Coulomb drag propulsion, a long high voltage tether or system of tethers gathers momentum from a natural plasma stream such as solar wind or ionospheric plasma ram flow. A positively polarised tether in the solar wind can be used for efficient general-purpose interplanetary propellantless propulsion (the electric solar wind sail or E-sail), whereas a negatively polarised tether in LEO can be used for efficient deorbiting of satellites (the plasma brake). Aalto-1 is a 3-U cubesat to be launched in May 2016. The satellite carries three scientific experiments including 100 m long Coulomb drag tether experiment. The tether is made of four 25 and 50 micrometre diameter aluminium wires that are ultrasonically bonded together every few centimetre intervals. The tether can be charged by an onboard voltage source up to one kilovolt positive and negative. The Coulomb drag is measured by monitoring the spin rate.
Coulomb crystal mass spectrometry in a digital ion trap
Deb, Nabanita; Smith, Alexander D; Keller, Matthias; Rennick, Christopher J; Heazlewood, Brianna R; Softley, Timothy P
2015-01-01
We present a mass spectrometric technique for identifying the masses and relative abundances of Coulomb-crystallized ions held in a linear Paul trap. A digital radiofrequency waveform is employed to generate the trapping potential, as this can be cleanly switched off, and static dipolar fields subsequently applied to the trap electrodes for ion ejection. Excellent detection efficiency is demonstrated for Ca+ and CaF+ ions from bi-component Ca+/CaF+ Coulomb crystals prepared by reaction of Ca+ with CH3F. A quantitative linear relationship is observed between ion number and the corresponding integrated TOF peak, independent of the ionic species. The technique is applicable to a diverse range of multi-component Coulomb crystals - demonstrated here for Ca+/NH3+/NH4+ and Ca+/CaOH+/CaOD+ crystals - and will facilitate the measurement of ion-molecule reaction rates and branching ratios in complicated reaction systems.
Gribov horizon and Gribov copies effect in lattice Coulomb gauge
Burgio, Giuseppe; Reinhardt, Hugo; Vogt, Hannes
2016-01-01
Following a recent proposal by Cooper and Zwanziger we investigate via lattice simulations the effect on the Coulomb gauge propagators and on the Gribov-Zwanziger confinement mechanism of selecting the Gribov copy with the smallest non-trivial eigenvalue of the Faddeev-Popov operator, i.e. the one closest to the Gribov horizon. Although such choice of gauge drives the ghost propagator towards the prediction of continuum calculations, we find that it actually overshoots the goal. With increasing computer time, we observe that Gribov copies with arbitrarily small eigenvalues can be found. For such a method to work one would therefore need further restrictions on the gauge condition to isolate the physically relevant copies, since e.g. the Coulomb potential $V_C$ defined through the Faddeev-Popov operator becomes otherwise physically meaningless. Interestingly, the Coulomb potential alternatively defined through temporal link correlators is only marginally affected by the smallness of the eigenvalues.
Coulomb excitation of neutron-rich $^{134-136}$Sn isotopes
We propose to study excited states in the isotopes $^{134,136}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to investigate the evolution of quadrupole collectivity beyond the magic shell closure at N = 82 by the determination of B(E2) values and electric quadrupole moments $\\mathcal{Q}_2$. Recent shell-model calculations using realistic interactions predict possible enhanced collectivity in neutron-rich regions. Evidence for this could be obtained by this experiment. Furthermore, the currently unknown excitation energies of the 2$^+_{1}$ and 4$^+_{1}$ states in $^{136}$Sn will be measured for the first time.
Analysis of orbital occupancy of valence neutron in 15C through Coulomb breakup reactions
Singh, P.
2015-03-01
The Coulomb breakup reactions 208Pb(15C, 14C + n)208Pb and 181Ta(15C, 14C + n)181Ta have been studied at 68 and 85 A MeV beam energies, respectively, within the framework of the eikonal approximation to investigate the orbital occupancy of valence neutron in the 15C nucleus. The outcomes of the present work favor 0+ ⊗ 2 s 1/2 as the core-neutron coupling for the ground-state structure with 0.91 as a spectroscopic factor.
Faller, Sven
2008-06-01
In this paper we consider general relativity and its combination with scalar quantum electrodynamics (QED) as an effective quantum field theory at energies well below the Planck scale. This enables us to compute the one-loop quantum corrections to the Newton and Coulomb potentials induced by the combination of graviton and photon fluctuations. We derive the relevant Feynman rules and compute the nonanalytical contributions to the one-loop scattering matrix for charged scalars in the nonrelativistic limit. In particular, we derive the post-Newtonian corrections of order Gm/c2r from general relativity and the genuine quantum corrections of order Gℏ/c3r2.
Efficient Modeling of Coulomb Interaction Effect on Exciton in Crystal-Phase Nanowire Quantum Dot
DEFF Research Database (Denmark)
Taherkhani, Masoomeh; Gregersen, Niels; Mørk, Jesper
2016-01-01
The binding energy and oscillation strength of the ground-state exciton in type-II quantum dot (QD) is calculated by using a post Hartree-Fock method known as the configuration interaction (CI) method which is significantly more efficient than conventional methods like ab initio method. We show t...... that the Coulomb interaction between electron and holes in these structures considerably affects the transition dipole moment which is the key parameter of optical quantum gating in STIRAP (stimulated Raman adiabatic passage) process for implementing quantum gates [1], [2]....
Sliding without slipping under Coulomb friction: opening waves and inversion of frictional force
Yastrebov, Vladislav A
2015-01-01
An elastic layer slides on a rigid flat governed by Coulomb's friction law. We demonstrate that if the coefficient of friction is high enough, the sliding localizes within stick-slip pulses, which transform into opening waves propagating at intersonic speed in the direction of sliding or, for high Poisson's ratios, at supersonic speed in the opposite one. This sliding mode, characterized by small frictional dissipation, rapidly relaxes the shear elastic energy via stress waves and enables the contact surface slide ahead of the top one, resulting in inversion of the frictional force direction.
Limpanuparb, Taweetham; Milthorpe, Josh; Rendell, Alistair P
2014-10-30
Use of the modern parallel programming language X10 for computing long-range Coulomb and exchange interactions is presented. By using X10, a partitioned global address space language with support for task parallelism and the explicit representation of data locality, the resolution of the Ewald operator can be parallelized in a straightforward manner including use of both intranode and internode parallelism. We evaluate four different schemes for dynamic load balancing of integral calculation using X10's work stealing runtime, and report performance results for long-range HF energy calculation of large molecule/high quality basis running on up to 1024 cores of a high performance cluster machine.
Modified phase rule for inelastic scattering of heavy ions near the Coulomb barrier
Energy Technology Data Exchange (ETDEWEB)
Wohlfarth, D.; Hentschel, E.; Hersch, G.U.; Grambole, D.; Man' ko, V.I.; Sakuta, S.B.; Thomas, H.J.; Chuev, V.I.
1983-12-01
We propose a semiclassical model of heavy-ion inelastic scattering in which the difference in the entry and exit trajectories is taken into account. This model permits explanation of most of the experimentally observed deviations from the 180/sup 0/ phase rule formulated for elastic and inelastic scattering of heavy ions at energy near the Coulomb barrier. It is shown that in those cases when even the modified phase rule which follows from the semiclassical model does not agree with experiment, a two-stage mechanism gives a substantial contribution to inelastic scattering.
Analysis of orbital occupancy of valence neutron in {sup 15}C through Coulomb breakup reactions
Energy Technology Data Exchange (ETDEWEB)
Singh, P., E-mail: panghal005@gmail.com, E-mail: pardeep.phy@dcrustm.org [Deenbandhu Chhotu Ram University of Science and Technology, Department of Physics (India)
2015-03-15
The Coulomb breakup reactions {sup 208}Pb({sup 15}C, {sup 14}C + n){sup 208}Pb and {sup 181}Ta({sup 15}C, {sup 14}C + n){sup 181}Ta have been studied at 68 and 85 A MeV beam energies, respectively, within the framework of the eikonal approximation to investigate the orbital occupancy of valence neutron in the {sup 15}C nucleus. The outcomes of the present work favor 0{sup +} ⊗ 2s{sub 1/2} as the core-neutron coupling for the ground-state structure with 0.91 as a spectroscopic factor.
Harbach, Philipp H P; Schneider, Matthias; Faraji, Shirin; Dreuw, Andreas
2013-03-21
Intermolecular coulombic decay (ICD) is an efficient mechanism of low-energy electron generation in condensed phases and is discussed as their potential source in living cells, tissues, and materials. The first example of ICD as an operating mechanism in real biological systems, that is, in the DNA repair enzymes photolyases, is presented. Photolyase function involves light-induced electron detachment from a reduced flavin adenine dinucleotide (FADH(-)), followed by its transfer to the DNA-lesion triggering repair of covalently bound nucleobase dimers. Modern quantum chemical methods are employed to demonstrate that the transferred electron is efficiently generated via a resonant ICD process between the antenna pigment and the FADH(-) cofactors.
Intershell resistance in multiwall carbon nanotubes: A Coulomb drag study
DEFF Research Database (Denmark)
Lunde, Anders Mathias; Flensborg, Karsten; Jauho, Antti-Pekka
2005-01-01
We calculate the intershell resistance R-21 in a multiwall carbon nanotube as a function of temperature T and Fermi level epsilon(F) (e.g., a gate voltage), varying the chirality of the inner and outer tubes. This is done in a so-called Coulomb drag setup, where a current I-1 in one shell induces...... effects for the Coulomb drag between different tubes due to selection rules combined with mismatching of wave vector and crystal angular momentum conservation near the Fermi level. This gives rise to orders of magnitude changes in R-21 and even the sign of R-21 can change depending on the chirality...
Plasmons in Dimensionally Mismatched Coulomb Coupled Graphene Systems
Badalyan, S. M.; Shylau, A. A.; Jauho, A. P.
2017-09-01
We calculate the plasmon dispersion relation for Coulomb coupled metallic armchair graphene nanoribbons and doped monolayer graphene. The crossing of the plasmon curves, which occurs for uncoupled 1D and 2D systems, is split by the interlayer Coulomb coupling into a lower and an upper plasmon branch. The upper branch exhibits an unusual behavior with end points at finite q . Accordingly, the structure factor shows either a single or a double peak behavior, depending on the plasmon wavelength. The new plasmon structure is relevant to recent experiments, its properties can be controlled by varying the system parameters and be used in plasmonic applications.
Spin and polarized current from Coulomb blockaded quantum dots.
Potok, R M; Folk, J A; Marcus, C M; Umansky, V; Hanson, M; Gossard, A C
2003-07-04
We report measurements of spin transitions for GaAs quantum dots in the Coulomb blockade regime and compare ground and excited state transport spectroscopy to direct measurements of the spin polarization of emitted current. Transport spectroscopy reveals both spin-increasing and spin-decreasing transitions, as well as higher-spin ground states, and allows g factors to be measured down to a single electron. The spin of emitted current in the Coulomb blockade regime, measured using spin-sensitive electron focusing, is found to be polarized along the direction of the applied magnetic field regardless of the ground state spin transition.
An algebraic model of Coulomb scattering with spin
Energy Technology Data Exchange (ETDEWEB)
Levay, P. [School of Physics, University of Melbourne, Parkville (Australia); Department of Theoretical Physics, Institute of Physics, Technical University, Budapest (Hungary); Amos, K. [School of Physics, University of Melbourne, Parkville (Australia)
2001-05-11
A new matrix-valued realization for the so(3,1) algebra leads to a natural generalization of the Coulomb scattering problem of a particle with spin. The underlying su(2) gauge structure of this realization recasts the scattering problem into a familiar form, namely, the Coulomb scattering problem of a collection of dyons (particles having both electric and magnetic charges). Using this equivalent form and the results of Zwanziger for such systems, the scattering matrix can be calculated in the helicity formalism. (author)
Vibrational motions in rotating nuclei studied by Coulomb excitations
Energy Technology Data Exchange (ETDEWEB)
Shimizu, Yoshifumi R. [Kyushu Univ., Fukuoka (Japan). Dept. of Physics
1998-03-01
As is well-known Coulomb excitation is an excellent tool to study the nuclear collective motions. Especially the vibrational excitations in rotating nuclei, which are rather difficult to access by usual heavy-ion fusion reactions, can be investigated in detail. Combined with the famous 8{pi}-Spectrometer, which was one of the best {gamma}-ray detector and had discovered some of superdeformed bands, such Coulomb excitation experiments had been carried out at Chalk River laboratory just before it`s shutdown of physics division. In this meeting some of the experimental data are presented and compared with the results of theoretical investigations. (author)
Pygmy and Giant Dipole Resonances by Coulomb Excitation using a Quantum Molecular Dynamics model
Tao, C; Zhang, G Q; Cao, X G; Wang, D Q Fang H W
2012-01-01
Pygmy and Giant Dipole Resonance (PDR and GDR) in Ni isotopes have been investigated by Coulomb excitation in the framework of the Isospin-dependent Quantum Molecular Dynamics model (IQMD). The spectra of $\\gamma$ rays are calculated and the peak energy, the strength and Full Width at Half Maximum (FWHM) of GDR and PDR have been extracted. Their sensitivities to nuclear equation of state, especially to its symmetry energy term are also explored. By a comparison with the other mean-field calculations, we obtain the reasonable values for symmetry energy and its slope parameter at saturation, which gives an important constrain for IQMD model. In addition, we also studied the neutron excess dependence of GDR and PDR parameters for Ni isotopes and found that the energy-weighted sum rule (EWSR) $PDR_{m_1}/GDR_{m_1}%$ increases linearly with the neutron excess.
Last, Isidore; Jortner, Joshua
2004-11-01
In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters
Allmond, J. M.
2016-09-01
The synthesis of Coulomb excitation and β decay offers very practical advantages in the study of nuclear shapes and collectivity. For instance, Coulomb excitation is unique in its ability to measure the electric quadrupole moments, i.e., matrix elements, of excited, non-isomeric states in atomic nuclei, providing information on the intrinsic shape. However, the Coulomb excitation analysis and structural interpretation can be strongly dependent upon weak transitions or decay branches, which are often obscured by the Compton background. Transitions of particular interest are those low in energy and weak in intensity due to the Eγ5 attenuation factor. These weak decay branches can often be determined with high precision from β-decay studies. Recently, 106Mo and 110Cd were studied by both Coulomb excitation and β decay. Preliminary results of new weak decay branches following β decay of 110mAg to 110Cd are presented; these results will challenge competing interpretations based on vibrations and configuration mixing.
Doppler cooling of a Coulomb crystal
Morigi, G; Morigi, Giovanna; Eschner, Juergen
2001-01-01
We study theoretically Doppler laser-cooling of a cluster of 2-level atoms confined in a linear ion trap. Using several consecutive steps of averaging we derive, from the full quantum mechanical master equation, an equation for the total mechanical energy of the one dimensional crystal, defined on a coarse-grained energy scale whose grid size is smaller than the linewidth of the electronic transition. This equation describes the cooling dynamics for an arbitrary number of ions and in the quantum regime. We discuss the validity of the ergodic assumption (i.e. that the phase space distribution is only a function of energy). From our equation we derive the semiclassical limit (i.e. when the mechanical motion can be treated classically) and the Lamb-Dicke limit (i.e. when the size of the mechanical wave function is much smaller than the laser wavelength). We find a Fokker-Planck equation for the total mechanical energy of the system, whose solution is in agreement with previous analytical calculations which were ...
Simplistic Coulomb Forces in Molecular Dynamics
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt; Schrøder, Thomas; Dyre, J. C.
2012-01-01
salt model the SF approximation overall reproduces the structural and dynamical properties as accurately as does the Wolf method. It is shown that the optimal Wolf damping parameter depends on the property in focus and that neither the potential energy nor the radial distribution function are useful...
B(E1) Strengths from Coulomb Excitation of 11Be
Summers, N C; Ashwood, N I; Bouchat, V; Catford, W N; Clarke, N M; Curtis, N; Freer, M; Fulton, B R; Hanappe, F; Labiche, M; Lecouey, J L; Lemmon, R C; Mahboub, D; Ninane, A; Normand, G; Nunes, F M; Orr, N A; Pain, S D; Soic, N; Stuttgé, L; Thompson, I J; Timis, C N; Winfield, J S; Ziman, V
2007-01-01
The $B$(E1;$1/2^+\\to1/2^-$) strength for $^{11}$Be has been extracted from intermediate energy Coulomb excitation measurements, over a range of beam energies using a new reaction model, the extended continuum discretized coupled channels (XCDCC) method. In addition, a measurement of the excitation cross section for $^{11}$Be+$^{208}$Pb at 38.6 MeV/nucleon is reported. The $B$(E1) strength of 0.105(12) e$^2$fm$^2$ derived from this measurement is consistent with those made previously at 60 and 64 MeV/nucleon, i n contrast to an anomalously low result obtained at 43 MeV/nucleon. By coupling a multi-configuration description of the projectile structure with realistic reaction theory, the XCDCC model provides for the first time a fully quantum mechanical description of Coulomb excitation. The XCDCC calculations reveal that the excitation process involves significant contributions from nuclear, continuum, and higher-order effects. An analysis of the present and two earlier intermediate energy measurements yields a...
One particle properties in the 2D Coulomb problem. Luttinger-Ward variational approach
Energy Technology Data Exchange (ETDEWEB)
Agnihotri, M.P.
2007-04-27
In this work, we have studied the 2D Coulomb problem. We used the Luttinger-Ward variational principle to determine the self-energy {sigma} in ring approximation. The use of an ansatz for {sigma} enables us to perform the frequency sums (integrals as T {yields} 0) analytically. Compared to the usual procedure of iterating the self consistency equation with free Green's function as starting points, the present approach is superior. It works for higher density parameter r{sub s} (low density) where the iteration already fails to converge. The motivation of the present work is the quantum Hall system at filling factor 1/2. The Luttinger-Ward procedure is a rather powerful method in particular if combined with an analytical ansatz for {sigma}. The computation performed here for 2DEG has to be seen as a first step: There, the experiment shows the features of a free Fermion system that is interpreted as a system of Composite Fermions. If one studies the self energy of the Composite Fermions in an conserved approximation that corresponds to the ring approximation, one encounters a self consistency equation. However, an iterative solution of this equation meets with a complication: Instead of the polarization part {pi}{sub 00}, in the case of the Composite Fermion there appears the longitudinal polarization part {pi}{sub LL} that has an additional factor (2k + q){sup 2} under the k integral. This integral converges only after the frequency integral is performed. It is highly difficult to reproduce this numerically. Here, the Luttinger-Ward variational approach applied to the 2D Coulomb problem in the present work looks promising. For the 2D Coulomb problem, in the ring approximation for the LW thermodynamic potential, that already leads to a formidable integral equation that has to be studied numerically. (orig.)
Air displacement plethysmography: cradle to grave.
Fields, David A; Gunatilake, Ravindu; Kalaitzoglou, Evangelia
2015-04-01
Differences in body composition are associated with increased disease risk in various stages of life. Despite numerous available methods in assessing body composition (air displacement plethysmography, dual-energy X-ray absorptiometry, bioelectrical impedance, hydrometry, and magnetic resonance imaging), due to innate technical limitations, the ability for one singular method to track body composition over the life span (ie, infancy to adulthood) is challenging and imperfect. The primary goal of this review is to determine if there are body composition methods that can accurately track body composition from infancy into adulthood. After careful consideration and taking into account the best available scientific evidence, we feel air displacement plethysmography is the best instrument at this time for tracking body composition, starting in infancy and forward into adulthood, partly because it is the only "practical" clinical tool currently available for use during infancy. © 2015 American Society for Parenteral and Enteral Nutrition.
Coulomb repulsion in (TMTSF)2X and (TMTTF)2X
DEFF Research Database (Denmark)
Mortensen, Kell; Engler, E. M.
1985-01-01
On the basis of studies of transport properties of (TMTSF)2 X, (TMTTF)2X and their binary alloys the authors discuss the role of on-site Coulomb repulsion relative to the transfer integrals. In TMTTF-salts U/ta are believed to be large, resulting in a Hubbard gap, whereas U/ta in TMTSF-salts are ...
Canonical derivation of the Vlasov-Coulomb noncanonical Poisson structure
Energy Technology Data Exchange (ETDEWEB)
Kaufman, A.N.; Dewar, R.L.
1983-09-01
Starting from a Lagrangian formulation of the Vlasov-Coulomb system, canonical methods are used to define a Poisson structure for this system. Successive changes of representation then lead systematically to the noncanonical Lie-Poisson structure for functionals of the Vlasov distribution.
Coulomb and nuclear effects in breakup and reaction cross sections
Descouvemont, Pierre; Hussein, Mahir S
2016-01-01
We use a three-body Continuum Discretized Coupled Channel (CDCC) model to investigate Coulomb and nuclear effects in breakup and reaction cross sections. The breakup of the projectile is simulated by a finite number of square integrable wave functions. First we show that the scattering matrices can be split in a nuclear term, and in a Coulomb term. This decomposition is based on the Lippmann-Schwinger equation, and requires the scattering wave functions. We present two different methods to separate both effects. Then, we apply this separation to breakup and reaction cross sections of 7Li + 208Pb. For breakup, we investigate various aspects, such as the role of the alpha + t continuum, the angular-momentum distribution, and the balance between Coulomb and nuclear effects. We show that there is a large ambiguity in defining the 'Coulomb' and 'nuclear' breakup cross sections, since both techniques, although providing the same total breakup cross sections, strongly differ for the individual components. We suggest...
Fast Electron Repulsion Integrals for Molecular Coulomb Sturmians
DEFF Research Database (Denmark)
Avery, James Emil
2013-01-01
of hyperspherical harmonics. A rudimentary software library has been implemented and preliminary benchmarks indicate very good performance: On average 40 ns, or approximately 80 clock cycles, per electron repulsion integral. This makes molecular Coulomb Sturmians competitive with Gaussian type orbitals in terms...
Integrating over the Coulomb branch in N=2 gauge theory
Marino, Marcos; Moore, Gregory
1997-01-01
We review the relation of certain integrals over the Coulomb phase of $d=4$, N=2 SO(3) supersymmetric Yang-Mills theory with Donaldson-Witten theory. We describe a new way to write an important contact term in the theory and show how the integrals generalize to higher rank gauge groups.
Coulomb blockade and superuniversality of the theta angle
Burmistrov, I.S.; Pruisken, A.M.M.
2008-01-01
Based on the Ambegaokar-Eckern-Schön approach to the Coulomb blockade, we develop a complete quantum theory of the single electron transistor. We identify a previously unrecognized physical observable in the problem that, unlike the usual average charge on the island, is robustly quantized for any f
Revised variational approach to QCD in Coulomb gauge
Campagnari, Davide R; Reinhardt, Hugo; Vastag, Peter
2016-01-01
The variational approach to QCD in Coulomb gauge is revisited. By assuming the non-Abelian Coulomb potential to be given by the sum of its infrared and ultraviolet parts, i.e.~by a linearly rising potential and an ordinary Coulomb potential, and by using a Slater determinant ansatz for the quark wave functional, which contains the coupling of the quarks and the gluons with two different Dirac structures, we obtain variational equations for the kernels of the fermionic vacuum wave functional, which are free of ultraviolet divergences. Thereby, a Gaussian type wave functional is assumed for the gluonic part of the vacuum. By using the results of the pure Yang--Mills sector for the gluon propagator as input, we solve the equations for the fermionic kernels numerically and calculate the quark condensate and the effective quark mass in leading order. Assuming a value of $\\sigma_{\\mathrm{C}} = 2.5 \\sigma$ for the Coulomb string tension (where $\\sigma$ is the usual Wilsonian string tension) the phenomenological valu...
Interpolating the Coulomb Phase of Little String Theory
Lin, Ying-Hsuan; Wang, Yifan; Yin, Xi
2015-01-01
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. We also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.
Exchange Coulomb interaction in nanotubes: Dispersion of Langmuir waves
Andreev, P A
2015-01-01
Microscopic derivation of the Coulomb exchange interaction for electrons located on the nanotubes is presented. Our derivation is based on the many-particle quantum hydrodynamic method. We demonstrate the role of the curvature of the nanocylinders on the force of the exchange interaction. We calculate corresponding dispersion dependencies for electron oscillations on the nanotubes.
The Coulomb law and atomic levels in a superstrong B
Directory of Open Access Journals (Sweden)
Vysotsky M.I.
2014-04-01
Full Text Available The spectrum of atomic levels of hydrogen-like ions originating from the lowest Landau level in an external homogeneous superstrong magnetic field is obtained. The influence of the screening of the Coulomb potential on the values of critical nuclear charges is studied.
Application of Designer Polynomials to the Soft-Coulomb Potential
Weatherford, Charles; Wynn, Albert, III; Red, Eddie; Mathis, Clausell
2004-05-01
In a recent article [C.A. Weatherford, E. Red, A. Wynn III, International Journal of Quantum Chemistry 90, 1289-1294 (2002)], an algorithm was described whereby a synthetic weighted polynomial basis may be constructed which is adapted (designed) to a particular potential. It was applied therein to the Schroedinger equation with a coulomb potential in one dimension (-1/|x| ). A weighted polynomial basis with weight function w(x)=exp(-a|x|) was employed. It was observed that this potential had no even parity solutions - only odd parity solutions. The question arises as to the relationship of the solutions (eigenfunctions and eigenvalues) for this hard coulomb potential to the solutions for the soft coulomb potential (-1/ √x^2+b^2^1/2 ). In particular, since the soft coulomb potential is clearly expected to possess both even and odd parity solutions, how do these solutions behave as b->0 and thus what happens to the even solutions. This problem is deceptively difficult none of the standard basis sets produce a variational minimum as a function of 'a' for nonzero 'b'. This is apparently why this problem has never been done before. A new orthonormal basis was designed with weight function w(x)=exp(-a√x^2+b^2) which did produce a variational minimum for variable a and arbitrary fixed 'b'. The present paper describes these solutions and clearly indicates how they behave as b->0 .
Existence of the thermodynamic limit for disordered quantum Coulomb systems
Blanc, Xavier
2012-01-01
Following a recent method introduced by C. Hainzl, J.P. Solovej and the second author of this article, we prove the existence of the thermodynamic limit for a system made of quantum electrons, and classical nuclei whose positions and charges are randomly perturbed in an ergodic fashion. All the particles interact through Coulomb forces.
Plasmon-mediated Coulomb drag between graphene waveguides
DEFF Research Database (Denmark)
Shylau, Artsem A.; Jauho, Antti-Pekka
2014-01-01
We analyze theoretically charge transport in Coulomb coupled graphene waveguides (GWGs). The GWGs are defined using antidot lattices, and the lateral geometry bypasses many technological challenges of earlier designs. The drag resistivity ρD, which is a measure of the many-particle interactions...
Energy Technology Data Exchange (ETDEWEB)
Ojeda-Guillén, D., E-mail: dogphysics@gmail.com [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738, México D.F. (Mexico); Mota, R.D. [Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Instituto Politécnico Nacional, Av. Santa Ana No. 1000, Col. San Francisco Culhuacán, Delegación Coyoacán, C.P. 04430, México D.F. (Mexico); Granados, V.D. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ed. 9, Unidad Profesional Adolfo López Mateos, C.P. 07738, México D.F. (Mexico)
2014-08-14
We decouple the Dirac's radial equations in D+1 dimensions with Coulomb-type scalar and vector potentials through appropriate transformations. We study each of these uncoupled second-order equations in an algebraic way by using an su(1,1) algebra realization. Based on the theory of irreducible representations, we find the energy spectrum and the radial eigenfunctions. We construct the Perelomov coherent states for the Sturmian basis, which is the basis for the unitary irreducible representation of the su(1,1) Lie algebra. The physical radial coherent states for our problem are obtained by applying the inverse original transformations to the Sturmian coherent states. - Highlights: • We solve the most general Dirac–Kepler–Coulomb problem. • The eigenfunctions and energy spectrum are obtained in a purely algebraic way. • We construct the radial SU(1,1) coherent states for the Kepler–Coulomb problem.
Internal displacement in eastern Burma
Heather Rae
2007-01-01
The history of post-independent Burma is characterisedby numerous conflicts in this extraordinarily heterogeneous country. Since military rule began in 196 2 Burmahas witnessed gross human rights abuses andmassive displacement.