WorldWideScience

Sample records for cotton key pests

  1. Cotton in Benin: governance and pest management

    NARCIS (Netherlands)

    Togbe, C.E.

    2013-01-01

    Key words: cotton, synthetic pesticides, neem oil (Azadirachta indica), Beauveria bassiana, Bacillus thuringiensis, field experiment, farmers’ participation   Pests are one of the main factors limiting cotton production worldwide. Most of the pest control strategies in cotton

  2. Pheromone mating disruption offers selective management options for key pests

    OpenAIRE

    Welter, Stephen C.; Pickel, Carolyn; Millar, Jocelyn; Cave, Frances; Van Steenwyk, Robert A.; Dunley, John

    2005-01-01

    The direct management of insect pests using pheromones for mating disruption, or “attract and kill” approaches, can provide excellent suppression of key lepidopteran pests in agriculture. Important successes to date include codling moth in pome fruit, oriental fruit moth in peaches and nectarines, tomato pinworm in vegetables, pink bollworm in cotton and omnivorous leafroller in vineyards. Large-scale implementation projects have yielded significant reductions in pesticide use while maintaini...

  3. farmers' knowledge and perceptions of cotton insect pests and their

    African Journals Online (AJOL)

    Prince Acheampong

    ABSTRACT. A survey of 337 cotton farmers in the three northern regions of Ghana was conducted between. November 2002 and March 2003 with the objectives of assessing farmers' knowledge and perceptions of cotton insect pests and examining their control practices. The survey revealed that between 69 and 86%.

  4. Farmers' knowledge and perceptions of cotton insect pests and their ...

    African Journals Online (AJOL)

    A survey of 337 cotton farmers in the three northern regions of Ghana was conducted between November 2002 and March 2003 with the objectives of assessing farmers' knowledge and perceptions of cotton insect pests and examining their control practices. The survey revealed that between 69 and 86% of the farmers ...

  5. farmers' knowledge and perceptions of cotton insect pests and their

    African Journals Online (AJOL)

    Prince Acheampong

    and false codling moth. (Cryptophelebia leucotreta Meyr.); cotton ... farmers, as yields greater than 1600 kg/ha have been obtained from on-station trials in Ghana (Salifu,. 1996). Low yields are not only a disincentive to ..... Effect of planting date on pest incidence and yield of cotton. Annual report, Nyankpala. Agricultural ...

  6. Nuclear ribosomal DNA diversity of a cotton pest ( Rotylenchulus ...

    African Journals Online (AJOL)

    The reniform nematode (Rotylenchulus reniformis) has emerged as a major cotton pest in the United States. A recent analysis of over 20 amphimictic populations of this pest from the US and three other countries has shown no sequence variation at the nuclear ribosomal internal transcribed spacer (ITS) despite the region's ...

  7. EVALUATION OF FOUR INTEGRATED PEST MANAGEMENT PACKAGES FOR CONTROLLING MAIN PESTS OF COTTON IN RAINFED FIELDS

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2014-04-01

    Full Text Available Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula and cotton bollworm (Helicoverpa armigera. The study aimed to evaluate four packages of integrated pest management (IPM techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012. Four packages of IPM evaluated were cotton varieties, i.e. Kanesia 10 or Kanesia 13, and seed treatment with synthetic insecticide (imidacloprid before sowing or spraying molasses (10 ml L-1 water as food for natural enemies. The cotton plants were intercropped with groundnut and sprayed with neem seed extract (NSE at the action threshold level for pest control. These packages were compared among themselves and also with the methods usually used by farmers, i.e. planting cotton variety Kanesia 8 intercropped with groundnut and pest control using synthetic chemical insecticides. Twenty five plants were sampled randomly per plot and measured for their growth, leafhopper and  bollworm populations, as well as cotton seed yield per plot. Observations were made weekly, starting at 30 days after planting (DAP until 120 DAP. The results showed that the use of Kanesia 10 or Kanesia 13 intercropped with groundnut and spraying molasses to conserve natural enemies was the best  pest management practice and superior to farmers’ practices. Conserving natural enemies is not only profitable (saving production cost of IDR1,150,000 to IDR1,500,000 ha-1 season-1, but also safe for the environment (no need to spray chemical insecticides.

  8. Benefits of Bt cotton counterbalanced by secondary pests? Perceptions of ecological change in China.

    Science.gov (United States)

    Zhao, Jennifer H; Ho, Peter; Azadi, Hossein

    2011-02-01

    In the past, scientific research has predicted a decrease in the effectiveness of Bt cotton due to the rise of secondary and other sucking pests. It is suspected that once the primary pest is brought under control, secondary pests have a chance to emerge due to the lower pesticide applications in Bt cotton cultivars. Studies on this phenomenon are scarce. This article furnishes empirical evidence that farmers in China perceive a substantial increase in secondary pests after the introduction of Bt cotton. The research is based on a survey of 1,000 randomly selected farm households in five provinces in China. We found that the reduction in pesticide use in Bt cotton cultivars is significantly lower than that reported in research elsewhere. This is consistent with the hypothesis suggested by recent studies that more pesticide sprayings are needed over time to control emerging secondary pests, such as aphids, spider mites, and lygus bugs. Apart from farmers' perceptions of secondary pests, we also assessed their basic knowledge of Bt cotton and their perceptions of Bt cotton in terms of its strengths and shortcomings (e.g., effectiveness, productivity, price, and pesticide use) in comparison with non-transgenic cotton.

  9. Emergence of minor pests becoming major pests in GE cotton in China: what are the reasons? What are the alternatives practices to this change of status?

    Science.gov (United States)

    Bergé, Jean Baptiste; Ricroch, Agnès Evelyne

    2010-01-01

    A recent study in China by Lu et al.(1) shows that populations of an occasional cotton pest, mirid bugs (Heteroptera: Miridae), increased following the introduction of genetically engineered (GE) cotton plants. The GE cotton produces a delta-endotoxin from the bacteria Bacillus thuringiensis (Bt) to control the cotton bollworm. Before the introduction of Bt cotton in China, mirid bugs were usually controlled by broad-spectrum pesticide sprays targeted against the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), the most important pest of cotton in China. The effectiveness of the control of H. armigera by Bt cotton cultivation has resulted in a decrease in the amount of insecticides used on Bt cotton compared to conventional cotton. This has led to a lack of control of mirids on Bt cotton due to the reduction in broad-spectrum insecticide use and consequently to a transformation of a minor pest to a main one. We discuss the scientific evidence available in the literature of this phenomenon. We examine the reasons of the emergence of minor pests to become major pests in Bt cotton in China and possible solutions to this change of status.

  10. Crystal structure of a novel Mid-gut procarboxypeptidase from the cotton pest Helicoverpa armigera

    NARCIS (Netherlands)

    Estebanez-Perpica, E.; Bayes, A.; Vendrell, J.; Jongsma, M.A.; Bown, D.P.; Gatehouse, J.A.; Bode, W.; Huber, R.; Aviles, F.X.; Reverter, D.

    2001-01-01

    The cotton bollworm Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) is one of the most serious insect pests in Australia, India and China. The larva causes substantial economical losses to legume, fibre, cereal oilseed and vegetable crops. This pest has proven to be difficult to control by

  11. Response of the reduviid bug, Rhynocoris marginatus (Heteroptera: Reduviidae) to six different species of cotton pests

    DEFF Research Database (Denmark)

    Sahayaraj, Kitherian; Muthu Kumar, Subramanian; Enkegaard, Annie

    2016-01-01

    In Indian agro-ecosystems Rhynocoris marginatus (F.) is one of the most abundant predatory arthropods and feeds on a wide range of insect pests. We investigated the responses of R. marginatus to six species of cotton pests: Spodoptera litura (F.), Sylepta derogata (F.), Pericallia ricini (F...... tended to be, for this predator, superior prey, with S. litura being especially beneficial and the prey species for which R. marginatus has the highest kairomonal preference. Moreover, we propose that R. marginatus may be useful as a biocontrol agent against lepidopteran cotton pests....

  12. Developing Cotton IPM by Conserving Parasitoids and Predators of The Main Pest

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2015-09-01

    Full Text Available On early development of intensive cotton program, insect pests were considered as an important aspect in cotton cultivation, so that it needed to be scheduled sprays. The frequency of sprays was 7 times used 12L of chemical insecticides per hectare per season. Development of cotton IPM was emphasized on non-chemical control methods through optimally utilize natural enemies of the cotton main pests (Amrasca biguttulla (IshidaHelicoverpa armigera (Hübner. Conservation of parasitoids and predators by providing the environment that support their population development is an act of supporting the natural enemies as an effective biotic mortality factor of the insect pests. The conservation could be done by improving the plant matter and cultivation techniques that include the use of resistant variety to leafhopper, intercropping cotton with secondary food plants, mulch utilization, using action threshold that considered the presence of natural enemies, and application of botanical insecticides, if needed. Conservation of parasitoids and predators in cotton IPM could control the insect pests without any insecticide spray in obtaining the production of cotton seed. As such, the use of IPM method would increase farmers’ income.

  13. Leaf tissue assay for lepidopteran pests of Bt cotton

    Science.gov (United States)

    Laboratory measurements of susceptibility to Bt toxins can be a poor indicator of the ability of an insect to survive on transgenic crops. We investigated the potential of using cotton leaf tissue for evaluating heliothine susceptibilities to two dual-gene Bt cottons. A preliminary study was conduct...

  14. The Management of Insect Pests in Australian Cotton: An Evolving Story.

    Science.gov (United States)

    Wilson, Lewis J; Whitehouse, Mary E A; Herron, Grant A

    2018-01-07

    The Australian cotton industry progressively embraced integrated pest management (IPM) to alleviate escalating insecticide resistance issues. A systems IPM approach was used with core principles that were built around pest ecology/biology and insecticide resistance management; together, these were integrated into a flexible, year-round approach that facilitated easy incorporation of new science, strategies, and pests. The approach emphasized both strategic and tactical elements to reduce pest abundance and rationalize decisions about pest control, with insecticides as a last resort. Industry involvement in developing the approach was vital to embedding IPM within the farming system. Adoption of IPM was facilitated by the introduction of Bt cotton, availability of selective insecticides, economic validation, and an industry-wide extension campaign. Surveys indicate IPM is now embedded in industry, confirming the effectiveness of an industry-led, backed-by-science approach. The amount of insecticide active ingredient applied per hectare against pests has also declined dramatically. Though challenges remain, pest management has transitioned from reactively attempting to eradicate pests from fields to proactively managing them year-round, considering the farm within the wider landscape.

  15. The Adoption of Integrated Pest Management Practices among Texas Cotton Growers.

    Science.gov (United States)

    Thomas, John K.; And Others

    1990-01-01

    Describes integrated pest management (IPM), a more advanced approach than chemical pesticide. Applies diffusion and farming-systems theories to create analytical model to explain IPM's adoption, use, and implications for agricultural change. Telephone surveys of Texas cotton growers on IPM practices found different sources of IPM information…

  16. Influence of cover crops on insect pests and predators in conservation tillage cotton.

    Science.gov (United States)

    Tillman, Glynn; Schomberg, Harry; Phatak, Sharad; Mullinix, Benjamin; Lachnicht, Sharon; Timper, Patricia; Olson, Dawn

    2004-08-01

    In fall 2000, an on-farm sustainable agricultural research project was established for cotton, Gossypium hirsutum L., in Tift County, Georgia. The objective of our 2-yr research project was to determine the impact of several cover crops on pest and predator insects in cotton. The five cover crop treatments included 1) cereal rye, Secale cereale L., a standard grass cover crop; 2) crimson clover, Trifolium incarnatum L., a standard legume cover crop; 3) a legume mixture of balansa clover, Trifolium michelianum Savi; crimson clover; and hairy vetch, Vicia villosa Roth; 4) a legume mixture + rye combination; and 5) no cover crop in conventionally tilled fields. Three main groups or species of pests were collected in cover crops and cotton: 1) the heliothines Heliothis virescens (F.) and Helicoverpa zea (Boddie); 2) the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois); and 3) stink bugs. The main stink bugs collected were the southern green stink bug, Nezara viridula (L.); the brown stink bug, Euschistus servus (Say); and the green stink bug, Acrosternum hilare (Say). Cotton aphids, Aphis gossypii Glover, were collected only on cotton. For both years of the study, the heliothines were the only pests that exceeded their economic threshold in cotton, and the number of times this threshold was exceeded in cotton was higher in control cotton than in crimson clover and rye cotton. Heliothine predators and aphidophagous lady beetles occurred in cover crops and cotton during both years of the experiment. Geocoris punctipes (Say), Orius insidiosus (Say), and red imported fire ant, Solenopsis invicta Buren were relatively the most abundant heliothine predators observed. Lady beetles included the convergent lady beetle, Hippodamia convergens Guérin-Méneville; the sevenspotted lady beetle, Coccinella septempunctata L.; spotted lady beetle, Coleomegilla maculata (DeGeer); and the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Density of G. punctipes was

  17. Developmental and Digestive Flexibilities in the Midgut of a Polyphagous Pest, the Cotton Bollworm, Helicoverpa armigera

    Science.gov (United States)

    Sarate, P.J.; Tamhane, V.A.; Kotkar, H.M.; Ratnakaran, N.; Susan, N.; Gupta, V.S.; Giri, A.P.

    2012-01-01

    Developmental patterns and survival of the cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), a polyphagous insect pest, have been studied with reference to the effect of diet on major gut digestive enzymes (amylases, proteases, and lipases). Significant correlations between nutritional quality of the diet and larval and pupal mass were observed when H. armigera larvae were fed on various host plants viz. legumes (chickpea and pigeonpea), vegetables (tomato and okra), flowers (rose and marigold), and cereals (sorghum and maize). Larvae fed on diets rich in proteins and/or carbohydrates (pigeonpea, chickpea, maize, and sorghum) showed higher larval mass and developed more rapidly than larvae fed on diets with low protein and carbohydrate content (rose, marigold, okra, and tomato). Low calorific value diets like rose and marigold resulted in higher mortality (25–35%) of H. armigera. Even with highly varying development efficiency and larval/pupal survival rates, H. armigera populations feeding on different diets completed their life cycles. Digestive enzymes of H. armigera displayed variable expression levels and were found to be regulated on the basis of macromolecular composition of the diet. Post—ingestive adaptations operating at the gut level, in the form of controlled release of digestive enzymes, might be a key factor contributing to the physiological plasticity in H. armigera. PMID:22954360

  18. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    Science.gov (United States)

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  19. Engineered repressible lethality for controlling the pink bollworm, a lepidopteran pest of cotton.

    Directory of Open Access Journals (Sweden)

    Neil I Morrison

    Full Text Available The sterile insect technique (SIT is an environmentally friendly method of pest control in which insects are mass-produced, irradiated and released to mate with wild counterparts. SIT has been used to control major pest insects including the pink bollworm (Pectinophora gossypiella Saunders, a global pest of cotton. Transgenic technology has the potential to overcome disadvantages associated with the SIT, such as the damaging effects of radiation on released insects. A method called RIDL (Release of Insects carrying a Dominant Lethal is designed to circumvent the need to irradiate insects before release. Premature death of insects' progeny can be engineered to provide an equivalent to sterilisation. Moreover, this trait can be suppressed by the provision of a dietary antidote. In the pink bollworm, we generated transformed strains using different DNA constructs, which showed moderate-to-100% engineered mortality. In permissive conditions, this effect was largely suppressed. Survival data on cotton in field cages indicated that field conditions increase the lethal effect. One strain, called OX3402C, showed highly penetrant and highly repressible lethality, and was tested on host plants where its larvae caused minimal damage before death. These results highlight a potentially valuable insecticide-free tool against pink bollworm, and indicate its potential for development in other lepidopteran pests.

  20. Predicting Spatial Distribution of Key Honeybee Pests in Kenya Using Remotely Sensed and Bioclimatic Variables: Key Honeybee Pests Distribution Models

    Directory of Open Access Journals (Sweden)

    David M. Makori

    2017-02-01

    Full Text Available Bee keeping is indispensable to global food production. It is an alternate income source, especially in rural underdeveloped African settlements, and an important forest conservation incentive. However, dwindling honeybee colonies around the world are attributed to pests and diseases whose spatial distribution and influences are not well established. In this study, we used remotely sensed data to improve the reliability of pest ecological niche (EN models to attain reliable pest distribution maps. Occurrence data on four pests (Aethina tumida, Galleria mellonella, Oplostomus haroldi and Varroa destructor were collected from apiaries within four main agro-ecological regions responsible for over 80% of Kenya’s bee keeping. Africlim bioclimatic and derived normalized difference vegetation index (NDVI variables were used to model their ecological niches using Maximum Entropy (MaxEnt. Combined precipitation variables had a high positive logit influence on all remotely sensed and biotic models’ performance. Remotely sensed vegetation variables had a substantial effect on the model, contributing up to 40.8% for G. mellonella and regions with high rainfall seasonality were predicted to be high-risk areas. Projections (to 2055 indicated that, with the current climate change trend, these regions will experience increased honeybee pest risk. We conclude that honeybee pests could be modelled using bioclimatic data and remotely sensed variables in MaxEnt. Although the bioclimatic data were most relevant in all model results, incorporating vegetation seasonality variables to improve mapping the ‘actual’ habitat of key honeybee pests and to identify risk and containment zones needs to be further investigated.

  1. Transcriptome analysis in cotton boll weevil (Anthonomus grandis and RNA interference in insect pests.

    Directory of Open Access Journals (Sweden)

    Alexandre Augusto Pereira Firmino

    Full Text Available Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  2. Field evaluation of Bt cotton crop impact on nontarget pests: cotton aphid and boll weevil.

    Science.gov (United States)

    Sujii, E R; Togni, P H B; de A Ribeiro, P; de A Bernardes, T; Milane, P V G N; Paula, D P; Pires, C S S; Fontes, E M G

    2013-02-01

    Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.

  3. COMPARATIVE EFFICACY OF SYNTHETIC AND BOTANICAL INSECTICIDES AGAINST SUCKING INSECT PEST AND THEIR NATURAL ENEMIES ON COTTON CROP

    Directory of Open Access Journals (Sweden)

    M. A. Baker

    2016-08-01

    Full Text Available The Synthetic and botanical insecticides are relatively safer for environment and beneficial insects. The study was conducted in Rahim Yar Khan during the cotton cropping season 2014 to evaluate the comparative efficacy of two Synthetic insecticides i.e. Nitenpyram (Jasper 10% SL and Pyriproxyfen (Bruce 10.8% EC and two botanical extracts of Calotropic procera and Azadirachta indica, against sucking insect pest complex of cotton and their natural enemies. Upon reaching economic thresholds, the recommended field doses of all the insecticides were applied on cotton cultivar MNH-886. Data against sucking pests and their natural enemies was recorded 24 hours prior to insecticidal application and then 24, 48, 72 and 96 hours after insecticidal application. Results revealed that Nitenpyram was much toxic against sucking pests followed by Pyriproxyfen as compared to two botanical extracts. On the other hand, the synthetic insecticides did not prove safer for natural enemies as compared to botanical extracts. It was concluded that as an Integrated Pest Management (IPM strategy, botanical extracts can be used at low infestation levels so that ecosystem service of biological control may be sustained.

  4. SELECTIVITY OF INSECTICIDES TO PREDATORS OF PESTS COTTON PLANT SELETIVIDADE DE INSETICIDAS AOS PREDADORES DAS PRAGAS DO ALGODOEIRO

    Directory of Open Access Journals (Sweden)

    Julio Cezar Silveira Nunes

    2007-09-01

    Full Text Available

    The selectivity of insecticides for the complex of predators of the pests of cotton plant was evaluated in field experiment, in Goiânia- Goiás (Brazil, during the crop 1998/99. The experimental design was the randomized blocks with seven treatments and four repetitions (check, clorfluazuron, Bacillus thuringiensis, alanycarb, endosulfan and acephate in two amounts. The samplings were accomplished in beforeapplication, two days, seven and fourteen days after the treatment. For the obtained results (Henderson & Tilton, the products, in the decreasing order of selectivity, were: alanycarb, clorfluazuron, B. thuringiensis, endosulfan e acephate.

    KEY-WORDS: Insecta; insecticides; cotton plant; predators.

    A seletividade de inseticidas para o complexo das pragas do algodoeiro foi avaliada em experimento de campo, em Goiânia (GO, durante a safra 1998/99. O delineamento experimental foi em blocos ao acaso com sete tratamentos testemunha, clorfluazuron, B. thuringiensis, alanycarb, endosulfan e acephate em duas dosagens, em quatro repetições. As amostragens foram realizadas em pré-aplicação; aos dois, sete e quatorze dias após as pulverizações. Pelos resultados obtidos (fórmula de Herderson & Tilton, os produtos, na ordem decrescente de seletividade, foram: alanycarb, clorfluazuron, B. thuringiensis, endosulfan e acephate.

    PALAVRAS-CHAVE: Insecta; inseticidas; algodão; predadores.

  5. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton.

    Science.gov (United States)

    López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J; Cryan, Paul; Diffendorfer, Jay E; Goldstein, Joshua; Lasharr, Kelsie; Loomis, John; McCracken, Gary; Medellín, Rodrigo A; Russell, Amy; Semmens, Darius

    2014-01-01

    Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the "economic benefits" arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function--in this case bat population numbers--is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  6. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton.

    Directory of Open Access Journals (Sweden)

    Laura López-Hoffman

    Full Text Available Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the "economic benefits" arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars due to the introduction and widespread adoption of Bt (Bacillus thuringiensis cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function--in this case bat population numbers--is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  7. Market forces and technological substitutes cause fluctuations in the value of bat pest-control services for cotton

    Science.gov (United States)

    López-Hoffman, Laura; Wiederholt, Ruscena; Sansone, Chris; Bagstad, Kenneth J.; Cryan, Paul M.; Diffendorfer, James E.; Goldstein, Joshua; LaSharr, Kelsie; Loomis, John; McCracken, Gary; Medellin, Rodrigo A.; Russell, Amy; Semmens, Darius J.

    2014-01-01

    Critics of the market-based, ecosystem services approach to biodiversity conservation worry that volatile market conditions and technological substitutes will diminish the value of ecosystem services and obviate the “economic benefits” arguments for conservation. To explore the effects of market forces and substitutes on service values, we assessed how the value of the pest-control services provided by Mexican free-tailed bats (Tadarida brasiliensis mexicana) to cotton production in the southwestern U.S. has changed over time. We calculated service values each year from 1990 through 2008 by estimating the value of avoided crop damage and the reduced social and private costs of insecticide use in the presence of bats. Over this period, the ecosystem service value declined by 79% ($19.09 million U.S. dollars) due to the introduction and widespread adoption of Bt (Bacillus thuringiensis) cotton transgenically modified to express its own pesticide, falling global cotton prices and the reduction in the number of hectares in the U.S. planted with cotton. Our results demonstrate that fluctuations in market conditions can cause temporal variation in ecosystem service values even when ecosystem function – in this case bat population numbers – is held constant. Evidence is accumulating, however, of the evolution of pest resistance to Bt cotton, suggesting that the value of bat pest-control services may increase again. This gives rise to an economic option value argument for conserving Mexican free-tailed bat populations. We anticipate that these results will spur discussion about the role of ecosystem services in biodiversity conservation in general, and bat conservation in particular.

  8. Development of transgenic cotton lines expressing Allium sativum agglutinin (ASAL) for enhanced resistance against major sap-sucking pests.

    Science.gov (United States)

    Vajhala, Chakravarthy S K; Sadumpati, Vijaya Kumar; Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2013-01-01

    Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1-2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects.

  9. Development of Transgenic Cotton Lines Expressing Allium sativum Agglutinin (ASAL) for Enhanced Resistance against Major Sap-Sucking Pests

    Science.gov (United States)

    Nunna, Hariprasad Rao; Puligundla, Sateesh Kumar; Vudem, Dashavantha Reddy; Khareedu, Venkateswara Rao

    2013-01-01

    Mannose-specific Allium sativum leaf agglutinin encoding gene (ASAL) and herbicide tolerance gene (BAR) were introduced into an elite cotton inbred line (NC-601) employing Agrobacterium-mediated genetic transformation. Cotton transformants were produced from the phosphinothricin (PPT)-resistant shoots obtained after co-cultivation of mature embryos with the Agrobacterium strain EHA105 harbouring recombinant binary vector pCAMBIA3300-ASAL-BAR. PCR and Southern blot analysis confirmed the presence and stable integration of ASAL and BAR genes in various transformants of cotton. Basta leaf-dip assay, northern blot, western blot and ELISA analyses disclosed variable expression of BAR and ASAL transgenes in different transformants. Transgenes, ASAL and BAR, were stably inherited and showed co-segregation in T1 generation in a Mendelian fashion for both PPT tolerance and insect resistance. In planta insect bioassays on T2 and T3 homozygous ASAL-transgenic lines revealed potent entomotoxic effects of ASAL on jassid and whitefly insects, as evidenced by significant decreases in the survival, development and fecundity of the insects when compared to the untransformed controls. Furthermore, the transgenic cotton lines conferred higher levels of resistance (1–2 score) with minimal plant damage against these major sucking pests when bioassays were carried out employing standard screening techniques. The developed transgenics could serve as a potential genetic resource in recombination breeding aimed at improving the pest resistance of cotton. This study represents the first report of its kind dealing with the development of transgenic cotton resistant to two major sap-sucking insects. PMID:24023750

  10. Improving spatio-temporal benefit transfers for pest control by generalist predators in cotton in the southwestern U.S.

    Science.gov (United States)

    Wiederholt, Ruscena; Bagstad, Kenneth J.; McCracken, Gary F.; Diffendorfer, Jay E.; Loomis, John B.; Semmens, Darius J.; Russell, Amy L.; Sansone, Chris; LaSharr, Kelsie; Cryan, Paul; Reynoso, Claudia; Medellin, Rodrigo A.; Lopez-Hoffman, Laura

    2017-01-01

    Given rapid changes in agricultural practice, it is critical to understand how alterations in ecological, technological, and economic conditions over time and space impact ecosystem services in agroecosystems. Here, we present a benefit transfer approach to quantify cotton pest-control services provided by a generalist predator, the Mexican free-tailed bat (Tadarida brasiliensis mexicana), in the southwestern United States. We show that pest-control estimates derived using (1) a compound spatial–temporal model – which incorporates spatial and temporal variability in crop pest-control service values – are likely to exhibit less error than those derived using (2) a simple-spatial model (i.e., a model that extrapolates values derived for one area directly, without adjustment, to other areas) or (3) a simple-temporal model (i.e., a model that extrapolates data from a few points in time over longer time periods). Using our compound spatial–temporal approach, the annualized pest-control value was \\$12.2 million, in contrast to an estimate of \\$70.1 million (5.7 times greater), obtained from the simple-spatial approach. Using estimates from one year (simple-temporal approach) revealed large value differences (0.4 times smaller to 2 times greater). Finally, we present a detailed protocol for valuing pest-control services, which can be used to develop robust pest-control transfer functions for generalist predators in agroecosystems.

  11. pests

    African Journals Online (AJOL)

    Origin and management of neotropical cassava arthropod pests and E. ello encantado is reported from the. Galapagos Islands (Carvalho, 1980). Severe hornworm attacks can cause complete plant defoliation, resulting in bulk root loss and poor root quality. Losses in root production are influenced by plant age, soil fertility,.

  12. Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter)cropping systems in China : a simulation study

    NARCIS (Netherlands)

    Xia, J.

    1997-01-01

    Cotton aphid ( Aphis gossypii Glover) is the key insect pest of seedling cotton ( Gossypium hirsutum L. ) in China, particularly in the North China cotton region. The resulting annual losses amount to 10-15% of the attainable yield. Sole reliance on

  13. Trichogramma (Hymenoptera: Trichogrammatidae) ecology in a tropical bt transgenic cotton cropping system: sampling to improve seasonal pest impact estimates in the Ord River Irrigation Area, Australia.

    Science.gov (United States)

    Davies, A P; Pufke, U S; Zalucki, M P

    2009-06-01

    Trichogramma Westwood (Hymenoptera: Trichogrammatidae) cause high mortality rates in the potentially resistant pest species, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), and are considered integral to the resistance management plan for Bacillus thuringiensis transgenic cotton, Gossypium hirsutum L., production in the Ord River Irrigation Area (ORIA), Western Australia. Measured as percentage of parasitism, Trichogramma activity seems highly variable over time; yet, it contributes significantly to pest suppression at peak insect pest density. Environmental constraints on Trichogramma survival, especially insecticide applications, may limit their effectiveness. The decision to initiate insecticide applications in ORIA cotton crops is best delayed unless absolutely necessary to avoid disruption of Trichogramma impact on pests. Trichogramma disperse into young crops and display high intrinsic rates of increase effectively stifling Helicoverpa (Hardwick) population increase after initial egg lay during high-density years in the ORIA, and evidence suggests a possible preference for H. armigera host eggs.

  14. Effects of Transgenic Cry1Ac + CpTI Cotton on Non-Target Mealybug Pest Ferrisia virgata and Its Predator Cryptolaemus montrouzieri

    Science.gov (United States)

    Wu, Hongsheng; Zhang, Yuhong; Liu, Ping; Xie, Jiaqin; He, Yunyu; Deng, Congshuang; De Clercq, Patrick; Pang, Hong

    2014-01-01

    Recently, several invasive mealybugs (Hemiptera: Pseudococcidae) have rapidly spread to Asia and have become a serious threat to the production of cotton including transgenic cotton. Thus far, studies have mainly focused on the effects of mealybugs on non-transgenic cotton, without fully considering their effects on transgenic cotton and trophic interactions. Therefore, investigating the potential effects of mealybugs on transgenic cotton and their key natural enemies is vitally important. A first study on the effects of transgenic cotton on a non-target mealybug, Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae) was performed by comparing its development, survival and body weight on transgenic cotton leaves expressing Cry1Ac (Bt toxin) + CpTI (Cowpea Trypsin Inhibitor) with those on its near-isogenic non-transgenic line. Furthermore, the development, survival, body weight, fecundity, adult longevity and feeding preference of the mealybug predator Cryptolaemus montrouzieri Mulsant (Coleoptera: Coccinellidae) was assessed when fed F. virgata maintained on transgenic cotton. In order to investigate potential transfer of Cry1Ac and CpTI proteins via the food chain, protein levels in cotton leaves, mealybugs and ladybirds were quantified. Experimental results showed that F. virgata could infest this bivalent transgenic cotton. No significant differences were observed in the physiological parameters of the predator C. montrouzieri offered F. virgata reared on transgenic cotton or its near-isogenic line. Cry1Ac and CpTI proteins were detected in transgenic cotton leaves, but no detectable levels of both proteins were present in the mealybug or its predator when reared on transgenic cotton leaves. Our bioassays indicated that transgenic cotton poses a negligible risk to the predatory coccinellid C. montrouzieri via its prey, the mealybug F. virgata. PMID:24751821

  15. Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests.

    Science.gov (United States)

    Chitkowski, R L; Turnipseed, S G; Sullivan, M J; Bridges, W C

    2003-06-01

    Field studies were conducted from 1999 to 2001 to evaluate the efficacy of the transgenic cotton, Gossypium hirsutum (L.), genotype, Bollgard II (Monsanto 15985), which expresses two Bacillus thuringiensis Berliner (Bt) proteins (Cry1Ac + Cry2Ab) that are active against lepidopterous pests. Bollgard II was compared with Bollgard (DP50B), which expresses only one Bt protein (Cry1Ac), and, in all tests, the conventional variety, DP50, was used as a non-Bt control. Larval populations of the bollworm, Helicoverpa zea (Boddie), and the soybean looper, Pseudoplusia includens (Walker), were significantly lower in Bollgard II than in Bollgard and conventional cotton, and the proportion of fruit damaged by H. zea was also lower. Fall armyworm, Spodoptera frugiperda (J. E. Smith), populations were lower in Bollgard II than in Bollgard, although not significantly. Field tests were supplemented with laboratory bioassays in 2001 to compare mortality of S. frugiperda, and beet armyworms, Spodoptera exigua (Hübner), feeding on these genotypes. Mortality of both species was significantly greater on Bollgard II plant material than on either Bollgard or conventional cotton. This study demonstrated that the dual-toxin Bollgard II genotype is highly effective against lepidopterous pests that are not adequately controlled by the current single-toxin Bollgard varieties. If toxin expression in future Bollgard II varieties remains consistent with that of Monsanto 15985, supplemental insecticides will be reduced, and may be eliminated for lepidopterous pests in South Carolina.

  16. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae and Beneficial Insects on Conventional Cotton Crops in Australia

    Directory of Open Access Journals (Sweden)

    Robert K. Mensah

    2015-04-01

    Full Text Available Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp. against Helicoverpa spp. and beneficial insects (mostly predatory insects was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 102 to 109 of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 ´ 107 spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha than at higher rates (1.0 L/ha. Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production.

  17. Development of a Microbial-Based Integrated Pest Management Program for Helicoverpa spp. (Lepidoptera: Noctuidae) and Beneficial Insects on Conventional Cotton Crops in Australia.

    Science.gov (United States)

    Mensah, Robert K; Young, Alison; Rood-England, Leah

    2015-04-09

    Entomopathogenic fungi, when used as a microbial control agent against cotton pests, such as Helicoverpa spp., may have the potential to establish and spread in the environment and to have an impact on both pests and beneficial insects. Information on the effect of entomopathogenic fungi on pests and beneficial insects is crucial for a product to be registered as a biopesticide. The effect of the entomopathogenic fungus BC 639 (Aspergillus sp.) against Helicoverpa spp. and beneficial insects (mostly predatory insects) was studied in the laboratory and in cotton field trials. The results show that when Helicoverpa spp. second instar larvae were exposed to increasing concentrations (from 10² to 10⁸) of the entomopathogenic fungus BC 639, the optimum dose required to kill over 50% of the insects was 1.0 ´ 10⁷ spores/mL. In the field trials, the number of Helicoverpa spp. per metre on plots treated with 1.0 or 0.50 L/ha of BC 639 was the same as on plots treated with the recommended rate of the commercial insecticide, Indoxacarb. However, when plots were treated with 0.25 L/ha of BC 639, this was not as effective at controlling Helicoverpa spp. as 1.0 or 0.5 L/ha BC 639 or Indoxacarb. BC 639 had less effect on predatory insects when applied at lower rates (0.50 and 0.25 L/ha) than at higher rates (1.0 L/ha). Thus, BC 639 was more selective against predators when applied at lower rates than at the higher rate, but was also more selective than Indoxacarb. Thus, the ability of BC 639 to control Helicoverpa spp. effectively with a minimal effect on predatory insects indicates its potential for enhancing integrated pest management programs and to sustain cotton production.

  18. GhMYB25-like: a key factor in early cotton fibre development.

    Science.gov (United States)

    Walford, Sally-Ann; Wu, Yingru; Llewellyn, Danny J; Dennis, Elizabeth S

    2011-03-01

    MYB transcription factors have been implicated in regulation of the development of ovule epidermal cells into the elongated seed fibres of cotton. An R2R3 MYB, GhMYB25-like, identified from its reduced expression in a fibreless mutant of cotton (Xu142 fl), is here shown to play a key role in the very early stages of fibre cell differentiation. A GhMYB25-like promoter-GUS construct was expressed predominantly in the epidermal layers of cotton ovules before anthesis (-3days post-anthesis, dpa), increasing in expression in 0-dpa ovules, primarily in those epidermal cells expanding into fibres, and then in elongating fibres at +3dpa, declining thereafter. This was consistent with GhMYB25-like transcript abundance during fibre development. RNA interference suppression of GhMYB25-like resulted in cotton plants with fibreless seeds, but normal trichomes elsewhere, phenocopying the Xu142 fl mutant. Like Xu142 fl these plants had reduced expression of the fibre-expressed MYBs, GhMYB25 and GhMYB109, indicating that GhMYB25-like is upstream from those MYBs. This hierarchy was supported by the absence of any change in transcript level of GhMYB25-like in GhMYB25- and GhMYB109-silenced transgenic lines. Transgenic cotton with an additional copy of the native gene had elevated expression of GhMYB25-like in ovules, but no obvious increase in fibre initials, suggesting that there may be other factors that interact with GhMYB25-like to differentiate epidermal cells into fibre cells. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  19. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The predominant strategy for delaying pest resistance to Bt crops requires refuges of non-Bt host plants to promote survival of susceptible pests. To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. Here we report data from a 2010 survey showing field-evolved resistance to Cry1Ac of the major target pest, cotton bollworm (Helicoverpa armigera, in northern China. Laboratory bioassay results show that susceptibility to Cry1Ac was significantly lower in 13 field populations from northern China, where Bt cotton has been planted intensively, than in two populations from sites in northwestern China where exposure to Bt cotton has been limited. Susceptibility to Bt toxin Cry2Ab did not differ between northern and northwestern China, demonstrating that resistance to Cry1Ac did not cause cross-resistance to Cry2Ab, and implying that resistance to Cry1Ac in northern China is a specific adaptation caused by exposure to this toxin in Bt cotton. Despite the resistance detected in laboratory bioassays, control failures of Bt cotton have not been reported in China. This early warning may spur proactive countermeasures, including a switch to transgenic cotton producing two or more toxins distinct from Cry1A toxins.

  20. Predator-In-First: A novel biocontrol strategy for managing thrips and other key pests in pepper crops

    Science.gov (United States)

    Predator-In-First (PIF) is a novel biological-based approach for sustainable control of thrips and other key pests that threaten pepper production in protected and outdoor culture. In the current study pepper plants were used as a model crop system and the key component of this method involves the r...

  1. Contradictions in host plant resistance to pests: spider mite (Tetranychus urticae Koch) behaviour undermines the potential resistance of smooth-leaved cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    Reddall, Amelia A; Sadras, Victor O; Wilson, Lewis J; Gregg, Peter C

    2011-03-01

    Two-spotted spider mites (Tetranychus urticae Koch) oviposit near leaf veins or in leaf folds on the undersides of cotton (Gossypium hirsutum L.) leaves where the humid boundary layer offers protection from desiccation. The authors predicted that the boundary layer of glabrous cotton leaves should be shallower than that of hairy leaves, providing some resistance to mites. The dynamics of mite populations, leaf damage, leaf gas exchange and crop yield on two leaf hair isolines (smooth versus hairy) in two genetic backgrounds was assessed. Mite colonies developed faster on the hairy leaf isolines, but leaf damage per mite was higher in smooth leaf isolines, indicating more intense damage. A 50% reduction in photosynthesis on the hairy isolines required 1.8 times more mites than smooth leaves. The yield of cotton was reduced in + mite treatments, but the magnitude of reduction was similar for hairy and smooth isolines. Paradoxically, the relative inhospitality of glabrous leaves may have induced mites to concentrate in protected leaf sections, causing more localised and more severe damage, negating the yield benefits from fewer mites. These results highlight interactions between leaf microenvironment, pest behaviour and plant productivity that may have implications for other instances of plant resistance. Copyright © 2010 Society of Chemical Industry.

  2. Brazilian Free-tailed Bats (Tadarida brasiliensis) as Insect Pest Regulators in Transgenic and Conventional Cotton Crops

    Science.gov (United States)

    During the past 12,000 years agricultural systems have transitioned from natural habitats to conventional agricultural regions, and recently to large areas of genetically- engineered (GE) croplands. This GE revolution occurred for cotton in a span of slightly more than a decade w...

  3. Losing Chlordimeform Use in Cotton Production. Its Effects on the Economy and Pest Resistance. Agricultural Economic Report Number 587.

    Science.gov (United States)

    Osteen, Craig; Suguiyama, Luis

    This report examines the economic implications of losing chlordimeform use on cotton and considers chlordimeform's role in managing the resistance of bollworms and tobacco budworms to synthetic pyrethroids. It estimates changes in prices, production, acreage, consumer expenditures, aggregate producer returns, regional crop effects, and returns to…

  4. Effects of certain key metrics of hydroentanglement system on properties of nonwoven fabrics made with commercially cleaned greige cotton

    Science.gov (United States)

    Research was conducted to determine the effects of certain key process metrics of a commercial-grade hydroentanglement system on properties of the nonwoven fabrics made with cleaned Upland greige cotton lint. The metrics studied, among others, were the hydroentangling water pressure, the strip orif...

  5. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): A nuisance pest developing in cotton gin trash piles.

    Science.gov (United States)

    Larger black flour beetles (LBFB), Cynaeus angustus, feed on saprophytic fungi found in gin trash piles, and become nuisance pests in homes and businesses. We examined the dose-response of three entomopathogenic nematode species (Steinernema carpocapsae, S. feltiae, and Heterorhabditis bacteriophora...

  6. Preliminary studies of pest constraints to cotton seedlings in a direct seeding mulch-based system in Cameroon

    NARCIS (Netherlands)

    Brevault, T.; Guibert, H.; Naudin, K.

    2009-01-01

    The present study evaluated the pest constraints of an innovative crop management system in Cameroon involving conservation tillage and direct seeding mulch-based strategies. We hypothesized that the presence of mulch (i) would support a higher density of phytophagous arthropods particularly

  7. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    Directory of Open Access Journals (Sweden)

    Hicham Fatnassi

    Full Text Available Frankliniella occidentalis (Pergande is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i the air temperature and air humidity were very heterogeneously distributed within the crop, (ii pest populations aggregated in the most favourable climatic areas and (iii the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  8. Within-Crop Air Temperature and Humidity Outcomes on Spatio-Temporal Distribution of the Key Rose Pest Frankliniella occidentalis.

    Science.gov (United States)

    Fatnassi, Hicham; Pizzol, Jeannine; Senoussi, Rachid; Biondi, Antonio; Desneux, Nicolas; Poncet, Christine; Boulard, Thierry

    2015-01-01

    Frankliniella occidentalis (Pergande) is a key pest of various crops worldwide. In this study, we analyse the dependence of the infestation of this pest on spatially distributed micro climatic factors in a rose greenhouse. Despite the importance of this subject, the few existing studies have been realized in laboratory rather than in greenhouse conditions. However, recent progress on greenhouse microclimate characterisation has highlighted the strong indoor climate heterogeneity that may influence the within-crop pest distribution. In this study, both microclimate (air temperature and humidity) and thrips distribution were simultaneously mapped in a rose greenhouse. The measurements were sensed in a horizontal plane situated at mid-height of the rose crop inside the greenhouse. Simultaneously, thrips population dynamics were assessed after an artificial and homogeneous infestation of the rose crop. The spatio-temporal distribution of climate and thrips within the greenhouse were compared, and links between thrips infestation and climatic conditions were investigated. A statistical model was used to define the favourable climate conditions for thrips adults and larvae. Our results showed that (i) the air temperature and air humidity were very heterogeneously distributed within the crop, (ii) pest populations aggregated in the most favourable climatic areas and (iii) the highest population density of thrips adults and larvae were recorded at 27°C and 22°C for temperature and 63% and 86% for humidity, respectively. These findings confirm, in real rose cropping conditions, previous laboratory studies on the F. occidentalis climatic optimum and provide a solid scientific support for climatic-based control methods against this pest.

  9. Chilling Stress—The Key Predisposing Factor for Causing Alternaria alternata Infection and Leading to Cotton (Gossypium hirsutum L.) Leaf Senescence

    Science.gov (United States)

    Zhao, Jingqing; Li, Sha; Jiang, Tengfei; Liu, Zhi; Zhang, Wenwei; Jian, Guiliang; Qi, Fangjun

    2012-01-01

    Leaf senescence plays a vital role in nutrient recycling and overall capacity to assimilate carbon dioxide. Cotton premature leaf senescence, often accompanied with unexpected short-term low temperature, has been occurring with an increasing frequency in many cotton-growing areas and causes serious reduction in yield and quality of cotton. The key factors for causing and promoting cotton premature leaf senescence are still unclear. In this case, the relationship between the pre-chilling stress and Alternaria alternata infection for causing cotton leaf senescence was investigated under precisely controlled laboratory conditions with four to five leaves stage cotton plants. The results showed short-term chilling stress could cause a certain degree of physiological impairment to cotton leaves, which could be recovered to normal levels in 2–4 days when the chilling stresses were removed. When these chilling stress injured leaves were further inoculated with A. alternata, the pronounced appearance and development of leaf spot disease, and eventually the pronounced symptoms of leaf senescence, occurred on these cotton leaves. The onset of cotton leaf senescence at this condition was also reflected in various physiological indexes such as irreversible increase in malondialdehyde (MDA) content and electrolyte leakage, irreversible decrease in soluble protein content and chlorophyll content, and irreversible damage in leaves' photosynthesis ability. The presented results demonstrated that chilling stress acted as the key predisposing factor for causing A. alternata infection and leading to cotton leaf senescence. It could be expected that the understanding of the key factors causing and promoting cotton leaf senescence would be helpful for taking appropriate management steps to prevent cotton premature leaf senescence. PMID:22558354

  10. Frankliniella fusca resistance to neonicotinoid insecticides: an emerging challenge for cotton pest management in the eastern United States.

    Science.gov (United States)

    Huseth, Anders S; Chappell, Thomas M; Langdon, Kevin; Morsello, Shannon C; Martin, Scott; Greene, Jeremy K; Herbert, Ames; Jacobson, Alana L; Reay-Jones, Francis Pf; Reed, Timothy; Reisig, Dominic D; Roberts, Phillip M; Smith, Ron; Kennedy, George G

    2016-10-01

    Over the past two decades, neonicotinoid seed treatments have become the primary method to manage tobacco thrips, Frankliniella fusca Hinds, on seedling cotton. Because this insect is highly polyphagous and the window of insecticide exposure is short, neonicotinoid resistance was expected to pose a minimal risk. However, reports of higher than expected F. fusca seedling damage in seed-treated cotton fields throughout the Mid-South and Southeast US production regions suggested neonicotinoid resistance had developed. To document this change, F. fusca populations from 86 different locations in the eastern United States were assayed in 2014 and 2015 for imidacloprid and thiamethoxam resistance to determine the extent of the issue in the region. Approximately 57 and 65% of the F. fusca populations surveyed had reduced imidacloprid and thiamethoxam sensitivity respectively. Survivorship in diagnostic bioassays was significantly different at both the state and regional scales. Multiple-dose bioassays conducted on 37 of the populations documented up to 55- and 39-fold resistance ratios for imidacloprid and thiamethoxam respectively. Estimates of neonicotinoid resistance indicate an emerging issue for management of F. fusca in the eastern United States. Significant variation in survivorship within states and regions indicated that finer-scale surveys were needed to determine factors (genetic, insecticide use) driving resistance evolution. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): a nuisance pest developing in cotton gin trash piles.

    Science.gov (United States)

    Nansen, Christian; Stokes, Bryan; James, Jacob; Porter, Patrick; Shields, Eilson J; Wheeler, Terry; Meikle, William G

    2013-04-01

    The larger black flour beetles, Cynaeus angustus (LeConte) (Coleoptera: Tenebrionidae), feeds on saprophytic fungi found in gin trash piles and occasionally becomes a nuisance pest in adjacent homes and businesses. The potential of Steinernema carpocapsae 'NY 001,' as a potential control agent of larger black flour beetle under experimental conditions was examined with particular reference to the importance of soil moisture content. Without prospects of insecticides being labeled for control of larger black flour beetle in gin trash, the data presented here support further research into applications of entomopathogenic nematodes underneath gin trash piles as a way to minimize risk of larger black flour beetle populations causing nuisance to nearby homes and businesses.

  12. Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin

    Directory of Open Access Journals (Sweden)

    Yadouleton Anges

    2011-04-01

    Full Text Available Abstract Background Pyrethroid insecticides, carbamate and organophosphate are the classes of insecticides commonly used in agriculture for crop protection in Benin. Pyrethroids remain the only class of insecticides recommended by the WHO for impregnation of bed nets. Unfortunately, the high level of pyrethroid resistance in Anopheles gambiae s.l., threatens to undermine the success of pyrethroid treated nets. This study focuses on the investigation of agricultural practices in cotton growing areas, and their direct impact on larval populations of An. gambiae in surrounding breeding sites. Methods The protocol was based on the collection of agro-sociological data where farmers were subjected to semi-structured questionnaires based on the strategies used for crop protection. This was complemented by bioassay tests to assess the susceptibility of malaria vectors to various insecticides. Molecular analysis was performed to characterize the resistance genes and the molecular forms of An. gambiae. Insecticide residues in soil samples from breeding sites were investigated to determine major factors that can inhibit the normal growth of mosquito larvae by exposing susceptible and resistant laboratory strains. Results There is a common use by local farmers of mineral fertilizer NPK at 200 kg/ha and urea at 50 kg/hectare following insecticide treatments in both the Calendar Control Program (CCP and the Targeted Intermittent Control Program (TICP. By contrast, no chemicals are involved in Biological Program (BP where farmers use organic and natural fertilizers which include animal excreta. Susceptibility test results confirmed a high resistance to DDT. Mean mortality of An. gambiae collected from the farms practicing CCP, TICP and BP methods were 33%, 42% and 65% respectively. An. gambiae populations from areas using the CCP and TICP programs showed resistance to permethrin with mortality of 50% and 58% respectively. By contrast, bioassay test results of

  13. Assessment of key factors responsible for the pest status of the bean flower thrips Megalurothrips sjostedti (Thysanoptera: Thripidae) in West Africa

    OpenAIRE

    Tamò, M.; J. Baumgärtner; Delucchi, V.; Herren, H.R.

    2017-01-01

    Megalurothrips sjostedti (Trybom) is an important pest of cowpea (Vigna unguiculata) in West Africa. Three key factors assumed to be responsible for its pest status are analysed, the survival on alternative host-plants during the dry season, the inefficient biotic mortality factors regulating population growth, and the effect of larval feeding on the development of cowpea flower buds. Extensive surveys indicate clearly that M. sjostedti survives the dry season on a wide range of alternative h...

  14. An Integrated Management Approach for Red Palm Weevil Rhynchophorus Ferrugineus Oliv. a Key Pest of Date Palm in the Middle East

    Directory of Open Access Journals (Sweden)

    V.A. Abraham

    1998-01-01

    Full Text Available The date palm, Phoenix doctylifera L., is the most important fruit crop in the Middle East, cultivated since prehistoric times. Since mid-eighties the dreaded pest of palms viz. the red palm weevil. Rhynchophorus ferrugineus Oliv. has been reported to cause serious damage to date palm in certain pockets of the Gulf region. The pest subsequently spread to most of the date growing centers in the region and attained a key pest status. The unique agroclimatic conditions prevailing in the Middle East and the nature of the crop, coupled with transportation of planting material have helped in the rapid development and spread of the pest in a short period of about a decade Feeding of the soft tissues by this concealed borer often leads to the death of the palm. if timely curative measures are not adopted. However, taking up curative measures in the early stage of attack is often not possible as detection in infestation in the early stage is difficult. Moreover, the presence of neglected date gardens, beheaded palms, retention of unwanted off shoots etc. make the problem intricate. To tackle this problem from various angles and successfully combat the pest, the following Integrated Pest Management (IPM programme is suggested. The major components of the IPM strategy are surveillance, trapping the weevil using pheromones lures, detection of infestation by examining palms. Eliminating hidden breeding sites, clearing abandoned gardens, maintaining crop and field sanitation, preventive chemical treatments, curative chemical control implementing quarantine measures and training and education.

  15. Aphid honeydew quality as a food source for parasitoids is maintained in Bt cotton.

    Science.gov (United States)

    Hagenbucher, Steffen; Wäckers, Felix L; Romeis, Jörg

    2014-01-01

    Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.

  16. Aphid honeydew quality as a food source for parasitoids is maintained in Bt cotton.

    Directory of Open Access Journals (Sweden)

    Steffen Hagenbucher

    Full Text Available Bt-transgenic cotton has proven to be highly efficient in controlling key lepidopteran pests. One concern with the deployment of Bt cotton varieties is the potential proliferation of non-target pests. We previously showed that Bt cotton contained lower concentrations of insecticidal terpenoids as a result of reduced caterpillar damage, which benefited the aphid Aphis gossypii. It is thus important that non-target herbivores are under biological control in Bt cotton fields. The induction or lack of induction of terpenoids could also influence the quality of aphid honeydew, an important food source for beneficial insects. We therefore screened A. gossypii honeydew for cotton terpenoids, that are induced by caterpillars but not the aphids. We then tested the influence of induced insect-resistance of cotton on honeydew nutritional quality for the aphid parasitoid Lysiphlebus testaceipes and the whitefly parasitoid Eretmocerus eremicus. We detected the cotton terpenoids gossypol and hemigossypolone in A. gossypii honeydew. Although a feeding assay demonstrated that gossypol reduced the longevity of both parasitoid species in a non-linear, dose-dependent manner, the honeydew was capable of sustaining parasitoid longevity and reproduction. The level of caterpillar damage to Bt and non-Bt cotton had no impact on the quality of honeydew for the parasitoids.These results indicate that the nutritional quality of honeydew is maintained in Bt cotton and is not influenced by induced insect resistance.

  17. Farm-scale evaluation of the impacts of transgenic cotton on biodiversity, pesticide use, and yield.

    Science.gov (United States)

    Cattaneo, Manda G; Yafuso, Christine; Schmidt, Chris; Huang, Cho-ying; Rahman, Magfurar; Olson, Carl; Ellers-Kirk, Christa; Orr, Barron J; Marsh, Stuart E; Antilla, Larry; Dutilleul, Pierre; Carrière, Yves

    2006-05-16

    Higher yields and reduced pesticide impacts are needed to mitigate the effects of agricultural intensification. A 2-year farm-scale evaluation of 81 commercial fields in Arizona show that use of transgenic Bacillus thuringiensis (Bt) cotton reduced insecticide use, whereas transgenic cotton with Bt protein and herbicide resistance (BtHr) did not affect herbicide use. Transgenic cotton had higher yield than nontransgenic cotton for any given number of insecticide applications. However, nontransgenic, Bt and BtHr cotton had similar yields overall, largely because higher insecticide use with nontransgenic cotton improved control of key pests. Unlike Bt and BtHr cotton, insecticides reduced the diversity of nontarget insects. Several other agronomic and ecological factors also affected biodiversity. Nevertheless, pairwise comparisons of diversity of nontarget insects in cotton fields with diversity in adjacent noncultivated sites revealed similar effects of cultivation of transgenic and nontransgenic cotton on biodiversity. The results indicate that impacts of agricultural intensification can be reduced when replacement of broad-spectrum insecticides by narrow-spectrum Bt crops does not reduce control of pests not affected by Bt crops.

  18. Early warning of cotton bollworm resistance associated with intensive planting of Bt cotton in China

    National Research Council Canada - National Science Library

    Zhang, Haonan; Yin, Wei; Zhao, Jing; Jin, Lin; Yang, Yihua; Wu, Shuwen; Tabashnik, Bruce E; Wu, Yidong

    2011-01-01

    .... To delay pest resistance to transgenic cotton producing Bt toxin Cry1Ac, farmers in the United States and Australia planted refuges of non-Bt cotton, while farmers in China have relied on "natural...

  19. Leaf extrafloral nectaries enhance biological control of a key economic pest, Grapholita molesta (Lepidoptera: Tortricidae), in peach (Rosales: Rosaceae).

    Science.gov (United States)

    Mathews, Clarissa R; Brown, Mark W; Bottrell, Dale G

    2007-04-01

    Extrafloral nectaries (EFNs) in many plant species produce sugary secretions that commonly attract ants. This research determined the impact of peach (Prunus persica L. Batsch) EFNs on the biological control of the oriental fruit moth, Grapholita molesta (Busck) (Lepidoptera: Tortricidae), a key economic pest in peach orchards, and studied interactions of EFNs and ants. Studies (2002-2005) in peach orchards of the mid-Atlantic United States showed that 'Lovell' peach trees with EFNs supported more parasitic Hymenoptera in the spring and increased the parasitism of G. molesta larvae later in the season than those trees without EFNs. Ant exclusion experiments revealed that trees with EFNs harbored fewer G. molesta larvae when ants were permitted access to the tree canopies. Furthermore, the trees with EFNs had approximately 90% less fruit injury by G. molesta, indicating that EFNs have a protective role for the fruit as well. The results show that the combined actions of ants and parasitic Hymenoptera confer an EFN-mediated protective effect spanning the whole fruit growing season. When EFNs are present, naturally occurring biological control agents can reduce damage by G. molesta in peach orchards without insecticide inputs. The EFNs are an important host-plant characteristic that should be retained in future peach cultivar selections as a means of enhancing biological control.

  20. Unaspis lansivora sp. n. (Hemiptera: Diaspididae), a new pest of Lansium domesticum (Meliaceae), and a key to Unaspis species.

    Science.gov (United States)

    Watson, Gillian W

    2015-01-13

    Since 2004, an undescribed species of Unaspis (Hemiptera: Diaspididae) has become a damaging pest on Lansium domesticum Corrêa in the Philippines. Its attack on the leaves causes premature senescence and defoliation, resulting in the production of few, underdeveloped, sour fruit and sometimes killing the trees. The scale was misidentified initially as Lepidosaphes ulmi (Linnaeus) and then as Unaspis citri (Comstock), but further study indicated that it was an undescribed species of potential plant quarantine significance. The pest is described as U. lansivora sp. n. and an identification key to all 19 species of Unaspis is provided. Its distribution, host range and prospects for its biological control are discussed.

  1. Application of Predator-in-First approach in managing thrips and other key pests in pepper crops

    Science.gov (United States)

    The establishment of biocontrol agents is critical for success of a biological control strategies. Predator-In-First (PIF) is a prophylactic control strategy that aims to establish predators before the appearance of pests in an agro-ecosystem. PIF uses the characteristics of generalist phytoseiid mi...

  2. Temperature variability is a key component in accurately forecasting the effects of climate change on pest phenology.

    Science.gov (United States)

    Merrill, Scott C; Peairs, Frank B

    2017-02-01

    Models describing the effects of climate change on arthropod pest ecology are needed to help mitigate and adapt to forthcoming changes. Challenges arise because climate data are at resolutions that do not readily synchronize with arthropod biology. Here we explain how multiple sources of climate and weather data can be synthesized to quantify the effects of climate change on pest phenology. Predictions of phenological events differ substantially between models that incorporate scale-appropriate temperature variability and models that do not. As an illustrative example, we predicted adult emergence of a pest of sunflower, the sunflower stem weevil Cylindrocopturus adspersus (LeConte). Predictions of the timing of phenological events differed by an average of 11 days between models with different temperature variability inputs. Moreover, as temperature variability increases, developmental rates accelerate. Our work details a phenological modeling approach intended to help develop tools to plan for and mitigate the effects of climate change. Results show that selection of scale-appropriate temperature data is of more importance than selecting a climate change emission scenario. Predictions derived without appropriate temperature variability inputs will likely result in substantial phenological event miscalculations. Additionally, results suggest that increased temperature instability will lead to accelerated pest development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. A new avocado pest in Central America (Lepidoptera: Tortricidae) with a key to the Lepidoptera larvae threatening avocados in California

    Science.gov (United States)

    Cryptaspasma perseana Gilligan & Brown, new species, is described and illustrated from Mexico and Guatemala. The species is a potential pest of fruit of cultivated avocado, Persea americana (Lauraceae). Images of adults, male secondary structures, male and female genitalia, eggs, larvae, and pupae a...

  4. Transgenic Bt cotton driven by the green tissue-specific promoter shows strong toxicity to lepidopteran pests and lower Bt toxin accumulation in seeds.

    Science.gov (United States)

    Wang, Qing; Zhu, Yi; Sun, Lin; Li, Lebin; Jin, Shuangxia; Zhang, Xianlong

    2016-02-01

    A promoter of the PNZIP (Pharbitis nil leucine zipper) gene (1.459 kb) was cloned from Pharbitis nil and fused to the GUS (β-glucuronidase) and Bacillus thuringiensis endotoxin (Cry9C) genes. Several transgenic PNZIP::GUS and PNZIP::Cry9C cotton lines were developed by Agrobacterium-mediated transformation. Strong GUS staining was detected in the green tissues of the transgenic PNZIP::GUS cotton plants. In contrast, GUS staining in the reproductive structures such as petals, anther, and immature seeds of PNZIP::GUS cotton was very faint. Two transgenic PNZIP::Cry9C lines and one transgenic cauliflower mosaic virus (CaMV) 35S::Cry9C line were selected for enzyme-linked immunosorbent assay (ELISA) and insect bioassays. Expression of the Cry9C protein in the 35S::Cry9C line maintained a high level in most tissues ranging from 24.6 to 45.5 μg g(-1) fresh weight. In green tissues such as the leaves, boll rinds, and bracts of the PNZIP::Cry9C line, the Cry9C protein accumulated up to 50.2, 39.7, and 48.3 μg g(-1) fresh weight respectively. In contrast, seeds of the PNZIP::Cry9C line (PZ1.3) accumulated only 0.26 μg g(-1) fresh weight of the Cry9C protein, which was 100 times lower than that recorded for the seeds of the CaMV 35S::Cry9C line. The insect bioassay showed that the transgenic PNZIP::Cry9C cotton plant exhibited strong resistance to both the cotton bollworm and the pink bollworm. The PNZIP promoter could effectively drive Bt toxin expression in green tissues of cotton and lower accumulated levels of the Bt protein in seeds. These features should allay public concerns about the safety of transgenic foods. We propose the future utility of PNZIP as an economical, environmentally friendly promoter in cotton biotechnology.

  5. Environmental Risk Assessment of Transgenic Cotton in South Sulawesi, lndonesia: lmpact on Soil Microorganisms (KEY-NOTE LECTURE)

    OpenAIRE

    Antonius, Suwanto; Yusminah, HALA; Nur, Amin

    2003-01-01

    The impacts of transgenic cotton containing Bacillus thuringiensis cry 1A(c) gene (Bollgard = BG) and its parental cultivar Delta Pine (DP) on soil microorganisms in South Sulawesi cotton field, lndonesia were assessed. Soil samples were collected at the interval of 0, 1, 3 and 5 months after planting in 2002 and 2003. Standard microbiological techniques were conducted to calculate the number of total bacteria, bacteria resistant to streptomycin (10 and 50 mg/ml) and kanamycin (10 and 50 mg/m...

  6. Early detection of field-evolved resistance to Bt cotton in China: cotton bollworm and pink bollworm.

    Science.gov (United States)

    Tabashnik, Bruce E; Wu, Kongming; Wu, Yidong

    2012-07-01

    Transgenic crops producing Bacillus thuringiensis (Bt) toxins kill some major insect pests, but pests can evolve resistance and thereby reduce the effectiveness of such Bt crops. The main approach for slowing pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to cotton producing Bt toxin Cry1Ac, several countries have required refuges of non-Bt cotton, while farmers in China have relied on "natural" refuges of non-Bt host plants other than cotton. This strategy is designed for cotton bollworm (Helicoverpa armigera), which attacks many crops and is the primary target of Bt cotton in China, but it does not apply to pink bollworm (Pectinophora gossypiella), which feeds almost entirely on cotton in China. Here we review evidence of field-evolved resistance to Cry1Ac by cotton bollworm in northern China and by pink bollworm in the Yangtze River Valley of China. For both pests, results of laboratory diet bioassays reveal significantly decreased susceptibility of field populations to Cry1Ac, yet field control failures of Bt cotton have not been reported. The early detection of resistance summarized here may spur countermeasures such as planting Bt cotton that produces two or more distinct toxins, increased planting of non-Bt cotton, and integration of other management tactics together with Bt cotton. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Harmonized biosafety regulations are key to trust building in regional agbiotech partnerships: the case of the Bt cotton project in East Africa

    Directory of Open Access Journals (Sweden)

    Ezezika Obidimma C

    2012-11-01

    Full Text Available Abstract Background The Bacillus thuringiensis (Bt cotton public-private partnership (PPP project in East Africa was designed to gather baseline data on the effect of Bt cotton on biodiversity and the possibility of gene flow to wild cotton varieties. The results of the project are intended to be useful for Kenya, Uganda, and Tanzania when applying for biosafety approvals. Using the backdrop of the different biosafety regulations in the three countries, we investigate the role of trust in the Bt cotton partnership in East Africa. Methods Data were collected by reviewing relevant project documents and peer-reviewed articles on Bt cotton in Tanzania, Kenya and Uganda; conducting face-to-face interviews with key informants of the project; and conducting direct observations of the project. Data were analyzed based on recurring and emergent themes to create a comprehensive narrative on how trust is understood and built among the partners and with the community. Results We identified three factors that posed challenges to building trust in the Bt cotton project in East Africa: different regulatory regimes among the three countries; structural and management differences among the three partner institutions; and poor public awareness of GM crops and negative perceptions of the private sector. The structural and management differences were said to be addressed through joint planning, harmonization of research protocols, and management practices, while poor public awareness of GM crops and negative perceptions of the private sector were said to be addressed through open communication, sharing of resources, direct stakeholder engagement and awareness creation. The regulatory differences remained outside the scope of the project. Conclusions To improve the effectiveness of agbiotech PPPs, there is first a need for a regulatory regime that is acceptable to both the public and private sector partners. Second, early and continuous joint planning; sharing of

  8. Assessing the role of non-cotton refuges in delaying #Helicoverpa armigera# resistance to Bt cotton in West Africa

    OpenAIRE

    Brévault, Thierry; Nibouche, Samuel; Achaleke, Joseph; Carrière, Yves

    2012-01-01

    Non-cotton host plants without Bacillus thuringiensis (Bt) toxins can provide refuges that delay resistance to Bt cotton in polyphagous insect pests. It has proven difficult, however, to determine the effective contribution of such refuges and their role in delaying resistance evolution. Here, we used biogeochemical markers to quantify movement of Helicoverpa armigera moths from non-cotton hosts to cotton fields in three agricultural landscapes of the West African cotton belt (Cameroon) where...

  9. Genetic transformation of cry1EC gene into cotton ( Gossypium ...

    African Journals Online (AJOL)

    Cotton is the chief fibre crop of global importance. It plays a significant role in the national economy. Cotton crop is vulnerable to a number of insect species, especially to the larvae of lepidopteron pests. 60% insecticides sprayed on cotton are meant to control the damage caused by bollworm complex. Transgenic ...

  10. Analysis of input demand by smallholder cotton producers in eastern ...

    African Journals Online (AJOL)

    Cotton farming in Uganda is mostly undertaken by smallholder farmers who face invariably several problems such as pests, price volatility, weather uncertainty and transaction costs with limited use of purchased inputs such as cotton seed and pesticides. This study focused on transaction costs that cotton farmers incur.

  11. The using of gibberellic acid hormone on cotton mature embryo ...

    African Journals Online (AJOL)

    The wild species of cotton have important role in cotton breeding due to their favorable traits, which include pest and disease resistance, drought tolerance, fiber quality and male cytoplasmic sterility. Transferring these favorable genes from wild species to commercial cultivars of cotton by the traditional methods or classical ...

  12. Insecticide use and practices among cotton farmers in northern ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum L.) is an important cash crop in Uganda. Insecticide application practices among cotton growers in northern Uganda were examined to determine the pests targeted and the compliance of control measures with the standards recommended by the Uganda's Cotton Development Organization ...

  13. Efficacy of Soybean's Event DAS-81419-2 Expressing Cry1F and Cry1Ac to Manage Key Tropical Lepidopteran Pests Under Field Conditions in Brazil.

    Science.gov (United States)

    Marques, L H; Castro, B A; Rossetto, J; Silva, O A B N; Moscardini, V F; Zobiole, L H S; Santos, A C; Valverde-Garcia, P; Babcock, J M; Rule, D M; Fernandes, O A

    2016-08-01

    Bacillus thuringiensis (Bt) event DAS-81419-2 (Conkesta technology) in soybean, Glycine max (L.) Merrill, expresses Cry1F and Cry1Ac proteins to provide protection from feeding by several lepidopteran pests. A total of 27 field experiments across nine locations were conducted from 2011 to 2015 in southern and central Brazil to characterize the efficacy of DAS-81419-2 soybean infested with Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae), Chrysodeixis includens (Walker) (Lepidoptera: Noctuidae), Heliothis virescens (F.) (Lepidoptera: Noctuidae), and Spodoptera cosmioides (Walker) (Lepidoptera: Noctuidae) during vegetative (V4) and reproductive (R2 and R4) crop developmental stages. The efficacy of DAS-81419-2 was compared to that of a non-Bt isogenic variety managed with or without applications of commercial foliar insecticides for lepidopteran control. DAS-81419-2 soybean consistently experienced defoliation levels of 0.5% or less (compared with 20.05-56.74% in the non-Bt, nonsprayed treatment) and larval survival of < 0.1% in all four species across the vegetative and reproductive plant stages evaluated. The efficacy of DAS-81419-2 was significantly higher than commercial foliar insecticides applied to the non-Bt variety. DAS-81419-2 soybeans containing two highly effective Bt proteins are expected to be a more robust IRM tool compared to single-trait Bt technologies. The consistent efficacy of DAS-81419-2 soybeans across years, locations, and crop stages suggests that it will be a valuable product for management of hard-to-control key lepidopteran pests in South American soybean production. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Pest Movement

    Directory of Open Access Journals (Sweden)

    Rod Bhar

    1998-12-01

    Full Text Available Maintenance of woody borders surrounding crop fields is desirable for biodiversity conservation. However, for crop pest management, the desirability of woody borders depends on the trade-off between their effects at the local field scale and the landscape scale. At the local scale, woody borders can reduce pest populations by increasing predation rates, but they can also increase pest populations by providing complementary habitats and reducing movement rate of pests out of crop fields. At the regional scale, woody borders can reduce pest populations by reducing colonization of newly planted crop fields. Our objective was to develop guidelines for maximizing pest control while maintaining woody borders in the landscape. We wished to determine the conditions under which the regional effect of borders on colonization can outweigh local enhancement effects of borders on pest populations. We built a stochastic, individual-based, spatially implicit simulation model of a specialist insect population in a landscape divided into a number of crop fields. We conducted simulations to determine the conditions under which woody borders enhance vs. reduce the regional pest population size. The following factors were considered: landscape fragmentation, crop rotation period, barrier effect of woody borders, disperser success rate, and effect of woody borders on local survival. The simulation results suggest that woody borders are most likely to enhance regional control of crop pests if (1 the woody borders are very effective in reducing insect movement from one crop field to another, and (2 crop rotation is on a very short cycle. Based on these results, our preliminary recommendations are that woody borders should contain dense, tall vegetation to reduce insect movement, and crops should be rotated on as short a cycle as possible. These conditions should ensure that woody borders can be maintained for their conservation value without enhancing crop pest

  15. Distribution and Potential Impact of Feral Cotton on the ...

    African Journals Online (AJOL)

    Cotton (Gossypium hirsutum) production is limited by bollworms that cause declining yields and poor lint quality. Generally, farmers manage pests by employing Integrated Pest Management (IPM) strategies, which include biological, cultural, physical and chemical approaches. Pest management by quarantine and ...

  16. Development of a pest risk analysis for Phytophthora ramorum for the European Union; the key deliverable from the EU-Funded project RAPRA

    Science.gov (United States)

    Claire Sansford; Alan Inman; Joan Webber

    2010-01-01

    Pest Risk Analysis (PRA) is an internationally recognized, structured process of determining whether plant pests and pathogens that are absent from a country or area could enter, establish, and cause an economic or environmental risk that is deemed unacceptable. PRA is also used to help identify phytosanitary measures to reduce risks to an acceptable level. United...

  17. Cotton Square Morphology Offers New Insights into Host Plant Resistance to Cotton Fleahopper (Hemiptera: Miridae) in Upland Cotton.

    Science.gov (United States)

    McLoud, Laura Ann; Hague, Steven; Knutson, Allen; Wayne Smith, C; Brewer, Michael

    2016-02-01

    Cotton fleahopper, Pseudatomoscelis seriatus (Reuter) (Hemiptera: Miridae), is a piercing-sucking pest of cotton (Gossypium hirsutum L.) that feeds preferentially on developing flower buds, called squares. Heavy infestations cause yield reductions that result from abscission of squares damaged by the cotton fleahopper feeding. Antixenosis, or nonpreference, has been reported as a mechanism of host plant resistance in cotton to cotton fleahopper. Square structure, particularly the placement of the reproductive tissues, and stylet penetration were investigated as factors that influence resistance to cotton fleahopper in cotton lines derived from crosses with Pilose, a cultigen of upland cotton resistant to cotton fleahopper, and backcrossed with high-yielding, susceptible lines. Ovary depth varied among the lines tested and was found to be a heritable trait that affected the ability of a fleahopper's feeding stylets to penetrate the reproductive tissues in the square and might influence preference. Behavioral assays suggested antixenosis as a mechanism of host plant resistance, and the trait conferring antixenosis was found to be heritable. Results suggest ovary depth plays a role in conferring resistance to cotton fleahopper and is an exploitable trait in resistance breeding. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Forest pest management in a changing world

    Science.gov (United States)

    Andrew M. Liebhold

    2012-01-01

    The scope, context and science guiding forest pest management have evolved and are likely to continue changing into the future. Here, I present six areas of advice to guide practitioners in the implementation of forest pest management. First, human dimensions will continue to play a key role in most pest problems and should always be a primary consideration in...

  19. Pantry Pests

    OpenAIRE

    Hodgson, Erin W.; Roe, Alan H.

    2006-01-01

    Pantry pests are insects that infest whole or processed food in the home. Infestations can start out with just a few insects, but a population can quickly surge if given a proper food source and a place to reproduce. Immature and adult insects are typically brought into a home in grain-based products.

  20. Minimization of operational impacts on spectrophotometer color measurements for cotton

    Science.gov (United States)

    A key cotton quality and processing property that is gaining increasing importance is the color of the cotton. Cotton fiber in the U.S. is classified for color using the Uster® High Volume Instrument (HVI), using the parameters Rd and +b. Rd and +b are specific to cotton fiber and are not typical ...

  1. Trap cropping systems and a physical barrier for suppression of stink bugs (Heteroptera: Pentatomidae) in Cotton

    Science.gov (United States)

    Nezara viridula (L.), Euschistus servus (Say), and Chinavia hilaris (Say) (Heteroptera: Pentatomidae) are economic pests of cotton in peanut-cotton farmscapes in the southeastern USA. Because stink bug adults exhibit edge-mediated dispersal at crop-to-crop interfaces as they colonize cotton, strateg...

  2. The halo effect: suppression of pink bollworm on non-Bt cotton by Bt cotton in China.

    Directory of Open Access Journals (Sweden)

    Peng Wan

    Full Text Available In some previously reported cases, transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt have suppressed insect pests not only in fields planted with such crops, but also regionally on host plants that do not produce Bt toxins. Here we used 16 years of field data to determine if Bt cotton caused this "halo effect" against pink bollworm (Pectinophora gossypiella in six provinces of the Yangtze River Valley of China. In this region, the percentage of cotton hectares planted with Bt cotton increased from 9% in 2000 to 94% in 2009 and 2010. We found that Bt cotton significantly decreased the population density of pink bollworm on non-Bt cotton, with net decreases of 91% for eggs and 95% for larvae on non-Bt cotton after 11 years of Bt cotton use. Insecticide sprays targeting pink bollworm and cotton bollworm (Helicoverpa armigera decreased by 69%. Previously reported evidence of the early stages of evolution of pink bollworm resistance to Bt cotton in China has raised concerns that if unchecked, such resistance could eventually diminish or eliminate the benefits of Bt cotton. The results reported here suggest that it might be possible to find a percentage of Bt cotton lower than the current level that causes sufficient regional pest suppression and reduces the risk of resistance.

  3. Field efficacy of azadirachtin-A, tetrahydroazadirachtin-A, NeemAzal and endosulfan against key pests of okra (Abelmoschus esculentus).

    Science.gov (United States)

    Dhingra, Swaran; Walia, Suresh; Kumar, Jitendra; Singh, Shivendra; Singh, Gyanendra; Parmar, Balraj S

    2008-11-01

    BACKGROUND Unlike synthetic pesticides, azadirachtin-based neem pesticides are environmentally friendly and are well known for their diverse pest control properties. Their use is, however, limited by the instability of azadirachtin, necessitating application at short intervals. The efficacy of relatively stable tetrahydroazadirachtin-A, therefore, needed to be established under field conditions. Azadirachtin-A (Aza-A), its stable derivative tetrahydroazadirachtin-A (THA) and other neem pesticides have been evaluated for their field efficacy against major insect pests of okra, Abelmoschus esculentus (L.) Moench., during summer (kharif) 2003 and 2004. The optimum doses of Aza-A and THA against the fruit borer, Earias vittella F., were also established. Reductions in population of whitefly, Bemisia tabaci (Genn.), and leafhopper (jassid), Amrasca biguttulla biguttulla Ishida, after application of THA or endosulfan was evident up to 10 days after treatment (DAT), whereas with Aza-A and NeemAzal (NZ) the effect was observed up to 7 DAT only. Endosulfan and THA also caused higher reduction in the larvae of shoot and fruit borer E. vittella and E. insulana Boisd., and recorded the highest yields of 4600 and 4180 kg ha(-1). The efficacy of THA (0.05 g L(-1) emulsion) was comparable with that of 0.5 g L(-1) endosulfan emulsion in reducing fruit borer infestation, the reduction over the control being 86.0 and 87.3%, 84.9 and 94.1% and 90.2 and 92.6% at first, second and third picking. THA 0.02 g L(-1) and Aza-A 0.05 g L(-1) were on a par. Laboratory-made neem oil emulsifiable concentrate was the least effective, but was superior to untreated check. Three consecutive sprays of THA, a neem-based biopesticide, and endosulfan have been found to be superior in controlling field pests of okra to Aza-A and NZ, which were on a par. THA thus holds potential as a component of pest management strategies against okra pests. Copyright (c) 2008 Society of Chemical Industry.

  4. Incorporating a Sorghum Habitat for Enhancing Lady Beetles (Coleoptera: Coccinellidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available Lady beetles (Coleoptera: Coccinellidae prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton. Scymnus spp., Coccinella septempunctata (L., Hippodamia convergens Guérin-Méneville, Harmonia axyridis (Pallas, Coleomegilla maculata (De Geer, Cycloneda munda (Say, and Olla v-nigrum (Mulsant were found in sorghum over both years. Lady beetle compositions in sorghum and cotton and in yellow pyramidal traps were similar. For both years, density of lady beetles generally was higher on cotton with sorghum than on control cotton. Our results indicate that sorghum was a source of lady beetles in cotton, and thus incorporation of a sorghum habitat in farmscapes with cotton has great potential to enhance biocontrol of insect pests in cotton.

  5. Remote sensing evaluation of twospotted spider mite damage on greenhouse cotton

    Science.gov (United States)

    Two-spotted spider mite, Tetranychus urticae Koch, is a polyphagous pest which occurs on a variety of field and horticultural crops. It often becomes an early season pest of cotton in damaging proportions from being a late season innocuous pest in the mid-southern United States. Evaluation of acari...

  6. Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil.

    Science.gov (United States)

    Ribeiro, Thuanne Pires; Arraes, Fabricio Barbosa Monteiro; Lourenço-Tessutti, Isabela Tristan; Silva, Marilia Santos; Lisei-de-Sá, Maria Eugênia; Lucena, Wagner Alexandre; Macedo, Leonardo Lima Pepino; Lima, Janaina Nascimento; Santos Amorim, Regina Maria; Artico, Sinara; Alves-Ferreira, Márcio; Mattar Silva, Maria Cristina; Grossi-de-Sa, Maria Fatima

    2017-08-01

    Genetically modified (GM) cotton plants that effectively control cotton boll weevil (CBW), which is the most destructive cotton insect pest in South America, are reported here for the first time. This work presents the successful development of a new GM cotton with high resistance to CBW conferred by Cry10Aa toxin, a protein encoded by entomopathogenic Bacillus thuringiensis (Bt) gene. The plant transformation vector harbouring cry10Aa gene driven by the cotton ubiquitination-related promoter uceA1.7 was introduced into a Brazilian cotton cultivar by biolistic transformation. Quantitative PCR (qPCR) assays revealed high transcription levels of cry10Aa in both T 0 GM cotton leaf and flower bud tissues. Southern blot and qPCR-based 2 -ΔΔCt analyses revealed that T 0 GM plants had either one or two transgene copies. Quantitative and qualitative analyses of Cry10Aa protein expression showed variable protein expression levels in both flower buds and leaves tissues of T 0 GM cotton plants, ranging from approximately 3.0 to 14.0 μg g -1 fresh tissue. CBW susceptibility bioassays, performed by feeding adults and larvae with T 0 GM cotton leaves and flower buds, respectively, demonstrated a significant entomotoxic effect and a high level of CBW mortality (up to 100%). Molecular analysis revealed that transgene stability and entomotoxic effect to CBW were maintained in T 1 generation as the Cry10Aa toxin expression levels remained high in both tissues, ranging from 4.05 to 19.57 μg g -1 fresh tissue, and the CBW mortality rate remained around 100%. In conclusion, these Cry10Aa GM cotton plants represent a great advance in the control of the devastating CBW insect pest and can substantially impact cotton agribusiness. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Evaluating cotton seed gland initiation by microscopy

    Science.gov (United States)

    Gossypol is a terpenoid aldehyde found in cotton (Gossypium hirsutum L.) glands and helps protect the seed from pests and pathogens. However, gossypol is toxic to many animals, so the seed is used mainly in cattle feed, as ruminants are tolerant to the effects of gossypol. In order to develop strat...

  8. Cotton genetic resources and crop vulnerability

    Science.gov (United States)

    A report on the genetic vulnerability of cotton was provided to the National Genetic Resources Advisory Council. The report discussed crop vulnerabilities associated with emerging diseases, emerging pests, and a narrowing genetic base. To address these crop vulnerabilities, the report discussed the ...

  9. Polyamine and its metabolite H2O2 play a key role in the conversion of embryogenic callus into somatic embryos in upland cotton (Gossypium hirsutum L.

    Directory of Open Access Journals (Sweden)

    Wen-Han eCheng

    2015-12-01

    Full Text Available The objective of this study was to increase understanding about the mechanism by which polyamines (PAs promote the conversion of embryogenic calli (EC into somatic embryos in cotton (Gossypium hirsutum L.. We measured the levels of endogenous PAs and H2O2, quantified the expression levels of genes involved in the PAs pathway at various stages of cotton somatic embryogenesis (SE, and investigated the effects of exogenous PAs and H2O2 on differentiation and development of embryogenic calli. Putrescine (Put, spermidine (Spd and spermine (Spm significantly increased from the EC stage to the early phase of embryo differentiation. The levels of Put then decreased until the somatic embryo stage whereas Spd and Spm remained nearly the same. The expression profiles of GhADC genes were consistent with changes in Put during cotton SE. The H2O2 concentrations began to increase significantly at the EC stage, during which time both GhPAO1 and GhPAO4 expressions were highest and PAO activity was significantly increased. Exogenous Put, Spd, Spm and H2O2 not only enhanced embryogenic callus growth and embryo formation, but also alleviated the effects of D-arginine and 1, 8-diamino-octane, which are inhibitors of polyamine synthesis and PAO activity. Overall, the results suggest that both PAs and their metabolic product H2O2 are essential for the conversion of EC into somatic embryos in cotton.

  10. Polyamine and Its Metabolite H2O2 Play a Key Role in the Conversion of Embryogenic Callus into Somatic Embryos in Upland Cotton (Gossypium hirsutum L.)

    Science.gov (United States)

    Cheng, Wen-Han; Wang, Fan-Long; Cheng, Xin-Qi; Zhu, Qian-Hao; Sun, Yu-Qiang; Zhu, Hua-Guo; Sun, Jie

    2015-01-01

    The objective of this study was to increase understanding about the mechanism by which polyamines (PAs) promote the conversion of embryogenic calli (EC) into somatic embryos in cotton (Gossypium hirsutum L.). We measured the levels of endogenous PAs and H2O2, quantified the expression levels of genes involved in the PAs pathway at various stages of cotton somatic embryogenesis (SE), and investigated the effects of exogenous PAs and H2O2 on differentiation and development of EC. Putrescine (Put), spermidine (Spd), and spermine (Spm) significantly increased from the EC stage to the early phase of embryo differentiation. The levels of Put then decreased until the somatic embryo stage whereas Spd and Spm remained nearly the same. The expression profiles of GhADC genes were consistent with changes in Put during cotton SE. The H2O2 concentrations began to increase significantly at the EC stage, during which time both GhPAO1 and GhPAO4 expressions were highest and PAO activity was significantly increased. Exogenous Put, Spd, Spm, and H2O2 not only enhanced embryogenic callus growth and embryo formation, but also alleviated the effects of D-arginine and 1, 8-diamino-octane, which are inhibitors of PA synthesis and PAO activity. Overall, the results suggest that both PAs and their metabolic product H2O2 are essential for the conversion of EC into somatic embryos in cotton. PMID:26697030

  11. Indian Bt cotton varieties do not affect the performance of cotton aphids.

    OpenAIRE

    Lawo, Nora C.; Felix L. Wäckers; Jörg Romeis

    2009-01-01

    Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt) are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number o...

  12. Leaf surface factors of transgenic Bt cotton associated with the feeding behaviors of cotton aphids: a case study on non-target effects.

    Science.gov (United States)

    Xue, Kun; Deng, Su; Wang, RongJiang; Yan, FengMing; Xu, ChongRen

    2008-02-01

    The present paper reports case study results of the risk assessment of transgenic Bt cotton on a non-target pest, cotton aphid, Aphis gossypii. Several types of techniques, i.e., electrical penetration graph (EPG), light and electron microscopy, bioassays and chemical analysis, were applied to investigate physical and chemical leaf factors of 2 transgenic Bt cotton lines (GK12 and GK19) and their parental non-Bt cotton line (Simian3) associated with searching and feeding behaviors of cotton aphids on leaves or leaf extracts of cotton plants. EPG results showed that there were some differences among behaviors of cotton aphids on 2 Bt cotton and 1 non-Bt cotton lines. Cotton aphids performed similarly to leaf surface extracts from 3 cotton lines; and leaf surface chemicals, mainly volatiles and waxes, were almost identical in the components and concentrations among the cotton lines. However, three cotton lines were quite different from each other in the densities of certain kinds of covering trichomes. Therefore, the relationships between the physical characteristics and the searching behaviors of cotton aphids on the three cotton lines were constructed as the regression equations. Glandular trichomes and covering trichomes with 5 branches influenced the cotton aphids' searching behaviors effectively; and other trichomes with other branches affected aphids in varying ways. These results demonstrated that leaf surface physical factors of transgenic Bt cotton lines different from their parental non-Bt line could affect the penetration behaviors of non-target cotton aphids. Cotton aphids penetrate and feed more easily on two Bt cotton lines than on the non-Bt cotton line.

  13. Biological parameters of the non-target pest Aphis gossypii Glover ...

    African Journals Online (AJOL)

    In the present work, we aimed to evaluate: 1) the influence of the Cry1Ac protein expressed by the genetically modified cotton variety (Bt) NuOpal, on the biological parameters of a non-target pest, Aphis gossypii, reared under laboratory conditions; 2) the influence of plant age on aphid development. Cotton cultivars were ...

  14. Doppler weather radar detects emigratory flights of noctuids during a major pest outbreak

    Science.gov (United States)

    An outbreak of beet armyworm (Spodoptera exigua (Hübner)), cabbage looper, (Trichoplusia ni (Hübner)), and other lepidopteran pests devastated cotton production in the Lower Rio Grande Valley TX, in 1995. Major infestations occurred later in the year several hundred kilometers away in other cotton ...

  15. Identification of semiochemicals released by cotton, Gossypium hirsutum, upon infestation by the cotton aphid, Aphis gossypii.

    Science.gov (United States)

    Hegde, Mahabaleshwar; Oliveira, Janser N; da Costa, Joao G; Bleicher, Ervino; Santana, Antonio E G; Bruce, Toby J A; Caulfield, John; Dewhirst, Sarah Y; Woodcock, Christine M; Pickett, John A; Birkett, Michael A

    2011-07-01

    The cotton aphid, Aphis gossypii (Homoptera: Aphididae), is increasing in importance as a pest worldwide since the introduction of Bt-cotton, which controls lepidopteran but not homopteran pests. The chemical ecology of interactions between cotton, Gossypium hirsutum (Malvaceae), A. gossypii, and the predatory lacewing Chrysoperla lucasina (Neuroptera: Chrysopidae), was investigated with a view to providing new pest management strategies. Behavioral tests using a four-arm (Pettersson) olfactometer showed that alate A. gossypii spent significantly more time in the presence of odor from uninfested cotton seedlings compared to clean air, but significantly less time in the presence of odor from A. gossypii infested plants. A. gossypii also spent significantly more time in the presence of headspace samples of volatile organic compounds (VOCs) obtained from uninfested cotton seedlings, but significantly less time with those from A. gossypii infested plants. VOCs from uninfested and A. gossypii infested cotton seedlings were analyzed by gas chromatography (GC) and coupled GC-mass spectrometry (GC-MS), leading to the identification of (Z)-3-hexenyl acetate, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), methyl salicylate, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), which were produced in larger amounts from A. gossypii infested plants compared to uninfested plants. In behavioral tests, A. gossypii spent significantly more time in the control (solvent) arms when presented with a synthetic blend of these four compounds, with and without the presence of VOCs from uninfested cotton. Coupled GC-electroantennogram (EAG) recordings with the lacewing C. lucasina showed significant antennal responses to VOCs from A. gossypii infested cotton, suggesting they have a role in indirect defense and indicating a likely behavioral role for these compounds for the predator as well as the aphid.

  16. Transgenic Bt Cotton Does Not Disrupt the Top-Down Forces Regulating the Cotton Aphid in Central China.

    Science.gov (United States)

    Yao, Yong-Sheng; Han, Peng; Niu, Chang-Ying; Dong, Yong-Cheng; Gao, Xi-Wu; Cui, Jin-Jie; Desneux, Nicolas

    2016-01-01

    Top-down force is referred to arthropod pest management delivered by the organisms from higher trophic levels. In the context of prevalent adoption of transgenic Bt crops that produce insecticidal Cry proteins derived from Bacillus thuringiensis (Bt), it still remains elusive whether the top-down forces are affected by the insect-resistant traits that introduced into the Bt crops. We explored how Bt cotton affect the strength of top-down forces via arthropod natural enemies in regulating a non-target pest species, the cotton aphid Aphis gossypii Glover, using a comparative approach (i.e. Bt cotton vs. conventional cotton) under field conditions. To determine top-down forces, we manipulated predation/parasitism exposure of the aphid to their natural enemies using exclusion cages. We found that the aphid population growth was strongly suppressed by the dominant natural enemies including Coccinellids, spiders and Aphidiines parasitoids. Coccinellids, spiders and the assemblage of other arthropod natural enemies (mainly lacewings and Hemipteran bugs) are similarly abundant in both plots, but with the parasitoid mummies less abundant in Bt cotton plots compared to the conventional cotton plots. However, the lower abundance of parasitoids in Bt cotton plots alone did not translate into differential top-down control on A. gossypii populations compared to conventional ones. Overall, the top-down forces were equally strong in both plots. We conclude that transgenic Bt cotton does not disrupt the top-down forces regulating the cotton aphid in central China.

  17. Transgenic Bt Cotton Does Not Disrupt the Top-Down Forces Regulating the Cotton Aphid in Central China.

    Directory of Open Access Journals (Sweden)

    Yong-Sheng Yao

    Full Text Available Top-down force is referred to arthropod pest management delivered by the organisms from higher trophic levels. In the context of prevalent adoption of transgenic Bt crops that produce insecticidal Cry proteins derived from Bacillus thuringiensis (Bt, it still remains elusive whether the top-down forces are affected by the insect-resistant traits that introduced into the Bt crops. We explored how Bt cotton affect the strength of top-down forces via arthropod natural enemies in regulating a non-target pest species, the cotton aphid Aphis gossypii Glover, using a comparative approach (i.e. Bt cotton vs. conventional cotton under field conditions. To determine top-down forces, we manipulated predation/parasitism exposure of the aphid to their natural enemies using exclusion cages. We found that the aphid population growth was strongly suppressed by the dominant natural enemies including Coccinellids, spiders and Aphidiines parasitoids. Coccinellids, spiders and the assemblage of other arthropod natural enemies (mainly lacewings and Hemipteran bugs are similarly abundant in both plots, but with the parasitoid mummies less abundant in Bt cotton plots compared to the conventional cotton plots. However, the lower abundance of parasitoids in Bt cotton plots alone did not translate into differential top-down control on A. gossypii populations compared to conventional ones. Overall, the top-down forces were equally strong in both plots. We conclude that transgenic Bt cotton does not disrupt the top-down forces regulating the cotton aphid in central China.

  18. Tolerance to feeding damage by cotton fleahopper (Hemiptera: Miridae) among genotypes representing adapted germplasm pools of United States upland cotton.

    Science.gov (United States)

    Knutson, Allen E; Mekala, Karthik D; Smith, C Wayne; Campos, Carlos

    2013-04-01

    Cotton fleahopper [Pseudatomoscelis seriatus (Reuter)] (Hemiptera: Miridae) is one of the most damaging insect pests of cotton (Gossypium hirsutum L.) in Texas and Oklahoma because of their feeding on small floral buds which are termed squares. Damage to early season squares can reduce yield, delay crop maturity and increase the risk of crop loss because of late season insect pests and adverse weather. Insecticide applications are the only control tactic. The objectives of this study were to determine the tolerance to cotton fleahopper injury to squares among upland cotton genotypes representing the adapted germplasm pools and breeding lines available to cotton breeders in the United States and to evaluate leaf hairiness as a resistant trait. Results of the choice and no-choice trials indicated that four entries, 'Stoneville 474', 'Suregrow 747', 'Deltapine 50', and 'TAM 96WD-22 h', were more tolerant to cotton fleahopper injury relative to the other 11 entries. In choice trials, cotton fleahopper density was significantly correlated with the density of trichomes on leaves, bracts and stems. However, there was no correlation between cotton fleahopper density and percent square damage in the choice trials, suggesting that in some genotypes the response to feeding injury is mediated by host plant resistance factors expressed as tolerance. Results of the no-choice studies also indicate that some genotypes express tolerance to cotton fleahopper feeding.

  19. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  20. Heliothis virescens and Bt cotton in the United States.

    Science.gov (United States)

    Blanco, Carlos A

    2012-01-01

    The tobacco budworm (TBW), Heliothis virescens (F.), has been responsible for substantial economic losses, environmental pollution and a great challenge to the United States' economy, environment, researchers and cotton and tobacco producers during most of the past two hundred years. If a historical description of this pest problem should be written, it would necessarily be divided into two main events; the pre- and post-Bacillus thuringiensis-expressing (Bt)-cotton era. Before the advent of Bt-cotton, TBW had evolved resistance to most commercial insecticides, making cotton cultivation unfeasible at some point. Subsequently, a variety of clever control measures were developed in an effort to develop more sustainable integrated pest management programs. Without a doubt, Bt-cotton, transformed to produce insecticidal proteins from the soil borne bacterium, B. thuringiensis, is now one of the most important elements of TBW management in US cotton. This discussion could be quite short stating that Bt-cotton has produced an unprecedented level of control for TBW, but beyond this, it is important to note the additional impacts around the argument that Bt-cotton has likely reduced TBW populations over large areas-due to its high efficacy-to the low densities observed today. Cotton area suitable for TBW development has been reduced to ~40% of its pre Bt-cotton years and certainly may be another primary force behind this decline. However, the way we have detected this decline relies mostly on observations made in cotton fields, as well as males trapped in pheromone traps near cotton; these monitoring tools may not fully reflect TBW population levels at the landscape level. My argument supports what has been postulated before that TBW may be in the process of differentiating into "host races" and the cotton host race, once the most abundant in the environment, may be the one greatly affected by this habitat modification now dominated by Bt-cotton, while the other host races

  1. Indian Bt cotton varieties do not affect the performance of cotton aphids.

    Directory of Open Access Journals (Sweden)

    Nora C Lawo

    Full Text Available Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae when grown on three Indian Bt (Cry1Ac cotton varieties (MECH 12, MECH 162, MECH 184 and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields.

  2. Indian Bt cotton varieties do not affect the performance of cotton aphids.

    Science.gov (United States)

    Lawo, Nora C; Wäckers, Felix L; Romeis, Jörg

    2009-01-01

    Cotton varieties expressing Cry proteins derived from the soil bacterium Bacillus thuringiensis (Bt) are grown worldwide for the management of pest Lepidoptera. To prevent non-target pest outbreaks and to retain the biological control function provided by predators and parasitoids, the potential risk that Bt crops may pose to non-target arthropods is addressed prior to their commercialization. Aphids play an important role in agricultural systems since they serve as prey or host to a number of predators and parasitoids and their honeydew is an important energy source for several arthropods. To explore possible indirect effects of Bt crops we here examined the impact of Bt cotton on aphids and their honeydew. In climate chambers we assessed the performance of cotton aphids, Aphis gossypii Glover (Hemiptera: Aphididae) when grown on three Indian Bt (Cry1Ac) cotton varieties (MECH 12, MECH 162, MECH 184) and their non-transformed near isolines. Furthermore, we examined whether aphids pick up the Bt protein and analyzed the sugar composition of aphid honeydew to evaluate its suitability for honeydew-feeders. Plant transformation did not have any influence on aphid performance. However, some variation was observed among the three cotton varieties which might partly be explained by the variation in trichome density. None of the aphid samples contained Bt protein. As a consequence, natural enemies that feed on aphids are not exposed to the Cry protein. A significant difference in the sugar composition of aphid honeydew was detected among cotton varieties as well as between transformed and non-transformed plants. However, it is questionable if this variation is of ecological relevance, especially as honeydew is not the only sugar source parasitoids feed on in cotton fields. Our study allows the conclusion that Bt cotton poses a negligible risk for aphid antagonists and that aphids should remain under natural control in Bt cotton fields.

  3. Cotton fertilization using PGPR Bacillus amyloliquefaciens FZB42 and compost: Impact on insect density and cotton yield in North Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Thiery B. Charles Alavo

    2015-12-01

    Full Text Available This work has compared the effects of the biofertilizer Bacillus amyloliquefaciens FZB42 with that of compost for cotton production. The population dynamics of pests and predators have been studied in order to check whether the use of both fertilization materials can contribute to pest management in cotton. Three treatments were considered: (i dressing of seeds in rhizobacteria suspension, (ii introduction of rhizobacterial suspension directly in the pocket, same time with the seeds, and (iii fertilization with compost. The study was carried out in northwest Benin (West Africa. Results showed that cotton aphids, Aphis gossypii, pink bollworm, Pectinophora gossypiella, leaf roller, Sylepta derogata, and cotton bugs, Dysdercus sp. are the major insect pests encountered in the experimental plots. Cotton bollworm, Helicoverpa armigera, was present but under the economic threshold. The coccinellid predators, Cheilomenes spp., occurred in the experimental plots and almost suppressed aphid proliferation. Other natural enemies such as chrysopids and ant species also occurred and probably contributed to maintain the cotton bollworm under the economic threshold. The treatment with seeds dressed with the rhizobacteria suspension yielded 39% more cotton compared to the compost fertilization. The use of both fertilization materials without application of chemicals can contribute to pest management in cotton.

  4. Broad-scale suppression of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), associated with Bt cotton crops in Northern New South Wales, Australia.

    Science.gov (United States)

    Baker, G H; Tann, C R

    2017-04-01

    The cotton bollworm, Helicoverpa armigera, is a major pest of many agricultural crops in several countries, including Australia. Transgenic cotton, expressing a single Bt toxin, was first used in the 1990s to control H. armigera and other lepidopteran pests. Landscape scale or greater pest suppression has been reported in some countries using this technology. However, a long-term, broad-scale pheromone trapping program for H. armigera in a mixed cropping region in eastern Australia caught more moths during the deployment of single Bt toxin cotton (Ingard®) (1996-2004) than in previous years. This response can be attributed, at least in part, to (1) a precautionary cap (30% of total cotton grown, by area) being applied to Ingard® to restrict the development of Bt resistance in the pest, and (2) during the Ingard® era, cotton production greatly increased (as did that of another host plant, sorghum) and H. armigera (in particular the 3rd and older generations) responded in concert with this increase in host plant availability. However, with the replacement of Ingard® with Bollgard II® cotton (containing two different Bt toxins) in 2005, and recovery of the cotton industry from prevailing drought, H. armigera failed to track increased host-plant supply and moth numbers decreased. Greater toxicity of the two gene product, introduction of no cap on Bt cotton proportion, and an increase in natural enemy abundance are suggested as the most likely mechanisms responsible for the suppression observed.

  5. A categorical, improper probability method for combining NDVI and LiDAR elevation information for potential cotton precision agricultural applications

    Science.gov (United States)

    An algorithm is presented to fuse the Normalized Difference Vegetation Index (NDVI) with Light Detection and Ranging (LiDAR) elevation data to produce a map potentially useful for the site-specific scouting and pest management of several insect pests. In cotton, these pests include the Tarnished Pl...

  6. Can Bt Technology Reduce Poverty Among African Cotton Growers? An Ex Ante Analysis of the Private and Social Profitability of Bt Cotton Seed in Mozambique.

    OpenAIRE

    Pitoro, Raul; Walker, Thomas S.; Tschirley, David L.; Swinton, Scott M.; Boughton, Duncan; de Marrule, Higino Francisco

    2009-01-01

    This paper presents an ex ante analysis of the private and social profitability of the introduction of Bt cotton for a major cotton producing area of northern Mozambique. Cotton is especially relevant to rural poverty reduction because smallholders often have few alternative cash earning activities, and yields are among the lowest in Africa. Multivariate regression is used to quantify the relationship between pest control and yield loss at farm level as a basis for estimating the expected yie...

  7. Stink Bug Feeding Induces Fluorescence in Developing Cotton Bolls

    OpenAIRE

    Toews Michael D; Mustafic Adnan; Xia Jinjun; Haidekker Mark A

    2011-01-01

    Abstract Background Stink bugs (Hemiptera: Pentatomidae) comprise a critically important insect pest complex affecting 12 major crops worldwide including cotton. In the US, stink bug damage to developing cotton bolls causes boll abscission, lint staining, reduced fiber quality, and reduced yields with estimated losses ranging from 10 to 60 million dollars annually. Unfortunately, scouting for stink bug damage in the field is laborious and excessively time consuming. To improve scouting accura...

  8. The natural refuge policy for Bt cotton (Gossypium L. in Pakistan – a situation analysis

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad Ali

    2013-07-01

    Full Text Available Bt cotton (event Cry1Ac was formally commercialized in Pakistan in 2010. However, there has been an increasing trend of planting unauthorized Bt cotton germplasm in farmers' fields since 2003 with a high rate of adoption in the core cotton areas especially in the province Punjab. The transgenic cotton technology has provided the growers with substantial economic benefits and has reduced their dependence on pesticides for pest control, especially against Helicoverpa armigera (Hubner. However, keeping in view the capacity of this insect to develop resistance against novel chemical formulations, it is easily speculated that Bt toxin, too, is no exception. Refuge crop policy for mono transgenic crop events has helped in delaying the rate of resistance evolution in the target pests. Thus, in Pakistan, where planting of structured refuge crops along Bt cotton fields is not mandatory, the effectiveness and durability of Bt cotton technology may decrease due to a number of factors which are discussed in this review.

  9. Interaction Between Bt-Transgenic Cotton and the Whitefly’s Parasitoid, Encarsia Formosa (Hymenoptera: Aphelinidae

    Directory of Open Access Journals (Sweden)

    Azimi Solmaz

    2014-07-01

    Full Text Available Transgenic Bt cotton developed against lepidopteran pests may not be compatible with parasitoid of secondary pests such as Bemisia tabaci which attack many plants such as cotton. In this study, the effects of Bt cotton on the demographic parameters of Encarsia formosa, parasitoid of B. tabaci were assessed. The data were analysed using the age specific, two-sex life table parameters. The results indicated that pre-adult developmental time, the total preoviposition period (TPOP and the adult preoviposition period (APOP in the Bt cotton were significantly longer than in the non-Bt cotton. Also, fecundity and body size in both lines were significantly different. The fecundity was 23.64±0.73 and 43.75±0.89 eggs/females in the Bt and non-Bt cotton, respectively. All the population parameters were affected by the Bt cotton. The intrinsic rate of increase (r was 0.15 day-1 in the non-Bt cotton but it was 0.10 day-1 in the Bt cotton. The finite rate of increase (λ was 1.11 day-1 in the non-Bt cotton whilst it was 1.08 in the Bt cotton. The net reproductive rate (R0 in the non-Bt cotton was 36.75 but in the Bt cotton these parameters showed 19.62 offspring/individual. Also, the mean generation time (T in the non-Bt and Bt cotton was 22.69 and 27.79 days, respectively. The results illustrated, that although transgenic crops are effective tools for management of the target pests, they can adversely affect, either directly or indirectly, the natural enemies dependent on these plants.

  10. Salicylic acid mediated by the oxidative burst is a key molecule in local and systemic responses of cotton challenged by an avirulent race of Xanthomonas campestris pv malvacearum.

    Science.gov (United States)

    Martinez, C; Baccou, J C; Bresson, E; Baissac, Y; Daniel, J F; Jalloul, A; Montillet, J L; Geiger, J P; Assigbetsé, K; Nicole, M

    2000-03-01

    We analyzed the production of reactive oxygen species, the accumulation of salicylic acid (SA), and peroxidase activity during the incompatible interaction between cotyledons of the cotton (Gossypium hirsutum) cv Reba B50/Xanthomonas campestris pv malvacearum (Xcm) race 18. SA was detected in petioles of cotyledons 6 h after infection and 24 h post inoculation in cotyledons and untreated leaves. The first peak of SA occurred 3 h after generation of superoxide (O(2)(.-)), and was inhibited by infiltration of catalase. Peroxidase activity and accumulation of SA increased in petioles of cotyledons and leaves following H(2)O(2) infiltration of cotyledons from 0.85 to 1 mM. Infiltration of 2 mM SA increased peroxidase activity in treated cotyledons and in the first leaves, but most of the infiltrated SA was rapidly conjugated within the cotyledons. When increasing concentrations of SA were infiltrated 2. 5 h post inoculation at the beginning of the oxidative burst, the activity of the apoplastic cationic O(2)(.-)-generating peroxidase decreased in a dose-dependent manner. We have shown that during the cotton hypersensitive response to Xcm, H(2)O(2) is required for local and systemic accumulation of SA, which may locally control the generation of O(2)(.-). Detaching cotyledons at intervals after inoculation demonstrated that the signal leading to systemic accumulation of SA was emitted around 3 h post inoculation, and was associated with the oxidative burst. SA produced 6 h post infection at HR sites was not the primary mobile signal diffusing systemically from infected cotyledons.

  11. Incorporating a sorghum habitat for enhancing lady beetles (Coleoptera:Coccinellidae) in cotton

    Science.gov (United States)

    Lady beetles (Coleoptera: Coccinellidae) are important predators of cotton insect pests. The objective of this 2-yr on-farm study was to examine the ability of a sorghum trap crop with Euschistus spp. pheromone baited capture traps to enhance these predators in cotton in Georgia. Scymnus spp., Cocci...

  12. Evaluating protective terpenoid aldehyde compounds in cotton (Gossypium hirsutum L.) roots

    Science.gov (United States)

    Cotton (Gossypium hirsutum L.) has epidermal glands containing terpenoid aldehyde (TA) compounds that help protect the cotton plant from pests and diseases. One terpenoid aldehyde called gossypol, is found predominantly in seed and roots and has two forms, plus (+) and minus (-) present in varying a...

  13. Using Population Genomics to Reveal Temporal Patterns of Host Use in the Cotton Fleahopper (Pseudatomoscelis seriatus)

    Science.gov (United States)

    The cotton fleahopper (CFH), Pseudatomoscelis seriatus (Reuter, 1876) (Hemiptera: Miridae), is a pest of commercial cotton (Gossypium hirsutum L.) with over 100 known host plants across its range. Both adults and nymphs attack small, developing squares, leading to abscission of the square. A new t...

  14. Managing Pests in Schools

    Science.gov (United States)

    Provides basic information on integrated pest management in schools, including information on the components of an IPM program and guidance on how to get started. Includes identification and control of pests, educational resources, and contact information

  15. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Directory of Open Access Journals (Sweden)

    Matthew H Meisner

    Full Text Available Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  16. Weed hosts of cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Vennila, S; Prasad, Y G; Prabhakar, M; Agarwal, Meenu; Sreedevi, G; Bambawale, O M

    2013-03-01

    The exotic cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) invaded India during 2006, and caused widespread infestation across all nine cotton growing states. P. solenopsis also infested weeds that aided its faster spread and increased severity across cotton fields. Two year survey carried out to document host plants of P. solenopsis between 2008 and 2010 revealed 27, 83, 59 and 108 weeds belonging to 8, 18, 10 and 32 families serving as alternate hosts at North, Central, South and All India cotton growing zones, respectively. Plant species of four families viz., Asteraceae, Amaranthaceae, Malvaceae and Lamiaceae constituted almost 50% of the weed hosts. While 39 weed species supported P. solenopsis multiplication during the cotton season, 37 were hosts during off season. Higher number of weeds as off season hosts (17) outnumbering cotton season (13) at Central over other zones indicated the strong carryover of the pest aided by weeds between two cotton seasons. Six, two and seven weed hosts had the extreme severity of Grade 4 during cotton, off and cotton + off seasons, respectively. Higher number of weed hosts of P. solenopsis were located at roadside: South (12) > Central (8) > North (3) zones. Commonality of weed hosts was higher between C+S zones, while no weed host was common between N+S zones. Paper furnishes the wide range of weed hosts of P. solenopsis, discusses their significance, and formulated general and specific cultural management strategies for nationwide implementation to prevent its outbreaks.

  17. Categorical likelihood method for combining NDVI and elevation information for cotton precision agricultural applications

    Science.gov (United States)

    This presentation investigates an algorithm to fuse the Normalized Difference Vegetation Index (NDVI) with LiDAR elevation data to produce a map useful for the site-specific scouting and pest management (Willers et al. 1999; 2005; 2009) of the cotton insect pests, the tarnished plant bug (Lygus lin...

  18. Identification of top-down forces regulating cotton aphid population growth in transgenic Bt cotton in central China.

    Directory of Open Access Journals (Sweden)

    Peng Han

    Full Text Available The cotton aphid Aphis gossypii Glover is the main aphid pest in cotton fields in the Yangtze River Valley Cotton-planting Zone (YRZ in central China. Various natural enemies may attack the cotton aphid in Bt cotton fields but no studies have identified potential specific top-down forces that could help manage this pest in the YRZ in China. In order to identify possibilities for managing the cotton aphid, we monitored cotton aphid population dynamics and identified the effect of natural enemies on cotton aphid population growth using various exclusion cages in transgenic Cry1Ac (Bt+CpTI (Cowpea trypsin inhibitor cotton field in 2011. The aphid population growth in the open field (control was significantly lower than those protected or restricted from exposure to natural enemies in the various exclusion cage types tested. The ladybird predator Propylaea japonica Thunberg represented 65% of Coccinellidae predators, and other predators consisted mainly of syrphids (2.1% and spiders (1.5%. The aphid parasitoids Aphidiines represented 76.7% of the total count of the natural enemy guild (mainly Lysiphlebia japonica Ashmead and Binodoxys indicus Subba Rao & Sharma. Our results showed that P. japonica can effectively delay the establishment and subsequent population growth of aphids during the cotton growing season. Aphidiines could also reduce aphid density although their impact may be shadowed by the presence of coccinellids in the open field (likely both owing to resource competition and intraguild predation. The implications of these results are discussed in a framework of the compatibility of transgenic crops and top-down forces exerted by natural enemy guild.

  19. Widespread infestation of the exotic mealybug species, Phenacoccus solenopsis (Tinsley) (Hemiptera: Pseudococcidae), on cotton in India.

    Science.gov (United States)

    Nagrare, V S; Kranthi, S; Biradar, V K; Zade, N N; Sangode, V; Kakde, G; Shukla, R M; Shivare, D; Khadi, B M; Kranthi, K R

    2009-10-01

    A survey was conducted in 47 locations in nine cotton-growing states of India to identify the composition of mealybug species occurring on cotton. Results of the taxonomic study showed that two mealybug species, the solenopsis mealybug, Phenacoccus solenopsis (Tinsley), and the pink hibiscus mealybug, Maconellicoccus hirsutus (Green), were found to infest cotton plants from all nine cotton growing states of the country. However, P. solenopsis was found to be the predominant mealybug species, comprising 95% of the samples examined. P. solenopsis, which was hitherto not reported to occur in India, now appears to be widespread on cotton in almost all cotton-growing states of the country. P. solenopsis is an exotic species originated from the USA and was reported to damage cotton and crops of 14 families. This report discusses the implications of the introduction of this exotic polyphagous pest species and the necessary steps to mitigate its potential threat to agriculture in India.

  20. Gone with transgenic cotton cropping in the USA. A perception of the presentations and interactions at the Beltwide Cotton Conferences, New Orleans (Louisiana, USA, 4-7/01/2010

    Directory of Open Access Journals (Sweden)

    Fok, M.

    2011-01-01

    Full Text Available The 2010 Beltwide Cotton Conferences provided a new vision of the consequences of about 15 years of widespread and uncoordinated cropping of transgenic cotton in the United States. Insect-resistant and/or herbicide-tolerant cotton varieties modified parasite complexes, namely those of insects and weeds damaging cotton crops. The Conferences have revealed that the adaptation solutions so far proposed make illusory the expectations at the launch of transgenic cotton, in terms of effective pest control, cost reduction, and antagonism between chemical and biotech methods. The USA case points out that the technical and economic sustainability of transgenic varieties must lie in a systemic and coordinated approach.

  1. Pesticide contamination of the Dridji Cotton Plantation area in the ...

    African Journals Online (AJOL)

    Pesticides used for cotton production and pest control in the growing of food crops such as beans, maize and vegetables eventually may not only end up on the crops, but also in soil and surface water. As a consequence, aquatic organisms and humans consuming crops may experience pesticide exposure. This also is the ...

  2. Impact of Bollgard ® genetically modified cotton on the biodiversity ...

    African Journals Online (AJOL)

    Using cotton cultivars that express a gene of the Bacillus thuringiensis (Bt) bacterium producing a protein (Cry1Ac) with an insecticide effect on the Lepidoptera pests has made it possible to reduce the number of insecticide applications during the crop cycle. Thus, the objective was to determine, in the field during the ...

  3. Physical barriers for suppression of movement of adult stink bugs into cotton.

    Science.gov (United States)

    Tillman, P Glynn

    2014-01-01

    Nezara viridula (L.), Euschistus servus (Say), and Chinavia hilaris (Say) (Heteroptera: Pentatomidae) are economic pests of cotton in the southeastern USA. Because adult stink bugs exhibit edge-mediated dispersal at crop-to-crop interfaces as they colonize cotton, strategic placement of physical barriers at these interfaces could manage these pests. The objective of this study was to determine the effectiveness of a physical barrier, either synthetic or plant-based, at the peanut-to-cotton interface for suppressing stink bugs that would move to cotton. In 2012 and 2013, sorghum sudangrass (2.4 and 2.1 m high, respectively) was significantly taller than cotton (1.4 and 1.3 m high, respectively) which was taller than peanut (0.4 and 0.5 m high, respectively). Buckwheat (0.6 m high), planted only in 2012, was significantly taller than peanut, but shorter than cotton. For both years of the study, sorghum sudangrass and a 1.8-m-high polypropylene barrier wall effectively deterred dispersal of stink bugs into cotton. Because each of these barriers was taller than cotton, their success in protecting cotton likely was due to disruption of the flight of stink bugs from low-growing peanut into cotton. The shortest barrier wall (0.6-m-high) did not suppress stink bug dispersal into cotton probably because it was approximately the same height as peanut. In 2012, flowering buckwheat increased the efficacy of Trichopoda pennipes (F.) attacking N. viridula in cotton although it did not deter dispersal of stink bugs. In conclusion, a barrier at least as tall as cotton can effectively retard the entry of stink bug adults into cotton.

  4. Development of a novel-type transgenic cotton plant for control of cotton bollworm.

    Science.gov (United States)

    Yue, Zhen; Liu, Xiaoguang; Zhou, Zijing; Hou, Guangming; Hua, Jinping; Zhao, Zhangwu

    2016-08-01

    The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants-npf1 and npf2 (with a 120-bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Christmas Tree Pest Manual

    Science.gov (United States)

    Department of Entomology Michigan State University

    1998-01-01

    This manual can help you identify and control damaging Christmas tree pests in the North Central region of the United States. Most of the information also applies to the northeastern states and to the southern portions of the Canadian Provinces that border these states. You do not have to be a pest specialist to use this information; we wrote the manual in everyday...

  6. peste des petits ruminants

    African Journals Online (AJOL)

    HP USER

    of antibodies to peste des petits ruminants. (PPR) virus. Veterinary. Research. Communications, 30:325-330. Singh RK, Balauirjgal V, Bhamuprakash V, Sanen A,. Saravanan P, & Yadev MP (2009). Possible control and eradication of peste des petits ruminants from India: technical aspect. Veterinaria Italiana, 45 (3), ...

  7. Control of Resistant Pink Bollworm (Pectinophora gossypiella) by Transgenic Cotton That Produces Bacillus thuringiensis Toxin Cry2Ab

    OpenAIRE

    Tabashnik, Bruce E.; Dennehy, Timothy J.; Sims, Maria A.; Larkin, Karen; Head, Graham P.; Moar, William J.; Carrière, Yves

    2002-01-01

    Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton...

  8. Dictionary of Cotton

    Science.gov (United States)

    The Dictionary of Cotton has over 2,000 terms and definitions that were compiled by 33 researchers. It reflects the ongoing commitment of the International Cotton Advisory Committee, through its Technical Information Section, to the spread of knowledge about cotton to all those who have an interest ...

  9. cotton fabric 51

    African Journals Online (AJOL)

    DR. AMINU

    Some salient properties of cotton cellulose which requires it to be treated with additives to improve its versatility were examined taken ... modification of the cotton cellulose upon resination with methylolmelamine phosphate. Keywords: Cotton Fabric ..... Decomposition of Pure Cellulose and Pulp. Paper. Polym Degrad Stab.

  10. Transgenic Cotton Plants Expressing Double-stranded RNAs Target HMG-CoA Reductase (HMGR) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms.

    Science.gov (United States)

    Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia

    2015-01-01

    RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control.

  11. Melhoramento do algodoeiro para resistência múltipla a doenças, nematóides e broca-da-raiz em condições de campo Cotton improvement for multi-resistance to diseases and pests in field conditions

    Directory of Open Access Journals (Sweden)

    Imre Lajos Gridi-Papp

    1994-01-01

    Full Text Available Um modelo de seleção e teste de linhagens de algodoeiro para resistência múltipla a doenças e pragas, adotado pelos melhoristas da Seção de Algodão do Instituto Agronômico, é descrito e discutido com base nos dados obtidos no período de 1981 a 1991. Condideraram-se as murchas de Fusarium e de Verticillium, a ramulose, a mancha angular, os nematóides e a broca-da-raiz como fatores adversos. Foram sugeridos índices relativos de resistência apropriados a cada fator e um índice de resistência múltipla para a avaliação global dos resultados. Discutem-se as evoluções desses índices durante o período, assim como as correlações observadas anualmente entre os índices. Houve, no período, tendência para nível crescente de resistência para todos os fatores, com exceção da ramulose, cujo índice médio de resistência oscilou ao redor de 70% da testemunha resistente, no conjunto das linhagens promissoras obtidas anualmente. As correlações entre os índices de resistência aos fatores variaram ao redor de zero, de maneira casual de ano para ano, atingindo raras vezes o nível de significância de 5%. Apareceram correlações negativas significativas, no final do período, entre ramulose, de um lado, e Verticillium e mancha angular do outro, cuja importância e conseqüência são discutidas. O índice médio de resistência múltipla cresceu de 56,7% no período, chegando a 0,776 no final, sendo que o valor 1,000 representaria a reunião de todos os genes disponíveis de resistência numa mesma linhagem.A model of selection and cotton line tests for multi-resistance to diseases and pests is described and discussed. It was adopted by breeders of the Cotton Section of Instituto Agronômico at Campinas, State of São Paulo, Brazil, Fusarium and Verticilllium wilts, ramulosis (Colletotrichum gossypii var. cephalosporioides bacterium (Xanthomonas campestris pv. malvacearum, nematodes and stem-borer (Eutinobothrus brasiliensis were

  12. Global warming presents new challenges for maize pest management

    Energy Technology Data Exchange (ETDEWEB)

    Diffenbaugh, Noah S [Purdue Climate Change Research Center and Department of Earth and Atmospheric Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907-2051 (United States); Krupke, Christian H [Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN 47907 (United States); White, Michael A [Department of Watershed Sciences, Utah State University, 5210 Old Main Hall, Logan, UT 84322-5210 (United States); Alexander, Corinne E [Department of Agricultural Economics, Purdue University, 403 West State Street, West Lafayette, IN 47907-2056 (United States)], E-mail: diffenbaugh@purdue.edu

    2008-10-15

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  13. Global warming presents new challenges for maize pest management

    Science.gov (United States)

    Diffenbaugh, Noah S.; Krupke, Christian H.; White, Michael A.; Alexander, Corinne E.

    2008-10-01

    It has been conjectured that global warming will increase the prevalence of insect pests in many agro-ecosystems. In this paper, we quantitatively assess four of the key pests of maize, one of the most important systems in North American grain production. Using empirically generated estimates of pest overwintering thresholds and degree-day requirements, along with climate change projections from a high-resolution climate model, we project potential future ranges for each of these pests in the United States. Our analysis suggests the possibility of increased winter survival and greater degree-day accumulations for each of the pests surveyed. We find that relaxed cold limitation could expand the range of all four pest taxa, including a substantial range expansion in the case of corn earworm (H. zea), a migratory, cold-intolerant pest. Because the corn earworm is a cosmopolitan pest that has shown resistance to insecticides, our results suggest that this expansion could also threaten other crops, including those in high-value areas of the western United States. Because managing significant additional pressure from this suite of established pests would require additional pest management inputs, the projected decreases in cold limitation and increases in heat accumulation have the potential to significantly alter the pest management landscape for North American maize production. Further, these range expansions could have substantial economic impacts through increased seed and insecticide costs, decreased yields, and the downstream effects of changes in crop yield variability.

  14. Effect of participatory research on farmers' knowledge and practice of IPM: The case of cotton in Benin

    NARCIS (Netherlands)

    Togbe, C.E.; Haagsma, R.; Aoudji, A.K.N.; Vodouhe, S.D.

    2015-01-01

    Purpose: This study assesses the effect of participatory research on farmers’ knowledge and practice of Integrated Pest Management (IPM) in Benin. The participatory field experiments were carried out during the 2011–2012 cotton growing season, and focused on the development and application of pest

  15. Cis-mediated down-regulation of a trypsin gene associated with Bt resistance in cotton bollworm

    National Research Council Canada - National Science Library

    Liu, Chenxi; Xiao, Yutao; Li, Xianchun; Oppert, Brenda; Tabashnik, Bruce E; Wu, Kongming

    2014-01-01

    ...) are useful for pest control, but their efficacy is reduced when pests evolve resistance. Here we examined the mechanism of resistance to Bt toxin Cry1Ac in the laboratory-selected LF5 strain of the cotton bollworm, Helicoverpa armigera...

  16. Effect of Participatory Research on Farmers' Knowledge and Practice of IPM: The Case of Cotton in Benin

    Science.gov (United States)

    Togbé, Codjo Euloge; Haagsma, Rein; Aoudji, Augustin K. N.; Vodouhê, Simplice D.

    2015-01-01

    Purpose: This study assesses the effect of participatory research on farmers' knowledge and practice of Integrated Pest Management (IPM) in Benin. The participatory field experiments were carried out during the 2011-2012 cotton growing season, and focused on the development and application of pest management knowledge. Methodology: A…

  17. Impact of neonicotinoid seed treatment of cotton on the cotton leafhopper, Amrasca devastans (Hemiptera: Cicadellidae), and its natural enemies.

    Science.gov (United States)

    Saeed, Rabia; Razaq, Muhammad; Hardy, Ian Cw

    2016-06-01

    Neonicotinoid seed treatments suppress populations of pest insects efficiently and can enhance crop growth, but they may have negative effects on beneficial arthropods. We evaluated the effects of either imidacloprid or thiamethoxam on the abundances of a sucking pest, the cotton leafhopper (Amrasca devastans), and its arthropod predators under field conditions. We also evaluated the impact of seed treatment on transgenic cotton plant growth, with pests and natural enemies present or absent. Imidacloprid and thiamethoxam reduced pest abundance, with greater effects when dosages were higher. Treatment at recommended doses delayed the pest in reaching the economic damage threshold by around 10-15 days (thiamethoxam) and 20 days (imidacloprid). Recommended doses also enhanced plant growth under all tested conditions; growth is affected directly as well as via pest suppression. Neonicotinoid applications reduced abundance of beneficial arthropods, with lower populations after higher doses, but negative effects of imidacloprid were not apparent unless the manufacturer-recommended dose was exceeded. Imidacloprid applied at the recommended dose of 5 g kg(-1) seed is effective against A. devastans and appears to be safer than thiamethoxam for natural enemies, and also enhances plant growth directly. We caution, however, that possible sublethal negative effects on individual beneficial arthropods were not evaluated. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Stink Bug Feeding Induces Fluorescence in Developing Cotton Bolls

    Directory of Open Access Journals (Sweden)

    Toews Michael D

    2011-08-01

    Full Text Available Abstract Background Stink bugs (Hemiptera: Pentatomidae comprise a critically important insect pest complex affecting 12 major crops worldwide including cotton. In the US, stink bug damage to developing cotton bolls causes boll abscission, lint staining, reduced fiber quality, and reduced yields with estimated losses ranging from 10 to 60 million dollars annually. Unfortunately, scouting for stink bug damage in the field is laborious and excessively time consuming. To improve scouting accuracy and efficiency, we investigated fluorescence changes in cotton boll tissues as a result of stink bug feeding. Results Fluorescent imaging under long-wave ultraviolet light showed that stink bug-damaged lint, the inner carpal wall, and the outside of the boll emitted strong blue-green fluorescence in a circular region near the puncture wound, whereas undamaged tissue emissions occurred at different wavelengths; the much weaker emission of undamaged tissue was dominated by chlorophyll fluorescence. We further characterized the optimum emission and excitation spectra to distinguish between stink bug damaged bolls from undamaged bolls. Conclusions The observed characteristic fluorescence peaks associated with stink bug damage give rise to a fluorescence-based method to rapidly distinguish between undamaged and stink bug damaged cotton bolls. Based on the fluorescent fingerprint, we envision a fluorescence reflectance imaging or a fluorescence ratiometric device to assist pest management professionals with rapidly determining the extent of stink bug damage in a cotton field.

  19. Stink bug feeding induces fluorescence in developing cotton bolls.

    Science.gov (United States)

    Xia, Jinjun; Mustafic, Adnan; Toews, Michael D; Haidekker, Mark A

    2011-08-04

    Stink bugs (Hemiptera: Pentatomidae) comprise a critically important insect pest complex affecting 12 major crops worldwide including cotton. In the US, stink bug damage to developing cotton bolls causes boll abscission, lint staining, reduced fiber quality, and reduced yields with estimated losses ranging from 10 to 60 million dollars annually. Unfortunately, scouting for stink bug damage in the field is laborious and excessively time consuming. To improve scouting accuracy and efficiency, we investigated fluorescence changes in cotton boll tissues as a result of stink bug feeding. Fluorescent imaging under long-wave ultraviolet light showed that stink bug-damaged lint, the inner carpal wall, and the outside of the boll emitted strong blue-green fluorescence in a circular region near the puncture wound, whereas undamaged tissue emissions occurred at different wavelengths; the much weaker emission of undamaged tissue was dominated by chlorophyll fluorescence. We further characterized the optimum emission and excitation spectra to distinguish between stink bug damaged bolls from undamaged bolls. The observed characteristic fluorescence peaks associated with stink bug damage give rise to a fluorescence-based method to rapidly distinguish between undamaged and stink bug damaged cotton bolls. Based on the fluorescent fingerprint, we envision a fluorescence reflectance imaging or a fluorescence ratiometric device to assist pest management professionals with rapidly determining the extent of stink bug damage in a cotton field.

  20. Nuclear ribosomal DNA diversity of a cotton pest (Rotylenchulus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... repositories: the Alabama Agricultural Research Station at Belle. Mina and the Plant Diagnostics Laboratory, Auburn University. Soil samples obtained from Belle Mina were from counties in Northern. Alabama and were designated Limestone county Anderson farm. (AL), Lawrence county Haney farm (LH), ...

  1. Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment.

    Science.gov (United States)

    Chakravarthy, Vajhala S K; Reddy, Tummala Papi; Reddy, Vudem Dashavantha; Rao, Khareedu Venkateswara

    2014-06-01

    Cotton is considered as the foremost commercially important fiber crop and is deemed as the backbone of the textile industry. The productivity of cotton crop, worldwide, is severely hampered by the occurrence of pests, weeds, pathogens apart from various environmental factors. Several beneficial agronomic traits, viz., early maturity, improved fiber quality, heat tolerance, etc. have been successfully incorporated into cotton varieties employing conventional hybridization and mutation breeding. Crop losses, due to biotic factors, are substantial and may be reduced through certain crop protection strategies. In recent years, pioneering success has been achieved through the adoption of modern biotechnological approaches. Genetically engineered cotton varieties, expressing Bacillus thuringiensis cry genes, proved to be highly successful in controlling the bollworm complex. Various other candidate genes responsible for resistance to insect pests and pathogens, tolerance to major abiotic stress factors such as temperature, drought and salinity, have been introduced into cotton via genetic engineering methods to enhance the agronomic performance of cotton cultivars. Furthermore, genes for improving the seed oil quality and fiber characteristics have been identified and introduced into cotton cultivars. This review provides a brief overview of the various advancements made in cotton through genetic engineering approaches.

  2. Utilization of Pesticidal Plants in Pest Management among ...

    African Journals Online (AJOL)

    Aphids, spider mites and caterpillars were the common insect pests. The farmers depended mostly on ... Utilization of pesticidal plants can become a viable pest management option for farmers, after further research and education on preparation and application to improve effectiveness. Key Words: Smallholder farmers, ...

  3. Compatibility of Two Systematic Neonicotinoids, Imidacloprid and Thiamethoxam with various Natural Enemies of Agricultural Pests.

    Science.gov (United States)

    Two systemic neonicotinoids, imidacloprid and thiamethoxam, are widely used for residual control of a number of insect pests in cotton, vegetables, and citrus. We evaluated their impact on six species of beneficial arthropods including four parasitoid species, Aphytis melinus Gonatocerus ashmeadi, ...

  4. Biological parameters of the non-target pest Aphis gossypii Glover ...

    African Journals Online (AJOL)

    Thiago Mota

    2013-04-17

    Apr 17, 2013 ... In the present work, we aimed to evaluate: 1) the influence of the Cry1Ac protein expressed by the genetically modified cotton variety (Bt) NuOpal, on the biological parameters of a non-target pest, Aphis gossypii, reared under laboratory conditions; 2) the influence of plant age on aphid development.

  5. Incorporating a Sorghum Habitat for Enhancing Lady Beetles (Coleoptera: Coccinellidae) in Cotton

    OpenAIRE

    Tillman, P. G.; Cottrell, T. E.

    2012-01-01

    Lady beetles (Coleoptera: Coccinellidae) prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton. Scymnus spp., Coccinella septempunctata (L.), Hippodamia convergens Guérin-Méneville, Harmonia axyridis (Pallas), Coleomegilla maculata (De Geer), Cycloneda munda (Say), and Olla v-nigrum (Mulsant) were found in sorghum over both years. Lady beetle compositions in sorghum and ...

  6. Arthropods biodiversity index bollgard cotton (Cry1Ac) in Brazil

    OpenAIRE

    Thomazoni, Danielle; Ferreira Soria, Miguel; Degrande,Paulo Eduardo; Faccenda,Odival; Silvie, Pierre

    2013-01-01

    Shannon-Wiener's diversity index (SWI) was used under untreated conditions of a cotton field during the 2006/2007 crop season in the Cerrado region, Brazil. Comparison was carried out between the transgenic NuOpal® (Bollgard®)(Cry1Ac) and the non-transgenic isogenic variety DeltaOpal®. SWI was calculated for target pests, non-target herbivores and predators groups. Two sampling methods were used: whole plant observation and beat sheet. As expected, the mean number of target pests, especially ...

  7. An integrated pest management program as a pests control strategy ...

    African Journals Online (AJOL)

    Phukubje, Justice

    Britannica (2013) emphasized that the definitions of pests are subjective to the given different scenarios. However, they viewed pests as any organisms declared as inflictors of injury or pain to human beings or to their interests. Pests are the threatening perpetrators to human comfort, plants and other animals throughout the ...

  8. Cotton-based nonwovens

    Science.gov (United States)

    This article is an abbreviated description of a new cotton-based nonwovens research program at the Southern Regional Research Center, which is one of the four regional research centers of the Agricultural Research Service, U.S. Department of Agriculture. Since cotton is a significant cash crop inte...

  9. Cotton trends in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Cotton trends in India. A crop of significant economic importance, valued at over Rs. 15000 Crs. Provides income to 60 million people. Crucial raw material for Rs 83000 Crores textile industry out of which Rs 45754 crores is exports. Approx. 20 Million acres of cotton provides ...

  10. Endophytic fungi alter sucking bug responses to cotton reproductive structures.

    Science.gov (United States)

    Sword, Gregory A; Tessnow, Ashley; Ek-Ramos, Maria Julissa

    2017-03-22

    All plants including cotton host a wide range of microorganisms as endophytes. There is a growing appreciation of the prevalence, ecological significance and management potential of facultative fungal endophytes in protecting plants from pests, pathogens and environmental stressors. Hemipteran sucking bugs have emerged as major pests across the U.S. cotton belt, reducing yields directly by feeding on developing reproductive structures and indirectly by vectoring plant pathogens. We used no-choice and simultaneous choice assays to examine the host selection behavior of western tarnished plant bugs (Lygus hesperus) and southern green stink bugs (Nezara viridula) in response to developing flower buds and fruits from cotton plants colonized by 1 of 2 candidate beneficial fungal endophytes, Phialemonium inflatum or Beauveria bassiana. Both insect species exhibited strong negative responses to flower buds (L. hesperus) and fruits (N. viridula) from plants that had been colonized by candidate endophytic fungi relative to control plants under both no-choice and choice conditions. Behavioral responses of both species indicated that the insects were deterred prior to contact with plant tissues from endophyte-colonized plants, suggesting a putative role for volatile compounds in mediating the negative response. Our results highlight the role of fungal endophytes as plant mutualists that can have positive effects on plant resistance to pests. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  11. Dictionary of cotton: Picking & ginning

    Science.gov (United States)

    Cotton is an essential commodity for textiles and has long been an important item of trade in the world’s economy. Cotton is currently grown in over 100 countries by an estimated 100 producers. The basic unit of the cotton trade is the cotton bale which consists of approximately 500 pounds of raw c...

  12. Effect of Iranian Bt cotton on life table of Bemisia tabaci (Hemiptera: Alyrodidae and Cry 1Ab detection in the whitefly honeydew

    Directory of Open Access Journals (Sweden)

    Solmaz Azimi

    2016-09-01

    Full Text Available Transgenic cotton expressing the Cry 1Ab protein of Bacillus thuringiensis developing against Helocoverpa armigera may be affect on secondary pest such as Bemisia tabaci. In this study effects of Bt cotton on demographic parameters of B. tabaci were assessed and the data analyzed using the age specific, two-sex life table parameters. Results showed that getting to the adulthood stage, was faster on non-Bt cotton in comparison with Bt cotton. Also the fecundity was higher on non-Bt cotton than that on Bt cotton. Some of the population parameters (r, R0 and T of B. tabaci were affected by the Bt cotton significantly. The intrinsic rate of increase (r on Bt and non-Bt cotton was 0.07 day-1 and 0.1 day-1 , respectively. The net reproductive rate (R0 was 20.68 and 15.04 offspring/individual on Bt and non-Bt cotton, respectively. Mean generation time (T in non-Bt cotton was 27.22 and 34.62 days in Bt cotton. The results indicated that the life history of B. tabaci in the laboratory condition was influenced by host plant quality and Bt cotton was not a suitable host for B. tabaci. The western immunoblot method showed that the Cry protein detection in honeydew was positive which indicated that the Cry protein was ingested. Results revealed that the transgenic cotton could adversely affect the secondary pest and the natural enemies which feed on such pests as a host or their honeydew as a food source should be considered.

  13. Effects of Bt cotton on Thrips tabaci (Thysanoptera: Thripidae) and its predator, Orius insidiosus (Hemiptera: Anthocoridae).

    Science.gov (United States)

    Kumar, Rishi; Tian, Jun-Ce; Naranjo, Steven E; Shelton, Anthony M

    2014-06-01

    Laboratory studies were conducted to investigate tritrophic transfer of insecticidal Cry proteins from transgenic cotton to an herbivore and its predator, and to examine effects of these proteins on the predator's development, survival, and reproduction. Cry1Ac and Cry2Ab proteins from the bacterium Bacillus thuringiensis (Bt) produced in Bollgard-II (BG-II, Event 15985) cotton plants were acquired by Thrips tabaci Lindeman (Thysanoptera: Thripidae), an important sucking pest of cotton, and its generalist predator, Orius insidiosus (Say) (Hemiptera: Anthocoridae). The average protein titers in BG-II cotton leaves were 1,256 and 43,637 ng Cry1Ac and Cry2Ab per gram fresh leaf tissue, respectively. At the second trophic level, larvae of T. tabaci reared on BG-II cotton for 48-96 h had 22.1 and 2.1% of the Cry1Ac and Cry2Ab levels expressed in leaves, respectively. At the third trophic level, O. insidiosus that fed on T. tabaci larvae had 4.4 and 0.3% of the Cry1Ac and Cry2Ab protein levels, respectively, expressed in BG-II plants. O. insidiosus survivorship, time of nymphal development, adult weight, preoviposition and postoviposition periods, fecundity, and adult longevity were not adversely affected owing to consumption of T. tabaci larvae that had fed on BG-II cotton compared with non-Bt cotton. Our results indicate that O. insidiosus, a common predator of T. tabaci, is not harmed by BG-II cotton when exposed to Bt proteins through its prey. Thus, O. insidiosus can continue to provide important biological control services in the cotton ecosystem when BG-II cotton is used to control primary lepidopteran pests.

  14. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis)

    Science.gov (United States)

    de Oliveira, Raquel S.; Oliveira-Neto, Osmundo B.; Moura, Hudson F. N.; de Macedo, Leonardo L. P.; Arraes, Fabrício B. M.; Lucena, Wagner A.; Lourenço-Tessutti, Isabela T.; de Deus Barbosa, Aulus A.; da Silva, Maria C. M.; Grossi-de-Sa, Maria F.

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests. PMID:26925081

  15. Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda and cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Raquel Sampaio Oliveira

    2016-02-01

    Full Text Available Gossypium hirsutum (commercial cooton is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized with PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold. Also, a significant reduction of Anthonomus grandis emerging adults (up to 60% was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda and the Coleopteran (A. grandis insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  16. Transgenic Cotton Plants Expressing Cry1Ia12 Toxin Confer Resistance to Fall Armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis).

    Science.gov (United States)

    de Oliveira, Raquel S; Oliveira-Neto, Osmundo B; Moura, Hudson F N; de Macedo, Leonardo L P; Arraes, Fabrício B M; Lucena, Wagner A; Lourenço-Tessutti, Isabela T; de Deus Barbosa, Aulus A; da Silva, Maria C M; Grossi-de-Sa, Maria F

    2016-01-01

    Gossypium hirsutum (commercial cooton) is one of the most economically important fibers sources and a commodity crop highly affected by insect pests and pathogens. Several transgenic approaches have been developed to improve cotton resistance to insect pests, through the transgenic expression of different factors, including Cry toxins, proteinase inhibitors, and toxic peptides, among others. In the present study, we developed transgenic cotton plants by fertilized floral buds injection (through the pollen-tube pathway technique) using an DNA expression cassette harboring the cry1Ia12 gene, driven by CaMV35S promoter. The T0 transgenic cotton plants were initially selected with kanamycin and posteriorly characterized by PCR and Southern blot experiments to confirm the genetic transformation. Western blot and ELISA assays indicated the transgenic cotton plants with higher Cry1Ia12 protein expression levels to be further tested in the control of two major G. hirsutum insect pests. Bioassays with T1 plants revealed the Cry1Ia12 protein toxicity on Spodoptera frugiperda larvae, as evidenced by mortality up to 40% and a significant delay in the development of the target insects compared to untransformed controls (up to 30-fold). Also, an important reduction of Anthonomus grandis emerging adults (up to 60%) was observed when the insect larvae were fed on T1 floral buds. All the larvae and adult insect survivors on the transgenic lines were weaker and significantly smaller compared to the non-transformed plants. Therefore, this study provides GM cotton plant with simultaneous resistance against the Lepidopteran (S. frugiperda), and the Coleopteran (A. grandis) insect orders, and all data suggested that the Cry1Ia12 toxin could effectively enhance the cotton transgenic plants resistance to both insect pests.

  17. Feeding and dispersal behavior of the cotton leafworm, Alabama argillacea (Hübner) (Lepidoptera: Noctuidae), on Bt and non-Bt cotton: implications for evolution and resistance management.

    Science.gov (United States)

    Ramalho, Francisco S; Pachú, Jéssica K S; Lira, Aline C S; Malaquias, José B; Zanuncio, José C; Fernandes, Francisco S

    2014-01-01

    The host acceptance of neonate Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) larvae to Bt cotton plants exerts a strong influence on the potential risk that this pest will develop resistance to Bt cotton. This will also determine the efficiency of management strategies to prevent its resistance such as the "refuge-in-the-bag" strategy. In this study, we assessed the acceptance of neonate A. argillacea larvae to Bt and non-Bt cotton plants at different temperatures during the first 24 h after hatching. Two cotton cultivars were used in the study, one a Bt DP 404 BG (Bollgard) cultivar, and the other, an untransformed isoline, DP 4049 cultivar. There was a greater acceptance by live neonate A. argillacea larvae for the non-Bt cotton plants compared with the Bt cotton plants, especially in the time interval between 18 and 24 h. The percentages of neonate A. argillacea larvae found on Bt or non-Bt plants were lower when exposed to temperatures of 31 and 34 °C. The low acceptance of A. argillacea larvae for Bt cotton plants at high temperatures stimulated the dispersion of A. argillacea larvae. Our results support the hypothesis that the dispersion and/or feeding behavior of neonate A. argillacea larvae is different between Bt and non-Bt cotton. The presence of the Cry1Ac toxin in Bt cotton plants, and its probable detection by the A. argillacea larvae tasting or eating it, increases the probability of dispersion from the plant where the larvae began. These findings may help to understand how the A. argillacea larvae detect the Cry1Ac toxin in Bt cotton and how the toxin affects the dispersion behavior of the larvae over time. Therefore, our results are extremely important for the management of resistance in populations of A. argillacea on Bt cotton.

  18. Atoms for pest control

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, D.A. (Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria)) (and others)

    1984-06-01

    Insects cause losses estimated at between 8% and 20% of total production of crops and livestock throughout the world. With the aim of developing technologies which can reduce such losses, the Insect and Pest Control Section of the Joint FAO/IAEA Division actively sponsors projects and conducts research through the Entomology Section of the Agricultural Biotechnology Laboratory at Seibersdorf. In its work, the Section has placed considerable emphasis on the Sterile Insect Technique (SIT). This technique involves the sterilization and release of large numbers of insects of the target species into the area where control is to be achieved. There, the sterile insects mate with the fertile wild insects, which produce no progeny: the technique is thus a highly specific form of ''birth control''. It is being used against a number of pest species in several countries.

  19. Prospects for managing turfgrass pests with reduced chemical inputs.

    Science.gov (United States)

    Held, David W; Potter, Daniel A

    2012-01-01

    Turfgrass culture, a multibillion dollar industry in the United States, poses unique challenges for integrated pest management. Why insect control on lawns, golf courses, and sport fields remains insecticide-driven, and how entomological research and extension can best support nascent initiatives in environmental golf and sustainable lawn care are explored. High standards for aesthetics and playability, prevailing business models, risk management-driven control decisions, and difficulty in predicting pest outbreaks fuel present reliance on preventive insecticides. New insights into pest biology, sampling methodology, microbial insecticides, plant resistance, and conservation biological control are reviewed. Those gains, and innovations in reduced-risk insecticides, should make it possible to begin constructing holistic management plans for key turfgrass pests. Nurturing the public's interest in wildlife habitat preservation, including beneficial insects, may be one means to change aesthetic perceptions and gain leeway for implementing integrated pest management practices that lend stability to turfgrass settings. Copyright © 2012 by Annual Reviews. All rights reserved.

  20. Pest and disease monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Straw, Nigel; Lonsdale, David [Forest Research, Farnham (United Kingdom)

    2000-07-01

    This paper summaries the findings of surveys of pests and diseases carried out at pure and mixed plots of willow and poplar varieties twice a year during each growing season. The main causes of damage recorded were leaf rust, defoliation by insects, and leaf disease, distortion and chlorosis as well as frost damage, aphid infestation, and shoot dieback. Leaf rust for willow and poplar clones are plotted, and details of leaf rust and defoliation in pure and mixed plots are tabulated.

  1. Spatiotemporal Distribution of Chinavia hilaris (Hemiptera: Pentatomidae) in Peanut-Cotton Farmscapes.

    Science.gov (United States)

    Tillman, P Glynn; Cottrell, Ted E

    2015-01-01

    The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States, but little is known concerning its spatiotemporal distribution in agricultural farmscapes. Therefore, spatiotemporal distribution of C. hilaris in farmscapes where cotton fields adjoined peanut was examined weekly. Spatial patterns of C. hilaris counts were analyzed using SADIE (Spatial Analysis by Distance Indices) methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops. For the six peanut-cotton farmscapes studied, the frequency of C. hilaris in cotton (94.8%) was significantly higher than in peanut (5.2%), and nymphs were rarely detected in peanut, indicating that peanut was not a source of C. hilaris into cotton. Significantly, aggregated spatial distributions were detected in cotton. Maps of local clustering indices depicted patches of C. hilaris in cotton, mainly at field edges including the peanut-to-cotton interface. Black cherry (Prunus serotina Ehrh.) and elderberry (Sambucus nigra subsp. canadensis [L.] R. Bolli) grew in habitats adjacent to crops, C. hilaris were captured in pheromone-baited stink bug traps in these habitats, and in most instances, C. hilaris were observed feeding on black cherry and elderberry in these habitats before colonization of cotton. Spatial distribution of C. hilaris in these farmscapes revealed that C. hilaris colonized cotton field edges near these two noncrop hosts. Altogether, these findings suggest that black cherry and elderberry were sources of C. hilaris into cotton. Factors affecting the spatiotemporal dynamics of C. hilaris in peanut-cotton farmscapes are discussed. Published by Oxford University Press on behalf of the Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  2. Spatiotemporal Distribution of Chinavia hilaris (Hemiptera: Pentatomidae) in Peanut-Cotton Farmscapes

    Science.gov (United States)

    Tillman, P. Glynn; Cottrell, Ted E.

    2015-01-01

    The green stink bug, Chinavia hilaris (Say) (Hemiptera: Pentatomidae), is a pest of cotton in the southeastern United States, but little is known concerning its spatiotemporal distribution in agricultural farmscapes. Therefore, spatiotemporal distribution of C. hilaris in farmscapes where cotton fields adjoined peanut was examined weekly. Spatial patterns of C. hilaris counts were analyzed using SADIE (Spatial Analysis by Distance Indices) methodology. Interpolated maps of C. hilaris density were used to visualize abundance and distribution of C. hilaris in crops. For the six peanut-cotton farmscapes studied, the frequency of C. hilaris in cotton (94.8%) was significantly higher than in peanut (5.2%), and nymphs were rarely detected in peanut, indicating that peanut was not a source of C. hilaris into cotton. Significantly, aggregated spatial distributions were detected in cotton. Maps of local clustering indices depicted patches of C. hilaris in cotton, mainly at field edges including the peanut-to-cotton interface. Black cherry (Prunus serotina Ehrh.) and elderberry (Sambucus nigra subsp. canadensis [L.] R. Bolli) grew in habitats adjacent to crops, C. hilaris were captured in pheromone-baited stink bug traps in these habitats, and in most instances, C. hilaris were observed feeding on black cherry and elderberry in these habitats before colonization of cotton. Spatial distribution of C. hilaris in these farmscapes revealed that C. hilaris colonized cotton field edges near these two noncrop hosts. Altogether, these findings suggest that black cherry and elderberry were sources of C. hilaris into cotton. Factors affecting the spatiotemporal dynamics of C. hilaris in peanut-cotton farmscapes are discussed. PMID:26175464

  3. Large-Scale Evaluation of Association Between Pheromone Trap Captures and Cotton Boll Infestation for Pink Bollworm (Lepidoptera: Gelechiidae).

    Science.gov (United States)

    Carrière, Yves; Antilla, Larry; Liesner, Leighton; Tabashnik, Bruce E

    2017-06-01

    Although transgenic cotton producing insecticidal proteins from Bacillus thuringiensis (Bt) is a cornerstone for pink bollworm control in some countries, integrated pest management remains important for bolstering sustainability of Bt cotton and is critical for controlling pink bollworm where Bt cotton is not available or where this pest has evolved resistance to Bt cotton. Here, we used data on moth captures in gossyplure-baited pheromone traps and boll infestations for 163 Bt and 152 non-Bt cotton fields from Arizona to evaluate accuracy of chemical control decisions relying on moth trapping data and capacity of Bt cotton to suppress survival of offspring produced by moths. Assuming an economic injury level of 12% boll infestation, the accuracy of decisions based on moth captures corresponding to economic thresholds of 6%, 8%, and 10% boll infestation increased from 44.7% to 67.1%. The association between moth captures and boll infestation was positive and significant for non-Bt cotton fields but was not significant for Bt cotton fields. Although chemical control decisions based on trapping data were only moderately accurate, pheromone traps could still be valuable for determining when moth populations are high enough to trigger boll sampling to more rigorously evaluate the need for insecticide sprays. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. A perspective on management of Helicoverpa armigera: transgenic Bt cotton, IPM, and landscapes.

    Science.gov (United States)

    Downes, Sharon; Kriticos, Darren; Parry, Hazel; Paull, Cate; Schellhorn, Nancy; Zalucki, Myron P

    2017-03-01

    Helicoverpa armigera is a major pest of agriculture, horticulture and floriculture throughout the Old World and recently invaded parts of the New World. We overview of the evolution in thinking about the application of area-wide approaches to assist with its control by the Australian Cotton Industry to highlight important lessons and future challenges to achieving the same in the New World. An over-reliance of broad-spectrum insecticides led to Helicoverpa spp. in Australian cotton rapidly became resistant to DDT, synthetic pyrethroids, organophosphates, carbamates and endosulfan. Voluntary strategies were developed to slow the development of insecticide resistance, which included rotating chemistries and basing spray decisions on thresholds. Despite adoption of these practices, insecticide resistance continued to develop until the introduction of genetically modified cotton provided a platform for augmenting Integrated Pest Management in the Australian cotton industry. Compliance with mandatory resistance management plans for Bt cotton necessitated a shift from pest control at the level of individual fields or farms towards a coordinated area-wide landscape approach. Our take-home message for control of H. armigera is that resistance management is essential in genetically modified crops and must be season long and area-wide to be effective. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Pesticide Contamination of the Dridji Cotton Plantation Area in the Republic of Bénin

    NARCIS (Netherlands)

    Yehouenou, A; Pazou, E; Glin, L; Vodouhe, DS; Fanou, J; Babadankpodji, AP; Dassou, S; Vodouhe, S; van Hattum, A.G.M.; Swart, K.; van Gestel, C.A.M.

    2014-01-01

    Pesticides used for cotton production and pest control in the growing of food crops such as beans, maize and vegetables eventually may not only end up on the crops, but also in soil and surface water. As a consequence, aquatic organisms and humans consuming crops may experience pesticide exposure.

  6. Oviposition Patterns of Creontiades signatus (Hemiptera: Miridae) on Okra-Leaf and Normal-Leaf Cotton

    Science.gov (United States)

    We report the boll injury and oviposition site preference of Creontiades signatus (Distant), a relatively new plant bug pest of cotton in the United States. We compared a technique of injecting bolls with pectinase to enclosing a 5th instar, C. signatus nymph, to investigate the techniques potential...

  7. Characterization of an EPG waveform library for Lygus spp. on cotton squares

    Science.gov (United States)

    Lygus hesperus and L. lineolaris (Hemiptera: Miridae) are economically important pests affecting production of cotton in the western and mid-southern USA, respectively. Lygus feeding damage varies with instar; young nymphs are cell-rupture feeders performing laceration and maceration of plant tissue...

  8. Spectral response of spider mite infested cotton: Mite density and miticide rate study

    Science.gov (United States)

    Two-spotted spider mites are important pests in many agricultural systems. Spider mites (Acari: Tetranychidae) have been found to cause economic damage in corn, cotton, and sorghum. Adult glass vial bioassays indicate that Temprano™ (abamectin) is the most toxic technical miticide for adult two-spot...

  9. Incidence of pests and viral disease on pepino (Solanum muricatum Ait.) in Kanagawa Prefecture, Japan

    Science.gov (United States)

    Kim, Ok-Kyung; Yamada, Yoshihiro; Sato, Takuma; Shinohara, Hirosuke; Takahata, Ken

    2017-01-01

    Abstract Background The solanaceous fruit crop pepino (Solanum muricatum Ait.), originating in the Andes, is grown commercially in South American countries and New Zealand. In these areas, pests and diseases of pepino have been identified well; however, to date, these have seldom been investigated in detail in Japan. Herein, we attempt to reconstruct an agricultural production system for commercial pepino crops in Japan, and evaluate the incidence of pests and viral diseases on pepino. The findings of this study will facilitate in developing a better crop system for the commercial cultivation of healthy pepino fruits. New information A total of 11 species, comprising nine insects and two mites, were recognized as pests of pepino plants in our experimental fields in Kanagawa Prefecture, central Honshu, Japan. Of these pest species, the two-spotted spider mite Tetranychus urticae Koch, 1836 and the cotton aphid Aphis gossypii Glover, 1877, were remarkably abundant than the other pest species. Eventually, 13 species, including two previously recorded, are currently recognized as the pests of pepino in Japan. With regard to viruses, we tested two species Alfalfa mosaic virus (AMV) and Cucumber mosaic virus (CMV), as well as three genera Carlavirus, Potexvirus, and Potyvirus. No virus was detected in symptomatic pepino leaves collected in our experimental fields. This is a first report on the identification of pests on pepino plants in Kanagawa Prefecture, Japan and elucidates the relationship between currently occurring pests of pepino plants and potential viral pathogens that they can transmit. PMID:28947875

  10. Case Study: Trap Crop with Pheromone Traps for Suppressing Euschistus servus (Heteroptera: Pentatomidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available The brown stink bug, Euschistus servus (Say, can disperse from source habitats, including corn, Zea mays L., and peanut, Arachis hypogaea L., into cotton, Gossypium hirsutum L. Therefore, a 2-year on-farm experiment was conducted to determine the effectiveness of a sorghum (Sorghum bicolor (L. Moench spp. bicolor trap crop, with or without Euschistus spp. pheromone traps, to suppress dispersal of this pest to cotton. In 2004, density of E. servus was lower in cotton fields with sorghum trap crops (with or without pheromone traps compared to control cotton fields. Similarly, in 2006, density of E. servus was lower in cotton fields with sorghum trap crops and pheromone traps compared to control cotton fields. Thus, the combination of the sorghum trap crop and pheromone traps effectively suppressed dispersal of E. servus into cotton. Inclusion of pheromone traps with trap crops potentially offers additional benefits, including: (1 reducing the density of E. servus adults in a trap crop, especially females, to possibly decrease the local population over time and reduce the overwintering population, (2 reducing dispersal of E. servus adults from the trap crop into cotton, and (3 potentially attracting more dispersing E. servus adults into a trap crop during a period of time when preferred food is not prevalent in the landscape.

  11. Transgenic Cotton Plants Expressing the HaHR3 Gene Conferred Enhanced Resistance to Helicoverpa armigera and Improved Cotton Yield.

    Science.gov (United States)

    Han, Qiang; Wang, Zhenzhen; He, Yunxin; Xiong, Yehui; Lv, Shun; Li, Shupeng; Zhang, Zhigang; Qiu, Dewen; Zeng, Hongmei

    2017-08-30

    RNA interference (RNAi) has been developed as an efficient technology. RNAi insect-resistant transgenic plants expressing double-stranded RNA (dsRNA) that is ingested into insects to silence target genes can affect the viability of these pests or even lead to their death. HaHR3 , a molt-regulating transcription factor gene, was previously selected as a target expressed in bacteria and tobacco plants to control Helicoverpa armigera by RNAi technology. In this work, we selected the dsRNA- HaHR3 fragment to silence HaHR3 in cotton bollworm for plant mediated-RNAi research. A total of 19 transgenic cotton lines expressing HaHR3 were successfully cultivated, and seven generated lines were used to perform feeding bioassays. Transgenic cotton plants expressing ds HaHR3 were shown to induce high larval mortality and deformities of pupation and adult eclosion when used to feed the newly hatched larvae, and 3rd and 5th instar larvae of H. armigera . Moreover, HaHR3 transgenic cotton also demonstrated an improved cotton yield when compared with controls.

  12. 7 CFR 1205.304 - Cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton. 1205.304 Section 1205.304 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.304 Cotton. Cotton means: (a) All Upland cotton harvested...

  13. Ecoinformatics can reveal yield gaps associated with crop-pest interactions: a proof-of-concept.

    Directory of Open Access Journals (Sweden)

    Jay A Rosenheim

    Full Text Available Farmers and private consultants execute a vast, decentralized data collection effort with each cropping cycle, as they gather pest density data to make real-time pest management decisions. Here we present a proof of concept for an ecoinformatics approach to pest management research, which attempts to harness these data to answer questions about pest-crop interactions. The impact of herbivory by Lygus hesperus on cotton is explored as a case study. Consultant-derived data satisfied a 'positive control' test for data quality by clearly resolving the expected negative relationship between L. hesperus density and retention of flower buds. The enhanced statistical power afforded by the large ecoinformatics dataset revealed an early-season window of crop sensitivity, during which L. hesperus densities as low as 1-2 per sample were associated with yield loss. In contrast, during the mid-season insecticide use by farmers was often unnecessary, as cotton compensated fully for moderate L. hesperus densities. Because the dataset emerged from the commercial production setting, it also revealed the limited degree to which farmers were willing to delay crop harvest to provide opportunities for compensatory fruiting. Observational approaches to pest management research have strengths and weaknesses that complement those of traditional, experimental approaches; combining these methods can contribute to enhanced agricultural productivity.

  14. Effect of graphene oxide on the structural and electrochemical behavior of polypyrrole deposited on cotton fabric

    Science.gov (United States)

    Yaghoubidoust, Fatemeh; Wicaksono, Dedy H. B.; Chandren, Sheela; Nur, Hadi

    2014-10-01

    Improving the electrical response of polypyrrole-cotton composite is the key issue in making flexible electrode with favorable mechanical strength and large capacitance. Flexible graphene oxide/cotton (GO/Cotton) composite has been prepared by dipping pristine cotton in GO ink. The composite‘s surface was further modified with polypyrrole (Ppy) via chemical polymerization to obtain Ppy/GO/Cotton composite. The composite was characterized using SEM, FTIR and XRD measurements, while the influence of GO in modifying the physicochemical properties of the composite was also examined using TG and cyclic voltammetry. The achieved mean particle size for Ppy/Cotton, Ppy/GO/Cotton and GO estimated using Scherrer formula are 58, 67 and 554 nm, respectively. FTIR spectra revealed prominent fundamental absorption bands in the range of 1400-1800 cm-1. The increased electrical conductivity as much as 2.2 × 10-1 S cm-1 for Ppy/GO/Cotton composite measured by complex impedance, is attributed to the formation of continuous conducting network. The partial reduction of GO on the surface of cotton (GO/Cotton) during chemical polymerization can also affect the conductivity. This simple, economic and environmental-friendly preparation method may contribute towards the controlled growth of quality and stable Ppy/GO/Cotton composites for potential applications in microwave attenuation, energy storage system, static electric charge dissipation and electrotherapy.

  15. Third stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  16. Second stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  17. First stage seed-cotton cleaning system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  18. Integration of botanicals and microbials for management of crop and human pests.

    Science.gov (United States)

    Naresh Kumar, A; Murugan, K; Madhiyazhagan, P

    2013-01-01

    Insect pests inflict damage to humans, farm animals, and crops. Human and animal pests put more than 100 million people and 80 million cattle at risk worldwide. Plant pests are the main reason for destroying one fifth of the world's total crop production annually. Anopheles stephensi is the major vector of human malaria in Middle East and South Asian regions. Spodoptera litura is a polyphagous pest of vegetables and field crops. Because of its broad host range, this insect is also known as cluster caterpillar, common cutworm, cotton leafworm, tobacco cutworm, tobacco caterpillar, and tropical armyworm. The toxic effects of methanolic extract of Senna alata and microbial insecticide, Bacillus sphericus, were tested against the polyphagous crop pest, S. litura (Fab.), and the malarial vector, A. stephensi. Results from the present study states that B. sphericus is more toxic than S. alata to both the crop pest and mosquito. The malarial vector, A. stephensi, was found to be susceptible than the crop pest, S. litura. Both the botanical and microbial insecticide showed excellent larvicidal, pupicidal, longevity, fecundity, and growth regulatory activities. Median lethal concentrations of B. sphericus and methanolic extract of S. alata observed to kill the third instar of S. litura were 0.52 and 193.09 ppm and A. stephensi were 0.40 and 174.64 ppm, respectively.

  19. Trading biodiversity for pest problems

    Science.gov (United States)

    Recent shifts in agricultural practices have resulted in increased pesticide use, land use intensification, and landscape simplification, all of which threaten biodiversity in and near farms. Pests are major challenges to food security, and responses to pests can represent unintended socioeconomic a...

  20. Holistic pest management [Chapter 15

    Science.gov (United States)

    Thomas D. Landis; Tara Luna; R. Kasten Dumroese

    2009-01-01

    As any experienced grower knows only too well, nursery management is a continuous process of solving problems. Murphy's Law of "anything that can go wrong, will go wrong" sounds as if it were meant for native plant production. One recurring problem is pests. Nursery managers have traditionally talked about "controlling" a pest. This approach...

  1. Profilaxia da peste

    Directory of Open Access Journals (Sweden)

    Renato dos Santos Araújo

    1967-12-01

    Full Text Available O autor parte da premissa de que a profilaxia da doença infecciosa decorre do encadeamento epidemiológico: fonte de infecção-veículo transmissor - receptivel, para explicar a da peste, baseada no mesmo princípio. Depois de citar os 4 principais complexos epidemiológicos da peste e afirmar que tôda a profilaxia da doença consiste em atingir os dois primeiros elos dessas cadeias e proteger o último, passa a classificar os vários métodos profiláticos empregados em 2 grandes grupos: o das medidas destrutivas ou provisórias e o das medidas supressivas ou definitivas. Entre as primeiras arrola a desratização e a despulização, às quais acrescenta o tratamento e isolamento do doente e do portaãor, e entre as segundas inclui a anti-ratização e a imunização. A seguir, passa a explicar em que consistem essas várias medidas profiláticas e quais os agentes de que se tem lançado mão para executá-las, expendendo ao curso dessa exposição o conceito que formula a respeito de cada uma delas, à guisa de apreciação do seu valor relativo. Enaltece sobretudo as medidas supressivas ou definitivas, às quais empresta a maior significação na luta antipestosa, chamando a atenção, em especial, para a necessidade de estudos imunológicos para aperfeiçoamento do poder imunitário das vacinas de germes vivos avirulentos, que considera um grande recurso para a profilaxia da doença, sobretudo para a proteção do rurícola, cujo labor e modo de vida o expõem inevitavelmente a se infectar, por ocasião da ocorrência de epizootias de origem silvestre. Concluída essa primeira parte, passa a fazer o histórico de como se desenvolveu a campanha contra a peste, no Brasil, desde a época da sua invasão em 1899 pelo pôrto de Santos até os nossos dias. Nesse histórico, detem-se um pouco para expôr a atuação do extinto Serviço Nacional de Peste, o qual, criado em 1941, após a reorganização do Departamento Nacional de Saúde, passou

  2. Induction of cotton ovule culture fibre branching by co-expression of cotton BTL, cotton SIM, and Arabidopsis STI genes

    OpenAIRE

    Wang, Gaskin; Feng, Hongjie; Sun, Junling; Du, Xiongming

    2013-01-01

    The highly elongated single-celled cotton fibre consists of lint and fuzz, similar to the Arabidopsis trichome. Endoreduplication is an important determinant in Arabidopsis trichome initiation and morphogenesis. Fibre development is also controlled by functional homologues of Arabidopsis trichome patterning genes, although fibre cells do not have a branched shape like trichomes. The identification and characterization of the homologues of 10 key Arabidopsis trichome branching genes in Gossypi...

  3. Forest insect pests in Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The papers presented in this book cover the range of forest insect pest management activities in Canada. The first section contains papers on the current status of insect pests by region, including data on insect populations and extent of defoliation caused by the insect. The next section covers pest management technology, including the use of insecticides, insect viruses, fungal pathogens, growth regulators, antifeedants, pheromones, natural predators, and aerial spraying. The third section contains papers on the application of technology and equipment for forest pest control, and includes papers on the impacts of insecticides on the forest environment. The fourth section describes operational control programs by province. The final paper presents future strategies for the management of forest pests. An author index is included.

  4. Cotton Production Practices Change Soil Properties

    Science.gov (United States)

    Blaise, D.; Singh, J. V.

    2012-04-01

    Historically, indigenous Asiatic cottons (Gossypium arboreum) were cultivated with minimal inputs in India. The introduction of the Upland cottons (G. hirsutum) and later the hybrid (H-4) triggered a whole set of intensified agronomic management with reliance on high doses of fertilisers and pesticide usage. In 2002, the transgenic Bt cotton hybrids were introduced and released for commercial cultivation. Presently, more than 95% of the nearly 12.2 million hectares of cotton area is under the Bt transgenic hybrids. These hybrids are not only high yielding but have reduced the dependence on pesticide because of an effective control of the lepidopteran pests. Thus, a change in the management practices is evident over the years. In this paper, we discuss the impact of two major agronomic management practices namely, nutrient management and tillage besides organic cotton cultivation in the rainfed cotton growing regions of central India characterized by sub-humid to semi-arid climate and dominated by Vertisols. Long-term studies at Nagpur, Maharashtra indicated the importance of integrated nutrient management (INM) wherein a part of the nutrient needs through fertiliser was substituted with organic manures such as farmyard manure (FYM). With the application of mineral fertilisers alone, soils became deficient in micronutrients. This was not observed with the FYM amended plots. Further, the manure amended plots had a better soil physical properties and the water holding capacity of the soil improved due to improvements in soil organic matter (SOM). Similarly, in a separate experiment, an improvement in SOM was observed in the organically managed fields because of continuous addition of organic residues. Further, it resulted in greater biological activity compared to the conventionally managed fields. Conservation tillage systems such as reduced tillage (RT) are a means to improve soil health and crop productivity. Long-term studies on tillage practices such as

  5. LED-Induced fluorescence and image analysis to detect stink bug damage in cotton bolls.

    Science.gov (United States)

    Mustafic, Adnan; Roberts, Erin E; Toews, Michael D; Haidekker, Mark A

    2013-02-20

    Stink bugs represent a major agricultural pest complex attacking more than 200 wild and cultivated plants, including cotton in the southeastern US. Stink bug feeding on developing cotton bolls will cause boll abortion or lint staining and thus reduced yield and lint value. Current methods for stink bug detection involve manual harvesting and cracking open of a sizable number of immature cotton bolls for visual inspection. This process is cumbersome, time consuming, and requires a moderate level of experience to obtain accurate estimates. To improve detection of stink bug feeding, we present here a method based on fluorescent imaging and subsequent image analyses to determine the likelihood of stink bug damage in cotton bolls. Damage to different structures of cotton bolls including lint and carpal wall can be observed under blue LED-induced fluorescence. Generally speaking, damaged regions fluoresce green, whereas non-damaged regions with chlorophyll fluoresce red. However, similar fluorescence emission is also observable on cotton bolls that have not been fed upon by stink bugs. Criteria based on fluorescent intensity and the size of the fluorescent spot allow to differentiate between true positives (fluorescent regions associated with stink bug feeding) and false positives (fluorescent regions due to other causes). We found a detection rates with two combined criteria of 87% for true-positive marks and of 8% for false-positive marks. The imaging technique presented herein gives rise to a possible detection apparatus where a cotton boll is imaged in the field and images processed by software. The unique fluorescent signature left by stink bugs can be used to determine with high probability if a cotton boll has been punctured by a stink bug. We believe this technique, when integrated in a suitable device, could be used for more accurate detection in the field and allow for more optimized application of pest control.

  6. Bacterial blight of cotton

    Directory of Open Access Journals (Sweden)

    Aïda JALLOUL

    2015-04-01

    Full Text Available Bacterial blight of cotton (Gossypium ssp., caused by Xanthomonas citri pathovar malvacearum, is a severe disease occurring in all cotton-growing areas. The interactions between host plants and the bacteria are based on the gene-for-gene concept, representing a complex resistance gene/avr gene system. In light of the recent data, this review focuses on the understanding of these interactions with emphasis on (1 the genetic basis for plant resistance and bacterial virulence, (2 physiological mechanisms involved in the hypersensitive response to the pathogen, including hormonal signaling, the oxylipin pathway, synthesis of antimicrobial molecules and alteration of host cell structures, and (3 control of the disease.

  7. Pest damage assessment in fruits and vegetables using thermal imaging

    Science.gov (United States)

    Vadakkapattu Canthadai, Badrinath; Muthuraju, M. Esakki; Pachava, Vengalrao; Sengupta, Dipankar

    2015-05-01

    In some fruits and vegetables, it is difficult to visually identify the ones which are pest infested. This particular aspect is important for quarantine and commercial operations. In this article, we propose to present the results of a novel technique using thermal imaging camera to detect the nature and extent of pest damage in fruits and vegetables, besides indicating the level of maturity and often the presence of the pest. Our key idea relies on the fact that there is a difference in the heat capacity of normal and damaged ones and also observed the change in surface temperature over time that is slower in damaged ones. This paper presents the concept of non-destructive evaluation using thermal imaging technique for identifying pest damage levels of fruits and vegetables based on investigations carried out on random samples collected from a local market.

  8. [Arthropod community structures in transgenic Bt cotton fields].

    Science.gov (United States)

    Wei, G; Cui, L; Zhang, X; Liu, S; Lü, N; Zhang, Q

    2001-08-01

    Arthropod community structures were investigated in transgenic Bt cultivars, Bollgard(B) and Chinese cotton 30 (CC30), and common cultivars, control (C) and no control (NC) cotton field in North China in 1998. The results showed that compared with common cultivars, the species richness and the number of total individual of arthropod community in transgenic Bt cultivars field were reduced 2.4-16.3% and 71.0-78.3% respectively, in which dominant species in phytophagous subcommunity varied. The number of individual of predatory and parastic subcommunity were all increased. The similarity coefficient between CC30 and NC was 0.8243, B and NC 0.7320, B and C 0.3380, C and NC 0.3128, CC30 and C 0.2665. The order of diversity and evenness value of these were CC30 (2.3712 and 0.6428), NC (2.3654 and 0.6251), B (2.1364 and 0.5791), and C (1.0877 and 0.2949), their dominant value was 0.8726 (C), 0.3528(B), 0.1178(NC) and 0.1048 (CC30) respectively. It was concluded that different integrated pest management (IPM) strategy should be implemented in transgenic Bt cotton instead of common variety cotton field.

  9. Vip3Aa tolerance response of Helicoverpa armigera populations from a Cry1Ac cotton planting region.

    Science.gov (United States)

    An, Jingjie; Gao, Yulin; Wu, Kongming; Gould, Fred; Gao, Jianhua; Shen, Zhicheng; Lei, Chaoliang

    2010-12-01

    Transgenic cotton, Gossypium hirsutum L., that expresses the Bacillus thuringiensis (Bt) Cry1Ac toxin, holds great promise in controlling target insect pests. Evolution of resistance by target pests is the primary threat to the continued efficacy of Bt cotton. To thwart pest resistance evolution, a transgenic cotton culitvar that produces two different Bt toxins, cry1Ac and vip3A genes, was proposed as a successor of cry1Ac cotton. This article reports on levels of Vip3Aa tolerance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from the Cry1Ac cotton planting region in China based on bioassays of the F1 generation of isofemale lines. In total, 80 isofemale families of H. armigera from Xiajin county of Shandong Province (an intensive Bt cotton planting area) and 93 families from Anci county of Hebei Province (a multiple-crop system including corn [Zea mays L.] , soybean [Glycine max (L.) Merr.], peanut (Arachis hypogaea L.), and Bt cotton) were screened with a discriminating concentration of both Cry1Ac- and Vip3A-containing diets in 2009. From data on the relative average development rates and percentage of larval weight inhibition of F1 full-sib families tested simultaneously on Cry1Ac and Vip3Aa, results indicate that responses to Cry1Ac and Vip3Aa were not genetically correlated in field population ofH. armigera. This indicates that the threat of cross-resistance between Cry1Ac and Vip3A is low in field populations of H. armigera. Thus, the introduction of Vip3Aa/Cry1Ac-producing lines could delay resistance evolution in H. armigera in Bt cotton planting area of China.

  10. Metal analysis of cotton

    Science.gov (United States)

    Seven varieties of cotton were investigated for 8 metal ions (K, Na, Mg, Ca, Fe, Cu, Zn, and Mn) using Inductively Coupled Plasma-Optical Emission Spectroscopy. All of the varieties were grown at the same location. Half of the samples were dry (rain fed only) and the other were well-watered (irrigat...

  11. Cotton, Prof. Aime Auguste

    Indian Academy of Sciences (India)

    Home; Fellowship. Fellow Profile. Elected: 1935 Honorary. Cotton, Prof. Aime Auguste. Date of birth: 9 October 1869. Date of death: 16 April 1951. YouTube; Twitter; Facebook; Blog. Academy News. IAS Logo. Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on the ...

  12. Nanoengineered cotton wipes

    Science.gov (United States)

    Advances in nanotechnology are creating synergy with nonwoven technology in cleaning and/or disinfecting power for the next generation of wipe products. However, there is little known about the use of cotton fiber in wipes as a nanoengineering tool, which self-produces silver nanoparticles -- one of...

  13. Population dynamics of caterpillars on three cover crops before sowing cotton in Mato Grosso (Brazil).

    Science.gov (United States)

    Silvie, P J; Menzel, C A; Mello, A; Coelho, A G

    2010-01-01

    Direct seeding mulch-based cropping systems under a preliminary cover crop such as millet are common in some areas of Brazil. Lepidopteran pests that damage cotton, soybean and maize crops can proliferate on cover crops, so preventive chemical treatments are necessary. Very little data is available on these pests on cover crops. This paper presents the dynamics of Spodoptera frugiperda, S. eridania, Mocis latipes and Diatraea saccharalis caterpillars monitored at Primavera do Leste, Mato Grosso state (Brazil) during the of 2005/2006 and 2006/2007 cropping seasons on four cover crops, i.e. finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and ruzigrass (Brachiaria ruziziensis). The pests were visually counted on plants within a 1 m2 transect (wooden frame). Caterpillars were reared to facilitate identification of collected species and parasitoids. Many S. frugiperda caterpillars were observed on millet in 2005, with a maximum of 37 caterpillars/m2. On sorghum, we found 30 caterpillars/m2, or 0.83 caterpillars/plant. The Diatraea borer attacked sorghum later than the other pests. M. latipes was also observed on millet. The millet cover crop had to be dried for at least 1 month before direct drilling the main cotton crop in order to impede S. frugiperda infestations on cotton plantlets, thus avoiding the need for substantial resowing. The comparative methodological aspects are discussed.

  14. 7 CFR 1205.308 - Cotton Board.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton Board. 1205.308 Section 1205.308 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.308 Cotton Board. Cotton Board means the administrative...

  15. 7 CFR 1205.305 - Upland cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Upland cotton. 1205.305 Section 1205.305 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Cotton Research and Promotion Order Definitions § 1205.305 Upland cotton. Upland cotton means all cultivated...

  16. Mote trash system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  17. Master trash system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  18. Master trash system total particulate emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  19. Master trash system total particulate emission factors and rates for cotton gins: Method 17

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  20. Mote trash system total particulate emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  1. Mote trash system total particulate emission factors and rates for cotton gins: Method 17

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  2. Battery condenser system total particulate emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  3. Battery condenser system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study ...

  4. Battery condenser system total particulate emission factors and rates for cotton gins: Method 17

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  5. A study on the chopping and mixing of cotton stalks with soil

    African Journals Online (AJOL)

    USER

    2010-07-26

    Jul 26, 2010 ... type stalk chopper (13.38 cm). The highest rate of stalks mixed with the soil after chopping was achieved by the splined-type stalk copper (92.5%). Key words: Cotton, stalk, chopping, stalk chopper. INTRODUCTION. Within Turkey, cotton is cultivated mostly in the Aegean,. Mediterranean and South Eastern ...

  6. Mote cyclone robber system total particulate emission factors and rate for cotton gins: Method 17

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  7. Cyclone robber system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  8. Cyclone robber system total particulate emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  9. Cyclone robber system total particulate emission factors and rates for cotton gins: Method 17

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  10. Mote cyclone robber system PM10 emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  11. Mote cyclone robber system total particulate emission factors and rates for cotton gins

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  12. Nitrogen fertilization and conservation tillage: a review on growth, yield, and greenhouse gas emissions in cotton.

    Science.gov (United States)

    Shah, Adnan Noor; Iqbal, Javaid; Tanveer, Mohsin; Yang, Guozheng; Hassan, Waseem; Fahad, Shah; Yousaf, Muhammad; Wu, Yingying

    2017-01-01

    Cotton is planted worldwide as a "cash crop" providing us fiber, edible oil, and animal feed as well. In this review, we presented a contemporary synthesis of the existing data regarding the importance of nitrogen application and tillage system on cotton growth and greenhouse gas (GHG) emission. Cotton growth and development are greatly influenced by nitrogen (N); therefore, proper N application is important in this context. Tillage system also influences cottonseed yield. Conservation tillage shows more promising results as compared to the conventional tillage in the context of cotton growth and GHG emission. Moreover, the research and knowledge gap relating to nitrogen application, tillage and cotton growth and yield, and GHG emission was also highlighted in order to guide the further studies in the future. Although limited data were available regarding N application, tillage and their interactive effects on cotton performance, and GHG emission, we also tried to highlight some key factors which influence them significantly.

  13. Correlation of EPG waveforms from Lygus lineolaris feeding on cotton squares and chemical evidence of inducible tannins

    Science.gov (United States)

    Probing behavior of Lygus lineolaris (Palisot de Beauvois), one of the most important pests affecting cotton production in mid-southern United States, has previously been characterized with electropenetrography (EPG). Cell rupturing (CR) and Ingestion (I) EPG waveforms were identified as two of the ...

  14. Evaluation of selected acaricides against two-spotted spider mite (Acari: Tetranychidae) on greenhouse cotton using multispectral data

    Science.gov (United States)

    Two-spotted spider mite (TSSM), Tetranychus urticae (Koch), is an early season pest of cotton in the mid-southern United States and causes reduction in yield, fiber quality and impaired seed germination. Objectives of this study were to investigate the efficacy of abamectin and spiromesifen with two...

  15. Structural Dynamics of Management Zones for the Site-Specific Control of Tarnished Plant Bugs in Cotton

    Science.gov (United States)

    Precision-based agricultural application of insecticide relies on a non-random distribution of pests; tarnished plant bugs (Lygus lineolaris) are known to prefer vigorously growing patches of cotton. Management zones for various crops have been readily defined using NDVI (Normalized Difference Vege...

  16. Field evaluation of the efficacy of neem oil (Azadirachta indica A. Juss) and Beauveria bassiana (Bals.) Vuill. in cotton production

    NARCIS (Netherlands)

    Togbe, C.E.; Haagsma, R.; Zannou, E.; Gbehounou, G.; Déguénon, J.M.; Vodouhe, S.; Kossou, D.; Huis, van A.

    2015-01-01

    Neem oil (Azadirachta indica A. Juss) alone and combined with the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (isolate Bb11) was applied to control cotton pests. The efficacy of these treatments was compared with that of synthetic insecticides applied either in a calendar-based

  17. Using and development of multi adversity resistance system in cotton

    Directory of Open Access Journals (Sweden)

    Metin Durmuş ÇETİN

    2014-12-01

    Full Text Available The basic approach in plant breeding, make it possible to show the full genetic potential of plant. This methods also protect the health of plant growth over the period, by increasing resistance to diseases and pests is expected to provide. For this purpose, by Bird in 1963, with the name of multi adversity resistance has been initiated in cotton breeding and for many years as a result of the work carried out important varieties and germplasm have been developed. Nowadays, those using for varieties resistant to stress factors such as heat and drought are evaluated. And successful results are obtained.

  18. Pest categorisation of Spodoptera frugiperda

    OpenAIRE

    Jeger, Michael; Bragard, Claude; Caffier, David; Candresse, Thierry; Chatzivassiliou, Elisavet; Dehnen-Schmutz, Katharina; Gilioli, Gianni; Grégoire, Jean-Claude; Jaques Miret, Josep Anton; Navajas Navarro, María; Niere, Björn; Parnell, Stephen; Potting, Roel; Rafoss, Trond; Rossi, Vittorio

    2017-01-01

    The European Commission requested EFSA to conduct a pest categorisation of Spodoptera frugiperda (Lepidoptera: Noctuidae) a pest with hosts in 27 plant families. Favoured hosts include maize, rice and sorghum (Poaceae). Hosts also include crops within the Brassicaceae, Cucurbitaceae, Solanaceae, Rutaceae and other families. S. frugiperda is a taxonomic entity with reliable methods for identification. It is regulated in the EU as a harmful organism whose introduction into the EU is...

  19. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon.

    Science.gov (United States)

    Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E

    2017-10-01

    Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. A Screening Procedure for Evaluating Cotton for Rotylenchulus reniformis Resistance in Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Konan, NO.

    2014-01-01

    Full Text Available Rotylenchulus reniformis is one of the most important nematode pests of cotton. Currently, no cotton cultivar resistant cotton cultivar to this pest is available. In the framework of a breeding program aiming at producing cotton genotype resistant to this nematode, a R. reniformis resistance evaluation protocol based on egg inoculation, extraction and counting, has been established. Two environment conditions (growth chamber and greenhouse, four sieves (75, 50, 20 and 10 µm, three doses of inoculum (1,500; 3,000 and 6,000 eggs, and five durations of infestation (20, 30, 40, 50 and 60 days after inoculation have been tested. The growth chamber programmed to provide 12 h of light, 55%-60% relative humidity and 30-26°C day-night air temperatures revealed to be adequate. The NaOCl (sodium hypochloride-blender-sieving-centrifugation-flotation method, using 75-µm and 20-µm sieves, kaolin powder and MgSO4 (magnesium sulfate solution (specific gravity 1.18 proved to be suitable for effective R. reniformis egg extraction (from roots and counting. Inoculation of 6,000 eggs per seedling and 60 days duration of infestation seemed to be sufficient dose and period for a reliable resistance evaluation. The protocol developed has been tested on known susceptible and resistant cotton genotypes: G. hirsutum L (main cultivated species through the world, susceptible, G. thurberi Tod. (wild cotton species, moderately susceptible G. longicalyx Hutch. and Lee (wild cotton species, very resistant. The results obtained were in accordance with the response expected from the genotypes tested, proving the reliability of the evaluation procedure developed.

  1. Trap Cropping Systems and a Physical Barrier for Suppression of Stink Bugs (Hemiptera: Pentatomidae) in Cotton.

    Science.gov (United States)

    Tillman, P G; Khrimian, A; Cottrell, T E; Lou, X; Mizell, R F; Johnson, C J

    2015-10-01

    Euschistus servus (Say), Nezara viridula (L.), and Chinavia hilaris (Say) (Hemiptera: Pentatomidae) are economic pests of cotton in the coastal plain of the southeastern United States. The objective of this 2-yr study was to determine the ability of trap cropping systems, pheromone-baited stink bug traps, and a synthetic physical barrier at the peanut-to-cotton interface to manage stink bugs in cotton. The physical barrier was the most effective management tactic. Stink bug density in cotton was lowest for this treatment. In 2010, boll injury was lower for the physical barrier compared to the other treatments except for soybean with stink bug traps. In 2011, boll injury was lower for this treatment compared to the control. Soybean was an effective trap crop, reducing both stink bug density in cotton and boll injury regardless if used alone or in combination with either stink bug traps or buckwheat. Incorporation of buckwheat in soybean enhanced parasitism of E. servus egg masses by Telenomus podisi Ashmead in cotton. The insertion of eyelets in the lid of the insect-collecting device of a stink bug trap allowed adult stink bug parasitoids, but not E. servus, to escape. Stand-alone stink bug traps were not very effective in deterring colonization of cotton by stink bugs or reducing boll injury. The paucity of effective alternative control measures available for stink bug management justifies further full-scale evaluations into these management tactics for control of these pests in crops. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  2. Intercrop movement of convergent lady beetle, Hippodamia convergens (Coleoptera: Coccinellidae), between adjacent cotton and alfalfa.

    Science.gov (United States)

    Bastola, Anup; Parajulee, Megha N; Porter, R Patrick; Shrestha, Ram B; Chen, Fa-Jun; Carroll, Stanley C

    2016-02-01

    A 2-year study was conducted to characterize the intercrop movement of convergent lady beetle, Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinellidae) between adjacent cotton and alfalfa. A dual protein-marking method was used to assess the intercrop movement of the lady beetles in each crop. In turns field collected lady beetles in each crop were assayed by protein specific ELISA to quantify the movement of beetles between the crops. Results indicated that a high percentage of convergent lady beetles caught in cotton (46% in 2008; 56% in 2009) and alfalfa (46% in 2008; 71% in 2009) contained a protein mark, thus indicating that convergent lady beetle movement was largely bidirectional between the adjacent crops. Although at a much lower proportion, lady beetles also showed unidirectional movement from cotton to alfalfa (5% in 2008 and 6% in 2009) and from alfalfa to cotton (9% in 2008 and 14% in 2009). The season-long bidirectional movement exhibited by the beetles was significantly higher in alfalfa than cotton during both years of the study. The total influx of lady beetles (bidirectional and unidirectional combined) was significantly higher in alfalfa compared with that in cotton for both years. While convergent lady beetles moved between adjacent cotton and alfalfa, they were more attracted to alfalfa when cotton was not flowering and/or when alfalfa offered more opportunities for prey. This study offers much needed information on intercrop movement of the convergent lady beetle that should facilitate integrated pest management decisions in cotton utilizing conservation biological control. © 2014 Institute of Zoology, Chinese Academy of Sciences.

  3. Population growth and within-plant distribution of the striped mealybug Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae on cotton

    Directory of Open Access Journals (Sweden)

    Martin D. Oliveira

    2014-03-01

    Full Text Available Population growth and within-plant distribution of the striped mealybug Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae on cotton. The striped mealybug, Ferrisia virgata (Cockerell (Hemiptera, Pseudococcidae, is a widely distributed and polyphagous pest species, which naturally occurs on cotton plants in Brazil. This study evaluated the establishment and population growth as well as the within-plant distribution of F. virgata on four cotton cultivars: CNPA 7H (white fibers, BRS Verde, BRS Safira, and BRS Rubi (colored fibers. The experiment was conducted in a complete randomized design with four treatments (cultivars and 18 replications of each. Thus, cotton plants of each cultivar were infested with 100 newly hatched nymphs of F. virgata. The number of adult female mealybugs and the total number of mealybugs per plant were quantified, respectively, at 25 and 50 days after infestation. The developmental and pre-reproductive periods were also determined. Furthermore, we verified the distribution of F. virgata on the plant parts at 25 and 50 days after infestation. Ferrisia virgata showed similar growth of 412-fold in the four cotton cultivars studied. Also, the nymphs were spread on infested leaves; the secondgeneration nymphs were spread and established in all plant parts. Our results characterize F. virgata as having much potential as an important cotton pest in Brazil.

  4. Influence of planting date on stink bug injury, yield, fiber quality, and economic returns in Georgia cotton.

    Science.gov (United States)

    Pulakkatu-Thodi, Ishakh; Shurley, Donald; Toews, Michael D

    2014-04-01

    Phytophagous stink bugs are economically important pests of annual and perennial crops in the southeastern United States. Because of insecticide resistance and risk of secondary pest outbreaks, there is interest in identifying cultural practices that could lead to reduced insecticide applications. The objective of this project was to assess the importance of cotton planting date on stink bug damage to cotton. Unsprayed cotton plots with biweekly planting dates were established at three locations in southern Georgia in each of two crop years. During the bloom cycle, stink bug-induced boll injury was estimated weekly in each plot. Plots were subsequently defoliated, mechanically harvested, and ginned to assess differences in fiber yield and quality attributable to stink bug injury. Results show that the rate of boll damage generally increased more rapidly through the bloom cycle for planting dates in June compared with May. Similarly, estimates of boll damage from June-planted cotton more frequently exceeded the stink bug treatment threshold compared with May-planted cotton. In 2011, mean lint yield and economic returns from May planting dates were significantly greater than June planting dates. In 2012, lint yield and economic returns were greater in plots established in early May compared with later planting dates. Estimates of HVI color + b, a measure of fiber yellowness, were lower in early May-planted cotton compared with June planting. These data show that growers need to be aware of increased stink bug damage potential when planting late.

  5. Integrated pest management of the banded sunflower moth in cultivated sunflower in North Dakota

    Science.gov (United States)

    Banded sunflower moth, Cochylis hospes Walsingham (Lepidoptera: Tortricidae), is a key insect pest of cultivated sunflowers in North Dakota. We investigated pest management strategies to reduce feeding injury caused by the banded sunflower moth in commercial oilseed and confection sunflower fields l...

  6. Hanford site integrated pest management plan

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, R.F.

    1996-04-09

    The Hanford Site Integrated Pest Management Plan (HSIPMP) defines the Integrated Pest Management (IPM) decision process and subsequent strategies by which pest problems are to be solved at all Hanford Site properties per DOE-RL Site Infrastructure Division memo (WHC 9505090). The HSIPMP defines the roles that contractor organizations play in supporting the IPM process. In short the IPM process anticipates and prevents pest activity and infestation by combining several strategies to achieve long-term pest control solutions.

  7. PRODUCT NEEM AZAL T/S - BROAD-SPECTRUM PHYPOPESTICIDE FOR CONTROL OF PESTS ON VEGETABLE CROPS

    Directory of Open Access Journals (Sweden)

    Vinelina Yankova

    2016-09-01

    Full Text Available Experiments for determination of the effectiveness of product Neem Azal T/S (a. i. azadirachtin were conducted at a concentration of 0,3% against some major pests in vegetable crops grown in greenhouses at the Maritsa Vegetable Crops research Institute, Plovdiv during the period 2010-2016. It was established very good insecticidal and acaricidal action of phytopesticide against: cotton aphid (Aphis gossypii Glov.; green peach aphid (Myzus persicae Sulz.; western flower trips (Frankliniella occidentalis Perg.; cotton bollworm (Helicoverpa armigera Hubn.; tomato borer (Tuta absoluta Meyrick and two-spotted spider mite (Tetranichus urticae Koch.. This product is a successful alternative to using chemical insecticides and acaricides.

  8. Maize benefits the predatory beetle, Propylea japonica (Thunberg, to provide potential to enhance biological control for aphids in cotton.

    Directory of Open Access Journals (Sweden)

    Fang Ouyang

    Full Text Available BACKGROUND: Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program. METHODOLOGY: The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008-2010. PRINCIPAL FINDING: Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ(13C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C(3- to a C(4-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C(4 resources within one week. Approximately 80-100% of the diet of P. japonica adults in maize originated from a C(3-based resource in June, July and August, while approximately 80% of the diet originated from a C(4-based resource in September. CONCLUSION/SIGNIFICANCE: Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton.

  9. Maize benefits the predatory beetle, Propylea japonica (Thunberg), to provide potential to enhance biological control for aphids in cotton.

    Science.gov (United States)

    Ouyang, Fang; Men, Xingyuan; Yang, Bing; Su, Jianwei; Zhang, Yongsheng; Zhao, Zihua; Ge, Feng

    2012-01-01

    Biological control provided by natural enemies play an important role in integrated pest management. Generalist insect predators provide an important biological service in the regulation of agricultural insect pests. Our goal is to understand the explicit process of oviposition preference, habitat selection and feeding behavior of predators in farmland ecosystem consisting of multiple crops, which is central to devising and delivering an integrated pest management program. The hypotheses was that maize can serve as habitat for natural enemies and benefits predators to provide potential to enhance biological control for pest insects in cotton. This explicit process of a predatory beetle, Propylea japonica, in agricultural ecosystem composed of cotton and maize were examined by field investigation and stable carbon isotope analysis during 2008-2010. Field investigation showed that P. japonica adults will search host plants for high prey abundance before laying eggs, indicating indirectly that P. japonica adults prefer to inhabit maize plants and travel to cotton plants to actively prey on aphids. The δ(13)C values of adult P. japonica in a dietary shift experiment found that individual beetles were shifting from a C(3)- to a C(4)-based diet of aphids reared on maize or cotton, respectively, and began to reflect the isotope ratio of their new C(4) resources within one week. Approximately 80-100% of the diet of P. japonica adults in maize originated from a C(3)-based resource in June, July and August, while approximately 80% of the diet originated from a C(4)-based resource in September. Results suggest that maize can serve as a habitat or refuge source for the predatory beetle, P. japonica, and benefits predators to provide potential to enhance biological control for insect pests in cotton.

  10. Arthropods biodiversity index in Bollgard (R) cotton (CRy1Ac) in Brazil

    OpenAIRE

    Thomazoni, D.; Ferreira Soria, M.; DEGRANDE, P. E.; Faccenda, O.; Silvie, Pierre

    2013-01-01

    Shannon-Wiener's diversity index (SWI) was used under untreated conditions of a cotton field during the 2006/2007 crop season in the Cerrado region, Brazil. Comparison was carried out between the transgenic NuOpal (R) (BollgarD (R))(Cry1Ac) and the non-transgenic isogenic variety DeltaOpal (R). SWI was calculated for target pests, non-target herbivores and predators groups. Two sampling methods were used: whole plant observation and beat sheet. As expected, the mean number of target pests, es...

  11. Identification of cotton fleahopper (Hemiptera: Miridae) host plants in central Texas and compendium of reported hosts in the United States.

    Science.gov (United States)

    Esquivel, J F; Esquivel, S V

    2009-06-01

    The cotton fleahopper, Pseudatomoscelis seriatus (Reuter), is an early-season pest of developing cotton in Central Texas and other regions of the Cotton Belt. Cotton fleahopper populations develop on spring weed hosts and move to cotton as weed hosts senesce or if other weed hosts are not readily available. To identify weed hosts that were seasonably available for the cotton fleahopper in Central Texas, blooming weed species were sampled during early-season (17 March-31 May), mid-season (1 June-14 August), late-season (15 August-30 November), and overwintering (1 December-16 March) periods. The leading hosts for cotton fleahopper adults and nymphs were evening primrose (Oenothera speciosa T. Nuttall) and Mexican hat [Ratibida columnifera (T. Nuttall) E. Wooton and P. Standley], respectively, during the early season. During the mid-season, silver-leaf nightshade (Solanum elaeagnifolium A. Cavanilles) was consistently a host for fleahopper nymphs and adults. Woolly croton (Croton capitatus A. Michaux) was a leading host during the late season. Cotton fleahoppers were not collected during the overwintering period. Other suitable hosts were available before previously reported leading hosts became available. Eight previously unreported weed species were documented as temporary hosts. A compendium of reported hosts, which includes >160 plant species representing 35 families, for the cotton fleahopper is provided for future research addressing insect-host plant associations. Leading plant families were Asteraceae, Lamiaceae, and Onagraceae. Results presented here indicate a strong argument for assessing weed species diversity and abundance for the control of the cotton fleahopper in the Cotton Belt.

  12. A Holling Type II Pest and Natural Enemy Model with Density Dependent IPM Strategy

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2017-01-01

    Full Text Available Resource limitations and density dependent releasing of natural enemies during the pest control and integrated pest management will undoubtedly result in nonlinear impulsive control. In order to investigate the effects of those nonlinear control strategies on the successful pest control, we have proposed a pest-natural enemy system concerning integrated pest management with density dependent instant killing rate and releasing rate. In particular, the releasing rate depicts how the number of natural enemy populations released was guided by their current density at the fixed moment. The threshold condition which ensures the existence and global stability of pest-free periodic solution has been discussed first, and the effects of key parameters on the threshold condition reveal that reducing the pulse period does not always benefit pest control; that is, frequent releasing of natural enemies may not be beneficial to the eradication of pests when the density dependent releasing method has been implemented. Moreover, the forward and backward bifurcations could occur once the pest-free periodic solution becomes unstable, and the system could exist with very complex dynamics. All those results confirm that the control actions should be carefully designed once the nonlinear impulsive control measures have been taken for pest management.

  13. Measuring the contribution of Bt cotton adoption to India's cotton yields leap:

    OpenAIRE

    Gruere, Guillaume P.; Sun, Yan

    2012-01-01

    While a number of empirical studies have demonstrated the role of Bt cotton adoption in increasing Indian cotton productivity at the farm level, there has been questioning around the overall contribution of Bt cotton to the average cotton yield increase observed these last ten years in India. This study examines the contribution of Bt cotton adoption to long- term average cotton yields in India using a panel data analysis of production variables in nine Indian cotton-producing states from 197...

  14. Seroprevalence of Peste des Petits Ruminants (PPR) virus ...

    African Journals Online (AJOL)

    ... seroprevalence of 21.3% (CI=95% 16.6- 25.8). This study shows that PPR antibodies were distributed beyond the initially confirmed Karamoja region. There is need for further research on the epidemiology and risk factors of PPR in Uganda. Key-words: Peste des petits ruminants (PPR), seroprevalence, goats and sheep, ...

  15. Investigations on pests, diseases and present early warning system ...

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... Key words: Malus domestica, pests, diseases, IPM. INTRODUCTION. China, Russian Republic, Poland, United States and. Turkey are the primary countries having extensive apple production areas. Turkey comes third in terms of apple production with 4.38% of the total production of the world. (Anonymous ...

  16. Induction of cotton ovule culture fibre branching by co-expression of cotton BTL, cotton SIM, and Arabidopsis STI genes.

    Science.gov (United States)

    Wang, Gaskin; Feng, Hongjie; Sun, Junling; Du, Xiongming

    2013-11-01

    The highly elongated single-celled cotton fibre consists of lint and fuzz, similar to the Arabidopsis trichome. Endoreduplication is an important determinant in Arabidopsis trichome initiation and morphogenesis. Fibre development is also controlled by functional homologues of Arabidopsis trichome patterning genes, although fibre cells do not have a branched shape like trichomes. The identification and characterization of the homologues of 10 key Arabidopsis trichome branching genes in Gossypium arboreum are reported here. Nuclear ploidy of fibres was determined, and gene function in cotton callus and fibre cells was investigated. The results revealed that the nuclear DNA content was constant in fuzz, whereas a limited and reversible change occurred in lint after initiation. Gossypeum arboreum branchless trichomes (GaBLT) was not transcribed in fibres. The homologue of STICHEL (STI), which is essential for trichome branching, was a pseudogene in Gossypium. Targeted expression of GaBLT, Arabidopsis STI, and the cytokinesis-repressing GaSIAMESE in G. hirsutum fibre cells cultured in vitro resulted in branching. The findings suggest that the distinctive developmental mechanism of cotton fibres does not depend on endoreduplication. This important component may be a relic function that can be activated in fibre cells.

  17. Cotton and Sustainability: Impacting Student Learning through Sustainable Cotton Summit

    Science.gov (United States)

    Ha-Brookshire, Jung; Norum, Pamela

    2011-01-01

    Purpose: The purpose of this paper is to examine the effect of intensive extra-curricular learning opportunities on students' knowledge, skills, and attitudes regarding cotton and sustainability. Design/methodology/approach: A three-phase extra-curricular learning opportunity was designed to include a Sustainable Cotton Summit; pre-summit and…

  18. Potential cotton aphid, Aphis gossypii, population suppression by arthropod predators in upland cotton.

    Science.gov (United States)

    Shrestha, Ram B; Parajulee, Megha N

    2013-12-01

    The cotton aphid, Aphis gossypii Glover, predation rate of convergent lady beetle, Hippodamia convergens Guerin-Meneville, was determined by assigning a single predator randomly to each of four prey density treatments in the laboratory. Prey densities included 25, 50, 100, and 200 aphids per Petri dish arena. Predation response was recorded at 1, 4, 8, 16, 24, and 48 h after assigning predators to their prey treatments. Rate of consumption increased through time, with all 25 aphids consumed during the first 4 h of the experiment. At the highest density, adult lady beetle consumed on average 49, 99, 131, 163, 183, and 200 aphids within 1, 4, 8, 16, 24 and 48 h, respectively. Predators showed a curvilinear feeding response in relation to total available time, indicating that convergent lady beetles have the potential to suppress larger populations of aphids through continuous feeding by regulating their predation efficiency during feeding. The analysis of age-specific mortality in absence of prey revealed that lady beetles could survive for an extended period of time (more than 2 weeks) without prey. The ability of a predator to survive without prey delays or prevents the rebound of pest populations that is a significant factor in natural biological control. A two-year field sampling of 10 cotton arthropod predator species showed that spiders (27%) were the most dominant foliage dwelling predators in the Texas High Plains cotton followed by convergent lady beetles (23.5%), hooded beetles (13.5%), minute pirate bugs (11%), green lacewings (9.5%), bigeyed bugs (7.5%), scymnus beetles (3%), soft-winged flower beetles (2%), damsel bugs (1.5%), and assassin bugs (1.5%). A field cage study showed that one H. convergens adult per plant released at prey density of one aphid per leaf kept the aphid population below economic threshold for the entire growing season. © 2012 Institute of Zoology, Chinese Academy of Sciences.

  19. Converting pest insects into food

    DEFF Research Database (Denmark)

    Offenberg, Hans Joachim; Wiwatwittaya, Decha

    2010-01-01

    Canopy dwelling weaver ants (Oecophylla spp.) are used to control a variety of pests in a number of tropical tree crops. What is less familiar is the existence of commercial markets where these ants and their brood are sold for (i) human consumption, (ii) pet food or (iii) traditional medicine...... on management, 32-115 kg ant brood (mainly new queens) was harvested per ha per year without detrimental effect on colony survival and worker ant densities. This suggest that ant biocontrol and ant harvest can be sustainable integrated in plantations and double benefits derived. As ant production is fuelled...... by pest insects, problematic pests are converted into food and additional earnings. To assess the profitability of providing additional food for the ants, O. smaragdina food conversion efficiency (ECI) was estimated in the laboratory. This estimate suggests the feeding of weaver ants in ant farms...

  20. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum.

    Directory of Open Access Journals (Sweden)

    María J Ek-Ramos

    Full Text Available Studies of fungi in upland cotton (Gossypium hirsutum cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey

  1. Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum).

    Science.gov (United States)

    Ek-Ramos, María J; Zhou, Wenqing; Valencia, César U; Antwi, Josephine B; Kalns, Lauren L; Morgan, Gaylon D; Kerns, David L; Sword, Gregory A

    2013-01-01

    Studies of fungi in upland cotton (Gossypium hirsutum) cultivated in the United States have largely focused on monitoring and controlling plant pathogens. Given increasing interest in asymptomatic fungal endophytes as potential biological control agents, surveys are needed to better characterize their diversity, distribution patterns and possible applications in integrated pest management. We sampled multiple varieties of cotton in Texas, USA and tested for temporal and spatial variation in fungal endophyte diversity and community composition, as well as for differences associated with organic and conventional farming practices. Fungal isolates were identified by morphological and DNA identification methods. We found members of the genera Alternaria, Colletotrichum and Phomopsis, previously isolated as endophytes from other plant species. Other recovered species such as Drechslerella dactyloides (formerly Arthrobotrys dactyloides) and Exserohilum rostratum have not, to our knowledge, been previously reported as endophytes in cotton. We also isolated many latent pathogens, but some species such as Alternaria tennuissima, Epicoccum nigrum, Acremonium alternatum, Cladosporium cladosporioides, Chaetomium globosum and Paecilomyces sp., are known to be antagonists against plant pathogens, insects and nematode pests. We found no differences in endophyte species richness or diversity among different cotton varieties, but did detect differences over time and in different plant tissues. No consistent patterns of community similarity associated with variety, region, farming practice, time of the season or tissue type were observed regardless of the ecological community similarity measurements used. Results indicated that local fungal endophyte communities may be affected by both time of the year and plant tissue, but the specific community composition varies across sites. In addition to providing insights into fungal endophyte community structure, our survey provides

  2. Exploring biomedical ppplications of cotton

    Science.gov (United States)

    The use of cotton as a biomaterial for design of improved wound dressings, and other non-implantable medical textiles will be considered. The research and development of cotton-based wound dressings, which possess a mechanism-based mode of action, has entered a new level of understanding in recent y...

  3. Exploring biomedical applications of cotton

    Science.gov (United States)

    The use of cotton as a biomaterial for design of improved wound dressings, and other non-implantable medical textiles will be considered. The research and development of cotton-based wound dressings, which possess a mechanism-based mode of action, has entered a new level of understanding in recent ...

  4. Vip3A resistance alleles exist at high levels in Australian targets before release of cotton expressing this toxin.

    Directory of Open Access Journals (Sweden)

    Rod J Mahon

    Full Text Available Crops engineered to produce insecticidal crystal (Cry proteins from the soil bacterium Bacillus thuringiensis (Bt have revolutionised pest control in agriculture. However field-level resistance to Bt has developed in some targets. Utilising novel vegetative insecticidal proteins (Vips, also derived from Bt but genetically distinct from Cry toxins, is a possible solution that biotechnical companies intend to employ. Using data collected over two seasons we determined that, before deployment of Vip-expressing plants in Australia, resistance alleles exist in key targets as polymorphisms at frequencies of 0.027 (n = 273 lines, 95% CI = 0.019-0.038 in H. armigera and 0.008 (n = 248 lines, 0.004-0.015 in H. punctigera. These frequencies are above mutation rates normally encountered. Homozygous resistant neonates survived doses of Vip3A higher than those estimated in field-grown plants. Fortunately the resistance is largely, if not completely, recessive and does not confer resistance to the Bt toxins Cry1Ac or Cry2Ab already deployed in cotton crops. These later characteristics are favourable for resistance management; however the robustness of Vip3A inclusive varieties will depend on resistance frequencies to the Cry toxins when it is released (anticipated 2016 and the efficacy of Vip3A throughout the season. It is appropriate to pre-emptively screen key targets of Bt crops elsewhere, especially those such as H. zea in the USA, which is not only closely related to H. armigera but also will be exposed to Vip in several varieties of cotton and corn.

  5. 75 FR 24373 - Cotton Research and Promotion Program: Designation of Cotton-Producing States

    Science.gov (United States)

    2010-05-05

    ... Service 7 CFR Part 1205 RIN 0581-AC84 Cotton Research and Promotion Program: Designation of Cotton... Marketing Service (AMS) is amending the Cotton Research and Promotion Order (Cotton Order) following a referendum held October 13 through November 10, 2009, in which Upland cotton producers and importers favored...

  6. The behavior of Aphis gossypii and Aphis craccivora (Hemiptera: Aphididae and of their predator Cycloneda sanguinea (Coleoptera: Coccinellidae in cotton-cowpea intercropping systems

    Directory of Open Access Journals (Sweden)

    FRANCISCO S. FERNANDES

    2018-02-01

    Full Text Available ABSTRACT The intercropping is an important cultural practice commonly used in pest management. It is based on the principle that increased plant diversity in the agro-ecosystem can lead to reductions of pest populations in the crop. The current study aimed to assess the impact the colored fiber cotton-cowpea intercropped systems on Aphis gossypii and Aphis craccivora and on their predator Cycloneda sanguinea and the losses and the dispersion behavior of these aphids and their predator in these cropping systems. The experiment had a randomized block experimental design with two bioassays and four treatments. The number of apterous and alate aphids (A. gossypii per cotton plant was 1.46 and 1.73 or 1.97 and 2.19 times highest in the solid cotton system than that found in the cotton-cowpea intercropped systems (S1 and (S2, respectively. On the other hand, the cotton-cowpea intercropped systems (S1 and S2 reduced, respectively, in 43% and 31% the number of apterousA. gossypiiper cotton plant compared to the control. Implementing cotton-cowpea intercropped system in the S1 scheme reduced A. gossypii infestation, favored the multiplication of C. sanguinea, and allowed obtaining heavier open bolls.

  7. The behavior of Aphis gossypii and Aphis craccivora (Hemiptera: Aphididae) and of their predator Cycloneda sanguinea (Coleoptera: Coccinellidae) in cotton-cowpea intercropping systems.

    Science.gov (United States)

    Fernandes, Francisco S; Godoy, Wesley A C; Ramalho, Francisco S; Malaquias, José B; Santos, Bárbara D B

    2018-02-01

    The intercropping is an important cultural practice commonly used in pest management. It is based on the principle that increased plant diversity in the agro-ecosystem can lead to reductions of pest populations in the crop. The current study aimed to assess the impact the colored fiber cotton-cowpea intercropped systems on Aphis gossypii and Aphis craccivora and on their predator Cycloneda sanguinea and the losses and the dispersion behavior of these aphids and their predator in these cropping systems. The experiment had a randomized block experimental design with two bioassays and four treatments. The number of apterous and alate aphids (A. gossypii) per cotton plant was 1.46 and 1.73 or 1.97 and 2.19 times highest in the solid cotton system than that found in the cotton-cowpea intercropped systems (S1) and (S2), respectively. On the other hand, the cotton-cowpea intercropped systems (S1 and S2) reduced, respectively, in 43% and 31% the number of apterousA. gossypiiper cotton plant compared to the control. Implementing cotton-cowpea intercropped system in the S1 scheme reduced A. gossypii infestation, favored the multiplication of C. sanguinea, and allowed obtaining heavier open bolls.

  8. Soil microbial biomass and root growth in Bt and non-Bt cotton

    Science.gov (United States)

    Tan, D. K. Y.; Broughton, K.; Knox, O. G.; Hulugalle, N. R.

    2012-04-01

    The introduction of transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) has had a substantial impact on pest management in the cotton industry. While there has been substantial research done on the impact of Bt on the above-ground parts of the cotton plant, less is known about the effect of Bt genes on below ground growth of cotton and soil microbial biomass. The aim of this research was to test the hypothesis that Bt [Sicot 80 BRF (Bollgard II Roundup Ready Flex®)] and non-Bt [Sicot 80 RRF (Roundup Ready Flex®)] transgenic cotton varieties differ in root growth and root turnover, carbon indices and microbial biomass. A field experiment was conducted in Narrabri, north-western NSW. The experimental layout was a randomised block design and used minirhizotron and core break and root washing methods to measure cotton root growth and turnover during the 2008/09 season. Root growth in the surface 0-0.1 m of the soil was measured using the core break and root washing methods, and that in the 0.1 to 1 m depth was measured with a minirhizotron and an I-CAP image capture system. These measurements were used to calculate root length per unit area, root carbon added to the soil through intra-seasonal root death, carbon in roots remaining at the end of the season and root carbon potentially added to the soil. Microbial biomass was also measured using the ninhydrin reactive N method. Root length densities and length per unit area of non-Bt cotton were greater than Bt cotton. There were no differences in root turnover between Bt and non-Bt cotton at 0-1 m soil depth, indicating that soil organic carbon stocks may not be affected by cotton variety. Cotton variety did not have an effect on soil microbial biomass. The results indicate that while there are differences in root morphology between Bt and non-Bt cotton, these do not change the carbon turnover dynamics in the soil.

  9. Remote Sensing Evaluation of Two-spotted Spider Mite Damage on Greenhouse Cotton.

    Science.gov (United States)

    Martin, Daniel E; Latheef, Mohamed A

    2017-04-28

    The objective of this study was to evaluate a ground-based multispectral optical sensor as a remote sensing tool to assess foliar damage caused by the two-spotted spider mite (TSSM), Tetranychus urticae Koch, on greenhouse grown cotton. TSSM is a polyphagous pest which occurs on a variety of field and horticultural crops. It often becomes an early season pest of cotton in damaging proportions as opposed to being a late season innocuous pest in the mid-southern United States. Evaluation of acaricides is important for maintaining the efficacy of and preventing resistance to the currently available arsenal of chemicals and newly developed control agents. Enumeration of spider mites for efficacy evaluations is laborious and time consuming. Therefore, subjective visual damage rating is commonly used to assess density of spider mites. The NDVI (Normalized Difference Vegetation Index) is the most widely used statistic to describe the spectral reflectance characteristics of vegetation canopy to assess plant stress and health consequent to spider mite infestations. Results demonstrated that a multispectral optical sensor is an effective tool in distinguishing varying levels of infestation caused by T. urticae on early season cotton. This remote sensing technique may be used in lieu of a visual rating to evaluate insecticide treatments.

  10. Cucumber Plants Baited with Methyl Salicylate Accelerates Scymnus (Pullus) sodalis (Coleoptera: Coccinellidae) Visiting to Reduce Cotton Aphid (Hemiptera: Aphididae) Infestation.

    Science.gov (United States)

    Dong, Y J; Hwang, S Y

    2017-10-01

    The cotton aphid, Aphis gossypii (Glover) (Hemiptera: Aphididae), is a major pest of many crops worldwide and a major cucumber plant pest in Taiwan. Because cotton aphids rapidly develop insecticide resistance and because of the insecticide residue problem, a safe and sustainable method is required to replace conventional chemical control methods. Methyl salicylate (MeSA), a herbivore-induced plant volatile, has been shown to affect aphids' behavior and attract the natural enemies of aphids for reducing their population. Therefore, this study examined the direct effects of MeSA on cotton aphids' settling preference, population development, and attractiveness to natural enemies. The efficiency of using MeSA and the commercial insecticide pymetrozine for reducing the cotton aphid population in laboratory and outdoor cucumber plant pot was also examined. The results showed no difference in winged aphids' settling preference and population development between the MeSA and blank treatments. Cucumber plants infested with cotton aphids and baited with 0.1% or 10% MeSA contained significantly higher numbers of the natural enemy of cotton aphids, namely Scymnus (Pullus) sodalis (Weise) (Coleoptera: Coccinellidae), and MeSA-treated cucumber plants contained a lower number of aphids. Significantly lower cotton aphid numbers were found on cucumber plants within a 10-m range of MeSA application. In addition, fruit yield showed no difference between the MeSA and pymetrozine treatments. According to our findings, 0.1% MeSA application can replace insecticides as a cotton aphid control tool. However, large-scale experiments are necessary to confirm its efficiency and related conservation biological control strategies before further use. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Yield and fiber quality properties of cotton (Gossypium hirsutum L ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... negatively affected by water stress treatment. Fiber length, fiber strength, fiber fineness and fiber elongation were decreased, while fiber uniformity was not affected by water stress treatment. Key words: Cotton, yield, fiber quality properties, water stress, non-stress. INTRODUCTION. Water stress is the most ...

  12. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    GREGO

    nitrate transformation into nitrite (µg of NO2. -/min/g F.W) is observed when incubation period of enzyme is short (1 to 5 min). Key words: Extraction, dosage, nitrate reductase activity, callus, cotton. INTRODUCTION. Nitrate reductase (EC. 1.7.99.4) is an oxidoreductase enzyme involved in nitrogen assimilation in plant. It.

  13. 7 CFR 1205.12 - Cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Cotton. 1205.12 Section 1205.12 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Procedures for Conduct of Sign-up Period Definitions § 1205.12 Cotton. The term cotton means all Upland...

  14. 7 CFR 1205.13 - Upland cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Upland cotton. 1205.13 Section 1205.13 Agriculture... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE COTTON RESEARCH AND PROMOTION Procedures for Conduct of Sign-up Period Definitions § 1205.13 Upland cotton. The term Upland cotton means...

  15. A seed mixture increases dominance of resistance to Bt cotton in Helicoverpa zea.

    Science.gov (United States)

    Brévault, Thierry; Tabashnik, Bruce E; Carrière, Yves

    2015-05-07

    Widely grown transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) can benefit agriculture, but adaptation by pests threatens their continued success. Refuges of host plants that do not make Bt toxins can promote survival of susceptible insects and delay evolution of resistance, particularly if resistance is inherited as a recessive trait. However, data have been lacking to compare the dominance of resistance when Bt and non-Bt seeds are planted in random mixtures versus separate blocks. Here we report results from greenhouse experiments with transgenic cotton producing Bt toxin Cry1Ac and the bollworm, Helicoverpa zea, showing that the dominance of resistance was significantly higher in a seed mixture relative to a block of Bt cotton. The proportion of larvae on non-Bt cotton plants in the seed mixture was also significantly higher than expected under the null hypothesis of random distribution. In simulations based on observed survival, resistance evolved 2- to 4.5-fold faster in the seed mixture relative to separate blocks of Bt and non-Bt cotton. These findings support previous modelling results indicating that block refuges may be more effective than seed mixtures for delaying resistance in pests with mobile larvae and inherently low susceptibility to the toxins in Bt crops.

  16. Peste y Cólera

    Directory of Open Access Journals (Sweden)

    Héctor Gómez Dantés

    2015-09-01

    de transporte para abandonar las caravanas a pie, a caballo y en carretas de bueyes que hacían muy lenta su diseminación; no obstante, su efectividad permaneció siendo terrorífica si se recuerdan los 25 millones de víctimas que provocó la peste en el siglo XIV...

  17. Identification and expression patterns of Halloween genes encoding cytochrome P450s involved in ecdysteroid biosynthesis in the cotton bollworm Helicoverpa armigera.

    Science.gov (United States)

    Zheng, J; Tian, K; Yuan, Y; Li, M; Qiu, X

    2017-02-01

    20-Hydroxyecdysone (20E) is a key hormone which regulates growth, development and reproduction in insects. Although cytochrome P450 enzymes (P450s) participating in the ecdysteroid biosynthesis of 20E have been characterized in a few model insects, no work has been published on the molecular entity of their orthologs in the cotton bollworm Helicoverpa armigera, a major pest insect in agriculture worldwide. In this study, four cytochrome P450 homologs, namely HarmCYP302A1, HarmCYP306A1, HarmCYP314A1 and HarmCYP315A1 from H. armigera, were identified and evolutional conservation of these Halloween genes were revealed among lepidopteran. Expression analyses showed that HarmCYP302A1 and HarmCYP315A1 were predominantly expressed in larval prothoracic glands, whereas this predominance was not always observed for HarmCYP306A1 and CYP314A1. The expression patterns of Halloween genes indicate that the fat bodies may play an important role in the conversion of ecdysone into 20E in larval-larval molt and in larval-pupal metamorphosis, and raise the possibility that HarmCYP315A1 plays a role in tissue-specific regulation in the steroid biosynthesis in H. armigera. These findings represent the first identification and expression characterization of four steriodogenic P450 genes and provide the groundwork for future functional and evolutionary study of steroid biosynthesis in this agriculturally important pest.

  18. Impact of Bollgard cotton on Indian cotton production and Income of ...

    Indian Academy of Sciences (India)

    Impact of Bollgard cotton on Indian cotton production and Income of cotton farmers. Presentation made in the Seventy Second Annual Meeting Indian Academy of Sciences, Bangalore at Devi Ahilya Vishwavidyalaya Indore 11th November 2006.

  19. Cotton pistil drip transformation method.

    Science.gov (United States)

    Zhang, Tianzhen; Chen, Tianzhi

    2012-01-01

    Conventional plant transformation typically includes preparation of competent plant cells or tissues, delivery of foreign genes into cells, transformed cell selection with stable incorporated foreign genes, and regeneration of transformed cells into intact plants. This process traditionally relies on tissue culture, and cotton has not been an exception to this paradigm. Though the commercialization of transgenic cotton is a resounding success, cotton transformation, which is the first step in producing transgenic cotton, is a burdensome process since there is a very long tissue culture process and a limited number of cultivars that can be regenerated. An improved process which is easier to handle and more genotype independent could efficiently generate more transgenic plants and allow meaningful analyses of gene function and transgenic plants. Cotton pistil drip by inoculating Agrobacterium tumefaciens onto the pistil after pollination gave rise to stable transformants. Since this transformation process in cotton occurs following pollination and during fertilization (postanthesis) but not during preanthesis as in Arabidopsis, the mechanism by which Agrobacterium enters plant cells and integrates into the cotton genome may differ from that in Arabidopsis. This chapter provides the detailed protocol for pistil drip, a simple in planta transformation method without the plant tissue culture process.

  20. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing

    DEFF Research Database (Denmark)

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William George Tycho

    2014-01-01

    Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non......-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide...... localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being...

  1. Sampling nucleotide diversity in cotton

    Directory of Open Access Journals (Sweden)

    Yu John Z

    2009-10-01

    Full Text Available Abstract Background Cultivated cotton is an annual fiber crop derived mainly from two perennial species, Gossypium hirsutum L. or upland cotton, and G. barbadense L., extra long-staple fiber Pima or Egyptian cotton. These two cultivated species are among five allotetraploid species presumably derived monophyletically between G. arboreum and G. raimondii. Genomic-based approaches have been hindered by the limited variation within species. Yet, population-based methods are being used for genome-wide introgression of novel alleles from G. mustelinum and G. tomentosum into G. hirsutum using combinations of backcrossing, selfing, and inter-mating. Recombinant inbred line populations between genetics standards TM-1, (G. hirsutum × 3-79 (G. barbadense have been developed to allow high-density genetic mapping of traits. Results This paper describes a strategy to efficiently characterize genomic variation (SNPs and indels within and among cotton species. Over 1000 SNPs from 270 loci and 279 indels from 92 loci segregating in G. hirsutum and G. barbadense were genotyped across a standard panel of 24 lines, 16 of which are elite cotton breeding lines and 8 mapping parents of populations from six cotton species. Over 200 loci were genetically mapped in a core mapping population derived from TM-1 and 3-79 and in G. hirsutum breeding germplasm. Conclusion In this research, SNP and indel diversity is characterized for 270 single-copy polymorphic loci in cotton. A strategy for SNP discovery is defined to pre-screen loci for copy number and polymorphism. Our data indicate that the A and D genomes in both diploid and tetraploid cotton remain distinct from each such that paralogs can be distinguished. This research provides mapped DNA markers for intra-specific crosses and introgression of exotic germplasm in cotton.

  2. Field and Forage Crop Pests. MEP 310.

    Science.gov (United States)

    Morgan, Omar, D.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests that can be found in field and forage crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the…

  3. Rhizobacteria activates (+)-δ-cadinene synthase genes and induces systemic resistance in cotton against beet armyworm (Spodoptera exigua).

    Science.gov (United States)

    Zebelo, Simon; Song, Yuanyuan; Kloepper, Joseph W; Fadamiro, Henry

    2016-04-01

    Gossypol is an important allelochemical produced by the subepidermal glands of some cotton varieties and important for their ability to respond to changing biotic stress by exhibiting antibiosis against some cotton pests. Plant growth-promoting rhizobacteria (PGPR) are root-colonizing bacteria that increase plant growth and often elicit defence against plant pathogens and insect pests. Little is known about the effect of PGPR on cotton plant-insect interactions and the potential biochemical and molecular mechanisms by which PGPR enhance cotton plant defence. Here, we report that PGPR (Bacillus spp.) treated cotton plants showed significantly higher levels of gossypol compared with untreated plants. Similarly, the transcript levels of the genes (i.e. (+)-δ-cadinene synthase gene family) involved in the biosynthesis of gossypol were higher in PGPR-treated plants than in untreated plants. Furthermore, the levels of jasmonic acid, an octadecanoid-derived defence-related phytohormone and the transcript level of jasmonic acid responsive genes were higher in PGPR-treated plants than in untreated plants. Most intriguingly, Spodoptera exigua showed reduced larval feeding and development on PGPR-treated plants. These findings demonstrate that treatment of plants with rhizobacteria may induce significant biochemical and molecular changes with potential ramifications for plant-insect interactions. © 2015 John Wiley & Sons Ltd.

  4. Mote trash system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  5. Overflow system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  6. Combined lint cleaning system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  7. Cyclone robber system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  8. First stage mote system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was f...

  9. Master trash system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  10. Combined mote system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  11. Mote cleaner system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  12. Mote cyclone robber system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  13. First stage lint cleaning systems emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  14. Unloading system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  15. Battery condenser system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that to characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study ...

  16. Second stage mote system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclone

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  17. Control of Plant Trichome Development by a Cotton Fiber MYB GeneW⃞

    Science.gov (United States)

    Wang, Shui; Wang, Jia-Wei; Yu, Nan; Li, Chun-Hong; Luo, Bin; Gou, Jin-Ying; Wang, Ling-Jian; Chen, Xiao-Ya

    2004-01-01

    Cotton (Gossypium spp) plants produce seed trichomes (cotton fibers) that are an important commodity worldwide; however, genes controlling cotton fiber development have not been characterized. In Arabidopsis thaliana the MYB gene GLABRA1 (GL1) is a central regulator of trichome development. Here, we show that promoter of a cotton fiber gene, RD22-like1 (RDL1), contains a homeodomain binding L1 box and a MYB binding motif that confer trichome-specific expression in Arabidopsis. A cotton MYB protein GaMYB2/Fiber Factor 1 transactivated the RDL1 promoter both in yeast and in planta. Real-time PCR and in situ analysis showed that GaMYB2 is predominantly expressed early in developing cotton fibers. After transferring into Arabidopsis, GL1∷GaMYB2 rescued trichome formation of a gl1 mutant, and interestingly, 35S∷GaMYB2 induced seed-trichome production. We further demonstrate that the first intron of both GL1 and GaMYB2 plays a role in patterning trichomes: it acts as an enhancer in trichome and a repressor in nontrichome cells, generating a trichome-specific pattern of MYB gene expression. Disruption of a MYB motif conserved in intron 1 of GL1, WEREWOLF, and GaMYB2 genes affected trichome production. These results suggest that cotton and Arabidopsis use similar transcription factors for regulating trichomes and that GaMYB2 may be a key regulator of cotton fiber development. PMID:15316114

  18. Control of plant trichome development by a cotton fiber MYB gene.

    Science.gov (United States)

    Wang, Shui; Wang, Jia-Wei; Yu, Nan; Li, Chun-Hong; Luo, Bin; Gou, Jin-Ying; Wang, Ling-Jian; Chen, Xiao-Ya

    2004-09-01

    Cotton (Gossypium spp) plants produce seed trichomes (cotton fibers) that are an important commodity worldwide; however, genes controlling cotton fiber development have not been characterized. In Arabidopsis thaliana the MYB gene GLABRA1 (GL1) is a central regulator of trichome development. Here, we show that promoter of a cotton fiber gene, RD22-like1 (RDL1), contains a homeodomain binding L1 box and a MYB binding motif that confer trichome-specific expression in Arabidopsis. A cotton MYB protein GaMYB2/Fiber Factor 1 transactivated the RDL1 promoter both in yeast and in planta. Real-time PCR and in situ analysis showed that GaMYB2 is predominantly expressed early in developing cotton fibers. After transferring into Arabidopsis, GL1::GaMYB2 rescued trichome formation of a gl1 mutant, and interestingly, 35S::GaMYB2 induced seed-trichome production. We further demonstrate that the first intron of both GL1 and GaMYB2 plays a role in patterning trichomes: it acts as an enhancer in trichome and a repressor in nontrichome cells, generating a trichome-specific pattern of MYB gene expression. Disruption of a MYB motif conserved in intron 1 of GL1, WEREWOLF, and GaMYB2 genes affected trichome production. These results suggest that cotton and Arabidopsis use similar transcription factors for regulating trichomes and that GaMYB2 may be a key regulator of cotton fiber development.

  19. Increased Helicoverpa zea (Boddie) larval feeding on a RNAi construct CYP82D109 that blocks gossypol-related terpenoid synthesis in cotton plants

    Science.gov (United States)

    Glandled cotton plants, Gossypium hirsutum L., have long been known to be more resistant to insect pests compared to their glandless counterparts. This resistance has been mainly attributed to the presence of terpenoid aldehydes such as gossypol, hemigossypolone, and heliocides in the glands. We p...

  20. Increased Helicoverpa zea (Boddie) larval feeding on cotton plants with RNAi construct CYP82D109 that blocks gossypol-related terpenoid synthesis

    Science.gov (United States)

    Glandled cotton plants, Gossypium hirsutum L., have long been known to be more resistant to insect pests compared to their glandless counterparts. This resistance has been mainly attributed to the presence of terpenoid aldehydes such as gossypol, hemigossypolone, and heliocides in the glands. We p...

  1. Increasing social welfare by taxing pesticide externalities in the Indian cotton sector.

    Science.gov (United States)

    Rasche, Livia; Dietl, Alexander; Shakhramanyan, Nikolinka; Pandey, Divya; Schneider, Uwe A

    2016-12-01

    Pesticide use in the Indian cotton industry has decreased with the introduction of Bt cotton, but rates are still high in comparison with other countries. The adoption of alternative strategies, such as integrated pest management, has been slow, even though benefits are potentially high, more so if the full costs of the external effects of the technologies are taken into account. In order to estimate true societal benefits of different strategies, we compare their external costs and economic performance under external cost taxation, using a state-of-the-art partial equilibrium model of the Indian agricultural sector. Pesticide externalities lower social welfare in the Indian cotton sector by $US 400-2200 million, depending on the technologies employed. A full internalisation reduces producer revenues by $US 100 ha -1 if only Bt cotton is used, and by $US 30 ha -1 if IPM is another option. Consumers do not start to lose surplus until 20-70% are internalised, and losses are smaller if all technologies are available. External pesticide costs can be internalised partially without substantially affecting consumer surplus while still increasing social welfare, but producers need to have access to and the knowledge to employ all available cotton production technologies to minimise losses. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis

    Directory of Open Access Journals (Sweden)

    Gomes José E

    2011-09-01

    Full Text Available Abstract Background The cotton boll weevil (Anthonomus grandis is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.

  3. Comparative studies on the effects of Bt-transgenic and nontransgenic cotton on arthropod diversity, seedcotton yield and bollworms control.

    Science.gov (United States)

    Dhillon, M K; Sharma, H C

    2013-01-01

    The effectiveness of commercial Bt-cotton in pest management, influence on arthropod diversity, natural enemies, and toxin flow in the insect fauna under field conditions were studied keeping in view the need to assess bioefficacy and biosafety of Bt-transgenic cotton. There were no significant differences in oviposition by Helicoverpa armigera on Bt-transgenic and non-transgenic cottons (9.2 versus 9.6 eggs plants(-100)), while the numbers of H. armigera larvae were significantly more on non-transgenic than on Bt-transgenic (10.4 versus 4.0 larvae plants(-100)) cotton. The Bt-cotton had significantly more number of mature opened bolls (9.6 versus 4.4 bolls plant(-1)), lower bollworm damage (12.8 versus 40.2% bolls damaged), and higher seedcotton yield (667.7 versus 231.7 kg ha 1). Population of cotton leafhopper, Amrasca biguttula biguttula was lower (582.2 versus 732.2 leafhoppers plants(-100)), while that of whitefly, Bemisia tabaci was higher on Bt-transgenic (65.2 versus 45.6 whiteflies plants(-100)) than on non-transgenic cotton. There was no significant influence of Bt-transgenic cotton on abundance of natural enemies of crop pests - chrysopids (9.6 versus 8.4 chrysopids plants(-100), ladybird beetles (16.0 versus 10.8 ladybirds plants(-100)), and spiders (128.4 versus 142.8 spiders plants(-100)). There were no significant differences in H. ormigera egg (19.8 versus 20.9%), larval (7.4 versus 9.6%), and larval-pupal (1.3 versus 2.9%) parasitism on Bt-transgenic and non-transgenic cottons in the farmer's fields. The parasitism in larvae of H. armigera was far lower than that of the eggs, which might be because of early mortality of H. armigera prior to parasitoid development in the host larvae. Although, Cry1Ac Bt toxin was detected in Cheilomenes sexmoculatus, chrysopids, A. bigutulla bigutulla, Thrips taboci, Myllocerus sp., Oxycarenus laetus, Dysdercus koenigii, spiders, bugs, and grasshoppers, no significant differences were observed in their abundance on

  4. No evidence for change in oviposition behaviour of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) after widespread adoption of transgenic insecticidal cotton.

    Science.gov (United States)

    Zalucki, M P; Cunningham, J P; Downes, S; Ward, P; Lange, C; Meissle, M; Schellhorn, N A; Zalucki, J M

    2012-08-01

    Cotton growing landscapes in Australia have been dominated by dual-toxin transgenic Bt varieties since 2004. The cotton crop has thus effectively become a sink for the main target pest, Helicoverpa armigera. Theory predicts that there should be strong selection on female moths to avoid laying on such plants. We assessed oviposition, collected from two cotton-growing regions, by female moths when given a choice of tobacco, cotton and cabbage. Earlier work in the 1980s and 1990s on populations from the same geographic locations indicated these hosts were on average ranked as high, mid and low preference plants, respectively, and that host rankings had a heritable component. In the present study, we found no change in the relative ranking of hosts by females, with most eggs being laid on tobacco, then cotton and least on cabbage. As in earlier work, some females laid most eggs on cotton and aspects of oviposition behaviour had a heritable component. Certainly, cotton is not avoided as a host, and the implications of these finding for managing resistance to Bt cotton are discussed.

  5. Economic Injury Level of the Neotropical Brown Stink Bug Euschistus heros (F.) on Cotton Plants.

    Science.gov (United States)

    Soria, M F; Degrande, P E; Panizzi, A R; Toews, M D

    2017-06-01

    In Brazil, the Neotropical brown stink bug, Euschistus heros (F.) (Hemiptera: Pentatomidae), commonly disperses from soybeans to cotton fields. The establishment of an economic treatment threshold for this pest on cotton crops is required. Infestation levels of adults of E. heros were evaluated on cotton plants at preflowering, early flowering, boll filling, and full maturity by assessing external and internal symptoms of injury on bolls, seed cotton/lint production, and fiber quality parameters. A completely randomized experiment was designed to infest cotton plants in a greenhouse with 0, 2, 4, 6, and 8 bugs/plant, except at the full-maturity stage in which only infestation with 8 bugs/plant and uninfested plants were evaluated. Results indicated that the preflowering, early-flowering, and full-maturity stages were not affected by E. heros. A linear regression model showed a significant increase in the number of internal punctures and warts in the boll-filling stage as the population of bugs increased. The average number of loci with mottled immature fibers was significantly higher at 4, 6, and 8 bugs compared with uninfested plants with data following a quadratic regression model. The seed and lint cotton was reduced by 18 and 25% at the maximum level of infestation (ca. 8 bugs/plant) in the boll-filling stage. The micronaire and yellowing indexes were, respectively, reduced and increased with the increase of the infestation levels. The economic injury level of E. heros on cotton plants at the boll-filling stage was determined as 0.5 adult/plant. Based on that, a treatment threshold of 0.1 adult/plant can be recommended to avoid economic losses.

  6. Perspective of using the sterile insect technique for Tobacco Budworms Heliothis virescens (Lepidoptera: Noctuidae) and Cotton Bollworm Helicoverpa armigera (Lepidoptera: Noctuidae) in cotton crop as an alternative method of control; Perspectiva de utilizacao da Tecnica do Inseto Esteril para lagarta da maca Heliothis virescens (Lepidoptera: Noctuidae) e lagarta do velho mundo Helicoverpa armigera (Lepidoptera: Noctuidae) na cultura do algodoeiro como um metodo alternativo de controle

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Gianni Queiroz

    2017-07-01

    Since the 1950s, scientists have used ionizing radiation to sterilize insects, which are released in nature to mate, but without any progeny. Known as the sterile insect technique (TIE), this method of insect control has traditionally used ionizing radiation to sterilize insects, a technique that does not generate residues, and can act in synergy with the other techniques within integrated pest management. For several years, Brazil has been fighting against the increase of pests, introducing new tactics and techniques within the IPM programs, to overcome the resistance of chemical products, such as: reducing the residues of agrochemicals; For some important crops of our country, we have a wide spectrum of pests occurring from the beginning to the end of the harvest, one of them is the cotton crop and among the key pests of this crop, we have some extremely important caterpillars, among them Heliothis virescens and Helicoverpa armigera These species are morphologically similar, the second being identified a few years ago in Brazil. There are still no studies in Brazil using TIE as an additional tool for Lepidoptera, therefore the purpose of this study was to evaluate the effect of doses of gamma radiation in the different phases of the evolutionary cycle of Heliothis virescens and Helicoverpa armigera, as well as to evaluate the sterility in generation P And the ability of insects to irradiate with non-irradiated insects. The pupal phase presented the best result because 75 Gy achieved sterility in Heliothis virecens and 100 Gy sterilized Helicoverpa armigera, therefore it contemplated the phase and dose chosen to evaluate the competition between the irradiated insects and the normal insects of both species. Both Heliothis virecens and Helicoverpa armigera presented a satisfactory result, as the irradiated insects managed to significantly reduce the viability of the eggs in a ratio of 9: 1: 1. (author)

  7. 7 CFR 28.451 - Below Color Grade Cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Below Color Grade Cotton. 28.451 Section 28.451... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Color Grade Cotton § 28.451 Below Color Grade Cotton. Below color grade cotton is American Upland cotton which is lower in color grade than Good...

  8. 7 CFR 27.73 - Supervision of transfers of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Supervision of transfers of cotton. 27.73 Section 27... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Transfers of Cotton § 27.73 Supervision of transfers of cotton. Whenever the owner of any cotton inspected and sampled for classification...

  9. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  10. Interactions of Bacillus thuringiensis Cry1Ac toxin in genetically engineered cotton with predatory heteropterans.

    Science.gov (United States)

    Torres, Jorge B; Ruberson, John R

    2008-06-01

    A number of cotton varieties have been genetically transformed with genes from Bacillus thuringiensis (Bt) to continuously produce Bt endotoxins, offering whole plant and season-long protection against many lepidopteran larvae. Constant whole-plant toxin expression creates a significant opportunity for non-target herbivores to acquire and bio-accumulate the toxin for higher trophic levels. In the present study we investigated movement of Cry1Ac toxin from the transgenic cotton plant through specific predator-prey pairings, using omnivorous predators with common cotton pests as prey: (1) the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), with the predator Podisus maculiventris (Heteroptera: Pentatomidae); (2) the two-spotted spider mite, Tetranychus urticae (Acarina: Tetranychidae), with the predatory big-eyed bug Geocoris punctipes (Heteroptera: Geocoridae) and (3) with the predatory damsel bug Nabis roseipennis (Heteropera: Nabidae); and (4) the thrips Frankliniella occidentalis (Thysanoptera: Thripidae) with the predatory pirate bug Orius insidiosus (Heteroptera: Anthocoridae). We quantified Cry1Ac toxin in the cotton plants, and in the pests and predators, and the effects of continuous feeding on S. exigua larvae fed either Bt or non-Bt cotton on life history traits of P. maculiventris. All three herbivores were able to convey Cry1Ac toxin to their respective predators. Among the herbivores, T. urticae exhibited 16.8 times more toxin in their bodies than that expressed in Bt-cotton plant, followed by S. exigua (1.05 times), and F. occidentalis immatures and adults (0.63 and 0.73 times, respectively). Of the toxin in the respective herbivorous prey, 4, 40, 17 and 14% of that amount was measured in the predators G. punctipes, P. maculiventris, O. insidiosus, and N. roseipennis, respectively. The predator P. maculiventris exhibited similar life history characteristics (developmental time, survival, longevity, and fecundity) regardless of the prey's food

  11. 21 CFR 182.70 - Substances migrating from cotton and cotton fabrics used in dry food packaging.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Substances migrating from cotton and cotton fabrics... GENERALLY RECOGNIZED AS SAFE General Provisions § 182.70 Substances migrating from cotton and cotton fabrics used in dry food packaging. Substances migrating to food from cotton and cotton fabrics used in dry...

  12. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics

    Science.gov (United States)

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In cer...

  13. Origin and phylogeography of the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera : Cephidae): implications for pest management

    Science.gov (United States)

    he wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage by this species has recently expanded southward. Current pest management practices are not very effective and uncertainties regarding its origin and i...

  14. Host plant defense against sugarcane aphid in sorghum and genetic mechanism of resistance to the new pest

    Science.gov (United States)

    Sugarcane aphid (SCA), Melanaphis sacchari (Zerhntner), is typically known as a key pest to sorghum and sugarcane in tropical and subtropical regions around the world. In 2013, this new invasive pest was found on grain sorghum plants in South and East Texas, and now it has already spread over 17 st...

  15. Investigating the (MisMatch between Natural Pest Control Knowledge and the Intensity of Pesticide Use

    Directory of Open Access Journals (Sweden)

    David Mall

    2018-01-01

    Full Text Available Transforming modern agriculture towards both higher yields and greater sustainability is critical for preserving biodiversity in an increasingly populous and variable world. However, the intensity of agricultural practices varies strongly between crop systems. Given limited research capacity, it is crucial to focus efforts to increase sustainability in the crop systems that need it most. In this study, we investigate the match (or mismatch between the intensity of pesticide use and the availability of knowledge on the ecosystem service of natural pest control across various crop systems. Using a systematic literature search on pest control and publicly available pesticide data, we find that pest control literature is not more abundant in crops where insecticide input per hectare is highest. Instead, pest control literature is most abundant, with the highest number of studies published, in crops with comparatively low insecticide input per hectare but with high world harvested area. These results suggest that a major increase of interest in agroecological research towards crops with high insecticide input, particularly cotton and horticultural crops such as citrus and high value-added vegetables, would help meet knowledge needs for a timely ecointensification of agriculture.

  16. Evaluating Pilose, a Cultigen of Gossypium hirsutum, as a Source of Resistance to Cotton Fleahopper (Hemiptera: Miridae).

    Science.gov (United States)

    McLoud, Laura Ann; Knutson, Allen; Campos-Figueroa, Manuel; Smith, C Wayne; Hague, Steven

    2015-08-01

    Cotton fleahopper (Pseudatomoscelis seriatus Reuter) (Hemiptera: Miridae) is a piercing-sucking insect that has emerged as a major pest of cotton (Gossypium hirsutum L.) in Texas. Cotton fleahoppers feed on floral buds, commonly referred to as squares, causing damage and abscission, and subsequent yield loss. Previous studies indicate that plant resistance to cotton fleahopper is present in upland cotton, but the mechanism of resistance remains undetermined. In this study, Pilose, a cultigen of G. hirsutum, was examined as a source of resistance to cotton fleahopper, focusing on mechanism of resistance and heritability of the resistance trait. Results indicated that the resistance trait in Pilose is heritable and that pubescence is causative of resistance or that the resistance trait may be tightly linked to genes controlling pubescence. Behavioral assays indicated nonpreference as a mode of resistance in plants with dense pubescence. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Astylus atromaculatus (Coleoptera: Melyridae): abundance and role in pollen dispersal in Bt and non-Bt cotton in South Africa.

    Science.gov (United States)

    Pierre, Jacqueline; Hofs, Jean-Luc

    2010-10-01

    In South Africa, modified Bt (Cry1 Ac) cotton cultivars and organic ones coexist. This raises the question of the risk of dissemination of genetically modified (GM) pollen to non-GM crops by visiting insects. We inventoried the flower-visiting insects in Bt and non-Bt cotton fields of the South African Highveld region and investigated their role in pollen dispersal. Their diversity and abundance varied slightly among sites, with Astylus atromaculatus as the predominant insect on both Bt and non-Bt cotton flowers. The other major flower-visiting species were Apis mellifera and solitary Apidae. No differences were found in the abundance of each taxum between Bt and non-Bt cotton except for Scoliidae and Nitidulidae, which were scarce overall (Bt flowers in the central area of the field at one site. The pollen load on A. atromaculatus was as high as on Apis mellifera. Cage tests showed that A. atromaculatus can pollinate female cotton plants by transferring pollen from male donor plants. In the field, the flight range of this insect was generally short (25 m), but it can occasionally reach up to 200 m or even more. This study therefore highlights that A. atromaculatus, commonly regarded as a pest, could be an unexpected but efficient pollinator. Because its population density can be high, this species could mediate unwanted cotton pollen flow when distances between coexiting fields are not sufficient.

  18. Agrobacterium rhizogenes-induced cotton hairy root culture as an alternative tool for cotton functional genomics.

    Science.gov (United States)

    Kim, Hee Jin

    2013-01-01

    Although well-accepted as the ultimate method for cotton functional genomics, Agrobacterium tumefaciens-mediated cotton transformation is not widely used for functional analyses of cotton genes and their promoters since regeneration of cotton in tissue culture is lengthy and labor intensive. In certain cases, A. rhizogenes-induced hairy root culture has been a suitable molecular tool for functional analyses of genes and promoters for plants that are difficult to regenerate by A. tumefaciens-mediated transformation. Similarly, A. rhizogenes-induced hairy root cultures are an alternative tool for cotton functional genomics. In this chapter, the advantages and disadvantages of using A. rhizogenes-induced cotton hairy root culture over A. tumefaciens-mediated cotton transformation are discussed. The procedures for transformation, generation, selection, and molecular analyses of transgenic cotton hairy roots are introduced by describing the functional analysis of a cotton promoter in cotton hairy roots generated by A. rhizogenes-mediated transformation.

  19. Greige cotton comber noils for sustainable nonwovens

    Science.gov (United States)

    To increase utilization of cotton in value-added nonwoven products, a study was conducted to examine the feasibility of utilizing cotton textile processing/combing bye-product known as griege cotton comber noils. The study was conducted on a commercial-grade, textile-cum-nonwovens pilot plant and ha...

  20. Bioinspiration and Biomimicry: Possibilities for Cotton Byproducts

    Science.gov (United States)

    The byproducts from cotton gins have commonly been referred to as cotton gin trash or cotton gin waste primarily because the lint and seed were the main focus of the operation and the byproducts were a financial liability that did not have a consistent market. Even though the byproducts were called ...

  1. Dielectric permitivity measurement of cotton lint

    Science.gov (United States)

    A technique was developed for making broad band measurements of cotton lint electrical permitivity. The fundamental electrical permitivity value of cotton lint at various densities and moisture contents; is beneficial for the future development of cotton moisture sensors as it provides a...

  2. The water footprint of cotton consumption

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2005-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this report is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  3. 29 CFR 1910.1043 - Cotton dust.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Cotton dust. 1910.1043 Section 1910.1043 Labor Regulations...) OCCUPATIONAL SAFETY AND HEALTH STANDARDS (CONTINUED) Toxic and Hazardous Substances § 1910.1043 Cotton dust. (a... cotton dust in all workplaces where employees engage in yarn manufacturing, engage in slashing and...

  4. Molecular screening of insecticides with sigma glutathione S-transferases (GST) in cotton aphid Aphis gossypii using docking

    OpenAIRE

    Gawande, Nilesh Dinkar; Subashini, Swaminathan; Murugan, Marimuthu; Subbarayalu, Mohankumar

    2014-01-01

    Glutathione S-transferases (GSTs) are one of the major families of detoxifying enzymes that detoxifies different chemical compounds including insecticides in different insect species. Among the GST subclasses, sigma GSTs are found to be the most abundant and conserved among different insect orders. These GSTs are found to play an important role in lipid peroxidation as well as detoxification. Cotton aphid, Aphis gossypii is the most damaging sucking pest with a wide range of hosts and vector ...

  5. Suppression of jasmonic acid-dependent defense in cotton plant by the mealybug Phenacoccus solenopsis.

    Directory of Open Access Journals (Sweden)

    Pengjun Zhang

    Full Text Available The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA, salicylic acid (SA, and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs.

  6. Suppression of Jasmonic Acid-Dependent Defense in Cotton Plant by the Mealybug Phenacoccus solenopsis

    Science.gov (United States)

    Zhang, Pengjun; Zhu, Xiaoyun; Huang, Fang; Liu, Yong; Zhang, Jinming; Lu, Yaobin; Ruan, Yongming

    2011-01-01

    The solenopsis mealybug, Phenacoccus solenopsis, has been recently recognized as an aggressively invasive pest in China, and is now becoming a serious threat to the cotton industry in the country. Thus, it is necessary to investigate the molecular mechanisms employed by cotton for defending against P. solenopsis before the pest populations reach epidemic levels. Here, we examined the effects of exogenous jasmonic acid (JA), salicylic acid (SA), and herbivory treatments on feeding behavior and on development of female P. solenopsis. Further, we compared the volatile emissions of cotton plants upon JA, SA, and herbivory treatments, as well as the time-related changes in gossypol production and defense-related genes. Female adult P. solenopsis were repelled by leaves from JA-treated plant, but were not repelled by leaves from SA-treated plants. In contrast, females were attracted by leaves from plants pre-infested by P. solenopsis. The diverse feeding responses by P. solenopsis were due to the difference in volatile emission of plants from different treatments. Furthermore, we show that JA-treated plants slowed P. solenopsis development, but plants pre-infested by P. solenopsis accelerated its development. We also show that P. solenopsis feeding inhibited the JA-regulated gossypol production, and prevented the induction of JA-related genes. We conclude that P. solenopsis is able to prevent the activation of JA-dependent defenses associated with basal resistance to mealybugs. PMID:21818315

  7. Effects of nitrogen fertilization in cotton crop on Aphis gossypii Glover (Hemiptera: Aphididae) biology; Efeitos da adubacao nitrogenada em algodoeiro sobre a biologia de Aphis gossypii Glover (Hemiptera: Aphididae)

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Ricardo; Degrande, Paulo E.; Fernandes, Marcos G.; Nogueira, Rodrigo F. [Universidade Federal da Grande Dourados, MS (Brazil). Faculdade de Ciencias Agrarias]. E-mail: rbarrosufms@yahoo.com.br, degrande@ufgd.edu.br

    2007-09-15

    The cotton aphid, Aphis gossypii Glove, is one of the pests of cotton crop and its relation with the host seem to depend on the amount of nitrogen available to the plant. The biology of A. gossypii using different cotton nitrogen fertility regimes was studied under greenhouse conditions, in Dourados, MS. A completely randomized design with nine replications in a factorial scheme (2x4x2)+1 was used. Two nitrogen sources (sulphate of ammonium and urea), four doses of nitrogen (50, 100, 150 and 200 kg ha-1), two different times of nitrogen application and one additional treatment without nitrogen were taken as factors. The nymphal phases, the pre-reproductive, reproductive and pos-reproductive periods, longevity, the life cycle and fecundity of the cotton aphid were evaluated. The doses of nitrogen influenced the cotton aphid biology in both sources and times of application, favoring its development and fecundity. (author)

  8. Urban warming drives insect pest abundance on street trees.

    Directory of Open Access Journals (Sweden)

    Emily K Meineke

    Full Text Available Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer.

  9. Efficacy of Cry1Ac:Cry1F proteins in cotton leaf tissue against fall armyworm, beet armyworm, and soybean looper (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Tindall, K V; Siebert, M Willrich; Leonard, B R; All, J; Haile, F J

    2009-08-01

    Cotton, Gossypium hirsutum L., plants expressing Cry1Ac and Cry1F insecticidal crystal proteins of Bacillus thuringiensis Berliner (Bt) were evaluated against selected lepidopteran pests including fall armyworm, Spodoptera frugiperda (J. E. Smith), beet armyworm, Spodoptera exigua (Hübner), and soybean looper, Pseudoplusia includens (Walker). Studies were conducted in a range of environments, challenging various cotton tissue types from several varieties containing a combination of Cry1Ac and Cry1F proteins. In fresh tissue bioassays of mature leaves and squares (flower buds) and in artificial field infestations of white flowers, plants containing Cry1Ac:Cry1F significantly reduced levels of damage (leaf defoliation, bract feeding, penetrated squares and bolls, and boll abscission) and induced significantly greater mortality (90-100%) of fall armyworm compared with that on non-Bt cotton plants. Plants containing Cry1Ac:Cry1F conferred high levels (100%) of soybean looper mortality and low levels (0.2%) of leaf defoliation compared with non-Bt cotton. Beet armyworm was relatively less sensitive to Cry1Ac:Cry1F cotton plants compared with fall armyworm and soybean looper. However, beet armyworm larval development was delayed 21 d after infestation (DAI), and ingestion of plant tissue was inhibited (14 and 21 DAI) on the Cry1Ac:Cry1F plants compared with that on non-Bt cotton plants. These results show Cry1Ac:Cry1F cotton varieties can be an effective component in a management program for these lepidopteran pest species. Differential susceptibility of fall armyworm, beet armyworm, and soybean looper larvae to Cry1Ac:Cry1F cotton reinforces the need to sample during plant development and respond with a foliar insecticide if local action thresholds are exceeded.

  10. Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant?

    Science.gov (United States)

    Cunningham, John Paul; Zalucki, Myron P

    2014-06-01

    Heliothine moths (Lepidoptera: Heliothinae) include some of the world's most devastating pest species. Whereas the majority of nonpest heliothinae specialize on a single plant family, genus, or species, pest species are highly polyphagous, with populations often escalating in size as they move from one crop species to another. Here, we examine the current literature on heliothine host-selection behavior with the aim of providing a knowledge base for research scientists and pest managers. We review the host relations of pest heliothines, with a particular focus on Helicoverpa armigera (Hübner), the most economically damaging of all heliothine species. We then consider the important question of what constitutes a host plant in these moths, and some of the problems that arise when trying to determine host plant status from empirical studies on host use. The top six host plant families in the two main Australian pest species (H. armigera and Helicoverpa punctigera Wallengren) are the same and the top three (Asteraceae, Fabaceae, and Malvaceae) are ranked the same (in terms of the number of host species on which eggs or larvae have been identified), suggesting that these species may use similar cues to identify their hosts. In contrast, for the two key pest heliothines in the Americas, the Fabaceae contains approximately 1/3 of hosts for both. For Helicoverpa zea (Boddie), the remaining hosts are more evenly distributed, with Solanaceae next, followed by Poaceae, Asteraceae, Malvaceae, and Rosaceae. For Heliothis virescens (F.), the next highest five families are Malvaceae, Asteraceae, Solanaceae, Convolvulaceae, and Scrophulariaceae. Again there is considerable overlap in host use at generic and even species level. H. armigera is the most widely distributed and recorded from 68 plant families worldwide, but only 14 families are recorded as a containing a host in all geographic areas. A few crop hosts are used throughout the range as expected, but in some cases there

  11. Drought coping strategies in cotton: increased crop per drop.

    Science.gov (United States)

    Ullah, Abid; Sun, Heng; Yang, Xiyan; Zhang, Xianlong

    2017-03-01

    The growth and yield of many crops, including cotton, are affected by water deficit. Cotton has evolved drought specific as well as general morpho-physiological, biochemical and molecular responses to drought stress, which are discussed in this review. The key physiological responses against drought stress in cotton, including stomata closing, root development, cellular adaptations, photosynthesis, abscisic acid (ABA) and jasmonic acid (JA) production and reactive oxygen species (ROS) scavenging, have been identified by researchers. Drought stress induces the expression of stress-related transcription factors and genes, such as ROS scavenging, ABA or mitogen-activated protein kinases (MAPK) signalling genes, which activate various drought-related pathways to induce tolerance in the plant. It is crucial to elucidate and induce drought-tolerant traits via quantitative trait loci (QTL) analysis, transgenic approaches and exogenous application of substances. The current review article highlights the natural as well as engineered drought tolerance strategies in cotton. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. A fungal protein elicitor PevD1 induces Verticillium wilt resistance in cotton.

    Science.gov (United States)

    Bu, Bingwu; Qiu, Dewen; Zeng, Hongmei; Guo, Lihua; Yuan, Jingjing; Yang, Xiufen

    2014-03-01

    We found that the elicitor PevD1 triggered innate immunity in cotton, which plays an important role in future cotton wilt disease control. Elicitors can induce defense responses in plants and improve pathogen resistance. PevD1 is a secreted protein from Verticillium dahliae and activates the hypersensitive response and systemic acquired resistance to tobacco mosaic virus in tobacco plants. To investigate the PevD1-induced disease resistance mechanisms in cotton (Gossypium hirsutum), we report that Escherichia coli expressing PevD1 enhanced cotton resistance and the defense response to the fungal pathogen V. dahliae. The results showed that recombinant PevD1 improved cotton resistance when infiltrated at a concentration as low as 4 μg ml(-1), and the highest disease reduction was 38.16 % on the 15th day post V. dahliae inoculation. This protein was able to systemically induce hydrogen peroxide production, nitric oxide generation, lignin deposition, vessel reinforcement and defense enzymes, including phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase. PevD1 also enhanced the expression of three pathogenesis-related genes, namely, β-1,3-glucanase, chitinase, and cadinene synthase, and three key genes, PAL, C4H1, and 4CL, from the cotton defense phenylpropanoid metabolism pathway. Our results demonstrated that PevD1 acted as an effector in cotton and V. dahliae interactions and triggered innate immunity in cotton, resulting in the upregulation of defense-related genes, metabolic substance deposition and cell wall modifications. PevD1 is a candidate plant defense activator for cotton wilt disease control.

  13. Radar, Insect Population Ecology, and Pest Management

    Science.gov (United States)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  14. Comparative performance of single spray integrated pest ...

    African Journals Online (AJOL)

    Cowpea is among of the most widely grown legume in Northern and South Western Nigeria. However, the yield of cowpea has stagnated in recent years, mainly due to pest and diseases. In order to combat insect ravaging cowpea plots and reduce yield, integrated pest management (One spray regime) technology which ...

  15. Agricultural extension officers' perceptions of integrated pest ...

    African Journals Online (AJOL)

    The extension officers further believed that IPM has the potential to contribute effectively in pest management by the majority of small scale farmers in Kenya. The extension officers viewed crop rotation, a cultural practice, to be of priority use in pest management. Most of the other IPM practices were considered practical in ...

  16. Agricultural Plant Pest Control. Bulletin 763.

    Science.gov (United States)

    French, John C.; And Others

    This manual gives general information on plant pests and pesticides. First, the life-cycle and habits of some common insect pests are given. These include caterpillars, beetles and beetle larvae, and sucking insects. Next, plant diseases such as leaf diseases, wilts, root and crown rots, stem cankers, fruit rots, seed and seedling diseases, and…

  17. Ornamental and Turf Pest Control. Bulletin 764.

    Science.gov (United States)

    Bowyer, Timothy H.; And Others

    This manual gives descriptions of and methods for control of diseases and insect pests of ornamental plants, weeds, and diseases and insect pests of turf plants. Included are diseases caused by fungi such as cankers, leaf galls, and rust; diseases caused by bacteria such as bacterial blight and crown gall; and diseases caused by nematodes and…

  18. Integrated pest management - an overview and update

    Science.gov (United States)

    Thomas D. Landis; R. Kasten Dumroese

    2014-01-01

    Integrated pest management, better known as IPM, is a familiar term for those of us working in forest, conservation, and native plant nurseries. An almost synonymous concept is "holistic pest management" that has been the topic of chapters in recent Agriculture Handbooks that would be useful to growers of native plants (see Landis and others 2009; Landis and...

  19. Forest nursery pest management in Cuba

    Science.gov (United States)

    Rene Alberto Lopez Castilla; Angela Duarte Casanova; Celia Guerra Rivero; Haylett Cruz Escoto; Natividad Triguero Issasi

    2002-01-01

    A systematic survey of methods to detect pests in forest nurseries before they damage plants was done. These surveys recorded the most important forest nursery pests during 18 years (from 1980 to 1998) and their geographical and temporal distribution in the principal enterprises in Cuba. Approximately a dozen insect species and three fungi species responsible for the...

  20. Tissue engineering scaffolds electrospun from cotton cellulose.

    Science.gov (United States)

    He, Xu; Cheng, Long; Zhang, Ximu; Xiao, Qiang; Zhang, Wei; Lu, Canhui

    2015-01-22

    Nonwovens of cellulose nanofibers were fabricated by electrospinning of cotton cellulose in its LiCl/DMAc solution. The key factors associated with the electrospinning process, including the intrinsic properties of cellulose solutions, the rotating speed of collector and the applied voltage, were systematically investigated. XRD data indicated the electrospun nanofibers were almost amorphous. When increasing the rotating speed of the collector, preferential alignment of fibers along the drawing direction and improved molecular orientation were revealed by scanning electron microscope and polarized FTIR, respectively. Tensile tests indicated the strength of the nonwovens along the orientation direction could be largely improved when collected at a higher speed. In light of the excellent biocompatibility and biodegradability as well as their unique porous structure, the nonwovens were further assessed as potential tissue engineering scaffolds. Cell culture experiments demonstrated human dental follicle cells could proliferate rapidly not only on the surface but also in the entire scaffold. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Impact of temperature and relative humidity on the near infrared spectroscopy measurements of cotton fiber micronaire

    Science.gov (United States)

    A key cotton fiber property is micronaire, the indirect indicator of the fiber’s maturity (cell wall development or thickening) and fineness (linear density or size). Micronaire can impact the fiber’s quality, textile processing efficiency, and fabric dye consistency. As a key quality property, fi...

  2. Clomazone selectivity in cotton seeds treated with dietholate and zinc acetate

    Directory of Open Access Journals (Sweden)

    Miriam Hiroko Inoue

    2014-12-01

    Full Text Available The objective of this study objective was to evaluate the selectivity of pre-emergence applications the herbicide clomazone cotton seeds treated with dietholate and zinc acetate. The 4 x 2 factorial arrangement was adopted (4 seed treatment methods and 2 clomazone dosages, distributed in a randomized block design with 4 repetitions. In treatments where dietholate and zinc acetate were applied, rates of 0.4 kg ha-1 and 8 ml per kg of seeds were used respectively. The clomazone rates used refer to 0.8 and 1.0 kg ha- 1. The cotton cultivar used was the Fiber Max 966 LL. Independent of treatment, all seeds were treated with tiametoxam insecticide and fludioxonil + metalaxyl-M fungicide at rates of 2.24 and 0.08 + 0.03 g per kg of seed, respectively, to control pests early and limit losses caused by pathogens in germination and seedling emergence. Dietholate and zinc acetate treatment had greater initial effect on cotton plants at 21, 30 and 45 days after application. In phytointoxication symptoms were observed for treatment with dietholate and zinc acetate during the evaluation periods. Seeds treated with dietholate, dietholate and zinc acetate or zinc acetate alone provided a higher number of bolls and seed cotton production compared to the control.

  3. Development of a Portable Electronic Nose for Detection of Cotton Damaged by Nezara viridula (Hemiptera: Pentatomidae

    Directory of Open Access Journals (Sweden)

    Brittany D. Lampson

    2014-01-01

    Full Text Available Stink bugs are significant pests of cotton in the southeastern USA, causing millions of dollars in control costs and crop losses each year. New methods to detect stink bug damage must be investigated in order to reduce these costs and optimize pesticide applications. One such method would be to detect the volatile organic compounds (VOCs emitted from cotton plants damaged by stink bugs. A portable device was developed to draw VOCs from the head space of a cotton boll over carbon black-polymer composite sensors. From the response of these sensors, this device would indicate if the boll was fed upon by a stink bug or not. The device was 100% accurate in distinguishing bolls damaged by stink bugs from undamaged controls when tested under training conditions. However, the device was only 57.1% accurate in distinguishing damaged from undamaged bolls when tested 24 h after it was trained. These results indicated that this device was capable of classifying cotton as damaged or undamaged by differentiating VOCs released from undamaged or damaged bolls, but improvements in design are required to address sensitivity to fluctuations in environmental conditions.

  4. Toxins for Transgenic Resistance to Hemipteran Pests

    Directory of Open Access Journals (Sweden)

    Bryony C. Bonning

    2012-06-01

    Full Text Available The sap sucking insects (Hemiptera, which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  5. Future of Cotton in Nonwovens

    Science.gov (United States)

    Although cotton offers several positive attributes, such as absorbency of liquids, dyeability, transportation and dissipation of moisture for wear comfort, static-freedom, sustainability, biodegradability and bioconsumability, and the like, its use in nonwoven products has been minimal. In order to ...

  6. Cocoa/Cotton Comparative Genomics

    Science.gov (United States)

    With genome sequence from two members of the Malvaceae family recently made available, we are exploring syntenic relationships, gene content, and evolutionary trajectories between the cacao and cotton genomes. An assembly of cacao (Theobroma cacao) using Illumina and 454 sequence technology yielded ...

  7. 6-Benzyladenine enhancement of cotton

    Science.gov (United States)

    The influence of applied plant growth regulators (PGR) on growth, development and yield in cotton (Gossypium hirsutum L. and Gossypium barbadense L.) has been studied for over half a century. Studies of PGR containing cytokinin alone or in combination with gibbererillins applied at the pinhead squa...

  8. Superhydrophobic cotton by fluorosilane modification

    CSIR Research Space (South Africa)

    Erasmus, E

    2009-12-01

    Full Text Available Cotton with a superhydrophobic surface and self-cleaning ability has been prepared by the treatment with 1H, 1H, 2H, 2H-fluorooctyl triethoxysilane. An increased level of treatment increases the water contact angle, thereby exhibiting a self...

  9. Cotton Wilt and the Environment

    Indian Academy of Sciences (India)

    THE wilt disease of cotton (Fusarium sp.) has been studied extensively by Ajrekar and Bal (1921), Fahmy (1928), Kulkarni and Mundkur (1928),. Dastur (1929), Dharmarajulu (1932), Fikry (1932) and Kulkarni (1934). The last author has fully reviewed previous work. In these studies, detailed attention has been given, mainly, ...

  10. Cottonseed and cotton plant biomass

    Science.gov (United States)

    The cotton plant generates several marketable products as a result of the ginning process. The product that garners the most attention in regards to value and research efforts, is lint with cottonseed being secondary. In addition to lint and cottonseed, the plant material itself has a value that...

  11. 7 CFR 1427.165 - Eligible seed cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Eligible seed cotton. 1427.165 Section 1427.165... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Recourse Seed Cotton Loans § 1427.165 Eligible seed cotton. (a) Seed cotton pledged as collateral for a loan must be tendered to CCC by an...

  12. ARS labs update to California Cotton Ginners and Growers

    Science.gov (United States)

    There are four USDA-ARS labs involved in cotton harvesting, processing & fiber quality research; The Southwestern Cotton Ginning Research Laboratory (Mesilla Park, NM); The Cotton Production and Processing Unit (Lubbock, TX); The Cotton Ginning Research Unit (Stoneville, MS); and The Cotton Structur...

  13. 7 CFR 28.39 - Cotton reduced in grade.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Cotton reduced in grade. 28.39 Section 28.39... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Classification § 28.39 Cotton reduced in grade. If cotton be reduced in grade, by reason of the presence of...

  14. 7 CFR 27.37 - Cotton reduced in grade.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Cotton reduced in grade. 27.37 Section 27.37... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification and Micronaire Determinations § 27.37 Cotton reduced in grade. If cotton be reduced in grade, by reason of the presence of...

  15. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Recourse Seed Cotton Loans § 1427.174 Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31 following...

  16. 7 CFR 28.178 - Submission of cotton samples.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Submission of cotton samples. 28.178 Section 28.178... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Classification for Foreign Growth Cotton § 28.178 Submission of cotton samples. Samples of cotton submitted to a Classing Office for classification and/or...

  17. Cotton fiber quality determined by fruit position, temperature and management

    NARCIS (Netherlands)

    Wang, X.; Evers, J.B.; Zhang, L.; Mao, L.; Pan, X.; Li, Z.

    2013-01-01

    CottonXL is a tool to explore cotton fiber quality in relation to fruit position, to improve cotton quality by optimizing cotton plant structure, as well as to help farmers understand how the structure of the cotton plant determines crop growth and quality.

  18. 7 CFR 27.46 - Cotton withdrawn from storage.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Cotton withdrawn from storage. 27.46 Section 27.46... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Cotton Class Certificates § 27.46 Cotton withdrawn from storage. The exchange inspection agency under the supervision or control of...

  19. 7 CFR 1427.9 - Classification of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Classification of cotton. 1427.9 Section 1427.9... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Nonrecourse Cotton Loan and Loan Deficiency Payments § 1427.9 Classification of cotton. (a) All cotton tendered for loan and loan deficiency...

  20. 7 CFR 28.40 - Terms defined; cotton classification.

    Science.gov (United States)

    2010-01-01

    ... other samples, or of loose or miscellaneous lots collected and rebaled, or cotton in a bale which is composed of cotton from two or more smaller bales or parts of bales that are combined after the cotton leaves the gin. (f) False packed cotton. Cotton in a bale (1) containing substances entirely foreign to...

  1. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly).

    Science.gov (United States)

    Li, Jianying; Zhu, Lizhen; Hull, J Joe; Liang, Sijia; Daniell, Henry; Jin, Shuangxia; Zhang, Xianlong

    2016-10-01

    The whitefly (Bemisia tabaci) causes tremendous damage to cotton production worldwide. However, very limited information is available about how plants perceive and defend themselves from this destructive pest. In this study, the transcriptomic differences between two cotton cultivars that exhibit either strong resistance (HR) or sensitivity (ZS) to whitefly were compared at different time points (0, 12, 24 and 48 h after infection) using RNA-Seq. Approximately one billion paired-end reads were obtained by Illumina sequencing technology. Gene ontology and KEGG pathway analysis indicated that the cotton transcriptional response to whitefly infestation involves genes encoding protein kinases, transcription factors, metabolite synthesis, and phytohormone signalling. Furthermore, a weighted gene co-expression network constructed from RNA-Seq datasets showed that WRKY40 and copper transport protein are hub genes that may regulate cotton defenses to whitefly infestation. Silencing GhMPK3 by virus-induced gene silencing (VIGS) resulted in suppression of the MPK-WRKY-JA and ET pathways and lead to enhanced whitefly susceptibility, suggesting that the candidate insect resistant genes identified in this RNA-Seq analysis are credible and offer significant utility. Taken together, this study provides comprehensive insights into the cotton defense system to whitefly infestation and has identified several candidate genes for control of phloem-feeding pests. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber.

    Directory of Open Access Journals (Sweden)

    Jun Peng

    Full Text Available Cotton (Gosspium hirsutum L. is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant and Simian 3 (salt-sensitive, were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]. The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS, acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities.

  3. Second stage lint cleaning system PM10 emission factors and rates for cotton gins: Method 201A PM10 sizing cyclones

    Science.gov (United States)

    This manuscript is part of a series of manuscripts that characterize cotton gin emissions from the standpoint of stack sampling. The impetus behind this project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. A key component of this study was...

  4. [Arachnofauna (araneae: Araneae) in transgenic and conventional cotton crops (Gossypium hirsutum) in the North of Santa Fe, Argentina].

    Science.gov (United States)

    Almada, Melina Soledad; Sosa, María Ana; González, Alda

    2012-06-01

    Spiders have considerable potential importance for their role as predators to some pests in agricultural systems. The composition of spiders in transgenic and conventional cotton at the Research Station of INTA Reconquista (Santa Fe) was studied during the 2005-2006 season. The experiment was a complete randomized block design with three replications and three treatments: transgenic Bt cotton (ALBt), conventional cotton without chemical control (ALCSC), and conventional cotton with chemical control (ALCCC). Weekly, spiders were collected using nets, vertical cloth and pitfall-traps. A total of 1255 specimens (16 families, and 32 species) were collected. Seven families were found in all the treatments, mainly Thomisidae (n=1 51, 84.04%) and Araneidae (n=83, 6.64%). The Hunting spiders guild ambushers (n=1053, 83.91%), "Orb weavers" (n=85, 6.77%) and "Stalkers" (n=53, 4.22%) were more abundant. There were no significant differences in the indexes diversity between treatments. Spiders were presented during the whole crop season, with peaks about flowering and boll maturity, with the highest abundance in ALBt. This work is part of the first set of data registered in Argentina about spider's community in cotton crops.

  5. Bacterial communities of the cotton aphid Aphis gossypii associated with Bt cotton in northern China

    National Research Council Canada - National Science Library

    Zhao, Yao; Zhang, Shuai; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Cui, Jin-Jie

    2016-01-01

    .... This study investigated the bacterial diversity of the cotton aphid Aphis gossypii associated with Bt cotton in northern China by targeting the V4 region of the 16S rDNA using the Illumina MiSeq platform...

  6. Investigating Engineered Ribonucleoprotein Particles to Improve Oral RNAi Delivery in Crop Insect Pests

    Directory of Open Access Journals (Sweden)

    François-Xavier Gillet

    2017-04-01

    Full Text Available Genetically modified (GM crops producing double-stranded RNAs (dsRNAs are being investigated largely as an RNA interference (RNAi-based resistance strategy against crop insect pests. However, limitations of this strategy include the sensitivity of dsRNA to insect gut nucleases and its poor insect cell membrane penetration. Working with the insect pest cotton boll weevil (Anthonomus grandis, we showed that the chimeric protein PTD-DRBD (peptide transduction domain—dsRNA binding domain combined with dsRNA forms a ribonucleoprotein particle (RNP that improves the effectiveness of the RNAi mechanism in the insect. The RNP slows down nuclease activity, probably by masking the dsRNA. Furthermore, PTD-mediated internalization in insect gut cells is achieved within minutes after plasma membrane contact, limiting the exposure time of the RNPs to gut nucleases. Therefore, the RNP provides an approximately 2-fold increase in the efficiency of insect gene silencing upon oral delivery when compared to naked dsRNA. Taken together, these data demonstrate the role of engineered RNPs in improving dsRNA stability and cellular entry, representing a path toward the design of enhanced RNAi strategies in GM plants against crop insect pests.

  7. Biological traits and Life table parameters A and B biotype of Bemisia tabaci (Genn. on cotton and rapeseed

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Samih

    2014-06-01

    Full Text Available The aim of this work was to construct life table of Bemisia tabaci (Gen. A and B (silverleaf whitefly B. argentifolii Bellows and Perring biotype (Hem.: Aleyrodidae on two host plants; cotton, (Gossypium hirsutum L. and rapeseed, (Brassica napus L.. Experiments were conducted in a growth chamber under 24 ± 2ºC, 55±3% RH and 16:8 (L:D h photoperiod on caged plants of cotton G. hirsutum L. (Varamin 76 variety and rapeseed B. napus L. (global variety. The intrinsic rate of natural increase (r m, net reproductive rate (R0 and mean generation time (T for B. tabaci A biotype was 0.1010 females per female per day, 18.4075 females per female and 30.079 day (d on cotton; 0.1286, 30.6760 and 26.77 d on rapeseed; and for B biotype (B. argentifolii those above respective parameters averaged 0.1033, 27.8426 and 32.74 d on cotton and 0.1750, 40.75 and 21.27 d on rapeseed. The total survival of A and B biotype from the egg to adult on cotton was 22.08 and 22.25, respectively. The results showed significant differences between the two biotype reared on either host plant for gross reproductive rate (GRR, net reproductive rate (R0 or NRR, intrinsic rates of increase (r m, finite rate of increase (λ, doubling time (DT and mean generation times (Tc. To obtain a better understanding of the biology of these biotypes, Stable age distribution (Cx and some other aspects of life history related to their hosts were also studied. Based upon the results, both biotypes showed a greater reproduction capacity on rapeseed than on cotton. Thus, rapeseed was more suitable host than cotton for two biotypes and this was an important factor in host plant selection for optimizing the control strategies of these major pests.

  8. Survival and Development of Spodoptera frugiperda and Chrysodeixis includens (Lepidoptera: Noctuidae) on Bt Cotton and Implications for Resistance Management Strategies in Brazil.

    Science.gov (United States)

    Sorgatto, Rodrigo J; Bernardi, Oderlei; Omoto, Celso

    2015-02-01

    In Brazil, Spodoptera frugiperda (J. E. Smith) and Chrysodeixis includens (Walker) are important cotton pests and target of control of Bollgard II (Cry1Ac/Cry2Ab2) and WideStrike (Cry1Ac/Cry1F) cotton technologies. To subsidize an insect resistance management program, we conducted laboratory studies to evaluate the toxicity of these Bt cotton plants throughout larval development of S. frugiperda and C. includens. In bioassays with leaf disc, the efficacy of both Bt cotton plants against neonates was >80% for S. frugiperda and 100% for C. includens. However, S. frugiperda larvae that survived on Bt cotton had >76% of growth inhibition and stunting. In bioassays with S. frugiperda and C. includens larvae fed on non-Bt near-isoline during different time period (from 3 to 18 d) and then transferred to Bollgard II or WideStrike leaves showed that larval susceptibility decreased as larval age increased. For Bollgard II cotton, in all S. frugiperda instars, there were larvae that reached the pupal and adult stages. In contrast, on WideStrike cotton, a few larvae in fifth and sixth instar completed the biological cycle. For C. includens, some larvae in sixth instar originated adults in both Bt cotton plants. In conclusion, Bollgard II and WideStrike cotton technologies showed high efficacy against neonates of S. frugiperda and C. includens. However, the mortality of these species decreases as larval age increase, allowing insect survival in a possible seed mixture environment and favoring the resistance evolution. © The Author 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. The effect of varieties on cotton wax as it relates to cotton quality parameters

    Science.gov (United States)

    Cotton wax is one of the non-cellulosic components found on the surfaces of cotton. It is important in dyeing and processing quality. This investigation was carried out to study the yield of wax on the surface of cottons by performing two methods: Soxhlet extractions and accelerated solvent extracti...

  10. 75 FR 50847 - Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders

    Science.gov (United States)

    2010-08-18

    ... Commodity Credit Corporation 7 CFR Parts 1423 and 1427 RIN 0560-AH81 Cotton Program Changes for Upland Cotton, Adjusted World Price, and Active Shipping Orders AGENCY: Commodity Credit Corporation, USDA... implemented the 2008 Farm Bill provisions for the cotton program. The correction removes definitions that are...

  11. Antibacterial performance of Chlorhexidine acetate treated plain cotton and β-cyclodextrin treated cotton

    NARCIS (Netherlands)

    Amrit, Usha; Nabers, M.G.D.; Agrawal, Pramod; Warmoeskerken, Marinus

    2014-01-01

    Cotton was treated with β-cyclodextrin via a crosslinker 1, 2, 3, 4, butane tetracarboxylic acid. β-cyclodextrin attached cotton and plain cotton was treated with the antimicrobial agent Chlorhexidine acetate. The difference in amount of Chlorhexidine acetate loaded onto the two types of fabrics for

  12. 76 FR 80278 - Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade

    Science.gov (United States)

    2011-12-23

    ... and 28 [Doc. AMS-CN-11-0066] RIN 0581-AD19 Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade AGENCY: Agricultural Marketing Service, USDA. ACTION: Proposed rule. SUMMARY... official leaf grade for Upland and Pima cotton. The leaf grade is a part of the official classification...

  13. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing.

    Directory of Open Access Journals (Sweden)

    Jean-Luc Runavot

    Full Text Available Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.

  14. Novel adult feeding disruption test (FDT) to detect insecticide resistance of lepidopteran pests in cotton.

    Science.gov (United States)

    van Kretschmar, B; Cabrera, Ana R; Bradley, Julius R; Roe, R Michael

    2013-05-01

    Resistance monitoring is an important aspect of insect resistance management and the preservation of insecticide efficacy. The adult vial test (AVT) is most often used for resistance monitoring for a variety of insects. A potential alternative method is feeding disruption where resistant insects are distinguished from susceptible insects on the basis of their ability to feed on insecticide in nectar containing a colorimetric marker to measure feeding. The advantages of a feeding disruption test (FDT) for lepidopteran adults might include a more rapid assay than AVT, an assay format easier to prepare, a bioassay applicable to both oral and contact insecticides and the provision of food and water during the course of the test. The objective of the present work was to determine the feasibility of an adult FDT. Heliothis virescens moths fed permethrin and spinosad in dyed nectar yielded dose-dependent ingestion, fecal production and mortality data. A permethrin diagnostic dose distinguished pyrethroid-resistant from pyrethroid-susceptible moths, based on fecal production. Proof of concept was demonstrated for an adult FDT in which resistant moths were distinguished from susceptible moths on the basis of the ability of the insect to feed on insecticide in dyed nectar and produce dyed feces. © 2012 Society of Chemical Industry.

  15. Aqueous supercapacitors on conductive cotton

    KAUST Repository

    Pasta, Mauro

    2010-06-01

    Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70-80 F·g-1 at 0.1 A·g-1) and cycling stability (negligible decay after 35,000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices. © 2010 Tsinghua University Press and Springer-Verlag Berlin Heidelberg.

  16. Genomics Data for Cowpea Pests in Africa

    Data.gov (United States)

    US Agency for International Development — This dataset contains the complete mitochondrial genome of Anoplocnemis curvipes F. (Coreinea, Coreidae, Heteroptera), a pest of fresh cowpea pods. To get to the...

  17. Nursery Pest Management Final Environmental Impact Statement

    OpenAIRE

    United States Forest Service

    1994-01-01

    The Forest Service, in compliance with the National Environmental Policy Act of 1969, is presenting three alternative ways of managing pests (weeds, diseases, insects, and animals) at the Lucky Peak Nursery in the Intermountain Region.

  18. Pest repelling properties of ant pheromones

    DEFF Research Database (Denmark)

    Offenberg, Joachim

    2014-01-01

    Ants control pests via predation and physical deterrence; however, ant communication is based on chemical cues which may serve as warning signals to potential prey and other intruders. The presence of ant pheromones may, thus, be sufficient to repel pests from ant territories. This mini-review sh......Ants control pests via predation and physical deterrence; however, ant communication is based on chemical cues which may serve as warning signals to potential prey and other intruders. The presence of ant pheromones may, thus, be sufficient to repel pests from ant territories. This mini......-review shows that four out of five tested ant species deposit pheromones that repel herbivorous prey from their host plants....

  19. Cotton transformation via pollen tube pathway.

    Science.gov (United States)

    Wang, Min; Zhang, Baohong; Wang, Qinglian

    2013-01-01

    Although many gene transfer methods have been employed for successfully obtaining transgenic cotton, the major constraint in cotton improvement is the limitation of genotype because the majority of transgenic methods require plant regeneration from a single transformed cell which is limited by cotton tissue culture. Comparing with other plant species, it is difficult to induce plant regeneration from cotton; currently, only a limited number of cotton cultivars can be cultured for obtaining regenerated plants. Thus, development of a simple and genotype-independent genetic transformation method is particularly important for cotton community. In this chapter, we present a simple, cost-efficient, and genotype-independent cotton transformation method-pollen tube pathway-mediated transformation. This method uses pollen tube pathway to deliver transgene into cotton embryo sacs and then insert foreign genes into cotton genome. There are three major steps for pollen tube pathway-mediated genetic transformation, which include injection of -foreign genes into pollen tube, integration of foreign genes into plant genome, and selection of transgenic plants.

  20. Moisture sorption in naturally coloured cotton fibres

    Science.gov (United States)

    Ceylan, Ö.; De Clerck, K.

    2017-10-01

    Increasing environmental concerns have stimulated an interest in naturally coloured cottons. As many commercial and technical performance aspects of cotton fibres are influenced by their response towards atmospheric humidity, an in-depth research on moisture sorption behaviour of these fibres using dynamic vapour sorption is carried out. Significant differences were observed in sorption capacity and hysteresis behaviour of brown and green cotton fibres. These differences are mainly attributed to the variations in maturity and crystallinity index of the fibres. This study provides valuable insights into the moisture sorption behaviour of naturally coloured cotton fibres.

  1. [Bt gene flow of transgeic cotton].

    Science.gov (United States)

    Shen, F F; Yu, Y J; Zhang, X K; Bi, J J; Yin, C Y

    2001-01-01

    This study was carried out to determine the gene flow of transgenic cotton under Chinese ecological environment. Transgenic cotton GK-12 containing the marker gene NPTII and Bt gene was planted in the 6 x 6 m2 plot, non-transgenic cotton CCRC 12 and Xinmian 13 were planted respectively around them. At varying distances from transgenic cotton, seeds produced by the non-transgenic cotton were collected and screened for marker gene and Bt gene using kanamycine sulphate and Dot-ELISA method. PCR technique was also used in some seeds to screen Bt gene. The result indicated that gene flow was found to be high at 0-6 m, and to decrease with distances; however gene flow occurred up to distance of 36 m from the transgenic cotton plot. Bt gene flow at 3-6 m increased with increasing the diversity of transgenic cotton in the plot, but gene flow increased little at long distance. The gene flow between species was lower than between cultivars at 0-6 m, and occurred at the distance of 72 m from transgenic plot. 72 m buffer zones would serve to limit gene flow of transgenic cotton from small-scale field test. The possibility of escapes of engineered gene to wild relatives of cotton species was also discussed.

  2. The botanical collections and their pests

    OpenAIRE

    Katinas, Liliana; Iharlegui, Laura

    1995-01-01

    Collections are the permanent records of our natural heritage and contain the materials that support the research of many scientific disciplines, including those working to preserve biodiversity and monitor global change. This is the basic reason why it is a permanent obligation to protect the collections from the attack of pests. The different types of pests that infest botanical collections and their control are discussed in this paper, with special emphasis in the Herbarium of Museo de La ...

  3. Flight Synchrony among the Major Moth Pests of Cranberries in the Upper Midwest, USA

    Directory of Open Access Journals (Sweden)

    Shawn A. Steffan

    2017-02-01

    Full Text Available The cranberry fruitworm (Acrobasis vaccinii Riley, sparganothis fruitworm (Sparganothis sulfureana Clemens, and blackheaded fireworm (Rhopobota naevana Hübner are historically significant pests of cranberries (Vaccinium macrocarpon Aiton in the Upper Midwest (Wisconsin, USA. Their respective natural histories are well documented but correlations between developmental benchmarks (e.g., larval eclosion and degree-day accruals are not yet known. Treatment timings are critical to the optimization of any given control tactic, and degree-day accrual facilitates optimization by quantifying the developmental status of pest populations. When key developmental benchmarks in the pest life cycle are linked to degree-days, real-time weather data can be used to predict precise treatment timings. Here, we provide the degree-day accumulations associated with discrete biological events (i.e., initiation of flight and peak flight for the three most consistent moth pests of cranberries in Wisconsin. Moths were trapped each spring and summer from 2003 to 2011. To characterize flight dynamics and average timing of flight initiation, pheromone-baited trap-catch data were tallied for all three pest species within each of seven growing seasons. These flight dynamics were then associated with the corresponding degree-day accumulations generated using the cranberry plant’s developmental thresholds. Finally, models were fit to the data in order to determine the peak flight of each species. The initiation of the spring flight among all three moth species was highly synchronous, aiding in the timing of control tactics; however, there were substantial differences in the timing of peak flight among the moth species. Characterization of the relationship between temperature and pest development allows pest management professionals to target specific life stages, improving the efficacy of any given pest control tactic.

  4. A Suite of Models to Support the Quantitative Assessment of Spread in Pest Risk Analysis

    Science.gov (United States)

    Robinet, Christelle; Kehlenbeck, Hella; Kriticos, Darren J.; Baker, Richard H. A.; Battisti, Andrea; Brunel, Sarah; Dupin, Maxime; Eyre, Dominic; Faccoli, Massimo; Ilieva, Zhenya; Kenis, Marc; Knight, Jon; Reynaud, Philippe; Yart, Annie; van der Werf, Wopke

    2012-01-01

    Pest Risk Analyses (PRAs) are conducted worldwide to decide whether and how exotic plant pests should be regulated to prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts. Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four simple and generic spread models that can be parameterised with limited data. Simulations with these models generate maps of the potential expansion of an invasive species at continental scale. The models have one to three biological parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest density or pest presence/absence only. The four models represent four complementary perspectives on the process of invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take into account habitat distribution and climate. We present an application of each of the four models to the western corn rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens). Pest risk analysts, the intended model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to validate models, build familiarity in the user community and create a database of species parameters to help realize their potential in PRA practice. PMID:23056174

  5. A suite of models to support the quantitative assessment of spread in pest risk analysis.

    Directory of Open Access Journals (Sweden)

    Christelle Robinet

    Full Text Available Pest Risk Analyses (PRAs are conducted worldwide to decide whether and how exotic plant pests should be regulated to prevent invasion. There is an increasing demand for science-based risk mapping in PRA. Spread plays a key role in determining the potential distribution of pests, but there is no suitable spread modelling tool available for pest risk analysts. Existing models are species specific, biologically and technically complex, and data hungry. Here we present a set of four simple and generic spread models that can be parameterised with limited data. Simulations with these models generate maps of the potential expansion of an invasive species at continental scale. The models have one to three biological parameters. They differ in whether they treat spatial processes implicitly or explicitly, and in whether they consider pest density or pest presence/absence only. The four models represent four complementary perspectives on the process of invasion and, because they have different initial conditions, they can be considered as alternative scenarios. All models take into account habitat distribution and climate. We present an application of each of the four models to the western corn rootworm, Diabrotica virgifera virgifera, using historic data on its spread in Europe. Further tests as proof of concept were conducted with a broad range of taxa (insects, nematodes, plants, and plant pathogens. Pest risk analysts, the intended model users, found the model outputs to be generally credible and useful. The estimation of parameters from data requires insights into population dynamics theory, and this requires guidance. If used appropriately, these generic spread models provide a transparent and objective tool for evaluating the potential spread of pests in PRAs. Further work is needed to validate models, build familiarity in the user community and create a database of species parameters to help realize their potential in PRA practice.

  6. Flight Synchrony among the Major Moth Pests of Cranberries in the Upper Midwest, USA.

    Science.gov (United States)

    Steffan, Shawn A; Singleton, Merritt E; Sojka, Jayne; Chasen, Elissa M; Deutsch, Annie E; Zalapa, Juan E; Guédot, Christelle

    2017-02-26

    The cranberry fruitworm (Acrobasis vaccinii Riley), sparganothis fruitworm (Sparganothis sulfureana Clemens), and blackheaded fireworm (Rhopobota naevana Hübner) are historically significant pests of cranberries (Vaccinium macrocarpon Aiton) in the Upper Midwest (Wisconsin), USA. Their respective natural histories are well documented but correlations between developmental benchmarks (e.g., larval eclosion) and degree-day accruals are not yet known. Treatment timings are critical to the optimization of any given control tactic, and degree-day accrual facilitates optimization by quantifying the developmental status of pest populations. When key developmental benchmarks in the pest life cycle are linked to degree-days, real-time weather data can be used to predict precise treatment timings. Here, we provide the degree-day accumulations associated with discrete biological events (i.e., initiation of flight and peak flight) for the three most consistent moth pests of cranberries in Wisconsin. Moths were trapped each spring and summer from 2003 to 2011. To characterize flight dynamics and average timing of flight initiation, pheromone-baited trap-catch data were tallied for all three pest species within each of seven growing seasons. These flight dynamics were then associated with the corresponding degree-day accumulations generated using the cranberry plant's developmental thresholds. Finally, models were fit to the data in order to determine the peak flight of each species. The initiation of the spring flight among all three moth species was highly synchronous, aiding in the timing of control tactics; however, there were substantial differences in the timing of peak flight among the moth species. Characterization of the relationship between temperature and pest development allows pest management professionals to target specific life stages, improving the efficacy of any given pest control tactic.

  7. Expression and functional analyses of a Kinesin gene GhKIS13A1 from cotton (Gossypium hirsutum) fiber

    OpenAIRE

    Li, Yan-Jun; Zhu, Shou-Hong; Zhang, Xin-Yu; Liu, Yong-Chang; Xue, Fei; Zhao, Lan-Jie; Sun, Jie

    2017-01-01

    Background Cotton fiber, a natural fiber widely used in the textile industry, is differentiated from single cell of ovule epidermis. A large number of genes are believed to be involved in fiber formation, but so far only a few fiber genes have been isolated and functionally characterized in this developmental process. The Kinesin13 subfamily was found to play key roles during cell division and cell elongation, and was considered to be involved in the regulation of cotton fiber development. Re...

  8. Greenhouse and field-based studies on the distribution of dimethoate in cotton and its effect on Tetranychus urticae by drip irrigation.

    Science.gov (United States)

    He, Jiangtao; Zhou, Lijuan; Yao, Qiang; Liu, Bo; Xu, Hanhong; Huang, Jiguang

    2018-01-01

    The two-spotted spider mite, Tetranychus urticae Koch is an important pest of cotton. We investigated the efficacy of dimethoate in controlling T. urticae by drip irrigation. Greenhouse and field experiments were carried out to determine the efficacy of dimethoate to T. urticae and the absorption and distribution of dimethoate in cotton. Greenhouse results showed that cotton leaves received higher amounts of dimethoate compared with cotton roots and stems, with higher amounts in young leaves compared with old leaves and cotyledon having the lowest amounts among leaves. Field results showed the efficacy of dimethoate to T. urticae by drip irrigation varied by volume of dripping water, soil pH and dimethoate dosage. Dimethoate applied at 3.00 kg ha -1 with 200 m 3  ha -1 water at weak acidic soil pH (5.70-6.70) through drip irrigation can obtain satisfactory control efficacy (81.49%, 7 days) to T. urticae, without negatively impacting on its natural enemy Neoseiulus cucumeris. The residue of dimethoate in all cotton seed samples were not detectable. These results demonstrate the effectiveness of applying dimethoate by drip irrigation for control of T. urticae on cotton. This knowledge could aid in the applicability of dimethoate by drip irrigation for field management of T. urticae populations. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Evaluación de aislamientos de baculovirus para el control de Spodoptera frugiperda (Smith, 1797 (LEP.: NOCTUIDAE, plaga clave del maíz en el noroeste argentino Evaluation of baculovirus strains to control the fall armyworm, Spodoptera frugiperda (Smith, 1797 (LEP.: NOCTUIDAE, a key corn pest in North Western Argentina

    Directory of Open Access Journals (Sweden)

    Marta G. Yasem de Romero

    for Spodoptera frugiperda control, a key pest affecting corn crops in North Western Argentina. These insecticides, however, frequently show low effectiveness. The baculoviruses are a biological alternative to control the fall armyworm. The objective of this research was to assess Nucleopolyhedrovirus native and foreign strains as regards their effectiveness in controlling S. frugiperda. The results showed that S. frugiperda larvae death rate rose with increasing viral concentrations, while viral susceptibility of larvae decreased with insect age. LC50 (lethal concentration for 50% of the tested sample of 7.6 x 10(4 and 4.5 x 10(5 polyhedra/ml for three and five day-old larvae, respectively, were determined for the nuclear polyhedrosis virus (NPV isolated in Leales (Tucumán, Argentina. Similar control levels were determined for the NPV isolated in Oliveros (Santa Fe, Argentina, with lethal viral concentrations (LC50 of 8.6 x 10(4 and 4.0 x 10(5 polyhedra/ml, respectively. The Brazilian isolate was characterized by LC50 levels of 5.9 x 10(5 and 1.5 x 10(6 polyhedral/ml for three-day-old and five-day-old larvae, respectively. The local isolate (VPNSf -Tucumán showed the most lethal effect on the native population of young S. frugiperda (three to five-day-old larvae, with an average lifespan of six days at LC50 levels, while the Oliveros and Brazil isolates showed an average lifespan of seven and nine days, respectively. The VPNSf - Leales isolate was therefore selected as the object of study for this research. Moreover, being a native isolate, it was considered the best alternative from the environmental impact standpoint.

  10. Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Julie A Peterson

    2016-11-01

    Full Text Available Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically-, plant toxin-, plant nutrient-, and/or physically-mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  11. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities

    Science.gov (United States)

    Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695

  12. Application of Two-spotted Spider Mite Tetranychus urticae for Plant-pest Interaction Studies

    Science.gov (United States)

    Negrave, Tara; Van Leeuwen, Thomas; Grbic, Vojislava; Grbic, Miodrag

    2014-01-01

    The two-spotted spider mite, Tetranychus urticae, is a ubiquitous polyphagous arthropod herbivore that feeds on a remarkably broad array of species, with more than 150 of economic value. It is a major pest of greenhouse crops, especially in Solanaceae and Cucurbitaceae (e.g., tomatoes, eggplants, peppers, cucumbers, zucchini) and greenhouse ornamentals (e.g., roses, chrysanthemum, carnations), annual field crops (such as maize, cotton, soybean, and sugar beet), and in perennial cultures (alfalfa, strawberries, grapes, citruses, and plums)1,2. In addition to the extreme polyphagy that makes it an important agricultural pest, T. urticae has a tendency to develop resistance to a wide array of insecticides and acaricides that are used for its control3-7. T. urticae is an excellent experimental organism, as it has a rapid life cycle (7 days at 27 °C) and can be easily maintained at high density in the laboratory. Methods to assay gene expression (including in situ hybridization and antibody staining) and to inactivate expression of spider mite endogenous genes using RNA interference have been developed8-10. Recently, the whole genome sequence of T. urticae has been reported, creating an opportunity to develop this pest herbivore as a model organism with equivalent genomic resources that already exist in some of its host plants (Arabidopsis thaliana and the tomato Solanum lycopersicum)11. Together, these model organisms could provide insights into molecular bases of plant-pest interactions. Here, an efficient method for quick and easy collection of a large number of adult female mites, their application on an experimental plant host, and the assessment of the plant damage due to spider mite feeding are described. The presented protocol enables fast and efficient collection of hundreds of individuals at any developmental stage (eggs, larvae, nymphs, adult males, and females) that can be used for subsequent experimental application. PMID:25046103

  13. Application of two-spotted spider mite Tetranychus urticae for plant-pest interaction studies.

    Science.gov (United States)

    Cazaux, Marc; Navarro, Marie; Bruinsma, Kristie A; Zhurov, Vladimir; Negrave, Tara; Van Leeuwen, Thomas; Grbic, Vojislava; Grbic, Miodrag

    2014-07-04

    The two-spotted spider mite, Tetranychus urticae, is a ubiquitous polyphagous arthropod herbivore that feeds on a remarkably broad array of species, with more than 150 of economic value. It is a major pest of greenhouse crops, especially in Solanaceae and Cucurbitaceae (e.g., tomatoes, eggplants, peppers, cucumbers, zucchini) and greenhouse ornamentals (e.g., roses, chrysanthemum, carnations), annual field crops (such as maize, cotton, soybean, and sugar beet), and in perennial cultures (alfalfa, strawberries, grapes, citruses, and plums)1,2. In addition to the extreme polyphagy that makes it an important agricultural pest, T. urticae has a tendency to develop resistance to a wide array of insecticides and acaricides that are used for its control3-7. T. urticae is an excellent experimental organism, as it has a rapid life cycle (7 days at 27 °C) and can be easily maintained at high density in the laboratory. Methods to assay gene expression (including in situ hybridization and antibody staining) and to inactivate expression of spider mite endogenous genes using RNA interference have been developed8-10. Recently, the whole genome sequence of T. urticae has been reported, creating an opportunity to develop this pest herbivore as a model organism with equivalent genomic resources that already exist in some of its host plants (Arabidopsis thaliana and the tomato Solanum lycopersicum)11. Together, these model organisms could provide insights into molecular bases of plant-pest interactions. Here, an efficient method for quick and easy collection of a large number of adult female mites, their application on an experimental plant host, and the assessment of the plant damage due to spider mite feeding are described. The presented protocol enables fast and efficient collection of hundreds of individuals at any developmental stage (eggs, larvae, nymphs, adult males, and females) that can be used for subsequent experimental application.

  14. Risk assessment of soil-pest damage to grain maize in Europe within the framework of Integrated Pest Management

    NARCIS (Netherlands)

    Furlan, Lorenzo; Vasileiadis, Vasileios P.; Chiarini, Francesca; Huiting, Hilfred; Leskovšek, Robert; Razinger, Jaka; Holb, Imre J.; Sartori, Erica; Urek, Gregor; Verschwele, Arnd

    2017-01-01

    The management of soil-pests relies largely on conventional insecticides. Within the framework of the EU's PURE project, data were collected to assess the risk of soil-pest damage to grain maize in Europe in order to implement Integrated Pest Management (IPM) of soil-pests in a more practical and

  15. Candidate Gene Identification of Flowering Time Genes in Cotton

    Directory of Open Access Journals (Sweden)

    Corrinne E. Grover

    2015-07-01

    Full Text Available Flowering time control is critically important to all sexually reproducing angiosperms in both natural ecological and agronomic settings. Accordingly, there is much interest in defining the genes involved in the complex flowering-time network and how these respond to natural and artificial selection, the latter often entailing transitions in day-length responses. Here we describe a candidate gene analysis in the cotton genus , which uses homologs from the well-described flowering network to bioinformatically and phylogenetically identify orthologs in the published genome sequence from Ulbr., one of the two model diploid progenitors of the commercially important allopolyploid cottons, L. and L. Presence and patterns of expression were evaluated from 13 aboveground tissues related to flowering for each of the candidate genes using allopolyploid as a model. Furthermore, we use a comparative context to determine copy number variability of each key gene family across 10 published angiosperm genomes. Data suggest a pattern of repeated loss of duplicates following ancient whole-genome doubling events in diverse lineages. The data presented here provide a foundation for understanding both the parallel evolution of day-length neutrality in domesticated cottons and the flowering-time network, in general, in this important crop plant.

  16. Drivers of adoption of safety innovations on Australian cotton farms.

    Science.gov (United States)

    Fragar, L; Temperley, J

    2011-07-01

    The Australian cotton industry has been a leader in the adoption of farm health and safety approaches in the Australian agricultural sector. In order to analyze factors associated with occupational health and safety performance, a review of available information and key stakeholder interviews were conducted A recently defined model for adoption of farm safety, emphasizing individual behavioral, environmental, community, and governmental factors, was used as the framework for the assessment. This hazard-based examination of changes describes improvements that have positively impacted health and safety. Improvements include: reduction in vehicle and on-farm traffic systems, safer irrigation systems, changes in cultivation technology, changes in pesticides and application technology, changes in harvest technology, adoption of gene technology, adoption of occupational health and safety (OHS) management systems, and government regulation. The introduction of genetically modified cotton has directly reduced potential exposure to pesticides, and it has indirectly impacted safety by, for example, reducing traffic flow on farms. This study demonstrates the considerable innovation and positive safety enhancements across the Australian cotton industry with respect to the interaction of management and production systems. These lessons should be used develop effective interventions in other agricultural industries.

  17. Spectroscopic discernment of seed cotton trash

    Science.gov (United States)

    Detection and identification of foreign material in harvested seed cotton is required for efficient removal by ginning. Trash particles remaining within the cotton fibers can detrimentally impact the quality of resulting textile products. Luminescence has been investigated as a potential tool for su...

  18. Antibacterial flame retardant cotton high loft nonwovens

    Science.gov (United States)

    Renewable resources for raw materials and biodegradability of the product at the end of the useful life is entailing a shift from petroleum-based synthetics to agro based natural fibers such as cotton, especially for producing high specific volume high loft nonwovens. Cotton is highly flammable and ...

  19. Flame retardant cotton based highloft nonwovens

    Science.gov (United States)

    Flame retardancy has been a serious bottleneck to develop cotton blended very high specific volume bulky High loft fabrics. Alternately, newer approach to produce flame retardant cotton blended High loft fabrics must be employed that retain soft feel characteristics desirable of furnishings. Hence, ...

  20. Superamphiphobic cotton fabrics with enhanced stability

    Science.gov (United States)

    Xu, Bi; Ding, Yinyan; Qu, Shaobo; Cai, Zaisheng

    2015-11-01

    Superamphiphobic cotton fabrics were prepared by alternately depositing organically modified silica alcogel (ormosil) particles onto chitosan precoated cotton fabrics and subsequent 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS) modification. Transmission electron microscopy and scanning electron microscopy images reveal that the ormosil particles display a fluffy, sponge-like nanoporous structure, and the entire cotton fiber surface is covered with highly porous networks. PFOTMS acts as not only a modifier to lower the surface energy of the cotton fabric but also a binder to enhance the coating stability against abrasion and washing. The treated cotton fabrics show highly liquid repellency with the water, cooking oil and hexadecane contact angels reaching to 164.4°, 160.1° and 156.3°, respectively. Meanwhile, the treated cotton fabrics exhibit good abrasion resistance and high laundering durability, which can withstand 10,000 cycles of abrasion and 30 cycles of machine wash without apparently changing the superamphiphobicity. The superamphiphobic cotton fabric also shows high acid stability, and can withstand 98% H2SO4. Moreover, the superamphiphobic coating has almost no influence on the other physical properties of the cotton fabrics including tensile strength, whiteness and air permeability. This durable non-wetting surface may provide a wide range of new applications in the future.

  1. Australia: round module handling and cotton classing

    Science.gov (United States)

    Round modules of seed cotton produced via on-board module building harvesters are the reality of the cotton industry, worldwide. Although round modules have been available to the industry for almost a decade, there is still no consensus on the best method to handle the modules, particularly when th...

  2. Resistance and tolerance to nematodes in cotton

    Science.gov (United States)

    Meloidogyne incognita is widely known as the southern root-knot nematode or the cotton root-knot nematode and Rotylenchulus reniformis is known as the reniform nematode. Most of the cotton-producing areas of the world are at risk form one or both of these nematode species. Although other nematodes a...

  3. 6-Benzyladenine enhancements of cotton yield

    Science.gov (United States)

    The influence of applied plant growth regulators (PGR) on growth, development and yield in cotton (Gossypium hirsutum L. and Gossypium barbadense L.) has been studied for over half a century. A recent study suggested that cytokinin treatment of young cotton seedlings may enhance overall performanc...

  4. Compressibility Characteristics of Compacted Black Cotton Soil ...

    African Journals Online (AJOL)

    One dimensional consolidation studies on compacted black cotton soil treated with up to 16% rice husk ash (RHA) at the British Standard light compactive effort was carried out to access the compressibility characteristics. The consolidation characteristics of black cotton soil containing 0, 4, 8, 12, and 16% RHA were ...

  5. Design of starch coated seed cotton dryers

    Science.gov (United States)

    A model was developed for the design and analysis of a high temperature tunnel dryer, primarily used with a new cotton ginning product, EASIflo ® cottonseed (starch-coated cottonseed). This form of cottonseed has emerged as a viable, value-added product for the cotton ginning industry. Currently, li...

  6. Chemical free cotton defoliation and dessication

    Science.gov (United States)

    Preliminary results are presented for new techniques to achieve chemical free means of cotton defoliation and desiccation. Report will cover test results, for several different methods, as tested on; greenhouse, outdoor grown potted plants, and field grown cotton plants, that were grown under commer...

  7. The U.S. Cotton Industry.

    Science.gov (United States)

    Starbird, Irving R.; And Others

    This report identifies and describes the structure and performance of the cotton industry, emphasizing the production and marketing of raw cotton. The underlying economic and political forces causing change in the various segments of the industry are also explored. The report provides a single source of economic and statistical information on…

  8. Caging antimicrobial silver nanoparticles inside cotton

    Science.gov (United States)

    In this study, a stable, non-leaching Ag-cotton nanocomposite fiber has been characterized. Siver nanoparticles (Ag NPs) were previously synthesized in the alkali-swollen substructure of cotton fiber; the nano-sized micofibrillar channels allowed diffusion-controlled conditions to produce mono-dispe...

  9. Future pest status of an insect pest in museums, Attagenus smirnovi

    DEFF Research Database (Denmark)

    Hansen, Lise Stengård; Åkerlund, Monika; Grøntoft, Terje

    2012-01-01

    The brown carpet beetle Attagenus smirnovi, Zhantiev 1973 (Coleoptera: Dermestidae) is an important pest of objects of organic origin in museums of cultural and natural history in Europe. Future climate changes are expected to lead to increasing temperatures, which will affect the pest status of ...

  10. a study on light trap catches of some rice pests in relation

    African Journals Online (AJOL)

    Preferred Customer

    case of Leptocoriza acuta Thunberg, no other factor but rainfall had positive correlation of order 0.857 with population build up in the fourth week of September. Key words/phrases: Meteorological factors, path analysis, regression analysis, rice insect pests. INTRODUCTION. Green leafhopper Nephotettix virescens Dist.

  11. Pan African Strategy for the Progressive Control of Peste des Petits ...

    African Journals Online (AJOL)

    ... will foster an adaptive management approach that integrates learning approaches to drive animal health institutional innovation. The coordinated drive towards long term animal health goals wil add value to on-going investments in infectious disease control. Keys words: Peste des petits ruminants, control strategy, Africa.

  12. Nonmarket economic values of forest insect pests: An updated literature review

    Science.gov (United States)

    Randall S. Rosenberger; Lauren A. Bell; Patricia A. Champ; Eric. L. Smith

    2012-01-01

    This report updates the literature review and synthesis of economic valuation studies on the impacts of forest insect pests by Rosenberger and Smith (1997). A conceptual framework is presented to establish context for the studies. This report also discusses the concept of ecosystem services; identifies key elements of each study; examines areas of future research; and...

  13. Conductive Cotton Filters for Affordable and Efficient Water Purification

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-09-01

    Full Text Available It is highly desirable to develop affordable, energy-saving, and highly-effective technologies to alleviate the current water crisis. In this work, we reported a low-cost electrochemical filtration device composing of a conductive cotton filter anode and a Ti foil cathode. The device was operated by gravity feed. The conductive cotton filter anodes were fabricated by a facile dying method to incorporate carbon nanotubes (CNTs as fillers. The CNTs could serve as adsorbents for pollutants adsorption, as electrocatalysts for pollutants electrooxidation, and as conductive additives to render the cotton filters highly conductive. Cellulose-based cotton could serve as low-cost support to ‘host’ these CNTs. Upon application of external potential, the developed filtration device could not only achieve physically adsorption of organic compounds, but also chemically oxide these compounds on site. Three model organic compounds were employed to evaluate the oxidative capability of the device, i.e., ferrocyanide (a model single-electron-transfer electron donor, methyl orange (MO, a common recalcitrant azo-dye found in aqueous environments, and antibiotic tetracycline (TC, a common antibiotic released from the wastewater treatment plants. The devices exhibited a maximum electrooxidation flux of 0.37 mol/h/m2 for 5.0 mmol/L ferrocyanide, of 0.26 mol/h/m2 for 0.06 mmol/L MO, and of 0.9 mol/h/m2 for 0.2 mmol/L TC under given experimental conditions. The effects of several key operational parameters (e.g., total cell potential, CNT amount, and compound concentration on the device performance were also studied. This study could shed some light on the good design of effective and affordable water purification devices for point-of-use applications.

  14. Metabolic engineering of gossypol in cotton.

    Science.gov (United States)

    Zhou, Meiliang; Zhang, Chengcheng; Wu, Yanmin; Tang, Yixiong

    2013-07-01

    Cotton has long been known as a fiber plant. Besides the cotton fiber, the cottonseed oil and cottonseed protein are two other major products of cotton plants. However, the applications of the cottonseed oil and protein are limited because of the presence of toxic gossypol, which is unsafe for human and monogastric animal consumption. Meanwhile, gossypol in cotton increases the plant defense response to insect herbivores and pathogens. Consequently, gossypol has been extensively used in clinical trials in biomedical science. Over the last few years, major advances have occurred in both understanding and practice with regard to molecular regulation of gossypol pathway in cotton plant or hairy root culture. This review highlights a few major recent and ongoing developments in metabolic engineering of gossypol, as well as suggestions regarding further advances needed.

  15. Genome wide identification of cotton (Gossypium hirsutum)-encoded microRNA targets against Cotton leaf curl Burewala virus.

    Science.gov (United States)

    Shweta; Akhter, Yusuf; Khan, Jawaid Ahmad

    2018-01-05

    Cotton leaf curl Burewala virus (CLCuBV, genus Begomovirus) causes devastating cotton leaf curl disease. Among various known virus controlling strategies, RNAi-mediated one has shown potential to protect host crop plants. Micro(mi) RNAs, are the endogenous small RNAs and play a key role in plant development and stress resistance. In the present study we have identified cotton (Gossypium hirsutum)-encoded miRNAs targeting the CLCuBV. Based on threshold free energy and maximum complementarity scores of host miRNA-viral mRNA target pairs, a number of potential miRNAs were annotated. Among them, ghr-miR168 was selected as the most potent candidate, capable of targeting several vital genes namely C1, C3, C4, V1 and V2 of CLCuBV genome. In addition, ghr-miR395a and ghr-miR395d were observed to target the overlapping transcripts of C1 and C4 genes. We have verified the efficacy of these miRNA targets against CLCuBV following suppression of RNAi-mediated virus control through translational inhibition or cleavage of viral mRNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Superamphiphobic cotton fabrics with enhanced stability

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bi, E-mail: xubi@dhu.edu.cn [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620 (China); Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Ding, Yinyan; Qu, Shaobo [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Cai, Zaisheng, E-mail: zshcai@dhu.edu [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-11-30

    Highlights: • Superamphiphobic cotton fabrics were prepared. • Water and hexadecane contact angels reach to 164.4° and 156.3°, respectively. • Nanoporous organically modified silica alcogel particles were synthesized. • The superamphiphobic cotton fabrics exhibit enhanced stability against abrasion, laundering and acid. - Abstract: Superamphiphobic cotton fabrics were prepared by alternately depositing organically modified silica alcogel (ormosil) particles onto chitosan precoated cotton fabrics and subsequent 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTMS) modification. Transmission electron microscopy and scanning electron microscopy images reveal that the ormosil particles display a fluffy, sponge-like nanoporous structure, and the entire cotton fiber surface is covered with highly porous networks. PFOTMS acts as not only a modifier to lower the surface energy of the cotton fabric but also a binder to enhance the coating stability against abrasion and washing. The treated cotton fabrics show highly liquid repellency with the water, cooking oil and hexadecane contact angels reaching to 164.4°, 160.1° and 156.3°, respectively. Meanwhile, the treated cotton fabrics exhibit good abrasion resistance and high laundering durability, which can withstand 10,000 cycles of abrasion and 30 cycles of machine wash without apparently changing the superamphiphobicity. The superamphiphobic cotton fabric also shows high acid stability, and can withstand 98% H{sub 2}SO{sub 4}. Moreover, the superamphiphobic coating has almost no influence on the other physical properties of the cotton fabrics including tensile strength, whiteness and air permeability. This durable non-wetting surface may provide a wide range of new applications in the future.

  17. SHEDDING OF FRUITING STRUCTURES IN COTTON: FACTORS, COMPENSATION AND PREVENTION

    Directory of Open Access Journals (Sweden)

    Muhammad Tariq

    2017-08-01

    Full Text Available The fruiting potential of advanced cotton cultivars is not a limiting factor for achieving yield targets but retention of squares and flowers for successful maturation into bolls is major challenge. In this article, we focused on why shedding occurs, its mechanism, yield losses, plant self-compensation, effects on plant growth and possible management to ameliorate its adverse effects. We concluded that it is quite unfair to blame single factor, instead it is an integrated effect of plant and stress factors i.e., high temperature, drought, thick plant stand, insects and diseases etc. contribute to accelerate shedding which ranges about 40-50%. The stresses induce the excessive production of degrading enzymes like pectinase, cellulose and hydrolase, while ethylene and abscisic acid is produced excessively to hasten the degradation process for shedding. The physiological disturbance contributes 7-35 and 42-64% abscission of unopened flowers and bolls, respectively. The square and flower are more frequent to shedding at high temperature compared to immature bolls. The flowers and boll shedding up to 30% is tolerable limit because cotton can recover yield provided weather support the crop later in season. The self-regulated abscission of floral parts is not easy to control under field conditions, however, the adverse effects of stress mediated shedding can be ameliorated with girdling and avoiding pest and stressful conditions, application of plant growth regulator (PGR to control vegetative growth  and abscisic acid (abscission promoter and ethylene inhibitors like naphthalene acetic acid, silver thiosulfate and 1-methylcyclopropene.

  18. Use of cotton gin trash and compatibilizers in polyethylene composites

    Science.gov (United States)

    The ginning of cotton produces 15-42% of foreign materials, called “cotton gin trash”, including cotton burr, stems, leaf fragment, and dirt. In this work we examined the mechanical properties of composites of low density polyethylene (LDPE) and cotton burr. The burr was ground into powder, and se...

  19. Role of secondary metabolites biosynthesis in resistance to cotton ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... Disease percentage on six cotton varieties with respect to time for cotton leaf curl virus (CLCuV) was evaluated. In August 2007 ... cotton leaf curl virus disease causes 30% losses due to the cotton leaf curl disease ..... (148): 2341-2352. Ahamad G, Malik SA Mahmood Z, Iqbal MZ, Ahamad S (2002). Effect.

  20. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    Three transgenic cotton varieties (lines) were chosen for the study of inheritance and segregation of foreign Bt (Bacillus thuringiensis toxin) and tfdA genes in cotton. The transformed cotton varieties CCRI 30 and NewCott 33B expressing the Bt cryIA gene, and cotton line TFD expressing the tfdA gene were crossed with ...

  1. 7 CFR 27.24 - Delivery of samples of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Delivery of samples of cotton. 27.24 Section 27.24... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.24 Delivery of samples of cotton. The original sample from each bale to be classified shall be delivered to...

  2. Inheritance and segregation of exogenous genes in transgenic cotton

    Indian Academy of Sciences (India)

    Three transgenic cotton varieties (lines) were chosen for the study of inheritance and segregation of foreign Bt (Bacillus thuringiensis toxin) and tfdA genes in cotton. The transformed cotton varieties CCRI 30 and NewCott 33B expressing the Bt. cryIA gene, and cotton line TFD expressing the tfdA gene were crossed with ...

  3. 7 CFR 1427.101 - Eligible upland cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Eligible upland cotton. 1427.101 Section 1427.101... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Economic Adjustment Assistance to Users of Upland Cotton § 1427.101 Eligible upland cotton. (a) For purposes of this subpart, eligible upland...

  4. 7 CFR 27.31 - Classification of Cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of Cotton. 27.31 Section 27.31... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Classification and Micronaire Determinations § 27.31 Classification of Cotton. For the purposes of subsection 15b (f) of the Act...

  5. Increasing cotton stand establishment in soils prone to soil crusting

    Science.gov (United States)

    Many factors can contribute to poor cotton stand establishment, and cotton is notorious for its weak seedling vigor. Soil crusting can be a major factor hindering cotton seedling emergence in many of the cotton production regions of the US and the world. Crusting is mainly an issue in silty soils ...

  6. 7 CFR 27.25 - Additional samples of cotton; drawing.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Additional samples of cotton; drawing. 27.25 Section... CONTAINER REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.25 Additional samples of cotton; drawing. In addition to the samples hereinbefore prescribed...

  7. (Pleurotus pulmonarius) grown on cotton waste and cassava peel

    African Journals Online (AJOL)

    This work evaluated the yield of Pleurotus pulmonarius on different mixtures of cotton waste and cassava peel. P. pulmonarius demonstrated significantly higher colonization rate on cotton waste substrate (100 g cotton waste) 3 weeks after inoculation of spawn than any other substrate mixtures. Cotton waste had the ...

  8. 7 CFR 28.160 - Cotton examiners on foreign exchanges.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Cotton examiners on foreign exchanges. 28.160 Section... CONTAINER REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Regulations Under the United States Cotton Standards Act Adjustment of Contract Disputes § 28.160 Cotton examiners on foreign exchanges. Whenever any...

  9. 7 CFR 1427.1203 - Eligible ELS cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Eligible ELS cotton. 1427.1203 Section 1427.1203... OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Extra Long Staple (ELS) Cotton Competitiveness Payment Program § 1427.1203 Eligible ELS cotton. (a) For the purposes of this subpart, eligible...

  10. 7 CFR 27.21 - Preparation of samples of cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Preparation of samples of cotton. 27.21 Section 27.21... REGULATIONS COTTON CLASSIFICATION UNDER COTTON FUTURES LEGISLATION Regulations Inspection and Samples § 27.21 Preparation of samples of cotton. The samples from each bale shall be prepared as specified in this section...

  11. Biological Importance of Cotton By-Products Relative to Chemical Constituents of the Cotton Plant

    Directory of Open Access Journals (Sweden)

    Mary A. Egbuta

    2017-01-01

    Full Text Available Although cultivated for over 7000 years, mainly for production of cotton fibre, the cotton plant has not been fully explored for potential uses of its other parts. Despite cotton containing many important chemical compounds, limited understanding of its phytochemical composition still exists. In order to add value to waste products of the cotton industry, such as cotton gin trash, this review focuses on phytochemicals associated with different parts of cotton plants and their biological activities. Three major classes of compounds and some primary metabolites have been previously identified in the plant. Among these compounds, most terpenoids and their derivatives (51, fatty acids (four, and phenolics (six, were found in the leaves, bolls, stalks, and stems. Biological activities, such as anti-microbial and anti-inflammatory activities, are associated with some of these phytochemicals. For example, β-bisabolol, a sesquiterpenoid enriched in the flowers of cotton plants, may have anti-inflammatory product application. Considering the abundance of biologically active compounds in the cotton plant, there is scope to develop a novel process within the current cotton fibre production system to separate these valuable phytochemicals, developing them into potentially high-value products. This scenario may present the cotton processing industry with an innovative pathway towards a waste-to-profit solution.

  12. Biological Importance of Cotton By-Products Relative to Chemical Constituents of the Cotton Plant.

    Science.gov (United States)

    Egbuta, Mary A; McIntosh, Shane; Waters, Daniel L E; Vancov, Tony; Liu, Lei

    2017-01-06

    Although cultivated for over 7000 years, mainly for production of cotton fibre, the cotton plant has not been fully explored for potential uses of its other parts. Despite cotton containing many important chemical compounds, limited understanding of its phytochemical composition still exists. In order to add value to waste products of the cotton industry, such as cotton gin trash, this review focuses on phytochemicals associated with different parts of cotton plants and their biological activities. Three major classes of compounds and some primary metabolites have been previously identified in the plant. Among these compounds, most terpenoids and their derivatives (51), fatty acids (four), and phenolics (six), were found in the leaves, bolls, stalks, and stems. Biological activities, such as anti-microbial and anti-inflammatory activities, are associated with some of these phytochemicals. For example, β-bisabolol, a sesquiterpenoid enriched in the flowers of cotton plants, may have anti-inflammatory product application. Considering the abundance of biologically active compounds in the cotton plant, there is scope to develop a novel process within the current cotton fibre production system to separate these valuable phytochemicals, developing them into potentially high-value products. This scenario may present the cotton processing industry with an innovative pathway towards a waste-to-profit solution.

  13. Fitness cost of resistance to Bt cotton linked with increased gossypol content in pink bollworm larvae.

    Directory of Open Access Journals (Sweden)

    Jennifer L Williams

    Full Text Available Fitness costs of resistance to Bacillus thuringiensis (Bt crops occur in the absence of Bt toxins, when individuals with resistance alleles are less fit than individuals without resistance alleles. As costs of Bt resistance are common, refuges of non-Bt host plants can delay resistance not only by providing susceptible individuals to mate with resistant individuals, but also by selecting against resistance. Because costs typically vary across host plants, refuges with host plants that magnify costs or make them less recessive could enhance resistance management. Limited understanding of the physiological mechanisms causing fitness costs, however, hampers attempts to increase costs. In several major cotton pests including pink bollworm (Pectinophora gossypiella, resistance to Cry1Ac cotton is associated with mutations altering cadherin proteins that bind this toxin in susceptible larvae. Here we report that the concentration of gossypol, a cotton defensive chemical, was higher in pink bollworm larvae with cadherin resistance alleles than in larvae lacking such alleles. Adding gossypol to the larval diet decreased larval weight and survival, and increased the fitness cost affecting larval growth, but not survival. Across cadherin genotypes, the cost affecting larval growth increased as the gossypol concentration of larvae increased. These results suggest that increased accumulation of plant defensive chemicals may contribute to fitness costs associated with resistance to Bt toxins.

  14. Effects of Different Packing Materials on Cotton Fires

    Science.gov (United States)

    Zhou, Yanzhao; Liu, Wanfu; Ni, Zhaopeng; Wang, Lu; Gao, Bo

    2017-12-01

    The aim of this study is to investigate the effects of different packing materials on cotton fires. After the cotton bale is ignited, the caving area, the mass loss rate and the temperature variation of cotton bales were measured. Through the experiment, it was found that Cotton bale packed with Plastic belt has the phenomenon of collapse, but the cotton bale packed with Steel ribbon does not happen to collapse. The mass loss rate of the Cotton bale packed with Plastic belt is faster than that of the cotton bale packed with Steel ribbon, and the temperature is higher.

  15. Managing for soil health can suppress pests

    Directory of Open Access Journals (Sweden)

    Amanda Hodson

    2016-08-01

    Full Text Available A “healthy” soil can be thought of as one that functions well, both agronomically and ecologically, and one in which soil biodiversity and crop management work in synergy to suppress pests and diseases. UC researchers have pioneered many ways of managing soil biology for pest management, including strategies such as soil solarization, steam treatment and anaerobic soil disinfestation, as well as improvements on traditional methods, such as reducing tillage, amending soil with organic materials, and cover cropping. As managing for soil health becomes more of an explicit focus due to restrictions on the use of soil fumigants, integrated soil health tests will be needed that are validated for use in California. Other research needs include breeding crops for disease resistance and pest suppressive microbial communities as well as knowledge of how beneficial organisms influence plant health.

  16. Pest repellent properties of ant pheromones

    DEFF Research Database (Denmark)

    Offenberg, Joachim

    2012-01-01

    of ant pheromones may be sufficient to repel pest insects from ant territories. The study of ant semiochemicals is in its infancy, yet, evidence for their potential use in pest management is starting to build up. Pheromones from four of five tested ant species have been shown to deter herbivorous insect...... ant species (iii) Azteca instabilis and (iv) Camponotus textor reduce herbivory by flea beetles (Margaridisa sp.), whereas (v) deposits from Solenopsis geminata, did not lead to reduced herbivory. Further evidence for the impact of ant pheromones comes from studies showing that non-herbivorous ant...... prey and competing ant species are also deterred by ant deposits, whereas ant symbionts may be attracted to them. Based on these promising initial findings, it seems advisable to further elucidate the signaling properties of ant pheromones and to test and develop their use in future pest management....

  17. Separation and recycling of cotton from cotton/PET blends by depolymerization of PET catalyzed by bases and ionic liquids

    NARCIS (Netherlands)

    Bouwhuis, G.H. (Gerrit); Brinks, G.J. (Ger); Groeneveld, R.A.J. (Richard); Oelerich, J. (Jens)

    2014-01-01

    The recycling of post consumer cotton textile waste is highly requested, due to the high environmental impact of cotton production. Often cotton is mixed in blends with polyethylene terephthalate (PET). For the generation of high value products from recycled cotton, it essential that PET is

  18. A Comparative Analysis of Production and Marketing of Bt Cotton and Hybrid Cotton in Saurashtra Region of Gujarat State

    OpenAIRE

    Visawadia, H.R.; Fadadu, A.M.; Tarpara, V.D.

    2006-01-01

    The study has revealed that the total cost per hectare is higher in Bt cotton than hybrid cotton. The cost of seeds has been found higher in Bt cotton, whereas hybrid cotton growers incur more cost on insecticides/ pesticides. This shows the effectiveness of the new technology (Bt cotton) for insect resistance. The average total cost of production as well as the bulk line cost have been found lower in Bt cotton. This depicts a reduction in the unit cost of Bt cotton, which is the distinct adv...

  19. The need to implement the landscape of fear within rodent pest management strategies.

    Science.gov (United States)

    Krijger, Inge M; Belmain, Steven R; Singleton, Grant R; Groot Koerkamp, Peter Wg; Meerburg, Bastiaan G

    2017-12-01

    Current reactive pest management methods have serious drawbacks such as the heavy reliance on chemicals, emerging genetic rodenticide resistance and high secondary exposure risks. Rodent control needs to be based on pest species ecology and ethology to facilitate the development of ecologically based rodent management (EBRM). An important aspect of EBRM is a strong understanding of rodent pest species ecology, behaviour and spatiotemporal factors. Gaining insight into the behaviour of pest species is a key aspect of EBRM. The landscape of fear (LOF) is a mapping of the spatial variation in the foraging cost arising from the risk of predation, and reflects the levels of fear a prey species perceives at different locations within its home range. In practice, the LOF maps habitat use as a result of perceived fear, which shows where bait or traps are most likely to be encountered and used by rodents. Several studies have linked perceived predation risk of foraging animals with quitting-harvest rates or giving-up densities (GUDs). GUDs have been used to reflect foraging behaviour strategies of predator avoidance, but to our knowledge very few papers have directly used GUDs in relation to pest management strategies. An opportunity for rodent control strategies lies in the integration of the LOF of rodents in EBRM methodologies. Rodent management could be more efficient and effective by concentrating on those areas where rodents perceive the least levels of predation risk. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  20. Pest management through Bacillus thuringiensis (Bt) in a tea-silkworm ecosystem: status and potential prospects.

    Science.gov (United States)

    Dashora, Kavya; Roy, Somnath; Nagpal, Akanksha; Roy, Sudipta Mukhopadhyay; Flood, Julie; Prasad, Anjali Km; Khetarpal, Ravinder; Neave, Suzanne; Muraleedharan, N

    2017-03-01

    Bacillus thuringiensis (Bt) is a soil bacterium that forms spores containing crystals comprising one or more Cry or Cyt proteins having potential and specific insecticidal activity. Different strains of Bt produce different types of toxins, affecting a narrow taxonomic group of insects. Therefore, it is used in non-chemical pest management, including inherent pest resistance through GM crops. The specificity of action of Bt toxins reduces the concern of adverse effects on non-target species, a concern which remains with chemical insecticides as well. To make use of Bt more sustainable, new strains expressing novel toxins are actively being sought globally. Since Bt is successfully used against many pests including the lepidopteran pests in different crop groups, the insecticidal activity against Samia cynthia (Drury) (Eri silkworm) and Antheraea assamensis Helfer (Muga silkworm) becomes a concern in the state of Assam in India which is a predominantly tea- and silk-producing zone. Though Bt can be used as an effective non-chemical approach for pest management for tea pests in the same geographical region, yet, it may potentially affect the silk industry which depends on silkworm. There is a need to identify the potentially lethal impact (through evaluating their mortality potential) of local Bt strains on key silkworm species in North Eastern India. This will allow the use of existing Bt for which the silkworms have natural resistance. Through this review, the authors aim to highlight recent progress in the use of Bt and its insecticidal toxins in tea pest control and the potential sensitivity for tea- and silk-producing zone of Assam in India.

  1. High Concentrations of Chlorantraniliprole Reduce Its Compatibility with a Key Predator, Hippodamia convergens (Coleoptera: Coccinellidae).

    Science.gov (United States)

    Barbosa, P R R; Torres, J B; Michaud, J P; Rodrigues, A R S

    2017-10-01

    Diamides are a novel insecticide group that act by disrupting insect muscle contraction. Recommended field rates (FRs) vary greatly among target pests and cropping systems, leading to variable risks for non-target organisms. We evaluated the toxicity of chlorantraniliprole to the predator Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) by exposure to residues, topical application, and consumption of contaminated food. We also estimated lethal concentrations (LCs) of chlorantraniliprole in two target pests, cotton leafworm, Alabama argillacea (Hübner) (Lepidoptera: Erebidae), and tobacco budworm, Chloridea virescens (F.) (Lepidoptera: Noctuidae), by exposing larvae to treated cotton, Gossypium hirsutum L., leaves and assessed residual activity at various intervals after application to cotton plants. Exposure to dried residues and ingestion of treated moth eggs resulted in similar toxicity to H. convergens, whereas topical application was a less toxic route of exposure. Regardless of exposure route, the LC50s and LC90s obtained for H. convergens were higher than those calculated for the pests. Residues at the upper limit of the LC90 for C. virescens remained effective against this pest for up to 16 d, while exhibiting minor impacts on H. convergens. In contrast, the FR concentration of C. virescens caused significant mortality in H. convergens. The results suggest that the current FR for C. virescens is too high to be safe for H. convergens, and given the LCs observed for this pest in the present study, trials to explore the potential efficacy of lower FRs are justified. Depending on the concentration and route of exposure, this insecticide has the potential to be compatible with H. convergens. © The Author 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Dusky Cotton Bug Oxycarenus spp. (Hemiptera: Lygaeidae: Hibernating Sites and Management by using Plant Extracts under Laboratory Conditions

    Directory of Open Access Journals (Sweden)

    Abbas Muneer

    2015-09-01

    Full Text Available The dusky cotton bug, Oxycarenus spp., has now attained the status of a major pest of cotton crops that affects lint as well as the seed quality of cotton. Surveys were conducted to explore the hibernating sites in the districts Faisalabad, Multan and Bahawalpur. The efficacies of six different plant extracts, i.e. Neem (Azadirachta indica, Milkweed (Calotropis procera, Moringa (Moringa oleifera, Citrus (Citrus sinensis, Tobacco (Nicotiana tobacum and Castor (Ricinus communis were tested by using three different concentrations of each plant extract, i.e. 5, 2.5 and 1.5% under laboratory conditions at 25±2°C and 70±5% RH. The data were recorded 24, 48, 72 and 96 hours after treatment application. However, Psidium guajava, Azadirachta indica, Eucalyptus camaldulensis and Mangifera indica were graded as host plants heavily infested by Oxycarenus spp. Results (α≤0.05 indicated that increasing the concentration of extracts also increased the mortality. Nicotiana tobacum and Calotropis procera respectively displayed maximum 72 and 71, 84 and 80, 97 and 89% mortality at all concentrations, i.e. 1.25, 2.50 and 5.00%, after 96 hours of application. Two concentrations (2.5 and 5% are the most suitable for obtaining significant control of the dusky cotton bug.

  3. Detoxifying enzyme studies on cotton leafhopper, Amrasca biguttula biguttula (Ishida, resistance to neonicotinoid insecticides in field populations in Karnataka, India

    Directory of Open Access Journals (Sweden)

    Halappa Banakar

    2016-12-01

    Full Text Available The cotton leafhopper (Amrasca biguttula biguttula Ishida is considered to be an alarming insect pest causing both quantitative and qualitative loss in cotton. In situ bioassay studies were done and the role of detoxifying enzymes in conferring resistance to neonicotinoid groups of insecticides in low (MUD, medium (DVG, high (HVR and very high (GLB pesticide usage areas of Karnataka were determined. Bioassay studies showed that imidacloprid, thiamethoxam, acetamiprid, thiacloprid and clothianidin registered varying levels of resistance for all the locations studied. The resistance ratio was high in imidacloprid (3.35, 8.57, 9.15 and 12.27 fold respectively and the lowest in dinoferuran (1.86, 5.13, 6.71 and 9.88 fold respectively. Furthermore, the enzyme activity ratio (glutathione-S-transferase was relatively greater, and corresponded to the higher LC50 values of neonicotinoids for very high, high, medium and low pesticide usage areas. Our study suggested that the higher activity of the detoxifying enzyme in the resistance population of cotton leafhopper apparently has a significant role in endowing resistance to neonicotinoid groups of insecticides. However, this study recommends using neonicotinoids in cotton growing areas with caution.

  4. Stylet Penetration Estimates for a Suite of Phytophagous Hemipteran Pests of Row Crops.

    Science.gov (United States)

    Esquivel, J F

    2015-06-01

    Members of the Miridae (Lygus lineolaris Palisot de Beauvois and Pseudatomoscelis seriatus Reuter) and Pentatomidae (Acrosternum hilare Say, Euschistus servus (Say), Euschistus tristigmus (Say), Euschistus quadrator Rolston, Oebalus pugnax (F.), Piezodorus guildinii (Westwood), and Thyanta custator accerra McAtee) comprise a piercing-sucking insect complex that continues to plague multiple crops, including cotton. All these species have been associated with pathogen transmission. Breaching of boll carpel walls facilitates introduction of pathogens, and it is unknown whether stylets of these pests can fully penetrate carpel walls. Thus, stylet penetration estimates are needed and have been the focus of the present work. Stylet penetration estimates for L. lineolaris were significantly deeper than P. seriatus. Among the Pentatomidae, highest mean penetration was estimated for E. servus followed by A. hilare, yet A. hilare possessed a longer rostrum. Similarly, O. pugnax showed deeper penetration estimates than P. guildinii yet P. guildinii possessed a longer rostrum. Thus, rostrum length should not be equated to penetration potential. Pseudatomoscelis seriatus and L. lineolaris both infest early-season cotton, and the ranges of observed penetration indicate these insects, as well as the Pentatomidae, can breach the walls of critical pinhead squares and smaller bolls. The insects addressed herein affect a myriad of crops globally, and penetration estimates allow identification of growth stages susceptible to feeding and disease transmission. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by a US Government employee and is in the public domain in the US.

  5. Economic value of biological control in integrated pest management of managed plant systems.

    Science.gov (United States)

    Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B

    2015-01-07

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.

  6. Time Delayed Stage-Structured Predator-Prey Model with Birth Pulse and Pest Control Tactics

    Directory of Open Access Journals (Sweden)

    Mei Yan

    2014-01-01

    Full Text Available Normally, chemical pesticides kill not only pests but also their natural enemies. In order to better control the pests, two-time delayed stage-structured predator-prey models with birth pulse and pest control tactics are proposed and analyzed by using impulsive differential equations in present work. The stability threshold conditions for the mature prey-eradication periodic solutions of two models are derived, respectively. The effects of key parameters including killing efficiency rate, pulse period, the maximum birth effort per unit of time of natural enemy, and maturation time of prey on the threshold values are discussed in more detail. By comparing the two threshold values of mature prey-extinction, we provide the fact that the second control tactic is more effective than the first control method.

  7. Assessing climate change impacts on fruit plant and pest phenology and their synchrony: the case of apple and codling moth

    Science.gov (United States)

    Felber, Raphael; Stöckli, Sibylle; Calanca, Pierluigi

    2017-04-01

    Temperature is a main climatic driver of plant phenology and the dominant abiotic factor directly affecting insect pests. Global warming is therefore expected to accelerate the development of plants and insects. Moreover, in the case of multivoltine pest species higher temperatures are expected to lead to the appearance of additional generations toward the end of the warm season. These changes could entail higher pest pressure and hence require an adaptation of pest management, but ultimately this would depend on whether plant and pest phenology remain synchronized or not. In this contribution we present an analysis of potential impacts of climate change on the phenology of the apple tree (Malus pumila L.), a fruit crop of economic relevance worldwide, and the codling moth (Cydia pomonella L.), one of its main pests. Key developmental stages of the apple and the codling moth were simulated by means of two heat summation models. The models were calibrated with lab and field data from Switzerland and subsequently run with observed weather data and various climate change scenarios. The time period between flowering termination and the harvest of the apples was compared to the appearance of the second and third generation of codling moth larvae to study the interlinkage between host and pest. To illustrate the potential for practical applications of the phenology models, we used spatial temperature data of Switzerland to produce risk maps that can serve as a basis for further studies and decision support.

  8. Proteomic and Virus-induced Gene Silencing (VIGS) Analyses Reveal That Gossypol, Brassinosteroids, and Jasmonic acid Contribute to the Resistance of Cotton to Verticillium dahliae *

    Science.gov (United States)

    Gao, Wei; Long, Lu; Zhu, Long-Fu; Xu, Li; Gao, Wen-Hui; Sun, Long-Qing; Liu, Lin-Lin; Zhang, Xian-Long

    2013-01-01

    Verticillium wilt causes massive annual losses of cotton yield, but the mechanism of cotton resistance to Verticillium dahliae is complex and poorly understood. In this study, a comparative proteomic analysis was performed in resistant cotton (Gossypium barbadense cv7124) on infection with V. dahliae. A total of 188 differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) analysis and could be classified into 17 biological processes based on Gene Ontology annotation. Most of these proteins were implicated in stimulus response, cellular processes and metabolic processes. Based on the proteomic analysis, several genes involved in secondary metabolism, reactive oxygen burst and phytohormone signaling pathways were identified for further physiological and molecular analysis. The roles of the corresponding genes were further characterized by employing virus-induced gene silencing (VIGS). Based on the results, we suggest that the production of gossypol is sufficient to affect the cotton resistance to V. dahliae. Silencing of GbCAD1, a key enzyme involving in gossypol biosynthesis, compromised cotton resistance to V. dahliae. Reactive oxygen species and salicylic acid signaling may be also implicated as regulators in cotton responsive to V. dahliae according to the analysis of GbSSI2, an important regulator in the crosstalk between salicylic acid and jasmonic acid signal pathways. Moreover, brassinosteroids and jasmonic acid signaling may play essential roles in the cotton disease resistance to V. dahliae. The brassinosteroids signaling was activated in cotton on inoculation with V. dahliae and the disease resistance of cotton was enhanced after exogenous application of brassinolide. Meanwhile, jasmonic acid signaling was also activated in cotton after inoculation with V. dahliae and brassinolide application. These data provide highlights in the molecular basis of cotton resistance to V. dahliae. PMID:24019146

  9. Proteomic and virus-induced gene silencing (VIGS) Analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae.

    Science.gov (United States)

    Gao, Wei; Long, Lu; Zhu, Long-Fu; Xu, Li; Gao, Wen-Hui; Sun, Long-Qing; Liu, Lin-Lin; Zhang, Xian-Long

    2013-12-01

    Verticillium wilt causes massive annual losses of cotton yield, but the mechanism of cotton resistance to Verticillium dahliae is complex and poorly understood. In this study, a comparative proteomic analysis was performed in resistant cotton (Gossypium barbadense cv7124) on infection with V. dahliae. A total of 188 differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) analysis and could be classified into 17 biological processes based on Gene Ontology annotation. Most of these proteins were implicated in stimulus response, cellular processes and metabolic processes. Based on the proteomic analysis, several genes involved in secondary metabolism, reactive oxygen burst and phytohormone signaling pathways were identified for further physiological and molecular analysis. The roles of the corresponding genes were further characterized by employing virus-induced gene silencing (VIGS). Based on the results, we suggest that the production of gossypol is sufficient to affect the cotton resistance to V. dahliae. Silencing of GbCAD1, a key enzyme involving in gossypol biosynthesis, compromised cotton resistance to V. dahliae. Reactive oxygen species and salicylic acid signaling may be also implicated as regulators in cotton responsive to V. dahliae according to the analysis of GbSSI2, an important regulator in the crosstalk between salicylic acid and jasmonic acid signal pathways. Moreover, brassinosteroids and jasmonic acid signaling may play essential roles in the cotton disease resistance to V. dahliae. The brassinosteroids signaling was activated in cotton on inoculation with V. dahliae and the disease resistance of cotton was enhanced after exogenous application of brassinolide. Meanwhile, jasmonic acid signaling was also activated in cotton after inoculation with V. dahliae and brassinolide application. These data provide highlights in the molecular basis of cotton resistance to V. dahliae.

  10. Estimating genetic diversity among selected cotton genotypes and the identificationof DNA markers associated with resistance to cotton leaf curl disease

    OpenAIRE

    ABBAS, AMMAD; Iqbal, Muhammad Atif; RAHMAN, MEHBOOB-UR; Paterson, Andrew H.

    2015-01-01

    To the extent of our knowledge, applications of DNA markers in marker-assisted breeding of cotton are handicapped due to low genetic diversity in cotton germplasm. Cotton leaf curl disease, a disease of viral origin, has substantially depressed cotton production in Pakistan, and this disease is also an emerging threat to the neighboring cotton-growing countries like China and India. The present study was designed to identify DNA markers, predominately simple sequence repeats (SSRs), associate...

  11. The interaction of two-spotted spider mites, Tetranychus urticae Koch, with Cry protein production and predation by Amblyseius andersoni (Chant) in Cry1Ac/Cry2Ab cotton and Cry1F maize.

    Science.gov (United States)

    Guo, Yan-Yan; Tian, Jun-Ce; Shi, Wang-Peng; Dong, Xue-Hui; Romeis, Jörg; Naranjo, Steven E; Hellmich, Richard L; Shelton, Anthony M

    2016-02-01

    Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control services, are required to be addressed in an environmental risk assessment. Amblyseius andersoni (Acari: Phytoseiidae) is a cosmopolitan predator of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), a significant pest of cotton and maize. Tri-trophic studies were conducted to assess the potential effects of Cry1Ac/Cry2Ab cotton and Cry1F maize on life history parameters (survival rate, development time, fecundity and egg hatching rate) of A. andersoni. We confirmed that these Bt crops have no effects on the biology of T. urticae and, in turn, that there were no differences in any of the life history parameters of A. andersoni when it fed on T. urticae feeding on Cry1Ac/Cry2Ab or non-Bt cotton and Cry1F or non-Bt maize. Use of a susceptible insect assay demonstrated that T. urticae contained biologically active Cry proteins. Cry proteins concentrations declined greatly as they moved from plants to herbivores to predators and protein concentration did not appear to be related to mite density. Free-choice experiments revealed that A. andersoni had no preference for Cry1Ac/Cry2Ab cotton or Cry1F maize-reared T. urticae compared with those reared on non-Bt cotton or maize. Collectively these results provide strong evidence that these crops can complement other integrated pest management tactics including biological control.

  12. Non-recessive Bt toxin resistance conferred by an intracellular cadherin mutation in field-selected populations of cotton bollworm.

    Directory of Open Access Journals (Sweden)

    Haonan Zhang

    Full Text Available Transgenic crops producing Bacillus thuringiensis (Bt toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepidopteran pests, including the cotton bollworm, Helicoverpa armigera. Here we report a novel allele from cotton bollworm with a deletion in the intracellular domain of cadherin that is genetically linked with non-recessive resistance to Cry1Ac. We discovered this allele in each of three field-selected populations we screened from northern China where Bt cotton producing Cry1Ac has been grown intensively. We expressed four types of cadherin alleles in heterologous cell cultures: susceptible, resistant with the intracellular domain mutation, and two complementary chimeric alleles with and without the mutation. Cells transfected with each of the four cadherin alleles bound Cry1Ac and were killed by Cry1Ac. However, relative to cells transfected with either the susceptible allele or the chimeric allele lacking the intracellular domain mutation, cells transfected with the resistant allele or the chimeric allele containing the intracellular domain mutation were less susceptible to Cry1Ac. These results suggest that the intracellular domain of cadherin is involved in post-binding events that affect toxicity of Cry1Ac. This evidence is consistent with the vital role of the intracellular region of cadherin proposed by the cell signaling model of the mode of action of Bt toxins. Considered together with previously reported data, the results suggest that both pore formation and cell signaling pathways contribute to the efficacy of Bt toxins.

  13. Insect Pathogenic Bacteria in Integrated Pest Management

    Directory of Open Access Journals (Sweden)

    Luca Ruiu

    2015-04-01

    Full Text Available The scientific community working in the field of insect pathology is experiencing an increasing academic and industrial interest in the discovery and development of new bioinsecticides as environmentally friendly pest control tools to be integrated, in combination or rotation, with chemicals in pest management programs. In this scientific context, market data report a significant growth of the biopesticide segment. Acquisition of new technologies by multinational Ag-tech companies is the center of the present industrial environment. This trend is in line with the requirements of new regulations on Integrated Pest Management. After a few decades of research on microbial pest management dominated by Bacillus thuringiensis (Bt, novel bacterial species with innovative modes of action are being discovered and developed into new products. Significant cases include the entomopathogenic nematode symbionts Photorhabdus spp. and Xenorhabdus spp., Serratia species, Yersinia entomophaga, Pseudomonas entomophila, and the recently discovered Betaproteobacteria species Burkholderia spp. and Chromobacterium spp. Lastly, Actinobacteria species like Streptomyces spp. and Saccharopolyspora spp. have gained high commercial interest for the production of a variety of metabolites acting as potent insecticides. With the aim to give a timely picture of the cutting-edge advancements in this renewed research field, different representative cases are reported and discussed.

  14. Insect pest management in stored grain

    Science.gov (United States)

    Stored grain is vulnerable to attach by a variety of insect pests, that can generally be classified as external or internal feeders. Infestations primarily occur after grain is stored, though there is some evidence that infestations can occur in the field right before harvest. There are a variety of...

  15. Pear Thrips on Forest Trees (Pest Alert)

    Science.gov (United States)

    James O' Brien; Parker Snowden

    1989-01-01

    The pear thrips, Taeniothrips inconsequens (Uzel), an imported species first noted in California in 1904 and now throughout the United States, is a common thrips found on many plants, but particularly fruit trees. Pear thrips have been considered a serious forest pest only recently (1979, when they, along with Thrips calcaratus Uzel, caused widespread defoliation in...

  16. Biological pest control in beetle agriculture

    NARCIS (Netherlands)

    Aanen, D.K.; Slippers, B.; Wingfield, M.J.

    2009-01-01

    Bark beetles are among the most destructive tree pests on the planet. Their symbiosis with fungi has consequently been studied extensively for more than a century. A recent study has identified actinomycete bacteria that are associated with the southern pine beetle and produce specific antibiotics

  17. Clinicopathological observations in experimental Peste Des Petit ...

    African Journals Online (AJOL)

    Clinicopathological observations in experimental Peste Des Petit Ruminants virus and Mannheimia haemolytica A:2 co-infection in goats. ... Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  18. Natural Compounds for Pest and Weed Control

    Science.gov (United States)

    The control of insect pests and invasive weeds has become more species-selective because of activity-guided isolation, structure elucidation, and total synthesis of naturally produced substances with important biological activities. Examples of isolated compounds include insect pheromones, antifeed...

  19. Bioactive compounds for pest and weed control

    Science.gov (United States)

    The control of insect pests and invasive weeds has become more species-selective because of activity-guided isolation, structure elucidation, and total synthesis of naturally produced substances with important biological activities. Examples of isolated compounds include insect pheromones, antifeed...

  20. DEMONSTRATING INTEGRATED PEST MANAGEMENT OF HOT PEPPERS

    Science.gov (United States)

    We studied the effects of organic and synthetic chemical fertilizers on crop growth, yield and associated insect pests for two varieties of hot pepper, Capsicum chinense Jacquin (Solanaceae): “Scotch Bonnet” and “Caribbean Red” in north Florida. Hot peppers were grown under three treatments: poultr...

  1. 19 CFR 12.31 - Plant pests.

    Science.gov (United States)

    2010-04-01

    ... SPECIAL CLASSES OF MERCHANDISE Wild Animals, Birds, and Insects § 12.31 Plant pests. The importation in a live state of insects which are injurious to cultivated crops, including vegetables, field crops, bush fruits, and orchard, forest or shade trees, and of the eggs, pupae, or larvae of such insects, except for...

  2. AGRICULTURAL PESTS AND FOOD SECURITY AND SFETY

    African Journals Online (AJOL)

    dell

    2012-08-05

    Aug 5, 2012 ... Agricultural pest management control strategies are primarily concerned with food security and safety. Popular .... most of the farmers considered IPM as a computer technology that was not suitable for their own environment or not .... Training modules on conservation agriculture. Land and Water Digital.

  3. Effectiveness of some ecological pest management practices ...

    African Journals Online (AJOL)

    This study therefore highlights pest management tools that have been developed for the effective control of mirids with minimal deleterious effects on the ecosystem. Cultural control practices involving pruning of chupons, timely phytosanitation and removal of mummified pods were carried out on treated cocoa plots and ...

  4. The European Insurance Industry: A PEST Analysis

    Directory of Open Access Journals (Sweden)

    Charmaine Barbara

    2017-05-01

    Full Text Available The insurance industry plays an important role for European economic stability and the threats and opportunities it faces should be carefully determined. In this paper we highlight the main challenges by using a Political, Economic, Social and Technological (PEST analysis. This work applies conventional actuarial thought on this area by focusing strictly on the European sector.

  5. Modern Stored-Product Insect Pest Management

    Directory of Open Access Journals (Sweden)

    Hagstrum David William

    2014-07-01

    Full Text Available Stored-product entomologists have a variety of new monitoring, decision-making, biological, chemical, and physical pest management tools available to them. Two types of stored-product insect populations are of interest: insects of immediate economic importance infesting commodities, and insects that live in food residues in equipment and facilities. The sampling and control methods change as grain and grain products move from field to consumer. There are also some changes in the major insect pest species to take into consideration. In this review, we list the primary insect pests at each point of the marketing system, and indicate which sampling methods and control strategies are most appropriate. Economic thresholds for insect infestation levels developed for raw commodity storage, processing plants, and retail business allow sampling-based pest management to be done before insect infestations cause economic injury. Taking enough samples to have a representative sample (20-30 samples will generally provide enough information to classify a population as above or below an economic threshold.

  6. Exotic pests of eastern forests conference proceedings

    Science.gov (United States)

    Kerry O. Britton

    1998-01-01

    Invasive exotic pest plants, diseases, and insects, have had a dramatic impact on the health and composition of the Eastern forests for many decades. Chestnut blight was discovered in the United States in 1904. Since then, it has virtually destroyed the chestnut population, which once occupied 25 percent of the eastern forest. In the 1860's, the gypsy moth was...

  7. Exotic pests: major threats to forest health

    Science.gov (United States)

    J. Robert Bridges

    1995-01-01

    Over 360 exotic forest insects and about 20 exotic diseases have become established in the U.S. Many of these organisms have become serious pests, causing great economic impacts and irreversible ecological harm. Despite efforts to exclude exotic species, forest insects and disease organisms continue to be introduced at a rather rapid rate. In the last few years, one...

  8. Marine cargo imports and forest pest introductions

    Science.gov (United States)

    F.H. Koch

    2009-01-01

    A major pathway for the introduction of nonindigenous forest pests is accidental transport on cargo imported from overseas. Diseases may be brought into the United States via commercial trade of nursery stock or other live plant material, as has been suggested for Phytophthora ramorum, the pathogen that causes sudden oak death (Ivors and others 2006). Insects may...

  9. Management of insect pests using semiochemical traps

    DEFF Research Database (Denmark)

    Baroffio, C. A.; Guibert, V.; Richoz, P.

    2016-01-01

    . The aim is to develop optimized lures and cost-effective trap designs for mass trapping and to determine the optimum density and spatial and temporal patterns of deployment of the traps for controlling these pests by mass trapping. The combination between an aggregation pheromone that attracts Anthonomus...

  10. Correlation of Electropenetrography Waveforms From Lygus lineolaris (Hemiptera: Miridae) Feeding on Cotton Squares With Chemical Evidence of Inducible Tannins.

    Science.gov (United States)

    Cervantes, Felix A; Backus, Elaine A; Godfrey, Larry; Wallis, Christopher; Akbar, Waseem; Clark, Thomas L; Rojas, Maria G

    2017-10-01

    Probing behavior of Lygus lineolaris (Palisot de Beauvois) has previously been characterized with electropenetrography (EPG). Cell rupturing (CR) and ingestion (I) EPG waveforms were identified as the two main stylet-probing behaviors by adult L. lineolaris. However, characterization and identification of EPG waveforms are not complete until specific events of a particular waveform are correlated to insect probing. With the use of EPG, histology, microscopy, and chemical analysis, probing behavior of L. lineolaris on pin-head cotton squares was studied. Occurrences of waveforms CR and I were artificially terminated during the EPG recording. Histological samples of probed cotton squares were prepared and analyzed to correlate specific types and occurrences of feeding damage location and plant responses to insect feeding. Both CR and I occurred in the staminal column of the cotton square. Cell rupturing events elicited the production of dark-red deposits seen in histological staining that were demonstrated via chemical analysis to contain condensed tannins. We hypothesize that wounding and saliva secreted during CR triggered release of tannins, because tannin production was positively correlated with the number of probes with single CR events performed by L. lineolaris. Degraded plant tissue and tannins were removed from the staminal column during occurrence of waveform I. These results conclude the process of defining CR and I as probing waveforms performed by L. lineolaris on pin-head cotton squares. These biological definitions will now allow EPG to be used to quantitatively compare L. lineolaris feeding among different plant treatments, with the goal of improving pest management tactics against this pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Field trial of diatomaceous earth in cotton gin trash against the larger black flour beetle, Cynaeus angustus (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    McIntyre, N E; Porter, P

    2004-04-01

    The larger black flour beetle, Cynaeus angustus (LeConte) (Coleoptera: Tenebrionidae), is an agricultural and home nuisance pest in North America. In the Southern High Plains of Texas, the larger black flour beetle is associated with cotton gin trash, by-products of cotton ginning that are field stored in large piles for economic reasons. Larger black flour beetle overwinter in gin trash piles but may disperse by the millions in summer and autumn, entering houses as far as 2 km away where they cause distress to homeowners. Because > 1.2 billion kg of gin trash is produced annually in Texas alone, the potential consequences of the larger black flour beetle are enormous. We conducted a field experiment that evaluated the efficacy of diatomaceous earth (DE) on the abundance of the larger black flour beetle in gin trash. There were no significant differences in numbers of larger black flour beetle among treatments and controls (mean number of adults summed over time: controls = 115.41, layered treatment = 87.60, top and bottom treatment = 96.50, bottom treatment = 115.16). There were sufficient numbers of beetles in treated piles to still pose a potential home nuisance problem, likely because the moisture content of field-stored gin trash is too high for DE to work effectively. Therefore, treating cotton gin trash with diatomaceous earth will probably be unable to prevent home infestations of larger black flour beetle. Location within a gin trash pile and season influenced pest numbers, which has implications for long-term field storage of cotton gin trash.

  12. Sublethal effects of some botanical and chemical insecticides on the cotton whitefly, Bemisia tabaci (Hem: Aleyrodidae

    Directory of Open Access Journals (Sweden)

    Fatemeh Jafarbeigi

    2014-09-01

    Full Text Available In addition to direct mortalities caused by acute concentrations of insecticides, some biological traits of target pests may be also affected by sublethal doses. The cotton whitefly, Bemisia tabaci (Hem: Aleyrodidae is an important pest of a wide variety of agricultural crops across the world. The control of B. tabaci largely relies on wide application of chemical insecticides. In this study, we analyzed the life table parameters to evaluate the sublethal effect of three plant-derived insecticides (Fumaria parviflora (Fumariaceae, Teucrium polium (Lamiaceae, and Thymus vulgaris (Lamiaceae and two chemical insecticides (pymetrozin and neemarin on B. tabaci. The whiteflies were allowed to oviposit on plants infected with each of the five insecticides using leaf-dip method. The data were analyzed using the age-stage two-sex life table. We found significant differences in the gross reproductive rate (GRR, the net reproductive rat (R0, the intrinsic rate of increase (r and the finite rate of increase (λ of treated whiteflies compared to control. Our results showed that some biological traits of B. tabaci are affected by sub-lethal doses of the plant-derived extracts and that these effects are comparable to those of chemical insecticides. Given the detrimental effects of chemical insecticides on human, environment and non-target organisms, plant-derived insecticides may provide valuable environmentally friendly tools for pest management programs.

  13. Integrated Pest Management Plan Medicine Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Integrated Pest Management Plan is to provide a comprehensive, environmentally sensitive approach to managing pests on the Medicine Lake NWR. The...

  14. Integrated Pest Management Plan Ouray National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Integrated Pest Management Plan is to provide a comprehensive, environmentally sensitive approach to managing pests on the Ouray NWR. The goals...

  15. Arrowwood National Wildlife Refuge Complex Integrated Pest Management Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Integrated Pest Management Plan is to provide a comprehensive, environmentally sensitive approach to managing pests on the Arrowwood NWRC. The...

  16. Integrated Pest Management Plan : Kulm Wetland Management District 2004

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Integrated Pest Management Plan is to provide a comprehensive, environmentally sensitive approach to managing pests on the Kulm WMD. The goals and...

  17. Integrated Pest Management Plan for Sand Lake NWR Complex

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Integrated Pest Management Plan is to provide a comprehensive, environmentally sensitive approach to managing pests on the Sand Lake WMD. The...

  18. Integrated Pest Management Plan - Fish Springs National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Integrated Pest Management Plan is to provide a comprehensive, environmentally sensitive approach to managing pests on the Fish Springs NWR. The...

  19. Integrated Pest Management Plan Browns Park National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Integrated Pest Management Plan is to provide a comprehensive, environmentally sensitive approach to managing pests on the Browns Park National...

  20. Integrated Pest Management Plan Kulm Wetland Management District 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Integrated Pest Management Plan is to provide a comprehensive, environmentally sensitive approach to managing pests on the Kulm WMD. The goals and...

  1. Agricultural impacts: Big data insights into pest spread

    Science.gov (United States)

    Garrett, Karen A.

    2013-11-01

    Pests and diseases reduce agricultural yields and are an important wildcard in the evaluation of future climate impacts. A unique global record of pests and diseases provides evidence for poleward expansions of their distributions.

  2. First Record Of Clytra Laeviuscula Ratzeburg As Potential Insect Pest Of Energy Willow (Salix Viminalis L. In Ukraine

    Directory of Open Access Journals (Sweden)

    Stefanovska Tatyana

    2015-09-01

    Full Text Available Cultivation of short rotation coppice energy willow (SRC EW, Salix viminalis L., has a great potential in Ukraine as a source of biomass for biofuel production. Commercial production of this species was recently initiated in the country. The growing of SRC EW in Western and Northern Europe for a long time showed that leaf beetles (Coleoptera: Chrysomelidae are key pests causing significant biomass reduction. However, data about the pest complex for energy willow growing in Ukraine is not available. Our three-year experiment in Poltava region, Ukraine showed that foliar damage caused by Clytra laeviuscula Ratzeburg (Coleoptera: Chrysomelidae occurred at energy willow plantations in the second year of production, which could have an effect on commercial production. Accordingly, information about seasonal activity, population dynamics, host range and the role of natural enemies in pest regulation are requested for developing pest control program.

  3. Introgression of cotton leaf curl virus-resistant genes from Asiatic cotton (Gossypium arboreum) into upland cotton (G. hirsutum).

    Science.gov (United States)

    Ahmad, S; Mahmood, K; Hanif, M; Nazeer, W; Malik, W; Qayyum, A; Hanif, K; Mahmood, A; Islam, N

    2011-10-07

    Cotton is under the constant threat of leaf curl virus, which is a major constraint for successful production of cotton in the Pakistan. A total of 3338 cotton genotypes belonging to different research stations were screened, but none were found to be resistant against the Burewala strain of cotton leaf curl virus (CLCuV). We explored the possibility of transferring virus-resistant genes from Gossypium arboreum (2n = 26) into G. hirsutum (2n = 52) through conventional breeding techniques. Hybridization was done manually between an artificial autotetraploid of G. arboreum and an allotetraploid G. hirsutum, under field conditions. Boll shedding was controlled by application of exogenous hormones, 50 mg/L gibberellic acid and 100 mg/L naphthalene acetic acid. Percentage pollen viability in F(1) hybrids was 1.90% in 2(G. arboreum) x G. hirsutum and 2.38% in G. hirsutum x G. arboreum. Cytological studies of young buds taken from the F(1) hybrids confirmed that they all were sterile. Resistance against CLCuV in the F(1) hybrids was assessed through grafting, using the hybrid plant as the scion; the stock was a virus susceptible cotton plant, tested under field and greenhouse conditions. All F(1) cotton hybrids showed resistance against CLCuV, indicating that it is possible to transfer resistant genes from the autotetraploid of the diploid donor specie G. arboreum into allotetraploid G. hirsutum through conventional breeding, and durable resistance against CLCuV can then be deployed in the field.

  4. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense.

    Science.gov (United States)

    Li, Peng-Tao; Wang, Mi; Lu, Quan-Wei; Ge, Qun; Rashid, Md Harun Or; Liu, Ai-Ying; Gong, Ju-Wu; Shang, Hai-Hong; Gong, Wan-Kui; Li, Jun-Wen; Song, Wei-Wu; Guo, Li-Xue; Su, Wei; Li, Shao-Qi; Guo, Xiao-Ping; Shi, Yu-Zhen; Yuan, You-Lu

    2017-09-08

    How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the "oxidation-reduction process", which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR

  5. Impact of Bollgard® genetically modified cotton on the biodiversity of arthropods under practical field conditions in Brazil

    OpenAIRE

    Thomazoni, Danielle; Degrande,Paulo Eduardo; Silvie, Pierre; Faccenda,Odival

    2010-01-01

    Using cotton cultivars that express a gene of the Bacillus thuringiensis (Bt) bacterium producing a protein (Cry1Ac) with an insecticide effect on the Lepidoptera pests has made it possible to reduce the number of insecticide applications during the crop cycle. Thus, the objective was to determine, in the field during the 2006/2007 harvest in Dourados/MS, Brazil, the impact of the transgenic cultivar (NuOpal®) by comparison with the isogenic, non-transgenic cultivar (DeltaOpal®) on target pes...

  6. Antibacterial activity and the hydrophobicity of cotton coated with hexadecyltrimethoxysilane

    Science.gov (United States)

    Rohaeti, Eli; Rakhmawati, Anna

    2017-08-01

    In this work, cotton fiber was fabricated using silver nanoparticles to produce hydrophobic and antibacterial material. The silver nanoparticle was prepared with chemical reduction method using trisodium citrate as reducing agent and PVA as stabilizer. Silver nanoparticle was deposited on cotton fibers as antibacterial agent and HDTMS 4% v/v was coated on those as hydrophobic agent. The cotton fibers before and after modification were characterized its functional groups, contact angles, and antibacterials activities. The functional groups of cottons were determined by using ATR-FTIR, hydrophobic properties of cottons were determined by measuring contact angle, and antibacterial activities of cottons were determined by measuring clear zone. The addition of HDTMS decreased the intensity of absorption bands of functional groups but increased contact angle of cotton cloth. The cotton cloth-silver nanoparticle shows the highest antibacterial properties. The antibacterial activity of cotton cloth without and with modification against Staphylococcus aureus ATCC 25923 and Eschericia coli 32518 were significantly different.

  7. Spinning cotton: domestic and industrial novels.

    Science.gov (United States)

    Daly, Suzanne

    2008-01-01

    This essay examines the ways in which nineteenth-century domestic and industrial novels highlight and suppress different aspects of Britain's involvement in the Indian cotton trade. England's complex and evolving relationship with India is often worked out in Victorian novels through the association of English people and Indian things, but the terms of this relationship shift depending upon novelistic genre. Elizabeth Gaskell's Wives and Daughters and Benjamin Disraeli's Sybil reveal how gendered dress codes in domestic novels position Indian textiles as markers of virtue and good taste, whereas industrial novels frequently evince a concern with cotton as a commodity and the cotton mill as a space in need of benevolent reform. Both genres, however, occlude as much as they reveal about the cotton trade's global reach.

  8. Determining gene flow in transgenic cotton.

    Science.gov (United States)

    Pan, Xiaoping

    2013-01-01

    Gene flow is one of the major concerns associated with the release of transgenic plants into the environment. Unrestricted gene flow can results in super weeds, reduction in species fitness and genetic diversity, and contamination of traditional plants and foods. Thus, it is important and also necessary to evaluate the extent of gene flow in the field for transgenic plants already released or being considered for a release. Transgenic cotton is among the first transgenic crops for commercialization, which are widely cultivated around the world. In this chapter, we use transgenic insect resistant cotton and herbicide-tolerant cotton as two examples to present a field practice method for determining transgene flow in cotton. The procedure includes three major sections: (1) field design, (2) seed collection, and (3) field and lab bioassay.

  9. Interspecific Associations between Cycloneda sanguinea and Two Aphid Species (Aphis gossypii and Hyadaphis foeniculi in Sole-Crop and Fennel-Cotton Intercropping Systems.

    Directory of Open Access Journals (Sweden)

    Francisco S Fernandes

    Full Text Available Aphids cause significant damage to crop plants. Studies regarding predator-prey relationships in fennel (Foeniculum vulgare Mill. and cotton (Gossypium hirsutum L. crops are important for understanding essential ecological interactions in the context of intercropping and for establishing pest management programs for aphids. This study evaluated the association among Hyadaphis foeniculi (Passerini (Hemiptera: Aphididae, Aphis gossypii Glover (Hemiptera: Aphididae and Cycloneda sanguinea (L. (Coleoptera: Coccinellidae in cotton with coloured fibres, fennel and cotton intercropped with fennel. Association analysis was used to investigate whether the presence or absence of prey and predator species can indicate possible interactions between aphids and ladybugs. Significant associations among both apterous and alate H. foeniculi and C. sanguinea were observed in both the fennel and fennel-cotton intercropping systems. The similarity analysis showed that the presence of aphids and ladybugs in the same system is significantly dependent on the type of crop. A substantial amount of evidence indicates that the presence of the ladybug C. sanguinea, is associated with apterous or alate A. gossypii and H. foeniculi in fennel-cotton intercropping system. We recommend that future research vising integrated aphid management taking into account these associations for take decisions.

  10. Interspecific Associations between Cycloneda sanguinea and Two Aphid Species (Aphis gossypii and Hyadaphis foeniculi) in Sole-Crop and Fennel-Cotton Intercropping Systems.

    Science.gov (United States)

    Fernandes, Francisco S; Ramalho, Francisco S; Malaquias, José B; Godoy, Wesley A C; Santos, Bárbara Davis B

    2015-01-01

    Aphids cause significant damage to crop plants. Studies regarding predator-prey relationships in fennel (Foeniculum vulgare Mill.) and cotton (Gossypium hirsutum L.) crops are important for understanding essential ecological interactions in the context of intercropping and for establishing pest management programs for aphids. This study evaluated the association among Hyadaphis foeniculi (Passerini) (Hemiptera: Aphididae), Aphis gossypii Glover (Hemiptera: Aphididae) and Cycloneda sanguinea (L.) (Coleoptera: Coccinellidae) in cotton with coloured fibres, fennel and cotton intercropped with fennel. Association analysis was used to investigate whether the presence or absence of prey and predator species can indicate possible interactions between aphids and ladybugs. Significant associations among both apterous and alate H. foeniculi and C. sanguinea were observed in both the fennel and fennel-cotton intercropping systems. The similarity analysis showed that the presence of aphids and ladybugs in the same system is significantly dependent on the type of crop. A substantial amount of evidence indicates that the presence of the ladybug C. sanguinea, is associated with apterous or alate A. gossypii and H. foeniculi in fennel-cotton intercropping system. We recommend that future research vising integrated aphid management taking into account these associations for take decisions.

  11. IMPORTANCE OF ORGANIC COTTON FOR TURKEY

    OpenAIRE

    Erdal, Ulfet; BAYRAKTAR, Meltem; GÜREL, Aynur

    2016-01-01

    Cotton production has been improved in respect to amount and quality with contributions of scientific and technological innovations. Increased sensitivity to health and environmental issues has caused development of new subjects such as organic agriculture. Organic production systems are based on specific standards that combine tradition, innovation and science. It sustains human and animal health and maintains ecosystem and soil quality. The goal of the organic cotton production system is to...

  12. BENDING BEHAVIOUR OF MAGNETIC COTTON YARNS

    OpenAIRE

    LUPU Iuliana G.; GROSU Marian C; CRAMARIUC Bogdan; CRAMARIUC Oana

    2017-01-01

    Magnetic yarns are composite yarns, i.e. they combine elements of various natures and properties, with proven potential for electromagnetic interference (EMI) shielding. In this paper, different mixtures of hard and soft magnetic powder were chosen to cover materials made of cotton yarn. The physical properties and bending behavior of the produced composite yarns were investigated in order to evaluate the yarns for further textile processing.The cotton yarn used as base material was covered w...

  13. Field grain losses and insect pest management practices in ...

    African Journals Online (AJOL)

    A farm survey was conducted in subsistence farming communities to document the major grain crops, insect pests, indigenous pest control methods (PCM) and farmer perceptions of grain losses associated with identifiable pest species and perceived efficacies of the PCMs. Maize, beans and sorghum were identified as the ...

  14. Development and Implementation of Integrated Pest Management in ...

    African Journals Online (AJOL)

    Nafiisah

    Development & Implementation of Integrated Pest Management in Mauritius: an overview. 87. 1. I TRODUCTIO. Arthropod pests ... eventually resulted into development of resistance to insecticides by target pests, reduction in numbers of ... trap crop and composting) because of cost implications. The other three components ...

  15. Investigations on pests, diseases and present early warning system ...

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... Climatic conditions and phenology of apple trees were noted. Randomly selected 50 trees from each orchard were examined in order to determine the pests and diseases. For sessile pests; leaves, twigs and fruits were sampled. Samples were brought to the laboratory and all pests on the whole surface of ...

  16. Innovative Strategies for Control of Coffee Insect Pests in Tanzania ...

    African Journals Online (AJOL)

    Coffee insect pests are one of the major factors which affect coffee production and quality. globally, coffee insect pests are estimated to cause losses of about 13%. However in Africa, yield losses can be much higher, particularly where Arabica and Robusta coffee are grown for a long time. In Tanzania the major insect pests ...

  17. Vertebrate pests of cassava in Africa and their control | Cudjoe ...

    African Journals Online (AJOL)

    Much attention bas been given to almost all agents that cause losses to crops with the possible exception of vertebrate pests of which comparatively little is known in relation to farming activities. Due to the paucity of information on vertebrate pests there is very little or no indication of what damage is caused by which pest, ...

  18. Influence of intercrops on pests' populations in upland rice (Oriza ...

    African Journals Online (AJOL)

    User

    Again at booting, attacked plants have stunted panicles with many empty grains. The pest also sucks milk from the grains at milk stage. Plants infested with the pest have empty glumes and hence very low yields (IRRI, 1986). Yield loss to insect pests of rice has been estimated at about 30 - 40% (Heinrichs et al., 1979).

  19. Structured design of an automated monitoring tool for pest species

    NARCIS (Netherlands)

    Mul, Monique F.; Ploegaert, Johan P.M.; George, David R.; Meerburg, Bastiaan G.; Dicke, Marcel; Groot Koerkamp, Peter W.G.

    2016-01-01

    Pests and diseases in agricultural systems cause severe production losses with associated economic impact. Integrated Pest Management (IPM) is a sustainable method to limit these losses. For improved implementation of IPM, fully automated monitoring tools are needed to provide instantaneous pest

  20. Vegetation indices as indicators of damage by the sunn pest ...

    African Journals Online (AJOL)

    The sunn pest, Eurygaster integriceps Put. (Hemiptera: Scutelleridae), also known as sting or cereal pest, is one of the most economically important pests of wheat in the world. In this study, a collapsible nylon cloth cage experiments were conducted to determine the feasibility of using remote sensing techniques to detect ...

  1. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2006-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this paper is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  2. STIFFNESS MODIFICATION OF COTTON IN CHITOSAN TREATMENT

    Directory of Open Access Journals (Sweden)

    CAMPOS Juan

    2017-05-01

    Full Text Available Chitosan is a biopolymer obtained from chitin, and among their most important aspects highlights its applications in a lot of industrial sectors due to its intrinsic properties, especially in the textile sector. In the last years, chitosan is widely used in the cotton and wool finishing processes due to its bond between them and its properties as an antifungical and antimicrobial properties. In this paper three different molecular weight chitosan are used in the finishing process of cotton to evaluate its influence in the surface properties modification. In order to evaluate the effect of the treatment with chitosan, flexural stiffness test is performed in warp and weft direction, and then the total value is calculated. The cotton fabric is treated with 5 g/L of different types of chitosan in an impregnation bath. This study shows the extent of surface properties modification of the cotton provided by three types of chitosan treatment. The results show that all types of chitosan modify the cotton flexural rigidity properties but the one which modifies it in a relevant manner is chitosan originated from shrimps. Chitosan, textile, flexural stiffnes, chitin, cotton.

  3. Endotoxins in cotton: washing effects and size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Olenchock, S.A.; Mull, J.C.; Jones, W.G.

    1983-01-01

    Endotoxin contamination was measured in washed and unwashed cottons from three distinct growing areas, California, Mississippi, and Texas. The data show differences in endotoxin contamination based upon the geographic source of the cotton. It is also shown that washing bulk cotton before the carding process results in lower endotoxin in the cotton dust. Washing conditions can affect the endotoxin levels, and all size fractions of the airborne dust contain quantifiable endotoxin contamination. Endotoxin analyses provide a simple and reliable method for monitoring the cleanliness of cotton or airborne cotton dusts.

  4. HVI Colorimeter and Color Spectrophotometer Relationships and Their Impacts on Developing "Traceable" Cotton Color Standards

    Science.gov (United States)

    Color measurements of cotton fiber and cotton textile products are important quality parameters. The Uster® High Volume Instrument (HVI) is an instrument used globally to classify cotton quality, including cotton color. Cotton color by HVI is based on two cotton-specific color parameters—Rd (diffuse...

  5. 75 FR 38958 - Declaration of Prion as a Pest under FIFRA and Amendment of EPA's Regulatory Definition of Pests...

    Science.gov (United States)

    2010-07-07

    ... AGENCY 40 CFR Part 152 Declaration of Prion as a Pest under FIFRA and Amendment of EPA's Regulatory Definition of Pests to Include Prion; Notification to the Secretaries of Agriculture and Health and Human...). The draft rule proposes to declare a prion (i.e., proteinaceous infectious particle) a ``pest'' under...

  6. Evaluation of modern cotton harvest systems on irrigated cotton: harvester performance

    Science.gov (United States)

    Picker and stripper harvest systems were evaluated on production-scale irrigated cotton on the High Plains of Texas over three harvest seasons. Observations on harvester performance, including time-in-motion, harvest loss, seed cotton composition, and turnout, were conducted at seven locations with...

  7. 77 FR 20503 - Revision of Cotton Classification Procedures for Determining Cotton Leaf Grade

    Science.gov (United States)

    2012-04-05

    ... participants along the cotton supply chain since leaf content is all waste and there is a cost factor... Order 12866, and, therefore, has not been reviewed by the Office of Management and Budget (OMB... exhausted prior to any judicial challenge to the provisions of this final rule. Background AMS Cotton and...

  8. Development and validation of SUCROS-Cotton : A potential crop growth simulation model for cotton

    NARCIS (Netherlands)

    Zhang, L.; Werf, van der W.; Cao, W.; Li, B.; Pan, X.; Spiertz, J.H.J.

    2008-01-01

    A model for the development, growth and potential production of cotton (SUCROS-Cotton) was developed. Particular attention was given to the phenological development of the plant and the plasticity of fruit growth in response to temperature, radiation, daylength, variety traits, and management. The

  9. Cotton/polyester and cotton/nylon warp knitted terry cloth: Why ...

    African Journals Online (AJOL)

    Administrator

    ISSN 0378-5254 Journal of Family Ecology and Consumer Sciences, Vol 35, 2007. Cotton/polyester and cotton/nylon warp ... demands, new construction methods and fibre combi- nations are often implemented. One yarn of ... warp knitting machine, using three sets of warp yarns. (Hatch, 1993:358; Kadolph & Langford, ...

  10. Na+ compartmentalization related to salinity stress tolerance in upland cotton (Gossypium hirsutum) seedlings.

    Science.gov (United States)

    Peng, Zhen; He, Shoupu; Sun, Junling; Pan, Zhaoe; Gong, Wenfang; Lu, Yanli; Du, Xiongming

    2016-10-04

    The capacity for ion compartmentalization among different tissues and cells is the key mechanism regulating salt tolerance in plants. In this study, we investigated the ion compartmentalization capacity of two upland cotton genotypes with different salt tolerances under salt shock at the tissue, cell and molecular levels. We found that the leaf glandular trichome could secrete more salt ions in the salt-tolerant genotype than in the sensitive genotype, demonstrating the excretion of ions from tissue may be a new mechanism to respond to short-term salt shock. Furthermore, an investigation of the ion distribution demonstrated that the ion content was significantly lower in critical tissues and cells of the salt-tolerant genotype, indicating the salt-tolerant genotype had a greater capacity for ion compartmentalization in the shoot. By comparing the membrane H+-ATPase activity and the expression of ion transportation-related genes, we found that the H+-ATPase activity and Na+/H+ antiporter are the key factors determining the capacity for ion compartmentalization in leaves, which might further determine the salt tolerance of cotton. The novel function of the glandular trichome and the comparison of Na+ compartmentalization between two cotton genotypes with contrasting salt tolerances provide a new understanding of the salt tolerance mechanism in cotton.

  11. Biological pest control in beetle agriculture.

    Science.gov (United States)

    Aanen, Duur K; Slippers, Bernard; Wingfield, Michael J

    2009-05-01

    Bark beetles are among the most destructive tree pests on the planet. Their symbiosis with fungi has consequently been studied extensively for more than a century. A recent study has identified actinomycete bacteria that are associated with the southern pine beetle and produce specific antibiotics against an antagonist of the beetles' mutualistic fungus. In addition to highlighting the ecological complexity of bark-beetle-microbial symbioses, this work reveals a potential source of novel antibiotics.

  12. AN ASSESSMENT OF THE INTEGRATED PEST MANAGEMENT ...

    African Journals Online (AJOL)

    ... mesurer la connaissance spécifique sur la gestion des pestes. Les résultats indiquent que la participation active augmente la connaissance technique des IPM, si un support préliminaire est assuré dans l'approche de la recherche participative et l'extension. Cependant, la dissémination de connaissances était limitée et ...

  13. Molecular analysis of caffeoyl residues related to pigmentation in green cotton fibers.

    Science.gov (United States)

    Feng, Hongjie; Yang, Yonglin; Sun, Shichao; Li, Yanjun; Zhang, Lin; Tian, Jingkui; Zhu, Qianhao; Feng, Zili; Zhu, Heqin; Sun, Jie

    2017-07-20

    The pigment components in green cotton fibers were isolated and identified as 22-O-caffeoyl-22-hydroxymonodocosanoin and 22-O-caffeoyl-22-hydroxydocosanoic acid. The concentration of 22-O-caffeoyl-22-hydroxymonodocosanoin correlated positively with the degree of colour in the green fibers, indicating a role for caffeoyl derivatives in the pigmentation of green cotton fibers. Upland cotton (Gossypium hirsutum L.) contains four genes, Gh4CL1-Gh4CL4, encoding 4-coumarate:CoA ligases (4CLs), key enzymes in the phenylpropanoid biosynthesis pathway. In 15-24-day post-anthesis fibers, the expression level of Gh4CL1 was very low, Gh4CL3 had a similar expression level in both white and green cottons, Gh4CL2 had a significantly higher expression level in green fibers than in white fibers, while Gh4CL4 had a higher expression level in white fibers than in green fibers. According to enzyme kinetics analysis, Gh4CL1 displayed a preference for 4-coumarate, Gh4CL3 and Gh4CL4 exhibited a somewhat low but still prominent activity towards ferulate, while Gh4CL2 had a strong preference for caffeate and ferulate. These results suggest that Gh4CL2 might be involved in the metabolism of caffeoyl residues and related to pigment biosynthesis in green cotton fibers. Our findings provide insights for understanding the biochemical and molecular mechanisms of pigmentation in green cotton fibers. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings

    Directory of Open Access Journals (Sweden)

    Pascal Querner

    2015-06-01

    Full Text Available Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species, the biscuit beetle (Stegobium paniceum, the cigarette beetle (Lasioderma serricorne, different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp., moths like the webbing clothes moth (Tineola bisselliella, Silverfish (Lepisma saccharina and booklice (Psocoptera can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  15. Insect Pests and Integrated Pest Management in Museums, Libraries and Historic Buildings.

    Science.gov (United States)

    Querner, Pascal

    2015-06-16

    Insect pests are responsible for substantial damage to museum objects, historic books and in buildings like palaces or historic houses. Different wood boring beetles (Anobium punctatum, Hylotrupes bajulus, Lyctus sp. or introduced species), the biscuit beetle (Stegobium paniceum), the cigarette beetle (Lasioderma serricorne), different Dermestides (Attagenus sp., Anthrenus sp., Dermestes sp., Trogoderma sp.), moths like the webbing clothes moth (Tineola bisselliella), Silverfish (Lepisma saccharina) and booklice (Psocoptera) can damage materials, objects or building parts. They are the most common pests found in collections in central Europe, but most of them are distributed all over the world. In tropical countries, termites, cockroaches and other insect pests are also found and result in even higher damage of wood and paper or are a commune annoyance in buildings. In this short review, an introduction to Integrated Pest Management (IPM) in museums is given, the most valuable collections, preventive measures, monitoring in museums, staff responsible for the IPM and chemical free treatment methods are described. In the second part of the paper, the most important insect pests occurring in museums, archives, libraries and historic buildings in central Europe are discussed with a description of the materials and object types that are mostly infested and damaged. Some information on their phenology and biology are highlighted as they can be used in the IPM concept against them.

  16. Relative resistance or susceptibility of maple (Acer) species, hybrids and cultivars to six arthropod pests of production nurseries.

    Science.gov (United States)

    Seagraves, Bonny L; Redmond, Carl T; Potter, Daniel A

    2013-01-01

    Maples (Acer spp.) in production nurseries are vulnerable to numerous arthropod pests that can stunt or even kill the young trees. Seventeen cultivars representing various Acer species and hybrids were evaluated for extent of infestation or injury by shoot and trunk borers (Proteoteras aesculana, Chrysobothris femorata), potato leafhopper (Empoasca fabae), Japanese beetle (Popillia japonica), maple spider mite (Oligonychus aceris) and calico scale (Eulecanium cerasorum). Evaluations were done in replicated field plots in central and western Kentucky. All of the maples were susceptible, to varying degrees, to one or more key pest(s). Red maples (A. rubrum) were relatively vulnerable to potato leafhopper injury and borers but nearly free of Japanese beetle feeding and spider mites. Sugar maples sustained conspicuous Japanese beetle damage but had very low mite populations, whereas the opposite was true for Freeman maples (A. × freemanii). A. campestre was heavily infested by calico scale. Within each species or hybrid there were cultivar differences in degree of infestation or damage by particular pests. The results should help growers to focus pest management efforts on those plantings at greatest risk from particular pests, and to choose cultivars requiring fewer insecticide inputs to produce a quality tree. Copyright © 2012 Society of Chemical Industry.

  17. Key Nutrients.

    Science.gov (United States)

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  18. Arthropod Pest Control for UK Oilseed Rape - Comparing Insecticide Efficacies, Side Effects and Alternatives.

    Directory of Open Access Journals (Sweden)

    Han Zhang

    Full Text Available Oilseed rape (Brassica napus is an important combinable break crop in the UK, which is largely protected from arthropod pests by insecticidal chemicals. Despite ongoing debate regarding the use of neonicotinoids, the dominant seed treatment ingredients used for this crop, there is little publicly available data comparing the efficacy of insecticides in controlling key arthropod pests or comparing the impacts on non-target species and the wider environment. To provide an insight into these matters, a UK-wide expert survey targeting agronomists and entomologists was conducted from March to June 2015. Based on the opinions of 90 respondents, an average of 20% yield loss caused by the key arthropod pests was expected to have occurred in the absence of insecticide treatments. Relatively older chemical groups were perceived to have lower efficacy for target pests than newer ones, partly due to the development of insecticide resistance. Without neonicotinoid seed treatments, a lack of good control for cabbage stem flea beetle was perceived. Wide spectrum foliar insecticide sprays were perceived to have significantly greater negative impacts than seed treatments on users' health, natural enemies, pollinators, soil and water, and many foliar active ingredients have had potential risks for non-target arthropod species in UK oilseed rape fields for the past 25 years. Overall, 72% of respondents opposed the neonicotinoid restriction, while 10% supported it. Opposition and support of the restriction were largely based on concerns for pollinators and the wider environment, highlighting the uncertainty over the side effects of neonicotinoid use. More people from the government and research institutes leaned towards neutrality over the issue, compared to those directly involved in growing the crop. Neonicotinoid restriction was expected to result in greater effort and expenditure on pest control and lower production (0-1 t/ha less. Alternatives for future

  19. An efficient grafting technique for recovery of transgenic cotton plants.

    Science.gov (United States)

    Wang, Min; Wang, Qinglian; Zhang, Baohong

    2013-01-01

    Recovery of transgenic cotton plants from tissue culture condition to greenhouse condition is a critical step for improving cotton through genetic engineering. Traditional methods always cause low survival rate of transplanted plants. In 1998, we developed an efficient grafting technique for recovery of transgenic cotton plants, which significantly increased the survival rate of the transplanting regeneration plants. In this chapter, we present a detailed protocol for grafting transgenic cotton plants obtaining somatic embryogenesis.

  20. Bacteria on closed-boll and commercially harvested cotton.

    OpenAIRE

    Millner, P D; Ericson, K E; Marsh, P B

    1982-01-01

    The bacterial content of specially treated cottons used by other investigators to test human pulmonary responses to cotton dust was examined. Cotton from Lubbock, Tex. and Stoneville, Miss. were either (i) harvested by machine and handled as commercial bale cotton, (ii) harvested as closed bolls with bracts intact and opened under special conditions, (iii) harvested as closed bolls, with bracts being removed and opened under special conditions, or (iv) harvested by (stoneville only). Bacillus...