WorldWideScience

Sample records for cost-effective battery-powered aspirator

  1. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries

    Science.gov (United States)

    Li, Jianlin; Du, Zhijia; Ruther, Rose E.; AN, Seong Jin; David, Lamuel Abraham; Hays, Kevin; Wood, Marissa; Phillip, Nathan D.; Sheng, Yangping; Mao, Chengyu; Kalnaus, Sergiy; Daniel, Claus; Wood, David L.

    2017-09-01

    Reducing cost and increasing energy density are two barriers for widespread application of lithium-ion batteries in electric vehicles. Although the cost of electric vehicle batteries has been reduced by 70% from 2008 to 2015, the current battery pack cost (268/kWh in 2015) is still >2 times what the USABC targets (125/kWh). Even though many advancements in cell chemistry have been realized since the lithium-ion battery was first commercialized in 1991, few major breakthroughs have occurred in the past decade. Therefore, future cost reduction will rely on cell manufacturing and broader market acceptance. This article discusses three major aspects for cost reduction: (1) quality control to minimize scrap rate in cell manufacturing; (2) novel electrode processing and engineering to reduce processing cost and increase energy density and throughputs; and (3) material development and optimization for lithium-ion batteries with high-energy density. Insights on increasing energy and power densities of lithium-ion batteries are also addressed.

  2. Cost-Effectiveness Analysis of Interventions to Reduce Risk of Aspiration in Elderly Cancer Survivors Residing in Skilled Nursing Facilities.

    Science.gov (United States)

    Mantravadi, S

    2017-04-01

    Aspiration can occur in patients of any age group, but it can be prevented. The primary population at risk is made up of survivors of cancer because of their increased risk of mucositis, mucosal atrophy, and dysphagia associated with chemotherapy, radiotherapy, and the disease process itself. The rate of incidence of aspiration cannot be quantified, because minor cases of aspiration often go unreported. Sequelae ensuing from aspirations can include pneumonia, end-stage kidney disease, dialysis, and death. Analyses of cost, decision-tree modeling, and cost effectiveness were performed to compare a hypothetical, interventional model based on best practices with usual (standard) care. A societal perspective was used as the economic view point. Direct costs, caregiver time, and market values for wages were estimated for the 2 interventions. Effectiveness values for the cost-effectiveness and decision-tree analyses were obtained from the literature. The incremental-cost-effectiveness ratio was calculated and used to compare the intervention with usual care. The interventional method was more costly but more effective than usual care. A sensitivity analysis considered the uncertainty of event probability (aspiration vs no aspiration). The interventional protocol for aspiration reduction continued to be more cost effective than usual care. Aspiration takes a financial toll on all facets of health care, including on nurses, skilled nursing facilities, patients, their families, and insurers, among others. Implementing guidelines that describe best practices for aspiration appears to be a cost-effective strategy for reducing aspirations among cancer survivors - especially elderly patients - who live in skilled nursing facilities.

  3. Power management of remote microgrids considering battery lifetime

    Science.gov (United States)

    Chalise, Santosh

    Currently, 20% (1.3 billion) of the world's population still lacks access to electricity and many live in remote areas where connection to the grid is not economical or practical. Remote microgrids could be the solution to the problem because they are designed to provide power for small communities within clearly defined electrical boundaries. Reducing the cost of electricity for remote microgrids can help to increase access to electricity for populations in remote areas and developing countries. The integration of renewable energy and batteries in diesel based microgrids has shown to be effective in reducing fuel consumption. However, the operational cost remains high due to the low lifetime of batteries, which are heavily used to improve the system's efficiency. In microgrid operation, a battery can act as a source to augment the generator or a load to ensure full load operation. In addition, a battery increases the utilization of PV by storing extra energy. However, the battery has a limited energy throughput. Therefore, it is required to provide balance between fuel consumption and battery lifetime throughput in order to lower the cost of operation. This work presents a two-layer power management system for remote microgrids. First layer is day ahead scheduling, where power set points of dispatchable resources were calculated. Second layer is real time dispatch, where schedule set points from the first layer are accepted and resources are dispatched accordingly. A novel scheduling algorithm is proposed for a dispatch layer, which considers the battery lifetime in optimization and is expected to reduce the operational cost of the microgrid. This method is based on a goal programming approach which has the fuel and the battery wear cost as two objectives to achieve. The effectiveness of this method was evaluated through a simulation study of a PV-diesel hybrid microgrid using deterministic and stochastic approach of optimization.

  4. Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness

    International Nuclear Information System (INIS)

    Du, Jiuyu; Chen, Jingfu; Song, Ziyou; Gao, Mingming; Ouyang, Minggao

    2017-01-01

    Energy management strategy and battery capacity are the primary factors for the energy efficiency of range-extended electric buses (REEBs). To improve the energy efficiency of REEBs developed by Tsinghua University, an optimal design method of global optimization-based strategy is investigated. It is real-time and adaptive to variable traction battery capacities of series REEBs. For simulation, the physical model of REEB and key components are established. The optimal strategy is first extracted by the power split ratio (PSR) from REEB simulation result with dynamic program (DP) algorithm. The power distribution map is obtained by series simulations for variable battery capacity options. The control law for developing optimal strategy are achieved by cluster regression for power distribution data. To verify the effect of the proposed energy management strategy, characteristics of powertrain, energy efficiency, operating cost, and computing time are ultimately analyzed. Simulation results show that the energy efficiency of the global optimization-based strategy presented in this paper is similar to that of the DP strategy. Therefore, the overall energy efficiency can be significantly improved compared with that of the CDCS strategy, and operating costs can be substantially reduced. The feasibility of candidate control strategies is thereby assessed via the employment of variable parameters. - Highlights: • Analysis method of powertrain energy efficiency and power distribution is proposed. • The power distribution rules of strategy with variable battery capacities are achieved. • The parametric method of proposed PSR-RB strategy is presented. • The energy efficiency of powertrain is analysis by flow analysis method. • The energy management strategy is global optimization-based and real-time.

  5. Can re-regulation reservoirs and batteries cost-effectively mitigate sub-daily hydropeaking?

    Science.gov (United States)

    Haas, J.; Nowak, W.; Anindito, Y.; Olivares, M. A.

    2017-12-01

    To compensate for mismatches between generation and load, hydropower plants frequently operate in strong hydropeaking schemes, which is harmful to the downstream ecosystem. Furthermore, new power market structures and variable renewable systems may exacerbate this behavior. Ecological constraints (minimum flows, maximum ramps) are frequently used to mitigate hydropeaking, but these stand in direct tradeoff with the operational flexibility required for integrating renewable technologies. Fortunately, there are also physical methods (i.e. re-regulation reservoirs and batteries) but to date, there are no studies about their cost-effectiveness for hydropeaking mitigation. This study aims to fill that gap. For this, we formulate an hourly mixed-integer linear optimization model to plan the weekly operation of a hydro-thermal-renewable power system from southern Chile. The opportunity cost of water (needed for this weekly scheduling) is obtained from a mid-term programming solved with dynamic programming. We compare the current (unconstrained) hydropower operation with an ecologically constrained operation. The resulting cost increase is then contrasted with the annual payments necessary for the physical hydropeaking mitigation options. For highly constrained operations, both re-regulation reservoirs and batteries show to be economically attractive for hydropeaking mitigation. For intermediate constrained scenarios, re-regulation reservoirs are still economic, whereas batteries can be a viable solution only if they become cheaper in future. Given current cost projections, their break-even point (for hydropeaking mitigation) is expected within the next ten years. Finally, less stringent hydropeaking constraints do not justify physical mitigation measures, as the necessary flexibility can be provided by other power plants of the system.

  6. Costs of lithium-ion batteries for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.; Cuenca, R.

    2000-08-21

    One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

  7. A Battery Power Bank with Series-Connected Buck–Boost-Type Battery Power Modules

    Directory of Open Access Journals (Sweden)

    Tsung-Hsi Wu

    2017-05-01

    Full Text Available The operation of a battery power bank with series-connected buck–boost-type battery power modules (BPMs was investigated in this study. Each BPM consisted of a battery pack with an associated buck–boost converter for individually controlling battery currents. With a proposed discharging scenario, load voltage regulation with charge equalization among batteries was performed by controlling the battery currents in accordance with their state-of-charges (SOCs estimated by real-time battery-loaded voltages detected under the same operating condition. In addition, the fault tolerance was executed to isolate exhausted or faulty batteries from the battery power bank without interrupting the system operation. Experiments were conducted to verify the effectiveness of the discharging scenario for a laboratory battery power bank with four series buck–boost BPMs.

  8. Standby-battery autonomy versus power quality

    Science.gov (United States)

    Bitterlin, Ian F.

    Batteries are used in a wide variety of applications as an energy store to bridge gaps in the primary source of supplied power for a given period of time. In some cases this bridging time, the battery's "autonomy", is fixed by local legislation but it is also often set by historically common practices. However, even if common practice dictates a long autonomy time, we are entering a new era of "cost and benefit realism" underpinned by environmentally friendly policies and we should challenge these historical practices at every opportunity if it can lead to resource and cost savings. In some cases the application engineer has no choice in the design autonomy; either follow a piece of local legislation (e.g. 4 h autonomy for a "life safety" application), or actually work out what is needed! An example of the latter would be for a remote site, off-grid, using integrated wind/solar power (without emergency generator back-up) where you may have to design-in several days' battery autonomy. This short paper proposes that a battery's autonomy should be related to the time expected for the system to be without the primary power source, balanced by the capital costs and commercial risk of power failure. To discuss this we shall consider the factors in selecting the autonomy time and other related aspects for high voltage battery systems used in facility-wide uninterruptible power supply (UPS) systems.

  9. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  10. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-01-31

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  11. Optimal power flow management for distributed energy resources with batteries

    International Nuclear Information System (INIS)

    Tazvinga, Henerica; Zhu, Bing; Xia, Xiaohua

    2015-01-01

    Highlights: • A PV-diesel-battery hybrid system is proposed. • Model minimizes fuel and battery wear costs. • Power flows are analysed in a 24-h period. • Results provide a practical platform for decision making. - Abstract: This paper presents an optimal energy management model of a solar photovoltaic-diesel-battery hybrid power supply system for off-grid applications. The aim is to meet the load demand completely while satisfying the system constraints. The proposed model minimizes fuel and battery wear costs and finds the optimal power flow, taking into account photovoltaic power availability, battery bank state of charge and load power demand. The optimal solutions are compared for cases when the objectives are weighted equally and when a larger weight is assigned to battery wear. A considerable increase in system operational cost is observed in the latter case owing to the increased usage of the diesel generator. The results are important for decision makers, as they depict the optimal decisions considered in the presence of trade-offs between conflicting objectives

  12. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Michalek, Jeremy J.

    2013-01-01

    Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and SUVs in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives. - Highlights: ► We compare cost of PHEV batteries vs. charging infrastructure per gallon of gasoline saved. ► The lowest cost solution is to switch more drivers to low-capacity PHEVs and HEVs. ► If more gasoline savings is needed, batteries offer a better value than chargers. ► Extra batteries and chargers are both more costly per gal than oil premium estimates. ► Current subsidies are misaligned with fuel savings. We discuss alternatives.

  13. Optimization Strategy for Economic Power Dispatch Utilizing Retired EV Batteries as Flexible Loads

    Directory of Open Access Journals (Sweden)

    Shubo Hu

    2018-06-01

    Full Text Available With the increasing penetration of new and renewable energy, incorporating variable adjustable power elements on the demand side is of particular interest. The utilization of batteries as flexible loads is a hot research topic. Lithium-ion batteries are key components in electric vehicles (EVs in terms of capital cost, mass and size. They are retired after around 5 years of service, but still retain up to 80% of their nominal capacity. Disposal of waste batteries will become a significant issue for the automotive industry in the years to come. This work proposes the use of the second life of these batteries as flexible loads to participate in the economic power dispatch. The characteristics of second life batteries (SLBs are varied and diverse, requiring a new optimization strategy for power dispatch at the system level. In this work, SLBs are characterized and their operating curves are obtained analytically for developing an economic power dispatch model involving wind farms and second life batteries. In addition, a dispatch strategy is developed to reduce the dispatch complex brought by the disperse spatial and time distribution of EVs and decrease the system operating cost by introducing incentive and penalty costs in regulating the EV performance. In theory, SLBs are utilized to reduce the peak-valley difference of power loads and to stabilize the power system. Test results based on a ten-unit power system have verified the effectiveness of the proposed dispatch model and the economic benefit of utilizing SLBs as flexible loads in power systems. This work may provide a viable solution to the disposal of waste batteries from EVs and to the stable operation of fluctuating power systems incorporating stochastic renewable energy.

  14. Battery energy storage systems life cycle costs case studies

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

    1998-08-01

    This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

  15. Long life, low cost, rechargeable AgZn battery for non-military applications

    Science.gov (United States)

    Brown, Curtis C.

    1996-03-01

    Of the rechargeable (secondary) battery systems with mature technology, the silver oxide-zinc system (AgZn) safely offers the highest power and energy (watts and watt hours) per unit of volume and mass. As a result they have long been used for aerospace and defense applications where they have also proven their high reliability. In the past, the expense associated with the cost of silver and the resulting low production volume have limited their commercial application. However, the relative low cost of silver now make this system feasible in many applications where high energy and reliability are required. One area of commercial potential is power for a new generation of sophisticated, portable medical equipment. AgZn batteries have recently proven ``enabling technology'' for power critical, advanced medical devices. By extending the cycle calendar life to the system (offers both improved performance and lower operating cost), a combination is achieved which may enable a wide range of future electrical devices. Other areas where AgZn batteries have been used in nonmilitary applications to provide power to aid in the development of commercial equipment have been: (a) Electrically powered vehicles; (b) Remote sensing in nuclear facilities; (c) Special effects equipment for movies; (d) Remote sensing in petroleum pipe lines; (e) Portable computers; (f) Fly by wire systems for commercial aircraft; and (g) Robotics. However none of these applications have progressed to the level where the volume required will significantly lower cost.

  16. Further Cost Reduction of Battery Manufacturing

    Directory of Open Access Journals (Sweden)

    Amir A. Asif

    2017-06-01

    Full Text Available The demand for batteries for energy storage is growing with the rapid increase in photovoltaics (PV and wind energy installation as well as electric vehicle (EV, hybrid electric vehicle (HEV and plug-in hybrid electric vehicle (PHEV. Electrochemical batteries have emerged as the preferred choice for most of the consumer product applications. Cost reduction of batteries will accelerate the growth in all of these sectors. Lithium-ion (Li-ion and solid-state batteries are showing promise through their downward price and upward performance trends. We may achieve further performance improvement and cost reduction for Li-ion and solid-state batteries through reduction of the variation in physical and electrical properties. These properties can be improved and made uniform by considering the electrical model of batteries and adopting novel manufacturing approaches. Using quantum-photo effect, the incorporation of ultra-violet (UV assisted photo-thermal processing can reduce metal surface roughness. Using in-situ measurements, advanced process control (APC can help ensure uniformity among the constituent electrochemical cells. Industrial internet of things (IIoT can streamline the production flow. In this article, we have examined the issue of electrochemical battery manufacturing of Li-ion and solid-state type from cell-level to battery-level process variability, and proposed potential areas where improvements in the manufacturing process can be made. By incorporating these practices in the manufacturing process we expect reduced cost of energy management system, improved reliability and yield gain with the net saving of manufacturing cost being at least 20%.

  17. Low-cost photodynamic therapy devices for global health settings: Characterization of battery-powered LED performance and smartphone imaging in 3D tumor models

    Science.gov (United States)

    Hempstead, Joshua; Jones, Dustin P.; Ziouche, Abdelali; Cramer, Gwendolyn M.; Rizvi, Imran; Arnason, Stephen; Hasan, Tayyaba; Celli, Jonathan P.

    2015-05-01

    A lack of access to effective cancer therapeutics in resource-limited settings is implicated in global cancer health disparities between developed and developing countries. Photodynamic therapy (PDT) is a light-based treatment modality that has exhibited safety and efficacy in the clinic using wavelengths and irradiances achievable with light-emitting diodes (LEDs) operated on battery power. Here we assess low-cost enabling technology to extend the clinical benefit of PDT to regions with little or no access to electricity or medical infrastructure. We demonstrate the efficacy of a device based on a 635 nm high-output LED powered by three AA disposable alkaline batteries, to achieve strong cytotoxic response in monolayer and 3D cultures of A431 squamous carcinoma cells following photosensitization by administering aminolevulinic acid (ALA) to induce the accumulation of protoporphyrin IX (PpIX). Here we characterize challenges of battery-operated device performance, including battery drain and voltage stability specifically over relevant PDT dose parameters. Further motivated by the well-established capacity of PDT photosensitizers to serve as tumour-selective fluorescence contrast agents, we demonstrate the capability of a consumer smartphone with low-cost add-ons to measure concentration-dependent PpIX fluorescence. This study lays the groundwork for the on-going development of image-guided ALA-PDT treatment technologies for global health applications.

  18. Lead/acid batteries in systems to improve power quality

    Science.gov (United States)

    Taylor, P.; Butler, P.; Nerbun, W.

    Increasing dependence on computer technology is driving needs for extremely high-quality power to prevent loss of information, material, and workers' time that represent billions of dollars annually. This cost has motivated commercial and Federal research and development of energy storage systems that detect and respond to power-quality failures in milliseconds. Electrochemical batteries are among the storage media under investigation for these systems. Battery energy storage systems that employ either flooded lead/acid or valve-regulated lead/acid battery technologies are becoming commercially available to capture a share of this emerging market. Cooperative research and development between the US Department of Energy and private industry have led to installations of lead/acid-based battery energy storage systems to improve power quality at utility and industrial sites and commercial development of fully integrated, modular battery energy storage system products for power quality. One such system by AC Battery Corporation, called the PQ2000, is installed at a test site at Pacific Gas and Electric Company (San Ramon, CA, USA) and at a customer site at Oglethorpe Power Corporation (Tucker, GA, USA). The PQ2000 employs off-the-shelf power electronics in an integrated methodology to control the factors that affect the performance and service life of production-model, low-maintenance, flooded lead/acid batteries. This system, and other members of this first generation of lead/acid-based energy storage systems, will need to compete vigorously for a share of an expanding, yet very aggressive, power quality market.

  19. Online Reliable Peak Charge/Discharge Power Estimation of Series-Connected Lithium-Ion Battery Packs

    Directory of Open Access Journals (Sweden)

    Bo Jiang

    2017-03-01

    Full Text Available The accurate peak power estimation of a battery pack is essential to the power-train control of electric vehicles (EVs. It helps to evaluate the maximum charge and discharge capability of the battery system, and thus to optimally control the power-train system to meet the requirement of acceleration, gradient climbing and regenerative braking while achieving a high energy efficiency. A novel online peak power estimation method for series-connected lithium-ion battery packs is proposed, which considers the influence of cell difference on the peak power of the battery packs. A new parameter identification algorithm based on adaptive ratio vectors is designed to online identify the parameters of each individual cell in a series-connected battery pack. The ratio vectors reflecting cell difference are deduced strictly based on the analysis of battery characteristics. Based on the online parameter identification, the peak power estimation considering cell difference is further developed. Some validation experiments in different battery aging conditions and with different current profiles have been implemented to verify the proposed method. The results indicate that the ratio vector-based identification algorithm can achieve the same accuracy as the repetitive RLS (recursive least squares based identification while evidently reducing the computation cost, and the proposed peak power estimation method is more effective and reliable for series-connected battery packs due to the consideration of cell difference.

  20. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  1. Cost reductions in nickel-hydrogen battery

    Science.gov (United States)

    Beauchamp, Richard L.; Sindorf, Jack F.

    1987-01-01

    Significant progress was made toward the development of a commercially marketable hydrogen nickel oxide battery. The costs projected for this battery are remarkably low when one considers where the learning curve is for commercialization of this system. Further developmental efforts on this project are warranted as the H2/NiO battery is already cost competitive with other battery systems.

  2. Design, Build and Validation of a Low-Cost Programmable Battery Cycler

    DEFF Research Database (Denmark)

    Propp, Karsten; Fotouhi, Abbas; Knap, Vaclav

    2016-01-01

    The availability of laboratory grade equipment for battery tests is usually limited due to high costs of the hardware. Especially for lithium-sulfur (Li-S) batteries these experiments can be time intensive since the cells need to be precycled and are usually cycled with relatively low loads....... To improve the availability of test hardware, this paper conducts a study to design and test a low cost solution for cycling and testing batteries for tasks that do not necessarily need the high precision of professional hardware. While the described solution is in principle independent of the cell chemistry......, here it is specifically optimized to fit to Li-S batteries. To evaluate the accuracy of the presented battery cycler, the hardware is tested and compared with a professional Kepco bipolar power source. The results indicate the usefulness for application oriented battery tests with real life cycles...

  3. Zinc Bromide Flow Battery Installation for Islanding and Backup Power

    Science.gov (United States)

    2017-08-09

    demonstrates the energy security and cost benefits of implementing a Zn/Br Flow Battery-based ESS at the Marine Corps Air Station (MCAS) located at...user will be realized through the system’s peak shaving mode. This benefit was also used to calculate the operational cost reductions when using the...EW-201242) Zinc Bromide Flow Battery Installation for Islanding and Backup Power August 2017 This document has been cleared for public release

  4. A low cost, disposable cable-shaped Al-air battery for portable biosensors

    Science.gov (United States)

    Fotouhi, Gareth; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q.; Kramlich, John; Chung, Jae-Hyun

    2016-05-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum-air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids.

  5. A low cost, disposable cable-shaped Al–air battery for portable biosensors

    International Nuclear Information System (INIS)

    Fotouhi, Gareth; Kramlich, John; Chung, Jae-Hyun; Ogier, Caleb; Kim, Jong-Hoon; Kim, Sooyeun; Cao, Guozhong; Shen, Amy Q

    2016-01-01

    A disposable cable-shaped flexible battery is presented using a simple, low cost manufacturing process. The working principle of an aluminum–air galvanic cell is used for the cable-shaped battery to power portable and point-of-care medical devices. The battery is catalyzed with a carbon nanotube (CNT)-paper matrix. A scalable manufacturing process using a lathe is developed to wrap a paper layer and a CNT-paper matrix on an aluminum wire. The matrix is then wrapped with a silver-plated copper wire to form the battery cell. The battery is activated through absorption of electrolytes including phosphate-buffered saline, NaOH, urine, saliva, and blood into the CNT-paper matrix. The maximum electric power using a 10 mm-long battery cell is over 1.5 mW. As a demonstration, an LED is powered using two groups of four batteries in parallel connected in series. Considering the material composition and the cable-shaped configuration, the battery is fully disposable, flexible, and potentially compatible with portable biosensors through activation by either reagents or biological fluids. (paper)

  6. Dump the pump: manual aspiration thrombectomy (MAT) with a syringe is technically effective, expeditious, and cost-efficient.

    Science.gov (United States)

    Gross, Bradley A; Jadhav, Ashutosh P; Jovin, Tudor G; Jankowitz, Brian Thomas

    2018-04-01

    Syringe aspiration for manual aspiration thrombectomy (MAT) is a cost- and time-efficient alternative to an aspiration pump with likely similar efficacy. It is counterintuitive to expect the pump to perform better than direct vacuum with a syringe, as the pump must deliver vacuum additionally through a canister and meters of tubing. To present in vitro and clinical results of MAT with a syringe. An in vitro analysis was performed comparing vacuum pressures generated by syringe aspiration and with pump aspiration. This was then complemented with prospective clinical data providing details of angiographic and clinical outcomes for syringe MAT. The in vitro analysis demonstrated that equal to slightly greater vacuum pressures were generated by a 60 cc syringe as compared with the pump in both static and partial flow conditions. In our clinical series, 106/113 acute stroke thrombectomies over a 6-month period were performed with syringe MAT on the first pass. Syringe usage instead of pump tubing and a canister led to a total savings of $58 300. The rate of Thrombolysis in Cerebral Infarction 2b/3 recanalization was 93%. Adjunctive stentriever usage was performed in 23% of cases. Median puncture to reperfusion time was 25 min; mean change in National Institute of Health Stroke Scale score at 24 hours was an improvement of 5.1 (median 6). The in-hospital mortality rate was 10%. Seventy percent of patients were discharged to home (modified Rankin Scale (mRS) score 0-2) or a rehabilitation facility (mRS score 2-4). MAT using a syringe is a safe, fast, and more cost-effective approach than using an aspiration pump. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Design approach for solar cell and battery of a persistent solar powered GPS tracker

    Science.gov (United States)

    Sahraei, Nasim; Watson, Sterling M.; Pennes, Anthony; Marius Peters, Ian; Buonassisi, Tonio

    2017-08-01

    Sensors with wireless communication can be powered by photovoltaic (PV) devices. However, using solar power requires thoughtful design of the power system, as well as a careful management of the power consumption, especially for devices with cellular communication (because of their higher power consumption). A design approach can minimize system size, weight, and/or cost, while maximizing device performance (data transmission rate and persistence). In this contribution, we describe our design approach for a small form-factor, solar-powered GPS tracker with cellular communication. We evaluate the power consumption of the device in different stages of operation. Combining measured power consumption and the calculated energy-yield of a solar cell, we estimate the battery capacity and solar cell area required for 5 years of continuous operation. We evaluate trade-offs between PV and battery size by simulating the battery state of charge. The data show a trade-off between battery capacity and solar-cell area for given target data transmission rate and persistence. We use this analysis to determine the combination of solar panel area and battery capacity for a given application and the data transmission rate that results in minimum cost or total weight of the system.

  8. Smart Power Supply for Battery-Powered Systems

    Science.gov (United States)

    Krasowski, Michael J.; Greer, Lawrence; Prokop, Norman F.; Flatico, Joseph M.

    2010-01-01

    A power supply for battery-powered systems has been designed with an embedded controller that is capable of monitoring and maintaining batteries, charging hardware, while maintaining output power. The power supply is primarily designed for rovers and other remote science and engineering vehicles, but it can be used in any battery alone, or battery and charging source applications. The supply can function autonomously, or can be connected to a host processor through a serial communications link. It can be programmed a priori or on the fly to return current and voltage readings to a host. It has two output power busses: a constant 24-V direct current nominal bus, and a programmable bus for output from approximately 24 up to approximately 50 V. The programmable bus voltage level, and its output power limit, can be changed on the fly as well. The power supply also offers options to reduce the programmable bus to 24 V when the set power limit is reached, limiting output power in the case of a system fault detected in the system. The smart power supply is based on an embedded 8051-type single-chip microcontroller. This choice was made in that a credible progression to flight (radiation hard, high reliability) can be assumed as many 8051 processors or gate arrays capable of accepting 8051-type core presently exist and will continue to do so for some time. To solve the problem of centralized control, this innovation moves an embedded microcontroller to the power supply and assigns it the task of overseeing the operation and charging of the power supply assets. This embedded processor is connected to the application central processor via a serial data link such that the central processor can request updates of various parameters within the supply, such as battery current, bus voltage, remaining power in battery estimations, etc. This supply has a direct connection to the battery bus for common (quiescent) power application. Because components from multiple vendors may have

  9. Design of shape memory alloy actuators for direct power by an automotive battery

    International Nuclear Information System (INIS)

    Leary, M.; Huang, S.; Ataalla, T.; Baxter, A.; Subic, A.

    2013-01-01

    Highlights: ► We model Ni–Ti SMA actuators directly powered by a standard automotive battery. ► Feasible permutations for direct power are identified and confirmed experimentally. ► 0.5 mm diameter SMA of 225 mm length or larger is feasible for direct power. ► The feasibility of 0.25 mm SMA is greater, although the actuation force is lower. ► Prototype actuators are developed for long-stroke and short-stroke applications. -- Abstract: Nickel–Titanium (Ni–Ti) Shape Memory Alloys (SMAs) are increasingly utilized as mechanical actuators due to high power-to-mass ratio, high fatigue life and low cost. The implementation of SMA actuators in an automotive environment is of particular interest due to the potential for lower end-user functional efforts, together with reduced component mass and cost within a limited packaging space. In applications of this kind, the actuators are powered by a standard automotive (six cell lead-acid) battery. Although resistors and electronic devices can be used to avoid overload of either the SMA or battery system, the feasibility of supplying power to the actuators directly from the battery becomes a key objective for reducing system cost and complexity. In this study, the electrical resistivity of a linear Ni–Ti SMA actuator was theoretically calculated and experimentally verified. Based on this developed knowledge, the resistance of various actuator permutations was calculated, and the feasibility of operating the actuators with a standard automotive battery was assessed. To confirm the feasibility of powering SMA actuators directly from the automotive battery, two SMA actuator concepts were developed and experimentally validated.

  10. An Adaptive Estimation Scheme for Open-Circuit Voltage of Power Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2013-01-01

    Full Text Available Open-circuit voltage (OCV is one of the most important parameters in determining state of charge (SoC of power battery. The direct measurement of it is costly and time consuming. This paper describes an adaptive scheme that can be used to derive OCV of the power battery. The scheme only uses the measurable input (terminal current and the measurable output (terminal voltage signals of the battery system and is simple enough to enable online implement. Firstly an equivalent circuit model is employed to describe the polarization characteristic and the dynamic behavior of the lithium-ion battery; the state-space representation of the electrical performance for the battery is obtained based on the equivalent circuit model. Then the implementation procedure of the adaptive scheme is given; also the asymptotic convergence of the observer error and the boundedness of all the parameter estimates are proven. Finally, experiments are carried out, and the effectiveness of the adaptive estimation scheme is validated by the experimental results.

  11. Sizing of lithium-ion stationary batteries for nuclear power plant use

    International Nuclear Information System (INIS)

    Exavier, Zakaria Barie; Chang, Choong-koo

    2017-01-01

    Class 1E power system is very essential in preventing significant release of radioactive materials to the environment. Batteries are designed to provide control power for emergency operation of safety-related equipment or equipment important to safety, including power for automatic operation of the Reactor Protection System (RPS) and Engineered Safety Features (ESF) protection systems during abnormal and accident conditions through associated inverters. Technical challenges that are involved in the life cycle of batteries used in the nuclear power plants (NPP) are significant. The extension of dc battery backup time used in the dc power supply system of the Nuclear Power Plants also remains a challenge. The lead acid battery is the most popular utilized at the present. And it is generally the most popular energy storage device, because of its low cost and wide availability. The lead acid battery is still having some challenges since many phenomenon are occurred inside the battery during its lifecycle. The image of Lithium-ion battery in 1991 is considered as alternative for lead acid battery due to better performance which Lithium-ion has over Lead acid. It has high energy density and advanced gravimetric and volumetric properties. It is known that industrial standards for the stationary Lithium-Ion battery are still under development. The aim of this paper is to investigate the possibility of replacing of lead acid battery with lithium-ion battery. To study the ongoing research activities and ongoing developed industrial standards for Lithium-ion battery and suggest the method for sizing including, capacity, dimensions, operational conditions, aging factor and safety margin for NPP use. (author)

  12. Modeling the Performance and Cost of Lithium-Ion Batteries for Electric-Drive Vehicles - SECOND EDITION

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Paul A. [Argonne National Lab. (ANL), Argonne, IL (United States); Gallagher, Kevin G. [Argonne National Lab. (ANL), Argonne, IL (United States); Bloom, Ira D. [Argonne National Lab. (ANL), Argonne, IL (United States); Dees, Dennis W. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-01-01

    This report details the Battery Performance and Cost model (BatPaC) developed at Argonne National Laboratory for lithium-ion battery packs used in automotive transportation. The model designs the battery for a specified power, energy, and type of vehicle battery. The cost of the designed battery is then calculated by accounting for every step in the lithium-ion battery manufacturing process. The assumed annual production level directly affects each process step. The total cost to the original equipment manufacturer calculated by the model includes the materials, manufacturing, and warranty costs for a battery produced in the year 2020 (in 2010 US$). At the time this report is written, this calculation is the only publicly available model that performs a bottom-up lithium-ion battery design and cost calculation. Both the model and the report have been publicly peer-reviewed by battery experts assembled by the U.S. Environmental Protection Agency. This report and accompanying model include changes made in response to the comments received during the peer-review. The purpose of the report is to document the equations and assumptions from which the model has been created. A user of the model will be able to recreate the calculations and perhaps more importantly, understand the driving forces for the results. Instructions for use and an illustration of model results are also presented. Almost every variable in the calculation may be changed by the user to represent a system different from the default values pre-entered into the program. The distinct advantage of using a bottom-up cost and design model is that the entire power-to-energy space may be traversed to examine the correlation between performance and cost. The BatPaC model accounts for the physical limitations of the electrochemical processes within the battery. Thus, unrealistic designs are penalized in energy density and cost, unlike cost models based on linear extrapolations. Additionally, the consequences on

  13. Battery Peak Power Shaving Strategy to Prolong Battery Life for Electric Buses

    NARCIS (Netherlands)

    Pham, T.H.; Rosea, B.; Wilkins, S.

    2016-01-01

    This paper presents a battery peak power shaving strategy for battery electric buses. The developed strategy restricts the battery charge/discharge power when the propulsion power demand is high to avoid high deterioration of the battery capacity during operation. Without reducing the propulsion

  14. Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor

    Science.gov (United States)

    Makki, Noaman; Pop-Iliev, Remon

    2011-06-01

    An in-wheel wireless and battery-less piezo-powered tire pressure sensor is developed. Where conventional battery powered Tire Pressure Monitoring Systems (TPMS) are marred by the limited battery life, TPMS based on power harvesting modules provide virtually unlimited sensor life. Furthermore, the elimination of a permanent energy reservoir simplifies the overall sensor design through the exclusion of extra circuitry required to sense vehicle motion and conserve precious battery capacity during vehicle idling periods. In this paper, two design solutions are presented, 1) with very low cost highly flexible piezoceramic (PZT) bender elements bonded directly to the tire to generate power required to run the sensor and, 2) a novel rim mounted PZT harvesting unit that can be used to power pressure sensors incorporated into the valve stem requiring minimal change to the presently used sensors. While both the designs eliminate the use of environmentally unfriendly battery from the TPMS design, they offer advantages of being very low cost, service free and easily replaceable during tire repair and replacement.

  15. Cost-effective energy management for hybrid electric heavy-duty truck including battery aging

    NARCIS (Netherlands)

    Pham, H.T.; Bosch, van den P.P.J.; Kessels, J.T.B.A.; Huisman, R.G.M.

    2013-01-01

    Battery temperature has large impact on battery power capability and battery life time. In Hybrid Electric Heavy-duty trucks (HEVs), the high-voltage battery is normally equipped with an active Battery Thermal Management System (BTMS) guaranteeing a desired battery life time. Since the BTMS can

  16. An Optimal Operating Strategy for Battery Life Cycle Costs in Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yinghua Han

    2014-01-01

    Full Text Available Impact on petroleum based vehicles on the environment, cost, and availability of fuel has led to an increased interest in electric vehicle as a means of transportation. Battery is a major component in an electric vehicle. Economic viability of these vehicles depends on the availability of cost-effective batteries. This paper presents a generalized formulation for determining the optimal operating strategy and cost optimization for battery. Assume that the deterioration of the battery is stochastic. Under the assumptions, the proposed operating strategy for battery is formulated as a nonlinear optimization problem considering reliability and failure number. And an explicit expression of the average cost rate is derived for battery lifetime. Results show that the proposed operating strategy enhances the availability and reliability at a low cost.

  17. Power Management for Fuel Cell and Battery Hybrid Unmanned Aerial Vehicle Applications

    Science.gov (United States)

    Stein, Jared Robert

    As electric powered unmanned aerial vehicles enter a new age of commercial viability, market opportunities in the small UAV sector are expanding. Extending UAV flight time through a combination of fuel cell and battery technologies enhance the scope of potential applications. A brief survey of UAV history provides context and examples of modern day UAVs powered by fuel cells are given. Conventional hybrid power system management employs DC-to-DC converters to control the power split between battery and fuel cell. In this study, a transistor replaces the DC-to-DC converter which lowers weight and cost. Simulation models of a lithium ion battery and a proton exchange membrane fuel cell are developed and integrated into a UAV power system model. Flight simulations demonstrate the operation of the transistor-based power management scheme and quantify the amount of hydrogen consumed by a 5.5 kg fixed wing UAV during a six hour flight. Battery power assists the fuel cell during high throttle periods but may also augment fuel cell power during cruise flight. Simulations demonstrate a 60 liter reduction in hydrogen consumption when battery power assists the fuel cell during cruise flight. Over the full duration of the flight, averaged efficiency of the power system exceeds 98%. For scenarios where inflight battery recharge is desirable, a constant current battery charger is integrated into the UAV power system. Simulation of inflight battery recharge is performed. Design of UAV hybrid power systems must consider power system weight against potential flight time. Data from the flight simulations are used to identify a simple formula that predicts flight time as a function of energy stored onboard the modeled UAV. A small selection of commercially available batteries, fuel cells, and compressed air storage tanks are listed to characterize the weight of possible systems. The formula is then used in conjunction with the weight data to generate a graph of power system weight

  18. An improved charging/discharging strategy of lithium batteries considering depreciation cost in day-ahead microgrid scheduling

    International Nuclear Information System (INIS)

    Zhang, Zhong; Wang, Jianxue; Wang, Xiuli

    2015-01-01

    Highlights: • A quantitative depreciation cost model is put forward for lithium batteries. • A practical charging/discharging strategy is applied to battery management. • The depth of discharge of the battery storage is scheduled more rationally. • The proposed strategy improves the cost efficiency of lithium batteries in MGs. - Abstract: An energy storage system is critical for the safe and stable operation of a microgrid (MG) and has a promising prospect in future power system. Economical and safe operation of storage system is of great significance to MGs. This paper presents an improved management strategy for lithium battery storage by establishing a battery depreciation cost model and employing a practical charging/discharging strategy. Firstly, experimental data of lithium battery cycle lives, which are functions of the depth of discharge, are investigated and synthesized. A quantitative depreciation cost model is put forward for lithium batteries from the perspective of cycle life. Secondly, a practical charging/discharging strategy is applied to the lithium battery management in MGs. Then, an optimal scheduling model is developed to minimize MG operational cost including battery depreciation cost. Finally, numerical tests are conducted on a typical grid-connected MG. Results show that the depth of discharge of storage is scheduled more rationally, and operational cost is simultaneously saved for MG under the proposed management strategy. This study helps to improve the cost efficiency and alleviate the aging process for lithium batteries.

  19. Lithium ion battery energy storage system for augmented wind power plants

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef

    with Battery Energy Storage Systems (BESSs) into the so called Virtual Power Plants (VPP). Relatively new energy storage technologies based on Lithium ion (Li-ion) batteries are constantly improving their performance and are becoming attractive for stationary energy storage applications due...... to their characteristics such as high power, high efficiency, low self-discharge, and long lifetime. The family of the Li-ion batteries is wide and the selection of the most appropriate Liion chemistries for VPPs is one of the topics of this thesis, where different chemistries are compared and the most suitable ones...... if the batteries are able to meet several performance requirements, which are application dependent. Furthermore, for the VPP, the degradation or failure of the interconnected BESS can lead to costly downtime. Thus, an accurate estimation of the battery cells lifetime becomes mandatory. However, lifetime...

  20. Cost-driven materials selection criteria for redox flow battery electrolytes

    Science.gov (United States)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  1. Photovoltaic power without batteries for continuous cathodic protection

    Science.gov (United States)

    Muehl, W. W., Sr.

    1994-02-01

    The COASTSYSTA designed, installed, and started up on 20 Jan. 1990, a state-of-the-art stand alone photovoltaic powered impressed current cathodic protection system (PVCPSYS) not requiring any auxiliary/battery backup power for steel and iron submerged structures. The PVCPSYS installed on 775' of steel sheet piling of a Navy bulkhead is continuing to provide complete, continuous corrosion protection. This has been well documented by COASTSYSTA and verified on-site by the U.S. Army Civil Engineering Research Laboratory, Champaign, Illinois and the Navy Energy Program Office-Photovoltaic Programs, China Lake, California. The Department of Defense (DoD) Photovoltaic Review Committee and Sandia National Laboratories consider this successful and cost effective system a major advance in the application of photovoltaic power. The PVCPSYS uses only renewable energy and is environmentally clean. A patent is pending on the new technology. Other possible PVCPSYS applications are mothballed ships, docks, dams, locks, bridges, marinas, offshore structures, and pipelines. The initial cost savings by installing a PVCPSYS vs. a conventional CP system was in excess of $46,000.00.

  2. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  3. Maximum power point tracking: a cost saving necessity in solar energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Enslin, J H.R. [Stellenbosch Univ. (South Africa). Dept. of Electrical and Electronic Engineering

    1992-12-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking (MPPT) can improve cost effectiveness, has a higher reliability and can improve the quality of life in remote areas. A high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of between 15 and 25% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply (RAPS) systems. The advantages at large temperature variations and high power rated systems are much higher. Other advantages include optimal sizing and system monitor and control. (author).

  4. Development of a Cost-Effective Solar/Diesel Independent Power Plant for a Remote Station

    Directory of Open Access Journals (Sweden)

    Okeolu Samuel Omogoye

    2015-01-01

    Full Text Available The paper discusses the design, simulation, and optimization of a solar/diesel hybrid power supply system for a remote station. The design involves determination of the station total energy demand as well as obtaining the station solar radiation data. This information was used to size the components of the hybrid power supply system (HPSS and to determine its configuration. Specifically, an appropriate software package, HOMER, was used to determine the number of solar panels, deep-cycle batteries, and rating of the inverter that comprise the solar section of the HPSS. A suitable diesel generator was also selected for the HPSS after careful technical and cost analysis of those available in the market. The designed system was simulated using the HOMER software package and the simulation results were used to carry out the optimization of the system. The final design adequately meets the station energy requirement. Based on a life expectancy of twenty-five years, a cost-benefit analysis of the HPSS was carried out. This analysis shows that the HPSS has a lower cost as compared to a conventional diesel generator power supply, thus recommending the HPSS as a more cost-effective solution for this application.

  5. Standby battery requirements for telecommunications power

    Energy Technology Data Exchange (ETDEWEB)

    May, G.J. [The Focus Partnership, 126 Main Street, Swithland, Loughborough, Leics LE12 8TJ (United Kingdom)

    2006-08-25

    The requirements for standby power for telecommunications are changing as the network moves from conventional systems to Internet Protocol (IP) telephony. These new systems require higher power levels closer to the user but the level of availability and reliability cannot be compromised if the network is to provide service in the event of a failure of the public utility. Many parts of these new networks are ac rather than dc powered with UPS systems for back-up power. These generally have lower levels of reliability than dc systems and the network needs to be designed such that overall reliability is not reduced through appropriate levels of redundancy. Mobile networks have different power requirements. Where there is a high density of nodes, continuity of service can be reasonably assured with short autonomy times. Furthermore, there is generally no requirement that these networks are the provider of last resort and therefore, specifications for continuity of power are directed towards revenue protection and overall reliability targets. As a result of these changes, battery requirements for reserve power are evolving. Shorter autonomy times are specified for parts of the network although a large part will continue to need support for hours rather minutes. Operational temperatures are increasing and battery solutions that provide longer life in extreme conditions are becoming important. Different battery technologies will be discussed in the context of these requirements. Conventional large flooded lead/acid cells both with pasted and tubular plates are used in larger central office applications but the majority of requirements are met with valve-regulated lead/acid (VRLA) batteries. The different types of VRLA battery will be described and their suitability for various applications outlined. New developments in battery construction and battery materials have improved both performance and reliability in recent years. Alternative technologies are also being proposed

  6. A New Battery Energy Storage Charging/Discharging Scheme for Wind Power Producers in Real-Time Markets

    Directory of Open Access Journals (Sweden)

    Minh Y Nguyen

    2012-12-01

    Full Text Available Under a deregulated environment, wind power producers are subject to many regulation costs due to the intermittence of natural resources and the accuracy limits of existing prediction tools. This paper addresses the operation (charging/discharging problem of battery energy storage installed in a wind generation system in order to improve the value of wind power in the real-time market. Depending on the prediction of market prices and the probabilistic information of wind generation, wind power producers can schedule the battery energy storage for the next day in order to maximize the profit. In addition, by taking into account the expenses of using batteries, the proposed charging/discharging scheme is able to avoid the detrimental operation of battery energy storage which can lead to a significant reduction of battery lifetime, i.e., uneconomical operation. The problem is formulated in a dynamic programming framework and solved by a dynamic programming backward algorithm. The proposed scheme is then applied to the study cases, and the results of simulation show its effectiveness.

  7. Battery Thermal Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Keyser, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-08

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developed unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.

  8. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Moura, Scott J.; Fathy, Hosam K.; Stein, Jeffrey L.; Callaway, Duncan S.

    2010-01-01

    Recent results in plug-in hybrid electric vehicle (PHEV) power management research suggest that battery energy capacity requirements may be reduced through proper power management algorithm design. Specifically, algorithms which blend fuel and electricity during the charge depletion phase using smaller batteries may perform equally to algorithms that apply electric-only operation during charge depletion using larger batteries. The implication of this result is that ''blended'' power management algorithms may reduce battery energy capacity requirements, thereby lowering the acquisition costs of PHEVs. This article seeks to quantify the tradeoffs between power management algorithm design and battery energy capacity, in a systematic and rigorous manner. Namely, we (1) construct dynamic PHEV models with scalable battery energy capacities, (2) optimize power management using stochastic control theory, and (3) develop simulation methods to statistically quantify the performance tradeoffs. The degree to which blending enables smaller battery energy capacities is evaluated as a function of both daily driving distance and energy (fuel and electricity) pricing. (author)

  9. A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries

    International Nuclear Information System (INIS)

    Wee, Jung-Ho

    2007-01-01

    This paper compares the total cost of direct methanol fuel cell (DMFC) and lithium (Li)-ion battery systems when applied as the power supply for laptop computers in the Korean environment. The average power output and operational time of the laptop computers were assumed to be 20 W and 3000 h, respectively. Considering the status of their technologies and with certain conditions assumed, the total costs were calculated to be US$140 for the Li-ion battery and US$362 for DMFC. The manufacturing costs of the DMFC and Li-ion battery systems were calculated to be $16.65 W -1 and $0.77 W h -1 , and the energy consumption costs to be $0.00051 W h -1 and $0.00032 W h -1 , respectively. The higher fuel consumption cost of the DMFC system was due to the methanol (MeOH) crossover loss. Therefore, the requirements for DMFCs to be able to compete with Li-ion batteries in terms of energy cost include reducing the crossover level to at an order magnitude of -9 and the MeOH price to under $0.5 kg -1 . Under these conditions, if the DMFC manufacturing cost could be reduced to $6.30 W -1 , then the DMFC system would become at least as competitive as the Li-ion battery system for powering laptop computers in Korea. (author)

  10. Battery Management Systems: Accurate State-of-Charge Indication for Battery-Powered Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Danilov, D.; Regtien, Paulus P.L.; Notten, P.H.L.

    2008-01-01

    Battery Management Systems – Universal State-of-Charge indication for portable applications describes the field of State-of-Charge (SoC) indication for rechargeable batteries. With the emergence of battery-powered devices with an increasing number of power-hungry features, accurately estimating the

  11. Cost Effectiveness Analysis of Quasi-In-Motion Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses from Fleet Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud; Markel, Tony

    2016-05-16

    This study evaluated the costs and benefits associated with the use of stationary-wireless-power-transfer-enabled plug-in hybrid electric buses and determined the cost effectiveness relative to conventional buses and hybrid electric buses. A factorial design was performed over a number of different battery sizes, charging power levels, and f bus stop charging stations. The net present costs were calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario. The parameter sensitivity was also investigated under favorable and unfavorable market penetration assumptions.

  12. Adaptive on-line prediction of the available power of lithium-ion batteries

    Science.gov (United States)

    Waag, Wladislaw; Fleischer, Christian; Sauer, Dirk Uwe

    2013-11-01

    In this paper a new approach for prediction of the available power of a lithium-ion battery pack is presented. It is based on a nonlinear battery model that includes current dependency of the battery resistance. It results in an accurate power prediction not only at room temperature, but also at lower temperatures at which the current dependency is substantial. The used model parameters are fully adaptable on-line to the given state of the battery (state of charge, state of health, temperature). This on-line adaption in combination with an explicit consideration of differences between characteristics of individual cells in a battery pack ensures an accurate power prediction under all possible conditions. The proposed trade-off between the number of used cell parameters and the total accuracy as well as the optimized algorithm results in a real-time capability of the method, which is demonstrated on a low-cost 16 bit microcontroller. The verification tests performed on a software-in-the-loop test bench system with four 40 Ah lithium-ion cells show promising results.

  13. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.

    Science.gov (United States)

    Badi, Nacer; Erra, Abhinay Reddy; Hernandez, Francisco C Robles; Okonkwo, Anderson O; Hobosyan, Mkhitar; Martirosyan, Karen S

    2014-01-01

    The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for

  14. Survey on the cost of the photovoltaic power system; Taiyoko hatsuden cost chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Comparisons were made of the power generation cost in Indonesia and Thailand between the photovoltaic power system and other power systems. From the difference in technical standards with Japan, trially calculated were the amount of the potential introduction and the possibly reduced cost. In Indonesia, a plan has started for the introduction of a 50W system to 1 million houses in the unelecrified area, but the introduction has not been so promoted as planned. In Thailand, a plan is being carried out for the introduction of the battery charge station system, but the introduction has remained small-scaled. Comparisons were made among the solar home system in Indonesia, the battery charge station system in Thailand, the diesel engine power generation, and the grid connection with the existing power distribution system. The result concluded that the solar home system is low-priced though it depends on the distance from the existing distribution line and the power consumption amount. Moreover, it was found that the system would be more economical than in the case of Japan if obeying international standards for the photovoltaic power system. 6 refs., 15 figs., 56 tabs.

  15. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    OpenAIRE

    Dongmin Yu; Yuanzhu Meng; Gangui Yan; Gang Mu; Dezhi Li; Simon Le Blond

    2017-01-01

    Many combined heat and power (CHP) units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity ...

  16. Optimizing MEMS-Based Storage Devices for Mobile Battery-Powered Systems

    NARCIS (Netherlands)

    Khatib, M.G.; Hartel, Pieter H.

    An emerging storage technology, called MEMS-based storage, promises nonvolatile storage devices with ultrahigh density, high rigidity, a small form factor, and low cost. For these reasons, MEMS-based storage devices are suitable for battery-powered mobile systems such as PDAs. For deployment in such

  17. Identification of the Most Effective Point of Connection for Battery Energy Storage Systems Focusing on Power System Frequency Response Improvement

    Directory of Open Access Journals (Sweden)

    Thiago Pieroni

    2018-03-01

    Full Text Available With the massive penetration of intermittent generation (wind and solar, the reduction of Electrical Power Systems’ (EPSs inertial frequency response represents a new challenge. One alternative to deal with this scenario may be the application of a Battery Energy Storage System (BESS. However, the main constraint for the massive deployment of BESSs is the high acquisition cost of these storage systems which in some situations, can preclude their use in transmission systems. The main goal of this paper is to propose a systematic procedure to include BESSs in power system aiming to improve the power system frequency response using full linear models and geometric measures. In this work, a generic battery model is developed in a two-area test system with assumed high wind penetration and full conventional generators models. The full power system is linearized, and the geometric measures of controllability associated with of the frequency regulation mode are estimated. Then, these results are used to identify the most effective point of connection for a BESS aiming at the improvement of the power system frequency response. Nonlinear time-domain simulations are carried out to evaluate and validate the results.

  18. Power Management of Hybrid Power Systems with Li-Fe Batteries and Supercapacitors for Mobile Robots

    Directory of Open Access Journals (Sweden)

    Guohui Wang

    2014-05-01

    Full Text Available This paper presents an energy management strategy of a Li-Fe battery and supercapacitor hybrid power system to provide both high power density and energy density for mobile robots with fluctuating workloads. A two-phase power-optimization approach is proposed to exploit the high power density of supercapacitors and the high energy density of Li-Fe batteries. With our strategy, large peak power can be provided for a short time period whenever needed, while low power can be provided for very long time. A set of experiments have been conducted. The experimental results show that our strategy can effectively improve the performance of mobile robots and extend the lifetime of batteries.

  19. Cost Savings for Manufacturing Lithium Batteries in a Flexible Plant

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Paul A.; Ahmed, Shabbir; Gallagher, Kevin G.; Dees, Dennis W.

    2015-06-01

    The flexible plant postulated in this study would produces types of batteries for electric-drive vehicles of the types hybrid (HEV), 10-mile range and 40-mile range plug-in hybrids (PHEV) and a 150-mile range battery-electric (EV). The annual production rate of the plant is 235,000 per year (30,000 EV batteries and 100,000 HEV batteries). The unit cost savings as calculated with the Argonne BatPaC model for this flex plant vs. dedicated plants range from 8% for the EV battery packs to 23% for the HEV packs including the battery management systems (BMS). The investment cost savings are even larger, ranging from 21% for EVs to 43% for HEVs. The costs of the 1.0-kWh HEV batteries are projected to approach $710 per unit and that of the EV batteries $228 per kWh with the most favorable cell chemistries and including the BMS. The best single indicator of the cost of producing lithium-manganate spinel/graphite batteries in a flex plant is the total cell area of the battery. For the four batteries studied, the price range is $20-24 per m2 of cell area including the cost of the BMS, averaging $21 per m2 for the entire flex plant.

  20. Impact of Balance Of System (BOS) costs on photovoltaic power systems

    Science.gov (United States)

    Hein, G. F.; Cusick, J. P.; Poley, W. A.

    1978-01-01

    The Department of Energy has developed a program to effect a large reduction in the price of photovoltaic modules, with significant progress already achieved toward the 1986 goal of 50 cents/watt (1975 dollars). Remaining elements of a P/V power system (structure, battery storage, regulation, control, and wiring) are also significant cost items. The costs of these remaining elements are commonly referred to as Balance-of-System (BOS) costs. The BOS costs are less well defined and documented than module costs. The Lewis Research Center (LeRC) in 1976/77 and with two village power experiments that will be installed in 1978. The costs were divided into five categories and analyzed. A regression analysis was performed to determine correlations of BOS Costs per peak watt, with power size for these photovoltaic systems. The statistical relationship may be used for flat-plate, DC systems ranging from 100 to 4,000 peak watts. A survey of suppliers was conducted for comparison with the predicted BOS cost relationship.

  1. Emergency power supply with batteries. Notstromversorgung mit Batterien

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    This conference volume contains the wording of the following 16 papers given at the symposium: ''Stationary Pb batteries''; ''maintenance-free Pb batteries with antimony-free grid plates or tube plates and dry fit system''; ''stationary alkali, Ag/Zc and gas-tight Ni/Cd batteries''; ''modern Li systems''; ''high-temperature batteries''; ''primary and secondary metal-air cells''; ''peak-load coverage with Pb batteries in distribution networks and industrial plants''; ''Success and problems with national and international standardization''; ''electronic monitoring of batteries'', ''up-to-date charging and converter technology''; ''versatile emergency power supply with the Federal German Railways''; ''emergency lighting''; ''emergency power supply in large-scale industrial plants''; ''battery power supply with the Federal German Post and Telecommunications''; ''Power supply to modern communication facilities''; ''modular d.-c. converter''; ''back-up power supply in the military field''; and it contains the wording of the discussions following the papers.

  2. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    Science.gov (United States)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on

  3. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  4. Emergency power supply with batteries. Notstromversorgung mit Batterien

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The proceedings volume contains the wording of the following 15 papers presented at the symposium: 'The physical chemistry of power sources'; 'Conventional and sealed maintenance-free Pb batteries'; 'Open and gas-tight Ni/Cd batteries'; 'Advances in the development and acceptance of primary and secondary lithium systems'; 'Metal-hydrogen, especially nickel oxide-hydrogen, a new battery system'; 'The storage systems zinc-bromine and zinc-chlorine'; 'High temperature batteries'; 'Material problems of lead batteries and fuel cells'; 'DIN/VDE 0510, safety specifications for batteries and battery systems'; 'Frequency control, immediate reserve and peak load compensation with large battery systems in electric utilities'; 'Versatile emergency power supply at the Bundesanstalt fuer Flugsicherung'; 'Batteries used by the Bundeswehr'; 'Batteries in the service of the Deutsche Bundesbahn'; 'State of the art and development of opto- and micro-electronics and their power supply'; 'Experience and requirements of the Deutsche Bundespost on central and decentralized battery systems'. The proceedings also contain the wording of the discussions following the papers.

  5. Autonomous wind/solar power systems with battery storage

    Energy Technology Data Exchange (ETDEWEB)

    Protogeropoulos, C I

    1993-12-31

    The performance of an autonomous hybrid renewable energy system consisting of combined photovoltaic/wind power generation with battery storage is under evaluation in this thesis. Detailed mathematical analysis of the renewable components and the battery was necessary in order to establish the theoretical background for accurate simulation results. Model validation was achieved through experimentation. The lack of a sizing method to combine both hybrid system total cost and long-term reliability level was the result of an extended literature survey. The new achievements which are described in this research work refer to: - simplified modelling for the performance of amorphous-silicon photovoltaic panels for all solar irradiance levels. -development of a new current-voltage expression with respect to wind speed for wind turbine performance simulation. -establishment of the battery storage state of voltage, SOV, simulation algorithm for long-term dynamic operational conditions. The proposed methodology takes into account 8 distinct cases covering steady state and transient effects and can be used for autonomous system reliability calculations. -techno-economic evaluation of the size of the hybrid system components by considering both reliability and economic criteria as design parameters. Two sizing scenarios for the renewable components are examined : the average year method and the ``worst renewable`` month method. (Author)

  6. Study on optimal configuration of the grid-connected wind-solar-battery hybrid power system

    Science.gov (United States)

    Ma, Gang; Xu, Guchao; Ju, Rong; Wu, Tiantian

    2017-08-01

    The capacity allocation of each energy unit in the grid-connected wind-solar-battery hybrid power system is a significant segment in system design. In this paper, taking power grid dispatching into account, the research priorities are as follows: (1) We establish the mathematic models of each energy unit in the hybrid power system. (2) Based on dispatching of the power grid, energy surplus rate, system energy volatility and total cost, we establish the evaluation system for the wind-solar-battery power system and use a number of different devices as the constraint condition. (3) Based on an improved Genetic algorithm, we put forward a multi-objective optimisation algorithm to solve the optimal configuration problem in the hybrid power system, so we can achieve the high efficiency and economy of the grid-connected hybrid power system. The simulation result shows that the grid-connected wind-solar-battery hybrid power system has a higher comprehensive performance; the method of optimal configuration in this paper is useful and reasonable.

  7. Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT

    Science.gov (United States)

    Pop-Vadean, A.; Pop, P. P.; Latinovic, T.; Barz, C.; Lung, C.

    2017-05-01

    Harvesting energy from nonconventional sources in the environment has received increased attention over the past decade from researchers who study these alternative energy sources for low power applications. Although that energy harvested is small and in the order of milliwatt, it can provide enough power for wireless sensors and other low-power applications. In the environment there is a lot of wasted energy that can be converted into electricity to power the various circuits and represents a potentially cheap source of power. Energy harvesting is important because it offers an alternative power supply for electronic devices where is does not exist conventional energy sources. This technology applied in a wireless sensor network (WSN) and devices on the IoT, will eliminate the need for network-based energy and conventional batteries, will minimize maintenance costs, eliminate cables and batteries and is ecological. It has the same advantage in applications from remote locations, underwater, and other hard to reach places where conventional batteries and energy are not suitable. Energy harvesting will promote environmentally friendly technologies that will save energy, will reduce CO2 emissions, which makes this technology indispensable for achieving next-generation smart cities and sustainable society. In response to the challenges of energy, in this article we remind the basics of harvesting energy and we discuss the various applications of this technology where traditional batteries cannot be used.

  8. Enhanced representations of lithium-ion batteries in power systems models and their effect on the valuation of energy arbitrage applications

    Science.gov (United States)

    Sakti, Apurba; Gallagher, Kevin G.; Sepulveda, Nestor; Uckun, Canan; Vergara, Claudio; de Sisternes, Fernando J.; Dees, Dennis W.; Botterud, Audun

    2017-02-01

    We develop three novel enhanced mixed integer-linear representations of the power limit of the battery and its efficiency as a function of the charge and discharge power and the state of charge of the battery, which can be directly implemented in large-scale power systems models and solved with commercial optimization solvers. Using these battery representations, we conduct a techno-economic analysis of the performance of a 10 MWh lithium-ion battery system testing the effect of a 5-min vs. a 60-min price signal on profits using real time prices from a selected node in the MISO electricity market. Results show that models of lithium-ion batteries where the power limits and efficiency are held constant overestimate profits by 10% compared to those obtained from an enhanced representation that more closely matches the real behavior of the battery. When the battery system is exposed to a 5-min price signal, the energy arbitrage profitability improves by 60% compared to that from hourly price exposure. These results indicate that a more accurate representation of li-ion batteries as well as the market rules that govern the frequency of electricity prices can play a major role on the estimation of the value of battery technologies for power grid applications.

  9. Effect of battery longevity on costs and health outcomes associated with cardiac implantable electronic devices: a Markov model-based Monte Carlo simulation.

    Science.gov (United States)

    Schmier, Jordana K; Lau, Edmund C; Patel, Jasmine D; Klenk, Juergen A; Greenspon, Arnold J

    2017-11-01

    The effects of device and patient characteristics on health and economic outcomes in patients with cardiac implantable electronic devices (CIEDs) are unclear. Modeling can estimate costs and outcomes for patients with CIEDs under a variety of scenarios, varying battery longevity, comorbidities, and care settings. The objective of this analysis was to compare changes in patient outcomes and payer costs attributable to increases in battery life of implantable cardiac defibrillators (ICDs) and cardiac resynchronization therapy defibrillators (CRT-D). We developed a Monte Carlo Markov model simulation to follow patients through primary implant, postoperative maintenance, generator replacement, and revision states. Patients were simulated in 3-month increments for 15 years or until death. Key variables included Charlson Comorbidity Index, CIED type, legacy versus extended battery longevity, mortality rates (procedure and all-cause), infection and non-infectious complication rates, and care settings. Costs included procedure-related (facility and professional), maintenance, and infections and non-infectious complications, all derived from Medicare data (2004-2014, 5% sample). Outcomes included counts of battery replacements, revisions, infections and non-infectious complications, and discounted (3%) costs and life years. An increase in battery longevity in ICDs yielded reductions in numbers of revisions (by 23%), battery changes (by 44%), infections (by 23%), non-infectious complications (by 10%), and total costs per patient (by 9%). Analogous reductions for CRT-Ds were 23% (revisions), 32% (battery changes), 22% (infections), 8% (complications), and 10% (costs). Based on modeling results, as battery longevity increases, patients experience fewer adverse outcomes and healthcare costs are reduced. Understanding the magnitude of the cost benefit of extended battery life can inform budgeting and planning decisions by healthcare providers and insurers.

  10. PowerFilm PowerShade Fixed Site Solar System Cost Reduction Plan

    Science.gov (United States)

    2014-07-31

    system was designed which adds capability of grid tie connection to the standalone function. This battery operating system has built-in intelligence...goal concerning alternative conductive grid inks was to reduce the cost of the silver ink layer without a reduction in PV power with experimentation... system . To overcome this loss, a new BOS unit with higher power transfer efficiency has been developed. This system also has grid tie

  11. Load leveling by a battery system in an electric power system with a photovoltaic system; Taiyoko hatsuden system ga donyusareta denryoku keito no chikudenchi ni yoru fuka heijunka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    Storage battery-aided load leveling system is introduced into a power system having a photovoltaic power generation (PV) system, and the effect of the introduction is examined. For this purpose, the resultant improvement on the load factor and reduction in the annual cost are evaluated. Used as the load factor in the studies are the hourly records of power transmitted and received by Chubu Electric Power Co., Inc., in 1995. The output of the PV system is calculated using weather data collected in Nagoya City in the same year. Findings as the result of the studies are stated below. The maximum power is suppressed but a little if it is only the PV system that is introduced into the system. That is, a 2GW PV system introduced into the system suppresses the maximum power only by 0.5GW or less. The maximum power is suppressed more effectively when a storage battery is added, and it decreases linearly with an increase in the storage battery capacity. As for reduction in the cost, the reducing effect is higher when the rate of storage battery capacity/introduced PV capacity is higher in the presence of an introduced PV capacity of 0.8GW or more. 2 refs., 7 figs., 3 tabs.

  12. Cost-effectiveness analysis of repeat fine-needle aspiration for thyroid biopsies read as atypia of undetermined significance.

    Science.gov (United States)

    Heller, Michael; Zanocco, Kyle; Zydowicz, Sara; Elaraj, Dina; Nayar, Ritu; Sturgeon, Cord

    2012-09-01

    The 2007 National Cancer Institute (NCI) conference on Thyroid Fine-Needle Aspiration (FNA) introduced the category atypia of undetermined significance (AUS) or follicular lesion of undetermined significance (FLUS). Repeat FNA in 3 to 6 months was recommended for low-risk patients. Compliance with these recommendations has been suboptimal. We hypothesized that repeat FNA would be more effective than diagnostic lobectomy, with decreased costs and improved rates of cancer detection. Cost-effectiveness analysis was performed in which we compared diagnostic lobectomy with repeat FNA. A Markov model was developed. Outcomes and probabilities were identified from literature review. Third-party payer costs were estimated in 2010 US dollars. Outcomes were weighted by use of the quality-of-life utility factors, yielding quality-adjusted life years (QALYs). Monte Carlo simulation and sensitivity analysis were used to examine the uncertainty of probability, cost, and utility estimates. The diagnostic lobectomy strategy cost $8,057 and produced 23.99 QALYs. Repeat FNA cost $2,462 and produced 24.05 QALYs. Repeat FNA was dominant until the cost of FNA increased to $6,091. Dominance of the repeat FNA strategy was not sensitive to the cost of operation or the complication rate. The NCI recommendations for repeat FNA regarding follow-up of AUS/FLUS results are cost-effective. Improving compliance with these guidelines should lead to less overall costs, greater quality of life, and fewer unnecessary operations. Copyright © 2012 Mosby, Inc. All rights reserved.

  13. Selection and impedance based model of a lithium ion battery technology for integration with virtual power plant

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stan, Ana-Irina

    2013-01-01

    is to integrate lithium-ion batteries into virtual power plants; thus, the power system stability and the energy quality can be increased. The selection of the best lithium-ion battery candidate for integration with wind power plants is a key aspect for the economic feasibility of the virtual power plant...... investment. This paper presents a methodology for selection, between three candidates, of a Li-ion battery which offers long cycle lifetime at partial charge/discharge (required by many grid support applications) while providing a low cost per cycle also. For the selected Li-ion battery an impedance......-based diagnostic tool for lifetime estimation was developed and verified. This diagnostic tool can be extended into an impedance-based lifetime model that will be able to predict the remaining useful lifetime of Li-ion batteries for specific grid support applications....

  14. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island

    International Nuclear Information System (INIS)

    Ma, Tao; Yang, Hongxing; Lu, Lin

    2014-01-01

    Highlights: • Batteries and pumped hydro storage schemes are examined. • Sizing procedure for each option is investigated in detail. • The two schemes are compared in terms of life cycle cost and technical viability. • Sensitivity analyses are conducted on five key input parameters. - Abstract: This study examined and compared two energy storage technologies, i.e. batteries and pumped hydro storage (PHS), for the renewable energy powered microgrid power supply system on a remote island in Hong Kong. The problems of energy storage for off-grid renewable energy were analyzed. The sizing methods and economic models were developed, and finally applied in the real project (case study). The results provide the most suitable energy storage scheme for local decision-makers. The two storage schemes were further divided into 4 options. Accordingly, the life-cycle costs (LCC), levelized costs for the renewable energy storage system (LCRES) and the LCC ratios between all options were calculated and compared. It was found that the employment of conventional battery (Option 2) had a higher LCC value than the advanced deep cycle battery (Option 1), indicating that using deep cycle batteries is more suitable for a standalone renewable power supply system. The pumped storage combined with battery bank option (Option 3) had only 55% LCC of that of Option 1, making this combined option more cost-competitive than the sole battery option. The economic benefit of pumped storage is even more significant in the case of purely pumped storage with a hydraulic controller (Option 4), with the lowest LCC among all options at 29–48% of Option 1. Sensitivity analysis demonstrates that PHS is even more cost competitive by controlling some adjustments such as increasing energy storage capacity and days of autonomy. Therefore, the renewable energy system coupled with pumped storage presents technically feasible opportunities and practical potential for continuous power supply in remote

  15. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs

    International Nuclear Information System (INIS)

    Lunz, Benedikt; Yan, Zexiong; Gerschler, Jochen Bernhard; Sauer, Dirk Uwe

    2012-01-01

    The profitability of plug-in hybrid electric vehicles (PHEVs) is significantly influenced by battery aging and electricity costs. Therefore a simulation model for PHEVs in the distribution grid is presented which allows to compare the influence of different charging strategies on these costs. The simulation is based on real-world driving behavior and European Energy Exchange (EEX) intraday prices for obtaining representative results. The analysis of comprehensive lithium-ion battery aging tests performed within this study shows that especially high battery states of charge (SOCs) decrease battery lifetime, whereas the cycling of batteries at medium SOCs only has a minor contribution to aging. Charging strategies that take into account the previously mentioned effects are introduced, and the SOC distributions and cycle loads of the vehicle battery are investigated. It can be shown that appropriate charging strategies significantly increase battery lifetime and reduce charging costs at the same time. Possible savings due to lifetime extension of the vehicle battery are approximately two times higher than revenues due to energy trading. The findings of this work indicate that car manufacturers and energy/mobility providers have to make efforts for developing intelligent charging strategies to reduce mobility costs and thus foster the introduction of electric mobility. - Highlights: ► Modeling of PHEVs based on real-world driving behavior and electricity prices. ► Consideration of battery degradation for the calculation of mobility costs. ► Smart charging decreases battery degradation and electricity costs simultaneously. ► Reduction of battery degradation costs is around two times higher than reduction of electricity costs.

  16. Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems

    Science.gov (United States)

    King, Robert Dean; DeDoncker, Rik Wivina Anna Adelson

    1998-01-01

    A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

  17. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    Science.gov (United States)

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology.

  18. Lithium-thionyl chloride battery design concepts for maximized power applications

    Science.gov (United States)

    Kane, P.; Marincic, N.

    The need for primary batteries configured to deliver maximized power has been asserted by many different procuring activities. Battery Engineering Inc. has developed some specific design concepts and mastered some specialized techniques utilized in the production of this type of power source. The batteries have been successfully bench tested during the course of virtually all of these programs, with ultimate success coming in the form of two successful test launches under the USAF Plasma Effects Decoy Program. This paper briefly discusses some of these design concepts and the rationale behind them.

  19. High power valve regulated lead-acid batteries for new vehicle requirements

    Science.gov (United States)

    Trinidad, Francisco; Sáez, Francisco; Valenciano, Jesús

    The performance of high power VRLA ORBITAL™ batteries is presented. These batteries have been designed with isolated cylindrical cells, providing high reliability to the recombination process, while maintaining, at the same time, a very high compression (>80 kPa) over the life of the battery. Hence, the resulting VRLA modules combine a high rate capability with a very good cycle performance. Two different electrochemically active material compositions have been developed: high porosity and low porosity for starting and deep cycle applications, respectively (depending on the power demand and depth of discharge). Although, the initial performance of the starting version is higher, after a few cycles the active material of the deep cycle version is fully developed, and this achieves the same high rate capability. Both types are capable of supplying the necessary reliability for cranking at the lowest temperature (-40°C). Specific power of over 500 W/kg is achievable at a much lower cost than for nickel-metal hydride systems. Apart from the initial performance, an impressive behaviour of the cycling version has been found in deep cycle applications, due to the highly compressed and high density active material. When submitted to continuous discharge-charge cycles at 75% (IEC 896-2 specification) and 100% (BCI deep cycle) DoD, it has been found that the batteries are still healthy after more than 1000 and 700 cycles, respectively. However, it has been proven that the application of an IUi algorithm (up to 110% of overcharging) with a small constant current charging period at the end of the charge is absolutely necessary to achieve the above results. Without the final boosting period, the cycle life of the battery could be substantially shortened. The high specific power and reliability observed in the tests carried out, would allow ORBITAL™ batteries to comply with the more demanding requirements that are being introduced in conventional and future hybrid electric

  20. Power Flow Distribution Strategy for Improved Power Electronics Energy Efficiency in Battery Storage Systems: Development and Implementation in a Utility-Scale System

    Directory of Open Access Journals (Sweden)

    Michael Schimpe

    2018-03-01

    Full Text Available Utility-scale battery storage systems typically consist of multiple smaller units contributing to the overall power dispatch of the system. Herein, the power distribution among these units is analyzed and optimized to operate the system with increased energy efficiency. To improve the real-life storage operation, a holistic system model for battery storage systems has been developed that enables a calculation of the energy efficiency. A utility-scale Second-Life battery storage system with a capacity of 3.3 MWh/3 MW is operated and evaluated in this work. The system is in operation for the provision of primary control reserve in combination with intraday trading for controlling the battery state of charge. The simulation model is parameterized with the system data. Results show that losses in power electronics dominate. An operational strategy improving the energy efficiency through an optimized power flow distribution within the storage system is developed. The power flow distribution strategy is based on the reduction of the power electronics losses at no-load/partial-load by minimizing their in-operation time. The simulation derived power flow distribution strategy is implemented in the real-life storage system. Field-test measurements and analysis prove the functionality of the power flow distribution strategy and reveal the reduction of the energy throughput of the units by 7%, as well as a significant reduction of energy losses in the units by 24%. The cost savings for electricity over the system’s lifetime are approximated to 4.4% of its investment cost.

  1. Performance Model for High-Power Lithium Titanate Oxide Batteries based on Extended Characterization Tests

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2015-01-01

    Lithium-ion (Li-ion) batteries are found nowadays not only in portable/consumer electronics but also in more power demanding applications, such as stationary renewable energy storage, automotive and back-up power supply, because of their superior characteristics in comparison to other energy...... storage technologies. Nevertheless, prior to be used in any of the aforementioned application, a Li-ion battery cell must be intensively characterized and its behavior needs to be understood. This can be realized by performing extended laboratory characterization tests and developing Li-ion battery...... performance models. Furthermore, accurate performance models are necessary in order to analyze the behavior of the battery cell under different mission profiles, by simulation; thus, avoiding time and cost demanding real life tests. This paper presents the development and the parametrization of a performance...

  2. Power Constrained High-Level Synthesis of Battery Powered Digital Systems

    DEFF Research Database (Denmark)

    Nielsen, Sune Fallgaard; Madsen, Jan

    2003-01-01

    We present a high-level synthesis algorithm solving the combined scheduling, allocation and binding problem minimizing area under both latency and maximum power per clock-cycle constraints. Our approach eliminates the large power spikes, resulting in an increased battery lifetime, a property...... of utmost importance for battery powered embedded systems. Our approach extends the partial-clique partitioning algorithm by introducing power awareness through a heuristic algorithm which bounds the design space to those of power feasible schedules. We have applied our algorithm on a set of dataflow graphs...

  3. Aging studies of batteries and transformers in class IE power systems

    International Nuclear Information System (INIS)

    Edson, J.L.; Roberts, E.W.

    1992-01-01

    A Phase I aging study of batteries used in 1E Power Systems of nuclear power plants concluded that significant aging effects for aged batteries are growth of positive plants, loosening of active material in plates that have grown, loss of active material caused by gassing and corrosion, and embrittlement of the lead grids and straps. These effects contribute to decreased electrical capacity and decreased seismic ruggedness which, during a seismic event, can lead to decreased electrical performance or complete failure. Subsequently a Phase II test program was conducted to determine if seismic ruggedness of aged batteries can be inadequate even if the electrical capacity is satisfactory, as determined by tests recommended by IEEE Std 450-1987, open-quote IEEE Recommended Practice for Maintenance, Testing, and Replacement of Large Storage Batteries for Generating Stations and Substations.close quotes In addition, a Phase I aging study of transformers in 1E Power Systems was performed to identify stressors and failure mechanisms, investigate whether transformers are showing the effects of aging as they grow older, and to determine if current surveillance methods are effective in mitigating aging effects. This paper presents the results of these studies

  4. Stand-alone flat-plate photovoltaic power systems: System sizing and life-cycle costing methodology for Federal agencies

    Science.gov (United States)

    Borden, C. S.; Volkmer, K.; Cochrane, E. H.; Lawson, A. C.

    1984-01-01

    A simple methodology to estimate photovoltaic system size and life-cycle costs in stand-alone applications is presented. It is designed to assist engineers at Government agencies in determining the feasibility of using small stand-alone photovoltaic systems to supply ac or dc power to the load. Photovoltaic system design considerations are presented as well as the equations for sizing the flat-plate array and the battery storage to meet the required load. Cost effectiveness of a candidate photovoltaic system is based on comparison with the life-cycle cost of alternative systems. Examples of alternative systems addressed are batteries, diesel generators, the utility grid, and other renewable energy systems.

  5. Dynamic behaviour of Li batteries in hydrogen fuel cell power trains

    Science.gov (United States)

    Veneri, O.; Migliardini, F.; Capasso, C.; Corbo, P.

    A Li ion polymer battery pack for road vehicles (48 V, 20 Ah) was tested by charging/discharging tests at different current values, in order to evaluate its performance in comparison with a conventional Pb acid battery pack. The comparative analysis was also performed integrating the two storage systems in a hydrogen fuel cell power train for moped applications. The propulsion system comprised a fuel cell generator based on a 2.5 kW polymeric electrolyte membrane (PEM) stack, fuelled with compressed hydrogen, an electric drive of 1.8 kW as nominal power, of the same typology of that installed on commercial electric scooters (brushless electric machine and controlled bidirectional inverter). The power train was characterized making use of a test bench able to simulate the vehicle behaviour and road characteristics on driving cycles with different acceleration/deceleration rates and lengths. The power flows between fuel cell system, electric energy storage system and electric drive during the different cycles were analyzed, evidencing the effect of high battery currents on the vehicle driving range. The use of Li batteries in the fuel cell power train, adopting a range extender configuration, determined a hydrogen consumption lower than the correspondent Pb battery/fuel cell hybrid vehicle, with a major flexibility in the power management.

  6. Impact of Battery Energy Storage System Operation Strategy on Power System: An Urban Railway Load Case under a Time-of-Use Tariff

    Directory of Open Access Journals (Sweden)

    Hyeongig Kim

    2017-01-01

    Full Text Available Customer-owned battery energy storage systems (BESS have been used to reduce electricity costs of energy storage owners (ESOs under a time-of-use (TOU tariff in Korea. However, the current TOU tariff can unintentionally induce customer’s electricity usage to have a negative impact on power systems. This paper verifies the impact of different BESS operation strategies on power systems under a TOU tariff by analyzing the TOU tariff structure and the customer’s load pattern. First, several BESS operation strategies of ESO are proposed to reduce the electricity cost. In addition, a degradation cost calculation method for lithium ion batteries is considered for the ESO to determine the optimal BESS operation strategy that maximizes both electricity cost and annual investment cost. The optimal BESS operation strategy that maximizes ESO’s net benefit is illustrated by simulation using an urban railway load data from Namgwangju Station, Korea. The results show that BESS connected to urban railway loads can negative impact power system operation. This is due to the high BESS degradation costs and lack of incentive of differential rates in TOU tariff that can effectively induce proper demand response.

  7. Decentralized control of a scalable photovoltaic (PV)-battery hybrid power system

    International Nuclear Information System (INIS)

    Kim, Myungchin; Bae, Sungwoo

    2017-01-01

    Highlights: • This paper introduces the design and control of a PV-battery hybrid power system. • Reliable and scalable operation of hybrid power systems is achieved. • System and power control are performed without a centralized controller. • Reliability and scalability characteristics are studied in a quantitative manner. • The system control performance is verified using realistic solar irradiation data. - Abstract: This paper presents the design and control of a sustainable standalone photovoltaic (PV)-battery hybrid power system (HPS). The research aims to develop an approach that contributes to increased level of reliability and scalability for an HPS. To achieve such objectives, a PV-battery HPS with a passively connected battery was studied. A quantitative hardware reliability analysis was performed to assess the effect of energy storage configuration to the overall system reliability. Instead of requiring the feedback control information of load power through a centralized supervisory controller, the power flow in the proposed HPS is managed by a decentralized control approach that takes advantage of the system architecture. Reliable system operation of an HPS is achieved through the proposed control approach by not requiring a separate supervisory controller. Furthermore, performance degradation of energy storage can be prevented by selecting the controller gains such that the charge rate does not exceed operational requirements. The performance of the proposed system architecture with the control strategy was verified by simulation results using realistic irradiance data and a battery model in which its temperature effect was considered. With an objective to support scalable operation, details on how the proposed design could be applied were also studied so that the HPS could satisfy potential system growth requirements. Such scalability was verified by simulating various cases that involve connection and disconnection of sources and loads. The

  8. Battery charging stations

    Energy Technology Data Exchange (ETDEWEB)

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  9. Power requirements and battery life measurement for wireless transmission between two nodes in different mediums

    Directory of Open Access Journals (Sweden)

    Radouane Karli

    2017-06-01

    Full Text Available One of the most important roles of the wireless sensor networks (WSN is to avoid wiring costs, be self-sustainable and be able to function for several years. However, due to the slow progress in battery technology, power continues to be a limited resource in wireless sensor communication and electric energy storage remains to be an important issue. On the other hand, if batteries must be replaced often, many remote sensing applications may become impractical. Therefore, batteries with long life on the order of several years are needed. This paper is an extension of work originally presented in The 5th International Conference on Electronic Devices, Systems and Applications to investigate further the power requirements for wireless data transfer between two nodes using batteries with different capacities (55 mAh, 550 mAh and 5500 mAh. In particular, the effect of a propagation medium such as air, distilled water and engine oil on the wireless communication inside a one meter long metallic pipe was investigated. Our first result shows a successful transmission of wireless signal through air, distilled water and oil medium with very low transmission losses. The second result shows that an increase in the battery capacity will increase the two-node wireless sensor operation time even in different propagation medium. This result can be used to determine the required battery capacity for extending the WSN operation time.

  10. Analysis of batteries for use in photovoltaic systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Podder, A; Kapner, M

    1981-02-01

    An evaluation of 11 types of secondary batteries for energy storage in photovoltaic electric power systems is given. The evaluation was based on six specific application scenarios which were selected to represent the diverse requirements of various photovoltaic systems. Electrical load characteristics and solar insulation data were first obtained for each application scenario. A computer-based simulation program, SOLSIM, was then developed to determine optimal sizes for battery, solar array, and power conditioning systems. Projected service lives and battery costs were used to estimate life-cycle costs for each candidate battery type. The evaluation considered battery life-cycle cost, safety and health effects associated with battery operation, and reliability/maintainability. The 11 battery types were: lead-acid, nickel-zinc, nickel-iron, nickel-hydrogen, lithium-iron sulfide, calcium-iron sulfide, sodium-sulfur, zinc-chlorine, zinc-bromine, Redox, and zinc-ferricyanide. The six application scenarios were: (1) a single-family house in Denver, Colorado (photovoltaic system connected to the utility line); (2) a remote village in equatorial Africa (stand-alone power system); (3) a dairy farm in Howard County, Maryland (onsite generator for backup power); (4) a 50,000 square foot office building in Washington, DC (onsite generator backup); (5) a community in central Arizona with a population of 10,000 (battery to be used for dedicated energy storage for a utility grid-connected photovoltaic power plant); and (6) a military field telephone office with a constant 300 W load (trailer-mounted auxiliary generator backup). Recommendations for a research and development program on battery energy storage for photovoltaic applications are given, and a discussion of electrical interfacing problems for utility line-connected photovoltaic power systems is included. (WHK)

  11. Optimal energy management strategy for battery powered electric vehicles

    International Nuclear Information System (INIS)

    Xi, Jiaqi; Li, Mian; Xu, Min

    2014-01-01

    Highlights: • The power usage for battery-powered electrical vehicles with in-wheel motors is maximized. • The battery and motor dynamics are examined emphasized on the power conversion and utilization. • The optimal control strategy is derived and verified by simulations. • An analytic expression of the optimal operating point is obtained. - Abstract: Due to limited energy density of batteries, energy management has always played a critical role in improving the overall energy efficiency of electric vehicles. In this paper, a key issue within the energy management problem will be carefully tackled, i.e., maximizing the power usage of batteries for battery-powered electrical vehicles with in-wheel motors. To this end, the battery and motor dynamics will be thoroughly examined with particular emphasis on the power conversion and power utilization. The optimal control strategy will then be derived based on the analysis. One significant contribution of this work is that an analytic expression for the optimal operating point in terms of the component and environment parameters can be obtained. Owing to this finding, the derived control strategy is also rendered a simple structure for real-time implementation. Simulation results demonstrate that the proposed strategy works both adaptively and robustly under different driving scenarios

  12. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  13. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    Science.gov (United States)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  14. Power sources for portable electronics and hybrid cars: lithium batteries and fuel cells.

    Science.gov (United States)

    Scrosati, Bruno

    2005-01-01

    The activities in progress in our laboratory for the development of batteries and fuel cells for portable electronics and hybrid car applications are reviewed and discussed. In the case of lithium batteries, the research has been mainly focused on the characterization of new electrode and electrolyte materials. Results related to disordered carbon anodes and improved, solvent-free, as well as gel-type, polymer electrolytes are particularly stressed. It is shown that the use of proper gel electrolytes, in combination with suitable electrode couples, allows the development of new types of safe, reliable, and low-cost lithium ion batteries which appear to be very promising power sources for hybrid vehicles. Some of the technologies proven to be successful in the lithium battery area are readapted for use in fuel cells. In particular, this approach has been followed for the preparation of low-cost and stable protonic membranes to be proposed as an alternative to the expensive, perfluorosulfonic membranes presently used in polymer electrolyte membrane fuel cells (PEMFCs). Copyright 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc

  15. Lithium-Ion Battery Online Rapid State-of-Power Estimation under Multiple Constraints

    Directory of Open Access Journals (Sweden)

    Shun Xiang

    2018-01-01

    Full Text Available The paper aims to realize a rapid online estimation of the state-of-power (SOP with multiple constraints of a lithium-ion battery. Firstly, based on the improved first-order resistance-capacitance (RC model with one-state hysteresis, a linear state-space battery model is built; then, using the dual extended Kalman filtering (DEKF method, the battery parameters and states, including open-circuit voltage (OCV, are estimated. Secondly, by employing the estimated OCV as the observed value to build the second dual Kalman filters, the battery SOC is estimated. Thirdly, a novel rapid-calculating peak power/SOP method with multiple constraints is proposed in which, according to the bisection judgment method, the battery’s peak state is determined; then, one or two instantaneous peak powers are used to determine the peak power during T seconds. In addition, in the battery operating process, the actual constraint that the battery is under is analyzed specifically. Finally, three simplified versions of the Federal Urban Driving Schedule (SFUDS with inserted pulse experiments are conducted to verify the effectiveness and accuracy of the proposed online SOP estimation method.

  16. Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation

    Directory of Open Access Journals (Sweden)

    Dongmin Yu

    2017-06-01

    Full Text Available Many combined heat and power (CHP units have been installed in domestic buildings to increase energy efficiency and reduce energy costs. However, inappropriate sizing of a CHP may actually increase energy costs and reduce energy efficiency. Moreover, the high manufacturing cost of batteries makes batteries less affordable. Therefore, this paper will attempt to size the capacity of CHP and optimise daily energy costs for a domestic building with only CHP installed. In this paper, electricity and heat loads are firstly used as sizing criteria in finding the best capacities of different types of CHP with the help of the maximum rectangle (MR method. Subsequently, the genetic algorithm (GA will be used to optimise the daily energy costs of the different cases. Then, heat and electricity loads are jointly considered for sizing different types of CHP and for optimising the daily energy costs through the GA method. The optimisation results show that the GA sizing method gives a higher average daily energy cost saving, which is 13% reduction compared to a building without installing CHP. However, to achieve this, there will be about 3% energy efficiency reduction and 7% input power to rated power ratio reduction compared to using the MR method and heat demand in sizing CHP.

  17. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  18. Metal-air battery research and development

    Science.gov (United States)

    Behrin, E.; Cooper, J. F.

    1982-05-01

    This report summarizes the activities of the Metal-air Battery Program during the calendar year 1981. The principal objective is to develop a refuelable battery as an automotive energy source for general-purpose electric vehicles and to conduct engineering demonstrations of its ability to provide vehicles with the range, acceleration, and rapid refueling capability of current internal-combustion-engine automobiles. The second objective is to develop an electrically-rechargeable battery for specific-mission electric vehicles, such as commuter vehicles, that can provide low-cost transportation. The development progression is to: (1) develop a mechanically rechargeable aluminum-air power cell using model electrodes, (2) develop cost-effective anode and cathode materials and structures as required to achieve reliability and efficiency goals, and to establish the economic competitiveness of this technology, and (3) develop and integrated propulsion system utilizing the power cell.

  19. Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm

    Directory of Open Access Journals (Sweden)

    Xiangwei Guo

    2016-02-01

    Full Text Available An estimation of the power battery state of charge (SOC is related to the energy management, the battery cycle life and the use cost of electric vehicles. When a lithium-ion power battery is used in an electric vehicle, the SOC displays a very strong time-dependent nonlinearity under the influence of random factors, such as the working conditions and the environment. Hence, research on estimating the SOC of a power battery for an electric vehicle is of great theoretical significance and application value. In this paper, according to the dynamic response of the power battery terminal voltage during a discharging process, the second-order RC circuit is first used as the equivalent model of the power battery. Subsequently, on the basis of this model, the least squares method (LS with a forgetting factor and the adaptive unscented Kalman filter (AUKF algorithm are used jointly in the estimation of the power battery SOC. Simulation experiments show that the joint estimation algorithm proposed in this paper has higher precision and convergence of the initial value error than a single AUKF algorithm.

  20. Applying wind turbines and battery storage to defer Orcas Power and Light Company distribution circuit upgrades

    International Nuclear Information System (INIS)

    Zaininger, H.W.; Barnes, P.R.

    1997-03-01

    The purpose of this study is to conduct a detailed assessment of the Orcas Power and Light Company (OPALCO) system to determine the potential for deferring the costly upgrade of the 25-kV Lopez- Eastsound circuit, by the application of a MW-scale wind farm and battery storage facilities as appropriate. Local wind resource data has been collected over the past year and used to determine MW-scale wind farm performance. This hourly wind farm performance data is used with measured hourly Eastsound load data, and recent OPALCO distribution system expansion plans and cost projections in performing this detailed benefit-cost assessment. The OPALCO distribution circuit expansion project and assumptions are described. MW-scale wind farm performance results are given. The economic benefit-cost results for the wind farm and battery storage applications on the OPALCO system using OPALCO system design criteria and cost assumptions are reported. A recalculation is presented of the benefit-cost results for similar potential wind farm and battery storage applications on other utility systems with higher marginal energy and demand costs. Conclusions and recommendations are presented. costs. Conclusions and recommendations are presented

  1. Optimal Sizing of a Stand-Alone Hybrid Power System Based on Battery/Hydrogen with an Improved Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Weiqiang Dong

    2016-09-01

    Full Text Available A distributed power system with renewable energy sources is very popular in recent years due to the rapid depletion of conventional sources of energy. Reasonable sizing for such power systems could improve the power supply reliability and reduce the annual system cost. The goal of this work is to optimize the size of a stand-alone hybrid photovoltaic (PV/wind turbine (WT/battery (B/hydrogen system (a hybrid system based on battery and hydrogen (HS-BH for reliable and economic supply. Two objectives that take the minimum annual system cost and maximum system reliability described as the loss of power supply probability (LPSP have been addressed for sizing HS-BH from a more comprehensive perspective, considering the basic demand of load, the profit from hydrogen, which is produced by HS-BH, and an effective energy storage strategy. An improved ant colony optimization (ACO algorithm has been presented to solve the sizing problem of HS-BH. Finally, a simulation experiment has been done to demonstrate the developed results, in which some comparisons have been done to emphasize the advantage of HS-BH with the aid of data from an island of Zhejiang, China.

  2. Battery model for electrical power system energy balance

    Science.gov (United States)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  3. Rechargeable Battery Auto-Cycler Requiring Lower Power and Dissipating Reduced Waste Heat

    Science.gov (United States)

    Hanson, Thomas David (Inventor)

    2018-01-01

    A battery charger system includes a power supply and a switch connected to the power supply wherein the switch has a first switch half and a second switch half. First and second batteries are selectively connected to the power supply via the switch. The first and second switch halves are moved between a plurality of operational positions to fully charge the first battery, discharge the first battery into the second battery, discharge the second battery into the first battery, and fully charge the second battery.

  4. Performance and cost of materials for lithium-based rechargeable automotive batteries

    Science.gov (United States)

    Schmuch, Richard; Wagner, Ralf; Hörpel, Gerhard; Placke, Tobias; Winter, Martin

    2018-04-01

    It is widely accepted that for electric vehicles to be accepted by consumers and to achieve wide market penetration, ranges of at least 500 km at an affordable cost are required. Therefore, significant improvements to lithium-ion batteries (LIBs) in terms of energy density and cost along the battery value chain are required, while other key performance indicators, such as lifetime, safety, fast-charging ability and low-temperature performance, need to be enhanced or at least sustained. Here, we review advances and challenges in LIB materials for automotive applications, in particular with respect to cost and performance parameters. The production processes of anode and cathode materials are discussed, focusing on material abundance and cost. Advantages and challenges of different types of electrolyte for automotive batteries are examined. Finally, energy densities and costs of promising battery chemistries are critically evaluated along with an assessment of the potential to fulfil the ambitious targets of electric vehicle propulsion.

  5. Membrane-less hydrogen bromine flow battery

    Science.gov (United States)

    Braff, William A.; Bazant, Martin Z.; Buie, Cullen R.

    2013-08-01

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less hydrogen bromine laminar flow battery as a potential high-power density solution. The membrane-less design enables power densities of 0.795 W cm-2 at room temperature and atmospheric pressure, with a round-trip voltage efficiency of 92% at 25% of peak power. Theoretical solutions are also presented to guide the design of future laminar flow batteries. The high-power density achieved by the hydrogen bromine laminar flow battery, along with the potential for rechargeable operation, will translate into smaller, inexpensive systems that could revolutionize the fields of large-scale energy storage and portable power systems.

  6. A review of nickel hydrogen battery technology

    Science.gov (United States)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  7. The effect of costs on the future of nuclear power

    International Nuclear Information System (INIS)

    Walske, C.

    1984-01-01

    The author discusses the future of the nuclear power industry from an economics and cost-factor point of view, from the point of view of plant management, as it affects and requires personnel training, as R and D cost and competition is involved, as end-user cost is involved, and as efficiency and cost effectiveness of nuclear power fare in comparison with other sources of electrical energy

  8. Pulse Power Capability Estimation of Lithium Titanate Oxide-based Batteries

    DEFF Research Database (Denmark)

    Stroe, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Loan

    2016-01-01

    The pulse power capability (PPC) represents one of the parameters that describe the performance behavior of Lithium-ion batteries independent on the application. Consequently, extended information about the Li-ion battery PPC and its dependence on the operating conditions become necessary. Thus......, this paper analyzes the power capability characteristic of a 13Ah high power Lithium Titanate Oxide-based battery and its dependence on temperature, load current and state-of-charge. Furthermore, a model to predict the discharging PPC of the battery cell at different temperatures and load currents for three...

  9. Introduction effect of a load levelling system in an electric power system with a photovoltaic and wind system; Taiyoko/furyoku hatsuden wo donyu shita denryoku keito ni okeru fuka heijunka shisutemu no donyu koka

    Energy Technology Data Exchange (ETDEWEB)

    Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1998-12-05

    Introduction effect of load levelling system by a battery in an electric power system by a battery in an electric power system with a PV and wind system is investigated. Charge and discharge power of the battery are determined from a load curve and every hour data of PV and wind output. Annual cost of the power system is calculated from the generating power and the capacity of each source via the installed utility capacity and the capacity factor. It is found that (1) the battery system reduces the maximum demand and improves the load factor, (2) the cost effect of the battery system when introducing the PV system is higher than that when introducing the wind system. (author)

  10. Membrane-less hydrogen bromine flow battery

    OpenAIRE

    Braff, W. A.; Bazant, M. Z.; Buie, C. R.

    2014-01-01

    In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for reducing stack cost is to increase the system power density while maintaining efficiency, enabling smaller stacks. Here we report on a membrane-less, hydrogen bromine laminar flow battery as a potential high power density solution. The membrane-less design enables power densiti...

  11. Long Term Analysis of Adaptive Low-Power Instrument Platform Power and Battery Performance

    Science.gov (United States)

    Edwards, T.; Bowman, J. R.; Clauer, C. R.

    2017-12-01

    Operation of the Autonomous Adaptive Low-Power Instrument Platform (AAL-PIP) by the Magnetosphere-Ionosphere Science Team (MIST) at Virginia Tech has been ongoing for about 10 years. These instrument platforms are deployed on the East Antarctic Plateau in remote locations that are difficult to access regularly. The systems have been designed to operate unattended for at least 5 years. During the Austral summer, the systems charge batteries using solar panels and power is provided by the batteries during the winter months. If the voltage goes below a critical level, the systems go into hibernation and wait for voltage from the solar panels to initiate a restart sequence to begin operation and battery charging. Our first system was deployed on the East Antarctic Plateau in 2008 and we report here on an analysis of the power and battery performance over multiple years and provide an estimate for how long these systems can operate before major battery maintenance must be performed.

  12. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; Odonnell, P.M.

    1995-05-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market.

  13. Hydrogen-Bromine Flow Battery: Hydrogen Bromine Flow Batteries for Grid Scale Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    GRIDS Project: LBNL is designing a flow battery for grid storage that relies on a hydrogen-bromine chemistry which could be more efficient, last longer and cost less than today’s lead-acid batteries. Flow batteries are fundamentally different from traditional lead-acid batteries because the chemical reactants that provide their energy are stored in external tanks instead of inside the battery. A flow battery can provide more energy because all that is required to increase its storage capacity is to increase the size of the external tanks. The hydrogen-bromine reactants used by LBNL in its flow battery are inexpensive, long lasting, and provide power quickly. The cost of the design could be well below $100 per kilowatt hour, which would rival conventional grid-scale battery technologies.

  14. Control Algorithms Charge Batteries Faster

    Science.gov (United States)

    2012-01-01

    On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.

  15. Utilizing a vanadium redox flow battery to avoid wind power deviation penalties in an electricity market

    International Nuclear Information System (INIS)

    Turker, Burak; Arroyo Klein, Sebastian; Komsiyska, Lidiya; Trujillo, Juan José; Bremen, Lueder von; Kühn, Martin; Busse, Matthias

    2013-01-01

    Highlights: • Vanadium redox flow battery utilized for wind power grid integration was studied. • Technical and financial analyses at single wind farm level were performed. • 2 MW/6 MW h VRFB is suitable for mitigating power deviations for a 10 MW wind farm. • Economic incentives might be required in the short-term until the VRFB prices drop. - Abstract: Utilizing a vanadium redox flow battery (VRFB) for better market integration of wind power at a single wind farm level was evaluated. A model which combines a VRFB unit and a medium sized (10 MW) wind farm was developed and the battery was utilized to compensate for the deviations resulting from the forecast errors in an electricity market bidding structure. VRFB software model which was introduced in our previous paper was integrated with real wind power data, power forecasts and market data based on the Spanish electricity market. Economy of the system was evaluated by financial assessments which were done by considering the VRFB costs and the amount of deviation penalty payments resulting from forecast inaccuracies

  16. A review of nickel hydrogen battery technology

    Energy Technology Data Exchange (ETDEWEB)

    Smithrick, J.J.; O`Donnell, P.M. [NASA Lewis Research Center, Cleveland, OH (United States)

    1995-12-31

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (>30,000 cycles), the current cycle life of 4,000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft.

  17. Local government household battery collection programs: Costs and benefits

    Energy Technology Data Exchange (ETDEWEB)

    Shapek, Raymond A [Department of Public Administration, University of Central Florida, Orlando, FL (United States)

    1995-10-01

    Nearly three billion dry-cell household batteries are discarded in the municipal waste stream annually. While the mercury content of newer batteries has been reduced, older batteries and the accumulated total of mercury and cadmium, as well as other metals in the newer batteries still constitute a potential health risk. Many communities have initiated collection programs to remove this source of contamination from the municipal waste stream, but most have not. Fourteen states have enacted legislation regulating the disposal of household batteries, while nine states require the collection of rechargeable batteries. This article describes the potential health risks associated with continued disposal and incineration of household dry-cell batteries, reviews a sampling of existing municipal collection programs in US communities, and examines the costs and benefits and program options of collection programs

  18. Electrochemical power sources batteries, fuel cells, and supercapacitors

    CERN Document Server

    Bagotsky, Vladimir S; Volfkovich, Yurij M

    2015-01-01

    Electrochemical Power Sources (EPS) provides in a concise way theoperational features, major types, and applications of batteries,fuel cells, and supercapacitors Details the design, operational features, andapplications of batteries, fuel cells, and supercapacitors Covers improvements of existing EPSs and thedevelopment of new kinds of EPS as the results of intense R&Dwork Provides outlook for future trends in fuel cells andbatteries Covers the most typical battery types, fuel cells andsupercapacitors; such as zinc-carbon batteries, alkaline manganesedioxide batteries, mercury-zinc cells, lead

  19. Performance of U.S. hybrid distributed energy systems: Solar photovoltaic, battery and combined heat and power

    International Nuclear Information System (INIS)

    Shah, Kunal K.; Mundada, Aishwarya S.; Pearce, J.M.

    2015-01-01

    Highlights: • Simulated PV + battery + CHP hybrid systems deployed in three U.S. regions. • Used hybrid optimization model for electric renewable pro microgrid analysis. • Limited size of each sub-module to singe family house size. • Results show that the electricity generated meets residential load demand. • Hybrid systems are technically viable in hot, moderate and cold climates in U.S. - Abstract: Until recently, the relatively high levelized cost of electricity from solar photovoltaic (PV) technology limited deployment; however, recent cost reductions, combined with various financial incentives and innovative financing techniques, have made PV fully competitive with conventional sources in many American regions. In addition, the costs of electrical storage have also declined enough to make PV + battery systems potentially economically viable for a mass-scale off-grid low-emission transition. However, many regions in the U.S. (e.g. Northern areas) cannot have off-grid PV systems without prohibitively large battery systems. Small-scale combined heat and power (CHP) systems provide a potential solution for off-grid power backup of residential-scale PV + battery arrays, while also minimizing emissions from conventional sources. Thus, an opportunity is now available to maximize the use of solar energy and gain the improved efficiencies possible with CHPs to deploy PV + battery + CHP systems throughout the U.S. The aim of this study is to determine the technical viability of such systems by simulating PV + battery + CHP hybrid systems deployed in three representative regions in the U.S., using the Hybrid Optimization Model for Electric Renewable (HOMER) Pro Microgrid Analysis tool. The results show that the electricity generated by each component of the hybrid system can be coupled to fulfill the residential load demand. A sensitivity analysis of these hybrid off grid systems is carried out as a function capacity factor of both the PV and CHP units. The

  20. Corrosion in batteries and fuel-cell power sources

    International Nuclear Information System (INIS)

    Cieslak, W.R.

    1987-01-01

    Batteries and fuel cells, as electrochemical power sources, provide energy through controlled redox reactions. Because these devices contain electrochemically active components, they place metals in contact with environments in which the metals may corrode. The shelf lives of batteries, particularly those that operate at ambient temperatures depend on very slow rates of corrosion of the electrode materials at open circuit. The means of reducing this corrosion must also be evaluated for its influence on performance. A second major corrosion consideration in electrochemical power sources involves the hardware. Again, shelf lives and service lives depend on very good corrosion resistance of the containment materials and inactive components, such as separators. In those systems in which electrolyte purity is important, even small amounts of corrosion that have not lessened structural integrity can degrade performance. There is a wide variety of batteries and fuel cells, and new systems are constantly under development. Therefore, to illustrate the types of corrosion phenomena that occur, this article will discuss the following systems: lead-acid batteries, alkaline batteries (in terms of the sintered nickel electrode only), lithium ambient-temperature batteries, aluminum/air batteries, sodium/sulfur batteries, phosphoric acid (H/sub 3/PO/sub 4/) fuel cells, and molten carbonate fuel cells

  1. Electric Vehicle Based Battery Storages for Large Scale Wind Power Integration in Denmark

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna

    In the recent years, the electric vehicles (EVs) have drawn great attention world wide as a feasible solution for clean transportation. The electric vehicle technology is not new as it was introduced in the mid 19th century. The low battery capacity, driving range and superior gasoline cars had...... resulted in the demise of electric cars in the 1930s. However, with the advancement of new high density battery technologies and power electronic converters, it is now viable to produce electric cars of higher efficiency and driving range. The performance and durability of the battery technology...... is improving on a rapid scale and the battery cost is also reducing which could enable the electric cars to be competitive in the market. The electric vehicles could also benefit the electricity sector in supporting more renewable energy which is also one of the most important driving forces in its promotion...

  2. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can

  3. A Novel Design of Needle Aspiration Biopsy Monitoring Instrument (NAOMI Tested on a Low Cost Chest Phantom

    Directory of Open Access Journals (Sweden)

    Surakusumah Rino Ferdian

    2016-01-01

    Full Text Available Needle biopsy is a medical intervention method for taking a lung tissue sample that suspected as a cancer. The disadvantage is the physicians directly visualize the anatomical structures in an open surgery for lung cancer biopsy procedure. There is a need to develop an instrument that may help the physician to guarantee the accuracy and efficiency while performing needle aspiration biopsy. Therefore, a needle aspiration biopsy monitoring instrument or named as NAOMI is proposed. It consists of a microcontroller system, an IMU sensor, an ultrasonic ranging module, a bluetooth module, and a 9V lithium battery. The experimental testing consist of performance testing, functional testing using chest phantom, and user acceptances. The results showed that the NAOMI improve the accuracy and efficiency while performing the needle biopsy operation.

  4. Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects

    Science.gov (United States)

    Gomez, Jamie; Nelson, Ruben; Kalu, Egwu E.; Weatherspoon, Mark H.; Zheng, Jim P.

    2011-05-01

    Equivalent circuit model (EMC) of a high-power Li-ion battery that accounts for both temperature and state of charge (SOC) effects known to influence battery performance is presented. Electrochemical impedance measurements of a commercial high power Li-ion battery obtained in the temperature range 20 to 50 °C at various SOC values was used to develop a simple EMC which was used in combination with a non-linear least squares fitting procedure that used thirteen parameters for the analysis of the Li-ion cell. The experimental results show that the solution and charge transfer resistances decreased with increase in cell operating temperature and decreasing SOC. On the other hand, the Warburg admittance increased with increasing temperature and decreasing SOC. The developed model correlations that are capable of being used in process control algorithms are presented for the observed impedance behavior with respect to temperature and SOC effects. The predicted model parameters for the impedance elements Rs, Rct and Y013 show low variance of 5% when compared to the experimental data and therefore indicates a good statistical agreement of correlation model to the actual experimental values.

  5. A high power lithium thionyl chloride battery for space applications

    Science.gov (United States)

    Shah, Pinakin M.

    1993-03-01

    A high power, 28 V, 330 A h, active lithium thionyl chloride battery has been developed for use as main and payload power sources on an expendable launch vehicle. Nine prismatic cells, along with the required electrical components and a built-in heater system, are efficiently packaged resulting in significant weight savings over presently used silver-zinc batteries. The high rate capability is achieved by designing the cells with a large electrochemical surface area and impregnating an electrocatalyst, polymeric phthalocyanine, into the carbon cathodes. Passivation effects are reduced with the addition of sulfur dioxide into the thionyl chloride electrolyte solution. The results of conducting a detailed thermal analysis are utilized to establish the heater design parameters and the thermal insulation requirements of the battery. An analysis of cell internal pressure and vent characteristics clearly illustrates the margins of safety under different operating conditions. Performance of fresh cells is discussed using polarization scan and discharge data at different rates and temperatures. Self-discharge rate is estimated based upon test results on cells after storage. Results of testing a complete prototype battery are described.

  6. Experimental investigation on thermal management of electric vehicle battery with heat pipe

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Wu Maochun; Lin Zirong; Li Fuhuo

    2013-01-01

    Highlights: ► The thermal management system of electric vehicle battery with heat pipes was designed. ► Temperature rise is a key factor for the design of power battery thermal management system. ► Temperature distribution is inevitable to reference for better design of heat pipes used for heat dissipation. ► Heat pipes are effective for power batteries thermal management within electric vehicles. - Abstract: In order to increase the cycle time of power batteries and decrease the overall cost of electric vehicles, the thermal management system equipped with heat pipes was designed according to the heat generated character of power batteries. The experimental result showed that the maximum temperature could be controlled below 50 °C when the heat generation rate was lower than 50 W. Coupled with the desired temperature difference, the heat generation rate should not exceed 30 W. The maximum temperature and temperature difference are kept within desired rang under unsteady operating conditions and cycle testing conditions. Applying heat pipes based power batteries thermal management is an effective method for energy saving in electric vehicles.

  7. Human Powered PiezoelectricBatteries to Supply Power to Wearable Electronic Devices.

    OpenAIRE

    Gonzalez, Jose' Luis; Rubio, Antonio; Moll, Francesc

    2002-01-01

    Consumer electronic equipments are becoming small, portable devices that provide users with a wide range of functionality, from communication to music playing. The battery technology and the power consumption of the device limit the size, weight and autonomous lifetime. One promising alternative to batteries (and fuel cells, that must be refueled as well) is to use the parasitic energy dissipated in the movement of the wearer of the device to power it. We analyze in this work the current stat...

  8. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  9. Cost-Benefit Analysis of a Novel DC Fast-Charging Station with a Local Battery Storage for EVs

    DEFF Research Database (Denmark)

    Gjelaj, Marjan; Træholt, Chresten; Hashemi Toghroljerdi, Seyedmostafa

    2017-01-01

    and decrease the connection fees. Finally, an economic evaluation is done to evaluate the feasibility and the cost-benefit analysis (CBA) of the DCFCSs. The proposed approach considers various technical and economic issues, such as cost of installation, connection fees and life cycle cost of the batteries....... The proposed cost-benefit analysis can be used to verify the effectiveness and applicability of DCFCS in large scale....... models by increasing the size of the batteries. To satisfy EV load demand of the new EV models in urban areas the public DC Fast-Charging Station (DCFCS) is indispensable to recharge EVs rapidly. The introduction of the Battery Energy Storage within the DCFCSs is considered in this paper an alternative...

  10. Improved transistorized AC motor controller for battery powered urban electric passenger vehicles

    Science.gov (United States)

    Peak, S. C.

    1982-01-01

    An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.

  11. Modern batteries an introduction to electrochemical power sources

    CERN Document Server

    Vincent, C

    2003-01-01

    Based on the successful first edition, this book gives a general theoretical introduction to electrochemical power cells (excluding fuel cells) followed by a comprehensive treatment of the principle battery types - covering chemistry, fabrication characteristics and applications. There have been many changes in the field over the last decade and many new systems have been commercialised. Since the recent advent of battery powered consumer products (mobile phones, camcorders, lap-tops etc.) advanced power sources have become far more important. This text provides an up-to-date account of batter

  12. Characterization of vanadium flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2010-10-15

    This report summarizes the work done at Risoe DTU testing a vanadium flow battery as part of the project 'Characterisation of Vanadium Batteries' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  13. Integrated Inverter And Battery Charger

    Science.gov (United States)

    Rippel, Wally E.

    1988-01-01

    Circuit combines functions of dc-to-ac inversion (for driving ac motor in battery-powered vehicle) and ac-to-dc conversion (for charging battery from ac line when vehicle not in use). Automatically adapts to either mode. Design of integrated inverter/charger eliminates need for duplicate components, saves space, reduces weight and cost of vehicle. Advantages in other applications : load-leveling systems, standby ac power systems, and uninterruptible power supplies.

  14. Energy Management and Simulation of Photovoltaic/Hydrogen /Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Tariq Kamal

    2016-06-01

    Full Text Available This manuscript focuses on a hybrid power system combining a solar photovoltaic array and energy storage system based on hydrogen technology (fuel cell, hydrogen tank and electrolyzer and battery. The complete architecture is connected to the national grid through power converters to increase the continuity of power. The proposed a hybrid power system is designed to work under classical-based energy management algorithm. According to the proposed algorithm, the PV has the priority in meeting the load demands. The hydrogen technology is utilized to ensure long-term energy balance. The battery is used as a backup and/or high power device to take care of the load following problems of hydrogen technology during transient. The dynamic performance of a hybrid power system is tested under different solar radiation, temperature and load conditions for the simulation of 24 Hrs. The effectiveness of the proposed system in terms of power sharing, grid stability, power quality and voltage regulation is verified by Matlab simulation results.

  15. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics

    Directory of Open Access Journals (Sweden)

    Xinan Zhang

    2016-10-01

    Full Text Available The penetration of solar photovoltaic (PV systems in residential areas contributes to the generation and usage of renewable energy. Despite its advantages, the PV system also creates problems caused by the intermittency of renewable energy. As suggested by researchers, such problems deteriorate the applicability of the PV system and have to be resolved by employing a battery energy storage system (BESS. With concern for the high investment cost, the choice of a cost-effective BESS with proper sizing is necessary. To this end, this paper proposes the employment of a vanadium redox flow battery (VRB, which possesses a long cycle life and high energy efficiency, for residential users with PV systems. It further proposes methods of computing the capital and maintenance cost of VRB systems and evaluating battery efficiency based on VRB electrochemical characteristics. Furthermore, by considering the cost and efficiency of VRB, the prevalent time-of-use electricity price, the solar feed-in tariff, the solar power profile and the user load pattern, an optimal sizing algorithm for VRB systems is proposed. Simulation studies are carried out to show the effectiveness of the proposed methods.

  16. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  17. SUNRAYCE 95: Working safely with lead-acid batteries and photovoltaic power systems

    Energy Technology Data Exchange (ETDEWEB)

    DePhillips, M.P.; Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States). Biomedical and Environmental Assessment Group

    1994-05-27

    This document is a power system and battery safety handbook for participants in the SUNRAYCE 95 solar powered electric vehicle program. The topics of the handbook include batteries, photovoltaic modules, safety equipment needed for working with sulfuric acid electrolyte and batteries, battery transport, accident response, battery recharging and ventilation, electrical risks on-board vehicle, external electrical risks, electrical risk management strategies, and general maintenance including troubleshooting, hydrometer check and voltmeter check.

  18. Minimisation of the LCOE for the hybrid power supply system with the lead-acid battery

    Directory of Open Access Journals (Sweden)

    Kasprzyk Leszek

    2017-01-01

    Full Text Available The paper presents the methodology of minimisation of the unit cost of production of energy generated in the hybrid system compatible with the lead-acid battery, and used to power a load with the known daily load curve. For this purpose, the objective function in the form of the LCOE and the genetic algorithm method were used. Simulation tests for three types of load with set daily load characteristics were performed. By taking advantage of the legal regulations applicable in the territory of Poland, regarding the energy storing in the power system, the optimal structure of the prosumer solar-wind system including the lead-acid battery, which meets the condition of maximum rated power, was established. An assumption was made that the whole solar energy supplied to the load would be generated in the optimised system.

  19. Battery Recharging Issue for a Two-Power-Level Flywheel System

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves de Oliveira

    2010-01-01

    Full Text Available A novel battery recharging system for an all-electric driveline comprising a flywheel with a permanent magnet double wound synchronous machine (motor/generator is presented. The double winding enables two voltage levels and two different power levels. This topology supersedes other all-electric drivelines. The battery operates in a low-power regime supplying the average power whereas the flywheel delivers and absorbs power peaks, which are up to a higher order of magnitude. The topology presents new challenges for the power conversion system, which is the focus of this investigation. The main challenge is the control of the power flow to the battery when the vehicle is parked despite the decay of the flywheel machine voltage; which is dependent on its charge state, that is, rotational speed. The design and simulation of an unidirectional DC/DC buck/boost converter for a variable rotational speed flywheel is presented. Conventional power electronic converters are used in a new application, which can maintain a constant current or voltage on the battery side. Successful PI current control has been implemented and simulated, together with the complete closed loop system.

  20. A high power lithium thionyl chloride battery for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Shah, P.M. (Alliant Techsystems, Inc., Power Sources Center, Horsham, PA (United States))

    1993-03-15

    A high power, 28 V, 330 A h, active lithium thinoyl chloride battery has been developed for use as main and payload power sources on an expendable launch vehicle. Nine prismatic cells, along with the required electrical components and a built-in heater system, are efficiently packaged resulting in significant weight savings (>40%) over presently used silver-zinc batteries. The high rate capability is achieved by designing the cells with a large electrochemical surface area and impregnating an electrocatalyst, polymeric phthalocyanine, (CoPC)[sub n], into the carbon cathodes. Passivation effects are reduced with the addition of sulfur dioxide into the thionyl chloride electrolyte solution. The results of conducting a detailed thermal analysis are utilized to establish the heater design parameters and the thermal insulation requirements of the battery. An analysis of cell internal pressure and vent characteristics clearly illustrates the margins of safety under different operating conditions. Performance of fresh cells is discussed using polarization scan and discharge data at different rates and temperatures. Self-discharge rate is estimated based upon test results on cells after storage. Finally, the results of testing a complete prototype battery are described in detail. (orig.)

  1. Benefit/risk analysis of cardiac pacemakers powered by Betacel 147Pm batteries

    International Nuclear Information System (INIS)

    Smith, T.H.; Greenborg, J.; Matheson, W.E.

    1975-01-01

    Cardiac pacemakers powered by Betacel 147 Pm nuclear batteries are undergoing clinical evaluation in Europe and the United States. This benefit/risk study analyzes the potential effects from unrestricted use of 20,000 pacemakers powered by these betavoltaic batteries. The beneficial effects of this device (lives saved and reduced medical expenses) result from improved reliability and operating lifetime (approximately 9 yr) compared with widely available chemical batteries of substantially shorter life (approximately 2 1 / 2 yr). Calculated benefits are $16,800,000/yr savings to society and 76 lives (approximately 800 life-years) saved per year. Risks to the patient and the general population are generally less than those from natural accidents such as landslides and lightning strikes. The calculated benefit/risk ratios of 180 in terms of lives and 440 in monetary terms are in the range commonly accepted by the public. (U.S.)

  2. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    Science.gov (United States)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  3. Electric Vehicle Based Battery Storages for Future Power System Regulation Services

    DEFF Research Database (Denmark)

    Pillai, Jayakrishnan Radhakrishna; Bak-Jensen, Birgitte

    2009-01-01

    supplying the reserve power requirements. This limited regulation services from conventional generators in the future power system calls for other new reserve power solutions like Electric Vehicle (EV) based battery storages. A generic aggregated EV based battery storage for long-term dynamic load frequency...

  4. Integrated modeling for the cyclic behavior of high power Li-ion batteries under extended operating conditions

    International Nuclear Information System (INIS)

    Miranda, Á.G.; Hong, C.W.

    2013-01-01

    Highlights: • Redefine the traditional concepts of state of charge modeling. • Accurate non-intrusive extraction method of an integrated battery model. • Indexes of performance can be employed to compare different types of batteries. • High power electrical battery model dependent on current and temperature effects. - Abstract: The dynamic thermal and electrical behavior of high power LiFePO 4 cathode-type Li-ion batteries is studied with extended considerations such as demanded current ranging from 12 to 30 A, battery temperatures ranging from 283 to 313 K and a redefinition of the concept of state of charge during cycling conditions. The equivalent electrical model, consisting of a series resistance, a parallel resistance–capacitor, a voltage source and state of charge calculators, can be improved with the addition of current and temperature gains for each element. In addition, a non-intrusively-obtained alternative thermal model extraction is proposed to uncouple from the experimental battery temperature based on electrochemical research found in the literature. This improved model extraction for high power cylindrical batteries can achieve a temperature and voltage relative runtime error in the range of 1% and 5% in average, respectively. The effects of lithium concentration in the anode and cathode are accurately predicted with state of charge accelerators, which vary linearly with temperature. Aiming for a power systems environment, the integrated battery model is built and validated experimentally to demonstrate its accurate prediction. This improved integrated battery model can be employed for battery stack simulations, improved state of charge algorithm testing and optimization of hybrid systems - with a light computational demand. Finally, a performance index radar plot is proposed to conveniently compare electrical and thermal properties of different types of batteries

  5. Optimal shifting of Photovoltaic and load fluctuations from fuel cell and electrolyzer to lead acid battery in a Photovoltaic/hydrogen standalone power system for improved performance and life time

    Science.gov (United States)

    Tesfahunegn, S. G.; Ulleberg, Ø.; Vie, P. J. S.; Undeland, T. M.

    Cost reduction is very critical in the pursuit of realizing more competitive clean and sustainable energy systems. In line with this goal a control method that enables minimization of the cost associated with performance and life time degradation of fuel cell and electrolyzer, and cost of battery replacement in PV/hydrogen standalone power systems is developed. The method uses the advantage of existing peak shaving battery to suppress short-term PV and load fluctuations while reducing impact on the cycle life of the battery itself. This is realized by diverting short-term cyclic charge/discharge events induced by PV/load power fluctuations to the upper band of the battery state of charge regime while operating the fuel cell and electrolyzer systems along stable (smooth) power curves. Comparative studies of the developed method with two other reference cases demonstrate that the proposed method fares better with respect to defined performance indices as fluctuation suppression rate and mean state of charge. Modeling of power electronics and design of controllers used in the study are also briefly discussed in Appendix A.

  6. Battery storage for PV power systems: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chaurey, A; Deambi, S [Tata Energy Research Inst., New Delhi (India)

    1992-06-01

    Batteries used in photovoltaic applications are required to have particular properties in order to minimize the system cost, in addition to meeting stringent reliability requirements associated with PV system installations. The battery sizing, installations, operation and maintenance, thus, are fundamentally different from those used in several other energy storage applications. The current paper gives an overview of battery systems commonly used in PV installation, as well as several new options which are found suitable or have been modified suitably to meet PV energy storage requirements. The systems are discussed briefly with respect to their construction, performance characteristics and compatibility with PV systems. The battery sizing procedures are also reviewed. (Author).

  7. Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System

    Directory of Open Access Journals (Sweden)

    Farouk Odeim

    2015-06-01

    Full Text Available In this paper, an experimental fuel cell/battery/supercapacitor hybrid system is investigated in terms of modeling and power management design and optimization. The power management strategy is designed based on the role that should be played by each component of the hybrid power source. The supercapacitor is responsible for the peak power demands. The battery assists the supercapacitor in fulfilling the transient power demand by controlling its state-of-energy, whereas the fuel cell system, with its slow dynamics, controls the state-of-charge of the battery. The parameters of the power management strategy are optimized by a genetic algorithm and Pareto front analysis in a framework of multi-objective optimization, taking into account the hydrogen consumption, the battery loading and the acceleration performance. The optimization results are validated on a test bench composed of a fuel cell system (1.2 kW, 26 V, lithium polymer battery (30 Ah, 37 V, and a supercapacitor (167 F, 48 V.

  8. A review on lithium-ion power battery thermal management technologies and thermal safety

    Science.gov (United States)

    An, Zhoujian; Jia, Li; Ding, Yong; Dang, Chao; Li, Xuejiao

    2017-10-01

    Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.

  9. Optimal recharge and driving strategies for a battery-powered electric vehicle

    Directory of Open Access Journals (Sweden)

    Lee W. R.

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  10. Microcontroller based implementation of fuel cell and battery integrated hybrid power source

    International Nuclear Information System (INIS)

    Fahad, A.; Ali, S.M.; Bhatti, A.A.; Nasir, M

    2013-01-01

    This paper presents the implementation of a digitally controlled hybrid power source system, composed of fuel cell and battery. Use of individual fuel cell stacks as a power source, encounters many problems in achieving the desired load characteristics. A battery integrated, digitally controlled hybrid system is proposed for high pulse requirements. The proposed hybrid power source fulfils these peak demands with efficient flow of energy as compared to individual operations of fuel cell or battery system. A dc/dc converter is applied which provides an optimal control of power flow among fuel cell, battery and load. The proposed system efficiently overcomes the electrochemical constraints like over current, battery leakage current, and over and under voltage dips. By formulation of an intelligent algorithm and incorporating a digital technology (AVR Microcontroller), an efficient control is achieved over fuel cell current limit, battery charge, voltage and current. The hybrid power source is tested and analyzed by carrying out simulations using MATLAB simulink. Along with the attainment of desired complex load profiles, the proposed design can also be used for power enhancement and optimization for different capacities. (author)

  11. Photovoltaic Power System with an Interleaving Boost Converter for Battery Charger Applications

    Directory of Open Access Journals (Sweden)

    Sheng-Yu Tseng

    2012-01-01

    Full Text Available This paper proposes a photovoltaic (PV power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.

  12. Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014

    Energy Technology Data Exchange (ETDEWEB)

    Klingler, James J [GENCO Infrastructure Solutions, Inc.

    2014-05-06

    The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

  13. Optimal Capacity Allocation of Large-Scale Wind-PV-Battery Units

    Directory of Open Access Journals (Sweden)

    Kehe Wu

    2014-01-01

    Full Text Available An optimal capacity allocation of large-scale wind-photovoltaic- (PV- battery units was proposed. First, an output power model was established according to meteorological conditions. Then, a wind-PV-battery unit was connected to the power grid as a power-generation unit with a rated capacity under a fixed coordinated operation strategy. Second, the utilization rate of renewable energy sources and maximum wind-PV complementation was considered and the objective function of full life cycle-net present cost (NPC was calculated through hybrid iteration/adaptive hybrid genetic algorithm (HIAGA. The optimal capacity ratio among wind generator, PV array, and battery device also was calculated simultaneously. A simulation was conducted based on the wind-PV-battery unit in Zhangbei, China. Results showed that a wind-PV-battery unit could effectively minimize the NPC of power-generation units under a stable grid-connected operation. Finally, the sensitivity analysis of the wind-PV-battery unit demonstrated that the optimization result was closely related to potential wind-solar resources and government support. Regions with rich wind resources and a reasonable government energy policy could improve the economic efficiency of their power-generation units.

  14. A high-efficiency electromechanical battery

    Science.gov (United States)

    Post, Richard F.; Fowler, T. K.; Post, Stephen F.

    1993-03-01

    In our society there is a growing need for efficient cost-effective means for storing electrical energy. The electric auto is a prime example. Storage systems for the electric utilities, and for wind or solar power, are other examples. While electrochemical cells could in principle supply these needs, the existing E-C batteries have well-known limitations. This article addresses an alternative, the electromechanical battery (EMB). An EMB is a modular unit consisting of an evacuated housing containing a fiber-composite rotor. The rotor is supported by magnetic bearings and contains an integrally mounted permanent magnet array. This article addresses design issues for EMBs with rotors made up of nested cylinders. Issues addressed include rotational stability, stress distributions, generator/motor power and efficiency, power conversion, and cost. It is concluded that the use of EMBs in electric autos could result in a fivefold reduction (relative to the IC engine) in the primary energy input required for urban driving, with a concomitant major positive impact on our economy and on air pollution.

  15. The design and performance of the first fully automatic non-grid 5 MW multi-diesel / mini hydro / battery converter power stations

    International Nuclear Information System (INIS)

    Ahmad Shadzli Abdul Wahab

    2000-01-01

    Electricity power supply in remote communities and towns are traditionally and hitherto supplied by diesel generator sets of varying capacities and sizes -from few kilowatt to few megawatts. Its proven to be versatile, robust, modular cheaper capital investment, reliable and easy to operate and maintain. These features are what make diesel generators most preferred choice for generating electric power to power hungry remote communities. The main draw back, though, is its increasingly high cost of operation and maintenance, largely due to upward trend in the cost of diesel fuel, high cost of engines spare parts plus the inflationary nature of salary and wages of operators. For these reasons, engineers and technologists have for years worked tirelessly to find ways and means to reduce the O and M costs. One of the novel ideas was to hybrid the conventional diesel generating system with renewable energy resources, such as mini hydro, solar photovoltaic or wind energy. Many prototypes involving several configurations of energy resources eg diesel/PV/ battery, diesel/wind/battery, diesel/mini hydro/battery have been tested but none has so far has been as successful as Sema/ Powercorp automated Intelligent Power System (IPS). Based on microprocessor hardware, powerful computer software programming and satellite communication technology, the IPS -equipped diesel power station can now now be operated fully automatic with capability of remote control and monitoring. The system is versatile in maximising the use of renewable energy energy resources such as wind, mini hydro or solar thereby reducing very significantly the use of diesel fuel. Operation and maintenance costs also are reduced due to the use of minimum manpower and and increase in fuel efficiency of the engines. The tested and proven IPS technology has been operating successfully for the last ten years in remote diesel stations in Northern Territory, Australia, Rathlin Island, Northern Ireland and its latest and

  16. VRLA automotive batteries for stop&go and dual battery systems

    Science.gov (United States)

    May, G. J.; Calasanzio, D.; Aliberti, R.

    The electrical power requirements for vehicles are continuing to increase and evolve. A substantial amount of effort has been directed towards the development of 36/42 V systems as a route to higher power with reduced current levels but high implementation costs have resulted in the introduction of these systems becoming deferred. In the interim, however, alternator power outputs at 14 V are being increased substantially and at the same time the requirements for batteries are becoming more intensive. In particular, stop&go systems and wire-based vehicle systems are resulting in new demands. For stop&go, the engine is stopped each time the vehicle comes to rest and is restarted when the accelerator is pressed again. This results in an onerous duty cycle with many shallow discharge cycles. Flooded lead-acid batteries cannot meet this duty cycle and valve-regulated lead-acid (VRLA) batteries are needed to meet the demands that are applied. For wire-based systems, such as brake-by-wire or steer-by-wire, electrical power has become more critical and although the alternator and battery provide double redundancy, triple redundancy with a small reserve battery is specified. In this case, a small VRLA battery can be used and is optimised for standby service rather than for repeated discharges. The background to these applications is considered and test results under simulated operating conditions are discussed. Good performance can be obtained in batteries adapted for both applications. Battery management is also critical for both applications: in stop&go service, the state-of-charge (SOC) and state-of-health (SOH) need to be monitored to ensure that the vehicle can be restarted; for reserve or back-up batteries, the SOC and SOH are monitored to verify that the battery is always capable of carrying out the duty cycle if required. Practical methods of battery condition monitoring will be described.

  17. The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes

    KAUST Repository

    Wessells, Colin D.; Peddada, Sandeep V.; McDowell, Matthew T.; Huggins, Robert A.; Cui, Yi

    2012-01-01

    Recent battery research has focused on the high power and energy density needed for portable electronics and vehicles, but the requirements for grid-scale energy storage are different, with emphasis on low cost, long cycle life, and safety. Open

  18. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries.

    Science.gov (United States)

    Song, Kyeongse; Agyeman, Daniel Adjei; Park, Mihui; Yang, Junghoon; Kang, Yong-Mook

    2017-12-01

    The development of next-generation energy-storage devices with high power, high energy density, and safety is critical for the success of large-scale energy-storage systems (ESSs), such as electric vehicles. Rechargeable sodium-oxygen (Na-O 2 ) batteries offer a new and promising opportunity for low-cost, high-energy-density, and relatively efficient electrochemical systems. Although the specific energy density of the Na-O 2 battery is lower than that of the lithium-oxygen (Li-O 2 ) battery, the abundance and low cost of sodium resources offer major advantages for its practical application in the near future. However, little has so far been reported regarding the cell chemistry, to explain the rate-limiting parameters and the corresponding low round-trip efficiency and cycle degradation. Consequently, an elucidation of the reaction mechanism is needed for both lithium-oxygen and sodium-oxygen cells. An in-depth understanding of the differences and similarities between Li-O 2 and Na-O 2 battery systems, in terms of thermodynamics and a structural viewpoint, will be meaningful to promote the development of advanced metal-oxygen batteries. State-of-the-art battery design principles for high-energy-density lithium-oxygen and sodium-oxygen batteries are thus reviewed in depth here. Major drawbacks, reaction mechanisms, and recent strategies to improve performance are also summarized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cost-benefit analysis of remote hybrid wind-diesel power stations: Case study Aegean Sea islands

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kavadias, K.A.

    2007-01-01

    More than one third of world population has no direct access to interconnected electrical networks. Hence, the electrification solution usually considered is based on expensive, though often unreliable, stand-alone systems, mainly small diesel-electric generators. Hybrid wind-diesel power systems are among the most interesting and environmental friendly technological alternatives for the electrification of remote consumers, presenting also increased reliability. More precisely, a hybrid wind-diesel installation, based on an appropriate combination of a small diesel-electric generator and a micro-wind converter, offsets the significant capital cost of the wind turbine and the high operational cost of the diesel-electric generator. In this context, the present study concentrates on a detailed energy production cost analysis in order to estimate the optimum configuration of a wind-diesel-battery stand-alone system used to guarantee the energy autonomy of a typical remote consumer. Accordingly, the influence of the governing parameters-such as wind potential, capital cost, oil price, battery price and first installation cost-on the corresponding electricity production cost is investigated using the developed model. Taking into account the results obtained, hybrid wind-diesel systems may be the most cost-effective electrification solution for numerous isolated consumers located in suitable (average wind speed higher than 6.0 m/s) wind potential regions

  20. A fully implantable pacemaker for the mouse: from battery to wireless power.

    Science.gov (United States)

    Laughner, Jacob I; Marrus, Scott B; Zellmer, Erik R; Weinheimer, Carla J; MacEwan, Matthew R; Cui, Sophia X; Nerbonne, Jeanne M; Efimov, Igor R

    2013-01-01

    Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.

  1. A Fully Implantable Pacemaker for the Mouse: From Battery to Wireless Power

    Science.gov (United States)

    Zellmer, Erik R.; Weinheimer, Carla J.; MacEwan, Matthew R.; Cui, Sophia X.; Nerbonne, Jeanne M.; Efimov, Igor R.

    2013-01-01

    Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice. PMID:24194832

  2. A fully implantable pacemaker for the mouse: from battery to wireless power.

    Directory of Open Access Journals (Sweden)

    Jacob I Laughner

    Full Text Available Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24 were implanted with endocardial, battery-powered devices (n = 14 and epicardial, wireless-powered devices (n = 10. Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1% mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10% mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.

  3. 49 CFR 236.206 - Battery or power supply with respect to relay; location.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Battery or power supply with respect to relay..., AND APPLIANCES Automatic Block Signal Systems Standards § 236.206 Battery or power supply with respect to relay; location. The battery or power supply for each signal control relay circuit, where an open...

  4. Power capability evaluation for lithium iron phosphate batteries based on multi-parameter constraints estimation

    Science.gov (United States)

    Wang, Yujie; Pan, Rui; Liu, Chang; Chen, Zonghai; Ling, Qiang

    2018-01-01

    The battery power capability is intimately correlated with the climbing, braking and accelerating performance of the electric vehicles. Accurate power capability prediction can not only guarantee the safety but also regulate driving behavior and optimize battery energy usage. However, the nonlinearity of the battery model is very complex especially for the lithium iron phosphate batteries. Besides, the hysteresis loop in the open-circuit voltage curve is easy to cause large error in model prediction. In this work, a multi-parameter constraints dynamic estimation method is proposed to predict the battery continuous period power capability. A high-fidelity battery model which considers the battery polarization and hysteresis phenomenon is presented to approximate the high nonlinearity of the lithium iron phosphate battery. Explicit analyses of power capability with multiple constraints are elaborated, specifically the state-of-energy is considered in power capability assessment. Furthermore, to solve the problem of nonlinear system state estimation, and suppress noise interference, the UKF based state observer is employed for power capability prediction. The performance of the proposed methodology is demonstrated by experiments under different dynamic characterization schedules. The charge and discharge power capabilities of the lithium iron phosphate batteries are quantitatively assessed under different time scales and temperatures.

  5. Advanced secondary batteries: Their applications, technological status, market and opportunity

    Science.gov (United States)

    Yao, M.

    1989-03-01

    Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.

  6. Cost-effectiveness of power plants in Eastern Europe. An approach for estimating the cost-effectiveness of existing, retrofitted and new power plants

    International Nuclear Information System (INIS)

    Van Harmelen, T.

    1994-08-01

    In many Western European countries, power plants are replaced or retrofitted after 25 or 30 years; just continuing the operation of an old plant hardly occurs, in most cases because it is considered to be uneconomic. This implies that in many cases operating an old plant in the Western situation is more expensive than building a new one. In some cases, retrofitting the old plant is the least-cost option. In Eastern Europe very old (power) plants are kept in operation 'as long as possible'. Thirty to forty years is no exception. In the discussion on explanations of the different Eastern European practice, two arguments are often heard. The first argument concerns limited availability of financial resources in Eastern Europe as an explanation for the current lifetime extension of old, existing power plants. This argument is popular among Western European experts being their view or judgement of the situation. The second argument, advocated mostly by Eastern European experts, is that it is cheaper or more cost-effective to continue operating old, existing power plants instead of building new ones. This paper will shed some light on the validity of both arguments. First, a summary of national cost-effectiveness analysis such as applied by EFOM-ENV/GAMS will be given. Second, potential arguments pro and contra operating old plants will be summarized and discussed in terms of national cost-benefit analysis. Third, a set of modelling assumptions for appliance in EFOM-ENV/GAMS for the programme 'CO 2 reduction strategies for Eastern Europe' will be presented and discussed. Finally, some case results will be shown and preliminary conclusions will be drawn on the topic of lifetime extension of existing power plants. 2 figs., 2 tabs., 2 refs

  7. A low cost, microprocessor-based battery charge controller

    Energy Technology Data Exchange (ETDEWEB)

    Pulfrey, D L; Hacker, J [Pulfrey Solar Inc., Vancouver, BC (Canada)

    1990-01-01

    This report describes the design, construction, testing, and evaluation of a microprocessor-based battery charge controller that uses charge integration as the method of battery state-of-charge estimation. The controller is intended for use in medium-size (100-1000W) photovoltaic systems that employ 12V lead-acid batteries for charge storage. The controller regulates the charge flow to the battery and operates in three, automatically-determined modes, namely: charge, equalize, and float. The prototype controller is modular in nature and can handle charge/discharge currents of magnitude up to 80A, depending on the number of circuit boards employed. Evaluation tests and field trials have shown the controller to be very accurate and reliable. Based on the cost of the prototype, it appears that an original equipment manufacturer's selling price of $400 for a 40A (500W) unit may be realistic. 18 figs., 2 tabs.

  8. Systems and methods for distributing power using photovoltaic resources and a shifting battery system

    Science.gov (United States)

    Mammoli, Andrea A.; Lavrova, Olga; Arellano, Brian; Cheng, Feng; Greenwood, Wesley; Hawkins, Jonathan; Willard, Steve

    2017-06-27

    The present invention is an apparatus and method for delivering energy using a renewable resource. The method includes providing a photovoltaic energy source and applying energy storage to the photovoltaic energy source via a battery storage unit. The energy output from the photovoltaic energy source and the battery system is controlled using a battery control system. The battery control system predicts peak load, develops a schedule that includes when to begin discharging power and when to stop discharging power, shifts power to the battery storage unit when excess power is available, and prioritizes the functionality of the battery storage unit and the photovoltaic energy source.

  9. Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss

    Directory of Open Access Journals (Sweden)

    Yongli Wang

    2018-06-01

    Full Text Available Integrated energy systems (IESs are considered a trending solution for the energy crisis and environmental problems. However, the diversity of energy sources and the complexity of the IES have brought challenges to the economic operation of IESs. Aiming at achieving optimal scheduling of components, an IES operation optimization model including photovoltaic, combined heat and power generation system (CHP and battery energy storage is developed in this paper. The goal of the optimization model is to minimize the operation cost under the system constraints. For the optimization process, an optimization principle is conducted, which achieves maximized utilization of photovoltaic by adjusting the controllable units such as energy storage and gas turbine, as well as taking into account the battery lifetime loss. In addition, an integrated energy system project is taken as a research case to validate the effectiveness of the model via the improved differential evolution algorithm (IDEA. The comparison between IDEA and a traditional differential evolution algorithm shows that IDEA could find the optimal solution faster, owing to the double variation differential strategy. The simulation results in three different battery states which show that the battery lifetime loss is an inevitable factor in the optimization model, and the optimized operation cost in 2016 drastically decreased compared with actual operation data.

  10. Frontier battery development for hybrid vehicles

    Directory of Open Access Journals (Sweden)

    Lewis Heather

    2012-04-01

    Full Text Available Abstract Background Interest in hybrid-electric vehicles (HEVs has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  11. Frontier battery development for hybrid vehicles.

    Science.gov (United States)

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-04-23

    Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this "hybrid premium" is the cost of the vehicles' batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil.

  12. Frontier battery development for hybrid vehicles

    Science.gov (United States)

    2012-01-01

    Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil. PMID:22540987

  13. Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Yong-Song Chen

    2013-12-01

    Full Text Available A laboratory-scale passive hybrid power system for transportation applications is constructed and tested in this study. The hybrid power system consists of a fuel cell stack connected with a diode, a lithium-ion battery pack connected with a DC/DC power converter and another diode. The power converter is employed to regulate the output voltage of the battery pack. The dynamic responses of current and voltage of the stack to the start-up and acceleration of the load are experimentally investigated at two different selected output voltages of the DC/DC converter in the battery line. The power sharing of each power source and efficiency are also analyzed and discussed. Experimental results show that the battery can compensate for the shortage of supplied power for the load demand during the start-up and acceleration. The lowest operating voltage of the fuel cell stack is limited by the regulated output voltage of the DC/DC converter. The major power loss in the hybrid power system is attributed to the diodes. The power train efficiency can be improved by lowering the ratio of forward voltage drop of the diode to the operating voltage of the fuel cell stack.

  14. Batteries for electric road vehicles.

    Science.gov (United States)

    Goodenough, John B; Braga, M Helena

    2018-01-15

    The dependence of modern society on the energy stored in a fossil fuel is not sustainable. An immediate challenge is to eliminate the polluting gases emitted from the roads of the world by replacing road vehicles powered by the internal combustion engine with those powered by rechargeable batteries. These batteries must be safe and competitive in cost, performance, driving range between charges, and convenience. The competitive performance of an electric car has been demonstrated, but the cost of fabrication, management to ensure safety, and a short cycle life have prevented large-scale penetration of the all-electric road vehicle into the market. Low-cost, safe all-solid-state cells from which dendrite-free alkali-metal anodes can be plated are now available; they have an operating temperature range from -20 °C to 80 °C and they permit the design of novel high-capacity, high-voltage cathodes providing fast charge/discharge rates. Scale-up to large multicell batteries is feasible.

  15. Residual learning rates in lead-acid batteries: Effects on emerging technologies

    International Nuclear Information System (INIS)

    Matteson, Schuyler; Williams, Eric

    2015-01-01

    The low price of lead-acid, the most popular battery, is often used in setting cost targets for emerging energy storage technologies. Future cost reductions in lead acid batteries could increase investment and time scales needed for emerging storage technologies to reach cost-parity. In this paper the first documented model of cost reductions for lead-acid batteries is developed. Regression to a standard experience curve using 1989–2012 data yield a poor fit, with R 2 values of 0.17 for small batteries and 0.05 for larger systems. To address this problem, battery costs are separated into material and residual costs, and experience curves developed for residual costs. Depending on the year, residual costs account for 41–86% of total battery cost. Using running-time averages to address volatility in material costs, a 4-year time average experience curve for residual costs yield much higher R 2 , 0.78 for small and 0.74 for large lead-acid batteries. The learning rate for residual costs in lead-acid batteries is 20%, a discovery with policy implications. Neglecting to consider cost reductions in lead-acid batteries could result in failure of energy storage start-ups and public policy programs. Generalizing this result, learning in incumbent technologies must be understood to assess the potential of emerging ones. -- Highlights: •We analyze potential cost reductions in lead-acid batteries. •Modified experience curve for non-material costs gives good empirical fit. •Historical learning rate for non-material costs from 1985–2012 is 19–24%. •Progress in incumbent technology raises barrier to new entrants

  16. Dead battery? Wind power, the spot market, and hydro power interaction in the Nordic electricity market

    OpenAIRE

    Mauritzen, Johannes

    2011-01-01

    It is well established within both the economics and power system engineering literature that hydro power can act as a complement to large amounts of intermittent energy. In particular hydro power can act as a "battery" where large amounts of wind power are installed. In this paper I use simple distributed lag models with data from Denmark and Norway. I find that increased wind power in Denmark causes increased marginal exports to Norway and that this effect is larger during periods of net ex...

  17. Vanadium Redox Flow Battery : Sizing of VRB in electrified heavy construction equipment

    OpenAIRE

    Zimmerman, Nathan

    2014-01-01

    In an effort to reduce global emissions by electrifying vehicles and machines with internal combustion engines has led to the development of batteries that are more powerful and efficient than the common lead acid battery.  One of the most popular batteries being used for such an installation is lithium ion, but due to its short effective usable lifetime, charging time, and costs has driven researcher to other technologies to replace it.  Vanadium redox flow batteries have come into the spotl...

  18. Computational models of an inductive power transfer system for electric vehicle battery charge

    Science.gov (United States)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  19. Computational models of an inductive power transfer system for electric vehicle battery charge

    International Nuclear Information System (INIS)

    Anele, A O; Hamam, Y; Djouani, K; Chassagne, L; Alayli, Y; Linares, J

    2015-01-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV. (paper)

  20. Hybrid wind power balance control strategy using thermal power, hydro power and flow batteries

    OpenAIRE

    Gelažanskas, Linas; Baranauskas, Audrius; Gamage, Kelum A.A.; Ažubalis, Mindaugas

    2016-01-01

    The increased number of renewable power plants pose threat to power system balance. Their intermittent nature makes it very difficult to predict power output, thus either additional reserve power plants or new storage and control technologies are required. Traditional spinning reserve cannot fully compensate sudden changes in renewable energy power generation. Using new storage technologies such as flow batteries, it is feasible to balance the variations in power and voltage within very short...

  1. Room Temperature Sulfur Battery Cathode Design and Processing Techniques

    Science.gov (United States)

    Carter, Rachel

    As the population grows and energy demand increases, climate change threatens causing energy storage research to focus on fulfilling the requirements of two major energy sectors with next generation batteries: (1) portable energy and (2) stationary storage.1 Where portable energy can decrease transportation-related harmful emissions and enable advanced next-generation technologies,1 and stationary storage can facilitate widespread deployment of renewable energy sources, alleviating the demand on fossil fuels and lowering emissions. Portable energy can enable zero-emission transportation and can deploy portable power in advanced electronics across fields including medical and defense. Currently fully battery powered cars are limited in driving distance, which is dictated by the energy density and weight of the state-of-the-art Li-ion battery, and similarly advancement of portable electronics is significantly hindered by heavy batteries with short charge lives. In attempt to enable advanced portable energy, significant research is aiming to improve the conventional Li-ion batteries and explore beyond Li-ion battery chemistries with the primary goal of demonstrating higher energy density to enable lighter weight cells with longer battery life. Further, with the inherent intermittency challenges of our most prominent renewable energy sources, wind and solar, discovery of batteries capable of cost effectively and reliably balancing the generation of the renewable energy sources with the real-time energy demand is required for grid scale viability. Stationary storage will provide load leveling to renewable resources by storing excess energy at peak generation and delivering stored excess during periods of lower generation. This application demands highly abundant, low-cost active materials and long-term cycle stability, since infrastructure costs (combined with the renewable) must compete with burning natural gas. Development of a battery with these characteristics will

  2. Characterization of vanadium flow battery. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2011-02-15

    This report summarizes the work done at Risoe-DTU testing a vanadium flow battery as part of the project ''Characterisation of Vanadium Batteries'' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The efficiency was not influenced by the cycling of the battery. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. The battery was operated together with a 11kW stall-regulated Gaia wind turbine to smooth the output of the wind turbine and during the tests the battery proved capable of firming the output of the wind turbine. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  3. Optimization of an off-grid hybrid PV-wind-diesel-battery system

    Energy Technology Data Exchange (ETDEWEB)

    Merei, Ghada [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); Sauer, Dirk Uwe [RWTH Aachen Univ. (Germany). Electrochemical Energy Conversion and Storage Systems Group; Juelich Aachen Research Alliance, JARA-Energy (Germany); RWTH Aachen Univ. (Germany). Inst. for Power Generation and Storage Systems (PGS)

    2012-07-01

    The power supply of remote sites and applications at minimal cost and with low emissions is an important issue when discussing future energy concepts. This paper presents the modelling and optimisation of a stand-alone hybrid energy system. The system consists of photovoltaic (PV) panels and a wind turbine as renewable power sources, a diesel generator for back-up power and batteries to store excess energy and to improve the system reliability. For storage the technologies of lithium-ion, lead-acid, vanadium redox-flow or a combination thereof are considered. In order to use different battery technologies at once, a battery management system (BMS) is needed. The presented BMS minimises operation cost while taking into account different battery operating points and ageing mechanisms. The system is modelled and implemented in Matlab/Simulink. As input, the model uses data of the irradiation, wind speed and air temperature measured in ten minute intervals for ten years in Aachen, Germany. The load is assumed to be that of a rural UMTS/GSM base station for telecommunication. For a timeframe of 20 years, the performance is evaluated and the total costs are determined. Using a genetic algorithm, component sizes and settings are then varied and the system re-evaluated to minimise the overall cost. The optimisation results show that using batteries in combination with the renewables is economic and ecologic. However, the best solution is to combine redox-flow batteries with the renewables. In addition, a power supply system consisting only of batteries, PV and wind generators can satisfy the power demand.

  4. Emergency power supplies with batteries. Notstromversorgung mit Batterien

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The lectures are concerned not only with the state of knowledge on batteries, which are considered for emergency power supplies, but also with new developments and trends in development. The use of batteries in the communication sector, in process computers and in the control and regulation field are also dealt with. 9 lectures are included separately in the database.

  5. Test Report : GS Battery, EPC power HES RESCU

    Energy Technology Data Exchange (ETDEWEB)

    Rose, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schenkman, Benjamin L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Borneo, Daniel R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-10-01

    The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. GS Battery and EPC Power have developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the GS Battery, EPC Power HES RESCU.

  6. Model predictive control for power fluctuation supression in hybrid wind/PV/battery systems

    DEFF Research Database (Denmark)

    You, Shi; Liu, Zongyu; Zong, Yi

    2015-01-01

    A hybrid energy system, the combination of wind turbines, PV panels and battery storage with effective control mechanism, represents a promising solution to the power fluctuation problem when integrating renewable energy resources (RES) into conventional power systems. This paper proposes a model...

  7. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-31

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, including commercial and residential buildings, data centers, and telecom facilities.

  8. Sperm harvesting and cryopreservation during vasectomy reversal is not cost effective.

    Science.gov (United States)

    Boyle, Karen E; Thomas, Anthony J; Marmar, Joel L; Hirshberg, Steven; Belker, Arnold M; Jarow, Jonathan P

    2006-04-01

    To determine whether sperm harvesting and cryopreservation at the time of vasectomy reversal is cost-effective. Model of actual costs and results at five institutions. Multicenter study comprising five centers, including university hospitals and private practices. Men undergoing vasectomy reversal. We established two models for vasectomy reversal. The first model was sperm harvesting and cryopreservation at the time of vasectomy reversal. The second model was sperm harvesting at the time of IVF only if the patient remained azoospermic after vasectomy reversal. Vasectomy reversal procedures modeled included bilateral vasovasostomy and bilateral epididymovasostomy. The costs for each procedure at the five institutions were collated and median costs determined. Median cost of procedure and calculated financial comparisons. The median cost of testicular sperm extraction/cryopreservation performed at the time of bilateral vasovasostomy was $1,765 (range, $1,025-$2,800). The median cost of microsurgical epididymal sperm aspiration or testicular sperm extraction with cryopreservation performed at the time of epididymovasostomy was $1,209 (range, $905-$2,488). The average of the median costs for percutaneous sperm aspiration or testicular sperm aspiration for those patients with a failed vasectomy reversal was $725 (range, $400-$1,455). Sperm retrieval with cryopreservation at the time of vasectomy reversal is not a cost-effective management strategy.

  9. Novel, low-cost alternative technologies to tackle practical, industrial conundrums – a case study of batteries

    Directory of Open Access Journals (Sweden)

    Chan Victor K. Y.

    2016-01-01

    Full Text Available Whereas batteries in comparison with most other means of energy storage are more environmentally friendly and economical in their operation, they are beset by low energy replenishment rates, low energy storage density, high capital cost of themselves, and high capital cost of energy replenishment infrastructures. Mainly based on ergonomics, this paper proposes a novel, low-cost alternative technology to practically and industrially make these weaknesses irrelevant to some extent without calling for revolutionary technological breakthroughs in material science, batteries’ microstructures, or battery manufacturing technologies. The technology takes advantage of modularization of battery systems, prioritization of charging and discharging of battery module(s according to ease of unloading and/or loading the battery module(s and/or ease of loading replacement battery module(s of the battery module(s.

  10. Lithium batteries: Status, prospects and future

    International Nuclear Information System (INIS)

    Scrosati, Bruno; Garche, Juergen

    2010-01-01

    Lithium batteries are characterized by high specific energy, high efficiency and long life. These unique properties have made lithium batteries the power sources of choice for the consumer electronics market with a production of the order of billions of units per year. These batteries are also expected to find a prominent role as ideal electrochemical storage systems in renewable energy plants, as well as power systems for sustainable vehicles, such as hybrid and electric vehicles. However, scaling up the lithium battery technology for these applications is still problematic since issues such as safety, costs, wide operational temperature and materials availability, are still to be resolved. This review focuses first on the present status of lithium battery technology, then on its near future development and finally it examines important new directions aimed at achieving quantum jumps in energy and power content. (author)

  11. Optimized Sizing, Selection, and Economic Analysis of Battery Energy Storage for Grid-Connected Wind-PV Hybrid System

    Directory of Open Access Journals (Sweden)

    Hina Fathima

    2015-01-01

    Full Text Available Energy storages are emerging as a predominant sector for renewable energy applications. This paper focuses on a feasibility study to integrate battery energy storage with a hybrid wind-solar grid-connected power system to effectively dispatch wind power by incorporating peak shaving and ramp rate limiting. The sizing methodology is optimized using bat optimization algorithm to minimize the cost of investment and losses incurred by the system in form of load shedding and wind curtailment. The integrated system is then tested with an efficient battery management strategy which prevents overcharging/discharging of the battery. In the study, five major types of battery systems are considered and analyzed. They are evaluated and compared based on technoeconomic and environmental metrics as per Indian power market scenario. Technoeconomic analysis of the battery is validated by simulations, on a proposed wind-photovoltaic system in a wind site in Southern India. Environmental analysis is performed by evaluating the avoided cost of emissions.

  12. Investigation of power battery thermal management by using mini-channel cold plate

    International Nuclear Information System (INIS)

    Huo, Yutao; Rao, Zhonghao; Liu, Xinjian; Zhao, Jiateng

    2015-01-01

    Highlights: • Micro-channel cold plate was used for battery thermal management. • Maximum temperature of battery decreased with the increase of channel number. • Effect of flow direction on cooling performance is smaller with the increase of flow rate. • Cooling performance increased with the increase of inlet flow rate. • The increasing trend become smaller when the flow rate is high enough. - Abstract: In order to guarantee the safety and extend the cycle life of Li-ion power batteries within electric vehicles, a mini-channel cold plate-based battery thermal management system is designed to cool a rectangular Li-ion battery. A three-dimensional thermal model of the cooling system was established and the effects of number of channels, flow direction, inlet mass flow rate and ambient temperature on temperature rise and distribution of the battery during the discharge process were investigated. The results suggest that the maximum temperature of the battery decreases with increases in the number of channels and inlet mass flow rate. The effect of flow direction on cooling performance was smaller after mass flow rate increased. The cooling performance improved with the increase of inlet mass flow rate but the increasing trend became smaller, and the mass flow rate as 5 × 10 −4 kg s −1 was optimal. The simulation results will be useful for the design of mini-channel cold plate-based battery thermal management system

  13. Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles

    International Nuclear Information System (INIS)

    Zheng, Fangdan; Jiang, Jiuchun; Sun, Bingxiang; Zhang, Weige; Pecht, Michael

    2016-01-01

    The power capability of lithium-ion batteries affects the safety and reliability of hybrid electric vehicles and the estimate of power by battery management systems provides operating information for drivers. In this paper, lithium ion manganese oxide batteries are studied to illustrate the temperature dependency of power capability and an operating map of power capability is presented. Both parametric and non-parametric models are established in conditions of temperature, state of charge, and cell resistance to estimate the power capability. Six cells were tested and used for model development, training, and validation. Three samples underwent hybrid pulse power characterization tests at varied temperatures and were used for model parameter identification and model training. The other three were used for model validation. By comparison, the mean absolute error of the parametric model is about 29 W, and that of the non-parametric model is around 20 W. The mean relative errors of two models are 0.076 and 0.397, respectively. The parametric model has a higher accuracy in low temperature and state of charge conditions, while the non-parametric model has better estimation result in high temperature and state of charge conditions. Thus, two models can be utilized together to achieve a higher accuracy of power capability estimation. - Highlights: • The temperature dependency of power capability of lithium-ion battery is investigated. • The parametric and non-parametric power capability estimation models are proposed. • An exponential function is put forward to compensate the effects of temperature. • A comparative study on the accuracy of two models using statistical metrics is presented.

  14. On the comparison and the complementarity of batteries and fuel cells for electric driving

    International Nuclear Information System (INIS)

    Le Duigou, Alain; Smatti, Aimen

    2014-01-01

    This paper considers different current and emerging power train technologies (ICE, BEV, HEV, FCEV and FC-RE) and provides a comparison within a techno-economic framework, especially for the architectures of range-extender power trains. The economic benefits in terms of Total Cost of Ownership (TCO) are based on forecasts for the major TCO influencing parameters up to 2030: electric driving distances, energy (fuel, electricity, hydrogen) prices, batteries and fuel cell costs. The model takes into account functional parameters such as the battery range as well as daily trip segmentation statistics. The TCOs of all the vehicles become similar in 2030, given a 200 km battery range for BEVs. BEVs are profitable for yearly mileages of 30,000 km and over, and for higher battery ranges. The competitiveness of FCEVs is examined through the H 2 target price at the pump. There is a very significant effect of the fuel cell cost on the TCO. A FCEV with a fuel cell cost of 40 V/kW will be competitive with a similar ICE car for a 1.75 Euros/l fuel cost and ca. 7 Euros/kg hydrogen cost. This depends too to a great extent on possible ICE cars' CO 2 taxes. As regard the FC-RE electric car, the hydrogen target price at the pump is noticeably higher (ca 10 Euros/Kg). FC-RE cars TCOs are strongly affected by the FC power, the discount rate chosen and the yearly mileage. Moreover, it therefore seems reasonable to confine FC-RE battery ranges in the region of 60 km. (authors)

  15. Electrothermal impedance spectroscopy as a cost efficient method for determining thermal parameters of lithium ion batteries

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu

    2017-01-01

    Current lithium-ion battery research aims in not only increasing their energy density but also power density. Emerging applications of lithium-ion batteries (hybrid electric vehicles, plug-in hybrid electric vehicles, grid support) are becoming more and more power demanding. The increasing charging...... and discharging power capability rates of lithium-ion batteries raises safety concerns and requires thermal management of the entire battery system. Moreover, lithium-ion battery's temperature influences both battery short term (capacity, efficiency, self-discharge) and long-term (lifetime) behaviour. Thus......, thermal modelling of lithium-ion battery cells and battery packs is gaining importance. Equivalent thermal circuits' models have proven to be relatively accurate with a low computational burden for the price of low spatial resolution; nevertheless, they usually require expensive equipment...

  16. Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System

    Energy Technology Data Exchange (ETDEWEB)

    Barney, P.; Ingersoll, D.; Jungst, R.; O' Gorman, C.; Paez, T.L.; Urbina, A.

    1998-11-24

    We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

  17. Development of a new electric battery electric power storage system. Results of the 12-year R and D; Shingata denchi denryoku chozo system kaihatsu. 12 nenkan no kenkyu kaihatsu no seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The paper described the results of the R and D which have been continued for 12 years on a new electric battery electric power storage system (load leveling function). The electric batteries for study were Na-S, Zn-Cl, Zn-Br, and redox type. Charge/discharge operation of 211 times was conducted of a pilot plant with a Na-S battery 1,000kW and 8-hour capacity. The overall efficiency of system was 71.5-76.0%, and the energy efficiency of battery was 86%. As a whole, the performance was able to be confirmed which can fulfil a developmental target. The system overall efficiency of 65.9% and battery efficiency of 76.1% were obtained. The experiment on battery life was carried out at plant together with the pilot operation. The mean life of Na-S battery was estimated at 800 cycles, and that of Zn-Br battery at 500-800 cycles. The effectiveness of the new electric battery electric power storage system was technically verified. For the future commercialization, studies on the following are needed: enhancement of reliability, easiness in maintenance/inspection, size reduction, cost reduction, etc. (NEDO)

  18. A multifunctional energy-storage system with high-power lead-acid batteries

    Science.gov (United States)

    Wagner, R.; Schroeder, M.; Stephanblome, T.; Handschin, E.

    A multifunctional energy storage system is presented which is used to improve the utilization of renewable energy supplies. This system includes three different functions: (i) uninterruptible power supply (UPS); (ii) improvement of power quality; (iii) peak-load shaving. The UPS application has a long tradition and is used whenever a reliable power supply is needed. Additionally, nowadays, there is a growing demand for high quality power arising from an increase of system perturbation of electric grids. Peak-load shaving means in this case the use of renewable energy stored in a battery for high peak-load periods. For such a multifunctional application large lead-acid batteries with high power and good charge acceptance, as well as good cycle life are needed. OCSM batteries as with positive tubular plates and negative copper grids have been used successfully for a multitude of utility applications. This paper gives two examples where multifunctional energy storage systems have started operation recently in Germany. One system was installed in combination with a 1 MW solar plant in Herne and another one was installed in combination with a 2 MW wind farm in Bocholt. At each place, a 1.2 MW h (1 h-rate) lead-acid battery has been installed. The batteries consist of OCSM cells with the standard design but modified according to the special demand of a multifunctional application.

  19. Two-step activation of paper batteries for high power generation: design and fabrication of biofluid- and water-activated paper batteries

    Science.gov (United States)

    Lee, Ki Bang

    2006-11-01

    Two-step activation of paper batteries has been successfully demonstrated to provide quick activation and to supply high power to credit card-sized biosystems on a plastic chip. A stack of a magnesium layer (an anode), a fluid guide (absorbent paper), a highly doped filter paper with copper chloride (a cathode) and a copper layer as a current collector is laminated between two transparent plastic films into a high power biofluid- and water-activated battery. The battery is activated by two-step activation: (1) after placing a drop of biofluid/water-based solution on the fluid inlet, the surface tension first drives the fluid to soak the fluid guide; (2) the fluid in the fluid guide then penetrates into the heavily doped filter paper with copper chloride to start the battery reaction. The fabricated half credit card-sized battery was activated by saliva, urine and tap water and delivered a maximum voltage of 1.56 V within 10 s after activation and a maximum power of 15.6 mW. When 10 kΩ and 1 KΩ loads are used, the service time with water, urine and saliva is measured as more than 2 h. An in-series battery of 3 V has been successfully tested to power two LEDs (light emitting diodes) and an electric driving circuit. As such, this high power paper battery could be integrated with on-demand credit card-sized biosystems such as healthcare test kits, biochips, lab-on-a-chip, DNA chips, protein chips or even test chips for water quality checking or chemical checking.

  20. Indicative energy technology assessment of advanced rechargeable batteries

    International Nuclear Information System (INIS)

    Hammond, Geoffrey P.; Hazeldine, Tom

    2015-01-01

    Highlights: • Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated. • Energy, environmental, economic, and technical appraisal techniques were employed. • Li-Ion Polymer (LIP) batteries exhibited the most attractive energy and power metrics. • Lithium-Ion batteries (LIB) and LIP batteries displayed the lowest CO 2 and SO 2 emissions per kW h. • Comparative costs for LIB, LIP and ZEBRA batteries were estimated against Nickel–Cadmium cells. - Abstract: Several ‘Advanced Rechargeable Battery Technologies’ (ARBT) have been evaluated in terms of various energy, environmental, economic, and technical criteria. Their suitability for different applications, such as electric vehicles (EV), consumer electronics, load levelling, and stationary power storage, have also been examined. In order to gain a sense of perspective regarding the performance of the ARBT [including Lithium-Ion batteries (LIB), Li-Ion Polymer (LIP) and Sodium Nickel Chloride (NaNiCl) {or ‘ZEBRA’} batteries] they are compared to more mature Nickel–Cadmium (Ni–Cd) batteries. LIBs currently dominate the rechargeable battery market, and are likely to continue to do so in the short term in view of their excellent all-round performance and firm grip on the consumer electronics market. However, in view of the competition from Li-Ion Polymer their long-term future is uncertain. The high charge/discharge cycle life of Li-Ion batteries means that their use may grow in the electric vehicle (EV) sector, and to a lesser extent in load levelling, if safety concerns are overcome and costs fall significantly. LIP batteries exhibited attractive values of gravimetric energy density, volumetric energy density, and power density. Consequently, they are likely to dominate the consumer electronics market in the long-term, once mass production has become established, but may struggle to break into other sectors unless their charge/discharge cycle life and cost are improved

  1. Performance calculations for battery power supplies as laboratory research tools

    International Nuclear Information System (INIS)

    Scanlon, J.J.; Rolader, G.E.; Jamison, K.A.; Petresky, H.

    1991-01-01

    Electromagnetic Launcher (EML) research at the Air Force Armament Laboratory, Hypervelocity Launcher Branch (AFATL/SAH), Eglin AFB, has focused on developing the technologies required for repetitively launching several kilogram payloads to high velocities. Previous AFATL/SAH experiments have been limited by the available power supply resulting in small muzzle energies on the order of 100's of kJ. In an effort to advance the development of EML's, AFATL/SAH has designed and constructed a battery power supply (BPS) capable of providing several mega-Amperes of current for several seconds. This system consists of six modules each containing 2288 automotive batteries which may be connected in two different series - parallel arrangements. In this paper the authors define the electrical characteristics of the AFATL Battery Power supply at the component level

  2. Innovation on Energy Power Technology (7)Development and Practical Application of Sodium-Sulfur Battery for Electric Energy Storage System

    Science.gov (United States)

    Rachi, Hideki

    Sodium-Sulfur battery (NAS battery), which has more than 3 times of energy density compared with the conventional lead-acid battery and can be compactly established, has a great installation effects as a distributed energy storage system in the urban area which consumes big electric power. For the power company, NAS battery contributes to the load leveling, the supply capability up at the peak period, the efficient operation of the electric power equipment and the reduction of the capital expenditure. And for the customer, it is possible to enjoy the reduction of the electricity charges by utilizing nighttime electric power and the securing of a security. The contribution to the highly sophisticated information society where the higher electric power quality is desired, mainly office buildings and factories by the progress of IT, is very big. Tokyo Electric Power Company (TEPCO) developed the elementary technology of NAS battery from 1984 and ended the development of practical battery which has long-term durability and the safety and the performance verification of the megawatt scale. Finally TEPCO accomplished the practical application and commercialization of the stationary energy storage technology by NAS battery. In this paper, we introduces about conquered problems until practical application and commercialization.

  3. A multi-port power electronics interface for battery powered electric vehicles: Application of inductively coupled wireless power transfer and hybrid energy storage system

    Science.gov (United States)

    McDonough, Matthew Kelly

    Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.

  4. Electricity cost effects of expanding wind power and integrating energy sectors

    DEFF Research Database (Denmark)

    Rodriguez, Victor Adrian Maxwell; Sperling, Karl; Hvelplund, Frede Kloster

    2015-01-01

    Recently, questions have arisen in Denmark as to how and why public funding should be allocated to wind power producers. This is, among other reasons, due to pressure from industrial electricity consumers who want their overall energy costs lowered. Utilising existing wind power subsidies across...... conditions which could allow wind power producers to reduce their reliance on subsidies. It is found that the strategy may be effective in lowering the overall energy costs of electricity consumers. Further, it is found possible to scale up this strategy and realise benefits on a national scale....

  5. Pulse power 350 V nickel-metal hydride battery power-D-005-00181

    Science.gov (United States)

    Eskra, Michael D.; Ralston, Paula; Salkind, Alvin; Plivelich, Robert F.

    Energy-storage devices are needed for applications requiring very high-power over short periods of time. Such devices have various military (rail guns, electromagnetic launchers, and DEW) and commercial applications, such as hybrid electric vehicles, vehicle starting (SLI), and utility peak shaving. The storage and delivery of high levels of burst power can be achieved with a capacitor, flywheel, or rechargeable battery. In order to reduce the weight and volume of many systems they must contain advanced state-of-the-art electrochemical or electromechanical power sources. There is an opportunity and a need to develop energy-storage devices that have improved high-power characteristics compared to existing ultra capacitors, flywheels or rechargeable batteries. Electro Energy, Inc. has been engaged in the development of bipolar nickel-metal hydride batteries, which may fulfil the requirements of some of these applications. This paper describes a module rated at 300 V (255 cells) (6 Ah). The volume of the module is 23 L and the mass is 56 kg. The module is designed to deliver 50 kW pulses of 10 s duration at 50% state-of-charge. Details of the mechanical design of the module, safety considerations, along with the results of initial electrical characterization testing by the customer will be discussed. Some discussion of the possibilities for design optimization is also included.

  6. Electrothermal Impedance Spectroscopy as a Cost Efficient Method for Determining Thermal Parameters of Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Stanciu, Tiberiu

    Current lithium-ion battery research aims in not only increasing their energy density but also power density. Emerging applications of lithium-ion batteries (HEV, PHEV, grid support) are becoming more and more power demanding. The increasing charging and discharging power capability rates...... of lithium-ion batteries raises safety concerns and requires thermal management of the entire battery system. Moreover, lithium-ion battery’s temperature influences both battery short term (capacity, efficiency, self-discharge) and long-term (lifetime) behaviour. Thus, thermal modelling of lithium-ion...... battery cells and battery packs is gaining importance. Equivalent thermal circuits’ models have proven to be relatively accurate with low computational burden for the price of low spatial resolution; nevertheless, they usually require expensive equipment for parametrization. Recent research initiated...

  7. Mathematical analysis and coordinated current allocation control in battery power module systems

    Science.gov (United States)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  8. A new paradigm on battery powered embedded system design based on User-Experience-Oriented method

    International Nuclear Information System (INIS)

    Wang, Zhuoran; Wu, Yue

    2014-01-01

    The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling

  9. A new paradigm on battery powered embedded system design based on User-Experience-Oriented method

    Science.gov (United States)

    Wang, Zhuoran; Wu, Yue

    2014-03-01

    The battery sustainable time has been an active research topic recently for the development of battery powered embedded products such as tablets and smart phones, which are determined by the battery capacity and power consumption. Despite numerous efforts on the improvement of battery capacity in the field of material engineering, the power consumption also plays an important role and easier to ameliorate in delivering a desirable user-experience, especially considering the moderate advancement on batteries for decades. In this study, a new Top-Down modelling method, User-Experience-Oriented Battery Powered Embedded System Design Paradigm, is proposed to estimate the target average power consumption, to guide the hardware and software design, and eventually to approach the theoretical lowest power consumption that the application is still able to provide the full functionality. Starting from the 10-hour sustainable time standard, average working current is defined with battery design capacity and set as a target. Then an implementation is illustrated from both hardware perspective, which is summarized as Auto-Gating power management, and from software perspective, which introduces a new algorithm, SleepVote, to guide the system task design and scheduling.

  10. Power capability prediction for lithium-ion batteries based on multiple constraints analysis

    International Nuclear Information System (INIS)

    Pan, Rui; Wang, Yujie; Zhang, Xu; Yang, Duo; Chen, Zonghai

    2017-01-01

    Highlights: • Multiple constraints for peak power capability prediction are deeply analyzed. • Multi-limited method is proposed for the peak power capability prediction of LIBs. • The EKF is used for the model based peak power capability prediction. • The FUDS and UDDS profiles are executed to evaluate the proposed method. - Abstract: The power capability of the lithium-ion battery is a key performance indicator for electric vehicle, and it is intimately correlated with the acceleration, regenerative braking and gradient climbing power requirements. Therefore, an accurate power capability or state-of-power prediction is critical to a battery management system, which can help the battery to work in suitable area and prevent the battery from over-charging and over-discharging. However, the power capability is easily affected by dynamic load, voltage variation and temperature. In this paper, three different constraints in power capability prediction are introduced, and the advantages and disadvantages of the three methods are deeply analyzed. Furthermore, a multi-limited approach for the power capability prediction is proposed, which can overcome the drawbacks of the three methods. Subsequently, the extended Kalman filter algorithm is employed for model based state-of-power prediction. In order to verify the proposed method, diverse experiments are executed to explore the efficiency, robustness, and precision. The results indicate that the proposed method can improve the precision and robustness obviously.

  11. Lithium Ion Batteries Ageing Analysis when used in a PV Power Plants

    DEFF Research Database (Denmark)

    Beltran, H.; Swierczynski, Maciej Jozef; Aparicio, N.

    2012-01-01

    This paper analyzes the integration of lithium ion (Li-ion) batteries into large scale grid-connected PV plants. It performs a systematic analysis on both the operation improvement obtained by a PV+ES power plant and the ageing experienced by the Li-ion batteries used as Energy Storage (ES) system...... when operating under different energy management strategies (EMS). In this paper, the PV+ES power plant structure is presented and the selection of Li-on batteries as ES system (ESS) is justified. Moreover, the simulation model used for studying the Li-ion battery ageing is explained and tested...

  12. Minimization of Construction Costs for an All Battery-Swapping Electric-Bus Transportation System: Comparison with an All Plug-In System

    Directory of Open Access Journals (Sweden)

    Shyang-Chyuan Fang

    2017-06-01

    Full Text Available The greenhouse gases and air pollution generated by extensive energy use have exacerbated climate change. Electric-bus (e-bus transportation systems help reduce pollution and carbon emissions. This study analyzed the minimization of construction costs for an all battery-swapping public e-bus transportation system. A simulation was conducted according to existing timetables and routes. Daytime charging was incorporated during the hours of operation; the two parameters of the daytime charging scheme were the residual battery capacity and battery-charging energy during various intervals of daytime peak electricity hours. The parameters were optimized using three algorithms: particle swarm optimization (PSO, a genetic algorithm (GA, and a PSO–GA. This study observed the effects of optimization on cost changes (e.g., number of e-buses, on-board battery capacity, number of extra batteries, charging facilities, and energy consumption and compared the plug-in and battery-swapping e-bus systems. The results revealed that daytime charging can reduce the construction costs of both systems. In contrast to the other two algorithms, the PSO–GA yielded the most favorable optimization results for the charging scheme. Finally, according to the cases investigated and the parameters of this study, the construction cost of the plug-in e-bus system was shown to be lower than that of the battery-swapping e-bus system.

  13. Lithium-Ion Battery Power Degradation Modelling by Electrochemical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina

    2017-01-01

    This paper investigates the use of the electrochemical impedance spectroscopy (EIS) technique as an alternative to the DC pulses technique for estimating the power capability decrease of Lithium-ion batteries during calendar ageing. Based on results obtained from calendar ageing tests performed...... at different conditions during one to two years, a generalized model that estimates the battery power capability decrease as function of the resistance Rs increase (obtained from EIS) was proposed and successfully verified....

  14. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-09-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.

  15. Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries

    NARCIS (Netherlands)

    Sun, F.; Xiong, R.; He, H.; Li, W.; Aussems, J.E.E.

    2012-01-01

    A model-based dynamic multi-parameter method for peak power estimation is proposed for batteries and battery management systems (BMSs) used in hybrid electric vehicles (HEVs). The available power must be accurately calculated in order to not damage the battery by over charging or over discharging or

  16. Improving long-term operation of power sources in off-grid hybrid systems based on renewable energy, hydrogen and battery

    Science.gov (United States)

    García, Pablo; Torreglosa, Juan P.; Fernández, Luis M.; Jurado, Francisco

    2014-11-01

    This paper presents two novel hourly energy supervisory controls (ESC) for improving long-term operation of off-grid hybrid systems (HS) integrating renewable energy sources (wind turbine and photovoltaic solar panels), hydrogen system (fuel cell, hydrogen tank and electrolyzer) and battery. The first ESC tries to improve the power supplied by the HS and the power stored in the battery and/or in the hydrogen tank, whereas the second one tries to minimize the number of needed elements (batteries, fuel cells and electrolyzers) throughout the expected life of the HS (25 years). Moreover, in both ESC, the battery state-of-charge (SOC) and the hydrogen tank level are controlled and maintained between optimum operating margins. Finally, a comparative study between the controls is carried out by models of the commercially available components used in the HS under study in this work. These ESC are also compared with a third ESC, already published by the authors, and based on reducing the utilization costs of the energy storage devices. The comparative study proves the right performance of the ESC and their differences.

  17. Quantacell: powerful charging of quantum batteries

    International Nuclear Information System (INIS)

    Binder, Felix C; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-01-01

    We study the problem of charging a quantum battery in finite time. We demonstrate an analytical optimal protocol for the case of a single qubit. Extending this analysis to an array of N qubits, we demonstrate that an N-fold advantage in power per qubit can be achieved when global operations are permitted. The exemplary analytic argument for this quantum advantage in the charging power is backed up by numerical analysis using optimal control techniques. It is demonstrated that the quantum advantage for power holds when, with cyclic operation in mind, initial and final states are required to be separable. (paper)

  18. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  19. Modeling a constant power load for nickel-hydrogen battery testing using SPICE

    Science.gov (United States)

    Bearden, Douglas B.; Lollar, Louis F.; Nelms, R. M.

    1990-01-01

    The effort to design and model a constant power load for the HST (Hubble Space Telescope) nickel-hydrogen battery tests is described. The constant power load was designed for three different simulations on the batteries: life cycling, reconditioning, and capacity testing. A dc-dc boost converter was designed to act as this constant power load. A boost converter design was chosen because of the low test battery voltage (4 to 6 VDC) generated and the relatively high power requirement of 60 to 70 W. The SPICE model was shown to consistently predict variations in the actual circuit as various designs were attempted. It is concluded that the confidence established in the SPICE model of the constant power load ensures its extensive utilization in future efforts to improve performance in the actual load circuit.

  20. Online Estimation of Peak Power Capability of Li-Ion Batteries in Electric Vehicles by a Hardware-in-Loop Approach

    Directory of Open Access Journals (Sweden)

    Fengchun Sun

    2012-05-01

    Full Text Available Battery peak power capability estimations play an important theoretical role for the proper use of the battery in electric vehicles. To address the failures in relaxation effects and real-time ability performance, neglecting the battery’s design limits and other issues of the traditional peak power capability calculation methods, a new approach based on the dynamic electrochemical-polarization (EP battery model, taking into consideration constraints of current, voltage, state of charge (SoC and power is proposed. A hardware-in-the-loop (HIL system is built for validating the online model-based peak power capability estimation approach of batteries used in hybrid electric vehicles (HEVs and a HIL test based on the Federal Urban Driving Schedules (FUDS is used to verify and evaluate its real-time computation performance, reliability and robustness. The results show the proposed approach gives a more accurate estimate compared with the hybrid pulse power characterization (HPPC method, avoiding over-charging or over-discharging and providing a powerful guarantee for the optimization of HEVs power systems. Furthermore, the HIL test provides valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms.

  1. Review of battery powered embedded systems design for mission-critical low-power applications

    Science.gov (United States)

    Malewski, Matthew; Cowell, David M. J.; Freear, Steven

    2018-06-01

    The applications and uses of embedded systems is increasingly pervasive. Mission and safety critical systems relying on embedded systems pose specific challenges. Embedded systems is a multi-disciplinary domain, involving both hardware and software. Systems need to be designed in a holistic manner so that they are able to provide the desired reliability and minimise unnecessary complexity. The large problem landscape means that there is no one solution that fits all applications of embedded systems. With the primary focus of these mission and safety critical systems being functionality and reliability, there can be conflicts with business needs, and this can introduce pressures to reduce cost at the expense of reliability and functionality. This paper examines the challenges faced by battery powered systems, and then explores at more general problems, and several real-world embedded systems.

  2. Power Management Based Current Control Technique for Photovoltaic-Battery Assisted Wind-Hydro Hybrid System

    Science.gov (United States)

    Ram Prabhakar, J.; Ragavan, K.

    2013-07-01

    This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.

  3. Unleashing the Power and Energy of LiFePO4-Based Redox Flow Lithium Battery with a Bifunctional Redox Mediator.

    Science.gov (United States)

    Zhu, Yun Guang; Du, Yonghua; Jia, Chuankun; Zhou, Mingyue; Fan, Li; Wang, Xingzhu; Wang, Qing

    2017-05-10

    Redox flow batteries, despite great operation flexibility and scalability for large-scale energy storage, suffer from low energy density and relatively high cost as compared to the state-of-the-art Li-ion batteries. Here we report a redox flow lithium battery, which operates via the redox targeting reactions of LiFePO 4 with a bifunctional redox mediator, 2,3,5,6-tetramethyl-p-phenylenediamine, and presents superb energy density as the Li-ion battery and system flexibility as the redox flow battery. The battery has achieved a tank energy density as high as 1023 Wh/L, power density of 61 mW/cm 2 , and voltage efficiency of 91%. Operando X-ray absorption near-edge structure measurements were conducted to monitor the evolution of LiFePO 4 , which provides insightful information on the redox targeting process, critical to the device operation and optimization.

  4. Aspirations, Expectations and Delinquency: The Moderating Effect of Impulse Control.

    Science.gov (United States)

    Mahler, Alissa; Simmons, Cortney; Frick, Paul J; Steinberg, Laurence; Cauffman, Elizabeth

    2017-07-01

    Although prior research finds a robust link between delinquent behavior and expectations, or an adolescent's perceived likelihood of obtaining one's future goals, fewer studies have evaluated aspirations, or the perceived importance of achieving one's goals. In addition, few studies consider how individual traits such as impulsivity affect the degree to which expectations and aspirations motivate or deter delinquent behavior. We contribute to this body of research by evaluating the independent effects of expectations and aspirations, and the aspiration-expectation gap (i.e., strain) on delinquent behavior during the year following an adolescent's first arrest using a large (N = 1117), racially/ethnically diverse sample of male adolescents (46.55% Latino, 35.81% Black, 14.95% White, and 2.69% Other race). In addition, we considered how impulse control interacts with expectations, aspirations, and strain to motivate behavior. Our results indicated that both aspirations, expectations and strain uniquely influence criminal behavior. Importantly, aspirations interacted with impulse control, such that aspirations affected delinquency only among youth with higher impulse control. Our findings suggest that aspirations may only influence behavior if youth also have the psychosocial capabilities to consider their future aspirations when behaving in the present.

  5. Countermeasure for Surplus Electricity of PV using Replacement Battery of EVs

    Science.gov (United States)

    Takagi, Masaaki; Iwafune, Yumiko; Yamamoto, Hiromi; Yamaji, Kenji; Okano, Kunihiko; Hiwatari, Ryouji; Ikeya, Tomohiko

    In the power sector, the national government has set the goal that the introduction of PV reaches 53 million kW by 2030. However, large-scale introduction of PV will cause several problems in power systems such as surplus electricity. We need large capacity of pumped storages or batteries for the surplus electricity, but the construction costs of these plants are very high. On the other hand, in the transport sector, Electric Vehicle (EV) is being developed as an environmentally friendly vehicle. To promote the diffusion of EV, it is necessary to build infrastructures that can charge EV in a short time; a battery switch station is one of the solutions to this problem. At a station, the automated switch platform will replace the depleted battery with a fully-charged battery. The depleted battery is placed in a storage room and recharged to be available to other drivers. In this study, we propose the use of station's battery as a countermeasure for surplus electricity of PV and evaluate the economic value of the proposed system. We assumed that 53 million kW of PV is introduced in the nationwide power system and considered two countermeasures for surplus electricity: (1) Pumped storage; (2) Battery of station. The difference in total annual cost between Pumped case and Battery case results in 792.6 billion yen. Hence, if a utility leases the batteries from stations fewer than 792.6 billion yen, the utility will have the cost advantage in Battery case.

  6. Batteries for electric and hybrid-electric vehicles.

    Science.gov (United States)

    Cairns, Elton J; Albertus, Paul

    2010-01-01

    Batteries have powered vehicles for more than a century, but recent advances, especially in lithium-ion (Li-ion) batteries, are bringing a new generation of electric-powered vehicles to the market. Key barriers to progress include system cost and lifetime, and derive from the difficulty of making a high-energy, high-power, and reversible electrochemical system. Indeed, although humans produce many mechanical and electrical systems, the number of reversible electrochemical systems is very limited. System costs may be brought down by using cathode materials less expensive than those presently employed (e.g., sulfur or air), but reversibility will remain a key challenge. Continued improvements in the ability to synthesize and characterize materials at desired length scales, as well as to use computations to predict new structures and their properties, are facilitating the development of a better understanding and improved systems. Battery research is a fascinating area for development as well as a key enabler for future technologies, including advanced transportation systems with minimal environmental impact.

  7. Battery Dimensioning and Life Cycle Costs Analysis for a Heavy-Duty Truck Considering the Requirements of Long-Haul Transportation

    Directory of Open Access Journals (Sweden)

    Ivan Mareev

    2017-12-01

    Full Text Available The use of heavy-duty battery electric trucks for long-haul transportation is challenging because of the required high energy amounts and thus the high capacity of traction batteries. Furthermore a high capacity battery implies high initial costs for the electric vehicle. This study investigates the required battery capacity for battery electric trucks considering the requirements of long-haul transportation in Germany and compares the life cycle costs of battery electric trucks and conventional diesel trucks in different transportation scenarios. The average consumption is simulated for different battery electric truck configurations on the main German highways and transportation scenarios incorporating battery charging during driver rest periods. The results show that in average case the required battery would restrict the payload to only 80% of a usual diesel truck payload that might be acceptable considering the statistical payload use. The life cycle costs in the examined scenarios also considering the charging infrastructure show that battery electric trucks can already perform on the same costs level as diesel trucks in certain scenarios.

  8. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  9. Cost and Price Metrics for Automotive Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-02-01

    Values of current energy technology costs and prices, available from a variety of sources, can sometimes vary. While some of this variation can be due to differences in the specific materials or configurations assumed, it can also reflect differences in the definition and context of the terms "cost" and "price." This fact sheet illustrates and explains this latter source of variation in a case study of automotive lithium-ion batteries.

  10. Cost Savings of Nuclear Power with Total Fuel Reprocessing

    International Nuclear Information System (INIS)

    Solbrig, Charles W.; Benedict, Robert W.

    2006-01-01

    The cost of fast reactor (FR) generated electricity with pyro-processing is estimated in this article. It compares favorably with other forms of energy and is shown to be less than that produced by light water reactors (LWR's). FR's use all the energy in natural uranium whereas LWR's utilize only 0.7% of it. Because of high radioactivity, pyro-processing is not open to weapon material diversion. This technology is ready now. Nuclear power has the same advantage as coal power in that it is not dependent upon a scarce foreign fuel and has the significant additional advantage of not contributing to global warming or air pollution. A jump start on new nuclear plants could rapidly allow electric furnaces to replace home heating oil furnaces and utilize high capacity batteries for hybrid automobiles: both would reduce US reliance on oil. If these were fast reactors fueled by reprocessed fuel, the spent fuel storage problem could also be solved. Costs are derived from assumptions on the LWR's and FR's five cost components: 1) Capital costs: LWR plants cost $106/MWe. FR's cost 25% more. Forty year amortization is used. 2) The annual O and M costs for both plants are 9% of the Capital Costs. 3) LWR fuel costs about 0.0035 $/kWh. Producing FR fuel from spent fuel by pyro-processing must be done in highly shielded hot cells which is costly. However, the five foot thick concrete walls have the advantage of prohibiting diversion. LWR spent fuel must be used as feedstock for the FR initial core load and first two reloads so this FR fuel costs more than LWR fuel. FR fuel costs much less for subsequent core reloads ( 6 /MWe. The annual cost for a 40 year licensed plant would be 2.5 % of this or less if interest is taken into account. All plants will eventually have to replace those components which become radiation damaged. FR's should be designed to replace parts rather than decommission. The LWR costs are estimated to be 2.65 cents/kWh. FR costs are 2.99 cents/kWh for the first

  11. The emerging chemistry of sodium ion batteries for electrochemical energy storage.

    Science.gov (United States)

    Kundu, Dipan; Talaie, Elahe; Duffort, Victor; Nazar, Linda F

    2015-03-09

    Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below-sodium-is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials

    International Nuclear Information System (INIS)

    Shi, Shang; Xie, Yongqi; Li, Ming; Yuan, Yanping; Yu, Jianzu; Wu, Hongwei; Liu, Bin; Liu, Nan

    2017-01-01

    Highlights: • An integrated thermal management system for power battery is designed. • The battery temperature rise is a non-steady process for charge and discharge. • A mathematical model can accurately represent temperature rise characteristics. • The heat generation power of the battery is calculated theoretically. • The excess temperatures and thermal resistances affect the system performance. - Abstract: A large amount of heat inside the power battery must be dissipated to maintain the temperature in a safe range for the hybrid power train during high-current charging/discharging processes. In this article, a combined experimental and theoretical study has been conducted to investigate a newly designed thermal management system integrating phase change material with air cooling. An unsteady mathematical model was developed for the battery with the integrated thermal management system. Meanwhile, the heat generation power, thermal resistance, and time constant were calculated. The effect of several control parameters, such as thermal resistance, initial temperature, melting temperature and ambient temperature, on the performance of the integrated thermal management system were analyzed. The results indicated that: (1) the calculated temperature rise of the battery was in good agreement with the experimental data. The appropriate operation temperature of the battery was attained by the action of the phase change storage energy unit which is composed of copper foam and n-Eicosane, (2) the remarkable decrease of the battery temperature can be achieved by reducing the convection thermal resistance or increasing the conductivity of the phase change storage energy unit, where the latter could be the better option due to no additional energy consumption. When convective resistance and thermal resistance between the battery surface and the phase change storage energy unit are less than 2.03 K/W and 1.85 K/W, respectively, the battery will not exceed the

  13. Frontier battery development for hybrid vehicles

    OpenAIRE

    Lewis, Heather; Park, Haram; Paolini, Maion

    2012-01-01

    Abstract Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used f...

  14. Battery Dimensioning and Life Cycle Costs Analysis for a Heavy-Duty Truck Considering the Requirements of Long-Haul Transportation

    OpenAIRE

    Mareev, Ivan; Becker, Jan Nicolas; Sauer, Dirk Uwe

    2018-01-01

    The use of heavy-duty battery electric trucks for long-haul transportation is challenging because of the required high energy amounts and thus the high capacity of traction batteries. Furthermore a high capacity battery implies high initial costs for the electric vehicle. This study investigates the required battery capacity for battery electric trucks considering the requirements of long-haul transportation in Germany and compares the life cycle costs of battery electric trucks and conventio...

  15. Effects of internalising external production costs in a North European power market

    International Nuclear Information System (INIS)

    Munksgaard, J.; Ramskov, J.

    2002-01-01

    The aim of integrating national power markets is to improve the overall efficiency thereby making a potential for reducing electricity prices. However, efficiency is not necessarily improved if external environmental protection costs are neglected. In this paper, we analyse the effects of regulating an integrated power market by using environmental producer taxes based on external production costs. The analysis is based on an empirical equilibrium model for the North European power market. The results show that internalising costs will increase electricity producer prices by 40-50% in the period from 1995 to 2020. Further, demand for electricity will be reduced by 10%. We conclude, however, that in order to achieve the national Kyoto targets of reducing CO 2 emissions, further regulation is needed, such as national CO 2 taxes or cost efficient mechanisms like tradeable permits and joint implementation. (author)

  16. Comparative study of aspiration and non-aspiration cytology of palpable breast lumps and correlation with histopathology

    Directory of Open Access Journals (Sweden)

    S Koirala

    2014-09-01

    Full Text Available Background: Breast lump is one of the most common presentations in surgical outpatient departments with anxiety regarding a possible malignancy. Hence a quick diagnosis of a lump in the breast is essential. Fine needle aspiration cytology is an ideal initial diagnostic modality in breast lumps. There is an alternative method of performing needle aspiration, known as fine needle capillary cytology where the specimen is obtained using just a needle without aspiration.Materials and Methods: This hospital-based cross sectional analytical study was carried out in Department of Pathology in National Academy of Medical Sciences, Bir Hospital for one year. The objective of this study was to compare aspiration and non-aspiration cytology of palpable breast lumps and correlation with histopathology.Results: The five criteria scored for each technique were background blood, amount of cellular material, cellular degeneration, cellular trauma and architectural preservation. Compared to fine needle aspiration cytology, fine needle capillary cytology yields less bloody smears with minimal degenerative changes and offers more diagnostically superior specimens. Fine needle aspiration cytology, on the other hand, gives a good yield of diagnostic material.Conclusion: Fine needle aspiration cytology and fine needle capillary cytology are quick, easy, safe and cost-effective techniques. . A high sensitivity and specificity of cytological diagnosis in this study proves that it is comparable to final histology report in its diagnostic efficiency. Thus, fine needle aspiration cytology is a very important preliminary diagnostic test in palpable breast lumps and the results show a high degree of correlation with the final histopathology report.DOI: http://dx.doi.org/10.3126/jpn.v4i8.11501 Journal of Pathology of Nepal; Vol.4,No. 8 (2014 639-643

  17. Advanced state prediction of lithium-ion traction batteries in hybrid and battery electric vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Jadidi, Yasser

    2011-07-01

    Automotive power trains with high energy efficiencies - particularly to be found in battery and hybrid electric vehicles - find increasing attention in the focus of reduction of exhaust emissions and increase of mileage. The underlying concept, the electrification of the power train, is subject to the traction battery and its battery management system since the capability of the battery permits and restricts electric propulsion. Consequently, the overall vehicle efficiency and in particular the operation strategy performance strongly depends on the quality of information about the battery. Besides battery technology, the key challenges are given by both the accurate prediction of battery behaviour and the electrochemical battery degradation that leads to power and capacity fade of the traction battery. This book provides the methodology for development of a battery state monitoring and prediction algorithm for application in a battery management system that accounts for the effects of electrochemical degradation. (orig.)

  18. Second Life for Electric Vehicle Batteries: Answering Questions on Battery Degradation and Value

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Wood, E.; Pesaran, A.

    2015-05-04

    Battery second use – putting used plug-in electric vehicle (PEV) batteries into secondary service following their automotive tenure – has been proposed as a means to decrease the cost of PEVs while providing low cost energy storage to other fields (e.g. electric utility markets). To understand the value of used automotive batteries, however, we must first answer several key questions related to National Renewable Energy Laboratory (NREL) has developed a methodology and the requisite tools to answer these questions, including NREL’s Battery Lifetime Simulation Tool (BLAST). Herein we introduce these methods and tools, and demonstrate their application. We have found that capacity fade from automotive use has a much larger impact on second use value than resistance growth. Where capacity loss is driven by calendar effects more than cycling effects, average battery temperature during automotive service – which is often driven by climate – is found to be the single factor with the largest effect on remaining value. Installing hardware and software capabilities onboard the vehicle that can both infer remaining battery capacity from in-situ measurements, as well as track average battery temperature over time, will thereby facilitate the second use of automotive batteries.

  19. A novel parameter for evaluation on power performance of Ni-MH rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lian-Xing; Tang, Xin-Cun [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Luo, Zhuo; Song, Xia-Wei; Liu, Hong-Tao [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2010-04-15

    In the work, two novel conceptions of ''capacity quality'' (CQ) and ''capacity quality coefficient'' ({lambda}) were defined to evaluate cycling power capabilities of Ni-MH rechargeable batteries when considering the effect of the kinetic limitation. For convenient comparison, the capacity quality coefficient ({lambda}) and the efficiency of charge/discharge ({eta}) were in parallel applied to characterize cycling capabilities based on the data from BYD H-3/4AAA800 Ni-MH batteries at 1C-3.5C. The results show that there is an obvious difference between {lambda} and {eta} which served as evaluation indexes for rechargeable batteries, and that the secondary battery with good capacity quality also has a good cycling capability and rate capability, especially at high rate. The introduced capacity quality not only subtly covered kinetic information of the rechargeable batteries but also factually reflected stability of the electrode materials. (author)

  20. Smart power management algorithm in microgrid consisting of photovoltaic, diesel, and battery storage plants considering variations in sunlight, temperature, and load

    International Nuclear Information System (INIS)

    Koohi-Kamali, Sam; Rahim, N.A.; Mokhlis, H.

    2014-01-01

    Highlights: • A novel power management algorithm is developed. • An effective power smoothing index is derived. • Application of battery storage in smoothing the power fluctuations is investigated. • An applicable battery sizing and designing algorithm is proposed. • An efficient battery current control algorithm is designed. - Abstract: Integration of utility scaled solar electricity generator into power networks can negatively affect the performance of next generation smartgrid. Rapidly changing output power of this kind is unpredictable and thus one solution is to mitigate it by short-term to mid-term electrical storage systems like battery. The main objective of this paper is to propose a power management system (PMS) which is capable of suppressing these adverse impacts on the main supply. A smart microgrid (MG) including diesel, battery storage, and solar plants has been suggested for this purpose. MG is able to supply its local load based on operator decision and decline the power oscillations caused by solar system together with variable loads. A guideline algorithm is also proposed which helps to precisely design the battery plant. A novel application of time domain signal processing approach to filter oscillating output power of the solar plant is presented as well. In this case, a power smoothing index (PSI) is formulated, which considers both load and generation, and used to dispatch the battery plant. A droop reference estimator to schedule generation is also introduced where diesel plant can share the local load with grid. A current control algorithm is designed as well which adjusts for PSI to ensure battery current magnitude is allowable. MG along with its communication platform and PMS are simulated using PSCAD software. PMS is tested under different scenarios using real load profiles and environmental data in Malaysia to verify the operational abilities of proposed MG. The results indicate that PMS can effectively control the MG

  1. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles

    International Nuclear Information System (INIS)

    Zhao, Jiateng; Rao, Zhonghao; Huo, Yutao; Liu, Xinjian; Li, Yimin

    2015-01-01

    Thermal management especially cooling plays an important role in power battery modules for electric vehicles. In order to comprehensively understand the heat transfer characteristics of air cooling system, the air cooling numerical simulation battery models for cylindrical lithium-ion power battery pack were established in this paper, and a detailed parametric investigation was undertaken to study effects of different ventilation types and velocities, gap spacing between neighbor batteries, temperatures of environment and entrance air, amount of single row cells and battery diameter on the thermal management performance of battery pack. The results showed that the local temperature difference increased firstly and then decreased with the increase of wind speed. Reversing the air flow direction between adjacent rows is not necessarily appropriate and the gap spacing should not be too small and too large. It is prone to thermal runaway when the ambient temperature is too high, and the most suitable value of S/D (the ratio of spacing distance between neighbor cells and cell diameter) is gradually reduced along with the increase of cell diameter. - Highlights: • Air cooling models were established for cylindrical lithium-ion power battery pack. • Local temperature difference increased firstly and then decreased with wind speed. • The gap spacing size of battery pack should not be too small and too large. • It is prone to thermal runaway when the ambient temperature is too high. • The ratio of S/D is gradually reduced with the increase of cell diameter

  2. Low-cost, flexible battery packaging materials

    Science.gov (United States)

    Jansen, Andrew N.; Amine, Khalil; Newman, Aron E.; Vissers, Donald R.; Henriksen, Gary L.

    2002-03-01

    Considerable cost savings can be realized if the metal container used for lithium-based batteries is replaced with a flexible multi-laminate containment commonly used in the food packaging industry. This laminate structure must have air, moisture, and electrolyte barrier capabilities, be resistant to hydrogen-fluoride attack, and be heat-sealable. After extensive screening of commercial films, the polyethylene and polypropylene classes of polymers were found to have an adequate combination of mechanical, permeation, and seal-strength properties. The search for a better film and adhesive is ongoing.

  3. Advanced Electrodes for High Power Li-ion Batteries

    Directory of Open Access Journals (Sweden)

    Christian M. Julien

    2013-03-01

    Full Text Available While little success has been obtained over the past few years in attempts to increase the capacity of Li-ion batteries, significant improvement in the power density has been achieved, opening the route to new applications, from hybrid electric vehicles to high-power electronics and regulation of the intermittency problem of electric energy supply on smart grids. This success has been achieved not only by decreasing the size of the active particles of the electrodes to few tens of nanometers, but also by surface modification and the synthesis of new multi-composite particles. It is the aim of this work to review the different approaches that have been successful to obtain Li-ion batteries with improved high-rate performance and to discuss how these results prefigure further improvement in the near future.

  4. Evaluation of Lithium-ion Battery Second Life Performance and Degradation

    DEFF Research Database (Denmark)

    Martinez-Laserna, Egoitz; Sarasketa-Zabala, Elixabet; Stroe, Daniel Loan

    2016-01-01

    the effects of lithium-ion (Li-ion) battery State of Health (SOH) and ageing history over the second life performance on two different applications: a residential demand management application and a power smoothing renewable integration application. The performance and degradation of second life batteries......Reusing electric vehicle batteries once they have been retired from the automotive application is stated as one of the possible solutions to reduce electric vehicle costs. Many publications in the literature have analyzed the economic viability of such a solution, and some car manufacturers have...... recently started running several projects to demonstrate the technical viability of the so-called battery second life. Nevertheless, the performance and degradation of second life batteries remain an unknown topic and one of the biggest gaps in the literature. The present work aims at evaluating...

  5. Synthesis of CaCrO{sub 4} powders for the cathode material of the thermal battery by GNP and electrochemical characteristics of Ca/LiCl-KCl/CaCrO{sub 4} thermal battery system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe

    2000-04-01

    Thermal batteries are one of the devices employing solid electrolyte that are not nonconductive at ambient temperature, and activated by electrochemical reaction when the sufficient heat is supplied to electrolyte to melt. The demand of thermal batteries would be increased because it is cost effective and highly reliable in that no maintenance is necessary, electric power can be generated as necessary and no self discharge unlike the other primary batteries. These thermal batteries are used to the military purposes and satellite communication systems and as an emergency power sources, applied to the important places where power supply should not be interrupted, such as hospital, powder plants, ships and portable communication devices. Therefore, the purpose of this study was focused to obtain the manufacturing technologies of thermal battery on our own, after manufacturing the CaCrO{sub 4} produced by GNP and investigating the electrochemical characteristics of Ca/LiCl-KCl+CaCrO{sub 4}/Ni.

  6. Control system considerations for an aluminum-air battery powered electric vehicle

    Science.gov (United States)

    Cox, L. E.; Hassman, G. V.; Post, S. F.

    1980-05-01

    Basic motor controller requirements and tradeoffs between 30 cell and 60 cell aluminum air battery systems were established. A sample controller design was evolved and basic characteristics were evaluated. Advantages of a 60 cell battery system over a 30 cell were found in the areas of control system costs, weights, and efficiency.

  7. Batteries and fuel cells for emerging electric vehicle markets

    Science.gov (United States)

    Cano, Zachary P.; Banham, Dustin; Ye, Siyu; Hintennach, Andreas; Lu, Jun; Fowler, Michael; Chen, Zhongwei

    2018-04-01

    Today's electric vehicles are almost exclusively powered by lithium-ion batteries, but there is a long way to go before electric vehicles become dominant in the global automotive market. In addition to policy support, widespread deployment of electric vehicles requires high-performance and low-cost energy storage technologies, including not only batteries but also alternative electrochemical devices. Here, we provide a comprehensive evaluation of various batteries and hydrogen fuel cells that have the greatest potential to succeed in commercial applications. Three sectors that are not well served by current lithium-ion-powered electric vehicles, namely the long-range, low-cost and high-utilization transportation markets, are discussed. The technological properties that must be improved to fully enable these electric vehicle markets include specific energy, cost, safety and power grid compatibility. Six energy storage and conversion technologies that possess varying combinations of these improved characteristics are compared and separately evaluated for each market. The remainder of the Review briefly discusses the technological status of these clean energy technologies, emphasizing barriers that must be overcome.

  8. Beneficial effect of combined aspiration and interstitial laser therapy in patients with benign cystic thyroid nodules

    DEFF Research Database (Denmark)

    Døssing, H; Bennedbaek, F N; Hegedüs, L

    2006-01-01

    nodule causing local discomfort were assigned to cyst aspiration followed by ultrasound-guided ILP and followed for 12 months. The ILP was performed under continuous ultrasound-guidance and with an output power of 2.5-3.5 W. The volume of the nodules was assessed by means of ultrasound and determination...... part. Both pressure symptoms and cosmetic complaints were significantly reduced. The only side effect was mild pain or tenderness for a few days. Our study suggests that complete cyst aspiration and subsequent ultrasound-guided ILP of benign cystic thyroid nodules is a feasible and safe technique...

  9. New composite separator pellet to increase power density and reduce size of thermal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, Lisa Ann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Christine Cardinal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grillet, Anne Mary [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soehnel, Melissa Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barringer, David Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); DiAntonio, Christopher Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chavez, Thomas P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ingersoll, David T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hughes, Lindsey Gloe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evans, Lindsey R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fitchett, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-11-01

    We show that it is possible to manufacture strong macroporous ceramic films that can be backfilled with electrolyte to form rigid separator pellets suitable for use in thermal batteries. Several new ceramic manufacturing processes are developed to produce sintered magnesium oxide foams with connected porosities of over 80% by volume and with sufficient strength to withstand the battery manufacturing steps. The effects of processing parameters are quantified, and methods to imbibe electrolyte into the ceramic scaffold demonstrated. Preliminary single cell battery testing show that some of our first generation pellets exhibit longer voltage life with comparable resistance at the critical early times to that exhibited by a traditional pressed pellets. Although more development work is needed to optimize the processes to create these rigid separator pellets, the results indicate the potential of such ceramic separator pellets to be equal, if not superior to, current pressed pellets. Furthermore, they could be a replacement for critical material that is no longer available, as well as improving battery separator strength, decreasing production costs, and leading to shorter battery stacks for long-life batteries.

  10. Economic Optimization of Component Sizing for Residential Battery Storage Systems

    Directory of Open Access Journals (Sweden)

    Holger C. Hesse

    2017-06-01

    Full Text Available Battery energy storage systems (BESS coupled with rooftop-mounted residential photovoltaic (PV generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today’s high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA system and two lithium-ion systems, one with lithium-iron-phosphate (LFP and another with lithium-nickel-manganese-cobalt (NMC cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.

  11. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-03-12

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Draft...-Acid Storage Batteries for Nuclear Power Plants.'' The draft guide describes methods that the NRC staff..., testing, and replacement of vented lead-acid storage batteries in nuclear power plants. DATES: Submit...

  12. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  13. Design and simulation of liquid cooled system for power battery of PHEV

    Science.gov (United States)

    Wang, Jianpeng; Xu, Haijun; Xu, Xiaojun; Pan, Cunyun

    2017-09-01

    Various battery chemistries have different responses to failure, but the most common failure mode of a cell under abusive conditions is the generation of heat and gas. To prevent battery thermal abuse, a battery thermal management system is essential. An excellent design of battery thermal management system can ensure that the battery is working at a suitable temperature and keeps the battery temperature diffenence at 2-3 °C. This paper presents a thermal-elcetric coupling model for a 37Ah lithium battery using AMESim. A liquid cooled system of hybrid electric vehicle power battery is designed to control the battery temperature.A liquid cooled model of thermal management system is built using AMESim, the simulation results showed that the temperature difference within 3°C of cell in the pack.

  14. Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips

    International Nuclear Information System (INIS)

    Arslan, Okan; Yıldız, Barış; Ekin Karaşan, Oya

    2014-01-01

    In a road network with refueling and fast charging stations, the minimum-cost driving path of a plug-in hybrid electric vehicle (PHEV) depends on factors such as location and availability of refueling/fast charging stations, capacity and cost of PHEV batteries, and driver tolerance towards extra mileage or additional stopping. In this paper, our focus is long-distance trips of PHEVs. We analyze the impacts of battery characteristics, often-overlooked driver preferences and road network features on PHEV travel costs for long-distance trips and compare the results with hybrid electric and conventional vehicles. We investigate the significance of these factors and derive critical managerial insights for shaping the future investment decisions about PHEVs and their infrastructure. In particular, our findings suggest that with a certain level of deployment of fast charging stations, well established cost and emission benefits of PHEVs for the short range trips can be extended to long distance. Drivers' stopping intolerance may hamper these benefits; however, increasing battery capacity may help overcome the adverse effects of this intolerance. - Highlights: • We investigate the travel costs of CVs, HEVs and PHEVs for long-distance trips. • We analyze the impacts of battery, driver and road network characteristics on the costs. • We provide critical managerial insights to shape the investment decisions about PHEVs. • Drivers' stopping intolerance may hamper the cost and emission benefits of PHEVs. • Negative effect of intolerance on cost may be overcome by battery capacity expansion

  15. Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity

    International Nuclear Information System (INIS)

    Wang Zhen-Po; Liu Peng; Wang Li-Fang

    2013-01-01

    The lithium-ion battery has been widely used as an energy source. Charge rate, discharge rate, and operating temperature are very important factors for the capacity degradations of power batteries and battery packs. Firstly, in this paper we make use of an accelerated life test and a statistical analysis method to establish the capacity accelerated degradation model under three constant stress parameters according to the degradation data, which are charge rate, discharge rate, and operating temperature, and then we propose a capacity degradation model according to the current residual capacity of a Li-ion cell under dynamic stress parameters. Secondly, we analyze the charge and discharge process of a series power battery pack and interpret the correlation between the capacity degradations of the battery pack and its charge/discharge rate. According to this cycling condition, we establish a capacity degradation model of a series power battery pack under inconsistent capacity of cells, and analyze the degradation mechanism with capacity variance and operating temperature difference. The comparative analysis of test results shows that the inconsistent operating temperatures of cells in the series power battery pack are the main cause of its degradation; when the difference between inconsistent temperatures is narrowed by 5 °C, the cycle life can be improved by more than 50%. Therefore, it effectively improves the cycle life of the series battery pack to reasonably assemble the batteries according to their capacities and to narrow the differences in operating temperature among cells. (interdisciplinary physics and related areas of science and technology)

  16. Lithium-ion backup batteries for coping extended loss of AC power (ELAP)

    International Nuclear Information System (INIS)

    Chang, Choong-koo

    2017-01-01

    Per NRC Regulations Title 10, Code of Federal Regulations (CFR) 50.63 'Loss of all alternating current power' all Korean nuclear power plants have a coping capability for SBO conditions for a limited time ranging from approximately eight (8) to sixteen (16) hours. The 125V DC systems are designed for eight (8) hours range except Class 1E channel A and B 125V DC system of which duty cycle is 2 hours in APR1400. The strategies proposed by this paper for coping extended loss of AC power (ELAP) involve a three-phase approach. In the first extend class 1E batteries' backup time until 24 hours. Then augment class 1E batteries with Lithium-ion batteries by 72 hours from the event initiation. In addition, obtain additional capability and redundancy from off-site equipment until power systems are restored or commissioned. (author)

  17. Optimization of PHEV Power Split Gear Ratio to Minimize Fuel Consumption and Operation Cost

    Science.gov (United States)

    Li, Yanhe

    A Plug-in Hybrid Electric Vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery pack. The battery pack can be charged by plugging the vehicle to the electric grid and from using excess engine power. The research activity performed in this thesis focused on the development of an innovative optimization approach of PHEV Power Split Device (PSD) gear ratio with the aim to minimize the vehicle operation costs. Three research activity lines have been followed: • Activity 1: The PHEV control strategy optimization by using the Dynamic Programming (DP) and the development of PHEV rule-based control strategy based on the DP results. • Activity 2: The PHEV rule-based control strategy parameter optimization by using the Non-dominated Sorting Genetic Algorithm (NSGA-II). • Activity 3: The comprehensive analysis of the single mode PHEV architecture to offer the innovative approach to optimize the PHEV PSD gear ratio.

  18. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    Science.gov (United States)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  19. Comparison of the CDC Backpack aspirator and the Prokopack aspirator for sampling indoor- and outdoor-resting mosquitoes in southern Tanzania

    Directory of Open Access Journals (Sweden)

    Mgando Joseph

    2011-06-01

    Full Text Available Abstract Background Resting mosquitoes can easily be collected using an aspirating device. The most commonly used mechanical aspirator is the CDC Backpack aspirator. Recently, a simple, and low-cost aspirator called the Prokopack has been devised and proved to have comparable performance. The following study evaluates the Prokopack aspirator compared to the CDC backpack aspirator when sampling resting mosquitoes in rural Tanzania. Methods Mosquitoes were sampled in- and outdoors of 48 typical rural African households using both aspirators. The aspirators were rotated between collectors and households in a randomized, Latin Square design. Outdoor collections were performed using artificial resting places (large barrel and car tyre, underneath the outdoor kitchen (kibanda roof and from a drop-net. Data were analysed with generalized linear models. Results The number of mosquitoes collected using the CDC Backpack and the Prokopack aspirator were not significantly different both in- and outdoors (indoors p = 0.735; large barrel p = 0.867; car tyre p = 0.418; kibanda p = 0.519. The Prokopack was superior for sampling of drop-nets due to its smaller size. The number mosquitoes collected per technician was more consistent when using the Prokopack aspirator. The Prokopack was more user-friendly: technicians preferred using the it over the CDC backpack aspirator as it weighs considerably less, retains its charge for longer and is easier to manoeuvre. Conclusions The Prokopack proved in the field to be more advantageous than the CDC Backpack aspirator. It can be self assembled using simple, low-cost and easily attainable materials. This device is a useful tool for researchers or vector-control surveillance programs operating in rural Africa, as it is far simpler and quicker than traditional means of sampling resting mosquitoes. Further longitudinal evaluations of the Prokopack aspirator versus the gold standard pyrethrum spray catch for indoor resting

  20. Cost of nuclear power generation judged by power rate

    International Nuclear Information System (INIS)

    Hirai, Takaharu

    1981-01-01

    According to estimation guidance, power rates in general are the proper cost plus the specific compensation and adjustment addition. However, the current system of power rates is of power-source development promotion type involving its tax. The structure of power rate determination must be restudied now especially in connection of nuclear power generation. The cost of nuclear power generation as viewed from power rate is discussed as follows: the fear of military application of power plants, rising plant construction costs, the loophole in fuel cost calculation, unreasonable unit power cost, depreciation and repair cost, business compensation, undue business compensation in nuclear power, the costs of nuclear waste management, doubt concerning nuclear power cost, personnel, pumping-up and power transmission costs in nuclear power, energy balance analysis, nuclear power viewed in entropy, the suppression of power consumption. (J.P.N.)

  1. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  2. A new high power thermal battery cathode material

    International Nuclear Information System (INIS)

    Faul, I.

    1986-01-01

    Smaller and lighter thermal batteries are major aims of the battery research programme at RAE Farnborough. Modern designs of thermal batteries, for use as power supplies in weapon systems, almost invariably use the Li:molten salt:FeS/sub 2/ system because of the significant increase in energy density achieved in comparison with the earlier Ca/CaCrO/sub 4/ couple. The disadvantage of the FeS/sub 2/ system is that the working cell voltage, between 1.5 and 2.0 V, is significantly lower so leading to more cells per battery than the earlier system. Further work at RAE and MSA (Britain) Ltd showed that the poor thermal stability of TiS/sub 2/ limited its use in thermal batteries, whilst the more stable V/sub 6/O/sub 13/ oxidised the electrolyte, giving poor efficiencies. However, the resulting reduced vanadium oxide material, subsequently called lithiated vanadium oxide (LVO), was found to be an excellent high voltage thermal battery cathode, being the subject of both UK and US patents. In this study both V/sub 6/O/sub 13/ made by the direct stoichiometric reaction of V/sub 2/O/sub 5/ and V and also by thermal decomposition of NH/sub 4/VO/sub 3/ under argon, have been used with equal success as the starting material for the preparation of LVO

  3. Cost effective decommissioning and dismantling of nuclear power plants

    International Nuclear Information System (INIS)

    Wasinger, Karl

    2012-01-01

    As for any large and complex project, the basis for cost effective decommissioning and dismantling of nuclear power plants is established with the development of the project. Just as its construction, dismantling of a nuclear power plant is similarly demanding. Daily changing situations due to the progress of construction - in the present case progress of dismantling - result in significant logistical challenges for project managers and site supervisors. This will be aggravated by the fact that a considerable amount of the removed parts are contaminated or even activated. Hence, not only occupational health, safety and environmental protection is to be assured, employees, public and environment are to be adequately protected against the adverse effect of radioactive radiation as well. Work progress and not least expenses involved with the undertaking depend on adherence to the planned course of actions. Probably the most frequent cause of deviation from originally planned durations and costs of a project are disruptions in the flow of work. For being enabled to counteract in a timely and efficient manner, all required activities are to be comprehensively captured with the initial planning. The effect initial activities may have on subsequent works until completion must particularly be investigated. This is the more important the larger and more complex the project actually are. Comprehensive knowledge of all the matters which may affect the progress of the works is required in order to set up a suitable work break-down structure; such work break-down structure being indispensable for successful control and monitoring of the project. In building the related organizational structure of the project, all such stakeholders not being direct part of the project team but which may potentially affect the progress of the project are to be considered as well. Cost effective and lost time injury free dismantling of decommissioned nuclear power plants is based on implementing

  4. The Economics of Nuclear Power: Is Nuclear Power a Cost-Effective Way to Tackle Climate Change

    International Nuclear Information System (INIS)

    Thomas, S.

    2009-01-01

    The role nuclear power can play in combating climate change is limited by the fact that nuclear can have little role in the transport sector, one of the two major emitters of greenhouse gases. However, nuclear power is often portrayed as the most important potential measure to reduce emissions in the other major emitter of greenhouse gases, the power generation sector. For nearly a decade, there has been talk of a 'nuclear renaissance'. Under this, a new generation of nuclear power plants, so called generation III+ designs, would revitalize ordering in markets, especially Europe and North America, that had seen no orders since the 1980s or earlier. This renaissance and the potential role of nuclear power in combating climate change raise a number of issues, including: 1) Is nuclear power the most cost-effective way to replace fossil fuel power generation? 2) Can the issues that nuclear power brings with it, including environmental impact, safety, waste disposal and weapons proliferation be dealt with effectively enough that they will not be a barrier to the use of nuclear power? 3) Are uranium resources sufficient to allow deployment of nuclear power on the scale necessary to have a significant impact on greenhouse gas emissions with existing technologies or would unproven and even more controversial technologies that use natural uranium more sparingly, such as fast reactors, be required? This paper focuses on the first question and in particular, it examines whether economic factors are behind the failure of the long-forecast 'nuclear renaissance' to materialize in Europe and North America. It examines factors such as the construction cost escalation, difficulties of finance and the cost of capital, the financial crisis of 2008/09, the delays in getting regulatory approval for the new designs, and skills and equipment shortages. It concludes that the main factors behind the delays in new orders are: 1) Poor construction experience with the only two new orders

  5. Nuclear power costs

    International Nuclear Information System (INIS)

    1963-01-01

    A report prepared by the IAEA Secretariat and presented to the seventh session of the Agency's General Conference says that information on nuclear power costs is now rapidly moving from the domain of uncertain estimates to that of tested factual data. As more and more nuclear power stations are being built and put into operation, more information on the actual costs incurred is becoming available. This is the fourth report on nuclear power costs to be submitted to the IAEA General Conference. The report last year gave cost information on 38 nuclear power projects, 17 of which have already gone into operation. Certain significant changes in the data given last year are included-in the present report; besides, information is given on seven new plants. The report is divided into two parts, the first on recent developments and current trends in nuclear power costs and the second on the use of the cost data for economic comparisons. Both stress the fact that the margin of uncertainty in the basic data has lately been drastically reduced. At the same time, it is pointed out, some degree of uncertainty is inherent in the assumptions made in arriving at over-all generating cost figures, especially when - as is usually the case - a nuclear plant is part of an integrated power system

  6. A new controller for battery-powered electric vehicles

    Science.gov (United States)

    Belsterling, C. A.; Stone, J.

    1980-01-01

    This paper describes the development, under a NASA/DOE contract, of a new concept for efficient and reliable control of battery-powered vehicles. It avoids the detrimental effects of pulsed-power controllers like the SCR 'chopper' by using rotating machines to meter continuous currents to the traction motor. The concept is validated in a proof-of-principle demonstration system and a complete vehicle is simulated on an analog computer. Test results show exceptional promise for a full-scale system. Optimum control strategies to minimize controller weight are developed by means of the simulated vehicle. The design for an Engineering Model is then prepared in the form of a practical, compact two-bearing package with forced air cooling. Predicted performance is outstanding, with controller efficiency of over 90% at high speed.

  7. Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system

    International Nuclear Information System (INIS)

    Zhang, Shuo; Xiong, Rui; Cao, Jiayi

    2016-01-01

    Highlights: • A novel procedure for developing an optimal power management strategy was proposed. • Efficiency and durability were considered to improve the practical performance. • Three control rules were abstracted from the optimization results with DP algorithm. • The proposed control strategy was verified under different SoC and SoH conditions. • The proposed strategy could further improve the energy efficiency obviously. - Abstract: Efficiency and durability are becoming two key issues for the energy storage system in electric vehicles together with their associated power management strategies. In this paper, we present a procedure for the design of a near-optimal power management strategy for the hybrid battery and ultracapacitor energy storage system (HESS) in a plug-in hybrid electric vehicle. The design procedure starts by defining a cost function to minimize the electricity consumption of the HESS and to optimize the operating behavior of the battery. To determine the optimal control actions and power distribution between two power sources, a dynamic programming (DP)-based novel analysis method is proposed, and the optimization framework is presented accordingly. Through analysis of the DP control actions under different battery state-of-health (SoH) conditions, near-optimal rules are extracted. A rule based power management is proposed based on the abstracted rules and simulation results indicate that the new control strategy can improve system efficiency under different SoH and different SoC conditions. Ultimately, the performance of proposed strategy is further verified under different types of driving cycles including the MANHATTAN cycle, 1015 6PRIUS cycle and UDDSHDV cycle.

  8. Batteries: Lower cost than gasoline?

    International Nuclear Information System (INIS)

    Werber, Mathew; Fischer, Michael; Schwartz, Peter V.

    2009-01-01

    We compare the lifecycle costs of an electric car to a similar gasoline-powered vehicle under different scenarios of required driving range and cost of gasoline. An electric car is cost competitive for a significant portion of the scenarios: for cars of lower range and for higher gasoline prices. Electric cars with ∼150 km range are a technologically viable, cost competitive, high performance, high efficiency alternative that can presently suit the vast majority of consumers' needs.

  9. Cost-Effectiveness of Emission Reduction for the Indonesian Coal-Fired Power Plants

    NARCIS (Netherlands)

    Handayani, Kamia; Krozer, Yoram

    2014-01-01

    This paper presents the result of research on the cost-effectiveness of emission reduction in the selected coal-fired power plants (CFPPs) in Indonesia. The background of this research is the trend of more stringent environmental regulation regarding air emission from coal-fired power plants (CFPPs)

  10. Electro-thermal modelling of polymer lithium batteries for starting period and pulse power

    Energy Technology Data Exchange (ETDEWEB)

    Baudry, P. [Electricite de France DER, Site des Renardieres, Moret-sur-Loing (France); Neri, M. [Electricite de France DER, Site des Renardieres, Moret-sur-Loing (France); Gueguen, M. [Bollore Technologies, Odet, 29 Quimper (France); Lonchampt, G. [CEA/CEREM, CENG-85X, 38 Grenoble (France)

    1995-04-01

    Since power capabilities of solid polymer lithium batteries can only be delivered above 60 C, the thermal management in electric-vehicle applications has to be carefully considered. Electro-thermal modelling of a thermally insulated 200 kg battery was performed, and electrochemical data were obtained from laboratory cell impedance measurements at 20 and 80 C. Starting at 20 C as initial working temperature, the battery reaches 40 C after 150 s of discharge in a 0.5 {Omega} resistance. At 40 C, the useful peak power is 20 kW. The energy expense for heating the battery from 20 to 40 C is 1.4 kWh, corresponding to 6% of the energy available in the battery. After a stand-by period of 24 h, the temperature decreases from 80 to 50 C, allowing efficient starting conditions. (orig.)

  11. Technical model for optimising PV/diesel/battery hybrid power systems

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-08-31

    Full Text Available A solar-based power supply system, such as a photovoltaic (PV)-diesel-battery system, is a particularly attractive option for decentralised power supply in southern Africa where solar radiation is ubiquitous in most countries. Such systems can make...

  12. Direct battery-driven solar LED lighting using constant-power control

    KAUST Repository

    Huang, Bin-Juine; Chen, Chun-Wei; Hsu, Po-Chien; Tseng, Wei-Min; Wu, Min-Sheng

    2012-01-01

    A direct battery-driven LED lighting technique using constant-power control is proposed in the present study. A system dynamics model of LED luminaire was derived and used in the design of the feedback constant-power control system. The test result

  13. Transforming PC Power Supplies into Smart Car Battery Conditioners

    Science.gov (United States)

    Rodriguez-Ascariz, J. M.; Boquete-Vazquez, L.

    2011-01-01

    This paper describes a laboratory project consisting of a PC power supply modification into an intelligent car-battery conditioner with both wireless and wired networking capabilities. Adding a microcontroller to an average PC power supply transforms it into a flexible, intelligent device that can be configured and that is suitable to keep car…

  14. 78 FR 33849 - Battery-Powered Medical Devices Workshop: Challenges and Opportunities; Public Workshop; Request...

    Science.gov (United States)

    2013-06-05

    ... after the public workshop on the Internet at http://www.fda.gov/MedicalDevices/NewsEvents/Workshops..., compact, and mobile, the number of battery-powered medical devices will continue to increase. While many...] Battery-Powered Medical Devices Workshop: Challenges and Opportunities; Public Workshop; Request for...

  15. Copper hexacyanoferrate battery electrodes with long cycle life and high power

    KAUST Repository

    Wessells, Colin D.; Huggins, Robert A.; Cui, Yi

    2011-01-01

    Short-term transients, including those related to wind and solar sources, present challenges to the electrical grid. Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at low cost are required. Existing energy storage technologies cannot satisfy these requirements. Here we show that crystalline nanoparticles of copper hexacyanoferrate, which has an ultra-low strain open framework structure, can be operated as a battery electrode in inexpensive aqueous electrolytes. After 40,000 deep discharge cycles at a 17g-C rate, 83% of the original capacity of copper hexacyanoferrate is retained. Even at a very high cycling rate of 83g-C, two thirds of its maximum discharge capacity is observed. At modest current densities, round-trip energy efficiencies of 99% can be achieved. The low-cost, scalable, room-temperature co-precipitation synthesis and excellent electrode performance of copper hexacyanoferrate make it attractive for large-scale energy storage systems. © 2011 Macmillan Publishers Limited. All rights reserved.

  16. Copper hexacyanoferrate battery electrodes with long cycle life and high power

    KAUST Repository

    Wessells, Colin D.

    2011-11-22

    Short-term transients, including those related to wind and solar sources, present challenges to the electrical grid. Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at low cost are required. Existing energy storage technologies cannot satisfy these requirements. Here we show that crystalline nanoparticles of copper hexacyanoferrate, which has an ultra-low strain open framework structure, can be operated as a battery electrode in inexpensive aqueous electrolytes. After 40,000 deep discharge cycles at a 17g-C rate, 83% of the original capacity of copper hexacyanoferrate is retained. Even at a very high cycling rate of 83g-C, two thirds of its maximum discharge capacity is observed. At modest current densities, round-trip energy efficiencies of 99% can be achieved. The low-cost, scalable, room-temperature co-precipitation synthesis and excellent electrode performance of copper hexacyanoferrate make it attractive for large-scale energy storage systems. © 2011 Macmillan Publishers Limited. All rights reserved.

  17. Operation strategy for grid-tied DC-coupling power converter interface integrating wind/solar/battery

    Science.gov (United States)

    Jou, H. L.; Wu, J. C.; Lin, J. H.; Su, W. N.; Wu, T. S.; Lin, Y. T.

    2017-11-01

    The operation strategy for a small-capacity grid-tied DC-coupling power converter interface (GDPCI) integrating wind energy, solar energy and battery energy storage is proposed. The GDPCI is composed of a wind generator, a solar module set a battery bank, a boost DC-DC power converter (DDPC), a bidirectional DDPC power converter, an AC-DC power converter (ADPC) and a five-level DC-AC inverter (DAI). A solar module set, a wind generator and a battery bank are coupled to the common DC bus through the boost DDPC, the ADPC and the bidirectional DDPC, respectively. For verifying the performance of the GDPCI under different operation modes, computer simulation is carried out by PSIM.

  18. The game changing 'Battery'

    International Nuclear Information System (INIS)

    Wallace, Paula

    2012-01-01

    Full text: A new energy storage system with the potential to change the way the world utilises electricity has been developed in South Australia. “ With the capability and flexibility to store energy generated by solar or wind power or capture off-peak power for later use, the ZEN Freedom Power Bank offers benefits to householders, businesses and utilities,” ZEN Energy Systems chief executive officer Richard Turner said. He recently represented Australia by invitation at the International Cleantech Forum in San Fransisco and used the spotlight to feature the technology he believes is a world-first and the 'holy grail' of renewable energy. The system is comprised of hi-density storage lithium ion batteries linked to innovative 'active' battery balancing and control software, allowing both 'on-grid' and 'off-grid' management options. The electronic software has been designed in a joint development project with ZEN sister company, US-based Greensmith Energy Management Systems. The units will be assembled in Australia for supply to the local market as well as for export. “This technology enables low cost, large format 'dumb' lithium ion cells to perform as effectively as, or better than, high cost 'smart' cells, virtually halving the cost of the batteries or providing twice the storage capacity for the same cost,” Turner said. “The control software then enables centralised control of large communities of systems to manage peak demand or other issues within the public power grid. The base residential/business system will be capable of managing and storing 20 kilowatt hours of energy per day, which is the daily consumption of an average Australian home. For larger properties, additional 20kWh energy storage modules can be easily added,” Turner explained. “Reliance on the public grid is greatly reduced and it provides up to 24-hour energy backup if the grid goes down.” In the future, the Power Bank will be electric vehicle charge station-ready, allowing

  19. Aspiration biopsy of testis: another method for histologic examination

    International Nuclear Information System (INIS)

    Nseyo, U.O.; Englander, L.S.; Huben, R.P.; Pontes, J.E.

    1984-01-01

    The most important method for evaluating the pathogenesis of male infertility is open testicular biopsy. Herein the authors describe a method of aspiration biopsy of testis for histologic examination. Sexually mature dogs and rats treated with chemotherapeutic agents and ionizing radiation were followed with periodic testicular aspiration biopsy during and after treatment. The histologic findings from the aspiration biopsy compare with the results of routine histologic examination in assessing spermatogenetic activity and delineating pathologic changes. The puncture in the experimental animals was performed under general anesthesia. In human patients testicular biopsy could be done under local anesthesia in an outpatient clinic. The procedure would be less painful, minimally invasive, and more cost-effective

  20. Advanced Power Batteries for Renewable Energy Applications 3.09

    Energy Technology Data Exchange (ETDEWEB)

    Shane, Rodney [East Penn Manufacturing Company, Inc., Lyon Station, PA (United States)

    2011-12-01

    This report describes the research that was completed under project title Advanced Power Batteries for Renewable Energy Applications 3.09, Award Number DE-EE0001112. The report details all tasks described in the Statement of Project Objectives (SOPO). The SOPO includes purchasing of test equipment, designing tooling, building cells and batteries, testing all variables and final evaluation of results. The SOPO is included. There were various types of tests performed during the project, such as; gas collection, float current monitoring, initial capacity, high rate partial state of charge (HRPSoC), hybrid pulse power characterization (HPPC), high rate capacity, corrosion, software modeling and solar life cycle tests. The grant covered a period of two years starting October 1, 2009 and ending September 30, 2011.

  1. Performance Characterization of a Lithium-ion Gel Polymer Battery Power Supply System for an Unmanned Aerial Vehicle

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Logan, Michael J.

    2004-01-01

    Unmanned aerial vehicles (UAVs) are currently under development for NASA missions, earth sciences, aeronautics, the military, and commercial applications. The design of an all electric power and propulsion system for small UAVs was the focus of a detailed study. Currently, many of these small vehicles are powered by primary (nonrechargeable) lithium-based batteries. While this type of battery is capable of satisfying some of the mission needs, a secondary (rechargeable) battery power supply system that can provide the same functionality as the current system at the same or lower system mass and volume is desired. A study of commercially available secondary battery cell technologies that could provide the desired performance characteristics was performed. Due to the strict mass limitations and wide operating temperature requirements of small UAVs, the only viable cell chemistries were determined to be lithium-ion liquid electrolyte systems and lithium-ion gel polymer electrolyte systems. Two lithium-ion gel polymer cell designs were selected as candidates and were tested using potential load profiles for UAV applications. Because lithium primary batteries have a higher specific energy and energy density, for the same mass and volume allocation, the secondary batteries resulted in shorter flight times than the primary batteries typically provide. When the batteries were operated at lower ambient temperatures (0 to -20 C), flight times were even further reduced. Despite the reduced flight times demonstrated, for certain UAV applications, the secondary batteries operated within the acceptable range of flight times at room temperature and above. The results of this testing indicate that a secondary battery power supply system can provide some benefits over the primary battery power supply system. A UAV can be operated for hundreds of flights using a secondary battery power supply system that provides the combined benefits of rechargeability and an inherently safer

  2. An area and power-efficient analog li-ion battery charger circuit.

    Science.gov (United States)

    Do Valle, Bruno; Wentz, Christian T; Sarpeshkar, Rahul

    2011-04-01

    The demand for greater battery life in low-power consumer electronics and implantable medical devices presents a need for improved energy efficiency in the management of small rechargeable cells. This paper describes an ultra-compact analog lithium-ion (Li-ion) battery charger with high energy efficiency. The charger presented here utilizes the tanh basis function of a subthreshold operational transconductance amplifier to smoothly transition between constant-current and constant-voltage charging regimes without the need for additional area- and power-consuming control circuitry. Current-domain circuitry for end-of-charge detection negates the need for precision-sense resistors in either the charging path or control loop. We show theoretically and experimentally that the low-frequency pole-zero nature of most battery impedances leads to inherent stability of the analog control loop. The circuit was fabricated in an AMI 0.5-μm complementary metal-oxide semiconductor process, and achieves 89.7% average power efficiency and an end voltage accuracy of 99.9% relative to the desired target 4.2 V, while consuming 0.16 mm(2) of chip area. To date and to the best of our knowledge, this design represents the most area-efficient and most energy-efficient battery charger circuit reported in the literature.

  3. Levelized cost of energy and sensitivity analysis for the hydrogen-bromine flow battery

    Science.gov (United States)

    Singh, Nirala; McFarland, Eric W.

    2015-08-01

    The technoeconomics of the hydrogen-bromine flow battery are investigated. Using existing performance data the operating conditions were optimized to minimize the levelized cost of electricity using individual component costs for the flow battery stack and other system units. Several different configurations were evaluated including use of a bromine complexing agent to reduce membrane requirements. Sensitivity analysis of cost is used to identify the system elements most strongly influencing the economics. The stack lifetime and round-trip efficiency of the cell are identified as major factors on the levelized cost of electricity, along with capital components related to hydrogen storage, the bipolar plate, and the membrane. Assuming that an electrocatalyst and membrane with a lifetime of 2000 cycles can be identified, the lowest cost market entry system capital is 220 kWh-1 for a 4 h discharge system and for a charging energy cost of 0.04 kWh-1 the levelized cost of the electricity delivered is 0.40 kWh-1. With systems manufactured at large scales these costs are expected to be lower.

  4. Durability comparison of four different types of high-power batteries in HEV and their degradation mechanism analysis

    International Nuclear Information System (INIS)

    Yan, Dongxiang; Lu, Languang; Li, Zhe; Feng, Xuning; Ouyang, Minggao; Jiang, Fachao

    2016-01-01

    Highlights: • Utilize a realistic current profile for an HEV to study the degradation mechanism of batteries. • Compare the durability of four different types of high-power battery. • Degradation mechanisms of four different types of high-power battery are analyzed by IC curves. • The prognostic model is used to quantitatively clarify the aging mechanism of batteries. - Abstract: There are many types of high-power batteries used in HEVs, and their durabilities and degradation mechanisms are different. In this paper, four types of commercial high-power batteries, including two types of LTO/NCM lithium-ion battery from two different manufacturers, a C/LMO battery and a supercapacitor (SC), are studied. A durability test with a realistic current profile for an HEV is used so that the durability results more closely reflect real operating conditions than a general cycle life test. Incremental capacity (IC) curves are used to qualitatively analyze the degradation mechanism. To compensate for defects in the IC method, a prognosis model, using a genetic algorithm to reconstruct constant current charge voltage curves, is adopted to quantitatively identify the battery aging mechanism.

  5. Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies

    International Nuclear Information System (INIS)

    Berg, R.; Stroinski, M.; Giachetti, R.

    1994-02-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein

  6. Estimation of power lithium-ion battery SOC based on fuzzy optimal decision

    Science.gov (United States)

    He, Dongmei; Hou, Enguang; Qiao, Xin; Liu, Guangmin

    2018-06-01

    In order to improve vehicle performance and safety, need to accurately estimate the power lithium battery state of charge (SOC), analyzing the common SOC estimation methods, according to the characteristics open circuit voltage and Kalman filter algorithm, using T - S fuzzy model, established a lithium battery SOC estimation method based on the fuzzy optimal decision. Simulation results show that the battery model accuracy can be improved.

  7. Lithium Ion Battery Chemistries from Renewable Energy Storage to Automotive and Back-up Power Applications

    DEFF Research Database (Denmark)

    Stan, Ana-Irina; Swierczynski, Maciej Jozef; Stroe, Daniel Ioan

    2014-01-01

    Lithium ion (Li-ion) batteries have been extensively used in consumer electronics because of their characteristics, such as high efficiency, long life, and high gravimetric and volumetric energy. In addition, Li-ion batteries are becoming the most attractive candidate as electrochemical storage...... systems for stationary applications, as well as power source for sustainable automotive and back-up power supply applications. This paper gives an overview of the Li-ion battery chemistries that are available at present in the market, and describes the three out of four main applications (except...... the consumers’ applications), grid support, automotive, and back-up power, for which the Li-ion batteries are suitable. Each of these applications has its own specifications and thus, the chemistry of the Li-ion battery should be chosen to fulfil the requirements of the corresponding application. Consequently...

  8. Study of a solar PV-diesel-battery hybrid power system for a remotely located population near Rafha, Saudi Arabia

    International Nuclear Information System (INIS)

    Rehman, Shafiqur; Al-Hadhrami, Luai M.

    2010-01-01

    This study presents a PV-diesel hybrid power system with battery backup for a village being fed with diesel generated electricity to displace part of the diesel by solar. The hourly solar radiation data measured at the site along with PV modules mounted on fixed foundations, four generators of different rated powers, diesel prices of 0.2-1.2US$/l, different sizes of batteries and converters were used to find an optimal power system for the village. It was found that a PV array of 2000 kW and four generators of 1250, 750, 2250 and 250 kW; operating at a load factor of 70% required to run for 3317 h/yr, 4242 h/yr, 2820 h/yr and 3150 h/yr, respectively; to produce a mix of 17,640 MWh of electricity annually and 48.33 MWh per day. The cost of energy (COE) of diesel only and PV/diesel/battery power system with 21% solar penetration was found to be 0.190$/kWh and 0.219$/kWh respectively for a diesel price of 0.2$/l. The sensitivity analysis showed that at a diesel price of 0.6$/l the COE from hybrid system become almost the same as that of the diesel only system and above it, the hybrid system become more economical than the diesel only system. (author)

  9. Optimization of a PEMFC/battery pack power system for a bus application

    International Nuclear Information System (INIS)

    Barelli, Linda; Bidini, Gianni; Ottaviano, Andrea

    2012-01-01

    Highlights: ► A dynamic model of a PEMFC/battery system for bus traction has been developed. ► The model incorporates the dynamics of the fuel cell and the state of charge (SOC) of the battery pack. ► The system output power have been determined according to the real driving load demand of a bus during 12 h. ► The model has allowed the sizing of the fuel cell and the hydrogen tank with the SOC control strategy optimization. ► The PEMFC power that allows to optimize the operation in terms of both SOC control strategy and consumption is 33 kW e . -- Abstract: In a global environment context in which the urgent need to reduce pollutant emissions is of central relevance, it is becoming increasingly important the research for solutions, concerning the vehicular transport sector with low environmental impact. Fuel cell technology is expected to become a viable solution for these applications due to its environmental friendly characteristics. The present study concerns the traction system of a bus considering the case of hybrid solutions consisting of a proton exchange membrane fuel cell (PEMFC) in parallel with a battery pack. In particular, a dynamic model of a PEMFC/battery system is presented for the application under study. The model incorporates the dynamics of the fuel cell and the state of charge (SOC) of the battery pack. The fuel cell and the battery output power have been determined according to the real driving load demand of a bus taking into consideration a daily operation of 12 h. Such a model has allowed the correct dimensioning of the hybrid power system (giving a particular attention to the fuel cell and the hydrogen tank) together with the optimization of the SOC control strategy.

  10. Modeling Battery Behavior on Sensory Operations for Context-Aware Smartphone Sensing

    Directory of Open Access Journals (Sweden)

    Ozgur Yurur

    2015-05-01

    Full Text Available Energy consumption is a major concern in context-aware smartphone sensing. This paper first studies mobile device-based battery modeling, which adopts the kinetic battery model (KiBaM, under the scope of battery non-linearities with respect to variant loads. Second, this paper models the energy consumption behavior of accelerometers analytically and then provides extensive simulation results and a smartphone application to examine the proposed sensor model. Third, a Markov reward process is integrated to create energy consumption profiles, linking with sensory operations and their effects on battery non-linearity. Energy consumption profiles consist of different pairs of duty cycles and sampling frequencies during sensory operations. Furthermore, the total energy cost by each profile is represented by an accumulated reward in this process. Finally, three different methods are proposed on the evolution of the reward process, to present the linkage between different usage patterns on the accelerometer sensor through a smartphone application and the battery behavior. By doing this, this paper aims at achieving a fine efficiency in power consumption caused by sensory operations, while maintaining the accuracy of smartphone applications based on sensor usages. More importantly, this study intends that modeling the battery non-linearities together with investigating the effects of different usage patterns in sensory operations in terms of the power consumption and the battery discharge may lead to discovering optimal energy reduction strategies to extend the battery lifetime and help a continual improvement in context-aware mobile services.

  11. Modeling battery behavior on sensory operations for context-aware smartphone sensing.

    Science.gov (United States)

    Yurur, Ozgur; Liu, Chi Harold; Moreno, Wilfrido

    2015-05-26

    Energy consumption is a major concern in context-aware smartphone sensing. This paper first studies mobile device-based battery modeling, which adopts the kinetic battery model (KiBaM), under the scope of battery non-linearities with respect to variant loads. Second, this paper models the energy consumption behavior of accelerometers analytically and then provides extensive simulation results and a smartphone application to examine the proposed sensor model. Third, a Markov reward process is integrated to create energy consumption profiles, linking with sensory operations and their effects on battery non-linearity. Energy consumption profiles consist of different pairs of duty cycles and sampling frequencies during sensory operations. Furthermore, the total energy cost by each profile is represented by an accumulated reward in this process. Finally, three different methods are proposed on the evolution of the reward process, to present the linkage between different usage patterns on the accelerometer sensor through a smartphone application and the battery behavior. By doing this, this paper aims at achieving a fine efficiency in power consumption caused by sensory operations, while maintaining the accuracy of smartphone applications based on sensor usages. More importantly, this study intends that modeling the battery non-linearities together with investigating the effects of different usage patterns in sensory operations in terms of the power consumption and the battery discharge may lead to discovering optimal energy reduction strategies to extend the battery lifetime and help a continual improvement in context-aware mobile services.

  12. Photovoltaic / Diesel / Battery Hybrid Power Supply System

    CSIR Research Space (South Africa)

    Tazvinga, Henerica

    2010-10-01

    Full Text Available (SOPAC Miscellaneous Report 406, 2005). The battery bank is cycled frequently, shortening its lifetime. If the inverter fails there is complete loss of power to the load, unless the load can be supplied directly from the diesel generator for emergency purposes....5 Sizing the inverter ............................................................................................... 67 5.6 Sizing the charge Controller ............................................................................... 68 5.7 Sizing...

  13. Effective Usage of Lithium Ion Batteries for Electric Vehicles

    OpenAIRE

    濱田, 耕治; ハマダ, コウジ; Koji, HAMADA

    2008-01-01

    Pure Electric Vehicles(PEV's) are promising when seen in relation to global environment. However, there is the need to solve a number of problems before PEV's become viable alternatives of transportation. For example, reduction of battery charge time, improvement of battery performance, and reduction in vehicle cost. A way to improve battery performance is to use lithium ion batteries. One problem with lithium ion batteries is with charging (recharging). It is difficult to provide a constant ...

  14. Depletion-of-Battery Attack: Specificity, Modelling and Analysis.

    Science.gov (United States)

    Shakhov, Vladimir; Koo, Insoo

    2018-06-06

    The emerging Internet of Things (IoT) has great potential; however, the societal costs of the IoT can outweigh its benefits. To unlock IoT potential, there needs to be improvement in the security of IoT applications. There are several standardization initiatives for sensor networks, which eventually converge with the Internet of Things. As sensor-based applications are deployed, security emerges as an essential requirement. One of the critical issues of wireless sensor technology is limited sensor resources, including sensor batteries. This creates a vulnerability to battery-exhausting attacks. Rapid exhaustion of sensor battery power is not only explained by intrusions, but can also be due to random failure of embedded sensor protocols. Thus, most wireless sensor applications, without tools to defend against rash battery exhausting, would be unable to function during prescribed times. In this paper, we consider a special type of threat, in which the harm is malicious depletion of sensor battery power. In contrast to the traditional denial-of-service attack, quality of service under the considered attack is not necessarily degraded. Moreover, the quality of service can increase up to the moment of the sensor set crashes. We argue that this is a distinguishing type of attack. Hence, the application of a traditional defense mechanism against this threat is not always possible. Therefore, effective methods should be developed to counter the threat. We first discuss the feasibility of rash depletion of battery power. Next, we propose a model for evaluation of energy consumption when under attack. Finally, a technique to counter the attack is discussed.

  15. Lightweight Battery Charge Regulator Used to Track Solar Array Peak Power

    Science.gov (United States)

    Soeder, James F.; Button, Robert M.

    1999-01-01

    A battery charge regulator based on the series-connected boost regulator (SCBR) technology has been developed for high-voltage spacecraft applications. The SCBR regulates the solar array power during insolation to prevent battery overcharge or undercharge conditions. It can also be used to provide regulated battery output voltage to spacecraft loads if necessary. This technology uses industry-standard dc-dc converters and a unique interconnection to provide size, weight, efficiency, fault tolerance, and modularity benefits over existing systems. The high-voltage SCBR shown in the photograph has demonstrated power densities of over 1000 watts per kilogram (W/kg). Using four 150-W dc-dc converter modules, it can process 2500 W of power at 120 Vdc with a minimum input voltage of 90 Vdc. Efficiency of the SCBR was 94 to 98 percent over the entire operational range. Internally, the unit is made of two separate SCBR s, each with its own analog control circuitry, to demonstrate the modularity of the technology. The analog controllers regulate the output current and incorporate the output voltage limit with active current sharing between the two units. They also include voltage and current telemetry, on/off control, and baseplate temperature sensors. For peak power tracking, the SCBR was connected to a LabView-based data acquisition system for telemetry and control. A digital control algorithm for tracking the peak power point of a solar array was developed using the principle of matching the source impedance with the load impedance for maximum energy transfer. The algorithm was successfully demonstrated in a simulated spacecraft electrical system at the Boeing PhantomWorks High Voltage Test Facility in Seattle, Washington. The system consists of a 42-string, high-voltage solar array simulator, a 77-cell, 80-ampere-hour (A-hr) nickel-hydrogen battery, and a constant power-load module. The SCBR and the LabView control algorithm successfully tracked the solar array peak

  16. Lifetime and economic analyses of lithium-ion batteries for balancing wind power forecast error

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Ioan; Stroe, Ana-Irina

    2015-01-01

    is considered. In this paper, the economic feasibility of lithium-ion batteries for balancing the wind power forecast error is analysed. In order to perform a reliable assessment, an ageing model of lithium-ion battery was developed considering both cycling and calendar life. The economic analysis considers two......, it was found that for total elimination of the wind power forecast error, it is required to have a 25-MWh Li-ion battery energy storage system for the considered 2 MW WT....

  17. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery.

    Science.gov (United States)

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2014-01-08

    A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). Cyclic voltammetry (CV) study confirmed that Nb2O5 has catalytic effects toward redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side to facilitate the electrochemical kinetics of the vanadium redox reactions. Because of poor conductivity of Nb2O5, the performance of the Nb2O5 loaded electrodes is strongly dependent on the nanosize and uniform distribution of catalysts on GF surfaces. Accordingly, an optimal amount of W-doped Nb2O5 nanorods with minimum agglomeration and improved distribution on GF surfaces are established by adding water-soluble compounds containing tungsten (W) into the precursor solutions. The corresponding energy efficiency is enhanced by ∼10.7% at high current density (150 mA·cm(-2)) as compared with one without catalysts. Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. These results suggest that Nb2O5-based nanorods, replacing expensive noble metals, uniformly decorating GFs holds great promise as high-performance electrodes for VRB applications.

  18. Power-Management Techniques for Wireless Sensor Networks and Similar Low-Power Communication Devices Based on Nonrechargeable Batteries

    Directory of Open Access Journals (Sweden)

    Agnelo Silva

    2012-01-01

    Full Text Available Despite the well-known advantages of communication solutions based on energy harvesting, there are scenarios where the absence of batteries (supercapacitor only or the use of rechargeable batteries is not a realistic option. Therefore, the alternative is to extend as much as possible the lifetime of primary cells (nonrechargeable batteries. By assuming low duty-cycle applications, three power-management techniques are combined in a novel way to provide an efficient energy solution for wireless sensor networks nodes or similar communication devices powered by primary cells. Accordingly, a customized node is designed and long-term experiments in laboratory and outdoors are realized. Simulated and empirical results show that the battery lifetime can be drastically enhanced. However, two trade-offs are identified: a significant increase of both data latency and hardware/software complexity. Unattended nodes deployed in outdoors under extreme temperatures, buried sensors (underground communication, and nodes embedded in the structure of buildings, bridges, and roads are some of the target scenarios for this work. Part of the provided guidelines can be used to extend the battery lifetime of communication devices in general.

  19. Development of a Cost Effective Power Generation System: An Overview

    Directory of Open Access Journals (Sweden)

    Shiv Prakash Bihari

    2016-03-01

    Full Text Available This paper presents an overview on development of cost effective power generation system and motivates for development of a model for hybrid system with wind to investigate the combined operation of wind with different sources to cater to wind’s stochastic nature for imbalance minimization and optimal operation. Development of model for trading power in competitive electricity market and development of strategies for trading in electricity markets (wind energy and reserves markets to investigate the effects of real time pricing tariffs on electricity market operation has been illustrated in this paper. Dynamic modelling related studies to investigate the wind generator’s kinetic energy for primary frequency support using simulink and simulation studies on doubly fed induction generator to study its capability during small disturbances / fluctuations on power system have been described.

  20. Comparison between two kind of power circuits for personal dosimeter

    International Nuclear Information System (INIS)

    Liu Zhengshan; Deng Changming; Guo Zhanjie

    2002-01-01

    Personal Dosimeter is commonly requested using battery for its power supply, and hope the battery life is long. Also with the fall of battery voltage, some performance of instrument as well as drop, Reasonable supply design can protract the battery life. The author introduces two method: power supply with battery directly and supply used power chip conversion. Combine personal dosimeter, the authors carried comparison for battery life, power consumption, cost and volume. Based on the comparison result and instrument fact request, one can choose method of power circuit

  1. Particle-filtering-based estimation of maximum available power state in Lithium-Ion batteries

    International Nuclear Information System (INIS)

    Burgos-Mellado, Claudio; Orchard, Marcos E.; Kazerani, Mehrdad; Cárdenas, Roberto; Sáez, Doris

    2016-01-01

    Highlights: • Approach to estimate the state of maximum power available in Lithium-Ion battery. • Optimisation problem is formulated on the basis of a non-linear dynamic model. • Solutions of the optimisation problem are functions of state of charge estimates. • State of charge estimates computed using particle filter algorithms. - Abstract: Battery Energy Storage Systems (BESS) are important for applications related to both microgrids and electric vehicles. If BESS are used as the main energy source, then it is required to include adequate procedures for the estimation of critical variables such as the State of Charge (SoC) and the State of Health (SoH) in the design of Battery Management Systems (BMS). Furthermore, in applications where batteries are exposed to high charge and discharge rates it is also desirable to estimate the State of Maximum Power Available (SoMPA). In this regard, this paper presents a novel approach to the estimation of SoMPA in Lithium-Ion batteries. This method formulates an optimisation problem for the battery power based on a non-linear dynamic model, where the resulting solutions are functions of the SoC. In the battery model, the polarisation resistance is modelled using fuzzy rules that are function of both SoC and the discharge (charge) current. Particle filtering algorithms are used as an online estimation technique, mainly because these algorithms allow approximating the probability density functions of the SoC and SoMPA even in the case of non-Gaussian sources of uncertainty. The proposed method for SoMPA estimation is validated using the experimental data obtained from an experimental setup designed for charging and discharging the Lithium-Ion batteries.

  2. Reliability-cost models for the power switching devices of wind power converters

    DEFF Research Database (Denmark)

    Ma, Ke; Blaabjerg, Frede

    2012-01-01

    In order to satisfy the growing reliability requirements for the wind power converters with more cost-effective solution, the target of this paper is to establish a new reliability-cost model which can connect the relationship between reliability performances and corresponding semiconductor cost...... temperature mean value Tm and fluctuation amplitude ΔTj of power devices, are presented. With the proposed reliability-cost model, it is possible to enable future reliability-oriented design of the power switching devices for wind power converters, and also an evaluation benchmark for different wind power...... for power switching devices. First the conduction loss, switching loss as well as thermal impedance models of power switching devices (IGBT module) are related to the semiconductor chip number information respectively. Afterwards simplified analytical solutions, which can directly extract the junction...

  3. Evaluation of actual costs of power sources and effects on balance sheets of electric utilities

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Yamaguchi, Yuji; Murakami, Tomoko

    2013-01-01

    After the Fukushima nuclear accident, almost all nuclear power stations continued to stop operation and sharp increase of purchase costs of fossil fuels forced some electric utilities to suffer a deficit. This article presented quantitative analysis of effects of present state on power costs and balance sheets of electric utilities. Levelized costs of electricity increased from 8.6 ¥/kWh (2010) to 11.6 ¥/kWh (2011) and 12.6 ¥/kWh (2012). Total power costs increased from 7.5 Trillion¥(2010) to 9.5 Trillion¥(2011). Due to increase of cost of fossil fuel compensated for nuclear power, electric utilities suffered a net loss of 0.8 Trillion¥ and decreased surplus to 2.5 Trillion¥ in 2011. Net loss of 1.3 Trillion¥ and surplus of 1.2 Trillion¥ was estimated for 2012. This state was beyond the limit of utilities' efforts to reduce costs and uncertain share of power sources became a great risk. Future share of power sources should be judged appropriately from various standpoints (costs, stable supply, energy security and national economic growth) and early public dissemination of new philosophy on share of power sources was highly required. (T. Tanaka)

  4. Influence of the cost development in power station construction and operation on power station planning with special regard to the effects on electricity supply

    International Nuclear Information System (INIS)

    Krieb, K.H.; Frenzel, P.; Vogel, J.

    1974-01-01

    A survey on the present structure of thermal power facilities in the FRG is followed by a discussion of the development of power plant costs in the last few years. Also mentioned are the findings of studies of costs as a function of the power station size and the effects of the overall cost increase on the power generation costs of the last few years. Finally, a model conception for the development of power stations is presented which makes predictions about the future size of power stations and their constructional parts. (UA/AK) [de

  5. Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J. S.; Pesaran, A.

    2013-01-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

  6. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

    Science.gov (United States)

    Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang

    2018-06-11

    The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Thermal management for high power lithium-ion battery by minichannel aluminum tubes

    International Nuclear Information System (INIS)

    Lan, Chuanjin; Xu, Jian; Qiao, Yu; Ma, Yanbao

    2016-01-01

    Highlights: • A new design of minichannel cooling is developed for battery thermal management system. • Parametric studies of minichannel cooling for a cell are conducted at different discharge rates. • Minichannel cooling can maintain almost uniform temperature (T_d_i_f_f < 1 °C). • Pumping power assumption is only about 5 milliwatt. - Abstract: Lithium-ion batteries are widely used for battery electric (all-electric) vehicles (BEV) and hybrid electric vehicles (HEV) due to their high energy and power density. An battery thermal management system (BTMS) is crucial for the performance, lifetime, and safety of lithium-ion batteries. In this paper, a novel design of BTMS based on aluminum minichannel tubes is developed and applied on a single prismatic Li-ion cell under different discharge rates. Parametric studies are conducted to investigate the performance of the BTMS using different flow rates and configurations. With minichannel cooling, the maximum cell temperature at a discharge rate of 1C is less than 27.8 °C, and the temperature difference across the cell is less than 0.80 °C using flow rate at 0.20 L/min, at the expense of 8.69e-6 W pumping power. At higher discharge rates, e.g., 1.5C and 2C, higher flow rates are required to maintain the same temperature rise and temperature difference. The flow rate needed is 0.8 L/min for 1.5C and 2.0 L/min for 2C, while the required pumping power is 4.23e-4 W and 5.27e-3 W, respectively. The uniform temperature distribution (<1 °C) inside the single cell and efficient pumping power demonstrate that the minichannel cooling system provides a promising solution for the BTMS.

  8. Field Trial on a Rack-mounted DC Power Supply System with 80-Ah Lithium-ion Batteries

    Science.gov (United States)

    Matsushima, Toshio

    Using an industrial lithium-ion battery that has higher energy density than conventional valve-regulated lead-acid batteries, a rack-mounted DC-power-supply system was assembled and tested at a base transceiver station (BTS) offering actual services. A nominal output voltage and maximum output current of the system is 53.5V and 20A, respectively. An 80-Ah lithium-ion battery composed of 13 cells connected in series was applied in the system and maintained in a floating charge method. The DC-power-supply system was installed in a 19-inch power rack in the telecommunications equipment box at BTS. The characteristics of the 80Ah lithium-ion battery, specifications of the DC-power-supply system and field-test results were shown in this paper.

  9. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    International Nuclear Information System (INIS)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous; Dong, Zhihua; Warzywoda, Juliusz; Fan, Zhaoyang

    2017-01-01

    Highlights: • A facile and economical method to fabricate interlayer for high-performance lithium-sulfur battery was demonstrated. • The performance of lithium-sulfur batteries without and with interlayer was compared. • The mechanism for the function of interlayer was explained. - Abstract: One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li_2S_8–Li_2S_6). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  10. Carbonized cellulose paper as an effective interlayer in lithium-sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiqi; Ren, Guofeng; Hoque, Md Nadim Ferdous [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 (United States); Dong, Zhihua [Hangzhou Dianzi University, No. 1158, 2nd Street, Xiasha Higher Education District, Hangzhou City, Zhejiang Province (China); Warzywoda, Juliusz [Materials Characterization Center, Whitacre College of Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Fan, Zhaoyang, E-mail: zhaoyang.fan@ttu.edu [Department of Electrical and Computer Engineering and Nano Tech Center, Texas Tech University, Lubbock, TX 79409 (United States)

    2017-02-28

    Highlights: • A facile and economical method to fabricate interlayer for high-performance lithium-sulfur battery was demonstrated. • The performance of lithium-sulfur batteries without and with interlayer was compared. • The mechanism for the function of interlayer was explained. - Abstract: One of the several challenging problems hampering lithium-sulfur (Li-S) battery development is the so-called shuttling effect of the highly soluble intermediates (Li{sub 2}S{sub 8}–Li{sub 2}S{sub 6}). Using an interlayer inserted between the sulfur cathode and the separator to capture and trap these soluble intermediates has been found effective in diminishing this effect. Previously, most reported interlayer membranes were synthesized in a complex and expensive process, and might not be suitable for practical cheap batteries. Herein, a facile method is reported to pyrolyze the commonly used cellulose filter paper into highly flexible and conductive carbon fiber paper. When used as an interlayer, such a carbon paper can improve the cell capacity by several folds through trapping the soluble polysulfides. The enhanced electronic conductivity of the cathode, due to the interlayer, also significantly improves the cell rate performance. In addition, it was demonstrated that such an interlayer can also effectively mitigate the self-discharge problem of the Li-S batteries. This study indicates that the cost-effective pyrolyzed cellulose paper has potential as interlayer for practical Li-S batteries.

  11. Comparison of Battery-Powered and Manual Bone Biopsy Systems for Core Needle Biopsy of Sclerotic Bone Lesions.

    Science.gov (United States)

    Cohen, Micah G; McMahon, Colm J; Kung, Justin W; Wu, Jim S

    2016-05-01

    The purpose of this study was to compare manual and battery-powered bone biopsy systems for diagnostic yield and procedural factors during core needle biopsy of sclerotic bone lesions. A total of 155 consecutive CT-guided core needle biopsies of sclerotic bone lesions were performed at one institution from January 2006 to November 2014. Before March 2012, lesions were biopsied with manual bone drill systems. After March 2012, most biopsies were performed with a battery-powered system and either noncoaxial or coaxial biopsy needles. Diagnostic yield, crush artifact, CT procedure time, procedure radiation dose, conscious sedation dose, and complications were compared between the manual and battery-powered core needle biopsy systems by Fisher exact test and t test. One-way ANOVA was used for subgroup analysis of the two battery-powered systems for procedure time and radiation dose. The diagnostic yield for all sclerotic lesions was 60.0% (93/155) and was significantly higher with the battery-powered system (73.0% [27/37]) than with the manual systems (55.9% [66/118]) (p = 0.047). There was no significant difference between the two systems in terms of crush artifact, procedure time, radiation dose, conscious sedation administered, or complications. In subgroup analysis, the coaxial battery-powered biopsies had shorter procedure times (p = 0.01) and lower radiation doses (p = 0.002) than the coaxial manual systems, but the noncoaxial battery-powered biopsies had longer average procedure times and higher radiation doses than the coaxial manual systems. In biopsy of sclerotic bone lesions, use of a battery-powered bone drill system improves diagnostic yield over use of a manual system.

  12. Technical Viability of Battery Second Life: A Study from the Ageing Perspective

    DEFF Research Database (Denmark)

    Martinez-Laserna, Egoitz; Sarasketa-Zabala, Elixabet; Villareal, Igor

    2018-01-01

    Reusing electric vehicle batteries once they have been retired from the automotive application is stated as one of the possible solutions to reduce electric vehicle costs. Many publications in literature have analysed the economic viability of such a solution, and some car manufacturers have...... of Lithium-ion (Li-ion) NMC/C battery State of Health (SOH) and ageing history over the second life performance, on two different applications: a residential demand management application and a power smoothing renewable integration application. The performance and degradation of second life batteries...... recently started running several projects to demonstrate the technical viability of the so-called battery second life. Nevertheless, the degradation behaviour of second life batteries remains unknown and represents one of the biggest gaps in the literature. The present work aims at evaluating the effects...

  13. Cost-Effectiveness Comparison of Coupler Designs of Wireless Power Transfer for Electric Vehicle Dynamic Charging

    Directory of Open Access Journals (Sweden)

    Weitong Chen

    2016-11-01

    Full Text Available This paper presents a cost-effectiveness comparison of coupler designs for wireless power transfer (WPT, meant for electric vehicle (EV dynamic charging. The design comparison of three common types of couplers is first based on the raw material cost, output power, transfer efficiency, tolerance of horizontal offset, and flux density. Then, the optimal cost-effectiveness combination is selected for EV dynamic charging. The corresponding performances of the proposed charging system are compared and analyzed by both simulation and experimentation. The results verify the validity of the proposed dynamic charging system for EVs.

  14. H2-O2 fuel cell and advanced battery power systems for autonomous underwater vehicles: performance envelope comparisons

    International Nuclear Information System (INIS)

    Schubak, G.E.; Scott, D.S.

    1993-01-01

    Autonomous underwater vehicles have traditionally been powered by low energy density lead-acid batteries. Recently, advanced battery technologies and H 2 -O 2 fuel cells have become available, offering significant improvements in performance. This paper compares the solid polymer fuel cell to the lithium-thionyl chloride primary battery, sodium-sulfur battery, and lead acid battery for a variety of missions. The power system performance is simulated using computer modelling techniques. Performance envelopes are constructed, indicating domains of preference for competing power system technologies. For most mission scenarios, the solid polymer fuel cell using liquid reactant storage is the preferred system. Nevertheless, the advanced battery systems are competitive with the fuel cell systems using gaseous hydrogen storage, and they illustrate preferred performance for missions requiring high power density. 11 figs., 4 tabs., 15 refs

  15. The Effect of Maternal Employment on Schoolchildren's Educational Aspirations in Korea.

    Science.gov (United States)

    Ju, Dong-Beom; Chung, Il-Hwan

    2000-01-01

    Examined the relationships between maternal employment and schoolchildren's educational aspirations in Korea. Found that children whose mothers were working full-time had lower educational aspirations, although maternal involvement and parents' educational expectations mitigated these effects. (JPB)

  16. Time costs, aspirations and the effect of economic growth on German fertility.

    Science.gov (United States)

    Ermisch, J F

    1980-01-01

    Recent research has shown strong support for the model of reproductive behavior derived from the new home economics, and it is shown in this discussion that the evidence from the Federal Republic of Germany is consistent with the new home economics model. There is little support for Easterlin's relative economic hypothesis, but there is limited endorsement for model which adds the influence of experience based material aspirations to the new home economics model. Easterlin's relative income model is reviewed before directing attention to the new home economics model and an explanation of fertility movements in West Germany. The new home economics model focuses on the family division of labor between home activities and work outside the home. The marked decline in German fertility during the 1970s is mostly attributable to factors such as expanding women's earning capacities which increased the importance of 2 earner families, who have a different family division of labor and possibly preferences biased towards "quality" of children rather than numbers. Also, real wage growth lagged behind the growth in experience based aspirations, and this drop in relative income is more dramatic if it is presumed that material aspirations are based upon the family's income experienced by a young adult during his/her adolescence, rather than just the father's earnings. The mother's contribution to family income will contribute to her family's actual standard of living and the desired standard of living of her children. The labor force participation rates of married, middle-aged German women increased markedly during the 1st half of the 1950s, thus tending to enhance the increase in the standard of living desired by the young adults reaching marrying and childbearing ages in the mid-1960s. The analysis indicates that if there is not a substantial reduction in the proportion of young married women in the labor force, fertility will move countercyclically. In that there must be some

  17. Model for evauluating power consumption of vented box loudspeakers

    DEFF Research Database (Denmark)

    Madsen, Filip Sommer; Thorsen, Søren; Iversen, Niels Elkjær

    2017-01-01

    In the design of mobile sound systems an estimation of power consumption must be made in order to choose a battery of appropriate size and cost. However poor methods for power estimation tend to result in large and costly batteries. This paper aims to present a more precise method for estimating ...... at estimating the power consumption than simplifying the speaker as a resistor....

  18. Real-Time Dynamic Simulation of Korean Power Grid for Frequency Regulation Control by MW Battery Energy Storage System

    Directory of Open Access Journals (Sweden)

    Tae-Hwan Jin

    2016-12-01

    Full Text Available The aim of this study was to develop a real-time dynamic simulator of a power grid with power plant and battery model. The simulator was used to investigate the frequency control characteristics of a megawatt-scale high-capacity energy storage system connected to the electric power grid. In this study, a lithium-ion secondary battery was chosen as one of the batteries for a grid-connected model. The dynamics of the model was analysed in both steady and transient states. The frequency control system of the battery model plays a role in regulating the grid frequency by controlling the power of energy storage systems according to process variables and grid frequencies. The power grid model based on the current power network of South Korea, included power plants, substations and power demands. The power supply is classified by the type of turbine generator as thermal, nuclear, hydro power, pumped power storage, combined power plants, and batteries, including high-capacity energy storage systems rated for a maximum of 500 MW. This study deals with an installed capacity of 87.17 GW and peak load of 77.30 GW in the Korean power grid. For 24 hours of operation, the maximum and minimum power outputs were simulated as 61.59 GW and 46.32 GW, respectively. The commercialized real-time dynamic simulation software ProTRAX was used. The simulation was conducted to observe the operation characteristics of the frequency control system during a breakdown of power plants, as well as under governor-free operation, auto generation control operation, and with the battery energy storage system connected. The results show that the model is valid for each power plant breakdown simulation. They also confirm that the output power and frequency controls of the battery operated well during simulations.

  19. Three essays on the effect of wind generation on power system planning and operations

    Science.gov (United States)

    Davis, Clay Duane

    While the benefits of wind generation are well known, some drawbacks are still being understood as wind power is integrated into the power grid at increasing levels. The primary difference between wind generation and other forms of generation is the intermittent, and somewhat unpredictable, aspect of this resource. The somewhat uncontrollable aspect of wind generation makes it important to consider the relationship between this resource and load, and also how the operation of other non-wind generation resources may be affected. The three essays that comprise this dissertation focus on these and other important issues related to wind generation; leading to an improved understanding of how to better plan for and utilize this resource. The first essay addresses the cost of increased levels of installed wind capacity from both a capacity planning and economic dispatch perspective to arrive at the total system cost of installing a unit of wind capacity. This total includes not only the cost of the wind turbine and associated infrastructure, but also the cost impact an additional unit of wind capacity has on the optimal mix and operation of other generating units in the electricity supply portfolio. The results of the model showed that for all wind expansion scenarios, wind capacity is not cost-effective regardless of the level of the wind production tax credit and carbon prices that were considered. Larger levels of installed wind capacity result in reduced variable cost, but this reduction is not able to offset increases in capital cost, as a unit of installed wind capacity does not result in an equal reduction in other non-wind capacity needs. The second essay develops a methodology to better handle unexpected short term fluctuations in wind generation within the existing power system. The methodology developed in this essay leads to lower expected costs by anticipating and planning for fluctuations in wind generation by focusing on key constraints in the system. The

  20. Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area

    Science.gov (United States)

    Boyd, William; Cook, Joseph

    2003-01-01

    The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.

  1. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, Evvy [Center for Science and Technology of Advanced Materials – National Nuclear Energy Agency, Kawasan Puspiptek Serpong, Tangerang Selatan15314, Banten (Indonesia); Manawan, Maykel [Post Graduate Program of Materials Science, University of Indonesia, Jl.Salemba Raya No.4, Jakarta 10430 (Indonesia)

    2016-02-08

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  2. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    International Nuclear Information System (INIS)

    Kartini, Evvy; Manawan, Maykel

    2016-01-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say “the most important emerging energy technology” is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner’s cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  3. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Science.gov (United States)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    With increasing demand for electrical power on a distribution grid lacking storage capabilities, utilities and project developers must stabilize what is currently still intermittent energy production. In fact, over half of utility executives say "the most important emerging energy technology" is energy storage. Advanced, low-cost battery designs are providing promising stationary storage solutions that can ensure reliable, high-quality power for customers, but research challenges and questions lefts. Have lithium-ion batteries (LIBs) reached their technical limit? The industry demands are including high costs, inadequate energy densities, long recharge times, short cycle-life times and safety must be continually addressed. Safety is still the main problem on developing the lithium ion battery.The safety issue must be considered from several aspects, since it would become serious problems, such as an explosion in a Japan Airlines 787 Dreamliner's cargo hold, due to the battery problem. The combustion is mainly due to the leakage or shortcut of the electrodes, caused by the liquid electrolyte and polymer separator. For this reason, the research on solid electrolyte for replacing the existing liquid electrolyte is very important. The materials used in existing lithium ion battery, such as a separator and liquid electrolyte must be replaced to new solid electrolytes, solid materials that exhibits high ionic conductivity. Due to these reasons, research on solid state ionics materials have been vastly growing worldwide, with the main aim not only to search new solid electrolyte to replace the liquid one, but also looking for low cost materials and environmentally friendly. A revolutionary paradigm is also required to design new stable anode and cathode materials that provide electrochemical cells with high energy, high power, long lifetime and adequate safety at competitive manufacturing costs. Lithium superionic conductors, which can be used as solid electrolytes

  4. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, J.; Takada, T.; Monma, D. [The Furukawa Battery Co., Ltd., R and D Division, 23-6 Kuidesaku, Shimofunao-machi, Joban, Iwaki-city, 972-8501 (Japan); Lam, L.T. [CSIRO Energy Technology, Bayview Avenue, Clayton South, Vic. 3169 (Australia)

    2010-02-15

    The UltraBattery has been invented by the CSIRO Energy Technology in Australia and has been developed and produced by the Furukawa Battery Co., Ltd., Japan. This battery is a hybrid energy storage device which combines a super capacitor and a lead-acid battery in single unit cells, taking the best from both technologies without the need of extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The laboratory results of the prototype valve-regulated UltraBatteries show that the capacity, power, available energy, cold cranking and self-discharge of these batteries have met, or exceeded, all the respective performance targets set for both minimum and maximum power-assist HEVs. The cycling performance of the UltraBatteries under micro-, mild- and full-HEV duties is at least four times longer than that of the state-of-the-art lead-acid batteries. Importantly, the cycling performance of UltraBatteries is proven to be comparable or even better than that of the Ni-MH cells. On the other hand, the field trial of UltraBatteries in the Honda Insight HEV shows that the vehicle has surpassed 170,000 km and the batteries are still in a healthy condition. Furthermore, the UltraBatteries demonstrate very good acceptance of the charge from regenerative braking even at high state-of-charge, e.g., 70% during driving. Therefore, no equalization charge is required for the UltraBatteries during field trial. The HEV powered by UltraBatteries gives slightly higher fuel consumption (cf., 4.16 with 4.05 L/100 km) and CO{sub 2} emissions (cf., 98.8 with 96 g km{sup -1}) compared with that by Ni-MH cells. There are no differences in driving experience between the Honda Insight powered by UltraBatteries and by Ni-MH cells. Given such comparable performance, the UltraBattery pack

  5. Cost-effectiveness analysis of risk reduction at nuclear power plants

    International Nuclear Information System (INIS)

    Lochard, J.; Maccia, C.; Pages, P.

    1985-01-01

    Cost-effectiveness analysis of risk reduction is now widely accepted as a rational analytical framework to consistently address the resource allocation problem underlying any risk management process. This paper presents how this technique can be usefully applied to complex systems such as the management of radioactive releases from nuclear power plants into the environment. (orig.) [de

  6. A design comparison of two kinds power circuit for personal dosimeter

    International Nuclear Information System (INIS)

    Deng Changming; Liu Zhengshan; Guo Zhanjie

    2001-01-01

    Personal dosimeter is commonly requested using battery for its power supply, and hope the battery life is long. Also with the fall of battery voltage, some performance of instrument as well as drop. Reasonable supply design can protract the battery life. The paper introduces two method: power supply with battery directly and supply used power chip conversion. Combine personal dosimeter, authors carried through the design comparison for battery life, power consumption, cost and volume. Based on the comparison result and instrument fact request, you can choose method of power circuit

  7. Wireless Battery Management System of Electric Transport

    Science.gov (United States)

    Rahman, Ataur; Rahman, Mizanur; Rashid, Mahbubur

    2017-11-01

    Electric vehicles (EVs) are being developed and considered as the future transportation to reduce emission of toxic gas, cost and weight. The battery pack is one of the main crucial parts of the electric vehicle. The power optimization of the battery pack has been maintained by developing a two phase evaporative thermal management system which operation has been controlled by using a wireless battery management system. A large number of individual cells in a battery pack have many wire terminations that are liable for safety failure. To reduce the wiring problem, a wireless battery management system based on ZigBee communication protocol and point-to-point wireless topology has been presented. Microcontrollers and wireless modules are employed to process the information from several sensors (voltage, temperature and SOC) and transmit to the display devices respectively. The WBMS multistage charge balancing system offering more effective and efficient responses for several numbers of series connected battery cells. The concept of double tier switched capacitor converter and resonant switched capacitor converter is used for reducing the charge balancing time of the cells. The balancing result for 2 cells and 16 cells are improved by 15.12% and 25.3% respectively. The balancing results are poised to become better when the battery cells are increased.

  8. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    Science.gov (United States)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  9. An averaging battery model for a lead-acid battery operating in an electric car

    Science.gov (United States)

    Bozek, J. M.

    1979-01-01

    A battery model is developed based on time averaging the current or power, and is shown to be an effective means of predicting the performance of a lead acid battery. The effectiveness of this battery model was tested on battery discharge profiles expected during the operation of an electric vehicle following the various SAE J227a driving schedules. The averaging model predicts the performance of a battery that is periodically charged (regenerated) if the regeneration energy is assumed to be converted to retrievable electrochemical energy on a one-to-one basis.

  10. An adaptive model for vanadium redox flow battery and its application for online peak power estimation

    Science.gov (United States)

    Wei, Zhongbao; Meng, Shujuan; Tseng, King Jet; Lim, Tuti Mariana; Soong, Boon Hee; Skyllas-Kazacos, Maria

    2017-03-01

    An accurate battery model is the prerequisite for reliable state estimate of vanadium redox battery (VRB). As the battery model parameters are time varying with operating condition variation and battery aging, the common methods where model parameters are empirical or prescribed offline lacks accuracy and robustness. To address this issue, this paper proposes to use an online adaptive battery model to reproduce the VRB dynamics accurately. The model parameters are online identified with both the recursive least squares (RLS) and the extended Kalman filter (EKF). Performance comparison shows that the RLS is superior with respect to the modeling accuracy, convergence property, and computational complexity. Based on the online identified battery model, an adaptive peak power estimator which incorporates the constraints of voltage limit, SOC limit and design limit of current is proposed to fully exploit the potential of the VRB. Experiments are conducted on a lab-scale VRB system and the proposed peak power estimator is verified with a specifically designed "two-step verification" method. It is shown that different constraints dominate the allowable peak power at different stages of cycling. The influence of prediction time horizon selection on the peak power is also analyzed.

  11. Minimum long-term cost solution for remote telecommunication stations on the basis of photovoltaic-based hybrid power systems

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Ninou, I.; Zafirakis, D.

    2011-01-01

    In the case of the telecommunication (T/C) services' expansion to rural and remote areas, the market generally responds with the minimum investments required. Considering the existing situation, cost-effective operation of the T/C infrastructure installed in these regions (i.e. remote T/C stations) becomes critical. However, since in most cases grid-connection is not feasible, the up-to-now electrification solution for remote T/C stations is based on the operation of costly, oil consuming and heavy polluting diesel engines. Instead, the use of photovoltaic (PV)-based hybrid power stations is currently examined, using as a case study a representative remote T/C station of the Greek territory. In this context, the present study is concentrated on the detailed cost-benefit analysis of the proposed solution. More precisely, the main part of the analysis is devoted to develop a complete electricity production cost model, accordingly applied for numerous oil consumption and service period scenarios. Note that in all cases examined, zero load rejections is a prerequisite while minimum long-term cost solutions designated are favorably compared with the diesel-only solution. Finally, a sensitivity analysis, demonstrating the impact of the main economic parameters on the energy production cost of optimum sized PV-diesel hybrid power stations, is also provided. - Research highlights: → Expansion of telecommunication (T/C) in remote areas is vital for their development. → Off-grid T/C stations employed in such areas operate on diesel engines. → The use of PV-diesel-battery hybrid power stations is currently examined. → A detailed long-term electricity production cost model is developed. → Cost-effectiveness of the proposed system is reflected for numerous configurations.

  12. A Study on Electric Power Smoothing System for Lead-Acid Battery of Stand-Alone Natural Energy Power System Using EDLC

    Science.gov (United States)

    Jia, Yan; Shibata, Ryosuke; Yamamura, Naoki; Ishida, Muneaki

    To resolve energy shortage and global warming problem, renewable natural resource and its power system has been gradually generalizing. However, the power fluctuation suppressing in short period and the balance control of consumption and supply in long period are two of main problems that need to be resolved urgently in natural energy power system. In Stand-alone Natural Energy Power System (SNEPS) with power energy storage devices, power fluctuation in short period is one of the main reasons that recharge cycle times increase and lead-acid battery early failure. Hence, to prolong the service life of lead-acid battery and improve power quality through suppressing the power fluctuation, we proposed a method of electric power smoothing for lead-acid battery of SNEPS using bi-directional Buck/Boost converter and Electric Double Layer Capacitor (EDLC) in this paper. According to the test data of existing SNEPS, a power fluctuation condition is selected and as an example to analyze the validity of the proposed method. The analysis of frequency characteristics indicates the power fluctuation is suppressed a desired range in the target frequency region. The experimental results of confirmed the feasibility of the proposed system and the results well satisfy the requirement of system design.

  13. Current production costs in various power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Weible, H.

    1977-01-01

    The costs of producing electric power were evaluated for flowing water power plants, storage and pumped storage power plants, bituminous coal power plants, heating oil power plants (fired with heavy heating oil), natural gas-fired power plants, gas turbines, pressurized water reactors, and boiling water reactors. The calculational methods used for evaluating costs and the input data for methods used for the KOSKON and KOSKERN computer programs are described. It is emphasized that the calculations are examples to indicate the possible effects of the cost program and are only as valid as the input data. (JSR)

  14. Flow Battery System Design for Manufacturability.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  15. Fiscal 1999 report. Development of an electric power storage system using new type batteries, and development of a discrete type electric power storage technology (Survey on trend in developing batteries for electric power storage); 1999 nendo shingata denchi denryoku chozo system kaihatsu bunsangata denryoku chozo gijutsu kaihatsu hokokusho. Denryoku chozoyo denchi no kaihatsu doko chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Demand is increasing in recent years in Japan on batteries for electric power storage to respond to load variation in electric power supply. If electric power storage batteries are applied for practical use, nighttime excess power can be stored appropriately, which can be discharged during day time when the demand is increased, so that the demand variation can be handled adequately. Secondary batteries, if used, are characterized by having much greater energy density and output density because of storing the electric energy as chemical energy than in pumped-storage power generation which stores the energy as the positional energy of water. Therefore, this paper describes the surveys performed on the trend of developing the power storage batteries inside and outside the country. Section 1 shows the current status of annual load rates in other countries, and the current conception on power storage in these countries. Section 2 states the current status of practical application of power storage batteries having been developed in Germany and the U.S.A. and performed of demonstration tests. Section 3 reports the current status of developing new type power storage batteries. Section 4 describes the current status of developing the power storage batteries for power users. (NEDO)

  16. Low cost RISC implementation of intelligent ultra fast charger for Ni-Cd battery

    International Nuclear Information System (INIS)

    Petchjatuporn, Panom; Sirisuk, Phaophak; Khaehintung, Noppadol; Sunat, Khamron; Wicheanchote, Phinyo; Kiranon, Wiwat

    2008-01-01

    This paper presents a low cost reduced instruction set computer (RISC) implementation of an intelligent ultra fast charger for a nickel-cadmium (Ni-Cd) battery. The charger employs a genetic algorithm (GA) trained generalized regression neural network (GRNN) as a key to ultra fast charging while avoiding battery damage. The tradeoff between mean square error (MSE) and the computational burden of the GRNN is addressed. Besides, an efficient technique is proposed for estimation of a radial basis function (RBF) in the GRNN. Hardware realization based upon the techniques is discussed. Experimental results with commercial Ni-Cd batteries reveal that while the proposed charger significantly reduces the charging time, it scarcely deteriorates the battery energy storage capability when compared with the conventional charger

  17. Low cost RISC implementation of intelligent ultra fast charger for Ni-Cd battery

    Energy Technology Data Exchange (ETDEWEB)

    Petchjatuporn, Panom; Khaehintung, Noppadol [Department of Control and Instrumentation Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Sirisuk, Phaophak; Sunat, Khamron [Department of Computer Engineering, Faculty of Engineering, Mahanakorn University of Technology, Bangkok 10530 (Thailand); Wicheanchote, Phinyo [Test Engineering Department, Sanmina-SCI Systems Co. Ltd. (Thailand); Kiranon, Wiwat [Department of Telecommunication Engineering, Faculty of Engineering, King Mongkut' s Institue of Technology, Ladkrabang, Bangkok 10520 (Thailand)

    2008-02-15

    This paper presents a low cost reduced instruction set computer (RISC) implementation of an intelligent ultra fast charger for a nickel-cadmium (Ni-Cd) battery. The charger employs a genetic algorithm (GA) trained generalized regression neural network (GRNN) as a key to ultra fast charging while avoiding battery damage. The tradeoff between mean square error (MSE) and the computational burden of the GRNN is addressed. Besides, an efficient technique is proposed for estimation of a radial basis function (RBF) in the GRNN. Hardware realization based upon the techniques is discussed. Experimental results with commercial Ni-Cd batteries reveal that while the proposed charger significantly reduces the charging time, it scarcely deteriorates the battery energy storage capability when compared with the conventional charger. (author)

  18. FY2016 Advanced Batteries R&D Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the Vehicle Technologies Office overview; the Battery subprogram R&D overview; Advanced Battery Development project summaries; and Battery Testing, Analysis, and Design project summaries. It also includes the cover and table of contents.

  19. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  20. Techno-Economic Analysis of BEV Service Providers Offering Battery Swapping Services: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Neubauer, J.; Pesaran, A.

    2013-03-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but high upfront costs, battery-limited vehicle range, and concern over high battery replacement costs may discourage potential buyers. A subscription model in which a service provider owns the battery and supplies access to battery swapping infrastructure could reduce upfront and replacement costs for batteries with a predictable monthly fee, while expanding BEV range. Assessing the costs and benefits of such a proposal are complicated by many factors, including customer drive patterns, the amount of required infrastructure, battery life, etc. The National Renewable Energy Laboratory has applied its Battery Ownership Model to compare the economics and utility of BEV battery swapping service plan options to more traditional direct ownership options. Our evaluation process followed four steps: (1) identifying drive patterns best suited to battery swapping service plans, (2) modeling service usage statistics for the selected drive patterns, (3) calculating the cost-of-service plan options, and (4) evaluating the economics of individual drivers under realistically priced service plans. A service plan option can be more cost-effective than direct ownership for drivers who wish to operate a BEV as their primary vehicle where alternative options for travel beyond the single-charge range are expensive, and a full-coverage-yet-cost-effective regional infrastructure network can be deployed. However, when assumed cost of gasoline, tax structure, and absence of purchase incentives are factored in, our calculations show the service plan BEV is rarely more cost-effective than direct ownership of a conventional vehicle.

  1. Verification of Safety Margins of Battery Banks Capacity of Class 1E DC System in a Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lukman, Abdulrauf; Zhu, Oon-Pyo

    2015-01-01

    According to Ref 'Station blackout (SBO) is generally a plant condition with complete loss of all alternating current (AC) power from off-site sources, from the main generator and from standby AC power sources important to safety to the essential and nonessential switchgear buses. Direct current (DC) power supplies and uninterruptible AC power supplies may be available as long as batteries can supply the loads, alternate AC power supplies are available'. The above IAEA document indicated the importance of batteries during SBO. Prior to the Fukushima accident, most batteries might be designed with coping capability of four hours. However, the accident showed the need for the coping capability to be increased to at least eight hours. The purpose of this research is to verify the safety capacity margin of the nuclear qualified battery banks of class 1E DC system and test the response to SBO using the load profile of a Korean design nuclear power plant (NPP). The capacity margins of class 1E batteries of DC power system batteries in a nuclear power plant were determined using the load profile of the plant. It was observed that if appropriate manufacturer Kt data are not available, the accuracy of the battery capacity might not be accurately calculated. The result obtained shows that the batteries have the coping capability of two hours for channel A and B, and eight hours for channel C and D. Also capacity margin as show in figure show a reasonable margin for each batteries of the DC system

  2. Depletion-of-Battery Attack: Specificity, Modelling and Analysis

    Directory of Open Access Journals (Sweden)

    Vladimir Shakhov

    2018-06-01

    Full Text Available The emerging Internet of Things (IoT has great potential; however, the societal costs of the IoT can outweigh its benefits. To unlock IoT potential, there needs to be improvement in the security of IoT applications. There are several standardization initiatives for sensor networks, which eventually converge with the Internet of Things. As sensor-based applications are deployed, security emerges as an essential requirement. One of the critical issues of wireless sensor technology is limited sensor resources, including sensor batteries. This creates a vulnerability to battery-exhausting attacks. Rapid exhaustion of sensor battery power is not only explained by intrusions, but can also be due to random failure of embedded sensor protocols. Thus, most wireless sensor applications, without tools to defend against rash battery exhausting, would be unable to function during prescribed times. In this paper, we consider a special type of threat, in which the harm is malicious depletion of sensor battery power. In contrast to the traditional denial-of-service attack, quality of service under the considered attack is not necessarily degraded. Moreover, the quality of service can increase up to the moment of the sensor set crashes. We argue that this is a distinguishing type of attack. Hence, the application of a traditional defense mechanism against this threat is not always possible. Therefore, effective methods should be developed to counter the threat. We first discuss the feasibility of rash depletion of battery power. Next, we propose a model for evaluation of energy consumption when under attack. Finally, a technique to counter the attack is discussed.

  3. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Science.gov (United States)

    2013-09-24

    ...-Acid Storage Batteries for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION... for Nuclear Power Plants.'' The guide describes methods that the NRC staff considers acceptable for... replacement of vented lead-acid storage batteries in nuclear power plants. ADDRESSES: Please refer to Docket...

  4. Future perspective of cost for nuclear power generation

    International Nuclear Information System (INIS)

    Maeda, Ichiro

    1988-01-01

    The report presents and discussed results of evaluation of the cost for power generation in this and forthcoming years on the basis of an analysis of the current fuel prices and the economics of various power sources. Calculations show that nuclear power generation at present is inferior to coal-firing power generation in terms of required costs, but can become superior in the future due to an increased burn-up and reduced construction cost. Investigations are made of possible contributions of future technical improvements to reduction in the overall cost. Results suggest that nuclear power generation will be the most efficient among the various electric sources because of its technology-intensive feature. Development of improved light water reactors is of special importance to achieve a high burn-up and reduced construction costs. In general, the fixed cost accounts for a large part of the overall nuclear power generation cost, indicating that a reduction in construction cost can greatly increase the economic efficiency. Changes in the yen's exchange rate seem to have little effect on the economics of nuclear power generation, which represents another favorable aspect of this type of energy. (Nogami, K.)

  5. Model for evaluation of power consumption of vented box loudspeakers

    DEFF Research Database (Denmark)

    Madsen, Filip Sommer; Thorsen, Søren; Iversen, Niels Elkjær

    In the design of mobile sound systems an estimation of power consumption must be made in order to choose a battery of appropriate size and cost. However poor methods for power estimation tend to result in large and costly batteries. This paper aims to present a more precise method for estimating ...... at estimating the power consumption than simplifying the speaker as a resistor....

  6. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  7. Energy Efficient Monitoring for Intrusion Detection in Battery-Powered Wireless Mesh Networks

    KAUST Repository

    Hassanzadeh, Amin

    2011-07-18

    Wireless Mesh Networks (WMN) are easy-to-deploy, low cost solutions for providing networking and internet services in environments with no network infrastructure, e.g., disaster areas and battlefields. Since electric power is not readily available in such environments battery-powered mesh routers, operating in an energy efficient manner, are required. To the best of our knowledge, the impact of energy efficient solutions, e.g., involving duty-cycling, on WMN intrusion detection systems, which require continuous monitoring, remains an open research problem. In this paper we propose that carefully chosen monitoring mesh nodes ensure continuous and complete detection coverage, while allowing non-monitoring mesh nodes to save energy through duty-cycling. We formulate the monitoring node selection problem as an optimization problem and propose distributed and centralized solutions for it, with different tradeoffs. Through extensive simulations and a proof-of-concept hardware/software implementation we demonstrate that our solutions extend the WMN lifetime by 8%, while ensuring, at the minimum, a 97% intrusion detection rate.

  8. A wind-PV-battery hybrid power system at Sitakunda in Bangladesh

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Ghosh, Himangshu Ranjan

    2009-01-01

    The measured wind data of Local Government Engineering Department (LGED) for 2006 at 30 m height shows a good prospect for wind energy extraction at the site. For a few months and hours the speed is below the cut in speeds of the available turbines in the market. The predicted solar radiation data from directly related measured cloud cover and sunshine duration data of Bangladesh Meteorological Department (BMD) for 1992-2003 indicates that a reliable power system can be developed over the year if the solar energy technology is merged with the wind energy technologies for this site. This research work has studied on optimization of a wind-photovoltaic-battery hybrid system and its performance for a typical community load. The assessment shows that least cost of energy (COE) is about USD 0.363/kWh for a community using 169 kWh/day with 61 kW peak and having minimum amount of access or unused energy. Moreover, compared to the existing fossil fuel-based electricity supply, such an environment friendly system can mitigate about 25 t CO 2 /yr. The analysis also indicates that wind-PV-battery is economically viable as a replacement for conventional grid energy supply for a community at a minimum distance of about 17 km from grid.

  9. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom

    OpenAIRE

    Uddin, Kotub; Gough, Rebecca; Radcliffe, Jonathan; Marco, James; Jennings, P. A. (Paul A.)

    2017-01-01

    Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the decarbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery systems. Although battery storage is generally considered an effective means for reducing the energy mismatch between photovoltaic supply and building demand, ...

  10. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.

    Science.gov (United States)

    Drury, J L; Dembo, M

    2001-12-01

    It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the

  11. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    Science.gov (United States)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  12. Hydrogen generation comparison between lead-calcium and lead-antimony batteries in nuclear power plant

    International Nuclear Information System (INIS)

    Zhao Hongjun; Qi Suoni; Shen Yan; Li Jia

    2014-01-01

    Battery type selection is performed with the help of technical information supplied by vendors, and according to relevant criteria. Analysis and comparison of the hydrogen generation differences between two different lead-acid battery types are carried out through calculation. The analysis result may provide suggestions for battery type selection in nuclear power plant. (authors)

  13. Study of seed layer effect in nuclear battery with P-N diode junction

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Son, Kwang Jae; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Byoung Gun [Kookmin Univ., Seoul (Korea, Republic of)

    2014-10-15

    A nuclear battery with diode junction is a device that converts nuclear radiation directly to electric power. The mechanism of a nuclear battery is same as the P-N junction diode for solar cell application. The photovoltaic is operated by converted photons to electrical energy in the junction. In betavoltaic battery, beta particles are collected and converted to electrical energy as similar principle as photovoltaic. A very low current, order of nano or micro amps, is generated in devices. If a radioisotope (RI) with a long halflife (over 50 years) is used, a lifetime of a power source is extended as long as halflife time of RI.. Some special applications require long-lived compact power sources. These include space equipment, sensors in remote locations (space, underground, etc.), and implantable medical devices. Conventionally, these sources rely on converting chemical energy to electricity. This means they require a large storage of chemical 'fuel' since the amount of energy released per reaction is small. The nuclear battery is a novel solution to solve the power needs of these applications. For the {sup 63}Ni beta-source we used, the half-life is 100.2 years. Hence, the power sources we describe could extend a system's operating life by several decades or even a century, during which time the system could gain learned behavior without worrying about the power turning off. Radioactive thin-film-based power sources also have energy density orders of magnitude higher than chemical-reaction-based energy sources. In this study, we fabricate nuclear battery using {sup 63}Ni source with diode junction, and studied seed layer effect for optimization of structure of p-n junction.

  14. On-chip micro-power: three-dimensional structures for micro-batteries and micro-supercapacitors

    Science.gov (United States)

    Beidaghi, Majid; Wang, Chunlei

    2010-04-01

    With the miniaturization of portable electronic devices, there is a demand for micro-power source which can be integrated on the semiconductor chips. Various micro-batteries have been developed in recent years to generate or store the energy that is needed by microsystems. Micro-supercapacitors are also developed recently to couple with microbatteries and energy harvesting microsystems and provide the peak power. Increasing the capacity per footprint area of micro-batteries and micro-supercapacitors is a great challenge. One promising route is the manufacturing of three dimensional (3D) structures for these micro-devices. In this paper, the recent advances in fabrication of 3D structure for micro-batteries and micro-supercapacitors are briefly reviewed.

  15. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    Science.gov (United States)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  16. Discordance Rate between Thyroid Fine Needle Aspiration Cytology ...

    African Journals Online (AJOL)

    Discordance Rate between Thyroid Fine Needle Aspiration Cytology and Histopathologic Diagnosis. Wondwossen Ergete, Daniel Abebe. Abstract. Fine Needle Aspiration (FNA) of the thyroid is a low cost procedure, which can give an accurate diagnosis promptly. The objective of this study was to assess the diagnostic ...

  17. Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery

    International Nuclear Information System (INIS)

    Rao Zhonghao; Wang Shuangfeng; Zhang Guoqing

    2011-01-01

    Highlights: → We study the thermal energy management performance of ageing LiFePO 4 power battery. → 3-D modules of single cell and battery pack are formulated according to the experimental results. → Thermal resistance in the battery cell leaded to an inevitable temperature difference. → It is necessary to improve the thermal conductivity and lower the melting point of phase change material. → Thermal conductivity of phase change material and battery exist an effective proportion. - Abstract: Thermal energy management performance of ageing commercial rectangular LiFePO 4 power batteries using phase change material (PCM) and thermal behavior related to thermal conductivity between the PCM and the cell are discussed in this paper. The heat sources are simplified according to the experimental results of the cells discharged at 35 A (∼5 C). 3-D modules of a single cell and battery pack are formulated, respectively. The results show that the thermal resistance in the cell leads to an inevitable temperature difference. It is necessary to improve the thermal conductivity and to lower the melting point of the PCM for heat transfer enhancement. The PCM with a melting point lower than 45 deg. C will be more effective for heat dissipation, with a desired maximum temperature below 50 deg. C. The temperature difference in the whole unit before PCM melting will be decreased significantly. In addition, a proper k PCM :k c is necessary for a well designed battery thermal energy management system.

  18. Decentralized Method for Load Sharing and Power Management in a PV/Battery Hybrid Source Islanded Microgrid

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Golsorkhi, Mohammad

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. Unlike the previous methods in the literature, there is no need to communication among the units......, the operation of each unit is divided into five states and modified active power-frequency droop functions are used according to operating states. The frequency level is used as trigger for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions...... and the proposed method is not limited to the systems with separate PV and battery units or systems with only one hybrid unit. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid...

  19. Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power ...

    African Journals Online (AJOL)

    Comparative Life-Cycle Cost Analysis Of Solar Photovoltaic Power System And Diesel Generator System For Remote Residential Application In Nigeria. ... like capital cost, and diesel fuel costs are varied. The results show the photovoltaic system to be more cost-effective at low-power ranges of electrical energy supply.

  20. A 31-day battery-operated recording weather station.

    Science.gov (United States)

    Richard J. Barney

    1972-01-01

    The battery-powered recording weather station measures and records wet bulb temperature, dry bulb temperature, wind travel, and rainfall for 31 days. Assembly procedures and cost of supplies and components are discussed.

  1. Effect of heliostat size on the levelized cost of electricity for power towers

    Science.gov (United States)

    Pidaparthi, Arvind; Hoffmann, Jaap

    2017-06-01

    The objective of this study is to investigate the effects of heliostat size on the levelized cost of electricity (LCOE) for power tower plants. These effects are analyzed in a power tower with a net capacity of 100 MWe, 8 hours of thermal energy storage and a solar multiple of 1.8 in Upington, South Africa. A large, medium and a small size heliostat with a total area of 115.56 m2, 43.3 m2 and 15.67 m2 respectively are considered for comparison. A radial-staggered pattern and an external cylindrical receiver are considered for the heliostat field layouts. The optical performance of the optimized heliostat field layouts has been evaluated by the Hermite (analytical) method using SolarPILOT, a tool used for the generation and optimization of the heliostat field layout. The heliostat cost per unit is calculated separately for the three different heliostat sizes and the effects due to size scaling, learning curve benefits and the price index is included. The annual operation and maintenance (O&M) costs are estimated separately for the three heliostat fields, where the number of personnel required in the field is determined by the number of heliostats in the field. The LCOE values are used as a figure of merit to compare the different heliostat sizes. The results, which include the economic and the optical performance along with the annual O&M costs, indicate that lowest LCOE values are achieved by the medium size heliostat with an area of 43.3 m2 for this configuration. This study will help power tower developers determine the optimal heliostat size for power tower plants currently in the development stage.

  2. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage.

    Science.gov (United States)

    Miñambres-Marcos, Víctor Manuel; Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín; Milanés-Montero, María Isabel

    2017-08-11

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don't address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests.

  3. A Grid Connected Photovoltaic Inverter with Battery-Supercapacitor Hybrid Energy Storage

    Science.gov (United States)

    Guerrero-Martínez, Miguel Ángel; Barrero-González, Fermín

    2017-01-01

    The power generation from renewable power sources is variable in nature, and may contain unacceptable fluctuations, which can be alleviated by using energy storage systems. However, the cost of batteries and their limited lifetime are serious disadvantages. To solve these problems, an improvement consisting in the collaborative association of batteries and supercapacitors has been studied. Nevertheless, these studies don’t address in detail the case of residential and large-scale photovoltaic systems. In this paper, a selected combined topology and a new control scheme are proposed to control the power sharing between batteries and supercapacitors. Also, a method for sizing the energy storage system together with the hybrid distribution based on the photovoltaic power curves is introduced. This innovative contribution not only reduces the stress levels on the battery, and hence increases its life span, but also provides constant power injection to the grid during a defined time interval. The proposed scheme is validated through detailed simulation and experimental tests. PMID:28800102

  4. Battery monitoring in Mexican hybrid power systems; Monitoreo de las baterias en sistemas de potencia hibridos Mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. Roberto; Agredano, Jaime [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1997-12-31

    Hybrid power systems for an autonomous power supply are based on different renewable and fossil energy sources. They are considered as a good option for the power supply of remote areas. In these systems an energy storage is a vital necessity and very often this storage will consist of batteries which are generally connected in series and parallel arrays, or both. In Mexico as in other countries, the most extensively use batteries used for this application are the stationary and electric car type deep cycle batteries. However the experience with them in these systems is generally not very good. One way to overcome this problem is to maintain a regular monitoring of installing monitoring equipment, in order to make preventive actions before a developing fault can have serious consequences and in this manner increase the practical lifetime of the batteries. Unfortunately, battery monitoring is not easy task because most of the hybrid power systems are installed in remote areas which makes it difficult and expensive. In Mexico it has been not possible to maintain a regular monitoring of all hybrid power systems installed, due to the high cost of this work and the lack of founds. The hybrid power systems installed in the state of Quintana Roo are the only systems that have been continuously monitored since their installation. This paper gives an overview of the hybrid power systems installed in Mexico, focusing in the battery banks, the way they are being monitored, the main parameters used to detect possible premature problems and the method used to evaluate the battery bank conditions. Finally some results from the battery banks monitoring activities are presented. [Espanol] Los sistemas de potencia hibridos para un suministro autonomo de energia a regiones remotas, estan basados en diferentes fuentes de energia fosiles y renovables. Estos son considerados como una buena opcion para el suministro de energia a areas remotas. En estos sistemas es una necesidad vital el

  5. Battery monitoring in Mexican hybrid power systems; Monitoreo de las baterias en sistemas de potencia hibridos Mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J Roberto; Agredano, Jaime [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    Hybrid power systems for an autonomous power supply are based on different renewable and fossil energy sources. They are considered as a good option for the power supply of remote areas. In these systems an energy storage is a vital necessity and very often this storage will consist of batteries which are generally connected in series and parallel arrays, or both. In Mexico as in other countries, the most extensively use batteries used for this application are the stationary and electric car type deep cycle batteries. However the experience with them in these systems is generally not very good. One way to overcome this problem is to maintain a regular monitoring of installing monitoring equipment, in order to make preventive actions before a developing fault can have serious consequences and in this manner increase the practical lifetime of the batteries. Unfortunately, battery monitoring is not easy task because most of the hybrid power systems are installed in remote areas which makes it difficult and expensive. In Mexico it has been not possible to maintain a regular monitoring of all hybrid power systems installed, due to the high cost of this work and the lack of founds. The hybrid power systems installed in the state of Quintana Roo are the only systems that have been continuously monitored since their installation. This paper gives an overview of the hybrid power systems installed in Mexico, focusing in the battery banks, the way they are being monitored, the main parameters used to detect possible premature problems and the method used to evaluate the battery bank conditions. Finally some results from the battery banks monitoring activities are presented. [Espanol] Los sistemas de potencia hibridos para un suministro autonomo de energia a regiones remotas, estan basados en diferentes fuentes de energia fosiles y renovables. Estos son considerados como una buena opcion para el suministro de energia a areas remotas. En estos sistemas es una necesidad vital el

  6. Practical state of health estimation of power batteries based on Delphi method and grey relational grade analysis

    Science.gov (United States)

    Sun, Bingxiang; Jiang, Jiuchun; Zheng, Fangdan; Zhao, Wei; Liaw, Bor Yann; Ruan, Haijun; Han, Zhiqiang; Zhang, Weige

    2015-05-01

    The state of health (SOH) estimation is very critical to battery management system to ensure the safety and reliability of EV battery operation. Here, we used a unique hybrid approach to enable complex SOH estimations. The approach hybridizes the Delphi method known for its simplicity and effectiveness in applying weighting factors for complicated decision-making and the grey relational grade analysis (GRGA) for multi-factor optimization. Six critical factors were used in the consideration for SOH estimation: peak power at 30% state-of-charge (SOC), capacity, the voltage drop at 30% SOC with a C/3 pulse, the temperature rises at the end of discharge and charge at 1C; respectively, and the open circuit voltage at the end of charge after 1-h rest. The weighting of these factors for SOH estimation was scored by the 'experts' in the Delphi method, indicating the influencing power of each factor on SOH. The parameters for these factors expressing the battery state variations are optimized by GRGA. Eight battery cells were used to illustrate the principle and methodology to estimate the SOH by this hybrid approach, and the results were compared with those based on capacity and power capability. The contrast among different SOH estimations is discussed.

  7. High Efficient Bidirectional Battery Converter for residential PV Systems

    DEFF Research Database (Denmark)

    Pham, Cam; Kerekes, Tamas; Teodorescu, Remus

    2012-01-01

    Photovoltaic (PV) installation is suited for the residential environment and the generation pattern follows the distribution of residential power consumption in daylight hours. In the cases of unbalance between generation and demand, the Smart PV with its battery storage can absorb or inject...... the power to balance it. High efficient bidirectional converter for the battery storage is required due high system cost and because the power is processed twice. A 1.5kW prototype is designed and built with CoolMOS and SiC diodes, >;95% efficiency has been obtained with 200 kHz hard switching....

  8. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models. Part 1. Requirements, critical review of methods and modeling

    Science.gov (United States)

    Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe

    2014-08-01

    Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored, these include: battery state of charge (SoC), battery state of health (capcity fade determination, SoH), and state of function (power fade determination, SoF). In a series of two papers, we propose a system of algorithms based on a weighted recursive least quadratic squares parameter estimator, that is able to determine the battery impedance and diffusion parameters for accurate state estimation. The functionality was proven on different battery chemistries with different aging conditions. The first paper investigates the general requirements on BMS for HEV/EV applications. In parallel, the commonly used methods for battery monitoring are reviewed to elaborate their strength and weaknesses in terms of the identified requirements for on-line applications. Special emphasis will be placed on real-time capability and memory optimized code for cost-sensitive industrial or automotive applications in which low-cost microcontrollers must be used. Therefore, a battery model is presented which includes the influence of the Butler-Volmer kinetics on the charge-transfer process. Lastly, the mass transport process inside the battery is modeled in a novel state-space representation.

  9. The prevalence and effects of aspiration among neonates at the time of discharge.

    Science.gov (United States)

    Karsch, Emily; Irving, Sharon Y; Aylward, Brandon S; Mahle, William T

    2017-09-01

    Neonates undergoing heart surgery for CHD are at risk for postoperative gastrointestinal complications and aspiration events. There are limited data regarding the prevalence of aspiration after neonatal cardiothoracic surgery; thus, the effects of aspiration events on this patient population are not well understood. This retrospective chart review examined the prevalence and effects of aspiration among neonates who had undergone cardiac surgery at the time of their discharge. Introduction This study examined the prevalence of aspiration among neonates who had undergone cardiac surgery. Demographic data regarding these patients were analysed in order to determine risk factors for postoperative aspiration. Post-discharge feeding routes and therapeutic interventions were extracted to examine the time spent using alternate feeding routes because of aspiration risk or poor caloric intake. Modified barium swallow study results were used to evaluate the effectiveness of the test as a diagnostic tool. Materials and methods A retrospective study was undertaken of neonates who had undergone heart surgery from July, 2013 to January, 2014. Data describing patient demographics, feeding methods, and follow-up visits were recorded and compared using a χ2 test for goodness of fit and a Kaplan-Meier graph. The patient population included 62 infants - 36 of whom were male, and 10 who were born with single-ventricle circulation. The median age at surgery was 6 days (interquartile range=4 to 10 days). Modified barium swallow study results showed that 46% of patients (n=29) aspirated or were at risk for aspiration, as indicated by laryngeal penetration. In addition, 48% (n=10) of subjects with a negative barium swallow or no swallow study demonstrated clinical aspiration events. Tube feedings were required by 66% (n=41) of the participants. The median time spent on tube feeds, whether in combination with oral feeds or exclusive use of a nasogastric or gastric tube, was 54 days; 44% (n

  10. Experimental Implementation of a Low-Cost Single Phase Five-Level Inverter for Autonomous PV System Applications Without Batteries

    Directory of Open Access Journals (Sweden)

    A. Nouaiti

    2018-02-01

    Full Text Available This paper presents the design and the implementation of a low-cost single phase five-level inverter for photovoltaic applications. The proposed multilevel inverter is composed of a simple boost converter, a switched-capacitor converter, and an H-bridge converter. An efficient control method which associates a closed-loop regulation method with a simple maximum power point tracking (MPPT method is applied in order to allow the proposed multilevel inverter to transfer power energy from solar panels to autonomous load with no storage batteries. An experimental prototype of this inverter is fabricated at the laboratory and tested with a digital control system. Obtained results confirm the simplicity and the performance of the proposed photovoltaic system.

  11. Natural graphite demand and supply - Implications for electric vehicle battery requirements

    Science.gov (United States)

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  12. Implementation of Four-Phase Interleaved Balance Charger for Series-Connected Batteries with Power Factor Correction

    Science.gov (United States)

    Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.

    2017-11-01

    A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.

  13. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Thounthong, Phatiphat [Department of Teacher Training in Electrical Engineering, King Mongkut' s University of Technology North Bangkok, 1518, Piboolsongkram Road, Bangsue, Bangkok 10800 (Thailand); Rael, Stephane; Davat, Bernard [Groupe de Recherche en Electrotechnique et Electronique de Nancy (GREEN: UMR 7037), CNRS, Nancy Universite, INPL-ENSEM 2, avenue de la Foret de Haye, Vandoeuvre-les-Nancy, Lorraine 54516 (France)

    2009-08-01

    This paper proposes a perfect energy source supplied by a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and storage devices: battery and supercapacitor, for modern distributed generation system, particularly for future fuel cell vehicle applications. The energy in hybrid system is balanced by the dc bus voltage regulation. A supercapacitor module, as a high dynamic and high power density device, functions for supplying energy to regulate a dc bus voltage. A battery module, as a high energy density device, operates for supplying energy to a supercapacitor bank to keep it charged. A FC, as a slowest dynamic source in this system, functions to supply energy to a battery bank in order to keep it charged. Therefore, there are three voltage control loops: dc bus voltage regulated by a supercapacitor bank, supercapacitor voltage regulated by a battery bank, and battery voltage regulated by a FC. To authenticate the proposed control algorithm, a hardware system in our laboratory is realized by analog circuits and numerical calculation by dSPACE. Experimental results with small-scale devices (a PEMFC: 500-W, 50-A; a battery bank: 68-Ah, 24-V; and a supercapacitor bank: 292-F, 30-V, 500-A) corroborate the excellent control principle during motor drive cycle. (author)

  14. Application of a portable microcomputer mental acuity battery for fitness-for-duty assessment in power plant operations

    International Nuclear Information System (INIS)

    Kennedy, R.S.; Turnage, J.T.; Lane, N.E.

    1988-01-01

    A need exists for assessment of fitness-for-duty in power plants. Several microcomputer-based mental acuity test batteries are under development for objective assessment of human performance over repeated measures. One of these, the Automated Performance Test System (APTS), has been shown to be sensitive to various environments and treatments and could prove useful for this purpose. Tests from these batteries should be studied during the naturally occurring stresses of power plant activity (e.g., shift work, sustained operations, sleep deprivation, stressful periods) in order to establish the effects of such issues on performance, and to provide insights and scientific data for the development of standards and regulations

  15. Comparative techno-economic analysis of hybrid micro-grid systems utilizing different battery types

    International Nuclear Information System (INIS)

    Ciez, Rebecca E.; Whitacre, J.F.

    2016-01-01

    Highlights: • Comparative analysis of 3 battery chemistries in microgrid storage application. • At discount rates >1%, diesel-only generation still cheapest electricity option. • Optimal battery chemistry highly dependent on discount rate. • For discount rates <4%, lead acid is the cheapest storage options. • High energy density li-ion the cheapest storage option for discount rates >4%. - Abstract: A systems-level lifetime cost-of-use optimization model was applied to a hypothetical hybrid off-grid power system to compare the impacts of different battery technologies. Specifically, a time-step battery degradation model was used to account for unit degradation over a 20-year system lifetime for three different batteries. Variables examined included: battery type, allowed state of charge swing during cycling, number of battery replacements, fractional renewable energy requirements, and applied discount rate. Our analyses show that storage packs with high energy, low cost lithium-ion cells have the potential to compete with a non-renewable solution in some cases. The discount rate also proves to be significant in determining the cost competitiveness of the hybrid systems: at low discount rates, the levelized cost of electricity (LCOE) is only slightly higher than diesel generation, with costs diverging as the discount rate increases. The discount rate also determines which battery technology delivers the lowest cost of electricity: lead acid batteries are favorable at low rates, while high-energy lithium-ion batteries deliver lower cost electricity at higher rates. Similarly, market forces, like fuel or battery price changes, feed-in tariffs, or carbon taxes, required to trigger a switch to a hybrid system vary substantially with the discount rate.

  16. The costs of nuclear power

    International Nuclear Information System (INIS)

    Vestenhaug, O.; Sauar, T.O.; Nielsen, P.O.

    1979-01-01

    A study has been made by Scandpower A/S of the costs of nuclear power in Sweden. It is based on the known costs of existing Swedish nuclear power plants and forecasts of the expected costs of the Swedish nuclear power programme. special emphasis has been put on the fuel cycle costs and future costs of spent fuel processing, waste disposal and decommissioning. Costs are calculated in 1978 Swedish crowns, using the retail price index. An actual interest rate of 4% is used, with depreciation period of 25 years and a plant lifetime of 30 years. Power production costs are estimated to be about 7.7 oere/kWh in 1978, rising to 10.5 oere/kWh in 2000. The cost is distributed with one third each to capital costs, operating costs and fuel costs, the last rising to 40% of the total at the end of the century. The main single factor in future costs is the price of uranium. If desired, Sweden can probably be self-sufficient in uranium in 2000 at a lower cost than assumed here. National research costs which, in Scandpower's opinion, can be debited to the commercial nuclear power programme are about 0.3 oere/kWh. (JIW)

  17. New generation low power radiation survey instruments

    International Nuclear Information System (INIS)

    Waechter, D.A.; Bjarke, G.O.; Trujillo, F.; Umbarger, C.J.; Wolf, M.A.

    1984-01-01

    A number of new, ultra-low-powered radiation instruments have recently been developed at Los Alamos. Among these are two instruments which use a novel power source to eliminate costly batteries. The newly developed gamma detecting radiac, nicknamed the Firefly, and the alpha particle detecting instrument, called the Simple Cordless Alpha Monitor, both use recent advances in miniaturization and powersaving electronics to yield devices which are small, rugged, and very power-frugal. The two instruments consume so little power that the need for batteries to run them is eliminated. They are, instead, powered by a charged capacitor which will operate the instruments for an hour or more. Use of a capacitor as a power source eliminates many problems commonly associated with battery-operated instruments, such as having to open the case to change batteries, battery storage life, availability of batteries in the field, and some savings in weight. Both line power and mechanical sources are used to charge the storage capacitors which power the instruments

  18. Cost and Performance Report: Solar-Powered Remediation and pH Control

    Science.gov (United States)

    2017-04-01

    parallel, with two batteries in each series, providing a 24 V DC power supply. A solar charge controller regulated the charging of the batteries when...ER-201033) Solar -Powered Remediation and pH Control April 2017 This document has been cleared for public release; Distribution Statement A...Technol. 32:1817-1824. CB&I Federal Services. 2017. Final Report. Solar Powered Remediation and pH Control . ESTCP Project ER-201033. April. Cheng, S

  19. Battery algorithm verification and development using hardware-in-the-loop testing

    Science.gov (United States)

    He, Yongsheng; Liu, Wei; Koch, Brain J.

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO 4) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs.

  20. Battery algorithm verification and development using hardware-in-the-loop testing

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongsheng [General Motors Global Research and Development, 30500 Mound Road, MC 480-106-252, Warren, MI 48090 (United States); Liu, Wei; Koch, Brain J. [General Motors Global Vehicle Engineering, Warren, MI 48090 (United States)

    2010-05-01

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO{sub 4}) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs. (author)

  1. Power generation costs. Coal - nuclear power

    International Nuclear Information System (INIS)

    1979-01-01

    This supplement volume contains 17 separate chapters investigating the parameters which determine power generation costs on the basis of coal and nuclear power and a comparison of these. A detailed calculation model is given. The complex nature of this type of cost comparison is shown by a review of selected parameter constellation for coal-fired and nuclear power plants. The most favourable method of power generation can only be determined if all parameters are viewed together. One quite important parameter is the load factor, or rather the hours of operation. (UA) 891 UA/UA 892 AMO [de

  2. Design, control and power management of a battery/ultra-capacitor hybrid system for small electric vehicles

    DEFF Research Database (Denmark)

    Li, Zhihao; Onar, Omer; Khaligh, Alireza

    2009-01-01

    This paper introduces design, control, and power management of a battery/ultra-capacitor hybrid system, utilized for small electric vehicles (EV). The batteries are designed and controlled to work as the main energy storage source of the vehicle, supplying average power to the load; and the ultra...

  3. Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles

    International Nuclear Information System (INIS)

    Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe

    2016-01-01

    This study shows results of extensive experimental measurements performed on high power lithium titanate based batteries. Characterization tests are performed over a wide temperature range (−20 °C – +40 °C) by employing electrochemical impedance spectroscopy and modified hybrid pulse power characterization tests. Furthermore, the behavior of battery impedance parameters over the battery lifetime with regard to temperature, State-of-Charge and their influence on available battery power in an example of electric vehicles is discussed. Based on extracted parameters, a reduced order equivalent circuit model considering the nonlinearity of the charge transfer resistance is parametrized. The obtained results indicate that ohmic resistance increases with decreasing State-of-Charge while the shape of the curve remains almost constant over the battery lifetime. The total impedance determined at 1 mHz shows almost no dependence on State-of-Charge and remains constant over the whole State-of-Charge range. The necessity of considering the impact of the current dependence of the direct current resistance at least at low temperatures (i.e., below 0 °C) is confirmed. Moreover, by investigating the Butler-Volmer equation the behavior of exchange current density and symmetry factor is analyzed for various temperatures and State-of-Charges over the battery lifetime. - Highlights: • Impedance characteristic over the battery lifetime is investigated. • Batteries at different aging states using lithium titanate anodes are investigated. • The influence of temperature on impedance characteristic is investigated. • Butler-Volmer behavior is comprehensively investigated under various conditions.

  4. Ecological and biomedical effects of effluents from near-term electric vehicle storage battery cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    An assessment of the ecological and biomedical effects due to commercialization of storage batteries for electric and hybrid vehicles is given. It deals only with the near-term batteries, namely Pb/acid, Ni/Zn, and Ni/Fe, but the complete battery cycle is considered, i.e., mining and milling of raw materials, manufacture of the batteries, cases and covers; use of the batteries in electric vehicles, including the charge-discharge cycles; recycling of spent batteries; and disposal of nonrecyclable components. The gaseous, liquid, and solid emissions from various phases of the battery cycle are identified. The effluent dispersal in the environment is modeled and ecological effects are assessed in terms of biogeochemical cycles. The metabolic and toxic responses by humans and laboratory animals to constituents of the effluents are discussed. Pertinent environmental and health regulations related to the battery industry are summarized and regulatory implications for large-scale storage battery commercialization are discussed. Each of the seven sections were abstracted and indexed individually for EDB/ERA. Additional information is presented in the seven appendixes entitled; growth rate scenario for lead/acid battery development; changes in battery composition during discharge; dispersion of stack and fugitive emissions from battery-related operations; methodology for estimating population exposure to total suspended particulates and SO/sub 2/ resulting from central power station emissions for the daily battery charging demand of 10,000 electric vehicles; determination of As air emissions from Zn smelting; health effects: research related to EV battery technologies. (JGB)

  5. Design of a Reliable Hybrid (PV/Diesel Power System with Energy Storage in Batteries for Remote Residential Home

    Directory of Open Access Journals (Sweden)

    Vincent Anayochukwu Ani

    2016-01-01

    Full Text Available This paper reports the experience acquired with a photovoltaic (PV hybrid system simulated as an alternative to diesel system for a residential home located in Southern Nigeria. The hybrid system was designed to overcome the problem of climate change, to ensure a reliable supply without interruption, and to improve the overall system efficiency (by the integration of the battery bank. The system design philosophy was to maximize simplicity; hence, the system was sized using conventional simulation tool and representative insolation data. The system includes a 15 kW PV array, 21.6 kWh (3600 Ah worth of battery storage, and a 5.4 kW (6.8 kVA generator. The paper features a detailed analysis of the energy flows through the system and quantifies all losses caused by PV charge controller, battery storage round-trip, rectifier, and inverter conversions. In addition, simulation was run to compare PV/diesel/battery with diesel/battery and the results show that the capital cost of a PV/diesel hybrid solution with batteries is nearly three times higher than that of a generator and battery combination, but the net present cost, representing cost over the lifetime of the system, is less than one-half of the generator and battery combination.

  6. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    NARCIS (Netherlands)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn R.H.M.; Jongerden, M.R.; Hansen, René Rydhof; Larsen, K.G.; Sankaranarayanan, Sriram; Vicario, Enrico

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact of

  7. FY 1997 - FY 2000 reports on the results of the development of commercialization technology of the photovoltaic power system. Summary. R and D of the photovoltaic power generation utilization system/periphery technology (R and D of high reliability storage batteries); 1997-2000 nendo New sunshine keikaku seika hokokusho (Sokatsu ban). - Taiyoko hatsuden system jitsuyoka gijutsu kaihatsu, Taiyoko hatsuden riyo system shuhen gijutsu no kenkyu kaihatsu (Koshinraisei chikuden sochi no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The R and D/evaluation were made from FY 1997 to FY 2000 of lead storage batteries that are applicable to the use for the absorption of abrupt power variations in photovoltaic power generation and peak shift/emergency use power source, and the results were summed up. In the study for prolonging the life, the following were carried out: development of the inexpensive corrosion-resistant lead alloy positive grid applicable to the photovoltaic power generation, development of the negative active material with a high sulfation control effect, selection of silica powder as electrolyte retainer, development of the charging control technology by the multi-stage constant current method, etc. As a result, energy density of the battery was more than 70W/L as a target, and the target life of 3,000 cycles was achieved in the life test. Further, cost reduction and deterioration judgment were studied. In the study of the group of batteries, a management system for group of batteries was developed. As a result of the 1-year field test, there were no problems on durability of the storage case, temperature difference among batteries, rise in temperature, etc. As to the developed seal type lead storage battery, the applicability to the photovoltaic power generation was acquired. (NEDO)

  8. Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    Johannes Hofer

    2014-09-01

    Full Text Available In this work the effect of weight reduction using advanced lightweight materials on the mass, energy use, and cost of conventional and battery electric passenger vehicles is compared. Analytic vehicle simulation is coupled with cost assessment to find the optimal degree of weight reduction minimizing manufacturing and total costs. The results show a strong secondary weight and cost saving potential for the battery electric vehicles, but a higher sensitivity of vehicle energy use to mass reduction for the conventional vehicle. Generally, light weighting has the potential to lower vehicle costs, however, the results are very sensitive to parameters affecting lifetime fuel costs for conventional and battery costs for electric vehicles. Based on current technology cost estimates it is shown that the optimal amount of primary mass reduction minimizing total costs is similar for conventional and electric vehicles and ranges from 22% to 39%, depending on vehicle range and overall use patterns. The difference between the optimal solutions minimizing manufacturing versus total costs is higher for conventional than battery electric vehicles.

  9. A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems

    International Nuclear Information System (INIS)

    Maheri, Alireza

    2014-01-01

    Reliability of a hybrid renewable energy system (HRES) strongly depends on various uncertainties affecting the amount of power produced by the system. In the design of systems subject to uncertainties, both deterministic and nondeterministic design approaches can be adopted. In a deterministic design approach, the designer considers the presence of uncertainties and incorporates them indirectly into the design by applying safety factors. It is assumed that, by employing suitable safety factors and considering worst-case-scenarios, reliable systems can be designed. In fact, the multi-objective optimisation problem with two objectives of reliability and cost is reduced to a single-objective optimisation problem with the objective of cost only. In this paper the competence of deterministic design methods in size optimisation of reliable standalone wind–PV–battery, wind–PV–diesel and wind–PV–battery–diesel configurations is examined. For each configuration, first, using different values of safety factors, the optimal size of the system components which minimises the system cost is found deterministically. Then, for each case, using a Monte Carlo simulation, the effect of safety factors on the reliability and the cost are investigated. In performing reliability analysis, several reliability measures, namely, unmet load, blackout durations (total, maximum and average) and mean time between failures are considered. It is shown that the traditional methods of considering the effect of uncertainties in deterministic designs such as design for an autonomy period and employing safety factors have either little or unpredictable impact on the actual reliability of the designed wind–PV–battery configuration. In the case of wind–PV–diesel and wind–PV–battery–diesel configurations it is shown that, while using a high-enough margin of safety in sizing diesel generator leads to reliable systems, the optimum value for this margin of safety leading to a

  10. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  11. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  12. FY2016 Advanced Batteries R&D Annual Progress Report - Part 4 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers Advanced Battery Materials Research (BMR) part 1.

  13. Research and development of peripheral technology for photovoltaic power systems. Research and development of redox flow battery for photovoltaic power generation; Shuhen gijutsu no kenkyu kaihatsu. Taiyoko hatsuden`yo redox denchi no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on R and D of redox flow battery for photovoltaic power generation in fiscal 1994. (1) On the production method of electrolyte, silica reduction treatment was attempted to use ammonium metavanadate recovered from boiler as electrolyte of redox flow battery. Silica removal rates more than 90% were achieved by crystallizing V as polyvanadate while keeping molten silica. It was ascertained in minicell experiment that trivalent and quadrivalent V electrolytes produced from recovered V are applicable to continuous charge/discharge operation for one week. (2) On development of battery systems, the relation between battery characteristics and physicochemical properties of carbon fiber electrodes was studied to improve carbon fiber electrodes. The efficiency of 80% was achieved at current density of 160mA/cm{sup 2} by use of layered electrodes, resulting in considerable cost reduction. Performance evaluation operation of the 2kW battery prepared in the last fiscal year was also carried out. 4 figs.

  14. Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications

    Science.gov (United States)

    Chen, Honghao; Cartmell, Samuel; Wang, Qiang; Lozano, Terence; Deng, Z. Daniel; Li, Huidong; Chen, Xilin; Yuan, Yong; Gross, Mark E.; Carlson, Thomas J.; Xiao, Jie

    2014-01-01

    The Endangered Species Act requires actions that improve the passage and survival rates for migrating salmonoids and other fish species that sustain injury and mortality when passing through hydroelectric dams. To develop a low-cost revolutionary acoustic transmitter that may be injected instead of surgically implanted into the fish, one major challenge that needs to be addressed is the micro-battery power source. This work focuses on the design and fabrication of micro-batteries for injectable fish tags. High pulse current and required service life have both been achieved as well as doubling the gravimetric energy density of the battery. The newly designed micro-batteries have intrinsically low impedance, leading to significantly improved electrochemical performances at low temperatures as compared with commercial SR416 batteries. Successful field trial by using the micro-battery powered transmitters injected into fish has been demonstrated, providing an exemplary model of transferring fundamental research into practical devices with controlled qualities.

  15. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  16. Enabling fast charging - Battery thermal considerations

    Science.gov (United States)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  17. Hybrid hydrogen-battery systems for renewable off-grid telecom power

    OpenAIRE

    Scamman, D.; Newborough, M.; Bustamante, H.

    2015-01-01

    Off-grid hybrid systems, based on the integration of hydrogen technologies (electrolysers, hydrogen stores and fuel cells) with battery and wind/solar power technologies, are proposed for satisfying the continuous power demands of telecom remote base stations. A model was developed to investigate the preferred role for electrolytic hydrogen within a hybrid system; the analysis focused on powering a 1 kW telecom load in three locations of distinct wind and solar resource availability. When com...

  18. Effects of environmental temperature fluctuations on the parameters of a thermoelectric battery

    International Nuclear Information System (INIS)

    Kozlov, Yu.F.; Oganov, E.P.

    1980-01-01

    A numerical analysis is presented for the effects of lags on the output parameters of a radioisotope thermoelectric battery under conditions of diurnal temperature variation in the environment. Allowance for the inertial effects causes a phase shift and change in amplitude of the variations in the thermal and electrical parameters. The amplitude of the temperature fluctuations in the hot junctions is substantially reduced, while the output electrical power increases. The data provide a more rigorous basis for choosing the parameters of radioisotope batteries during design. 9 refs

  19. Costs of electric power generation in different types of power plants

    International Nuclear Information System (INIS)

    Weible, H.

    1977-01-01

    In the framework of our study 'energy - environment - industry' we need among other things the costs of electric power generation. We register their structure in a sub-model. Recently there was disagreement on effective costs of electric power generation particularly when comparing fossil-fuel power plants to nuclear power plants. For this reason, expertises on the costs of electric power generation in nuclear and fossil-fuel power plants were ordered with the Energy-Economic Institute in Cologne as well as with the Battelle Institute in Frankfurt. In the framwork of our paper on the system 'energy - environment - industry' we do not want to give new data potentially required for our task, before the expertises will be finished. Therefore the results given in part III of this lecture are only meant as an example in order to show possible consequences of the cost programs set up, depending on initial data whose general recognition is to be aimed at. Furthermore, the theoretical approach to investment calculation has to win general recognition when recording calculation methods computer-compatibly. Any new formulations discussed in industrial management have not been taken into account. (orig.) [de

  20. Environmental cost/benefit analysis for fusion power plants

    International Nuclear Information System (INIS)

    Young, J.R.

    1976-11-01

    This document presents a cost/benefit analysis of use of fusion power plants early in the 21st century. The first section describes the general formulation of the analysis. Included are the selection of the alternatives to the fusion reactor, selection of the power system cases to be compared, and a general comparison of the environmental effects of the selected alternatives. The second section compares the cumulative environmental effects from 2010 to 2040 for the primary cases of the power system with and without fusion reactors. The third section briefly illustrates the potential economic benefits if fusion reactors produce electricity at a lower unit cost than LMFBRs can. The fourth section summarizes the cost/benefit analysis

  1. A comprehensive review of on-board State-of-Available-Power prediction techniques for lithium-ion batteries in electric vehicles

    Science.gov (United States)

    Farmann, Alexander; Sauer, Dirk Uwe

    2016-10-01

    This study provides an overview of available techniques for on-board State-of-Available-Power (SoAP) prediction of lithium-ion batteries (LIBs) in electric vehicles. Different approaches dealing with the on-board estimation of battery State-of-Charge (SoC) or State-of-Health (SoH) have been extensively discussed in various researches in the past. However, the topic of SoAP prediction has not been explored comprehensively yet. The prediction of the maximum power that can be applied to the battery by discharging or charging it during acceleration, regenerative braking and gradient climbing is definitely one of the most challenging tasks of battery management systems. In large lithium-ion battery packs because of many factors, such as temperature distribution, cell-to-cell deviations regarding the actual battery impedance or capacity either in initial or aged state, the use of efficient and reliable methods for battery state estimation is required. The available battery power is limited by the safe operating area (SOA), where SOA is defined by battery temperature, current, voltage and SoC. Accurate SoAP prediction allows the energy management system to regulate the power flow of the vehicle more precisely and optimize battery performance and improve its lifetime accordingly. To this end, scientific and technical literature sources are studied and available approaches are reviewed.

  2. Material selection and assembly method of battery pack for compact electric vehicle

    Science.gov (United States)

    Lewchalermwong, N.; Masomtob, M.; Lailuck, V.; Charoenphonphanich, C.

    2018-01-01

    Battery packs become the key component in electric vehicles (EVs). The main costs of which are battery cells and assembling processes. The battery cell is indeed priced from battery manufacturers while the assembling cost is dependent on battery pack designs. Battery pack designers need overall cost as cheap as possible, but it still requires high performance and more safety. Material selection and assembly method as well as component design are very important to determine the cost-effectiveness of battery modules and battery packs. Therefore, this work presents Decision Matrix, which can aid in the decision-making process of component materials and assembly methods for a battery module design and a battery pack design. The aim of this study is to take the advantage of incorporating Architecture Analysis method into decision matrix methods by capturing best practices for conducting design architecture analysis in full account of key design components critical to ensure efficient and effective development of the designs. The methodology also considers the impacts of choice-alternatives along multiple dimensions. Various alternatives for materials and assembly techniques of battery pack are evaluated, and some sample costs are presented. Due to many components in the battery pack, only seven components which are positive busbar and Z busbar are represented in this paper for using decision matrix methods.

  3. Biomedical applications of batteries

    Energy Technology Data Exchange (ETDEWEB)

    Latham, Roger [Faculty of Health and Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Linford, Roger [The Research Office, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Schlindwein, Walkiria [School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom)

    2004-08-31

    An overview is presented of the many ways in which batteries and battery materials are used in medicine and in biomedical studies. These include the use of batteries as power sources for motorised wheelchairs, surgical tools, cardiac pacemakers and defibrillators, dynamic prostheses, sensors and monitors for physiological parameters, neurostimulators, devices for pain relief, and iontophoretic, electroporative and related devices for drug administration. The various types of battery and fuel cell used for this wide range of applications will be considered, together with the potential harmful side effects, including accidental ingestion of batteries and the explosive nature of some of the early cardiac pacemaker battery systems.

  4. A metal-free organic-inorganic aqueous flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Huskinson, B; Marshak, MP; Suh, C; Er, S; Gerhardt, MR; Galvin, CJ; Chen, XD; Aspuru-Guzik, A; Gordon, RG; Aziz, MJ

    2014-01-08

    As the fraction of electricity generation from intermittent renewable sources-such as solar or wind-grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output(1,2). In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form(3-5). Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts(6,7). Here we describe a class of energy storage materials that exploits the favourable chemical and electro-chemical properties of a family of molecules known as quinones. The example we demonstrate is ametal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br-2/Br- redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals(8). This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of p-aromatic redox-active organic molecules instead of redox-active metals

  5. A low-cost iron-cadmium redox flow battery for large-scale energy storage

    Science.gov (United States)

    Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Wei, L.; Jiang, H. R.

    2016-10-01

    The redox flow battery (RFB) is one of the most promising large-scale energy storage technologies that offer a potential solution to the intermittency of renewable sources such as wind and solar. The prerequisite for widespread utilization of RFBs is low capital cost. In this work, an iron-cadmium redox flow battery (Fe/Cd RFB) with a premixed iron and cadmium solution is developed and tested. It is demonstrated that the coulombic efficiency and energy efficiency of the Fe/Cd RFB reach 98.7% and 80.2% at 120 mA cm-2, respectively. The Fe/Cd RFB exhibits stable efficiencies with capacity retention of 99.87% per cycle during the cycle test. Moreover, the Fe/Cd RFB is estimated to have a low capital cost of 108 kWh-1 for 8-h energy storage. Intrinsically low-cost active materials, high cell performance and excellent capacity retention equip the Fe/Cd RFB to be a promising solution for large-scale energy storage systems.

  6. FY2016 Advanced Batteries R&D Annual Progress Report - Part 5 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section cover Advanced Battery Materials Research (BMR) part 2, Battery500 Innovation Centers project summaries, and appendices.

  7. Motivation for a near term gun launch to space demonstration and a variable induction power supply concept to minimize initial demonstration costs

    International Nuclear Information System (INIS)

    Palmer, M.R.

    1993-01-01

    The history of the Gun Launch to Space (GLTS) concept is briefly reviewed along with recent progress and motivations for a near term launch demonstration. A current multiplying reconfigurable inductor design is developed which could couple to an existing battery system to power a GLTS railgun demonstration at the 300 megajoule muzzle energy level. The design is developed using proven approaches and performance levels and appears capable of reducing the power supply cost for an initial GLTS demonstration below that of a simple battery charged inductor system. Possible uses are (1) launching of space weapons; (2) launching of communication satellites; (3) and launching of satellites for space disposal of radioactive wastes

  8. [The comparison of different bronchial aspirate culturing methods in patients with ventilator-associated pneumonia (VAP)].

    Science.gov (United States)

    Kowalczyk, Wojciech; Rybicki, Zbigniew; Tomaszewski, Dariusz; Truszczyński, Andrzej; Guzek, Aneta

    2011-01-01

    Although broncho-alveolar lavage (BAL) culture and protected specimen brush (PSB) are regarded as the most effective methods in the diagnosis of VAP, a simple endotracheal aspiration (EA) is frequently performed during routine care, because of its simplicity and low cost. We compared the effectiveness of EA with BAL and PSB in VAP patients. Sixty-one adult VAP patients, ventilated for longer than 48 h, were cultured with all three methods. Positive cultures were obtained from 63.9% of patients, with Acinetobacter baumannii being the most common pathogen. There was a high positive correlation between simple aspirates and BAL (k 0.817, CI 0.664-0.840, p aspirates and PSB (k 0.667, CI 0.483-0.871, p aspirate culturing, compared to BAL and PSB, it can be used successfully in most cases.

  9. TOPEX electrical power system

    Science.gov (United States)

    Chetty, P. R. K.; Roufberg, Lew; Costogue, Ernest

    1991-01-01

    The TOPEX mission requirements which impact the power requirements and analyses are presented. A description of the electrical power system (EPS), including energy management and battery charging methods that were conceived and developed to meet the identified satellite requirements, is included. Analysis of the TOPEX EPS confirms that all of its electrical performance and reliability requirements have been met. The TOPEX EPS employs the flight-proven modular power system (MPS) which is part of the Multimission Modular Spacecraft and provides high reliability, abbreviated development effort and schedule, and low cost. An energy balance equation, unique to TOPEX, has been derived to confirm that the batteries will be completely recharged following each eclipse, under worst-case conditions. TOPEX uses three NASA Standard 50AH Ni-Cd batteries, each with 22 cells in series. The MPS contains battery charge control and protection based on measurements of battery currents, voltages, temperatures, and computed depth-of-discharge. In case of impending battery depletion, the MPS automatically implements load shedding.

  10. Fiscal 2000 survey report. Development of novel battery power storage system (Development of distributed power storage technology - Marketability of lithium storage battery); 2000 nendo gyomu hokokusho. Shingata denchi denryoku chozo system kaihatsu - Bunsangata denryoku chozo gijutsu kaihatu (Ritium niji denchi no shijosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey is conducted of the current status of storage batteries and the marketability of the lithium ion battery. In the study of future marketability of storage batteries for electric vehicles, the small vehicle Hypermini currently loaded with a lithium ion battery is taken up and it is assumed that each carries a 10 kWh battery, and then it is estimated that there will be an approximately 2200 times 10{sup 3} kWh market in Japan in 2020. As for hybrid vehicles each loaded with a 1 kWh battery, it is estimated that 3997 times 10{sup 3} kWh will be on the market in 2020. For the fuel cell powered vehicle, similarly, there will be approximately 2,500 times 10{sup 3} kWh on the market in 2020. As for power storage facilities for power load shaving, the demand for cells in 2020 is estimated at 1,032-3,924 times 10{sup 3} kWh on the assumption that they operate 4 hours in the daytime. As for the uninterruptible power supply, it is estimated that 800 times 10{sup 3} kWh will be required by those installed at data centers in 2020. It is also estimated that 252 times 10{sup 3} kWh will be necessary in the form of storage batteries for motored wheelchairs in 2020. As for distributed power source systems such as those dealing with wind power or photovoltaic power, there are a number of technical problems that have to be settled. (NEDO)

  11. A cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of demand response program: ε-constraint method and fuzzy satisfying approach

    International Nuclear Information System (INIS)

    Nojavan, Sayyad; Majidi, Majid; Najafi-Ghalelou, Afshin; Ghahramani, Mehrdad; Zare, Kazem

    2017-01-01

    Highlights: • Cost-emission performance of PV/battery/fuel cell hybrid energy system is studied. • Multi-objective optimization model for cost-emission performance is proposed. • ε-constraint method is proposed to produce Pareto solutions of multi-objective model. • Fuzzy satisfying approach selected the best optimal solution from Pareto solutions. • Demand response program is proposed to reduce both cost and emission. - Abstract: Optimal operation of hybrid energy systems is a big challenge in power systems. Nowadays, in addition to the optimum performance of energy systems, their pollution issue has been a hot topic between researchers. In this paper, a multi-objective model is proposed for economic and environmental operation of a battery/fuel cell/photovoltaic (PV) hybrid energy system in the presence of demand response program (DRP). In the proposed paper, the first objective function is minimization of total cost of hybrid energy system. The second objective function is minimization of total CO_2 emission which is in conflict with the first objective function. So, a multi-objective optimization model is presented to model the hybrid system’s optimal and environmental performance problem with considering DRP. The proposed multi-objective model is solved by ε-constraint method and then fuzzy satisfying technique is employed to select the best possible solution. Also, positive effects of DRP on the economic and environmental performance of hybrid system are analyzed. A mixed-integer linear program is used to simulate the proposed model and the obtained results are compared with weighted sum approach to show the effectiveness of proposed method.

  12. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  13. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenhua H.; Zhu Ying [Center for Microfibrous Materials, Department of Chemical Engineering, 212 Ross Hall, Auburn University, AL 36849-5127 (United States); Tatarchuk, Bruce J., E-mail: brucet@eng.auburn.edu [Center for Microfibrous Materials, Department of Chemical Engineering, 212 Ross Hall, Auburn University, AL 36849-5127 (United States)

    2011-08-15

    Highlights: {yields} Pb-acid battery is reexamined in electrode structure and capacitance enhancement. {yields} Pb-acid batteries were tested through the electrochemical impedance at loads. {yields} Electrode behaviors are evaluated by simulation using an equivalent circuit model. {yields} A defective and a failed Pb-acid battery was used in non-destructive analysis. {yields} Potential applications are for power reserve and sustainable electricity storage. - Abstract: Three main types of battery chemistries in consideration for vehicle applications are Pb-acid, nickel-metal hydride, and lithium-ion batteries. Lead-acid batteries are widely used in traditional automotive applications for many years. Higher voltage, high-rate discharge capability, good specific energy, lower temperature performance, lower thermal management requirement, and low-cost in both manufacturing and recycling are the advantages of the rechargeable battery. Disadvantages of the lead-acid battery are: weight concerns of lead metal (lower energy density and lower power density) and limited cycle-life (especially in deep-cycle duties). If two major disadvantages have been significantly changed to a proper state to compete with other battery chemistries, the Pb-acid battery is still a good candidate in considering of cost/performance ratio. The lead-acid battery is always a good power source for fast starting of cold vehicles, for recharging from either a stop-start braking system, or for a charge from the engine itself, which consumes battery energy or stores electricity back into chemical energy. The main reasons for reexamining this battery chemistry are cost-savings and life-cycling considerations upon advances in electrode structure design and enhancement of capacitance behavior inside the battery pack. Several Pb-acid batteries were evaluated and tested through a unique method, i.e., the electrochemical impedance method at different loads, in order to characterize and further understand the

  14. A simplified equivalent circuit model for simulation of Pb-acid batteries at load for energy storage application

    International Nuclear Information System (INIS)

    Zhu, Wenhua H.; Zhu Ying; Tatarchuk, Bruce J.

    2011-01-01

    Highlights: → Pb-acid battery is reexamined in electrode structure and capacitance enhancement. → Pb-acid batteries were tested through the electrochemical impedance at loads. → Electrode behaviors are evaluated by simulation using an equivalent circuit model. → A defective and a failed Pb-acid battery was used in non-destructive analysis. → Potential applications are for power reserve and sustainable electricity storage. - Abstract: Three main types of battery chemistries in consideration for vehicle applications are Pb-acid, nickel-metal hydride, and lithium-ion batteries. Lead-acid batteries are widely used in traditional automotive applications for many years. Higher voltage, high-rate discharge capability, good specific energy, lower temperature performance, lower thermal management requirement, and low-cost in both manufacturing and recycling are the advantages of the rechargeable battery. Disadvantages of the lead-acid battery are: weight concerns of lead metal (lower energy density and lower power density) and limited cycle-life (especially in deep-cycle duties). If two major disadvantages have been significantly changed to a proper state to compete with other battery chemistries, the Pb-acid battery is still a good candidate in considering of cost/performance ratio. The lead-acid battery is always a good power source for fast starting of cold vehicles, for recharging from either a stop-start braking system, or for a charge from the engine itself, which consumes battery energy or stores electricity back into chemical energy. The main reasons for reexamining this battery chemistry are cost-savings and life-cycling considerations upon advances in electrode structure design and enhancement of capacitance behavior inside the battery pack. Several Pb-acid batteries were evaluated and tested through a unique method, i.e., the electrochemical impedance method at different loads, in order to characterize and further understand the improved electrode

  15. Environmental aspects of battery and fuel cell technologies

    International Nuclear Information System (INIS)

    1992-10-01

    This report was commissioned by the UK Department of Trade and Industry in order to understand the policy, infrastructural and standards implications of increased use of batteries and fuel cells. In order to meet these requirements, the following areas have been examined: environmental initiatives related to power generation and transport in a pan-European context; the status of alternative technologies, specifically batteries and fuel cells; the market potential of battery and fuel cell based technologies in transport and power generation; environmental life cycle and cost benefit analyses of these technologies; the implications of the use of alternative technologies on the UK infrastructure. Each of these areas is covered briefly in the main body of the report and discussed in greater detail in six appendices. Overall there are 51 figures, 38 tables and 20 references. (UK)

  16. How the system approach is determining automotive battery design and use

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, J [Delco Remy Div., General Motors Co., Automotive Components Group, Technical Centre, Luxembourg (Luxembourg); Stephany, J M [Delco Remy Div., General Motors Co., Automotive Components Group, Technical Centre, Luxembourg (Luxembourg); Sheppelman, T [Delco Remy Div., General Motors Co., Automotive Components Group, Technical Centre, Luxembourg (Luxembourg)

    1993-01-29

    Today, the battery in a vehicle system is specific and designed as a single, stand-alone vehicle product. Traditionally, customer specifications were the driving force behind battery design and application requirements. This method is not able to comprehend the fluctuating requirements of real-time, vehicle systems. Growing competition in the automotive market is increasing customer needs and expectations in regards to cost, weight, size efficiency, time-to-market, and quality of the products and systems. System engineering is a service that Delco Remy, as an electrical power system supplier, offers to help their customers secure gains in the market place. System development and application engineering is essential for the development of performance-optimized components that meet the systems and total vehicle cost, reliability and timing objectives. The battery integration must be managed through the electrical power system during the complete vehicle development process in order to increase ultimately customer satisfaction. (orig.)

  17. How the systems approach is determining automotive battery design and use

    Science.gov (United States)

    Bonnet, Jean; Stephany, Jean-Marie; Sheppelman, Todd

    Today, the battery in a vehicle system is specific and designed as a single, stand-alone vehicle product. Traditionally, customer specifications were the driving force behind battery design and application requirements. This method is not able to comprehend the fluctuating requirements of real-time, vehicle systems. Growing competition in the automotive market is increasing customer needs and expectations in regards to cost, weight, size efficiency, time-to-market, and quality of the products and systems. System engineering is a service that Delco Remy, as an electrical power system supplier, offers to help their customers secure gains in the market place. System development and application engineering is essential for the development of performance-optimized components that meet the systems and total vehicle cost, reliability and timing objectives. The battery integration must be managed through the electrical power system during the complete vehicle development process in order to increase ultimately customer satisfaction.

  18. Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries

    Science.gov (United States)

    Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang

    2018-01-01

    Abstract Zn–air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next‐generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn–air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn–air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn–air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn–air batteries with high performance. PMID:29721418

  19. Aging management guideline for commercial nuclear power plants-stationary batteries

    International Nuclear Information System (INIS)

    Berg, R.; Shao, J.; Krencicki, G.; Giachetti, R.

    1994-03-01

    The Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant stationary batteries important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein

  20. A single lithium-ion battery protection circuit with high reliability and low power consumption

    International Nuclear Information System (INIS)

    Jiang Jinguang; Li Sen

    2014-01-01

    A single lithium-ion battery protection circuit with high reliability and low power consumption is proposed. The protection circuit has high reliability because the voltage and current of the battery are controlled in a safe range. The protection circuit can immediately activate a protective function when the voltage and current of the battery are beyond the safe range. In order to reduce the circuit's power consumption, a sleep state control circuit is developed. Additionally, the output frequency of the ring oscillation can be adjusted continuously and precisely by the charging capacitors and the constant-current source. The proposed protection circuit is fabricated in a 0.5 μm mixed-signal CMOS process. The measured reference voltage is 1.19 V, the overvoltage is 4.2 V and the undervoltage is 2.2 V. The total power is about 9 μW. (semiconductor integrated circuits)

  1. Reference costs for power generation

    International Nuclear Information System (INIS)

    2003-12-01

    The first part of the 2003 study of reference costs for power generation has been completed. It was carried out by the General Directorate for Energy and Raw Materials (DGEMP) of the French Ministry of the Economy, Finance and Industry, with the collaboration of power-plant operators, construction firms and many other experts. A Review Committee of experts including economists (Forecasting Department, French Planning Office), qualified public figures, representatives of power-plant construction firms and operators, and non-governmental organization (NGO) experts, was consulted in the final phase. The study examines the costs of power generated by different methods (i.e. nuclear and fossil-fuel [gas-, coal-, and oil-fired] power plants) in the context of an industrial operation beginning in the year 2015. - The second part of the study relating to decentralized production methods (wind, photovoltaic, combined heat and power) is still in progress and will be presented at the beginning of next year. - 1. Study approach: The study is undertaken mainly from an investor's perspective and uses an 8% discount rate to evaluate the expenses and receipts from different years. In addition, the investment costs are considered explicitly in terms of interest during construction. - 2. Plant operating on a full-time basis (year-round): The following graph illustrates the main conclusions of the study for an effective operating period of 8000 hours. It can be seen that nuclear is more competitive than the other production methods for a year-round operation with an 8% discount rate applied to expenses. This competitiveness is even better if the costs related to greenhouse-gas (CO 2 ) emission are taken into account in estimating the MWh cost price. Integrating the costs resulting from CO 2 emissions by non-nuclear fuels (gas, coal), which will be compulsory as of 2004 with the transposition of European directives, increases the total cost per MWh of these power generation methods

  2. Preliminary results of a battery-based, multi megawatt 200 kA pulsed power supply.

    NARCIS (Netherlands)

    Karthaus, W.; Kolkert, W.J.; Nowee, J.

    1989-01-01

    A pulsed power supply consisting of a fast discharge battery, a switch based on silicon-controlled-rectifier SCR technology, and an energy storage/pulse transformer is discussed. Preliminary results indicate that the battery is capable of discharging current pulses with reproducible peak values of

  3. 7 CFR 1710.303 - Power cost studies-power supply borrowers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Power cost studies-power supply borrowers. 1710.303... AND GUARANTEES Long-Range Financial Forecasts § 1710.303 Power cost studies—power supply borrowers. (a... facilities shall be supported by a power cost study to demonstrate that the proposed generation and...

  4. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite

    International Nuclear Information System (INIS)

    Hussain, Abid; Tso, C.Y.; Chao, Christopher Y.H.

    2016-01-01

    It is necessary for electric vehicles (EVs) and hybrid electric vehicles (HEVs) to have a highly efficient thermal management system to maintain high powered lithium ion batteries within permissible temperature limits. In this study, an efficient thermal management system for high powered lithium ion batteries using a novel composite (nickel foam-paraffin wax) is designed and investigated experimentally. The results have been compared with two other cases: a natural air cooling mode and a cooling mode with pure phase change materials (PCM). The results indicate that the safety demands of lithium ion batteries cannot be fulfilled using natural air convection as the thermal management mode. The use of PCM can dramatically reduce the surface temperature within the permissible range due to heat absorption by the PCM undergoing phase change. This effect can be further enlarged by using the nickel foam-paraffin composite, showing a temperature reduction of 31% and 24% compared to natural air convection and pure PCM, respectively under 2 C discharge rate. The effect of the geometric parameters of the foam on the battery surface temperature has also been studied. The battery surface temperature decreases with the decrease of porosity and the pore density of the metal foam. On the other hand, the discharge capacity increases with the increase in porosity, but decreases with pore density. - Highlights: • Thermal management for Li-ion batteries using nickel-paraffin is studied. • The temperature is reduced by 31% as compared to natural air cooling mode. • The temperature increases with increase of porosity and pore density of metal foam. • Battery discharge capacity increases with the increase in porosity. • Battery discharge capacity increases with the decreases in pore density.

  5. Remote power supply by wind/diesel/battery systems - operational experience and economy

    International Nuclear Information System (INIS)

    Kniehl, R.; Cramer, G.; Toenges, K.H.

    1995-01-01

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these 'Intelligent Power Systems (IPS)' have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  6. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G; Toenges, K H [SMA Regelsysteme GmbH, Niestetal (Germany)

    1996-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  7. Remote power supply by wind/diesel/battery systems - operational experience and economy

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, R. [CES - Consulting and Engineering Services, Heidelberg (Germany); Cramer, G.; Toenges, K.H. [SMA Regelsysteme GmbH, Niestetal (Germany)

    1995-12-31

    To continuously supply remote villages and settlements not connected to the public grid with electric power is an ambitious technical task considering ecological and economical points of view. The German company SMA has developed a modular supply system as a solution for this task in the range of 30 kW to 5 MW. Meanwhile more than 20 applications of these `Intelligent Power Systems (IPS)` have proved their technical reliability and economical competitiveness worldwide under different, and also extreme environmental conditions. Actually it is the first commercially available advanced Wind/Diesel/Battery System for remote area electrification. The modular autonomous electric supply systems realized by SMA basically consist of two or more diesel power sets, battery storage with converter, a rotating phaseshifter, and an optional number of wind turbines. All modules are coupled on the 3-phase AC system grid and run in various parallel configurations depending on the wind speed and the consumer power demand. The control system operates fully automatical and offers a very user-friendly graphical interface. This advanced system control also contains a remote control and operating data output via modem and telephone line. SMA and CES have considerable experience with Wind/Diesel/Battery Systems for more than eight years. In many cases wind energy converters in the power range of 30 to 40 kW were used, but it is also possible to use larger wind turbines (e.g. 250 kW). In the following the system technology is described in detail, experience of different system sizes in several countries of application is presented, and economical analyses for power supply by IPS are given in comparison to a conventional fully diesel power supply. (author)

  8. Nickel Hexacyanoferrate Nanoparticle Electrodes For Aqueous Sodium and Potassium Ion Batteries

    KAUST Repository

    Wessells, Colin D.

    2011-12-14

    The electrical power grid faces a growing need for large-scale energy storage over a wide range of time scales due to costly short-term transients, frequency regulation, and load balancing. The durability, high power, energy efficiency, and low cost needed for grid-scale storage pose substantial challenges for conventional battery technology.(1, 2)Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five thousand deep cycles at high current densities in inexpensive aqueous electrolytes. Its open-framework structure allows retention of 66% of the initial capacity even at a very high (41.7C) rate. At low current densities, its round trip energy efficiency reaches 99%. This low-cost material is readily synthesized in bulk quantities. The long cycle life, high power, good energy efficiency, safety, and inexpensive production method make nickel hexacyanoferrate an attractive candidate for use in large-scale batteries to support the electrical grid. © 2011 American Chemical Society.

  9. A Micro-Grid Battery Storage Management

    DEFF Research Database (Denmark)

    Mahat, Pukar; Escribano Jiménez, Jorge; Moldes, Eloy Rodríguez

    2013-01-01

    An increase in number of distributed generation (DG) units in power system allows the possibility of setting-up and operating micro-grids. In addition to a number of technical advantages, micro-grid operation can also reduce running costs by optimally scheduling the generation and/or storage...... systems under its administration. This paper presents an optimized scheduling of a micro-grid battery storage system that takes into account the next-day forecasted load and generation profiles and spot electricity prices. Simulation results show that the battery system can be scheduled close to optimal...

  10. Multi-Objective Optimization Considering Battery Degradation for a Multi-Mode Power-Split Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xuerui Ma

    2017-07-01

    Full Text Available A multi-mode power-split (MMPS hybrid electric vehicle (HEV has two planetary gearsets and clutches/grounds which results in several operation modes with enhanced electric drive capability and better fuel economy. Basically, the battery storage system is involved in different operation modes to satisfy the power demand and minimize the fuel consumption, whereas the complicated operation modes with frequent charging/discharging will absolutely influence the battery life because of degradation. In this paper, firstly, we introduce the solid electrolyte interface (SEI film growth model based on the previous study of the battery degradation principles and was verified according to the test data. We consider both the fuel economy and battery degradation as a multi-objective problem for MMPS HEV by normalization with a weighting factor. An instantaneous optimization is implemented based on the equivalent fuel consumption concept. Then the control strategy is implemented on a simulation framework integrating the MMPS powertrain model and the SEI film growth map model over some typical driving cycles, such as New European Driving Cycle (NEDC and Urban Dynamometer Driving Schedule (UDDS. Finally, the result demonstrates that these two objectives are conflicting and the trade-off reduces the battery degradation with fuel sacrifice. Additionally, the analysis reveals how the mode selection will reflect the battery degradation.

  11. FY2016 Advanced Batteries R&D Annual Progress Report - Part 2 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Applied Batteries Research for Transportation Projects part 1.

  12. FY2016 Advanced Batteries R&D Annual Progress Report - Part 3 of 5

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-08-31

    The Advanced Batteries research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for projects focusing on batteries for plug-in electric vehicles. Program targets focus on overcoming technical barriers to enable market success including: (1) significantly reducing battery cost, (2) increasing battery performance (power, energy, durability), (3) reducing battery weight & volume, and (4) increasing battery tolerance to abusive conditions such as short circuit, overcharge, and crush. This report describes the progress made on the research and development projects funded by the Battery subprogram in 2016. This section covers the summaries of the Applied Batteries Research for Transportation Projects part 2.

  13. Comparing the Mass, Energy, and Cost Effects of Lightweighting in Conventional and Electric Passenger Vehicles

    OpenAIRE

    Hofer, Johannes; Wilhelm, Erik; Schenler, Warren

    2014-01-01

    In this work the effect of weight reduction using advanced lightweight materials on the mass, energy use, and cost of conventional and battery electric passenger vehicles is compared. Analytic vehicle simulation is coupled with cost assessment to find the optimal degree of weight reduction minimizing manufacturing and total costs. The results show a strong secondary weight and cost saving potential for the battery electric vehicles, but a higher sensitivity of vehicle energy use to mass reduc...

  14. Understanding and managing the effects of battery charger and inverter aging

    International Nuclear Information System (INIS)

    Gunther, W.; Aggarwal, S.

    1992-01-01

    An aging assessment of battery chargers and inverters was conducted under the auspices of the NRC's Nuclear Plant Aging Research (NPAR) Program. The intentions of this program are to resolve issues related to the aging and service wear of equipment and systems at operating reactor facilities and to assess their impact on safety. Inverters and battery chargers are used in nuclear power plants to perform significant functions related to plant safety and availability. The specific impact of a battery charger or inverter failure varies with plant configuration. Operating experience data have demonstrated that reactor trips, safety injection system actuations, and inoperable emergency core cooling systems have resulted from inverter failures; and dc bus degradation leading to diesel generator inoperability or loss of control room annunication and indication have resulted from battery and battery charger failures. For the battery charger and inverter, the aging and service wear of subcomponents have contributed significantly to equipment failures. This paper summarizes the data and then describes methods that can be used to detect battery charger and inverter degradation prior to failure, as well as methods to minimize the failure effects. In both cases, the managing of battery charger and inverter aging is emphasized. 5 refs

  15. Empowering change: The effects of energy provision on individual aspirations in slum communities

    International Nuclear Information System (INIS)

    Parikh, Priti; Chaturvedi, Sankalp; George, Gerard

    2012-01-01

    This paper discusses the role of energy provision in influencing the social aspirations of people living in slums. We examine factors that influence the shift in aspirations in five slum settlements using data from 500 interviews conducted in serviced and non-serviced slums from the state of Gujarat in India. The non-serviced slums did not have access to basic services namely water, sanitation, energy, roads, solid waste and rainwater management. We find empirical evidence which suggests that when basic infrastructure provisions are met, slum dwellers shift their focus from lower order aspirations to the higher order aspirations like health, education, housing and land ownership. We argue that energy provision enhances productivity and enables slum dwellers to shift their aspirations upwards. Furthermore, we test the effect of work days lost due to illness on the relationship between higher order aspirations and aspirations for energy provision. When provision of energy is low, higher work day loss dampens higher order aspirations. For policy makers, this study highlights the critical link between the infrastructure services preferred by slum dwellers and their social aspirations for growth. - Highlights: ► We examine the role of energy provision in influencing social aspirations of people living in slums. ► 500 household interviews conducted in five Indian slum settlements used for the analysis. ► Shift in slum dwellers aspirations from non-serviced to serviced conditions examined using Herzberg’s theory. ► Link between energy provision and higher order aspirations established through a regression model. ► Policy recommendation is to encourage investment in infrastructure services as a driver for development.

  16. High place working vehicles for nickel hydrogen battery powered distribution construction; Nikkeru suiso denchi kudoshiki haiden kojiyo kosho sagyosha

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    The Tohoku Electric Power Co. Ltd., in combination with the Aichi Corporation, developed a low noise and no-exhaust gas high place working vehicle that uses NiH battery as a power for lifting or falling a bucket and cutting off electric wires. It is the first in the world that the large scaled NiH battery is used in the application field other than used as a running power of an electric automobile. The main characters of the battery may be pointed out as follows. (1) It has the energy density as 2 times as a lead battery, so 2 times of working time may be obtained by the same weight battery. (2) It is maintenance-free (a periodic maintenance is necessary for a lead battery). (3) Reduction of charging efficiency caused by the heat generated during the charging can be prevented by development of a battery cooling system. (4) As the battery is low noise and no exhaust gas, it does not trouble inhabitant anytime. The new type battery has been used in the Mizusawa business office and tested there by the end of 1998. (translated by NEDO)

  17. Developments in batteries and fuel cells for electric and hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ahmed, R.

    2013-01-01

    Due to ever increasing threats of climate change, urban air pollution and costly and depleting oil and gas sources a lot of work is being done for the development of electric vehicles. Hybrid electric vehicles, plug-in hybrid electric vehicles and all electric vehicles are powered by batteries or by hydrogen and fuel cells are the main types of vehicles being developed. Main types of batteries which can be used for electric vehicles are lead-acid, Ni-Cd, Nickel-Metal-Hybrid ( NiMH) and Lithium-ion (Li-ion) batteries which are discussed and compared. Lithium ion battery is the mostly used battery. Developments in the lithium ion batteries are discussed and reviewed. Redox flow batteries are also potential candidates for electric vehicles and are described. Hybrid electric vehicles can reduce fuel consumption considerably and is a good midterm solution. Electric and hybrid electric vehicles are discussed. Electric vehicles are necessary to mitigate the effects of pollution and dependence on oil. For all the electric vehicles there are two options: batteries and fuel Cells. Batteries are useful for small vehicles and shorter distances but for vehicle range greater than 150 km fuel cells are superior to batteries in terms of cost, efficiency and durability even using natural gas and other fuels in addition to hydrogen. Ultimate solution for electric vehicles are hydrogen and fuel cells and this opinion is also shared by most of the automobile manufacturers. Developments in fuel cells and their applications for automobiles are described and reviewed. Comparisons have been done in the literature between batteries and fuel cells and are described. (author)

  18. A Score Function for Optimizing the Cycle-Life of Battery-Powered Embedded Systems

    DEFF Research Database (Denmark)

    Wognsen, Erik Ramsgaard; Haverkort, Boudewijn; Jongerden, Marijn

    2015-01-01

    An ever increasing share of embedded systems is powered by rechargeable batteries. These batteries deteriorate with the number of charge/discharge cycles they are subjected to, the so-called cycle life. In this paper, we propose the wear score function to compare and evaluate the relative impact...... of usage (charge and discharge) profiles on cycle life. The wear score function can not only be used to rank different usage profiles, these rankings can also be used as a criterion for optimizing the overall lifetime of a battery-powered system. We perform such an optimization on a nano-satellite case...... checking and reinforcement learning to synthesize near-optimal scheduling strategies subject to possible hard timing-constaints. We use this to study the trade-off between optimal short-term dynamic payload selection and the operational life of the satellite....

  19. Financial and Performance Analyses of Microcontroller Based Solar-Powered Autorickshaw for a Developing Country

    Directory of Open Access Journals (Sweden)

    Abu Raihan Mohammad Siddique

    2016-01-01

    Full Text Available This paper presents a case study to examine the economic viability and performance analysis of a microcontroller based solar powered battery operated autorickshaw (m-SBAR, for the developing countries, which is compared with different types of rickshaws such as pedal rickshaw (PR, battery operated autorickshaw (BAR, and solar-powered battery operated autorickshaw (SBAR, available in Bangladesh. The BAR consists of a rickshaw structure, a battery bank, a battery charge controller, a DC motor driver, and a DC motor whereas the proposed m-SBAR contains additional components like solar panel and microcontroller based DC motor driver. The complete design considered the local radiation data and load profile of the proposed m-SBAR. The Levelized Cost of Energy (LCOE analysis, Net Present Worth, payback periods, and Benefit-to-Cost Ratio methods have been used to evaluate the financial feasibility and sensitivity analysis of m-SBAR, grid-powered BAR, and PR. The numerical analysis reveals that LCOE and Benefit-to-Cost Ratio of the proposed m-SBAR are lower compared to the grid-powered BAR. It has also been found that microcontroller based DC motor control circuit reduces battery discharge rate, improves battery life, and controls motor speed efficiency.

  20. Modeling, Design and Simulation of Stand-Alone Photovoltaic Power Systems with Battery Storage

    Directory of Open Access Journals (Sweden)

    Abd Essalam BADOUD

    2013-06-01

    Full Text Available Stand alone renewable energy based on photovoltaic systems accompanied with battery storage system are beginning to play an important role over the world to supply power to remote areas. The objective of the study reported in this paper is to elaborate and design a bond graphs model for sizing stand-alone domestic solar photovoltaic electricity systems and simulating the performance of the systems in a tropical climate. The systems modelled consist of an array of PV modules, a lead-acid battery, and a number of direct current appliances. This paper proposes the combination of lead acid battery system with a typical stand alone photovoltaic energy system under variable loads. The main activities of this work purpose to establish library graphical models for each individual component of standalone photovoltaic system. Control strategy has been considered to achieve permanent power supply to the load via photovoltaic/battery based on the power available from the sun. The complete model was simulated under two testing including sunny and cloudy conditions. Simulation of the system using Symbols software was performed and the results of simulation show the superior stable control system and high efficiency. These results have been contrasted with real measured data from a measurement campaign plant carried on electrical engineering laboratory of Grenoble using various interconnection schemes are presented.

  1. Design of a hybrid battery charger system fed by a wind-turbine and photovoltaic power generators.

    Science.gov (United States)

    Chang Chien, Jia-Ren; Tseng, Kuo-Ching; Yan, Bo-Yi

    2011-03-01

    This paper is aimed to develop a digital signal processor (DSP) for controlling a solar cell and wind-turbine hybrid charging system. The DSP consists of solar cells, a wind turbine, a lead acid battery, and a buck-boost converter. The solar cells and wind turbine serve as the system's main power sources and the battery as an energy storage element. The output powers of solar cells and wind turbine have large fluctuations with the weather and climate conditions. These unstable powers can be adjusted by a buck-boost converter and thus the most suitable output powers can be obtained. This study designs a booster by using a dsPIC30F4011 digital signal controller as a core processor. The DSP is controlled by the perturbation and observation methods to obtain an effective energy circuit with a full 100 W charging system. Also, this DSP can, day and night, be easily controlled and charged by a simple program, which can change the state of the system to reach a flexible application based on the reading weather conditions.

  2. A minimal order observer based frequency control strategy for an integrated wind-battery-diesel power system

    International Nuclear Information System (INIS)

    Howlader, Abdul Motin; Izumi, Yuya; Uehara, Akie; Urasaki, Naomitsu; Senjyu, Tomonobu; Yona, Atsushi; Saber, Ahmed Yousuf

    2012-01-01

    Wind energy is a fluctuating resource which can diverge quickly and causes the frequency deviation. To overcome this problem, the current paper deals with a frequency control scheme for a small power system by a coordinated control strategy of a wind turbine generator (WTG) and a battery energy storage system (BESS). The small power system composes of a wind turbine, a battery storage and a diesel generator. A minimal order observer is utilized as a disturbance observer to estimate the load of the power system. The load deviations are considered in a frequency domain. The low frequency component is reduced by the pitch angle control system of the WTG, while the high frequency component is reduced by the charge/discharge of the BESS, respectively. The output power command of the BESS is determined according to the state of charge, the high frequency component of the frequency deviation and the load variation. The proposed method is compared with the conventional method in different cases. By using the proposed method, the capacity of the battery is decreased by the charge/discharge of the BESS in long term. To enhance the control performance, the generalized predictive control (GPC) method is introduced to the pitch angle control system of the WTG. Effectiveness of the proposed method is verified by the numerical simulations. -- Highlights: ► A coordinated control method for a WTG and a BESS in the small power system. ► To achieve this objective, a minimal order observer is utilized. ► The output power command of the WTG is based on the wind speed and the estimated frequency deviations. ► The output power the WTG is controlled by the GPC based robust pitch angle control system. ► The output power command of the BESS is determined by the state of charge and the estimated frequency deviations.

  3. A micro-grid operation analysis for cost-effective battery energy storage and RES plants integration

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Bonucci, F.

    2016-01-01

    Penetration of renewable energy is strongly slowed by its characteristic intermittency and fluctuating trend and by the inadequacy of electricity networks. These issues can be addressed through the development of new or improved storage technologies with higher performance, availability, durability, safety and lower costs. In the present work, micro-grids characterized by the presence of different subsections including renewable plants coupled with batteries storage solution are investigated through the development of a suitable code. Several design conditions and features, related to RES plant, storage system and users, were considered in order to realize a sensitivity analysis aimed to examine, on a yearly base and with one minute time step, interactions among the different micro-grid subsections and to identify the best solutions from both economic and energy point of views. - Highlights: • Storage systems coupling to RES plants is investigated for micro-grids. • Interactions between RES plants, storage batteries and users are analyzed. • Self-consumption increases with storage installation. • Investment pay-back analysis is performed varying plant configurations. • Pay-back reduction up to 30–40% for new RES/Storage integrated installations.

  4. Low Cost Metal Carbide Nanocrystals as Binding and Electrocatalytic Sites for High Performance Li-S Batteries.

    Science.gov (United States)

    Zhou, Fei; Li, Zheng; Luo, Xuan; Wu, Tong; Jiang, Bin; Lu, Lei-Lei; Yao, Hong-Bin; Antonietti, Markus; Yu, Shu-Hong

    2018-02-14

    Lithium sulfur (Li-S) batteries are considered as promising energy storage systems for the next generation of batteries due to their high theoretical energy densities and low cost. Much effort has been made to improve the practical energy densities and cycling stability of Li-S batteries via diverse designs of materials nanostructure. However, achieving simultaneously good rate capabilities and stable cycling of Li-S batteries is still challenging. Herein, we propose a strategy to utilize a dual effect of metal carbide nanoparticles decorated on carbon nanofibers (MC NPs-CNFs) to realize high rate performance, low hysteresis, and long cycling stability of Li-S batteries in one system. The adsorption experiments of lithium polysulfides (LiPS) to MC NPs and corresponding theoretical calculations demonstrate that LiPS are likely to be adsorbed and diffused on the surface of MC NPs because of their moderate chemical bonding. MC NPs turn out to have also an electrocatalytic role and accelerate electrochemical redox reactions of LiPS, as proven by cyclic voltammetry analysis. The fabricated Li-S batteries based on the W 2 C NPs-CNFs hybrid electrodes display not only high specific capacity of 1200 mAh/g at 0.2C but also excellent rate performance and cycling stability, for example, a model setup can be operated at 1C for 500 cycles maintaining a final specific capacity of 605 mAh/g with a degradation rate as low as 0.06%/cycle.

  5. Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    Salar Chamanian

    2014-10-01

    Full Text Available This paper presents a wireless sensor node (WSN system where an electromagnetic (EM energy harvester is utilized for charging its rechargeable batteries while the system is operational. The capability and the performance of an in-house low-frequency EM energy harvester for charging rechargeable NiMH batteries were experimentally verified in comparison to a regular battery charger. Furthermore, the power consumption of MicaZ motes, used as the WSN, was evaluated in detail for different operation conditions. The battery voltage and current were experimentally monitored during the operation of the MicaZ sensor node equipped with the EM vibration energy harvester. A compact (24.5 cm3 in-house EM energy harvester provides approximately 65 µA charging current to the batteries when excited by 0.4 g acceleration at 7.4 Hz. It has been shown that the current demand of the MicaZ mote can be compensated for by the energy harvester for a specific low-power operation scenario, with more than a 10-fold increase in the battery lifetime. The presented results demonstrate the autonomous operation of the WSN, with the utilization of a vibration-based energy harvester.

  6. Enabling fast charging – Battery thermal considerations

    International Nuclear Information System (INIS)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler

    2017-01-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  7. Nuclear power generating costs

    International Nuclear Information System (INIS)

    Srinivasan, M.R.; Kati, S.L.; Raman, R.; Nanjundeswaran, K.; Nadkarny, G.V.; Verma, R.S.; Mahadeva Rao, K.V.

    1983-01-01

    Indian experience pertaining to investment and generation costs of nuclear power stations is reviewed. The causes of investment cost increases are analysed and the increases are apportioned to escalation, design improvements and safety related adders. The paper brings out the fact that PHWR investment costs in India compare favourably with those experienced in developed countries in spite of the fact that the programme and the unit size are relatively much smaller in India. It brings out that in India at current prices a nuclear power station located over 800 km from coal reserves and operating at 75% capacity factor is competitive with thermal power at 60% capacity factor. (author)

  8. Costs of Decommissioning Nuclear Power Plants

    International Nuclear Information System (INIS)

    Neri, Emilio; French, Amanda; Urso, Maria Elena; Deffrennes, Marc; Rothwell, Geoffrey; ); Rehak, Ivan; Weber, Inge; ); Carroll, Simon; Daniska, Vladislav

    2016-01-01

    While refurbishments for the long-term operation of nuclear power plants and for the lifetime extension of such plants have been widely pursued in recent years, the number of plants to be decommissioned is nonetheless expected to increase in future, particularly in the United States and Europe. It is thus important to understand the costs of decommissioning so as to develop coherent and cost-effective strategies, realistic cost estimates based on decommissioning plans from the outset of operations and mechanisms to ensure that future decommissioning expenses can be adequately covered. This study presents the results of an NEA review of the costs of decommissioning nuclear power plants and of overall funding practices adopted across NEA member countries. The study is based on the results of this NEA questionnaire, on actual decommissioning costs or estimates, and on plans for the establishment and management of decommissioning funds. Case studies are included to provide insight into decommissioning practices in a number of countries. (authors)

  9. Silicon Betavoltaic Batteries Structures

    OpenAIRE

    V.N. Murashev; S.A. Legotin; O.I. Rabinovich; O.R. Abdulaev; U.V. Osipov

    2015-01-01

    For low-power miniature energy creation sources the particular interest is nickel Ni63. This paper discusses the main types of betavoltaic battery structures with the prospects for industrial application using - isotope of nickel Ni63. It is shown that the prospects for improving the effective efficiency are planar multijunction betavoltaic batteries.

  10. Nuclear space power and propulsion requirements and issues

    International Nuclear Information System (INIS)

    Swerdling, M.; Isenberg, L.

    1995-01-01

    The use of nuclear power in space is going through a low point. The kinds of missions that would use nuclear power are expensive and there are few new expensive missions. Both NASA and DoD are in a mode of cheaper, faster, better, which means using what is available as much as possible and only incorporating new technology to reduce mission cost. NASA is performing Mission to Planet Earth and detailed exploration missions of Mars. These NASA missions can be done with solar-battery power subsystems and there is no need for nuclear power. The NASA mission to Pluto does require nuclear radioisotope power. Ways to reduce the power subsystem cost and the power level are being investigated. NASA is studying ways to explore beyond Mars with solar-battery power because of the cost and uncertainty in the availability and launchability of nuclear space power systems. The DoD missions are all in earth orbit and can be done with solar-battery systems. The major DoD requirement at present is to reduce costs of all their space missions. One way to do this is to develop highly efficient upper stage boosters that can be integrated with lower cost Earth to low orbit stages and still place their payloads in to higher orbits. One attractive upper stage is a nuclear bimodal (propulsion and power) engine to accomplished lower booster cost to place space assets in GEO. However this is not being pursued because of DOE's new policy not to fund nuclear space power research and development as well as the difficulty in obtaining launch approval for nuclear propulsion and power systems

  11. Ultrasound Guided Needle Aspiration versus Surgical Drainage in the management of breast abscesses: a Ugandan experience

    Directory of Open Access Journals (Sweden)

    Chandika Alphonce B

    2012-01-01

    Full Text Available Abstract Background Despite breast abscess becoming less common in developed countries, it has remained one of the leading causes of morbidity in women in developing countries. A randomized controlled trial was conducted at Mulago hospital complex in Kampala Uganda to establish whether ultrasound guided needle aspiration is a feasible alternative treatment option for breast abscesses. Results A total of 65 females with breast abscess were analyzed, of these 33 patients were randomized into the ultrasound guided needle aspiration and 32 patients in the Incision and drainage arm. The mean age was 23.12, most of them were lactating (66.2%, primipararous (44.6% with peripheral abscesses (73.8% located in the upper lateral quadrant (56%.The mean breast size was 3.49 cm. The two groups were comparably in demographic characteristic and breast abscess size. Survival analysis showed no difference in breast abscess healing rate between the two groups (Log rank 0.24 df 1 and P = 0.63. Incision and drainage was found to be more costly than ultrasound guided aspiration (cost effective ratio of 2.85. Conclusion Ultrasound guided needle aspiration is therefore a feasible and cost effective treatment option for both lactating and non lactating breast abscesses with a diameter up to 5 cm by ultrasound in an immune competent patient

  12. A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service

    Directory of Open Access Journals (Sweden)

    Yajing Gao

    2017-08-01

    Full Text Available To solve the problem of solar abandoning, which is accompanied by the rapid development of photovoltaic (PV power generation, a demonstration of a photovoltaic-battery energy storage system (PV-BESS power plant has been constructed in Qinghai province in China. However, it is difficult for the PV-BESS power plant to survive and develop with the current electricity price mechanism and subsidy policy. In this paper, a three-part electricity price mechanism is proposed based on a deep analysis of the construction and operation costs and economic income. The on-grid electricity price is divided into three parts: the capacity price, graded electricity price, and ancillary service price. First, to ensure that the investment of the PV-BESS power plant would achieve the industry benchmark income, the capacity price and benchmark electricity price are calculated using the discounted cash flow method. Then, the graded electricity price is calculated according to the grade of the quality of grid-connected power. Finally, the ancillary service price is calculated based on the graded electricity price and ancillary service compensation. The case studies verify the validity of the three-part electricity price mechanism. The verification shows that the three-part electricity price mechanism can help PV-BESS power plants to obtain good economic returns, which can promote the development of PV-BESS power plants.

  13. Oil drilling rig diesel power-plant fuel efficiency improvement potentials through rule-based generator scheduling and utilization of battery energy storage system

    International Nuclear Information System (INIS)

    Pavković, Danijel; Sedić, Almir; Guzović, Zvonimir

    2016-01-01

    Highlights: • Isolated oil drilling rig microgrid power flows are analyzed over 30 days. • Rule-based diesel generator scheduling is proposed to reduce fuel consumption. • A battery energy storage is parameterized and used for peak load leveling. • The effectiveness of proposed hybrid microgrid is verified by simulations. • Return-of-investment might be expected within 20% of battery system lifetime. - Abstract: This paper presents the development of a rule-based energy management control strategy suitable for isolated diesel power-plants equipped with a battery energy storage system for peak load shaving. The proposed control strategy includes the generator scheduling strategy and peak load leveling scheme based on current microgrid active and reactive power requirements. In order to investigate the potentials for fuel expenditure reduction, 30 days-worth of microgrid power flow data has been collected on an isolated land-based oil drilling rig powered by a diesel generator power-plant, characterized by highly-variable active and reactive load profiles due to intermittent engagements and disengagements of high-power electric machinery such as top-drive, draw-works and mud-pump motors. The analysis has indicated that by avoiding the low-power operation of individual generators and by providing the peak power requirements (peak shaving) from a dedicated energy storage system, the power-plant fuel efficiency may be notably improved. An averaged power flow simulation model has been built, comprising the proposed rule-based power flow control strategy and the averaged model of a suitably sized battery energy storage system equipped with grid-tied power converter and state-of-charge control system. The effectiveness of the proposed rule-based strategy has been evaluated by means of computer simulation analysis based on drilling rig microgrid active and reactive power data recorded during the 30 day period. The analysis has indicated that fuel consumption of

  14. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    Science.gov (United States)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  15. Accelerated Lifetime Testing Methodology for Lifetime Estimation of Lithium-ion Batteries used in Augmented Wind Power Plants

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2014-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium ion batteries. The results obtained at the end of the accelerated ageing process were used for the parametrization of a performance-degradation lifetime model, which is able to predict...... both the capacity fade and the power capability decrease of the selected Lithium-ion battery cells. In the proposed methodology both calendar and cycling lifetime tests were considered since both components are influencing the lifetime of Lithium-ion batteries. Furthermore, the proposed methodology...

  16. Performance of Naturally Aspirating IC Engines Operating at High ...

    African Journals Online (AJOL)

    The loss of power and the increase of fuel consumption of naturally aspirating IC engines operating with low atmospheric pressure at high altitude as well as changes in the mixture quality with non adapting mixture formation systems are principally known. Other effects like the additional advance of ignition timing in petrol ...

  17. Cost effectiveness of fine needle aspiration cytology for breast masses

    African Journals Online (AJOL)

    The total cost for FNAC and histopathology as well as cost saving between FNAC and histopathology for the 110 patients were calculated. Result: The total cost for FNAC procedure and cytological evaluation of each smear was one thousand, seven hundred naira (N1,700.00 = US$11). The total cost for open surgical ...

  18. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom

    International Nuclear Information System (INIS)

    Uddin, Kotub; Gough, Rebecca; Radcliffe, Jonathan; Marco, James; Jennings, Paul

    2017-01-01

    Highlights: •Commercially available PV-battery system is installed in mid-sized UK home. •PV generation and household electricity demand recorded for one year. •More than fifty long-term ageing experiments on commercial batteries undertaken. •Comprehensive battery degradation model based on long-term ageing data validated. •PV-Battery system is shown not be economically viable. -- Abstract: Rooftop photovoltaic systems integrated with lithium-ion battery storage are a promising route for the decarbonisation of the UK’s power sector. From a consumer perspective, the financial benefits of lower utility costs and the potential of a financial return through providing grid services is a strong incentive to invest in PV-battery systems. Although battery storage is generally considered an effective means for reducing the energy mismatch between photovoltaic supply and building demand, it remains unclear when and under which conditions battery storage can be profitably operated within residential photovoltaic systems. This fact is particularly pertinent when battery degradation is considered within the decision framework. In this work, a commercially available coupled photovoltaic lithium-ion battery system is installed within a mid-sized UK family home. Photovoltaic energy generation and household electricity demand is recorded for more than one year. A comprehensive battery degradation model based on long-term ageing data collected from more than fifty long-term degradation experiments on commercial Lithium-ion batteries is developed. The comprehensive model accounts for all established modes of degradation including calendar ageing, capacity throughput, ambient temperature, state of charge, depth of discharge and current rate. The model is validated using cycling data and exhibited an average maximum transient error of 7.4% in capacity loss estimates and 7.3% in resistance rise estimates for over a year of cycling. The battery ageing model is used to

  19. New Lithium-ion Polymer Battery for the Extravehicular Mobility Unit Suit

    Science.gov (United States)

    Jeevarajan, J. A.; Darcy, E. C.

    2004-01-01

    The Extravehicular Mobility Unit (EMU) suit currently has a silver-zinc battery that is 20.5 V and 45 Ah capacity. The EMU's portable life support system (PLSS) will draw power from the battery during the entire period of an EVA. Due to the disadvantages of using the silver-zinc battery in terms of cost and performance, a new high energy density battery is being developed for future use, The new battery (Lithium-ion battery or LIB) will consist of Li-ion polymer cells that will provide power to the EMU suit. The battery design consists of five 8 Ah cells in parallel to form a single module of 40 Ah and five such modules will be placed in series to give a 20.5 V, 40 Ah battery. Charging will be accomplished on the Shuttle or Station using the new LIB charger or the existing ALPS (Air Lock Power Supply) charger. The LIB delivers a maximum of 3.8 A on the average, for seven continuous hours, at voltages ranging from 20.5 V to 16.0 V and it should be capable of supporting transient pulses during start up and once every hour to support PLSS fan and pump operation. Figure 1 shows the placement of the battery in the backpack area of the EMU suit. The battery and cells will undergo testing under different conditions to understand its performance and safety characteristics.

  20. Nuclear power generation cost methodology

    International Nuclear Information System (INIS)

    Delene, J.G.; Bowers, H.I.

    1980-08-01

    A simplified calculational procedure for the estimation of nuclear power generation cost is outlined. The report contains a discussion of the various components of power generation cost and basic equations for calculating that cost. An example calculation is given. The basis of the fixed-charge rate, the derivation of the levelized fuel cycle cost equation, and the heavy water charge rate are included as appendixes

  1. Maintenance cost models in deregulated power systems under opportunity costs

    International Nuclear Information System (INIS)

    Al-Arfaj, K.; Dahal, K.; Azaiez, M.N.

    2007-01-01

    In a centralized power system, the operator is responsible for scheduling maintenance. There are different types of maintenance, including corrective maintenance; predictive maintenance; preventive maintenance; and reliability-centred maintenance. The main cause of power failures is poor maintenance. As such, maintenance costs play a significant role in deregulated power systems. They include direct costs associated with material and labor costs as well as indirect costs associated with spare parts inventory, shipment, test equipment, indirect labor, opportunity costs and cost of failure. In maintenance scheduling and planning, the cost function is the only component of the objective function. This paper presented the results of a study in which different components of maintenance costs were modeled. The maintenance models were formulated as an optimization problem with single and multiple objectives and a set of constraints. The maintenance costs models could be used to schedule the maintenance activities of power generators more accurately and to identify the best maintenance strategies over a period of time as they consider failure and opportunity costs in a deregulated environment. 32 refs., 4 tabs., 4 figs

  2. Leveling of battery load and extension of battery life by serial connection of electric double layer capacitors with batteries for electric vehicles. Experimental results on the small model; Denki jidoshayo denchi to denki nijuso capacitor no chokuretsu setsuzoku ni yoru denchi futan no heijunka oyobi denchijumyo no enshinka. (kogata model ni yoru jikken seika). Kogata model ni yoru jikken seika

    Energy Technology Data Exchange (ETDEWEB)

    Takehara, J.; Okubo, N.; Miyaoka, K. [Chugoku Electric Power Co. Inc., Hiroshima (Japan)

    1996-10-25

    The load leveling method of batteries for electric vehicles was studied for extension of a battery life and mileage every charging. Under large load fluctuation conditions such as deceleration and acceleration, use of electric power sources other than battery for peek load at acceleration can improve a battery life, output power capacity and mileage every charging. Combination of effective recovery of regenerative power at deceleration with its discharge at acceleration is one of the effective methods. The electric double layer capacitors are serially connected with the batteries, regenerative power is charged only into the capacitors, and both voltages of the battery and capacitor are applied to a power circuit. Battery load is reduced by load on the capacitor. Until the capacitor is re-charged by regenerative power after full discharge, power is supplied only by battery through a diode. Capacitor power is used as effectively as possible until approaching considerably low voltage. As peak load of the battery is reduced by 30%, the mileage increases by 5.7%, and the battery cycle life becomes 1.5 times longer. 7 refs., 5 figs., 3 tabs.

  3. Improved SCR ac Motor Controller for Battery Powered Urban Electric Vehicles

    Science.gov (United States)

    Latos, T. S.

    1982-01-01

    An improved ac motor controller, which when coupled to a standard ac induction motor and a dc propulsion battery would provide a complete electric vehicle power train with the exception of the mechanical transmission and drive wheels was designed. In such a system, the motor controller converts the dc electrical power available at the battery terminals to ac electrical power for the induction motor in response to the drivers commands. The performance requirements of a hypothetical electric vehicle with an upper weight bound of 1590 kg (3500 lb) were used to determine the power rating of the controller. Vehicle acceleration capability, top speed, and gradeability requisites were contained in the Society of Automotive Engineers (SAE) Schedule 227a(d) driving cycle. The important capabilities contained in this driving cycle are a vehicle acceleration requirement of 0 to 72.4 kmph (0 to 45 mph) in 28 seconds a top speed of 88.5 kmph (55 mph), and the ability to negotiate a 10% grade at 48 kmph (30 mph). A 10% grade is defined as one foot of vertical rise per 10 feet of horizontal distance.

  4. The Science of Electrode Materials for Lithium Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fultz, Brent

    2007-03-15

    Rechargeable lithium batteries continue to play the central role in power systems for portable electronics, and could play a role of increasing importance for hybrid transportation systems that use either hydrogen or fossil fuels. For example, fuel cells provide a steady supply of power, whereas batteries are superior when bursts of power are needed. The National Research Council recently concluded that for dismounted soldiers "Among all possible energy sources, hybrid systems provide the most versatile solutions for meeting the diverse needs of the Future Force Warrior. The key advantage of hybrid systems is their ability to provide power over varying levels of energy use, by combining two power sources." The relative capacities of batteries versus fuel cells in a hybrid power system will depend on the capabilities of both. In the longer term, improvements in the cost and safety of lithium batteries should lead to a substantial role for electrochemical energy storage subsystems as components in fuel cell or hybrid vehicles. We have completed a basic research program for DOE BES on anode and cathode materials for lithium batteries, extending over 6 years with a 1 year phaseout period. The emphasis was on the thermodynamics and kinetics of the lithiation reaction, and how these pertain to basic electrochemical properties that we measure experimentally — voltage and capacity in particular. In the course of this work we also studied the kinetic processes of capacity fade after cycling, with unusual results for nanostructued Si and Ge materials, and the dynamics underlying electronic and ionic transport in LiFePO4. This document is the final report for this work.

  5. Design of an off-grid hybrid PV/wind power system for remote mobile base station: A case study

    Directory of Open Access Journals (Sweden)

    Mulualem T. Yeshalem

    2017-01-01

    Full Text Available There is a clear challenge to provide reliable cellular mobile service at remote locations where a reliable power supply is not available. So, the existing Mobile towers or Base Transceiver Station (BTSs uses a conventional diesel generator with backup battery banks. This paper presents the solution to utilizing a hybrid of photovoltaic (PV solar and wind power system with a backup battery bank to provide feasibility and reliable electric power for a specific remote mobile base station located at west arise, Oromia. All the necessary modeling, simulation, and techno-economic evaluation are carried out using Hybrid Optimization Model for Electric Renewable (HOMER software. The best optimal system configurations namely PV/Battery and PV/Wind/Battery hybrid systems are compared with the conventional stand-alone diesel generator (DG system. Findings indicated that PV array and battery is the most economically viable option with the total net present cost (NPC of $\\$$57,508 and per unit cost of electricity (COE of $\\$$0.355. Simulation results show that the hybrid energy systems can minimize the power generation cost significantly and can decrease CO2 emissions as compared to the traditional diesel generator only. The sensitivity analysis is also carried out to analysis the effects of probable variation in solar radiation, wind speed, diesel price and average annual energy usage of the system load in the optimal system configurations.

  6. Direct battery-driven solar LED lighting using constant-power control

    KAUST Repository

    Huang, Bin-Juine

    2012-11-01

    A direct battery-driven LED lighting technique using constant-power control is proposed in the present study. A system dynamics model of LED luminaire was derived and used in the design of the feedback constant-power control system. The test result has shown that the power of 18. W and 100. W LED luminaires can be controlled accurately with error at 2-5%. A solar LED street lighting system using constant-power and dimming control was designed and built for field test in a remote area. The long-term performance was satisfactory and no any failure since the installation. Since no high-power capacitor is used in the present constant-power control circuit, a longer lifetime is expected. © 2012 Elsevier Ltd.

  7. Optimal sizing of grid-independent hybrid photovoltaic–battery power systems for household sector

    International Nuclear Information System (INIS)

    Bianchi, M.; Branchini, L.; Ferrari, C.; Melino, F.

    2014-01-01

    Highlights: • A feasibility study on a stand-alone solar–battery power generation system is carried out. • An in-house developed calculation code able to estimate photovoltaic panels behaviour is described. • The feasibility of replacing grid electricity with hybrid system is examined. • Guidelines for optimal photovoltaic design are given. • Guidelines for optimal storage sizing in terms of batteries number and capacity are given. - Abstract: The penetration of renewable sources into the grid, particularly wind and solar, have been increasing in recent years. As a consequence, there have been serious concerns over reliable and safety operation of power systems. One possible solution, to improve grid stability, is to integrate energy storage devices into power system network: storing energy produced in periods of low demand to later use, ensuring full exploitation of intermittent available sources. Focusing on stand-alone photovoltaic (PV) energy system, energy storage is needed with the purpose of ensuring continuous power flow, to minimize or, if anything, to neglect electrical grid supply. A comprehensive study on a hybrid stand-alone photovoltaic power system using two different energy storage technologies has been performed. The study examines the feasibility of replacing electricity provided by the grid with hybrid system to meet household demand. In particular, this paper presents first results for photovoltaic (PV)/battery (B) hybrid configuration. The main objective of this paper is focused on PV/B system, to recommend hybrid system optimal design in terms of PV module number, PV module tilt, number and capacity of batteries to minimize or, if possible, to neglect grid supply. This paper is the early stage of a theoretical and experimental study in which two different hybrid power system configurations will be evaluated and compared: (i) PV/B system and (ii) PV/B/fuel cell (FC) system. The aim of the overall study will be the definition of the

  8. Innovative manufacturing and materials for low cost lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Steven [Optodot Corporation, Woburn, MA (United States)

    2015-12-29

    This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator and any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability

  9. Two-dimensional Thermal Modeling of Lithium-ion Battery Cell Based on Electrothermal Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Swierczynski, Maciej Jozef; Stroe, Daniel Loan; Knap, Vaclav

    2016-01-01

    Thermal modeling of lithium-ion batteries is gaining its importance together with increasing power density and compact design of the modern battery systems in order to assure battery safety and long lifetime. Thermal models of lithium-ion batteries are usually either expensive to develop...... and accurate or equivalent thermal circuit based with moderate accuracy and without spatial temperature distribution. This work presents initial results that can be used as a fundament for the cost-efficient development of the two-dimensional thermal model of lithium-ion battery based on multipoint...

  10. Wind power: cost effective generation for the 1990s

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, T [Vestas Wind Systems A/S (Denmark)

    1989-01-01

    Wind power plants have been installed all over the world, notably in California and Denmark. Commercially available wind turbines today are rated from 50 KW to 1 MW with emphasis on the 1 MW range. As the fuel is ''free'' generating costs are identical to the capital, operation and maintenance costs of the plant. An estimate of the unit price of wind power generated electricity in Denmark is comparable to that generated by a coal fired plant. The main environmental impacts of a wind farm are considered. These are visual impact, noise emission, use of (agricultural) space and the impact on wildlife, mainly birds. Finally the installation of a wind farm and its connection to the grid are described. (3 figures, 1 table). (UK)

  11. Optimal/flatness based-control of stand-alone power systems using fuel cells, batteries and supercapacitors

    Directory of Open Access Journals (Sweden)

    Mahdi Benaouadj

    2017-03-01

    Full Text Available In this work, an optimal control (under constraints based on the Pontryagin’s maximum principle is used to optimally manage energy flows in a basic PEM (Proton Exchange Membrane fuel cells system associated to lithium-ion batteries and supercapacitors through a common DC bus having a voltage to stabilize using the differential flatness approach. The adaptation of voltage levels between different sources and load is ensured by use of three DCDC converters, one boost connected to the PEM fuel cells, while the two others are buck/boost and connected to the lithium-ion batteries and supercapacitors. The aim of this paper is to develop an energy management strategy that is able to satisfy the following objectives: - Impose the power requested by a habitat (representing the load according to a proposed daily consumption profile, - Keep fuel cells working at optimal power delivery conditions, - Maintain constant voltage across the common DC bus, - Stabilize the batteries voltage and stored quantity of charge at desired values given by the optimal control. Results obtained under MATLAB/Simulink environment prove that the cited objectives are satisfied, validating then, effectiveness and complementarity between the optimal and flatness concepts proposed for energy management. Note that this study is currently in experimentally validation within MSE Laboratory.

  12. Poverty and Aspirations Failure

    NARCIS (Netherlands)

    Dalton, P.S.; Ghosal, S.; Mani, A.

    2011-01-01

    We develop a theoretical framework to study the psychology of poverty and 'aspirations failure'. In our framework, the rich and the poor share the same preferences - and also a behavioral bias in setting aspirations. Greater downside risks imposed by poverty exacerbates the effects of this

  13. Theoretical and methodological aspects of assessing economic effectiveness of nuclear power plant construction using cost-benefit analysis

    International Nuclear Information System (INIS)

    Moravcik, A.

    1984-01-01

    The cost benefit of investments is devided into social and economic benefits. The postulates are discussed for the assessment of the cost benefit of capital costs of nuclear power plants. The relations are given for total cost benefit of capital costs expressed by the total profit rate of capital costs, and the absolute effectiveness exoressed by the socio-economic benefit of capital costs. The absolute cost benefit of capital costs is characterized by several complex indexes. Comparable capital cost benefit is used for assessing the effectiveness of interchangeable variants of solution. The minimum calculated costs serve as the criterion for selecting the optimal variant. (E.S.)

  14. Bone marrow aspiration

    Science.gov (United States)

    Iliac crest tap; Sternal tap; Leukemia - bone marrow aspiration; Aplastic anemia - bone marrow aspiration; Myelodysplastic syndrome - bone marrow aspiration; Thrombocytopenia - bone marrow aspiration; Myelofibrosis - bone marrow aspiration

  15. Power Converters Maximize Outputs Of Solar Cell Strings

    Science.gov (United States)

    Frederick, Martin E.; Jermakian, Joel B.

    1993-01-01

    Microprocessor-controlled dc-to-dc power converters devised to maximize power transferred from solar photovoltaic strings to storage batteries and other electrical loads. Converters help in utilizing large solar photovoltaic arrays most effectively with respect to cost, size, and weight. Main points of invention are: single controller used to control and optimize any number of "dumb" tracker units and strings independently; power maximized out of converters; and controller in system is microprocessor.

  16. BATTERIES 2020 – A Joint European Effort towards European Competitive Automotive Batteries

    DEFF Research Database (Denmark)

    Timmermans, J.-M.; Rodriguez-Martinez, L.M.; Omar, N.

    The Integrated Project “Batteries 2020” unites 9 European partners jointly working on the research and development of European competitive automotive batteries. The project aims at increasing lifetime and energy density of large format high-energy lithium-ion batteries towards the goals targeted...... for automotive batteries. Three parallel strategies will be followed in order to achieve those targets: (i) Highly focused materials development; two improved generations of NMC materials will allow the performance, stability and cyclability of state of the art cells to be improved. (ii) Understanding ageing...... of degradation processes. (iii) Reduction of battery cost; a way to reduce costs, increase battery residual value and improve sustainability is to consider second life uses of batteries used in EV. These batteries are still operational and suitable to less restrictive conditions, such as those for stationary...

  17. A win-win marginal rent analysis for operator and consumer under battery leasing mode in China electric vehicle market

    International Nuclear Information System (INIS)

    Li Zhe; Ouyang Minggao

    2011-01-01

    Recently battery leasing has been introduced into the market by automobile manufacturers and power suppliers due to its potential to reduce the purchase cost of electric vehicles (EVs). However, the profit prospect of battery leasing is still uncertain. This paper takes the views of both the operators and consumers and calculates the 'win-win' marginal rent, which not only ensures the profitability of operators, but also allows consumers a lower expenditure than using Internal combustion engine vehicles (ICVs) and EVs with embedded batteries. Battery cost, vehicle weight, gasoline and electricity price, and the discount rate have impacts on the rent. Battery cost plays a dominant role and a battery cost >5 Yen /W h fails to enable the survival of battery leasing to all types of EVs. Battery leasing would be more competitive when focusing on heavier EVs. At least one of the three thresholds is required for the existence of rent pricing range for a 1000 kg EV: gasoline retail price >6 Yen /L, electricity price <0.6 Yen /kW h, or the discount rate <7%. Typically, the feasible battery rent range is 0.34-0.38 Yen /W h/year for a 1000 kg EV under the present battery cost 2 Yen /W h and China current gasoline and electricity prices. - Highlights: → Rent pricing for EV battery leasing must obey win-win rule for BLO and consumers. → Rent is affected by battery cost, vehicle weight, energy price and discount rate. → Battery cost plays dominant role for the BLO survival as described in '5-3-2' Law. → Heavier EVs are more suitable for battery leasing when battery cost is high. → The profitability of BLO is sensitive to the price of gasoline and electricity.

  18. Current sensorless quick charger for lithium-ion batteries

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2011-01-01

    An efficient, simple and low cost quick charger based on the double-loop controller is proposed for the charging of lithium-ion (Li-ion) batteries. With positive and negative feedback of the battery voltage, charging profile similar to the constant current and constant voltage (CC-CV) charging strategy can be performed without actually sensing the charging current. The charging time can easily be shortened by raising the level of saturation in the primary voltage control loop. Experimental results are included to demonstrate the effectiveness of the battery charger. The charger could be a low cost and high performance replacement for existing Li-ion battery chargers.

  19. A cost effective waste management methodology for power reactor waste streams

    International Nuclear Information System (INIS)

    Granus, M.W.; Campbell, A.D.

    1984-01-01

    This paper describes a computer based methodology for the selection of the processing methods (solidification/dewatering) for various power reactor radwaste streams. The purpose of this methodology is to best select the method that provides the most cost effective solution to waste management. This method takes into account the overall cost of processing, transportation and disposal. The selection matrix on which the methodology is based is made up of over ten thousand combinations of liner, cask, process, and disposal options from which the waste manager can choose. The measurement device for cost effective waste management is the concurrent evaluation of total dollars spent. The common denominator is dollars per cubic foot of the input waste stream. Dollars per curie of the input waste stream provides for proper checks and balances. The result of this analysis can then be used to assess the total waste management cost. To this end, the methodology can then be employed to predict a given number of events (processes, transportation, and disposals) and project the annual cost of waste management. For the purposes of this paper, the authors provide examples of the application of the methodology on a typical BWR at 2, 4 and 6 years. The examples are provided in 1984 dollars. Process selection is influenced by a number of factors which must be independently evaluated for each waste stream. Final processing cost is effected by the particular process efficiency and a variety of regulatory constraints. The interface between process selection and cask selection/transportation driven by the goal of placing the greatest amount of pre-processed waste in the package and remaining within the bounds of weight, volume, regulatory, and cask availability limitations. Disposal is the cost of burial and can be affected by disposal, but availability of burial space, and the location of the disposal site in relation to the generator

  20. Drivers of imbalance cost of wind power

    DEFF Research Database (Denmark)

    Obersteiner, C.; Siewierski, T.; Andersen, Anders

    2010-01-01

    In Europe an increasing share of wind power is sold on the power market. Therefore more and more wind power generators become balancing responsible and face imbalance cost that reduce revenues from selling wind power. A comparison of literature illustrates that the imbalance cost of wind power...... varies in a wide range. To explain differences we indentify parameters influencing imbalance cost and compare them for case studies in Austria, Denmark and Poland. Besides the wind power forecast error also the correlation between imbalance and imbalance price influences imbalance cost significantly...... of imperfect forecast is better suited to reflect real cost incurred due to inaccurate wind power forecasts....

  1. Cost-benefit assessment of energy storage for utility and customers: A case study in Malaysia

    International Nuclear Information System (INIS)

    Chua, Kein Huat; Lim, Yun Seng; Morris, Stella

    2015-01-01

    Highlights: • Energy storage can replace the peaking plants. • The cost of electricity for the plants with energy storage is as competitive as fossil fuel power plants. • Energy storage can reduce CO_2 emissions and defer the reinforcement of transmissions and distributions infrastructure. • Energy storage can reduce peak demand charge for customers. - Abstract: Under the existing commercial framework of electricity in Malaysia, commercial and industrial customers are required to pay for the peak power demand charge every month. Usually, the peak demand charge can contribute up to 30% to their electricity bills due to the use of open-cycle gas power plants that deliver expensive electricity to the customers. Therefore, alternative means are sought after in order to reduce the peak demand for the customers. Distributed small-scaled energy storage can offer a good option to reduce the peak. This paper aims to identify the financial benefits of the energy storage system for utility companies and customers. An energy dispatch model is developed in HOMER to determine the cost of electricity. The model considers the heat rates of power plants in calculating the costs of electricity under different regulatory frameworks of natural gas with various prices of battery components. Apart from that, the cost-benefit for the customers under various electric tariff structures is evaluated. Four battery storage technologies, namely lead acid, vanadium redox flow, zinc-bromine, and lithium-ion are considered. The simulation results show that the storage system with lead acid batteries is more cost-effective than other battery technologies. The customers can reduce their electricity bills with the payback period of 2.8 years. The generation cost for the power system with energy storage is lower than that without energy storage. Besides, the system with energy storage has lower greenhouse gas emissions than that without energy storage. The deferral of the reinforcement of

  2. Slim Battery Modelling Features

    Science.gov (United States)

    Borthomieu, Y.; Prevot, D.

    2011-10-01

    Saft has developed a life prediction model for VES and MPS cells and batteries. The Saft Li-ion Model (SLIM) is a macroscopic electrochemical model based on energy (global at cell level). The main purpose is to predict the battery performances during the life for GEO, MEO and LEO missions. This model is based on electrochemical characteristics such as Energy, Capacity, EMF, Internal resistance, end of charge voltage. It uses fading and calendar law effects on energy and internal impedance vs. time, temperature, End of Charge voltage. Based on the mission profile, satellite power system characteristics, the model proposes the various battery configurations. For each configuration, the model gives the battery performances using mission figures and profiles: power, duration, DOD, end of charge voltages, temperatures during eclipses and solstices, thermal dissipations and cell failures. For the GEO/MEO missions, eclipse and solstice periods can include specific profile such as plasmic propulsion fires and specific balancing operations. For LEO missions, the model is able to simulate high power peaks to predict radar pulses. Saft's main customers have been using the SLIM model available in house for two years. The purpose is to have the satellite builder power engineers able to perform by themselves in the battery pre-dimensioning activities their own battery simulations. The simulations can be shared with Saft engineers to refine the power system designs. This model has been correlated with existing life and calendar tests performed on all the VES and MPS cells. In comparing with more than 10 year lasting life tests, the accuracy of the model from a voltage point of view is less than 10 mV at end Of Life. In addition, thethe comparison with in-orbit data has been also done. b This paper will present the main features of the SLIM software and outputs comparison with real life tests. b0

  3. Effect of wind speed and solar irradiation on the optimization of a PV-Wind-Battery system to supply a telecommunications station

    Energy Technology Data Exchange (ETDEWEB)

    Dufo-Lopez, Rodolfo; Bernal-Agustin, Jose L.; Lujano, Juan; Zubi, Ghassan [Zaragoza Univ. (Spain). Electrical Engineerign Dept.

    2010-07-01

    This paper shows the optimization of a PV-Wind hybrid system with batteries storage to supply the electrical power to a small telecommunications station. The load demanded by the station is 100 W continuously. We have considered 6 different wind speed profiles, from 2 m/s average speed (low wind speed in many places in Spain) to 8 m/s average (very high wind speed, in few places in Spain) and 3 different irradiation profiles, from the lowest average daily irradiation in Spain, about 2.5 kWh/m{sup 2}/day, to the highest one in Spain, about 5 kWh/m{sup 2}/day. Therefore we have considered 6 x 3 = 18 combinations of wind speed and irradiation profiles. For each combination of wind speed and irradiation profiles, we have optimized the PV-Wind-Battery system to supply the power demand, considering some different PV panels, wind turbines and batteries. We have also considered in the optimization non-hybrid systems (PV-Battery systems and Wind-Battery systems). The simulation of the system performance has been done hourly. The optimal system for each combination of wind speed and irradiation is the one which can supply the whole demand of the telecommunications station with the lowest Net Present Cost of the system. Simulation and optimization has been done using HOGA (Hybrid Optimization by Genetic Algorithms) software, developed by some of the authors. The results show that, with actual prices of PV panels and wind turbines, in 13 of the 18 combinations of wind speed and irradiation profiles the optimal system is a hybrid system (it includes PV panels, wind turbine and batteries). In the other 5 combinations (the ones with lowest wind speed and/or highest irradiation), the optimal system is PV-Battery, i.e., without wind turbine. We conclude that, in most of the places in Spain, the optimal system to supply the demand of a communications station (with continous demand profile) is a hybrid system (PV-Wind-Batteries) instead of a PV-Batteries system or a Wind-Batteries

  4. Adolescent Boys' Science Aspirations: Masculinity, Capital, and Power

    Science.gov (United States)

    Archer, Louise; DeWitt, Jennifer; Willis, Beatrice

    2014-01-01

    There is widespread international concern about post-16 participation rates in science, with women's under-representation constituting a particular issue. This paper contributes to these debates through a novel, critical examination of the role of masculinity within boys' negotiations of science aspirations. Drawing on a UK longitudinal study of…

  5. Promises of the electric-powered car; Promesses de la voiture electrique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document analyses the energy needs of an automobile and makes a comparison between the characteristics of a thermal engine car and an electric-powered car with batteries in terms of cost and energy efficiency. The future of the electric-powered car depends mainly on the improvements that will be made in battery technologies in terms of weight, energy density, number of charge-discharge cycles and cost. (J.S.)

  6. Ultra-low cost and highly stable hydrated FePO4 anodes for aqueous sodium-ion battery

    Science.gov (United States)

    Wang, Yuesheng; Feng, Zimin; Laul, Dharminder; Zhu, Wen; Provencher, Manon; Trudeau, Michel L.; Guerfi, Abdelbast; Zaghib, Karim

    2018-01-01

    The growing demands for large-scale energy storage devices have put a spotlight on aqueous sodium-ion batteries, which possess a number of highly desirable features, such as sodium abundance, low cost and safety over organic electrolytes. While lots of cathode materials were reported, only few candidate materials like active carbon and NaTi2(PO4)3 were proposed as anodes. It is a long-standing common knowledge that the low cost, non-toxicity, and highly reversible FePO4·2H2O is known as an attractive cathode material for non-aqueous lithium- and sodium-ion batteries, but we demonstrate for the first time that nano-size non-carbon coated amorphous FePO4·2H2O can be used as the anode for an aqueous sodium-ion battery. Its optimum operating voltage (∼2.75 V vs. Na+/Na) avoids hydrogen evolution. The capacity is as high as 80 mAh/g at a rate of 0.5 C in a three-electrode system. The full cell, using the Na0.44MnO2 as cathode, maintained 90% of the capacity at 300 cycles at a rate of 3 C. The calculations also show that its volume change during the intercalation of Na ions is below 2%. Its low cost, high safety, along with its outstanding electrochemical performance makes amorphous FePO4·2H2O a promising anode material for aqueous sodium-ion batteries.

  7. Compendium of cost-effectiveness evaluations of modifications for dose reduction at nuclear power plants

    International Nuclear Information System (INIS)

    Baum, J.W.; Matthews, G.R.

    1985-12-01

    This report summarizes available information on cost effectiveness of engineering modifications potentially valuable for dose reduction at nuclear power plants. Data were gathered from several US utilities, published literature, equipment and service suppliers, and recent technical meetings. Five simplified econometric models were employed to evaluate data and arrive at a value for cost effectiveness expressed in either (a) dollars/rem, or (b) total dollar savings calculated using a nominal value of $1000/rem. Models employed were: a basic model with no consideration given to the time value of money; two models in which discounting was used to evaluate costs and savings in terms of present values; and two models in which income taxes and revenue requirements were considered. Results from different models varied by as much as a factor of 10, and were generally lowest for the basic model and highest for the before-tax revenue requirements model. Results for 151 evaluations employing different assumptions concerning number of plants per site and outage impacts were tabulated in order of decreasing cost effectiveness. Twenty-five evaluations were identified as exceptionally cost effective since both costs and dose were saved. Forty evaluations indicated highly cost-effective changes based on costs below $1000/rem saved using results of the present-worth model that included discounting of future dose savings

  8. Flasher Powered by Photovoltaic Cells and Ultracapacitors

    Science.gov (United States)

    Eichenberg, Dennis J.; Soltis, Richard F.

    2003-01-01

    A unique safety flasher powered by photovoltaic cells and ultracapacitors has been developed. Safety flashers are used wherever there are needs to mark actually or potentially hazardous locations. Examples of such locations include construction sites, highway work sites, and locations of hazardous operations. Heretofore, safety flashers have been powered by batteries, the use of which entails several disadvantages: Batteries must be kept adequately charged, and must not be allowed to become completely discharged. Batteries have rather short cycle lives, and their internal constituents that react chemically to generate electricity deteriorate (and hence power-generating capacities decrease) over time. The performances of batteries are very poor at low temperatures, which often occur in the circumstances in which safety flashers are most needed. The disposal of batteries poses a threat to the environment. The development of the present photovoltaic/ultracapacitor- powered safety flasher, in which the ultracapacitors are used to store energy, overcomes the aforementioned disadvantages of using batteries to store energy. The ultracapacitors in this flasher are electrochemical units that have extremely high volumetric capacitances because they contain large-surface-area electrodes separated by very small gaps. Ultracapacitors have extremely long cycle lives, as compared to batteries; consequently, it will never be necessary to replace the ultracapacitors in the safety flasher. The reliability of the flasher is correspondingly increased, and the life-of-system cost and the adverse environmental effects of the flasher are correspondingly reduced. Moreover, ultracapacitors have excellent low-temperature characteristics, are maintenance-free, and provide consistent performance over time.

  9. Advances of aqueous rechargeable lithium-ion battery: A review

    Science.gov (United States)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  10. Reliability/Cost Evaluation on Power System connected with Wind Power for the Reserve Estimation

    DEFF Research Database (Denmark)

    Lee, Go-Eun; Cha, Seung-Tae; Shin, Je-Seok

    2012-01-01

    Wind power is ideally a renewable energy with no fuel cost, but has a risk to reduce reliability of the whole system because of uncertainty of the output. If the reserve of the system is increased, the reliability of the system may be improved. However, the cost would be increased. Therefore...... the reserve needs to be estimated considering the trade-off between reliability and economic aspects. This paper suggests a methodology to estimate the appropriate reserve, when wind power is connected to the power system. As a case study, when wind power is connected to power system of Korea, the effects...

  11. Modelling, Analysis and Performance Evaluation of Power Conversion Unit in G2V/V2G Application—A Review

    Directory of Open Access Journals (Sweden)

    María Garcés Quílez

    2018-04-01

    Full Text Available In response to climate change, which is caused by the increasing pollution of the environment and leads to the deterioration of human health, future electricity generations should reduce reliance on fossil fuels by growing the use of clean and renewable energy generation sources and by using clean vehicle technologies. Battery storage systems have been recognized as one of the most promising approaches for supporting the renewable energy generation sources and cleanly powering vehicles instead of burning gasoline and diesel fuel. However, the cost of batteries is still a prominent barrier for their use in stationary and traction applications. As a rule, the cost of batteries can be decreased by lowering material costs, enhancing process efficiencies, and increasing production volume. Another more effective solution is called Vehicle-to-grid (V2G application. In V2G application, the battery system can be used to support the grid services, whereas the battery is still in the vehicle. To make a battery system economically viable for V2G/G2V applications, an effective power-electronics converter should be selected as well. This converter should be supported by an advanced control strategy. Therefore, this article provides a detailed technical assessment and review of V2G/G2V concepts, in conjunction with various power-electronics converter topologies. In this paper, modeling and detailed control strategies are fully designed and investigated in terms of dynamic response and harmonics. Furthermore, an extensive design and analysis of charging systems for low-duty/high-duty vehicles are also presented.

  12. A novel BEV concept based on fixed and swappable li-ion battery packs

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Pinto, C.; de Castro, R.

    2015-01-01

    -based ownership models to distribute the cost of the large battery pack over the vehicle lifetime. A methodology is proposed for the analysis and evaluation of the proposed concept in comparison with a direct owned non swappable single pack BEV, proving that significant improvements on city fuel economy (up to 20......In this paper a novel battery electric vehicle (BEV) concept based on a small fixed and a big swappable li-ion battery pack is proposed in order to achieve: longer range, lower initial purchase price and lower energy consumption at short ranges. For short ranges the BEV is only powered...... by the relatively small fixed battery pack, without the large swappable battery pack. In this way the mass of the vehicle is reduced and therefore the energy consumed per unit distance is improved. For higher ranges the BEV is powered by both battery packs. This concept allows the introduction of subscription...

  13. A new bonded catalyst for safe lithium-thionyl chloride batteries

    Science.gov (United States)

    Walsh, F.; Hopewood, J.

    1982-08-01

    The goal of the research effort was to demonstrate that a new class of organometallic cathode catalysts, the TAAs, are stable in thionyl chloride and that they significantly improve the power performance of lithium-thionyl chloride primary batteries. A number of TAAs were evaluated and shown to be active catalysts. Included in this evaluation were TAAs which were covalently bonded to the supporting carbon electrode material; a covalently bonded catalyst has the potential advantage that it will not dissolve into the electrolyte and negatively affect anode performance. During the six month research program, the TAAS were shown to: significantly improve cathode performance in Li/SOCl2 cells; improve cathode capacity; improve cathode performance throughout long-term tests; and not affect anode performance. Further work is needed to develop data in cell studies on temperature range, shelf life, voltage delay effects, energy/power density as a function of rate, and factors affecting electrode capacity. Battery performance in stress tests to develop safety and cost data is also needed.

  14. LPGC, Levelized Steam Electric Power Generator Cost

    International Nuclear Information System (INIS)

    Coen, J.J.; Delene, J.G.

    1994-01-01

    1 - Description of program or function: LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generation cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized-water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor. Costs for plant having either one or two units may be obtained. 2 - Method of solution: LPGC consists of nine individual menu-driven programs controlled by a driver program, MAINPWR. The individual programs are PLANTCAP, for calculating capital investment costs; NUCLOM, for determining operation and maintenance (O and M) costs for nuclear plants; COALOM, for computing O and M costs for coal-fired plants; NFUEL, for calculating levelized fuel costs for nuclear plants; COALCOST, for determining levelized fuel costs for coal-fired plants; FCRATE, for computing the fixed charge rate on the capital investment; LEVEL, for calculating levelized power generation costs; CAPITAL, for determining capitalized cost from overnight cost; and MASSGEN, for generating, deleting, or changing fuel cycle mass balance data for use with NFUEL. LPGC has three modes of operation. In the first, each individual code can be executed independently to determine one aspect of the total

  15. Stand Alone Battery Thermal Management System

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Brad [Denso International America, Incorporated, Southfield, MI (United States)

    2015-09-30

    The objective of this project is research, development and demonstration of innovative thermal management concepts that reduce the cell or battery weight, complexity (component count) and/or cost by at least 20%. The project addresses two issues that are common problems with current state of the art lithium ion battery packs used in vehicles; low power at cold temperatures and reduced battery life when exposed to high temperatures. Typically, battery packs are “oversized” to satisfy the two issues mentioned above. The first phase of the project was spent making a battery pack simulation model using AMEsim software. The battery pack used as a benchmark was from the Fiat 500EV. FCA and NREL provided vehicle data and cell data that allowed an accurate model to be created that matched the electrical and thermal characteristics of the actual battery pack. The second phase involved using the battery model from the first phase and evaluate different thermal management concepts. In the end, a gas injection heat pump system was chosen as the dedicated thermal system to both heat and cool the battery pack. Based on the simulation model. The heat pump system could use 50% less energy to heat the battery pack in -20°C ambient conditions, and by keeping the battery cooler at hot climates, the battery pack size could be reduced by 5% and still meet the warranty requirements. During the final phase, the actual battery pack and heat pump system were installed in a test bench at DENSO to validate the simulation results. Also during this phase, the system was moved to NREL where testing was also done to validate the results. In conclusion, the heat pump system can improve “fuel economy” (for electric vehicle) by 12% average in cold climates. Also, the battery pack size, or capacity, could be reduced 5%, or if pack size is kept constant, the pack life could be increased by two years. Finally, the total battery pack and thermal system cost could be reduced 5% only if the

  16. An economic analysis of used electric vehicle batteries integrated into commercial building microgrids

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Sebastian; Dallinger, David [Fraunhofer Institute for Systems and Innovation Research, Karlsruhe (Germany). Competence Center Energy Policy and Energy Systems; Gomez, Tomas; Momber, Ilan [Madrid Univ. (Spain); Marnay, Chris; Stadler, Michael; Lai, Judy [Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab), Berkeley, CA (United States)

    2011-07-01

    Current policies in the U.S. and other countries are trying to stimulate electric transportation deployment. Consequently, plug-in electric vehicle (PEV) adoption will presumably spread among vehicle users. With the increased diffusion of PEVs, lithium-ion batteries will also enter the market on a broad scale. However, their costs are still high and ways are needed to optimally deploy vehicle batteries in order to account for the higher initial outlay. This study analyzed the possibility of extending the lifecycle of PEV batteries to a secondary, stationary application. Battery usage can be optimized by installing used battery packs in buildings' microgrids. Employed as decentralized storage, batteries can be used for a microgrid's power supply and provide ancillary services (A/S). This scenario has been modeled with the Distributed Energy Resources Customer Adoption Model (DER-CAM), which identifies optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results show that used PEV batteries can create significant monetary value if subsequently used for stationary applications. (orig.)

  17. Nuclear Power Plant Module, NPP-1: Nuclear Power Cost Analysis.

    Science.gov (United States)

    Whitelaw, Robert L.

    The purpose of the Nuclear Power Plant Modules, NPP-1, is to determine the total cost of electricity from a nuclear power plant in terms of all the components contributing to cost. The plan of analysis is in five parts: (1) general formulation of the cost equation; (2) capital cost and fixed charges thereon; (3) operational cost for labor,…

  18. JPL's electric and hybrid vehicles project: Project activities and preliminary test results. [power conditioning and battery charge efficiency

    Science.gov (United States)

    Barber, T. A.

    1980-01-01

    Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.

  19. Modelling Thermal Effects of Battery Cells inside Electric Vehicle Battery Packs

    DEFF Research Database (Denmark)

    Khan, Mohammad Rezwan; Kær, Søren Knudsen

    The poster presents a methodology to account for thermal effects on battery cells to improve the typical thermal performances in a pack through heating calculations generally performed under the operating condition assumption. The aim is to analyze the issues based on battery thermo-physical char...

  20. Performance-degradation model for Li4Ti5O12-based battery cells used in wind power applications

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2012-01-01

    Energy storage systems based on Lithium-ion batteries have the potential to mitigate the negative impact of wind power grid integration on the power system stability, which is caused by the characteristics of the wind. This paper presents a performance model for a Li4Ti5O12/LiMO2 battery cell....... For developing the performance model an EIS-based electrical modelling approach was followed. The obtained model is able to predict with high accuracy charge and discharge voltage profiles for different ages of the battery cell and for different charging/discharging current rates. Moreover, the ageing behaviour...... of the battery cell was analysed for the case of accelerated cycling ageing with a certain mission profile....