WorldWideScience

Sample records for cosmological structure generation

  1. Effective theory for the cosmological generation of structure

    CERN Document Server

    Bojowald, Martin

    2008-01-01

    The current understanding of structure formation in the early universe is mainly built on a magnification of quantum fluctuations in an initial vacuum state during an early phase of accelerated universe expansion. One usually describes this process by solving equations for a quantum state of matter on a given expanding background space-time, followed by decoherence arguments for the emergence of classical inhomogeneities from the quantum fluctuations. Here, we formulate the coupling of quantum matter fields to a dynamical gravitational background in an effective framework which allows the inclusion of back-reaction effects. It is shown how quantum fluctuations couple to classical inhomogeneities and can thus manage to generate cosmic structure in an evolving background. Several specific effects follow from a qualitative analysis of the back-reaction, including a likely reduction of the overall amplitude of power in the cosmic microwave background, the occurrence of small non-Gaussianities, and a possible supp...

  2. Automatically generated code for relativistic inhomogeneous cosmologies

    Science.gov (United States)

    Bentivegna, Eloisa

    2017-02-01

    The applications of numerical relativity to cosmology are on the rise, contributing insight into such cosmological problems as structure formation, primordial phase transitions, gravitational-wave generation, and inflation. In this paper, I present the infrastructure for the computation of inhomogeneous dust cosmologies which was used recently to measure the effect of nonlinear inhomogeneity on the cosmic expansion rate. I illustrate the code's architecture, provide evidence for its correctness in a number of familiar cosmological settings, and evaluate its parallel performance for grids of up to several billion points. The code, which is available as free software, is based on the Einstein Toolkit infrastructure, and in particular leverages the automated code generation capabilities provided by its component Kranc.

  3. Peculiar Velocities into the Next Generation: Cosmological Parameters From Large Surveys without Bias from Nonlinear Structure

    CERN Document Server

    Abate, Alexandra; Teodoro, Luis F A; Warren, Michael S; Hendry, Martin

    2008-01-01

    We investigate methods to best estimate the normalisation of the mass density fluctuation power spectrum (sigma_8) using peculiar velocity data from a survey like the Six degree Field Galaxy Velocity Survey (6dFGSv). We focus on two potential problems (i) biases from nonlinear growth of structure and (ii) the large number of velocities in the survey. Simulations of LambdaCDM-like models are used to test the methods. We calculate the likelihood from a full covariance matrix of velocities averaged in grid cells. This simultaneously reduces the number of data points and smooths out nonlinearities which tend to dominate on small scales. We show how the averaging can be taken into account in the predictions in a practical way, and show the effect of the choice of cell size. We find that a cell size can be chosen that significantly reduces the nonlinearities without significantly increasing the error bars on cosmological parameters. We compare our results with those from a principal components analysis following Wa...

  4. Cosmological Structure Formation

    CERN Document Server

    Primack, Joel R

    2015-01-01

    LCDM is remarkably successful in predicting the cosmic microwave background and large-scale structure, and LCDM parameters have been determined with only mild tensions between different types of observations. Hydrodynamical simulations starting from cosmological initial conditions are increasingly able to capture the complex interactions between dark matter and baryonic matter in galaxy formation. Simulations with relatively low resolution now succeed in describing the overall galaxy population. For example, the EAGLE simulation in volumes up to 100 cubic Mpc reproduces the observed local galaxy mass function nearly as well as semi-analytic models. It once seemed that galaxies are pretty smooth, that they generally grow in size as they evolve, and that they are a combination of disks and spheroids. But recent HST observations combined with high-resolution hydrodynamic simulations are showing that most star-forming galaxies are very clumpy; that galaxies often undergo compaction which reduces their radius and ...

  5. An automatically generated code for relativistic inhomogeneous cosmologies

    CERN Document Server

    Bentivegna, Eloisa

    2016-01-01

    The applications of numerical relativity to cosmology are on the rise, contributing insight into such cosmological problems as structure formation, primordial phase transitions, gravitational-wave generation, and inflation. In this paper, I present the infrastructure for the computation of inhomogeneous dust cosmologies which was used recently to measure the effect of nonlinear inhomogeneity on the cosmic expansion rate. I illustrate the code's architecture, provide evidence for its correctness in a number of familiar cosmological settings, and evaluate its parallel performance for grids of up to several billion points. The code, which is available as free software, is based on the Einstein Toolkit infrastructure, and in particular leverages the automated-code-generation capabilities provided by its component Kranc.

  6. Cosmology and the origin of structure

    CERN Document Server

    Kolb, Edward W; CERN. Geneva. Audiovisual Unit

    2002-01-01

    There is now strong evidence that the rich and varied structure we see in the universe today in the form of stars, galaxies, galaxy clusters, and even larger structures, grew from small primordial 'seeds' that were planted in the first second in the history of the universe. The last decade has seen remarkable advances in observational cosmology, highlighted by the observations of galaxies in the deep universe and the observation of primordial fluctuations in the microwave background. With the increasing accuracy and sophistication of astronomical observations, the details of our theory for the growth of structure will be tested. These lectures will serve as an introduction to the generation and growth of structure in the universe. The series of four lectures will follow the program: Lecture 1: The observed universe Lecture 2: The growth of cosmological structure Lecture 3: Inflation and the origin of perturbations Lecture 4: Dark matter and dark energy

  7. Cosmology

    CERN Document Server

    Rubakov, V A

    2014-01-01

    In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.

  8. Peculiar velocities into the next generation: cosmological parameters from large surveys without bias from non-linear structure

    Science.gov (United States)

    Abate, Alexandra; Bridle, Sarah; Teodoro, Luis F. A.; Warren, Michael S.; Hendry, Martin

    2008-10-01

    We investigate methods to best estimate the normalization of the mass density fluctuation power spectrum (σ8) using peculiar velocity data from a survey like the six-degree Field Galaxy Velocity Survey (6dFGSv). We focus on two potential problems: (i) biases from non-linear growth of structure and (ii) the large number of velocities in the survey. Simulations of ΛCDM-like models are used to test the methods. We calculate the likelihood from a full covariance matrix of velocities averaged in grid cells. This simultaneously reduces the number of data points and smoothes out non-linearities which tend to dominate on small scales. We show how the averaging can be taken into account in the predictions in a practical way, and show the effect of the choice of cell size. We find that a cell size can be chosen that significantly reduces the non-linearities without significantly increasing the error bars on cosmological parameters. We compare our results with those from a principal components analysis following Watkins et al. and Feldman et al. to select a set of optimal moments constructed from linear combinations of the peculiar velocities that are least sensitive to the non-linear scales. We conclude that averaging in grid cells performs equally well. We find that for a survey such as 6dFGSv we can estimate σ8 with less than 3 per cent bias from non-linearities. The expected error on σ8 after marginalizing over Ωm is approximately 16 per cent.

  9. Tests of cosmological structure growth

    OpenAIRE

    Raccanelli, Alvise

    2013-01-01

    Cosmology aims to study the origin, composition and evolution of the entire Universe. The standard model for cosmology, called ΛCDM , represents a good fit to most of the observations we have, but it is a phenomenological model with no strong theoretical foundation, so one of the biggest challenges in cosmology (but important for the entire physics) will be to understand if this is the correct model (and so try to find a theoretical framework for it) or if a model with some sort of “new” phys...

  10. Ultra-large scale cosmology with next-generation experiments

    CERN Document Server

    Alonso, David; Ferreira, Pedro G; Maartens, Roy; Santos, Mario G

    2015-01-01

    Future surveys of large-scale structure will be able to measure perturbations on the scale of the cosmological horizon, and so could potentially probe a number of novel relativistic effects that are negligibly small on sub-horizon scales. These effects leave distinctive signatures in the power spectra of clustering observables and, if measurable, would open a new window on relativistic cosmology. We quantify the size and detectability of the effects for a range of future large-scale structure surveys: spectroscopic and photometric galaxy redshift surveys, intensity mapping surveys of neutral hydrogen, and continuum surveys of radio galaxies. Our forecasts show that next-generation experiments, reaching out to redshifts z ~ 4, will not be able to detect previously-undetected general-relativistic effects from the single-tracer power spectra alone, although they may be able to measure the lensing magnification in the auto-correlation. We also perform a rigorous joint forecast for the detection of primordial non-...

  11. Cosmological structures in generalized gravity

    CERN Document Server

    Hwang, J

    1997-01-01

    In a class of generalized gravity theories with general couplings between the scalar field and the scalar curvature in the Lagrangian, we describe the quantum generation and the classical evolution processes of both the scalar and tensor structures in a simple and unified manner.

  12. Cosmological anomalies and exotic smoothness structures

    OpenAIRE

    Asselmeyer-Maluga, Torsten; Brans, Carl H.

    2001-01-01

    It seems to be generally accepted that apparently anomalous cosmological observations, such as accelerating expansion, etc., necessarily are inconsistent with standard general relativity and standard matter sources. Following the suggestions of S{\\l}adkowski, we point out that in addition to exotic theories and exotic matter there is another possibility. We refer to exotic differential structures on ${\\mathbb R}^4$ which could be the source of the observed anomalies without changing the Einst...

  13. The structure of the classical cosmological singularity

    Science.gov (United States)

    Tipler, Frank J.

    The existence of an all-encompassing initial classical cosmological singularity is established: it is shown that if: (1) global hyperbolicity, (2) the timelike convergence condition, and (3) all past-directed nonspacelike geodesics start to reconverge within a compact region in the causal past of the present-day earth, then all timelike curves in the past have a finite proper time length less than a universal constant L. It is argued that an analogue of this predicted cosmological singularity should exist even when quantum effects are taken into account. In particular, in a closed Friedmann radiation-filled universe quantized via the ADM method, the R = 0 singularity still exists and influences wave packet evolution at all times. Furthermore, quantum effects can in most cases eliminate curvature singularities only by introducing singularities in the universal action; most classical closed universes have finite action if and only if they begin and end in curvature singularities. Finally, the two basic ways of studying the structure of cosmological singularities are reviewed: completion methods (e.g., the c-boundary construction), and approach methods (e.g., analyzing metric behavior in a synchronous coordinate system).

  14. Cosmological Constant, Fine Structure Constant and Beyond

    CERN Document Server

    Wei, Hao; Li, Hong-Yu; Xue, Dong-Ze

    2016-01-01

    In this work, we consider the cosmological constant model $\\Lambda\\propto\\alpha^{-6}$, which is well motivated from three independent approaches. As is well known, the evidence of varying fine structure constant $\\alpha$ was found in 1998. If $\\Lambda\\propto\\alpha^{-6}$ is right, it means that the cosmological constant $\\Lambda$ should be also varying. In this work, we try to develop a suitable framework to model this varying cosmological constant $\\Lambda\\propto\\alpha^{-6}$, in which we view it from an interacting vacuum energy perspective. We propose two types of models to describe the evolutions of $\\Lambda$ and $\\alpha$. Then, we consider the observational constraints on these models, by using the 293 $\\Delta\\alpha/\\alpha$ data from the absorption systems in the spectra of distant quasars, and the data of type Ia supernovae (SNIa), cosmic microwave background (CMB), baryon acoustic oscillation (BAO). We find that the model parameters can be tightly constrained to the narrow ranges of ${\\cal O}(10^{-5})$ t...

  15. BRS structure of simple model of cosmological constant and cosmology

    Science.gov (United States)

    Mori, Taisaku; Nitta, Daisuke; Nojiri, Shin'ichi

    2017-07-01

    In Mod. Phys. Lett. A 31, 1650213 (2016, 10.1142/S0217732316502138), Nojiri proposed a simple model in order to solve one of the problems related to the cosmological constant. The model is induced from a topological field theory, and the model has an infinite number of BRS symmetries. The BRS symmetries are, in general, spontaneously broken, however. We investigate the BRS symmetry in detail and show that there is one and only one BRS symmetry which is not broken, and the unitarity can be guaranteed. In the model, the quantum problem of the vacuum energy, which may be identified with the cosmological constant, reduces to the classical problem of the initial condition. We investigate the cosmology given by the model and specify the region of the initial conditions, which could be consistent with the evolution of the Universe. We also show that there is a stable solution describing the de Sitter space-time, which may explain the accelerating expansion in the current Universe.

  16. Structure formation in the DGP cosmological model

    CERN Document Server

    Koyama, K; Koyama, Kazuya; Maartens, Roy

    2006-01-01

    The DGP brane-world model provides an alternative to the standard LCDM cosmology, in which the late universe accelerates due to a modification of gravity rather than vacuum energy. The cosmological constant $\\Lambda$ in LCDM is replaced by a single parameter, the crossover scale $r_c$, in DGP. The Supernova redshift observations can be fitted by both models, with $\\Lambda\\sim H_0^2$ and $r_c \\sim H_0^{-1}$. This degeneracy is broken by structure formation, which is suppressed in different ways in the two models. There is some confusion in the literature about how the standard linear growth factor is modified in DGP. While the luminosity distance can be computed purely from the modified 4-dimensional Friedman equation, the evolution of density perturbations requires an analysis of the 5-dimensional gravitational field. We show that if the 5-dimensional effects are inappropriately neglected, then the 4-dimensional Bianchi identities are violated and the computed growth factor is incorrect. By using the 5-dimens...

  17. Quantum Signature of Cosmological Large Scale Structures

    CERN Document Server

    Capozziello, S; De Siena, S; Illuminati, F; Capozziello, Salvatore; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1998-01-01

    We demonstrate that to all large scale cosmological structures where gravitation is the only overall relevant interaction assembling the system (e.g. galaxies), there is associated a characteristic unit of action per particle whose order of magnitude coincides with the Planck action constant $h$. This result extends the class of physical systems for which quantum coherence can act on macroscopic scales (as e.g. in superconductivity) and agrees with the absence of screening mechanisms for the gravitational forces, as predicted by some renormalizable quantum field theories of gravity. It also seems to support those lines of thought invoking that large scale structures in the Universe should be connected to quantum primordial perturbations as requested by inflation, that the Newton constant should vary with time and distance and, finally, that gravity should be considered as an effective interaction induced by quantization.

  18. Generation of the Primordial Magnetic Fields during Cosmological Reionization

    CERN Document Server

    Gnedin, N Yu; Zweibel, E G; Gnedin, Nickolay Y.; Ferrara, Andrea; Zweibel, Ellen G.

    2000-01-01

    We investigate the generation of magnetic field by the Biermann battery in cosmological ionization fronts, using new simulations of the reionization of the universe by stars in protogalaxies. Two mechanisms are primarily responsible for magnetogenesis: i) the breakout of I-fronts from protogalaxies, and ii) the propagation of I-fronts through the high density neutral filaments which are part of the cosmic web. The first mechanism is dominant prior to overlapping of ionized regions (z ~ 7), whereas the second continues to operate even after that epoch. However, after overlap the field strength increase is largely due to the gas compression occurring as cosmic structures form. As a consequence, the magnetic field at z ~ 5 closely traces the gas density, and it is highly ordered on megaparsec scales. The mean mass-weighted field strength is B_0 ~ 10^{-19} G in the simulation box. There is a relatively well-defined, nearly linear correlation between B_0 and the baryonic mass of virialized objects, with B_0 ~ 10^{...

  19. Cosmological constraints on galaxy cluster structure

    CERN Document Server

    Holanda, R F L

    2014-01-01

    Observations of galaxy clusters (GC's) are a powerful tool to probe the evolution of the Universe at $z<2$. However, the determination of their real shape and structure is not completely understood and the assumption of asphericity is often used in several cosmological tests. In this work, we propose methods to infer the elongation of the gas distribution of GC's based on measurements of the cosmic expansion rate, luminosity distance to type Ia supernovae, X-Ray and Sunyaev-Zeldovich properties of GC's and on the validity of the so-called distance duality relation. For the sample considered, we find that the clusters look elongated preferentially aligned along the line of sight with the results of the different methods showing a good agreement with each other and with those predicted by the current cosmic concordance model.

  20. The equilibrium structure of cosmological halos and the effects of feedback on cosmological structure formation

    Science.gov (United States)

    Iliev, Ilian Tzankov

    The postcollapse structure of objects which form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we present an analytical model for the postcollapse equilibrium structure of virialized objects which condense out of a cosmological background universe, either matter-dominated or flat with a cosmological constant. The model is based upon the assumption that cosmological halos form from the collapse and virialization of "top-hat" density perturbations and are spherical, isotropic, and isothermal. This leads to the prediction of a unique nonsingular truncated isothermal sphere (TIS), a particular solution of the Lane-Emden equation (suitably modified when Λ ≠ 0). The size and virial temperature are unique functions of the mass and redshift of formation of the object for a given background universe. The core density is roughly proportional to the critical density of the universe at the epoch of collapse. The rotation curves of dark-matter-dominated galaxies probe the mass profile of the underlying galactic halo. This TIS model is in excellent agreement with observations of the mass profiles of dark-matter-dominated galaxies and yields the mass and collapse epoch of an observed halo from the parameters of its rotation curve. This allows us to predict correlations amongst rotation curve parameters, such as the maximum velocity and the radius at which it occurs, for different mass halos collapsing at different epochs. We thereby derive the observed vmax-r max relation analytically. In addition, this allows us to impose constraints on the background cosmology favoring the flat ΛCDM model. On the scale of galaxy clusters, which are also dark-matter-dominated, the TIS model predicts the relationship between virial temperature and mass observed for X-ray clusters. The model also agrees well with the cluster density profiles inferred from strong gravitational lensing

  1. The First Generation of Stars in Lambda-CDM Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Liang; /Durham U. /Garching, Max Planck Inst.; Abel, T.; /KIPAC, Menlo Park; Frenk, C.S.; Jenkins, A.; /Durham U.; Springel, V.; /Garching, Max Planck Inst.; Yoshida,; /Nagoya U.

    2006-10-10

    We have performed a large set of high-resolution cosmological simulations using smoothed particle hydrodynamics (SPH) to study the formation of the first luminous objects in the {Lambda}CDM cosmology. We follow the collapse of primordial gas clouds in eight early structures and document the scatter in the properties of the first star-forming clouds. Our first objects span formation redshifts from z {approx} 10 to z {approx} 50 and cover an order of magnitude in halo mass. We find that the physical properties of the central star-forming clouds are very similar in all of the simulated objects despite significant differences in formation redshift and environment. This suggests that the formation path of the first stars is largely independent of the collapse redshift; the physical properties of the clouds have little correlation with spin, mass, or assembly history of the host halo. The collapse of proto-stellar objects at higher redshifts progresses much more rapidly due to the higher densities, which accelerates the formation of molecular hydrogen, enhances initial cooling and shortens the dynamical timescales. The mass of the star-forming clouds cover a broad range, from a few hundred to a few thousand solar masses, and exhibit various morphologies: some have disk-like structures which are nearly rotational supported; others form flattened spheroids; still others form bars. All of them develop a single protostellar ''seed'' which does not fragment into multiple objects up to the moment that the central gas becomes optically thick to H{sub 2} cooling lines. At this time, the instantaneous mass accretion rate onto the centre varies significantly from object to object, with disk-like structures having the smallest mass accretion rates. The formation epoch and properties of the star-forming clouds are sensitive to the values of cosmological parameters.

  2. Cosmology

    CERN Document Server

    Vittorio, Nicola

    2017-01-01

    Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.

  3. Nonsingular electrovacuum solutions with dynamically generated cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, E.I., E-mail: guendel@bgumail.bgu.ac.il [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es [Departamento de Física Teórica and IFIC, Centro Mixto Universidad de Valencia – CSIC, Universidad de Valencia, Burjassot 46100, Valencia (Spain); Rubiera-Garcia, D., E-mail: drubiera@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, Paraíba (Brazil); Vasihoun, M., E-mail: maharyw@gmail.com [Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2013-11-04

    We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R{sup 2} and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.

  4. Axionic Band Structure of the Cosmological Constant

    OpenAIRE

    Bachlechner, Thomas C.

    2015-01-01

    We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges Q determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by |det(Q)|~exp(N). Our construction motivates the existence of a landscape with a vas...

  5. Cosmological structure formation shocks and cosmic rays in hydrodynamical simulations

    CERN Document Server

    Pfrommer, C; Ensslin, T A; Jubelgas, M; Pfrommer, Christoph; Springel, Volker; Ensslin, Torsten A.; Jubelgas, Martin

    2006-01-01

    Cosmological shock waves during structure formation not only play a decisive role for the thermalization of gas in virializing structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. We discuss a novel numerical treatment of the physics of cosmic rays in combination with a formalism for identifying and measuring the shock strength on-the-fly during a smoothed particle hydrodynamics simulation. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. Using this formalism, we study the history of the thermalization process in high-resolution hydrodynamic simulations of the Lambda cold dark matter model. Collapsed cosmological structures are surrounded by shocks with high Mach numbers up to 1000, but they play only a minor role in the energy balance of thermalization. However, this finding has important consequences fo...

  6. Axionic Band Structure of the Cosmological Constant

    CERN Document Server

    Bachlechner, Thomas C

    2015-01-01

    We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges Q determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by |det(Q)|~exp(N). Our construction motivates the existence of a landscape with a vast number of vacua in a large class of four-dimensional effective theories.

  7. Axionic band structure of the cosmological constant

    Science.gov (United States)

    Bachlechner, Thomas C.

    2016-01-01

    We argue that theories with multiple axions generically contain a large number of vacua that can account for the smallness of the cosmological constant. In a theory with N axions, the dominant instantons with charges 풬 determine the discrete symmetry of vacua. Subleading instantons break the leading periodicity and lift the vacuum degeneracy. For generic integer charges the number of distinct vacua is given by √{det (풬⊤풬 ) }∝eN. Our construction motivates the existence of a landscape with a vast number of vacua in a large class of four-dimensional effective theories.

  8. Cosmological Shock Waves in the Large Scale Structure of the Universe: Non-gravitational Effects

    CERN Document Server

    Kang, Hyesung; Cen, Renyue; Ostriker, J P

    2007-01-01

    Cosmological shock waves result from supersonic flow motions induced by hierarchical clustering of nonlinear structures in the universe. These shocks govern the nature of cosmic plasma through thermalization of gas and acceleration of nonthermal, cosmic-ray (CR) particles. We study the statistics and energetics of shocks formed in cosmological simulations of a concordance $\\Lambda$CDM universe, with a special emphasis on the effects of non-gravitational processes such as radiative cooling, photoionization/heating, and galactic superwind feedbacks. Adopting an improved model for gas thermalization and CR acceleration efficiencies based on nonlinear diffusive shock acceleration calculations, we then estimate the gas thermal energy and the CR energy dissipated at shocks through the history of the universe. Since shocks can serve as sites for generation of vorticity, we also examine the vorticity that should have been generated mostly at curved shocks in cosmological simulations. We find that the dynamics and ene...

  9. Fundamental Particle Structure in the Cosmological Dark Matter

    CERN Document Server

    Khlopov, Maxim Yu

    2013-01-01

    The nonbaryonic dark matter of the Universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of non-interacting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early Universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for super-high energy physics in the early Universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while...

  10. Cosmological parameters from large scale structure - geometric versus shape information

    CERN Document Server

    Hamann, Jan; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y Y

    2010-01-01

    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass m_\

  11. Cosmological Structure Formation in Decaying Dark Matter Models

    CERN Document Server

    Cheng, Dalong; Tang, Jiayu

    2015-01-01

    The standard cold dark matter (CDM) model predicts too many and too dense small structures. We consider an alternative model that the dark matter undergoes two-body decays with cosmological lifetime $\\tau$ into only one type of massive daughters with non-relativistic recoil velocity $V_k$. This decaying dark matter model (DDM) can suppress the structure formation below its free-streaming scale at time scale comparable to $\\tau$. Comparing with warm dark matter (WDM), DDM can better reduce the small structures while being consistent with high redshfit observations. We study the cosmological structure formation in DDM by performing self-consistent N-body simulations and point out that cosmological simulations are necessary to understand the DDM structures especially on non-linear scales. We propose empirical fitting functions for the DDM suppression of the mass function and the mass-concentration relation, which depend on the decay parameters lifetime $\\tau$ and recoil velocity $V_k$, and redshift. The fitting ...

  12. Fast Generation of Ensembles of Cosmological N-Body Simulations via Mode-Resampling

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M D; Cole, S; Frenk, C S; Szapudi, I

    2011-02-14

    We present an algorithm for quickly generating multiple realizations of N-body simulations to be used, for example, for cosmological parameter estimation from surveys of large-scale structure. Our algorithm uses a new method to resample the large-scale (Gaussian-distributed) Fourier modes in a periodic N-body simulation box in a manner that properly accounts for the nonlinear mode-coupling between large and small scales. We find that our method for adding new large-scale mode realizations recovers the nonlinear power spectrum to sub-percent accuracy on scales larger than about half the Nyquist frequency of the simulation box. Using 20 N-body simulations, we obtain a power spectrum covariance matrix estimate that matches the estimator from Takahashi et al. (from 5000 simulations) with < 20% errors in all matrix elements. Comparing the rates of convergence, we determine that our algorithm requires {approx}8 times fewer simulations to achieve a given error tolerance in estimates of the power spectrum covariance matrix. The degree of success of our algorithm indicates that we understand the main physical processes that give rise to the correlations in the matter power spectrum. Namely, the large-scale Fourier modes modulate both the degree of structure growth through the variation in the effective local matter density and also the spatial frequency of small-scale perturbations through large-scale displacements. We expect our algorithm to be useful for noise modeling when constraining cosmological parameters from weak lensing (cosmic shear) and galaxy surveys, rescaling summary statistics of N-body simulations for new cosmological parameter values, and any applications where the influence of Fourier modes larger than the simulation size must be accounted for.

  13. DSR as an explanation of cosmological structure

    Energy Technology Data Exchange (ETDEWEB)

    Magueijo, Joao [Theoretical Physics Group, Imperial College, London, SW7 2BZ (United Kingdom)

    2008-10-21

    Deformed special relativity (DSR) is one of the possible realizations of a varying speed of light (VSL). It deforms the usual quadratic dispersion relations so that the speed of light becomes energy dependent, with preferred frames avoided by postulating a nonlinear representation of the Lorentz group. The theory may be used to induce a varying speed of sound capable of generating (near) scale-invariant density fluctuations, as discussed in a recent letter. We identify the nonlinear representation of the Lorentz group that leads to scale invariance, finding a universal result. We also examine the higher order field theory that could be set up to represent it. (fast track communication)

  14. DSR as an explanation of cosmological structure

    CERN Document Server

    Magueijo, Joao

    2008-01-01

    Deformed special relativity (DSR) is one of the possible realizations of a varying speed of light (VSL). It deforms the usual quadratic dispersion relations so that the speed of light becomes energy dependent, with preferred frames avoided by postulating a non-linear representation of the Lorentz group. The theory may be used to induce a varying speed of sound capable of generating (near) scale-invariant density fluctuations, as discussed in a recent Letter. We identify the non-linear representation of the Lorentz group that leads to scale-invariance, finding a universal result. We also examine the higher order field theory that could be set up to represent it.

  15. Cosmological constraints on the radiation released during structure formation

    CERN Document Server

    Torres, David Camarena

    2016-01-01

    During the process of structure formation in the universe matter is converted into radiation through a variety of processes such as light from stars, infrared radiation from cosmic dust and gravitational waves from binary black holes/neutron stars and supernova explosions. The production of this astrophysical radiation background (ARB) could affect the expansion rate of the universe and the growth of perturbations. Here, we aim at understanding to which level one can constraint the ARB using future cosmological observations. We model the energy transfer from matter to radiation through an effective interaction between matter and astrophysical radiation. Using future supernova data from LSST and growth-rate data from Euclid we find that the ARB density parameter is constrained, at the 95% confidence level, to be $\\Omega_{ar_0}<0.008$. Estimates of the energy density produced by well-known astrophysical processes give roughly $\\Omega_{ar_0}\\sim 10^{-6}$. Therefore, we conclude that cosmological observations ...

  16. Fundamental Particle Structure in the Cosmological Dark Matter

    Science.gov (United States)

    Khlopov, Maxim

    2013-11-01

    The nonbaryonic dark matter of the universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of noninteracting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for superhigh energy physics in the early universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while clouds of massive PBHs can serve as nonlinear seeds for galaxy formation. The observed broken symmetry of the three known families may provide a simultaneous solution for the problems of the mass of neutrino and strong CP-violation in the unique framework of models of horizontal unification. Dark matter candidates can also appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, hidden in elusive "dark atoms." Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms," maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches. In the context of cosmoparticle physics, studying

  17. Structure scalars and evolution equations in f( G) cosmology

    Science.gov (United States)

    Sharif, M.; Fatima, H. Ismat

    2017-01-01

    In this paper, we study the dynamics of self-gravitating fluid using structure scalars for spherical geometry in the context of f( G) cosmology. We construct structure scalars through orthogonal splitting of the Riemann tensor and deduce a complete set of equations governing the evolution of dissipative anisotropic fluid in terms of these scalars. We explore different causes of density inhomogeneity which turns out to be a necessary condition for viable models. It is explicitly shown that anisotropic inhomogeneous static spherically symmetric solutions can be expressed in terms of these scalar functions.

  18. Cosmological Structures behind the Milky Way

    CERN Document Server

    Kraan-Korteweg, R C

    2005-01-01

    This paper provides an update to the review on extragalactic large-scale structures uncovered in the Zone of Avoidance (ZOA) by Kraan-Korteweg & Lahav 2000, in particular in the Great Attractor region. Emphasis is given to the penetration of the ZOA with the in 2003 released NIR 2MASX Catalog. The distribution is little affected by the foreground dust. Galaxies can be identified to extinction levels of over A(B) < 10m except in the wider Galactic Bulge region (see Fig. 9) where star density is a strong delimiting factor. The shape of the NIR-ZOA is quite asymmetric due to Galactic features such as spiral arms and the Bulge, something that should not be ignored when using NIR samples for studies such as dipole determinations. Results are presented from the deep blind HI ZOA survey performed with the Multibeam Receiver at the Parkes telescope (v < 12700km/s). The distribution of the roughly one thousand discovered spiral galaxies in the optically and NIR impenetratable part of the ZOA clearly depict t...

  19. Cosmological Structure Formation Shocks and Cosmic Rays in Hydrodynamical Simulations

    Science.gov (United States)

    Pfrommer, C.; Springel, V.; Enβlin, T. A.; Jubelgas, M.

    Cosmological shock waves during structure formation not only play a decisive role for the thermalization of gas in virializing structures but also for the acceleration of relativistic cosmic rays (CRs) through diffusive shock acceleration. We discuss a novel numerical treatment of the physics of cosmic rays in combination with a formalism for identifying and measuring the shock strength on-the-fly during a smoothed particle hydrodynamics simulation. In our methodology, the non-thermal CR population is treated self-consistently in order to assess its dynamical impact on the thermal gas as well as other implications on cosmological observables. Using this formalism, we study the history of the thermalization process in high-resolution hydrodynamic simulations of the Lambda cold dark matter model. Collapsed cosmological structures are surrounded by shocks with high Mach numbers up to 1000, but they play only a minor role in the energy balance of thermalization. However, this finding has important consequences for our understanding of the spatial distribution of CRs in the large-scale structure. In high resolution simulations of galaxy clusters, we find a low contribution of the averaged CR pressure, due to the small acceleration efficiency of lower Mach numbers of flow shocks inside halos and the softer adiabatic index of CRs. These effects disfavour CRs when a composite of thermal gas and CRs is adiabatically compressed. However, within cool core regions, the CR pressure reaches equipartition with the thermal pressure leading, to a lower effective adiabatic index and thus to an enhanced compressibility of the central intracluster medium. This effect increases the central density and pressure of the cluster, and thus the resulting X-ray emission and the central Sunyaev-Zel'dovich flux decrement. The integrated Sunyaev-Zel'dovich effect, however, is only slightly changed.

  20. Formation and Evolution of Structure in Loop Cosmology

    CERN Document Server

    Bojowald, M; Kagan, M; Singh, P; Skirzewski, A; Bojowald, Martin; Hernandez, Hector; Kagan, Mikhail; Singh, Parampreet; Skirzewski, Aureliano

    2006-01-01

    Inhomogeneous cosmological perturbation equations are derived in loop quantum gravity, taking into account corrections in particular in gravitational parts. This provides a framework for calculating the evolution of modes in structure formation scenarios related to inflationary or bouncing models. Applications here are corrections to the Newton potential and to the evolution of large scale modes which imply non-conservation of curvature perturbations possibly noticeable in a running spectral index. These effects are sensitive to quantization procedures and test the characteristic behavior of correction terms derived from quantum gravity.

  1. BMS in Cosmology

    CERN Document Server

    Kehagias, Alex

    2016-01-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to both scalar and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic d...

  2. A Possible Mechanism for Generating a Small Positive Cosmological Constant

    CERN Document Server

    Kane, G L; Zytkow, A N

    2003-01-01

    We argue that in the context of string theory a large number N of connected degenerate vacua that mix will lead to a ground state with much lower energy, essentially because of the standard level repulsion of quantum theory for the wavefunction of the Universe. We imagine a history where initial quantum fluctuations give an energy density $\\sim m_{susy}^2m_{Pl}^2$, but the universe quickly cascades to an energy density $\\sim m_{susy}^2m_{Pl}^2/N$. Then at various phase transitions there are large contributions to the energy density and rearrangement of levels, followed again by a rapid cascade to the ground state or near it. If this mechanism is correct, the ground state of the theory describing our world would be a superposition of a large number of connected string vacua,with shared superselection sets of properties such as three families etc. The observed value of the cosmological constant in terms of the Planck mass, the scale of supersymmetry breaking and the number of connected string vacua.

  3. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  4. Cosmological constraints on the radiation released during structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Camarena, David; Marra, Valerio [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, ES (Brazil)

    2016-11-15

    During the process of structure formation in the universe matter is converted into radiation through a variety of processes such as light from stars, infrared radiation from cosmic dust, and gravitational waves from binary black holes/neutron stars and supernova explosions. The production of this astrophysical radiation background (ARB) could affect the expansion rate of the universe and the growth of perturbations. Here, we aim at understanding to which level one can constraint the ARB using future cosmological observations. We model the energy transfer from matter to radiation through an effective interaction between matter and astrophysical radiation. Using future supernova data from large synoptic survey telescope and growth-rate data from Euclid we find that the ARB density parameter is constrained, at the 95% confidence level, to be Ω{sub ar{sub 0}} < 0.008. Estimates of the energy density produced by well-known astrophysical processes give roughly Ω{sub ar{sub 0}} ∝ 10{sup -5}. Therefore, we conclude that cosmological observations will only be able to constrain exotic or not-well understood sources of radiation. (orig.)

  5. Mathematical Structure of Loop Quantum Cosmology: Homogeneous Models

    Directory of Open Access Journals (Sweden)

    Martin Bojowald

    2013-12-01

    Full Text Available The mathematical structure of homogeneous loop quantum cosmology is analyzed, starting with and taking into account the general classification of homogeneous connections not restricted to be Abelian. As a first consequence, it is seen that the usual approach of quantizing Abelian models using spaces of functions on the Bohr compactification of the real line does not capture all properties of homogeneous connections. A new, more general quantization is introduced which applies to non-Abelian models and, in the Abelian case, can be mapped by an isometric, but not unitary, algebra morphism onto common representations making use of the Bohr compactification. Physically, the Bohr compactification of spaces of Abelian connections leads to a degeneracy of edge lengths and representations of holonomies. Lifting this degeneracy, the new quantization gives rise to several dynamical properties, including lattice refinement seen as a direct consequence of state-dependent regularizations of the Hamiltonian constraint of loop quantum gravity. The representation of basic operators - holonomies and fluxes - can be derived from the full theory specialized to lattices. With the new methods of this article, loop quantum cosmology comes closer to the full theory and is in a better position to produce reliable predictions when all quantum effects of the theory are taken into account.

  6. Diverse Structural Evolution at z > 1 in Cosmologically Simulated Galaxies

    CERN Document Server

    Snyder, Gregory F; Moody, Christopher; Peth, Michael; Freeman, Peter; Ceverino, Daniel; Primack, Joel; Dekel, Avishai

    2014-01-01

    From mock Hubble Space Telescope images, we quantify non-parametric statistics of galaxy morphology, thereby predicting the emergence of relationships among stellar mass, star formation, and observed rest-frame optical structure at 1 10^10 M_sun contain relatively more disc-dominated light profiles than those with lower mass, reflecting significant disc brightening in some haloes at 1 10^10 M_sun. We analyze a cosmological major merger at z~1.5 and find that the newly proposed MID morphology diagnostics trace later stages while G-M20 trace earlier ones. MID is sensitive also to clumpy star-forming discs. The observability time of typical MID-enhanced events in our simulation sample is less than 100 Myr. A larger sample of cosmological assembly histories may be required to calibrate such diagnostics in the face of their sensitivity to viewing angle, segmentation algorithm, and various phenomena such as clumpy star formation and minor mergers.

  7. Topological structure of the vacuum, cosmological constant and dark energy

    Science.gov (United States)

    Sidharth, B. G.; Das, A.; Das, C. R.; Laperashvili, L. V.; Nielsen, H. B.

    2016-11-01

    In this review, we present a theory of cosmological constant and dark energy (DE), based on the topological structure of the vacuum. The multiple point principle (MPP) is reviewed. It demonstrates the existence of the two vacua into the SM. The Froggatt-Nielsen’s prediction of the top-quark and Higgs masses is given in the assumption that there exist two degenerate vacua in the SM. This prediction was improved by the next-order calculations. We also considered Sidharth’s theory of cosmological constant based on the noncommutative geometry of the Planck scale space-time, what gives an extremely small DE density providing the accelerating expansion of the Universe. Theory of two degenerate vacua — the Planck scale phase and electroweak (EW) phase — is also reviewed, topological defects in these vacua are investigated, also the Compton wavelength phase suggested by Sidharth is discussed. A general theory of the phase transition and the problem of the vacuum stability in the SM is reviewed. Assuming the existence of a new scalar S bound state 6t + 6t¯, earlier predicted by Froggatt, Nielsen and Laperashvili, we try to provide the vacuum stability in the SM and exact accuracy of the MPP.

  8. Simulations of structure formation in interacting dark energy cosmologies

    CERN Document Server

    Baldi, Marco

    2009-01-01

    The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We review here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models, as already presented in Baldi et al. [20]. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these...

  9. Cosmological constraints on the radiation released during structure formation

    Science.gov (United States)

    Camarena, David; Marra, Valerio

    2016-11-01

    During the process of structure formation in the universe matter is converted into radiation through a variety of processes such as light from stars, infrared radiation from cosmic dust, and gravitational waves from binary black holes/neutron stars and supernova explosions. The production of this astrophysical radiation background (ARB) could affect the expansion rate of the universe and the growth of perturbations. Here, we aim at understanding to which level one can constraint the ARB using future cosmological observations. We model the energy transfer from matter to radiation through an effective interaction between matter and astrophysical radiation. Using future supernova data from large synoptic survey telescope and growth-rate data from Euclid we find that the ARB density parameter is constrained, at the 95% confidence level, to be Ω_{ar_0}exotic or not-well understood sources of radiation.

  10. Varying Fine-Structure Constant and the Cosmological Constant Problem

    CERN Document Server

    Fujii, Y

    2003-01-01

    We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time-variability of the fine- structure constant $\\alpha$. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non- Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.

  11. Varying Fine-Structure Constant and the Cosmological Constant Problem

    Science.gov (United States)

    Fujii, Yasunori

    We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time variability of the fine-structure constant α. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non-Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.

  12. Cosmological parameter dependence in local string theories of structure formation

    CERN Document Server

    Copeland, E J; Steer, D A; Magueijo, Joao

    2000-01-01

    We perform the most accurate study to date of the dependence on cosmological parameters of structure formation with local cosmic strings. The crucial new ingredients are the inclusion of the effects of gravitational backreaction on the evolution of the network, and the accurate evolution of the network through the radiation to matter transition. Our work re-iterates the fact that expanding Universe numerical simulations only probe a transient regime, and we incorporate our results into the unequal time correlators recently measured. We then compute the CMB and CDM fluctuations' power spectra for various values of the Hubble constant $H_0$ and baryon fraction $\\Omega_b$. We find that, whereas the dependence on $\\Omega_b$ is negligible, there is still a strong dependence on $H_0$.

  13. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    2002-01-01

    This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g

  14. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    1997-01-01

    This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical

  15. BMS in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, A. [Department of Theoretical Physics,24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2016-05-25

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  16. BMS in cosmology

    Science.gov (United States)

    Kehagias, A.; Riotto, A.

    2016-05-01

    Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.

  17. From Systematic Errors to Cosmology Using Large-Scale Structure

    Science.gov (United States)

    Hunterer, Dragan

    We propose to carry out a two-pronged program to significantly improve links between galaxy surveys and constraints on primordial cosmology and fundamental physics. We will first develop the methodology to self-calibrate the survey, that is, determine the large-angle calibration systematics internally from the survey. We will use this information to correct biases that propagate from the largest to smaller angular scales. Our approach for tackling the systematics is very complementary to existing ones, in particular in the sense that it does not assume knowledge of specific systematic maps or templates. It is timely to undertake these analyses, since none of the currently known methods addresses the multiplicative effects of large-angle calibration errors that contaminate the small-scale signal and present one of the most significant sources of error in the large-scale structure. The second part of the proposal is to precisely quantify the statistical and systematic errors in the reconstruction of the Integrated Sachs-Wolfe (ISW) contribution to the cosmic microwave background (CMB) sky map using information from galaxy surveys. Unlike the ISW contributions to CMB power, the ISW map reconstruction has not been studied in detail to date. We will create a nimble plug-and-play pipeline to ascertain how reliably a map from an arbitrary LSS survey can be used to separate the late-time and early-time contributions to CMB anisotropy at large angular scales. We will pay particular attention to partial sky coverage, incomplete redshift information, finite redshift range, and imperfect knowledge of the selection function for the galaxy survey. Our work should serve as the departure point for a variety of implications in cosmology, including the physical origin of the large-angle CMB "anomalies".

  18. Cosmological parameters from large scale structure - geometric versus shape information

    Science.gov (United States)

    Hamann, Jan; Hannestad, Steen; Lesgourgues, Julien; Rampf, Cornelius; Wong, Yvonne Y. Y.

    2010-07-01

    The matter power spectrum as derived from large scale structure (LSS) surveys contains two important and distinct pieces of information: an overall smooth shape and the imprint of baryon acoustic oscillations (BAO). We investigate the separate impact of these two types of information on cosmological parameter estimation for current data, and show that for the simplest cosmological models, the broad-band shape information currently contained in the SDSS DR7 halo power spectrum (HPS) is by far superseded by geometric information derived from the baryonic features. An immediate corollary is that contrary to popular beliefs, the upper limit on the neutrino mass mν presently derived from LSS combined with cosmic microwave background (CMB) data does not in fact arise from the possible small-scale power suppression due to neutrino free-streaming, if we limit the model framework to minimal ΛCDM+mν. However, in more complicated models, such as those extended with extra light degrees of freedom and a dark energy equation of state parameter w differing from -1, shape information becomes crucial for the resolution of parameter degeneracies. This conclusion will remain true even when data from the Planck spacecraft are combined with SDSS DR7 data. In the course of our analysis, we update both the BAO likelihood function by including an exact numerical calculation of the time of decoupling, as well as the HPS likelihood, by introducing a new dewiggling procedure that generalises the previous approach to models with an arbitrary sound horizon at decoupling. These changes allow a consistent application of the BAO and HPS data sets to a much wider class of models, including the ones considered in this work. All the cases considered here are compatible with the conservative 95%-bounds ∑mν < 1.16eV, Neff = 4.8±2.0.

  19. Constraining cosmological ultralarge scale structure using numerical relativity

    Science.gov (United States)

    Braden, Jonathan; Johnson, Matthew C.; Peiris, Hiranya V.; Aguirre, Anthony

    2017-07-01

    Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultralarge scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultralarge scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full general relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically meaningful ensemble of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given the observed CMB quadrupole, finding that when including gravitational nonlinearities, ULSS curvature perturbations of order unity are allowed by the data, even on length scales not too much larger than the size of the observable universe. To demonstrate the robustness of our conclusions, we also explore a semianalytic model for the ULSS which reproduces our numerical results for the case of planar symmetry, and which can be extended to ULSS with a three-dimensional inhomogeneity structure. Our results illustrate the utility and importance of numerical relativity for constraining early universe cosmology.

  20. K-mouflage Cosmology: Formation of Large-Scale Structures

    CERN Document Server

    Brax, Philippe

    2014-01-01

    We study structure formation in K-mouflage cosmology whose main feature is the absence of screening effect on quasi-linear scales. We show that the growth of structure at the linear level is both affected by a new time dependent Newton constant and a friction term which depend on the background evolution. These combine with the modified background evolution to change the growth rate by up to ten percent since $z\\sim 2$. At the one loop level, we find that the non-linearities of the K-mouflage models are mostly due to the matter dynamics and that the scalar perturbations can be treated at tree level. We also study the spherical collapse in K-mouflage models and show that the critical density contrast deviates from its $\\Lambda$-CDM value and that, as a result, the halo mass function is modified for large masses by an order one factor. Finally we consider the deviation of the matter spectrum from $\\Lambda$-CDM on non-linear scales where a halo model is utilised. We find that the discrepancy peaks around $1\\ h{\\...

  1. Cosmological Forecasts for Combined and Next Generation Peculiar Velocity Surveys

    CERN Document Server

    Howlett, Cullan; Blake, Chris

    2016-01-01

    Peculiar velocity surveys present a very promising route to measuring the growth rate of large-scale structure and its scale dependence. However, individual peculiar velocity surveys suffer from large statistical errors due to the intrinsic scatter in the relations used to infer a galaxy's true distance. In this context we use a Fisher Matrix formalism to investigate the statistical benefits of combining multiple peculiar velocity surveys. We find that for all cases we consider there is a marked improvement on constraints on the linear growth rate $f\\sigma_{8}$. For example, the constraining power of only a few peculiar velocity measurements is such that the addition of the 2MASS Tully-Fisher survey (containing only $\\sim2,000$ galaxies) to the full redshift and peculiar velocity samples of the 6-degree Field Galaxy Survey (containing $\\sim 110,000$ redshifts and $\\sim 9,000$ velocities) can improve growth rate constraints by $\\sim20\\%$. Furthermore, the combination of the future TAIPAN and WALLABY+WNSHS surv...

  2. Interacting dark energy models in Cosmology and large-scale structure observational tests

    OpenAIRE

    Rafael José França Marcondes

    2016-01-01

    Modern Cosmology offers us a great understanding of the universe with striking precision, made possible by the modern technologies of the newest generations of telescopes. The standard cosmological model, however, is not absent of theoretical problems and open questions. One possibility that has been put forward is the existence of a coupling between dark sectors. The idea of an interaction between the dark components could help physicists understand why we live in an epoch of the universe wh...

  3. Globally baryon symmetric cosmology, GUT spontaneous symmetry breaking, and the structure of the universe

    Science.gov (United States)

    Stecker, F. W.; Brown, R. W.

    1979-01-01

    Grand unified theories (GUT) such as SU(5), with spontaneous symmetry breaking, can lead more naturally to a globally baryon symmetric big bang cosmology with a domain structure than to a totally asymmetric cosmology. The symmetry is broken at random in causally independent domains, favoring neither a baryon nor an antibaryon excess on a universal scale. Because of the additional freedom in the high-energy physics allowed by such GUT gauge theories, new observational tests may be possible. Arguments in favor of this cosmology and various observational tests are discussed.

  4. The generation model of particle physics and the cosmological matter-antimatter asymmetry problem

    CERN Document Server

    Robson, B A

    2016-01-01

    The matter-antimatter asymmetry problem, corresponding to the virtual nonexistence of antimatter in the universe, is one of the greatest mysteries of cosmology. Within the framework of the Generation Model (GM) of particle physics, it is demonstrated that the matter-antimatter asymmetry problem may be understood in terms of the composite leptons and quarks of the GM. It is concluded that there is essentially no matter-antimatter asymmetry in the present universe and that the observed hydrogen-antihydrogen asymmetry may be understood in terms of statistical fluctuations associated with the complex many-body processes involved in the formation of either a hydrogen atom or an antihydrogen atom.

  5. Generative Moire Structures

    Directory of Open Access Journals (Sweden)

    Adrian – Mihail Marian

    2006-01-01

    Full Text Available “GRAPHIC ON COMPUTER” – the work of the Czech Petar Milojevic, published in Titus Mocanu’s book “THE MODERN ART’S MORPHOLOGY”, in 1973, had great influence on me. I tried to discover the algorithm that generated this work. It was not so difficult to do and in a short time I was able to draw 12 such structures. In time, with interruptions, I have returned to this kind of works. In my personal exhibition “CYBERNETIC DESIGN” that took place at “M4-1-13-etopa” gallery of Pitesti, in March 1981, I have presented 8 such structures. To my joy, they had an impact on art lovers.

  6. Topics in cosmology: Structure formation, dark energy and recombination

    Science.gov (United States)

    Alizadeh, Esfandiar

    The field of theoretical cosmology consists of numerous, inter-related branches, whose ambitious goal is to uncover the history of the universe from its beginning to its future. Achieving this, no doubt, requires a deep understanding of many areas of physics. In this thesis I touch upon a few of these areas in which I worked during my PhD studies. Chapter (2) describes our work in finding the accretion and merger history of dark matter halos. Dark matter halos are the collapsed dark matter structures in the late time evolution of the universe, whose existence is vital for the formation of galaxies in the Universe as they act as the potential wells where normal matter (collectively called Baryons) can accumulate, cool, and form stars. It is then no surprise that the properties of galaxies depends on the properties of the dark matter halo in which it resides, including its merger history, i.e. the number of times it merged with other halos. Even though these merger rates can be calculated theoretically for infinitesimal time steps, in order to find the merger history over an extended period of time one had to use either Monte-Carlo simulations to build up the total rates of merging and accreting from the infinitesimal rates or use N-body simulations. In chapter (2) we show how we used random walk formalism to write down an analytical (integral) equation for the merger history of halos. We have solved this equation numerically and find very good agreement with Monte-Carlo simulations. This work can be used in theories of galaxy formation and evolution. We then switch from the overdense regions of the Universe, halos, to the underdense ones, voids. These structures have not attracted as much attention from cosmologists as their overdense counterparts in probing the cosmological models. We show here that the shapes of voids as a probe can be of use for future surveys to pin down the equation of state of the dark energy, i.e. the ratio of its pressure to its energy

  7. How the Density Environment Changes the Influence of the Dark Matter–Baryon Streaming Velocity on Cosmological Structure Formation

    Science.gov (United States)

    Ahn, Kyungjin

    2016-10-01

    We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich & Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich & Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich & Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.

  8. Preons, Dark Matter and the Production of Early Cosmological Structures

    CERN Document Server

    Burdyuzha, V; Ponomarev, Yu; Vereshkov, G M; Ponomarev, Yu.

    1999-01-01

    If the preon structure of quarks, leptons and gauge bosons will be proved then in the Universe during relativistic phase transition the production of nonperturbative preon condensates has been occured collective excitations of which are perceived as pseudogoldstone bosons. Dark matter consisting of pseudogoldstone bosons of familon type contains a "hot" component from massless particles and a "cold" (nonrelativistic) component from massive particles. It is shown that such dark matter was undergone to two relativistic phase transitions temperatures of which were different. In the result of these phase transitions the structurization of dark matter and therefore the baryon subsystem has taken place. Besides, the role of particle generations in the Universe become more evident. For the possibility of structurization of matter as minimum three generations of particles are necessary.

  9. Computational Cosmology: from the Early Universe to the Large Scale Structure

    Directory of Open Access Journals (Sweden)

    Anninos Peter

    2001-01-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  10. Computational Cosmology: from the Early Universe to the Large Scale Structure

    Directory of Open Access Journals (Sweden)

    Peter Anninos

    1998-09-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on thosecalculations designed to test different models of cosmology against the observed Universe.

  11. Cosmological nonlinear structure formation in full general relativity

    CERN Document Server

    Torres, Jose M; Diez-Tejedor, Alberto; Nunez, Dario

    2014-01-01

    We perform numerical evolutions of cosmological scenarios using a standard general relativistic code in spherical symmetry. We concentrate on two different situations: initial matter distributions that are homogeneous and isotropic, and perturbations to those that respect the spherical symmetry. As matter models we consider the case of a pressureless perfect fluid, i.e. dust, and the case of a real massive scalar field oscillating around the minimum of the potential. Both types of matter have been considered as possible dark matter candidates in the cosmology literature, dust being closely related to the standard cold dark matter paradigm. We confirm that in the linear regime the perturbations associated with these types of matter grow in essentially the same way, the main difference being that in the case of a scalar field the dynamics introduce a cut-off in the power spectrum of the density perturbations at scales comparable with the Compton wavelength of the field. We also follow the evolutions well beyond...

  12. Origin of Structure in the Universe: Quantum Cosmology Reconsidered

    CERN Document Server

    Anderson, Edward

    2015-01-01

    Based on a more careful canonical analysis, we motivate a reduced quantization of slightly inhomogeneous cosmology in place of the Dirac quantization in the existing literature, and provide it in the vacuum case. This is attained via consideration of configuration space geometries at various levels of reduction. Some of these have the good fortunate of being flat. Geometrically natural coordinates thereupon are interpreted in terms of the original redundant formulation's well-known mode expansion coefficients.

  13. Compact extra dimensions in cosmologies with f(T) structure

    CERN Document Server

    Fiorini, Franco; Vasquez, Yerko

    2013-01-01

    The presence of compact extra dimensions in cosmological scenarios in the context of f(T)-like gravities is discussed. For the case of toroidal compactifications, the analysis is performed in an arbitrary number of extra dimensions. Spherical topologies for the extra dimensions are then carefully studied in six and seven spacetime dimensions, where the proper vielbein fields responsible for the parallelization process are found.

  14. Cosmology and the weak interaction

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Fermi National Accelerator Lab., Batavia, IL (USA)):(Chicago Univ., IL (USA))

    1989-12-01

    The weak interaction plays a critical role in modern Big Bang cosmology. This review will emphasize two of its most publicized cosmological connections: Big Bang nucleosynthesis and Dark Matter. The first of these is connected to the cosmological prediction of Neutrino Flavours, N{sub {nu}} {approximately} 3 which is now being confirmed at SLC and LEP. The second is interrelated to the whole problem of galaxy and structure formation in the universe. This review will demonstrate the role of the weak interaction both for dark matter candidates and for the problem of generating seeds to form structure. 87 refs., 3 figs., 5 tabs.

  15. Cluster Structure in Cosmological Simulations I: Correlation to Observables, Mass Estimates, and Evolution

    CERN Document Server

    Jeltema, Tesla E; Burns, Jack O; Motl, Patrick M

    2007-01-01

    We use Enzo, a hybrid Eulerian AMR/N-body code including non-gravitational heating and cooling, to explore the morphology of the X-ray gas in clusters of galaxies and its evolution in current generation cosmological simulations. We employ and compare two observationally motivated structure measures: power ratios and centroid shift. Overall, the structure of our simulated clusters compares remarkably well to low-redshift observations, although some differences remain that may point to incomplete gas physics. We find no dependence on cluster structure in the mass-observable scaling relations, T_X-M and Y_X-M, when using the true cluster masses. However, estimates of the total mass based on the assumption of hydrostatic equilibrium, as assumed in observational studies, are systematically low. We show that the hydrostatic mass bias strongly correlates with cluster structure and, more weakly, with cluster mass. When the hydrostatic masses are used, the mass-observable scaling relations and gas mass fractions depen...

  16. The Challenge of the Largest Structures in the Universe to Cosmology

    CERN Document Server

    Park, Changbom; Kim, Juhan; Gott, J Richard; Kim, Sungsoo S; Kim, Kap-Sung

    2012-01-01

    Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e. the flat LCDM model). Here we show that the existence of the SGW is perfectly consistent with the LCDM model, a result that only our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the LCDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primor...

  17. Imaginative Cosmology

    CERN Document Server

    Brandenberger, R H; Brandenberger, Robert H.; Magueijo, Joao

    1999-01-01

    We review a few off-the-beaten-track ideas in cosmology. They solve a variety of fundamental problems; also they are fun. We start with a description of non-singular dilaton cosmology. In these scenarios gravity is modified so that the Universe does not have a singular birth. We then present a variety of ideas mixing string theory and cosmology. These solve the cosmological problems usually solved by inflation, and furthermore shed light upon the issue of the number of dimensions of our Universe. We finally review several aspects of the varying speed of light theory. We show how the horizon, flatness, and cosmological constant problems may be solved in this scenario. We finally present a possible experimental test for a realization of this theory: a test in which the Supernovae results are to be combined with recent evidence for redshift dependence in the fine structure constant.

  18. Simulating nonlinear cosmological structure formation with massive neutrinos

    CERN Document Server

    Banerjee, Arka

    2016-01-01

    We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

  19. Cosmological Parameter Estimation with Large Scale Structure Observations

    CERN Document Server

    Di Dio, Enea; Durrer, Ruth; Lesgourgues, Julien

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, $C_\\ell(z_1,z_2)$, calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard $P(k)$ analysis with the new $C_\\ell(z_1,z_2)$ method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the $P(k)$ analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, $C_0(z_1,z_2)$.

  20. Spurious Small-Scale Structure & Discreteness-Driven Relaxation in Cosmological Simulations

    CERN Document Server

    Power, Chris; Obreschkow, Danail; Hobbs, Alexander; Lewis, Geraint F

    2016-01-01

    There is strong evidence that cosmological N-body simulations dominated by Warm Dark Matter (WDM) contain spurious or unphysical haloes, most readily apparent as regularly spaced low-mass haloes strung along filaments. We show that spurious haloes are a feature of traditional N-body simulations of cosmological structure formation models, including WDM and Cold Dark Matter (CDM) models, in which gravitational collapse proceeds in an initially anisotropic fashion, and arises naturally as a consequence of discreteness-driven relaxation. We demonstrate this using controlled N-body simulations of plane-symmetric collapse and show that spurious haloes are seeded at shell crossing by localised velocity perturbations induced by the discrete nature of the density field, and that their characteristic separation should be approximately the mean inter-particle separation of the N-body simulation, which is fixed by the mass resolution within the volume. Using cosmological N-body simulations in which particles are split in...

  1. The BAHAMAS project: Calibrated hydrodynamical simulations for large-scale structure cosmology

    CERN Document Server

    McCarthy, Ian G; Bird, Simeon; Brun, Amandine M C Le

    2016-01-01

    The evolution of the large-scale distribution of matter is sensitive to a variety of fundamental parameters that characterise the dark matter, dark energy, and other aspects of our cosmological framework. Since the majority of the mass density is in the form of dark matter that cannot be directly observed, to do cosmology with large-scale structure one must use observable (baryonic) quantities that trace the underlying matter distribution in a (hopefully) predictable way. However, recent numerical studies have demonstrated that the mapping between observable and total mass, as well as the total mass itself, are sensitive to unresolved feedback processes associated with galaxy formation, motivating explicit calibration of the feedback efficiencies. Here we construct a new suite of large-volume cosmological hydrodynamical simulations (called BAHAMAS, for BAryons and HAloes of MAssive Systems) where subgrid models of stellar and Active Galactic Nucleus (AGN) feedback have been calibrated to reproduce the present...

  2. An introduction to cosmology

    CERN Document Server

    Narlikar, Jayant Vishnu

    2002-01-01

    The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.

  3. Cosmological surveys with multi-object spectrographs

    CERN Document Server

    Colless, Matthew

    2016-01-01

    Multi-object spectroscopy has been a key technique contributing to the current era of 'precision cosmology'. From the first exploratory surveys of the large-scale structure and evolution of the universe to the current generation of superbly detailed maps spanning a wide range of redshifts, multi-object spectroscopy has been a fundamentally important tool for mapping the rich structure of the cosmic web and extracting cosmological information of increasing variety and precision. This will continue to be true for the foreseeable future, as we seek to map the evolving geometry and structure of the universe over the full extent of cosmic history in order to obtain the most precise and comprehensive measurements of cosmological parameters. Here I briefly summarize the contributions that multi-object spectroscopy has made to cosmology so far, then review the major surveys and instruments currently in play and their prospects for pushing back the cosmological frontier. Finally, I examine some of the next generation ...

  4. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    CERN Document Server

    Gaite, Jose

    2013-01-01

    Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos, it is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  5. Halo Models of Large Scale Structure and Reliability of Cosmological N-Body Simulations

    Directory of Open Access Journals (Sweden)

    José Gaite

    2013-05-01

    Full Text Available Halo models of the large scale structure of the Universe are critically examined, focusing on the definition of halos as smooth distributions of cold dark matter. This definition is essentially based on the results of cosmological N-body simulations. By a careful analysis of the standard assumptions of halo models and N-body simulations and by taking into account previous studies of self-similarity of the cosmic web structure, we conclude that N-body cosmological simulations are not fully reliable in the range of scales where halos appear. Therefore, to have a consistent definition of halos is necessary either to define them as entities of arbitrary size with a grainy rather than smooth structure or to define their size in terms of small-scale baryonic physics.

  6. Neutrino cosmology

    CERN Document Server

    Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.

  7. Approximate Methods for the Generation of Dark Matter Halo Catalogs in the Age of Precision Cosmology

    Directory of Open Access Journals (Sweden)

    Pierluigi Monaco

    2016-10-01

    Full Text Available Precision cosmology has recently triggered new attention on the topic of approximate methods for the clustering of matter on large scales, whose foundations date back to the period from the late 1960s to early 1990s. Indeed, although the prospect of reaching sub-percent accuracy in the measurement of clustering poses a challenge even to full N-body simulations, an accurate estimation of the covariance matrix of clustering statistics, not to mention the sampling of parameter space, requires usage of a large number (hundreds in the most favourable cases of simulated (mock galaxy catalogs. Combination of few N-body simulations with a large number of realizations performed with approximate methods gives the most promising approach to solve these problems with a reasonable amount of resources. In this paper I review this topic, starting from the foundations of the methods, then going through the pioneering efforts of the 1990s, and finally presenting the latest extensions and a few codes that are now being used in present-generation surveys and thoroughly tested to assess their performance in the context of future surveys.

  8. Non-linear structure formation in the `Running FLRW' cosmological model

    Science.gov (United States)

    Bibiano, Antonio; Croton, Darren J.

    2016-07-01

    We present a suite of cosmological N-body simulations describing the `Running Friedmann-Lemaïtre-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Lambda cold dark matter (ΛCDM) with a time-evolving vacuum density, Λ(z), and time-evolving gravitational Newton's coupling, G(z). In this paper, we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realization of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalization choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the deviations of R-FLRW from ΛCDM, which could be readily exploited by future cosmological observations to test and further constrain the model.

  9. Interacting dark energy models in Cosmology and large-scale structure observational tests

    CERN Document Server

    Marcondes, Rafael J F

    2016-01-01

    Modern Cosmology offers us a great understanding of the universe with striking precision, made possible by the modern technologies of the newest generations of telescopes. The standard cosmological model, however, is not absent of theoretical problems and open questions. One possibility that has been put forward is the existence of a coupling between dark sectors. The idea of an interaction between the dark components could help physicists understand why we live in an epoch of the universe where dark matter and dark energy are comparable in terms of energy density, which can be regarded as a coincidence given that their time evolutions are completely different. We introduce the interaction phenomenologically and proceed to test models of interaction with observations of redshift-space distortions. In a flat universe composed only of those two fluids, we consider separately two forms of interaction, through terms proportional to the densities of both dark energy and dark matter. An analytic expression for the ...

  10. An evaluation of cosmological models from expansion and growth of structure measurements

    OpenAIRE

    Zhai, Zhongxu; Blanton, Michael; Slosar, Anže; Tinker, Jeremy

    2017-01-01

    We compare a large suite of theoretical cosmological models to observational data from the cosmic microwave background, baryon acoustic oscillation measurements of expansion, Type Ia SNe measurements of expansion, redshift space distortion measurements of the growth of structure, and the local Hubble constant. Our theoretical models include parametrizations of dark energy as well as physical models of dark energy and modified gravity. We determine the constraints on the model parameters, inco...

  11. The Anthropic Principle and numerical coincidences involving the cosmological, gravitational and fine structure constants

    CERN Document Server

    Eaves, Laurence

    2014-01-01

    Christian Beck has proposed a set of Shannon-Khinchin axioms to derive a formula for the cosmological constant, {\\Lambda}. We discuss this result in relation to numerical coincidences involving the measured values of {\\Lambda} and the gravitational and fine structure constants, G and {\\alpha}. The empirical formulae that inter-relate the three constants suggest that the measured values of G and {\\Lambda} are consistent with the apparent anthropic fine-tuning of {\\alpha}.

  12. Cosmological implications in electrodynamics due to variations of the fine structure constant

    CERN Document Server

    Martínez-Ledesma, J L

    2002-01-01

    Astronomical observations are strongly suggesting that the fine structure constant varies cosmologically. We present an analysis on the consequences that this variations might induce on the electromagnetic field as a whole. We show that under this circumstances the electrodynamics in vacuum of the universe are described by two fields, the ``standard'' Maxwell's field and a new scalar field. We provide a generalized Lorentz force which can be used to test our results experimentally.

  13. The cosmological consequences of the preon structure of matter

    Science.gov (United States)

    Burdyuzha, Vladimir V.; Vereshkov, Grigory M.; Lalakulich, Olga D.; Ponomarev, Yuri N.

    1999-07-01

    If the preon structure of quarks, leptons and gauge bosons will be proved then in the Universe during a relativistic phase transition the production of nonperturbative preon condensates has occurred. Familons are collective excitations of these condensates. It is shown that the dark matter consisting of familon type pseudogoldstone bosons was undergone to two relativistic phase transitions temperatures of which were different. In the result of these phase transitions the structurization of dark matter and therefore the baryon subsystem had taken place. In the Universe two characteristic scales which have printed this phenomenon arise naturally.

  14. Thick strings, the liquid crystal blue phase, and cosmological large-scale structure

    Science.gov (United States)

    Luo, Xiaochun; Schramm, David N.

    1992-01-01

    A phenomenological model based on the liquid crystal blue phase is proposed as a model for a late-time cosmological phase transition. Topological defects, in particular thick strings and/or domain walls, are presented as seeds for structure formation. It is shown that the observed large-scale structure, including quasi-periodic wall structure, can be well fitted in the model without violating the microwave background isotropy bound or the limits from induced gravitational waves and the millisecond pulsar timing. Furthermore, such late-time transitions can produce objects such as quasars at high redshifts. The model appears to work with either cold or hot dark matter.

  15. Renormalization-group flow of the effective action of cosmological large-scale structures

    CERN Document Server

    Floerchinger, Stefan

    2017-01-01

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input ...

  16. Temperature and thermodynamic structure of Einstein's equations for a cosmological black hole

    CERN Document Server

    Bhattacharya, Krishnakanta

    2016-01-01

    It is expected that the cosmological black holes are the closest realistic solutions of gravitational theories and they evolve with time. Moreover, the natural way of defining thermodynamic entities for the stationary ones is not applicable in the case of a time dependent spacetime. Here we confine our discussion within the Sultana-Dyer metric which is a cosmological black hole solution of Einstein's gravity. In literature, there exists two expressions of horizon temperature -- one is time dependent and the other does not depend on time. To single out the correct one we find the temperature by studying the Hawking effect in the tunnelling formalism. This leads to time dependent structure. After identifying the correct one, the Einstein's equations are written on the horizon and we show that this leads to the first law of thermodynamics. In this process the expressions for horizon entropy and energy, obtained earlier by explicit calculations, are being used. This provides the evidence that Einstein's equations...

  17. The BAHAMAS project: calibrated hydrodynamical simulations for large-scale structure cosmology

    Science.gov (United States)

    McCarthy, Ian G.; Schaye, Joop; Bird, Simeon; Le Brun, Amandine M. C.

    2017-03-01

    The evolution of the large-scale distribution of matter is sensitive to a variety of fundamental parameters that characterize the dark matter, dark energy, and other aspects of our cosmological framework. Since the majority of the mass density is in the form of dark matter that cannot be directly observed, to do cosmology with large-scale structure, one must use observable (baryonic) quantities that trace the underlying matter distribution in a (hopefully) predictable way. However, recent numerical studies have demonstrated that the mapping between observable and total mass, as well as the total mass itself, are sensitive to unresolved feedback processes associated with galaxy formation, motivating explicit calibration of the feedback efficiencies. Here, we construct a new suite of large-volume cosmological hydrodynamical simulations (called BAHAMAS, for BAryons and HAloes of MAssive Systems), where subgrid models of stellar and active galactic nucleus feedback have been calibrated to reproduce the present-day galaxy stellar mass function and the hot gas mass fractions of groups and clusters in order to ensure the effects of feedback on the overall matter distribution are broadly correct. We show that the calibrated simulations reproduce an unprecedentedly wide range of properties of massive systems, including the various observed mappings between galaxies, hot gas, total mass, and black holes, and represent a significant advance in our ability to mitigate the primary systematic uncertainty in most present large-scale structure tests.

  18. Generation of large-scale magnetic fields, non-Gaussianity, and primordial gravitational waves in inflationary cosmology

    CERN Document Server

    Bamba, Kazuharu

    2014-01-01

    The generation of large-scale magnetic fields in inflationary cosmology is explored, in particular, in a kind of moduli inflation motivated by racetrack inflation in the context of the Type IIB string theory. In this model, the conformal invariance of the hypercharge electromagnetic fields is broken thanks to the coupling of both the scalar and pseudoscalar fields to the hypercharge electromagnetic fields. The following three cosmological observable quantities are first evaluated: The current magnetic field strength on the Hubble horizon scale, which is much smaller than the upper limit from the back reaction problem, the local non-Gaussianity of the curvature perturbations due to the existence of the massive gauge fields, and the tensor-to-scalar ratio. It is explicitly demonstrated that the resultant values of the local non-Gaussianity and the tensor-to-scalar ratio are consistent with the Planck data.

  19. Possible Cosmological Implications of Time Varying Fine Structure Constant

    CERN Document Server

    Berman, M S; Berman, Marcelo S.; Trevisan, Luis A.

    2001-01-01

    We make use of Dirac LNH and results for a time varying fine structure constant in order to derive possible laws of variation for speed of light, the number of nucleons in the Universe, energy density and gravitational constant. By comparing with experimental bounds on G variation, we find that the deceleration paramenter of the present Universe is negative. This is coherent with recent Supernovae observations.

  20. The Cosmological Consequences of the Preon Structure of Matter

    CERN Document Server

    Burdyuzha, V; Lalakulich, O; Ponomarev, Yu; Burdyuzha, Vladimir; Vereshkov, Grigory; Lalakulich, Olga; Ponomarev, Yuri

    1999-01-01

    If the preon structure of quarks, leptons and gauge bosons will be provedthen in the Universe during a relativistic phase transition the production ofnonperturbative preon condensates has occured. Familons are collectiveexcitations of these condensates. It is shown that the dark matter consisting of familon type pseudogoldstonebosons was undergone to two relativistic phase transitions temperatures ofwhich were different. In the result of these phase transitions thestructurization of dark matter and therefore the baryon subsystem has takenplace. In the Universe two characteristic scales which have printed thisphenomenon arise naturally.

  1. Thermal condensate structure and cosmological energy density of the Universe

    CERN Document Server

    Capolupo, Antonio; Vitiello, Giuseppe

    2016-01-01

    The aim of this paper is the study of thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB) and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the thermo field dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, non trivial contribution to the energy of the universe is given by particles of masses of the order of $10^{-4}eV$ compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.

  2. Thermal Condensate Structure and Cosmological Energy Density of the Universe

    Directory of Open Access Journals (Sweden)

    Antonio Capolupo

    2016-01-01

    Full Text Available The aim of this paper is to study thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the Thermo Field Dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, nontrivial contribution to the energy of the universe is given by particles of masses of the order of 10−4 eV compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.

  3. Cosmological Structure Formation with Augmented Lagrangian Perturbation Theory

    CERN Document Server

    Kitaura, Francisco-Shu

    2012-01-01

    We present a new fast and efficient approach to model structure formation with aug- mented Lagrangian perturbation theory (ALPT). Our method is based on splitting the dis- placement field into a long and a short range component. The long range component is computed by second order LPT (2LPT). This approximation contains a tidal nonlocal and nonlinear term. Unfortunately, 2LPT fails on small scales due to severe shell crossing and a crude quadratic behaviour in the low density regime. The spherical collapse (SC) approximation has been recently reported to correct for both effects by adding an ideal collapse truncation. However, this approach fails to reproduce the structures on large scales where it is significantly less correlated with the N-body result than 2LPT or linear LPT (the Zeldovich approximation). We propose to combine both approximations using for the short range displacement field the SC solution. A Gaussian filter with a smoothing radius r_S is used to separate between both regimes. We use the re...

  4. Constraining cosmological ultra-large scale structure using numerical relativity

    CERN Document Server

    Braden, Jonathan; Peiris, Hiranya V; Aguirre, Anthony

    2016-01-01

    Cosmic inflation, a period of accelerated expansion in the early universe, can give rise to large amplitude ultra-large scale inhomogeneities on distance scales comparable to or larger than the observable universe. The cosmic microwave background (CMB) anisotropy on the largest angular scales is sensitive to such inhomogeneities and can be used to constrain the presence of ultra-large scale structure (ULSS). We numerically evolve nonlinear inhomogeneities present at the beginning of inflation in full General Relativity to assess the CMB quadrupole constraint on the amplitude of the initial fluctuations and the size of the observable universe relative to a length scale characterizing the ULSS. To obtain a statistically significant number of simulations, we adopt a toy model in which inhomogeneities are injected along a preferred direction. We compute the likelihood function for the CMB quadrupole including both ULSS and the standard quantum fluctuations produced during inflation. We compute the posterior given...

  5. Further Evidence for Cosmological Evolution of the Fine Structure Constant

    CERN Document Server

    Webb, J K; Flambaum, V V; Dzuba, V A; Barrow, John D; Churchill, C W; Prochaska, J X; Wolfe, A M

    2001-01-01

    We summarise the results of a search for time variability of the fine structure constant, alpha, using absorption systems in the spectra of distant quasars. Three large optical datasets and two 21cm/mm absorption systems provide four independent samples, spanning approximately 23% to 87% of the age of the universe. Each sample yields a negative Delta(alpha)/alpha (smaller alpha in the past) and the whole optical sample shows a 4-sigma deviation: Delta(alpha)/alpha = -0.72 +/- 0.18 x 10^{-5} over the redshift range 0.5 < z < 3.5. A comprehensive search for systematic effects reveals none which can explain our results. The only potentially significant systematic effects push Delta(alpha)/alpha towards positive values, i.e. our results would become more significant were we to correct for them.

  6. Non-linear structure formation in the "Running FLRW" cosmological model

    CERN Document Server

    Bibiano, Antonio

    2016-01-01

    We present a suite of cosmological N-body simulations describing the "Running Friedmann-Lema{\\"i}tre-Robertson-Walker" (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends {\\Lambda}CDM with a time-evolving vacuum density, {\\Lambda}(z), and time-evolving gravitational Newton's coupling, G(z). In this paper we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realisation of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalisation choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the...

  7. The Philosophy of Cosmology

    Science.gov (United States)

    Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon

    2017-04-01

    Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? – comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O

  8. Cosmological bootstrap

    CERN Document Server

    Kiselev, V V

    2012-01-01

    A huge value of cosmological constant characteristic for the particle physics and the inflation of early Universe are inherently related to each other: one can construct a fine-tuned superpotential, which produces a flat potential of inflaton with a constant density of energy V=\\Lambda^4 after taking into account for leading effects due to the supergravity, so that an introduction of small quantum loop-corrections to parameters of this superpotential naturally results in the dynamical instability relaxing the primary cosmological constant by means of inflationary regime. The model phenomenologically agrees with observational data on the large scale structure of Universe at \\Lambda~10^{16} GeV.

  9. Dimensionless cosmology

    CERN Document Server

    Narimani, Ali; Scott, Douglas

    2011-01-01

    Although it is possible that some fundamental physical constants could vary in time, it is important to only consider dimensionless combinations, such as the fine structure constant or the equivalent coupling constant for gravity. Once all such dimensionless numbers have been given, then we can be sure that our cosmological picture is governed by the same physical laws as that of another civilization with an entirely different set of units. An additional feature of the standard model of cosmology raises an extra complication, namely that the epoch at which we live is a crucial part of the model. This can be defined by giving the value of any one of the evolving cosmological parameters. It takes some care to avoid inconsistent results for constraints on variable constants, which could be caused by effectively fixing more than one parameter today. We show examples of this effect by considering in some detail the physics of Big Bang nucleosynthesis, recombination and microwave background anisotropies, being care...

  10. Nuclear structure constrains on resonant energies: A solution of the cosmological {sup 7}Li problem?

    Energy Technology Data Exchange (ETDEWEB)

    Civitarese, O., E-mail: osvaldo.civitarese@fisica.unlp.edu.ar [Department of Physics, University of La Plata c.c. 67, 1900 La Plata (Argentina); Mosquera, M.E., E-mail: mmosquera@fcaglp.unlp.edu.ar [Department of Physics, University of La Plata c.c. 67, 1900 La Plata (Argentina); Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque, 1900 La Plata (Argentina)

    2013-01-17

    In this work, we study the cosmological {sup 7}Li problem from a nuclear structure point of view, by including resonances in the reactions which populate beryllium. The calculation of primordial abundances is performed by solving the balance equations semi-analytically. It is found that the primordial abundance of lithium is indeed reduced, as a consequence of the presence of resonant channels in the relevant cross sections. We set limits on the resonant energy for each reaction relevant for the chain leading to {sup 7}Li, by performing a statistical analysis of the available observational data.

  11. Global structure of Robinson-Trautman radiative space-times with cosmological constant

    CERN Document Server

    Bicák, J

    1997-01-01

    Robinson-Trautman radiative space-times of Petrov type II with a non-vanishing cosmological constant Lambda and mass parameter m>0 are studied using analytical methods. They are shown to approach the corresponding spherically symmetric Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter solution at large retarded times. Their global structure is analyzed, and it is demonstrated that the smoothness of the extension of the metrics across the horizon, as compared with the case Lambda=0, is increased for Lambda>0 and decreased for Lambda0 exhibit explicitly the cosmic no-hair conjecture under the presence of gravitational waves.

  12. The Impact of Decoherence and Dissipation on Cosmological Systems and on the Generation of Entanglement

    OpenAIRE

    2010-01-01

    The physics of open quantum systems, and therefore the phenomenon of decoherence, has become important in many branches of research. Within this thesis, we investigate the system--environment interaction in the context of different problems. The influence of decoherence is ubiquitous and, due to the scale independence of quantum theory, not limited to microscopic systems. One of the great open problems in theoretical physics is the appearance of a cosmological constant which differs by many o...

  13. Ultracompact Minihalos as Probes of Inflationary Cosmology

    Science.gov (United States)

    Aslanyan, Grigor; Price, Layne C.; Adams, Jenni; Bringmann, Torsten; Clark, Hamish A.; Easther, Richard; Lewis, Geraint F.; Scott, Pat

    2016-09-01

    Cosmological inflation generates primordial density perturbations on all scales, including those far too small to contribute to the cosmic microwave background. At these scales, isolated ultracompact minihalos of dark matter can form well before standard structure formation, if the perturbations have sufficient amplitude. Minihalos affect pulsar timing data and are potentially bright sources of gamma rays. The resulting constraints significantly extend the observable window of inflation in the presence of cold dark matter, coupling two of the key problems in modern cosmology.

  14. TOPICAL REVIEW: Asymptotic directional structure of radiative fields in spacetimes with a cosmological constant

    Science.gov (United States)

    Krtous, Pavel; Podolský, Jirí

    2004-12-01

    We analyse the directional properties of general gravitational, electromagnetic and spin-s fields near conformal infinity \\scri . The fields are evaluated in normalized tetrads which are parallelly propagated along null geodesics which approach a point P of \\scri . The standard peeling-off property is recovered and its meaning is discussed and refined. When the (local) character of the conformal infinity is null, such as in asymptotically flat spacetimes, the dominant term which is identified with radiation is unique. However, for spacetimes with a non-vanishing cosmological constant the conformal infinity is spacelike (for Λ > 0) or timelike (for Λ 0 the radiation vanishes only along directions which are opposite to principal null directions. For Λ conformal infinity the corresponding directional structures differ, depending not only on the number and degeneracy of the principal null directions at P but also on their specific orientation with respect to \\scri . The directional structure of radiation near (anti-)de Sitter-like infinities supplements the standard peeling-off property of spin-s fields. This characterization offers a better understanding of the asymptotic behaviour of the fields near conformal infinity under the presence of a cosmological constant.

  15. Multiwavelength Cosmology

    Science.gov (United States)

    Plionis, M.

    2004-07-01

    The recent scientific efforts in Astrophysics & Cosmology have brought a revolution to our understanding of the Cosmos. Amazing results is the outcome of amazing experiments! The huge scientific, technological & financial effort that has gone into building the 10-m class telescopes as well as many space and balloon observatories, essential to observe the multitude of cosmic phenomena in their manifestations at different wavelengths, from gamma-rays to the millimetre and the radio, has given and is still giving its fruits of knowledge. These recent scientific achievements in Observational and Theoretical Cosmology were presented in the "Multiwavelength Cosmology" conference that took place on beautiful Mykonos island in the Aegean between 17 and 20 June 2003. More than 180 Cosmologists from all over the world gathered for a four-day intense meeting in which recent results from large ground based surveys (AAT/2-df, SLOAN) and space missions (WMAP, Chandra, XMM, ISO, HST) were presented and debated, providing a huge impetus to our knowledge of the Cosmos. The future of the subject (experiments, and directions of research) was also discussed. The conference was devoted mostly on the constraints on Cosmological models and galaxy formation theories that arise from the study of the high redshift Universe, from clusters of galaxies, and their evolution, from the cosmic microwave background, the large-scale structure and star-formation history. Link: http://www.wkap.nl/prod/b/1-4020-1971-8

  16. Axion Cosmology

    CERN Document Server

    Marsh, David J E

    2015-01-01

    Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also extraordinarily well-motivated within high energy physics, and so axion cosmology offers us a unique view onto these theories. I present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via the CMB and structure formation up to the present-day Universe. I briefly review the motivation and models for axions in particle physics and string theory. The primary focus is on the population of ultralight axions created via vacuum realignment, and its role as a dark matter (DM) candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute l...

  17. Renormalization-group flow of the effective action of cosmological large-scale structures

    Science.gov (United States)

    Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2017-01-01

    Following an approach of Matarrese and Pietroni, we derive the functional renormalization group (RG) flow of the effective action of cosmological large-scale structures. Perturbative solutions of this RG flow equation are shown to be consistent with standard cosmological perturbation theory. Non-perturbative approximate solutions can be obtained by truncating the a priori infinite set of possible effective actions to a finite subspace. Using for the truncated effective action a form dictated by dissipative fluid dynamics, we derive RG flow equations for the scale dependence of the effective viscosity and sound velocity of non-interacting dark matter, and we solve them numerically. Physically, the effective viscosity and sound velocity account for the interactions of long-wavelength fluctuations with the spectrum of smaller-scale perturbations. We find that the RG flow exhibits an attractor behaviour in the IR that significantly reduces the dependence of the effective viscosity and sound velocity on the input values at the UV scale. This allows for a self-contained computation of matter and velocity power spectra for which the sensitivity to UV modes is under control.

  18. Cosmology and Astrophysics from Relaxed Galaxy Clusters V: Consistency with Cold Dark Matter Structure Formation

    CERN Document Server

    Mantz, Adam B; Morris, R Glenn

    2016-01-01

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the Cold Dark Matter (CDM) paradigm. We present constraints on the concentration--mass relation for massive clusters, finding a power-law mass dependence with a slope of $\\kappa_m=-0.16\\pm0.07$, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with $1+z$ of $\\kappa_\\zeta=-0.17\\pm0.26$), with an intrinsic scatter of $\\sigma_{\\ln c}=0.16\\pm0.03$. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically $\\sim50$kpc--1Mpc), and test for departures from the simple Navarro, Frenk & White (NFW...

  19. The evolution of clusters in the CLEF cosmological simulation: X-ray structural and scaling properties

    CERN Document Server

    Kay, S T; Aghanim, N; Blanchard, A; Liddle, A R; Puget, J L; Sadat, R; Thomas, P A; Kay, Scott T.; Silva, Antonio C. da; Aghanim, Nabila; Blanchard, Alain; Liddle, Andrew R.; Puget, Jean-Loup; Sadat, Rachida; Thomas, Peter A.

    2006-01-01

    We present results from a study of the X-ray cluster population that forms within the CLEF cosmological hydrodynamics simulation, a large N-body/SPH simulation of the Lambda CDM cosmology with radiative cooling, star formation and feedback. The scaled projected temperature and entropy profiles at z=0 are in good agreement with recent high-quality observations of cool core clusters, suggesting that the simulation grossly follows the processes that structure the intracluster medium (ICM) in these objects. Cool cores are a ubiquitous phenomenon in the simulation at low and high redshift, regardless of a cluster's dynamical state. This is at odds with the observations and so suggests there is still a heating mechanism missing from the simulation. Using a simple, observable measure of the concentration of the ICM, which correlates with the apparent mass deposition rate in the cluster core, we find a large dispersion within regular clusters at low redshift, but this diminishes at higher redshift, where strong "cool...

  20. Correlation of CMB with large-scale structure: I. ISW Tomography and Cosmological Implications

    CERN Document Server

    Ho, Shirley; Padmanabhan, Nikhil; Seljak, Uros; Bahcall, Neta

    2008-01-01

    We cross-correlate large scale structure (LSS) observations from a number of surveys with CMB anisotropies from WMAP to investigate the Integrated Sachs-Wolfe (ISW) effect as a function of redshift, covering z~0.1-2.5. Our main goal is to go beyond reporting detections towards developing a reliable likelihood analysis that allows one to determine cosmological constraints from ISW observations. With this in mind we spend a considerable amount of effort in determining the redshift-dependent bias and redshift distribution b(z)*dN/dz of these samples by matching with spectroscopic observations where available, and analyzing auto-power spectra and cross-power spectra between the samples. The data sets we use are 2-Micron All Sky Survey (2MASS) samples, Sloan Digital Sky Survey (SDSS) photometric Luminous Red Galaxies, SDSS photometric quasars and NRAO VLA Sky Survey (NVSS) radio sources. We make a joint analysis of all samples constructing a full covariance matrix, which we subsequently use for cosmological parame...

  1. A stringent restriction from the growth of large-scale structure on apparent acceleration in inhomogeneous cosmological models

    CERN Document Server

    Ishak, Mustapha; Troxel, M A

    2013-01-01

    Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to uneven dynamics in the universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from the study of the growth rate of large-scale structure in the universe as modeled by the Szekeres inhomogeneous cosmological models. We use the models in all generality with no assumptions of spherical or axial symmetries. We find that Szekeres inhomogeneous models that fit well the observed expansion history fail to explain the observed late-time suppression of the growth of structure unless a cosmological constant is added to the dynamics.

  2. Cosmological evolution of the gravitational entropy of the large-scale structure

    CERN Document Server

    Marozzi, Giovanni; Umeh, Obinna; Clarkson, Chris

    2015-01-01

    This article derives the entropy associated with the large-scale structure of the Universe in the linear regime, where the Universe can be described by a perturbed Friedmann-Lema\\^{\\i}tre spacetime. In particular, it compares two different definitions proposed in the literature for the entropy using a spatial averaging prescription. For one definition, the entropy of the large-scale structure and for a given comoving volume always grows with time, both for a CDM and a $\\Lambda$CDM model. In particular, while it diverges for a CDM model, it saturates to a constant value in the presence of a cosmological constant. The use of a light-cone averaging prescription in the context of the evaluation of the entropy is also discussed.

  3. Scalar-Fluid theories: cosmological perturbations and large-scale structure

    CERN Document Server

    Koivisto, Tomi S; Tamanini, Nicola

    2015-01-01

    Recently a new Lagrangian framework was introduced to describe interactions between scalar fields and relativistic perfect fluids. This allows two consistent generalizations of coupled quintessence models: non-vanishing pressures and a new type of derivative interaction. Here the implications of these to the formation of cosmological large-scale structure are uncovered at the linear order. The full perturbation equations in the two cases are derived in a unified formalism and their Newtonian, quasi-static limit is studied analytically. Requiring the absence of an effective sound speed for the coupled dark matter fluid restricts the Lagrangian to be a linear function of the matter number density. This still leaves new potentially viable classes of both algebraically and derivatively interacting models wherein the coupling may impact the background expansion dynamics and imprint signatures into the large-scale structure.

  4. Matrix Model Approach to Cosmology

    CERN Document Server

    Chaney, A; Stern, A

    2015-01-01

    We perform a systematic search for rotationally invariant cosmological solutions to matrix models, or more specifically the bosonic sector of Lorentzian IKKT-type matrix models, in dimensions $d$ less than ten, specifically $d=3$ and $d=5$. After taking a continuum (or commutative) limit they yield $d-1$ dimensional space-time surfaces, with an attached Poisson structure, which can be associated with closed, open or static cosmologies. For $d=3$, we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a matrix resolution of cosmological singularities. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the $d=3$ soluti...

  5. Asymptotic directional structure of radiative fields in spacetimes with a cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Krtous, Pavel; Podolsky, JirI [Institute of Theoretical Physics, Charles University in Prague, V Holesovickach 2, 18000 Prague 8 (Czech Republic)

    2004-12-21

    We analyse the directional properties of general gravitational, electromagnetic and spin-s fields near conformal infinity I. The fields are evaluated in normalized tetrads which are parallelly propagated along null geodesics which approach a point P of I. The standard peeling-off property is recovered and its meaning is discussed and refined. When the (local) character of the conformal infinity is null, such as in asymptotically flat spacetimes, the dominant term which is identified with radiation is unique. However, for spacetimes with a non-vanishing cosmological constant the conformal infinity is spacelike (for {lambda} > 0) or timelike (for {lambda} < 0), and the radiative component of each field depends substantially on the null direction along which P is approached. The directional dependence of asymptotic fields near such de Sitter-like or anti-de Sitter-like I is explicitly found and described. We demonstrate that the corresponding directional structure of radiation has a universal character that is determined by the algebraic (Petrov) type of the field. In particular, when {lambda} > 0 the radiation vanishes only along directions which are opposite to principal null directions. For {lambda} < 0 the directional dependence is more complicated because it is necessary to distinguish outgoing and ingoing radiation. Near such anti-de Sitter-like conformal infinity the corresponding directional structures differ, depending not only on the number and degeneracy of the principal null directions at P but also on their specific orientation with respect to I. The directional structure of radiation near (anti-)de Sitter-like infinities supplements the standard peeling-off property of spin-s fields. This characterization offers a better understanding of the asymptotic behaviour of the fields near conformal infinity under the presence of a cosmological constant. (topical review)

  6. Gravitational waves generated from the cosmological QCD phase transition within AdS/QCD

    Directory of Open Access Journals (Sweden)

    M. Ahmadvand

    2017-09-01

    Full Text Available We study the gravitational waves produced by the collision of the bubbles as a probe for the cosmological first order QCD phase transition, considering heavy static quarks. Using AdS/QCD and the correspondence between a first order Hawking–Page phase transition and confinement–deconfinement phase transition, we find the spectrum and the strain amplitude of the gravitational wave within the hard and soft wall models. We postulate the duration of the phase transition corresponds to the evaporation time of the black hole in the five dimensional dual gravity space, and thereby obtain a bound on the string length in the space and correspondingly on the duration of the QCD phase transition. We also show that IPTA and SKA detectors will be able to detect these gravitational waves, which can be an evidence for the first order deconfinement transition.

  7. Axion cosmology

    Science.gov (United States)

    Marsh, David J. E.

    2016-07-01

    Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected

  8. Structure formation simulations with momentum exchange: alleviating tensions between high-redshift and low-redshift cosmological probes

    CERN Document Server

    Baldi, Marco

    2016-01-01

    Persisting tensions between the cosmological constraints derived from low-redshift probes and the ones obtained from temperature and polarisation anisotropies of the Cosmic Microwave Background -- although not yet providing compelling evidence against the $\\Lambda $CDM model -- seem to consistently indicate a slower growth of density perturbations as compared to the predictions of the standard cosmological scenario. Such behavior is not easily accommodated by the simplest extensions of General Relativity, such as f(R) models, which generically predict an enhanced growth rate. In the present work we present the outcomes of a suite of large N-body simulations carried out in the context of a cosmological model featuring a non-vanishing scattering cross section between the dark matter and the dark energy fields, for two different parameterisations of the dark energy equation of state. Our results indicate that these Dark Scattering models have very mild effects on many observables related to large-scale structure...

  9. Three-form cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Koivisto, Tomi S., E-mail: T.Koivisto@ThPhys.Uni-Heidelberg.d [Institute for Theoretical Physics, University of Heidelberg, 69120 (Germany); Nunes, Nelson J. [Institute for Theoretical Physics, University of Heidelberg, 69120 (Germany)

    2010-03-01

    Cosmology of self-interacting three-forms is investigated. The minimally coupled canonical theory can naturally generate a variety of isotropic background dynamics, including scaling, possibly transient acceleration and phantom crossing. An intuitive picture of the cosmological dynamics is presented employing an effective potential. Numerical solutions and analytical approximations are provided for scenarios which are potentially important for inflation or dark energy.

  10. Probing The New Cosmology

    CERN Document Server

    Zentner, A R

    2003-01-01

    Improvements in observational techniques have transformed cosmology into a field inundated with ever-expanding, high-quality data sets and driven cosmology toward a standard model where the classic cosmological parameters are accurately measured. I briefly discuss some of the methods used to determine cosmological parameters, particularly primordial nucleosynthesis, the magnitude- redshift relation of supernovae, and cosmic microwave background anisotropy. I demonstrate how cosmological data can be used to complement particle physics and constrain extensions to the Standard Model. Specifically, I present bounds on light particle species and the properties of unstable, weakly-interacting, massive particles. Despite the myriad successes of the emerging standard cosmological model, unanswered questions linger. Numerical simulations of structure formation predict galactic central densities that are considerably higher than observed. They also reveal hundreds of satellites orbiting Milky Way-like galaxies while th...

  11. Properties of potential modelling three benchmarks: the cosmological constant, inflation and three generations

    CERN Document Server

    Kiselev, V V

    2010-01-01

    We argue for a model of low-energy correction to the inflationary potential as caused by the gauge-mediated breaking down the supersymmetry at the scale of $\\mu_\\textsc{x}\\sim 10^4$ GeV, that provides us with the seesaw mechanism of thin domain wall fluctuations in the flat vacuum. The fluctuations are responsible for the vacuum with the cosmological constant at the scale of $\\mu_\\Lambda\\sim 10^{-2}$ eV suppressed by the Planckian mass $m_\\mathtt{Pl}$ via $\\mu_\\Lambda\\sim\\mu_\\textsc{x}^2/m_\\mathtt{Pl}$. The appropriate vacuum state is occupied after the inflation with quartic coupling constant $\\lambda\\sim\\mu_\\textsc{x}/m_\\mathtt{Pl}\\sim 10^{-14}$ inherently related with the bare mass scale of $\\widetilde m\\sim\\sqrt{\\mu_\\textsc{x}m_\\mathtt{Pl}}\\sim 10^{12}$ GeV determining the thickness of domain walls $\\delta r\\sim1/\\widetilde m$. Such the parameters of potential are still marginally consistent with the observed inhomogeneity of matter density in the Universe. The inflationary evolution suggests the vacuum s...

  12. Inhomogeneous Big Bang Cosmology

    CERN Document Server

    Wagh, S M

    2002-01-01

    In this letter, we outline an inhomogeneous model of the Big Bang cosmology. For the inhomogeneous spacetime used here, the universe originates in the infinite past as the one dominated by vacuum energy and ends in the infinite future as the one consisting of "hot and relativistic" matter. The spatial distribution of matter in the considered inhomogeneous spacetime is {\\em arbitrary}. Hence, observed structures can arise in this cosmology from suitable "initial" density contrast. Different problems of the standard model of Big Bang cosmology are also resolved in the present inhomogeneous model. This inhomogeneous model of the Big Bang Cosmology predicts "hot death" for the universe.

  13. Cosmology and astrophysics from relaxed galaxy clusters – V. Consistency with cold dark matter structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Mantz, A.B.; /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Allen, S.W.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC; Morris, R.Glenn; /KIPAC, Menlo Park /SLAC

    2016-07-15

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. We present constraints on the concentration–mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = -0.16 ± 0.07, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = -0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ~50 kpc–1 Mpc), and test for departures from the simple Navarro–Frenk–White (NFW) form, for which the logarithmic slope of the density profile tends to -1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.

  14. Cosmology and astrophysics from relaxed galaxy clusters - V. Consistency with cold dark matter structure formation

    Science.gov (United States)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.

    2016-10-01

    This is the fifth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot in Papers I and II of this series. Here we use constraints on cluster mass profiles from X-ray data to test some of the basic predictions of cosmological structure formation in the cold dark matter (CDM) paradigm. We present constraints on the concentration-mass relation for massive clusters, finding a power-law mass dependence with a slope of κm = -0.16 ± 0.07, in agreement with CDM predictions. For this relaxed sample, the relation is consistent with a constant as a function of redshift (power-law slope with 1 + z of κζ = -0.17 ± 0.26), with an intrinsic scatter of σln c = 0.16 ± 0.03. We investigate the shape of cluster mass profiles over the radial range probed by the data (typically ˜50 kpc-1 Mpc), and test for departures from the simple Navarro-Frenk-White (NFW) form, for which the logarithmic slope of the density profile tends to -1 at small radii. Specifically, we consider as alternatives the generalized NFW (GNFW) and Einasto parametrizations. For the GNFW model, we find an average value of (minus) the logarithmic inner slope of β = 1.02 ± 0.08, with an intrinsic scatter of σβ = 0.22 ± 0.07, while in the Einasto case we constrain the average shape parameter to be α = 0.29 ± 0.04 with an intrinsic scatter of σα = 0.12 ± 0.04. Our results are thus consistent with the simple NFW model on average, but we clearly detect the presence of intrinsic, cluster-to-cluster scatter about the average.

  15. Cosmological magnetic fields

    Indian Academy of Sciences (India)

    Roy Maartens

    2000-10-01

    Magnetic fields are observed not only in stars, but in galaxies, clusters, and even high redshift Lyman- systems. In principle, these fields could play an important role in structure formation and also affect the anisotropies in the cosmic microwave background radiation (CMB). The study of cosmological magnetic fields aims not only to quantify these effects on large-scale structure and the CMB, but also to answer one of the outstanding puzzles of modern cosmology: when and how do magnetic fields originate? They are either primordial, i.e. created before the onset of structure formation, or they are generated during the process of structure formation itself.

  16. Inflation and Loop Quantum Cosmology

    CERN Document Server

    Barrau, Aurelien

    2010-01-01

    On the one hand, inflation is an extremely convincing scenario: it solves most cosmological paradoxes and generates fluctuations that became the seeds for the growth of structures. It, however, suffers from a "naturalness" problem: generating initial conditions for inflation is far from easy. On the other hand, loop quantum cosmology is very successful: it solves the Big Bang singularity through a non-perturbative and background-independent quantization of general relativity. It, however, suffers from a key drawback: it is extremely difficult to test. Recent results can let us hope that inflation and LQC could mutually cure those pathologies: LQC seems to naturally generate inflation and inflation could allow us to test LQC.

  17. Goldstone Cosmology

    CERN Document Server

    Brax, Philippe

    2016-01-01

    We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different f...

  18. Cosmological forecasts for combined and next-generation peculiar velocity surveys

    Science.gov (United States)

    Howlett, Cullan; Staveley-Smith, Lister; Blake, Chris

    2017-01-01

    Peculiar velocity surveys present a very promising route to measuring the growth rate of large-scale structure and its scale dependence. However, individual peculiar velocity surveys suffer from large statistical errors due to the intrinsic scatter in the relations used to infer a galaxy's true distance. In this context, we use a Fisher matrix formalism to investigate the statistical benefits of combining multiple peculiar velocity surveys. We find that for all cases we consider that there is a marked improvement on constraints on the linear growth rate fσ8. For example, the constraining power of only a few peculiar velocity measurements is such that the addition of the 2MASS Tully-Fisher survey (containing only ˜2000 galaxies) to the full redshift and peculiar velocity samples of the 6-degree Field Galaxy Survey (containing ˜110 000 redshifts and ˜9000 velocities) can improve growth rate constraints by ˜20 per cent. Furthermore, the combination of the future TAIPAN and WALLABY+WNSHS surveys has the potential to reach a ˜3 per cent error on fσ8, which will place tight limits on possible extensions to General Relativity. We then turn to look at potential systematics in growth rate measurements that can arise due to incorrect calibration of the peculiar velocity zero-point and from scale-dependent spatial and velocity bias. For next-generation surveys, we find that neglecting velocity bias in particular has the potential to bias constraints on the growth rate by over 5σ, but that an offset in the zero-point has negligible impact on the velocity power spectrum.

  19. String Cosmology: A Review

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, Liam P.; Silverstein, Eva

    2007-10-22

    We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.

  20. Integral Compressor/Generator/Fan Unitary Structure

    OpenAIRE

    Dreiman, Nelik

    2016-01-01

    INTEGRAL COMPRESSOR / GENERATOR / FAN UNITARY STRUCTURE.*) Dr. Nelik Dreiman Consultant, P.O.Box 144, Tipton, MI E-mail: An extremely compact, therefore space saving single compressor/generator/cooling fan structure of short axial length and light weight has been developed to provide generation of electrical power with simultaneous operation of the compressor when power is unavailable or function as a regular AC compressor powered by a power line. The generators and ai...

  1. Chemical cosmology

    CERN Document Server

    Boeyens, Jan CA

    2010-01-01

    The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp

  2. Lagrangian theory of structure formation in relativistic cosmology II: average properties of a generic evolution model

    CERN Document Server

    Buchert, Thomas; Wiegand, Alexander

    2013-01-01

    Kinematical and dynamical properties of a generic inhomogeneous cosmological model, spatially averaged with respect to free-falling (generalized fundamental) observers, are investigated for the matter model `irrotational dust'. Paraphrasing a previous Newtonian investigation, we present a relativistic generalization of a backreaction model based on volume-averaging the `Relativistic Zel'dovich Approximation'. In this model we investigate the effect of `kinematical backreaction' on the evolution of cosmological parameters as they are defined in an averaged inhomogenous cosmology, and we show that the backreaction model interpolates between orthogonal symmetry properties by covering subcases of the plane-symmetric solution, the Lemaitre-Tolman-Bondi solution and the Szekeres solution. We so obtain a powerful model that lays the foundations for quantitatively addressing curvature inhomogeneities as they would be interpreted as `Dark Energy' or `Dark Matter' in a quasi-Newtonian cosmology. The present model, havi...

  3. Integrated approach to cosmology: Combining CMB, large-scale structure and weak lensing

    CERN Document Server

    Nicola, Andrina; Amara, Adam

    2016-01-01

    Recent observational progress has led to the establishment of the standard $\\Lambda$CDM model for cosmology. This development is based on different cosmological probes that are usually combined through their likelihoods at the latest stage in the analysis. We implement here an integrated scheme for cosmological probes, which are combined in a common framework starting at the map level. This treatment is necessary as the probes are generally derived from overlapping maps and are thus not independent. It also allows for a thorough test of the cosmological model and of systematics through the consistency of different physical tracers. As a first application, we combine current measurements of the Cosmic Microwave Background (CMB) from the Planck satellite, and galaxy clustering and weak lensing from SDSS. We consider the spherical harmonic power spectra of these probes including all six auto- and cross-correlations along with the associated full gaussian covariance matrix. This provides an integrated treatment o...

  4. Particle physics constraints from future cosmological surveys

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The next generation of cosmological surveys (of large scale structures, CMB polarisation, 21cm line), approved (Euclid, SKA, ...) or submitted (COrE+, LiteBird), have the potential to return a lot of relevant information for particle physics. I will present and comment some of the most recent sensitivity forecasts related to neutrino physics, light relics and Dark Matter properties.

  5. Uniform generation of combinatorial structures

    Energy Technology Data Exchange (ETDEWEB)

    Zito, M.; Pu, I.; Amos, M.; Gibbons, A. [Univ. of Warwick, Coventry (United Kingdom)

    1996-12-31

    We describe several RNC algorithms for generating graphs and subgraphs uniformly at random. For example, unlabelled undirected graphs are generated in O(log{sup 3} n lg lg n) time using O({epsilon}n{sup 1.5}/lg{sup 3} n lg lg n) processors if their number is n lg lg n known in advance and in O(lg n) time using O ({epsilon}n{sup 2}/lg n) processors otherwise. In both cases the error probability is the inverse of a polynomial in {epsilon}. Thus {epsilon} may be chosen to trade-off processors for error probability. Also, for an arbitrary graph, we describe RNC algorithms for the uniform generation of its subgraphs that are either non-simple paths or spanning trees. The work measure for the subgraph algorithms is essentially determined by the transitive closure bottleneck. As for sequential algorithms, the general notion of constructing generators from counters also applies to parallel algorithms although this approach is not employed by all the algorithms of this paper.

  6. Entropy generation and inflation in collision induced pre-big-bang cosmology

    NARCIS (Netherlands)

    Feinstein, A.; Kunze, K.E.; Vazquez-Mozo, M.A.

    2000-01-01

    We study inflation and entropy generation in a recently proposed pre-big-bang model universe produced in a collision of gravitational and dilaton waves. It is shown that enough inflation occurs provided the incoming waves are sufficiently weak. We also find that entropy in this model is dynamically

  7. Entropy generation and inflation in collision induced pre-big-bang cosmology

    NARCIS (Netherlands)

    Feinstein, A.; Kunze, K.E.; Vazquez-Mozo, M.A.

    2000-01-01

    We study inflation and entropy generation in a recently proposed pre-big-bang model universe produced in a collision of gravitational and dilaton waves. It is shown that enough inflation occurs provided the incoming waves are sufficiently weak. We also find that entropy in this model is dynamically

  8. A unified model for AGN feedback in cosmological simulations of structure formation

    CERN Document Server

    Sijacki, Debora; Di Matteo, Tiziana; Hernquist, Lars

    2007-01-01

    We discuss a numerical model for black hole growth and its associated feedback processes that for the first time allows cosmological simulations of structure formation to simultaneously follow the build up of the cosmic population of galaxies and active galactic nuclei. Our model assumes that seed black holes are present at early cosmic epochs at the centres of forming halos. We then track their growth from gas accretion and mergers with other black holes in the course of cosmic time. For black holes that are active, we distinguish between two distinct modes of feedback, depending on the black hole accretion rate itself. Black holes that accrete at high rates are assumed to be in a `quasar regime', where we model their feedback by thermally coupling a small fraction of their bolometric luminosity to the surrounding gas. For black holes with low accretion rates, we conjecture that most of their feedback occurs in mechanical form, where AGN-driven bubbles are injected into a gaseous environment. Using our new m...

  9. Cosmological variation of the fine structure constant from an ultralight scalar field: The effects of mass

    Science.gov (United States)

    Gardner, Carl L.

    2003-08-01

    Cosmological variation of the fine structure constant α due to the evolution of a spatially homogeneous ultralight scalar field (m˜H0) during the matter and Λ dominated eras is analyzed. Agreement of Δα/α with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically α(t) in this model goes to a constant value α¯≈α0 in the early radiation and the late Λ dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives α slightly away from α¯ in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation |Δα/α| from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5 0.6 HΛ, where HΛ=Ω1/2ΛH0. Depending on the scalar field mass, α may be slightly smaller or larger than α0 at the times of big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar system meteorites, and the Oklo reactor. The effects on the evolution of α due to nonzero mass for the scalar field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection of (α˙/α)0.

  10. Early Structure Formation and Reionization in a Warm Dark Matter Cosmology

    CERN Document Server

    Yoshida, N; Hernquist, L; Springel, V; Yoshida, Naoki; Sokasian, Aaron; Hernquist, Lars; Springel, Volker

    2003-01-01

    We study first structure formation in Lambda-dominated universes using large cosmological N-body/SPH simulations. We consider a standard LCDM model and a LWDM model in which the mass of the dark matter particles is taken to be m_X=10 keV. The linear power spectrum for the LWDM model has a characteristic cut-off at a wavenumber k=200 /Mpc, suppressing the formation of low mass (< 10^6 Msun) nonlinear objects early on. The absence of low mass halos in the WDM model makes the formation of primordial gas clouds with molecular hydrogen very inefficient at high redshifts. The first star-forming gas clouds form at z~21 in the WDM model, considerably later than in the CDM counterpart, and the abundance of these gas clouds differs by an order of magnitude between the two models. We carry out radiative transfer calculations by embedding massive Population III stars in the gas clouds. We show that the volume fraction of ionized gas rises up close to 100% by z=18 in the CDM case, whereas that of the WDM model remains ...

  11. Mass Generation, the Cosmological Constant Problem, Conformal Symmetry, and the Higgs Boson

    CERN Document Server

    Mannheim, Philip D

    2016-01-01

    In 2013 the Nobel Prize in Physics was awarded to Francois Englert and Peter Higgs for their work in 1964 along with the late Robert Brout on the mass generation mechanism (the Higgs mechanism) in local gauge theories. This mechanism requires the existence of a massive scalar particle, the Higgs boson, and in 2012 the Higgs boson was finally discovered at the Large Hadron Collider after being sought for almost half a century. In this article we review the work that led to the discovery of the Higgs boson and discuss its implications. We approach the topic from the perspective of a dynamically generated Higgs boson that is a fermion-antifermion bound state rather than an elementary field that appears in an input Lagrangian. In particular, we emphasize the connection with the Barden-Cooper-Schrieffer theory of superconductivity. We identify the double-well Higgs potential not as a fundamental potential but as a mean-field effective Lagrangian with a dynamical Higgs boson being generated through a residual inter...

  12. A Taste of Cosmology

    CERN Document Server

    Verde, L

    2013-01-01

    This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.

  13. Cascading Cosmology

    CERN Document Server

    Agarwal, Nishant; Khoury, Justin; Trodden, Mark

    2009-01-01

    We develop a fully covariant, well-posed 5D effective action for the 6D cascading gravity brane-world model, and use this to study cosmological solutions. We obtain this effective action through the 6D decoupling limit, in which an additional scalar degree mode, \\pi, called the brane-bending mode, determines the bulk-brane gravitational interaction. The 5D action obtained this way inherits from the sixth dimension an extra \\pi self-interaction kinetic term. We compute appropriate boundary terms, to supplement the 5D action, and hence derive fully covariant junction conditions and the 5D Einstein field equations. Using these, we derive the cosmological evolution induced on a 3-brane moving in a static bulk. We study the strong- and weak-coupling regimes analytically in this static ansatz, and perform a complete numerical analysis of our solution. Although the cascading model can generate an accelerating solution in which the \\pi field comes to dominate at late times, the presence of a critical singularity prev...

  14. Substitute Valuations: Generation and Structure

    CERN Document Server

    Hajek, Bruce

    2007-01-01

    Substitute valuations (in some contexts called gross substitute valuations) are prominent in combinatorial auction theory. An algorithm is given in this paper for generating a substitute valuation through Monte Carlo simulation. In addition, the geometry of the set of all substitute valuations for a fixed number of goods K is investigated. The set consists of a union of polyhedrons, and the maximal polyhedrons are identified for K=4. It is shown that the maximum dimension of the maximal polyhedrons increases with K nearly as fast as two to the power K.

  15. Magnetogenesis in bouncing cosmology

    CERN Document Server

    Qian, Peng; Easson, Damien A; Guo, Zong-Kuan

    2016-01-01

    We consider the process of magnetogenesis in the context of nonsingular bounce cosmology. We show that large primordial magnetic fields can be generated during contraction without encountering strong coupling and backreaction issues. The fields may seed large-scale magnetic fields with observationally interesting strengths. This result leads to a theoretical constraint on the relation of the energy scale of the bounce cosmology to the number of effective e-folding of the contracting phase in the case of scale invariance for the power spectrum of primordial magnetic fields. We show that this constraint can be satisfied in a sizable region of the parameter space for the nonsingular bounce cosmology.

  16. Magnetogenesis in bouncing cosmology

    Science.gov (United States)

    Qian, Peng; Cai, Yi-Fu; Easson, Damien A.; Guo, Zong-Kuan

    2016-10-01

    We consider the process of magnetogenesis in the context of nonsingular bounce cosmology. We show that large primordial magnetic fields can be generated during contraction without encountering strong coupling and backreaction issues. The fields may seed large-scale magnetic fields with observationally interesting strengths. This result leads to a theoretical constraint on the relation of the energy scale of the bounce cosmology to the number of effective e -foldings of the contracting phase in the case of scale invariance for the power spectrum of primordial magnetic fields. We show that this constraint can be satisfied in a sizable region of the parameter space for the nonsingular bounce cosmology.

  17. Cosmology, Epistemology and Chaos

    Science.gov (United States)

    Unno, Wasaburo

    1992-03-01

    We may consider the following three fundamental epistemological questions concerning cosmology. Can cosmology at last understand the origin of the universe? Can computers at last create? Can life be formed at last synthetically? These questions are in some sense related to the liar paradox containing the self-reference and, therefore, may not be answered by recursive processes in finite time. There are, however, various implications such that the chaos may break the trap of the self- reference paradox. In other words, Goedel's incompleteness theorem would not apply to chaos, even if the chaos can be generated by recursive processes. Internal relations among cosmology, epistemology and chaos must be investigated in greater detail

  18. Next generation structural silicone glazing

    Directory of Open Access Journals (Sweden)

    Charles D. Clift

    2015-06-01

    Full Text Available This paper presents an advanced engineering evaluation, using nonlinear analysis of hyper elastic material that provides significant improvement to structural silicone glazing (SSG design in high performance curtain wall systems. Very high cladding wind pressures required in hurricane zones often result in bulky SSG profile dimensions. Architectural desire for aesthetically slender curtain wall framing sight-lines in combination with a desire to reduce aluminium usage led to optimization of silicone material geometry for better stress distribution.To accomplish accurate simulation of predicted behaviour under structural load, robust stress-strain curves of the silicone material are essential. The silicone manufacturer provided physical property testing via a specialized laboratory protocol. A series of rigorous curve fit techniques were then made to closely model test data in the finite element computer analysis that accounts for nonlinear strain of hyper elastic silicone.Comparison of this advanced design technique to traditional SSG design highlights differences in stress distribution contours in the silicone material. Simplified structural engineering per the traditional SSG design method does not provide accurate forecasting of material and stress optimization as shown in the advanced design.Full-scale specimens subject to structural load testing were performed to verify the design capacity, not only for high wind pressure values, but also for debris impact per ASTM E1886 and ASTM E1996. Also, construction of the test specimens allowed development of SSG installation techniques necessitated by the unique geometry of the silicone profile. Finally, correlation of physical test results with theoretical simulations is made, so evaluation of design confidence is possible. This design technique will introduce significant engineering advancement to the curtain wall industry.

  19. A model for the postcollapse equilibrium of cosmological structure truncated isothermal spheres from top-hat density perturbations

    CERN Document Server

    Shapiro, P R; Raga, A C; Shapiro, Paul R.; Iliev, Ilian; Raga, Alejandro C.

    1998-01-01

    The postcollapse structure of objects which form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we have reconsidered the outcome of the nonlinear growth of a uniform, spherical density perturbation in an unperturbed background universe - the cosmological ``top-hat'' problem. We adopt the usual assumption that the collapse to infinite density at a finite time predicted by the top-hat solution is interrupted by a rapid virialization caused by the growth of small-scale inhomogeneities in the initial perturbation. We replace the standard description of the postcollapse object as a uniform sphere in virial equilibrium by a more self-consistent one as a truncated, nonsingular, isothermal sphere in virial and hydrostatic equilibrium, including for the first time a proper treatment of the finite-pressure boundary condition on the sphere. The results differ significantly from both the uniform sphere and the singu...

  20. The fine-structure constant a new observational limit on its cosmological variation and some theoretical consequences

    CERN Document Server

    Ivanchik, A V; Varshalovich, D A

    1999-01-01

    Endeavours of the unification of the four fundamental interactions have resulted in a development of theories having cosmological solutions in which low-energy limits of fundamental physical constants vary with time. The validity of such theoretical models should be checked by comparison of the theoretical predictions with observational and experimental bounds on possible time-dependences of the fundamental constants. Based on high-resolution measurements of quasar spectra, we obtain the following direct limits on the average rate of the cosmological time variation of the fine-structure constant limit, and |\\dot{\\alpha}/\\alpha| < 3.1 \\times 10^{-14} yr^{-1} is the most conservative limit. Analogous estimates published previously, as well as other contemporary tests for possible variations of \\alpha (those based on the "Oklo phenomenon", on the primordial nucleosynthesis models, and others) are discussed and compared with the present upper limit. We argue that the present result is the most conservative one...

  1. Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities

    CERN Document Server

    Yuan, Weimin; Cannizzo, John K; Cordier, Bertrand; Gehrels, Neil; Ghirlanda, Giancarlo; Götz, Diego; Produit, Nicolas; Qiu, Yulei; Sun, Jianchao; Tanvir, Nial R; Wei, Jianyan; Zhang, Chen

    2016-01-01

    High-redshift Gamma-Ray Bursts (GRBs) beyond redshift $\\sim6$ are potentially powerful tools to probe the distant early Universe. Their detections in large numbers and at truly high redshifts call for the next generation of high-energy wide-field instruments with unprecedented sensitivity at least one order of magnitude higher than the ones currently in orbit. On the other hand, follow-up observations of the afterglows of high-redshift GRBs and identification of their host galaxies, which would be difficult for the currently operating telescopes, require new, extremely large facilities of at multi-wavelengths. This chapter describes future experiments that are expected to advance this exciting field, both being currently built and being proposed. The legacy of Swift will be continued by SVOM, which is equipped with a set of space-based multi-wavelength instruments as well as and a ground segment including a wide angle camera and two follow-up telescopes. The established Lobster-eye X-ray focusing optics provi...

  2. Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities

    Science.gov (United States)

    Yuan, Weimin; Amati, Lorenzo; Cannizzo, John K.; Cordier, Bertrand; Gehrels, Neil; Ghirlanda, Giancarlo; Götz, Diego; Produit, Nicolas; Qiu, Yulei; Sun, Jianchao; Tanvir, Nial R.; Wei, Jianyan; Zhang, Chen

    2016-12-01

    High-redshift Gamma-Ray Bursts (GRBs) beyond redshift {˜}6 are potentially powerful tools to probe the distant early Universe. Their detections in large numbers and at truly high redshifts call for the next generation of high-energy wide-field instruments with unprecedented sensitivity at least one order of magnitude higher than the ones currently in orbit. On the other hand, follow-up observations of the afterglows of high-redshift GRBs and identification of their host galaxies, which would be difficult for the currently operating telescopes, require new, extremely large facilities of at multi-wavelengths. This chapter describes future experiments that are expected to advance this exciting field, both being currently built and being proposed. The legacy of Swift will be continued by SVOM, which is equipped with a set of space-based multi-wavelength instruments as well as and a ground segment including a wide angle camera and two follow-up telescopes. The established Lobster-eye X-ray focusing optics provides a promising technology for the detection of faint GRBs at very large distances, based on which the THESEUS, Einstein Probe and other mission concepts have been proposed. Follow-up observations and exploration of the reionization era will be enabled by large facilities such as SKA in the radio, the 30 m class telescopes in the optical/near-IR, and the space-borne WFIRST and JWST in the optical/near-IR/mid-IR. In addition, the X-ray and γ-ray polarization experiment POLAR is also introduced.

  3. Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities

    Science.gov (United States)

    Yuan, Weimin; Amati, Lorenzo; Cannizzo, John K.; Cordier, Bertrand; Gehrels, Neil; Ghirlanda, Giancarlo; Götz, Diego; Produit, Nicolas; Qiu, Yulei; Sun, Jianchao; Tanvir, Nial R.; Wei, Jianyan; Zhang, Chen

    2016-07-01

    High-redshift Gamma-Ray Bursts (GRBs) beyond redshift {˜}6 are potentially powerful tools to probe the distant early Universe. Their detections in large numbers and at truly high redshifts call for the next generation of high-energy wide-field instruments with unprecedented sensitivity at least one order of magnitude higher than the ones currently in orbit. On the other hand, follow-up observations of the afterglows of high-redshift GRBs and identification of their host galaxies, which would be difficult for the currently operating telescopes, require new, extremely large facilities of at multi-wavelengths. This chapter describes future experiments that are expected to advance this exciting field, both being currently built and being proposed. The legacy of Swift will be continued by SVOM, which is equipped with a set of space-based multi-wavelength instruments as well as and a ground segment including a wide angle camera and two follow-up telescopes. The established Lobster-eye X-ray focusing optics provides a promising technology for the detection of faint GRBs at very large distances, based on which the THESEUS, Einstein Probe and other mission concepts have been proposed. Follow-up observations and exploration of the reionization era will be enabled by large facilities such as SKA in the radio, the 30 m class telescopes in the optical/near-IR, and the space-borne WFIRST and JWST in the optical/near-IR/mid-IR. In addition, the X-ray and γ-ray polarization experiment POLAR is also introduced.

  4. Unimodular-mimetic cosmology

    Science.gov (United States)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity.

  5. Structure formation simulations with momentum exchange: alleviating tensions between high-redshift and low-redshift cosmological probes

    Science.gov (United States)

    Baldi, Marco; Simpson, Fergus

    2017-02-01

    Persisting tensions between the cosmological constraints derived from low-redshift probes and the ones obtained from temperature and polarization anisotropies of the cosmic microwave background (CMB) - although not yet providing compelling evidence against the Λcold dark matter model - seem to consistently indicate a slower growth of density perturbations as compared to the predictions of the standard cosmological scenario. Such behaviour is not easily accommodated by the simplest extensions of General Relativity, such as f(R) models, which generically predict an enhanced growth rate. In this work, we present the outcomes of a suite of large N-body simulations carried out in the context of a cosmological model featuring a non-vanishing scattering cross-section between the dark matter and the dark energy fields, for two different parametrizations of the dark energy equation of state. Our results indicate that these dark scattering models have very mild effects on many observables related to large-scale structures formation and evolution, while providing a significant suppression of the amplitude of linear density perturbations and the abundance of massive clusters. Our simulations therefore confirm that these models offer a promising route to alleviate existing tensions between low-redshift measurements and those of the CMB.

  6. Structured grid generator on parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Kazuhiro; Murakami, Hiroyuki; Higashida, Akihiro; Yanagisawa, Ichiro

    1997-03-01

    A general purpose structured grid generator on parallel computers, which generates a large-scale structured grid efficiently, has been developed. The generator is applicable to Cartesian, cylindrical and BFC (Boundary-Fitted Curvilinear) coordinates. In case of BFC grids, there are three adaptable topologies; L-type, O-type and multi-block type, the last of which enables any combination of L- and O-grids. Internal BFC grid points can be automatically generated and smoothed by either algebraic supplemental method or partial differential equation method. The partial differential equation solver is implemented on parallel computers, because it consumes a large portion of overall execution time. Therefore, high-speed processing of large-scale grid generation can be realized by use of parallel computer. Generated grid data are capable to be adjusted to domain decomposition for parallel analysis. (author)

  7. Cosmological Probes for Supersymmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2015-05-01

    Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  8. Cosmological Probes for Supersymmetry

    CERN Document Server

    Khlopov, Maxim

    2015-01-01

    The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs) are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY) models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.

  9. Particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.

  10. Cosmological Simulations using GCMHD+

    CERN Document Server

    Barnes, David J; Wu, Kinwah

    2011-01-01

    Radio observations of galaxy clusters show that the intra cluster medium is permeated by \\mu G magnetic fields. The origin and evolution of these cosmological magnetic fields is currently not well understood and so their impact on the dynamics of structure formation is not known. Numerical simulations are required to gain a greater understanding and produce predictions for the next generation of radio telescopes. We present the galactic chemodynamics smoothed particle magnetohydrodynamic (SPMHD) code (GCMHD+), which is an MHD implementation for the cosmological smoothed particle hydrodynamic code GCD+. The results of 1, 2 and 3 dimensional tests are presented and the performance of the code is shown relative to the ATHENA grid code. GCMHD+ shows good agreement with the reference solutions produced by ATHENA. The code is then used to simulate the formation of a galaxy cluster with a simple primordial magnetic field embedded in the gas. A homogeneous seed field of 10^-11 G is amplified by a factor of 10^3 durin...

  11. Cosmological simulations using GCMHD+

    Science.gov (United States)

    Barnes, David J.; Kawata, Daisuke; Wu, Kinwah

    2012-03-01

    Radio observations of galaxy clusters show that the intracluster medium is permeated by ? magnetic fields. The origin and evolution of these cosmological magnetic fields is currently not well understood, and so their impact on the dynamics of structure formation is not known. Numerical simulations are required to gain a greater understanding and produce predictions for the next generation of radio telescopes. We present the galactic chemodynamics smoothed particle magnetohydrodynamics (SPMHD) code (GCMHD+), which is an MHD implementation for the cosmological smoothed particle hydrodynamics code GCD+. The results of 1D, 2D and 3D tests are presented and the performance of the code is shown relative to the ATHENA grid code. GCMHD+ shows good agreement with the reference solutions produced by ATHENA. The code is then used to simulate the formation of a galaxy cluster with a simple primordial magnetic field embedded in the gas. A homogeneous seed field of 3.5 × 10-11 G is amplified by a factor of 103 during the formation of the cluster. The results show good agreement with the profiles found in other magnetic cluster simulations of similar resolution.

  12. Precision Cosmology

    Science.gov (United States)

    Jones, Bernard J. T.

    2017-04-01

    Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson–Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.

  13. The supernova cosmology cookbook: Bayesian numerical recipes

    CERN Document Server

    Karpenka, N V

    2015-01-01

    Theoretical and observational cosmology have enjoyed a number of significant successes over the last two decades. Cosmic microwave background measurements from the Wilkinson Microwave Anisotropy Probe and Planck, together with large-scale structure and supernova (SN) searches, have put very tight constraints on cosmological parameters. Type Ia supernovae (SNIa) played a central role in the discovery of the accelerated expansion of the Universe, recognised by the Nobel Prize in Physics in 2011. The last decade has seen an enormous increase in the amount of high quality SN observations, with SN catalogues now containing hundreds of objects. This number is expected to increase to thousands in the next few years, as data from next-generation missions, such as the Dark Energy Survey and Large Synoptic Survey Telescope become available. In order to exploit the vast amount of forthcoming high quality data, it is extremely important to develop robust and efficient statistical analysis methods to answer cosmological q...

  14. Initial conditions, Discreteness and non-linear structure formation in cosmology

    CERN Document Server

    Sylos-Labini, F; Gabrielli, A; Joyce, M; Labini, Francesco Sylos; Baertschiger, Thierry; Gabrielli, Andrea; Joyce, Michael

    2002-01-01

    In this lecture we address three different but related aspects of the initial continuous fluctuation field in standard cosmological models. Firstly we discuss the properties of the so-called Harrison-Zeldovich like spectra. This power spectrum is a fundamental feature of all current standard cosmological models. In a simple classification of all stationary stochastic processes into three categories, we highlight with the name ``super-homogeneous'' the properties of the class to which models like this, with $P(0)=0$, belong. In statistical physics language they are well described as glass-like. Secondly, the initial continuous density field with such small amplitude correlated Gaussian fluctuations must be discretised in order to set up the initial particle distribution used in gravitational N-body simulations. We discuss the main issues related to the effects of discretisation, particularly concerning the effect of particle induced fluctuations on the statistical properties of the initial conditions and on th...

  15. Observational cosmology

    NARCIS (Netherlands)

    Sanders, RH; Papantonopoulos, E

    2005-01-01

    I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic

  16. Quantum Cosmology: Effective Theory

    CERN Document Server

    Bojowald, Martin

    2012-01-01

    Quantum cosmology has traditionally been studied at the level of symmetry-reduced minisuperspace models, analyzing the behavior of wave functions. However, in the absence of a complete full setting of quantum gravity and detailed knowledge of specific properties of quantum states, it remained difficult to make testable predictions. For quantum cosmology to be part of empirical science, it must allow for a systematic framework in which corrections to well-tested classical equations can be derived, with any ambiguities and ignorance sufficiently parameterized. As in particle and condensed-matter physics, a successful viewpoint is one of effective theories, adapted to specific issues one encounters in quantum cosmology. This review presents such an effective framework of quantum cosmology, taking into account, among other things, space-time structures, covariance, the problem of time and the anomaly issue.

  17. Accelerating Cosmology and Phase Structure of F(R) Gravity with Lagrange Multiplier Constraint: Mimetic Approach

    CERN Document Server

    Odintsov, S D

    2015-01-01

    We study mimetic $F(R)$ gravity with potential and Lagrange multiplier constraint. In the context of these theories, we introduce a reconstruction technique which enables us to realize arbitrary cosmologies, given the Hubble rate and an arbitrarily chosen $F(R)$ gravity. We exemplify our method by realizing cosmologies that are in concordance with current observations (Planck data) and also well known bouncing cosmologies. The attribute of our method is that the $F(R)$ gravity can be arbitrarily chosen, so we can have the appealing features of the mimetic approach combined with the known features of some $F(R)$ gravities, which unify early-time with late-time acceleration. Moreover, we study the existence and the stability of de Sitter points in the context of mimetic $F(R)$ gravity. In the case of unstable de Sitter points, it is demonstrated that graceful exit from inflation occurs. We also study the Einstein frame counterpart theory of the Jordan frame mimetic $F(R)$ gravity, we discuss the general propert...

  18. Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology.

    Science.gov (United States)

    Nayeri, Ali; Brandenberger, Robert H; Vafa, Cumrun

    2006-07-14

    We study the generation of cosmological perturbations during the Hagedorn phase of string gas cosmology. Using tools of string thermodynamics we provide indications that it may be possible to obtain a nearly scale-invariant spectrum of cosmological fluctuations on scales which are of cosmological interest today. In our cosmological scenario, the early Hagedorn phase of string gas cosmology goes over smoothly into the radiation-dominated phase of standard cosmology, without having a period of cosmological inflation.

  19. Cosmological effects of nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Goulart, E [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Salim, J M [Instituto de Cosmologia Relatividade Astrofisica (ICRA-Brasil/CBPF), Rua Dr Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro (Brazil); Bergliaffa, S E Perez [Departamento de Fisica Teorica, Universidade do Estado do Rio de Janeiro, R. Sao Francisco Xavier, 524, Maracana, CEP 20559-900, Rio de Janeiro (Brazil)

    2007-06-07

    It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology.

  20. What could the value of the cosmological constant tell us about the future variation of the fine structure constant?

    CERN Document Server

    Romano, Antonio Enea

    2014-01-01

    Motivated by reported claims of the measurements of a variation of the fine structure constant $\\alpha$ we consider a theory where the electric charge, and consequently $\\alpha$, is not a constant but depends on the Ricci scalar $R$. %We then show how this can be considered a particular case of the Bekenstein theory in which there is no need to %introduce an additional kinetic term for the scalar field associated to the electric charge, since the Einstein's% %equations are sufficient to determine the geometry and, consequently the Ricci scalar. We then study the cosmological implications of this theory, considering in particular the effects of dark energy and of a cosmological constant on the evolution of $\\alpha$. Some low-red shift expressions for the variation of $\\alpha(z)$ are derived, showing the effects of the equation of state of dark energy on $\\alpha$ and observing how future measurements of the variation of the fine structure constant could be used to determine indirectly the equation of state of d...

  1. A model for the postcollapse equilibrium of cosmological structure: truncated isothermal spheres from top-hat density perturbations

    Science.gov (United States)

    Iliev, I. T.; Shapiro, P. R.; Raga, A. C.

    1998-12-01

    The postcollapse structure of objects which form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we have reconsidered the outcome of the nonlinear growth of a uniform, spherical density perturbation in an unperturbed background universe - the cosmological ``top-hat'' problem. We adopt the usual assumption that the collapse to infinite density at a finite time predicted by the top-hat solution is interrupted by a rapid virialization caused by the growth of small-scale inhomogeneities in the initial perturbation. We replace the standard description of the postcollapse object as a uniform sphere in virial equilibrium by a more self-consistent one as a truncated, nonsingular, isothermal sphere in virial and hydrostatic equilibrium, including for the first time a proper treatment of the finite-pressure boundary condition on the sphere. The results differ significantly from both the uniform sphere and the singular isothermal sphere approximations for the postcollapse objects. These results will have a significant effect on a wide range of applications of the Press-Schechter and other semi-analytical models to cosmology. The truncated isothermal sphere solution presented here predicts the virial temperature and integrated mass distribution of the X-ray clusters formed in the CDM model as found by detailed, 3D, numerical gas and N-body dynamical simulations remarkably well. This solution allows us to derive analytically the numerically-calibrated mass-temperature and radius-temperature scaling laws for X-ray clusters which were derived empirically by Evrard, Metzler and Navarro from simulation results for the CDM model.

  2. Hamiltonian cosmology.

    Science.gov (United States)

    Ryan, M.

    1972-01-01

    The study of cosmological models by means of equations of motion in Hamiltonian form is considered. Hamiltonian methods applied to gravity seem to go back to Rosenfeld (1930), who constructed a quantum-mechanical Hamiltonian for linearized general relativity theory. The first to notice that cosmologies provided a simple model in which to demonstrate features of Hamiltonian formulation was DeWitt (1967). Applications of the ADM formalism to homogeneous cosmologies are discussed together with applications of the Hamiltonian formulation, giving attention also to Bianchi-type universes. Problems involving the concept of superspace and techniques of quantization are investigated.

  3. Compact Structural Test Generation for Analog Macros

    NARCIS (Netherlands)

    Kaal, V.; Kerkhoff, Hans G.

    1997-01-01

    A structural, fault-model based methodology for the generation of compact high-quality test sets for analog macros is presented. Results are shown for an IV-converter macro design. Parameters of so-called test configurations are optimized for detection of faults in a fault-list and an optimal

  4. Scientific Realism and Primordial Cosmology

    CERN Document Server

    Azhar, Feraz

    2016-01-01

    We discuss scientific realism from the perspective of modern cosmology, especially primordial cosmology: i.e. the cosmological investigation of the very early universe. We first (Section 2) state our allegiance to scientific realism, and discuss what insights about it cosmology might yield, as against "just" supplying scientific claims that philosophers can then evaluate. In particular, we discuss: the idea of laws of cosmology, and limitations on ascertaining the global structure of spacetime. Then we review some of what is now known about the early universe (Section 3): meaning, roughly, from a thousandth of a second after the Big Bang onwards(!). The rest of the paper takes up two issues about primordial cosmology, i.e. the very early universe, where "very early" means, roughly, much earlier (logarithmically) than one second after the Big Bang: say, less than $10^{-11}$ seconds. Both issues illustrate that familiar philosophical threat to scientific realism, the under-determination of theory by data---on a...

  5. Lagrangian theory of structure formation in relativistic cosmology I: Lagrangian framework and definition of a non-perturbative approximation

    CERN Document Server

    Buchert, Thomas

    2012-01-01

    In this first paper we present a Lagrangian framework for the description of structure formation in general relativity, restricting attention to irrotational dust matter. As an application we present a self-contained derivation of a general-relativistic analogue of Zel'dovich's approximation for the description of structure formation in cosmology, and compare it with previous suggestions in the literature. This approximation is then investigated: paraphrasing the derivation in the Newtonian framework we provide general-relativistic analogues of the basic system of equations for a single dynamical field variable and recall the first-order perturbation solution of these equations. We then define a general-relativistic analogue of Zel'dovich's approximation and investigate consequences by functionally evaluating relevant variables. We so obtain a possibly powerful model that, although constructed through extrapolation of a perturbative solution, can be used to address non-perturbatively, e.g. problems of structu...

  6. Cosmological singularity

    CERN Document Server

    Belinski, V

    2009-01-01

    The talk at international conference in honor of Ya. B. Zeldovich 95th Anniversary, Minsk, Belarus, April 2009. The talk represents a review of the old results and contemporary development on the problem of cosmological singularity.

  7. The inner structure of dwarf sized halos in Warm and Cold Dark Matter cosmologies

    CERN Document Server

    Gonzalez-Samaniego, Alejandro; Colin, Pedro

    2015-01-01

    By means of N-body+Hydrodynamics zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses mh=2-3x10^10 Msun at z=0, both in a WDM and CDM cosmology. The half-mode mass in the WDM power spectrum of our simulations is Mv= 2x 10^10 Msun. In the dark matter only simulations halo density profiles are well described by the NFW parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors 1.5--2.0 than their CDM counterparts. In the hydrodynamical simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase-space density profiles of the WDM halos but not of the CDM ones. The density slope measured at ~ 0.02xRv, alpha, becomes shallow in periods of 2 to 5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global SF, Ms/Mv ratio, gas outflow, and internal specific angular momentum histories. We do not ...

  8. Neutrino physics and precision cosmology

    DEFF Research Database (Denmark)

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....

  9. Neutrino physics and precision cosmology

    DEFF Research Database (Denmark)

    Hannestad, Steen

    2016-01-01

    I review the current status of structure formation bounds on neutrino properties such as mass and energy density. I also discuss future cosmological bounds as well as a variety of different scenarios for reconciling cosmology with the presence of light sterile neutrinos....

  10. Evolving Horava Cosmological Horizons

    CERN Document Server

    Fathi, Mohsen

    2016-01-01

    Several sets of radially propagating null congruence generators are exploited in order to form 3-dimensional marginally trapped surfaces, referred to as black hole and cosmological apparent horizons in a Horava universe. Based on this method, we deal with the characteristics of the 2-dimensional space-like spheres of symmetry and the peculiarities of having trapping horizons. Moreover, we apply this method in standard expanding and contracting FLRW cosmological models of a Horava universe to investigate the conditions under which the extra parameters of the theory may lead to trapped/anti-trapped surfaces both in the future and in the past. We also include the cases of negative time, referred to as the finite past, and discuss the formation of anti-trapped surfaces inside the cosmological apparent horizons.

  11. BOOK REVIEW: Cosmology

    Science.gov (United States)

    Silk, Joseph

    2008-11-01

    The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most

  12. VLT/UVES constraints on the cosmological variability of the fine-structure constant

    Science.gov (United States)

    Levshakov, S. A.; Centurión, M.; Molaro, P.; D'Odorico, S.

    2005-05-01

    We propose a new methodology for probing the cosmological variability of α from pairs of Fe II lines (SIDAM, single ion differential α measurement) observed in individual exposures from a high resolution spectrograph. By this we avoid the influence of the spectral shifts due to (i) ionization inhomogeneities in the absorbers; and (ii) non-zero offsets between different exposures. Applied to the Fe II lines of the metal absorption line system at z_abs = 1.839 in the spectrum of Q 1101-264 obtained by means of the UV-Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT), SIDAM provides Δα/α = (2.4±3.8_stat)×10-6. The z_abs = 1.15 Fe II system toward HE 0515-4414 has been re-analyzed by this method thus obtaining for the combined sample Δα/α = (0.4±1.5_stat)×10-6. These values are shifted with respect to the Keck/HIRES mean Δα/α = (-5.7 ± 1.1_stat)×10-6 (Murphy et al. 2004) at very high confidence level (95%). The fundamental photon noise limitation in the Δα/α measurement with the VLT/UVES is discussed to figure the prospects for future observations. It is suggested that with a spectrograph of ~10 times the UVES dispersion coupled to a 100 m class telescope the present Oklo level (Δα/α ≥ 4.5 × 10-8) can be achieved along cosmological distances with differential measurements of Δα/α.

  13. The effects of structure anisotropy on lensing observables in an exact general relativistic setting for precision cosmology

    CERN Document Server

    Troxel, M A; Peel, Austin

    2013-01-01

    The study of relativistic, higher order and nonlinear effects has become necessary in recent years in the pursuit of precision cosmology. We develop and apply here a framework to study gravitational lensing in exact models in general relativity that are not restricted to homogeneity and isotropy, and where full nonlinearity and relativistic effects are included. We apply the framework to a specific, anisotropic galaxy cluster model which is based on a modified NFW halo density profile and described by the Szekeres metric. We examine the effects of increasing levels of anisotropy in the galaxy cluster on lensing observables like the convergence and shear for various lensing geometries, finding a strong nonlinear response in both the convergence and shear for rays passing through anisotropic regions of the cluster. Deviation from the expected values in a spherically symmetric structure are asymmetric with respect to path direction and thus will persist as a statistical effect when averaged over some ensemble of...

  14. Beyond the standard $\\Lambda$CDM cosmology: the observed structure of DM halos and the shape of the power spectrum

    CERN Document Server

    Demiański, M

    2015-01-01

    To restore the evolutionary history of the Dark Matter (DM) dominated objects -- galaxies and clusters of galaxies. Analyze the observational data to reveal correlations between the virial mass, $M_{vir}$, of halos and main properties of their central cores, namely, the mean DM density, pressure and entropy, and the redshifts of halo formation, $z_f$. These correlations indicate a high degree of self similarity of both the process of halos formation and the internal structure of relaxed halos. We confirm the CDM--like shape of the small scale power spectrum. However our reconstruction of evolutionary history of observed objects differs from expectations of the standard $\\Lambda$CDM cosmology and requires either multicomponent composition of DM or more complex primordial power spectrum of density perturbations with significant excess of power at scales of clusters of galaxies and larger. This approach seems to be quite efficient and suitably supplements the current investigations of galaxies at large redshifts...

  15. Cosmological principle

    Energy Technology Data Exchange (ETDEWEB)

    Wesson, P.S.

    1979-10-01

    The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8..pi..Gl/sup 2/ rho/c/sup 2/, 8..pi..Gl/sup 2/ rho/c/sup 4/, and 2 Gm/c/sup 2/l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution. (SC)

  16. A model for the post-collapse equilibrium of cosmological structure: truncated isothermal spheres from top-hat density perturbations

    Science.gov (United States)

    Shapiro, Paul R.; Iliev, Ilian T.; Raga, Alejandro C.

    1999-07-01

    The post-collapse structure of objects that form by gravitational condensation out of the expanding cosmological background universe is a key element in the theory of galaxy formation. Towards this end, we have reconsidered the outcome of the non-linear growth of a uniform, spherical density perturbation in an unperturbed background universe - the cosmological `top-hat' problem. We adopt the usual assumption that the collapse to infinite density at a finite time predicted by the top-hat solution is interrupted by a rapid virialization caused by the growth of small-scale inhomogeneities in the initial perturbation. We replace the standard description of the post-collapse object as a uniform sphere in virial equilibrium by a more self-consistent one as a truncated, non-singular, isothermal sphere in virial and hydrostatic equilibrium, including for the first time a proper treatment of the finite-pressure boundary condition on the sphere. The results differ significantly from both the uniform sphere and the singular isothermal sphere approximations for the post-collapse objects. The virial temperature that results is more than twice the previously used `standard value' of the post-collapse uniform sphere approximation, but 1.4 times smaller than that of the singular, truncated isothermal sphere approximation. The truncation radius is 0.554 times the radius of the top-hat at maximum expansion, and the ratio of the truncation radius to the core radius is 29.4, yielding a central density that is 514 times greater than at the surface and 1.8x10^4 times greater than that of the unperturbed background density at the epoch of infinite collapse predicted by the top-hat solution. For the top-hat fractional overdensity delta_L predicted by extrapolating the linear solution into the non-linear regime, the standard top-hat model assumes that virialization is instantaneous at delta_Ldelta_c=1.686 i.e. the epoch at which the non-linear top-hat reaches infinite density. The surface

  17. Deconstructing cosmology

    CERN Document Server

    Sanders, Robert H

    2016-01-01

    The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...

  18. The Inner Structure of Dwarf-sized Halos in Warm and Cold Dark Matter Cosmologies

    Science.gov (United States)

    González-Samaniego, A.; Avila-Reese, V.; Colín, P.

    2016-03-01

    By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses Mv = (2-3) × 1010 h-1 M⊙ at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is Mf = 2 × 1010 h-1 M⊙. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro-Frenk-White parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors of 1.5-2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02Rv, α0.02, becomes shallow in periods of 2-5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), Ms/Mv ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α0.02 is shallower than -0.5, Ms/Mv is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the dwarfs are softened, their stellar half-mass radii strongly grow with time, and their central surface densities

  19. THE INNER STRUCTURE OF DWARF-SIZED HALOS IN WARM AND COLD DARK MATTER COSMOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    González-Samaniego, A.; Avila-Reese, V. [Instituto de Astronomía, Universidad Nacional Autónoma de México, A.P. 70-264, 04510, México, D.F., México (Mexico); Colín, P. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, A.P. 72-3 (Xangari), Morelia, Michoacán 58089, México (Mexico)

    2016-03-10

    By means of N-body + hydrodynamic zoom-in simulations we study the evolution of the inner dark matter and stellar mass distributions of central dwarf galaxies formed in halos of virial masses M{sub v} = (2–3) × 10{sup 10} h{sup −1} M{sub ⊙} at z = 0, both in a warm dark matter (WDM) and cold dark matter (CDM) cosmology. The half-mode mass in the WDM power spectrum of our simulations is M{sub f} = 2 × 10{sup 10} h{sup −1} M{sub ⊙}. In the dark matter (DM) only simulations halo density profiles are well described by the Navarro–Frenk–White parametric fit in both cosmologies, though the WDM halos have concentrations lower by factors of 1.5–2.0 than their CDM counterparts. In the hydrodynamic simulations, the effects of baryons significantly flatten the inner density, velocity dispersion, and pseudo phase space density profiles of the WDM halos but not of the CDM ones. The density slope, measured at ≈0.02R{sub v}, α{sub 0.02}, becomes shallow in periods of 2–5 Gyr in the WDM runs. We explore whether this flattening process correlates with the global star formation (SF), M{sub s}/M{sub v} ratio, gas outflow, and internal specific angular momentum histories. We do not find any clear trends, but when α{sub 0.02} is shallower than −0.5, M{sub s}/M{sub v} is always between 0.25% and 1%. We conclude that the main reason for the formation of the shallow core is the presence of strong gas mass fluctuations inside the inner halo, which are a consequence of the feedback driven by a very bursty and sustained SF history in shallow gravitational potentials. Our WDM halos, which assemble late and are less concentrated than the CDM ones, obey these conditions. There are also (rare) CDM systems with extended mass assembly histories that obey these conditions and form shallow cores. The dynamical heating and expansion processes behind the DM core flattening apply also to the stars in such a way that the stellar age and metallicity gradients of the

  20. Hydrodynamic simulations of the growth of cosmological structure summary and comparisons among scenarios

    CERN Document Server

    Ostriker, J P; Ostriker, Jeremiah P; Cen, Renyue

    1996-01-01

    We compute, including a current state-of-the-art treatment of hydrodynamical processes, heating and cooling, a variety of cosmological models into the extreme nonlinear phase to enable comparisons with observations. First, we note the common, model independent results. All have a mean (z=0) temperature of 10^{4.5}-10^{5.5}\\Kel, set essentially by photoheating processes. Most gas is in one of two components: either at the photoheating floor 10^{4.5}\\Kel and primarily in low density regions or else shock heated to 10^5-10^6\\Kel and in regions of moderate overdensity (in caustics and near groups and clusters). It presents a major observational challenge to observationally detect this second, abundant component as it is neither an efficient radiator nor absorber. About 2\\% to 10\\% of the baryons cool and collapse into galaxies forming on caustics and migrating to clusters. About 1\\%-2\\% of baryons are in the very hot X-ray emitting gas near cluster cores, in good agreement with observations. These correspondances...

  1. VLT/UVES constraints on the cosmological variability of the fine-structure constant

    CERN Document Server

    Levshakov, S A; Molaro, P; D'Odorico, S

    2004-01-01

    A differential many-multiplet (DMM) technique is developed to probe the variability of alpha. Applied to the FeII lines of the metal absorption line system at zabs = 1.839 in the spectrum of Q1101-264 obtained by means of the UV-Visual Echelle Spectrograph (UVES) at the ESO Very Large Telescope (VLT), the DMM provides da/a = (4.3+/-7.8) 10^{-6}.The zabs = 1.15 FeII system toward HE0515-4414 has been re-analyzed by the DMM method thus obtaining for the combined sample da/a = (0.7+/-3.1) 10^{-6}. These values are shifted with respect to the Keck/HIRES mean da/a = (-5.7+/-1.1) 10^{-6} (Murphy et al. 2004) at very high confidence level (95%). The fundamental photon noise limitation in the da/a measurement with the VLT/UVES is discussed to figure the prospects for future observations. It is suggested that with a spectrograph of 10 times the UVES resolution coupled to a 100m class telescope the present Oklo level (da/a >= 4.5 10^{-8}) can be achieved along cosmological distances with differential measurements of da...

  2. The imprint of cosmological non-Gaussianities on primordial structure formation

    CERN Document Server

    Maio, Umberto

    2011-01-01

    We study via numerical N-body/SPH chemistry simulations the effects of primordial non-Gaussianities on the formation of the first stars and galaxies, and investigate the impact of supernova feedback in cosmologies with different fnl. Density distributions are biased to higher values, so star formation and the consequent feedback processes take place earlier in high-fnl models and later in low-fnl ones. Mechanical feedback is responsible for shocking and evacuating the gas from star forming sites earlier in the highly non-Gaussian cases, because of the larger bias at high densities. Chemical feedback translates into high-redshift metal filling factors that are larger by some orders of magnitude for larger fnl, but that converge within one Gyr, for both population III and population II-I stellar regimes. The efficient enrichment process, though, leads to metallicities > 0.01 Zsun by redshift ~9, almost independently from fnl. The impact of non-Gaussianities on the formation of dark-matter haloes at high redshif...

  3. Higher dimensional loop quantum cosmology

    Science.gov (United States)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  4. Stochastic Generator of Chemical Structure. 3. Reaction Network Generation

    Energy Technology Data Exchange (ETDEWEB)

    FAULON,JEAN-LOUP; SAULT,ALLEN G.

    2000-07-15

    A new method to generate chemical reaction network is proposed. The particularity of the method is that network generation and mechanism reduction are performed simultaneously using sampling techniques. Our method is tested for hydrocarbon thermal cracking. Results and theoretical arguments demonstrate that our method scales in polynomial time while other deterministic network generator scale in exponential time. This finding offers the possibility to investigate complex reacting systems such as those studied in petroleum refining and combustion.

  5. Mixmaster Horava-Witten Cosmology

    CERN Document Server

    Dabrowski, M P

    2001-01-01

    We discuss various superstring effective actions and, in particular, their common sector which leads to the so-called pre-big-bang cosmology (cosmology in a weak coupling limit of heterotic superstring). Then, we review the main ideas of the Horava-Witten theory which is a strong coupling limit of heterotic superstring theory. Using the conformal relationship between these two theories we present Kasner asymptotic solutions of Bianchi type IX geometries within these theories and make predictions about possible emergence of chaos. Finally, we present a possible method of generating Horava-Witten cosmological solutions out of the well-known general relativistic pre-big-bang solutions.

  6. Gravitational Instantons and Cosmological Constant

    CERN Document Server

    Cyriac, Josily

    2015-01-01

    The cosmological dynamics of an otherwise empty universe in the presence of vacuum fields is considered. Quantum fluctuations at the Planck scale leads to a dynamical topology of space-time at very small length scales, which is dominated by compact gravitational instantons. The Planck scale vacuum energy acts as a source for the curvature of the these compact gravitational instantons and decouples from the large scale energy momentum tensor of the universe, thus making the observable cosmological constant vanish. However, a Euclidean functional integral over all possible topologies of the gravitational instantons generates a small non-zero value for the large scale cosmological constant, which agrees with the present observations.

  7. Low-redshift effects of local structure on the Hubble parameter in presence of a cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Antonio Enea [University of Crete, Department of Physics and CCTP, Heraklion (Greece); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia); Vallejo, Sergio Andres [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Universidad de Antioquia, Instituto de Fisica, Medellin (Colombia)

    2016-04-15

    In order to estimate the effects of a local structure on the Hubble parameter we calculate the low-redshift expansion for H(z) and (δH)/(H) for an observer at the center of a spherically symmetric matter distribution in the presence of a cosmological constant. We then test the accuracy of the formulas comparing them with fully relativistic non-perturbative numerical calculations for different cases for the density profile. The low-redshift expansion we obtain gives results more precise than perturbation theory since it is based on the use of an exact solution of Einstein's field equations. For larger density contrasts the low-redshift formulas accuracy improves respect to the perturbation theory accuracy because the latter is based on the assumption of a small density contrast, while the former does not rely on such an assumption. The formulas can be used to take into account the effects on the Hubble expansion parameter due to the monopole component of the local structure. If the H(z) observations will show deviations from the ΛCDM prediction compatible with the formulas we have derived, this could be considered an independent evidence of the existence of a local inhomogeneity, and the formulas could be used to determine the characteristics of this local structure. (orig.)

  8. Supersymmetric 3D model for gravity with $SU(2)$ gauge symmetry, mass generation and effective cosmological constant

    CERN Document Server

    Alvarez, Pedro D; Rodríguez, Eduardo; Salgado-Rebolledo, Patricio; Zanelli, Jorge

    2015-01-01

    A Chern--Simons system in $2+1$ dimensions invariant under local Lorentz rotations, $SU(2)$ gauge transformations, and local $\\mathcal{N}=2$ supersymmetry transformations is proposed. The field content is that of $(2+1)$-gravity plus an $SU(2)$ gauge field, a spin-1/2 fermion charged with respect to $SU(2)$ and a trivial free abelian gauge field. A peculiarity of the model is the absence of gravitini, although it includes gravity and supersymmetry. Likewise, no gauginos are present. All the parameters involved in the system are either protected by gauge invariance or emerge as integration constants. An effective mass and effective cosmological constant emerge by spontaneus breaking of local scaling invariance. The vacuum sector is defined by configurations with locally flat Lorentz and $SU(2)$ connections sporting nontrivial global charges. Three-dimensional Lorentz-flat geometries are spacetimes of locally constant negative --or zero--, Riemann curvature, which include Minkowski space, AdS$_3$, BTZ black hol...

  9. Cosmological ``Truths''

    Science.gov (United States)

    Bothun, Greg

    2011-10-01

    Ever since Aristotle placed us, with certainty, in the Center of the Cosmos, Cosmological models have more or less operated from a position of known truths for some time. As early as 1963, for instance, it was ``known'' that the Universe had to be 15-17 billion years old due to the suspected ages of globular clusters. For many years, attempts to determine the expansion age of the Universe (the inverse of the Hubble constant) were done against this preconceived and biased notion. Not surprisingly when more precise observations indicated a Hubble expansion age of 11-13 billion years, stellar models suddenly changed to produce a new age for globular cluster stars, consistent with 11-13 billion years. Then in 1980, to solve a variety of standard big bang problems, inflation was introduced in a fairly ad hoc manner. Inflation makes the simple prediction that the net curvature of spacetime is zero (i.e. spacetime is flat). The consequence of introducing inflation is now the necessary existence of a dark matter dominated Universe since the known baryonic material could comprise no more than 1% of the necessary energy density to make spacetime flat. As a result of this new cosmological ``truth'' a significant world wide effort was launched to detect the dark matter (which obviously also has particle physics implications). To date, no such cosmological component has been detected. Moreover, all available dynamical inferences of the mass density of the Universe showed in to be about 20% of that required for closure. This again was inconsistent with the truth that the real density of the Universe was the closure density (e.g. Omega = 1), that the observations were biased, and that 99% of the mass density had to be in the form of dark matter. That is, we know the universe is two component -- baryons and dark matter. Another prevailing cosmological truth during this time was that all the baryonic matter was known to be in galaxies that populated our galaxy catalogs. Subsequent

  10. Ekpyrotic and Cyclic Cosmology

    CERN Document Server

    Lehners, Jean-Luc

    2008-01-01

    Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/rho >> 1 (where P is the average pressure and rho the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, thei...

  11. Ekpyrotic and cyclic cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Lehners, Jean-Luc [Princeton Center for Theoretical Science, Jadwin Hall, Princeton University, Princeton NJ 08544 (United States)], E-mail: jlehners@princeton.edu

    2008-09-15

    Ekpyrotic and cyclic cosmologies provide theories of the very early and of the very late universe. In these models, the big bang is described as a collision of branes - and thus the big bang is not the beginning of time. Before the big bang, there is an ekpyrotic phase with equation of state w=P/({rho}) >>1 (where P is the average pressure and {rho} the average energy density) during which the universe slowly contracts. This phase resolves the standard cosmological puzzles and generates a nearly scale-invariant spectrum of cosmological perturbations containing a significant non-Gaussian component. At the same time it produces small-amplitude gravitational waves with a blue spectrum. The dark energy dominating the present-day cosmological evolution is reinterpreted as a small attractive force between our brane and a parallel one. This force eventually induces a new ekpyrotic phase and a new brane collision, leading to the idea of a cyclic universe. This review discusses the detailed properties of these models, their embedding in M-theory and their viability, with an emphasis on open issues and observational signatures.

  12. Relativistic Chaos in Robertson-Walker Cosmologies The Topological Structure of Space-Time and the Microscopic Dynamics

    CERN Document Server

    Tomaschitz, R

    1991-01-01

    Keywords: Robertson-Walker cosmology, relativistic chaos, mixing, Bernoulli property, time evolution, quantum fields, quantum chaos, bound states, energy functional, hyperbolic manifold, deformation space, Kleinian group, limit set, Hausdorff dimension, convex hull.

  13. Optical design and modelling of the QUBIC instrument, a next-generation quasi-optical bolometric interferometer for cosmology

    Science.gov (United States)

    Scully, S.; Burke, D.; O'Sullivan, C.; Gayer, D.; Gradziel, M.; Murphy, J. A.; De Petris, M.; Buzi, D.; Zannoni, M.; Mennella, A.; Gervasi, M.; Tartari, A.; Maffei, B.; Aumont, J.; Banfi, S.; Battaglia, P.; Battistelli, E. S.; Baó, A.; Bélier, B.; Bennet, D.; Bergé, L.; Bernard, J.-Ph.; Bersanelli, M.; Bigot-Sazy, M.-A.; Bleurvacq, N.; Bordier, G.; Brossard, J.; Bunn, E. F.; Cammileri, D.; Cavaliere, F.; Chanial, P.; Chapron, C.; Coppolecchia, A.; Couchot, F.; D'Alessandro, G.; De Bernardis, P.; Decourcelle, T.; Del Torto, F.; Dumoulin, L.; Franceschet, C.; Gault, A.; Ghribi, A.; Giard, M.; Giraud-Héraud, Y.; Grandsire, L.; Hamilton, J. C.; Haynes, V.; Henrot-Versillé, S.; Holtzer, N.; Kaplan, J.; Korotkov, A.; Lande, J.; Lowitz, A.; Marnieros, S.; Martino, J.; Masi, S.; McCulloch, Mark; Melhuish, Simon; Montier, L.; Néel, D.; Ng, M. W.; Pajot, F.; Passerini, A.; Perbost, C.; Perdereau, O.; Piacentini, F.; Piat, M.; Piccirillo, L.; Pisano, G.; Prêle, D.; Puddu, R.; Rambaud, D.; Rigaut, O.; Salatino, M.; Schillaci, A.; Stolpovskiy, M.; Timbie, P.; Tristram, M.; Tucker, G.; Viganò, D.; Voisin, F.; Watson, B.

    2016-07-01

    Big Bang cosmologies predict that the cosmic microwave background (CMB) contains faint temperature and polarisation anisotropies imprinted in the early universe. ESA's PLANCK satellite has already measured the temperature anisotropies1 in exquisite detail; the next ambitious step is to map the primordial polarisation signatures which are several orders of magnitude lower. Polarisation E-modes have been measured2 but the even-fainter primordial B-modes have so far eluded detection. Their magnitude is unknown but it is clear that a sensitive telescope with exceptional control over systematic errors will be required. QUBIC3 is a ground-based European experiment that aims to exploit the novel concept of bolometric interferometry in order to measure B-mode polarisation anisotropies in the CMB. Beams from an aperture array of corrugated horns will be combined to form a synthesised image of the sky Stokes parameters on two focal planes: one at 150 GHz the other at 220 GHz. In this paper we describe recent optical modelling of the QUBIC beam combiner, concentrating on modelling the instrument point-spread-function and its operation in the 220-GHz band. We show the effects of optical aberrations and truncation as successive components are added to the beam path. In the case of QUBIC, the aberrations introduced by off-axis mirrors are the dominant contributor. As the frequency of operation is increased, the aperture horns allow up to five hybrid modes to propagate and we illustrate how the beam pattern changes across the 25% bandwidth. Finally we describe modifications to the QUBIC optical design to be used in a technical demonstrator, currently being manufactured for testing in 2016.

  14. Dionysian cosmology

    CERN Document Server

    Neves, J C S

    2015-01-01

    In the Nietzschean philosophy, the concept of force from physics is important to build one of its main concepts: the will to power. The concept of force, which Nietzsche found out in the Classical Mechanics, almost disappears in the physics of the XX century with the Quantum Field Theory and General Relativity. Is the Nietzschean world as contending forces, a Dionysian cosmology, possible in the current science?

  15. Superstring cosmology

    Science.gov (United States)

    Alvarez, Enrique

    1985-01-01

    Some cosmological consequences of the assumption that superstrings are more fundamental objects than ordinary local quantum fields are examined. We study, in particular, the dependence of both the string tension and the temperature of the primordial string soup on cosmic time. A particular scenario is proposed in which the universe undergoes a contracting ``string phase'' before the ordinary ``big bang,'' which according to this picture is nothing but the outcome of the transition from nonlocal to local fundamental physics.

  16. Medieval Cosmology

    Science.gov (United States)

    Grant, E.; Murdin, P.

    2000-11-01

    During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...

  17. Cosmological Variation of the Fine Structure Constant from an Ultra-Light Scalar Field: The Effects of Mass

    CERN Document Server

    Gardner, C L

    2003-01-01

    Cosmological variation of the fine structure constant $\\alpha$ due to the evolution of a spatially homogeneous ultra-light scalar field ($m \\sim H_0$) during the matter and $\\Lambda$ dominated eras is analyzed. Agreement of $\\Delta \\alpha/\\alpha$ with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically $\\alpha(t)$ in this model goes to a constant value $\\bar{\\alpha} \\approx \\alpha_0$ in the early radiation and the late $\\Lambda$ dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives $\\alpha$ slightly away from $\\bar{\\alpha}$ in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation $|\\Delta \\alpha/\\alpha|$ from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5--0.6 $\\bar{H}$, where $\\bar{H} = \\Omega_\\Lambda^{1/2}...

  18. How Density Environment Changes the Influence of the Dark Matter-Baryon Streaming Velocity on the Cosmological Structure Formation

    CERN Document Server

    Ahn, Kyungjin

    2016-01-01

    We study the dynamical effect of relative velocities between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich & Hirata (2010), in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be those of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakho...

  19. Structure formation in warm dark matter cosmologies: Top-Bottom Upside-Down

    CERN Document Server

    Paduroiu, Sinziana; Pfenniger, Daniel

    2015-01-01

    The damping on the fluctuation spectrum and the presence of thermal velocities as properties of warm dark matter particles like sterile neutrinos imprint a distinct signature found from the structure formation mechanisms to the internal structures of halos. Using warm dark matter simulations we explore these effects on the structure formation for different particle energies and we find that the formation of structure is more complex than originally assumed, a combination of top-down collapse and hierarchical (bottom-up) clustering on multiple scales. The degree on which one scenario is more prominent with respect to the other depends globally on the energy of the particle and locally on the morphology and architecture of the analyzed region. The presence of shells and caustics in warm dark matter haloes is another important effect seen in simulations. Furthermore, we discuss the impact of thermal velocities on the structure formation from theoretical considerations as well as from the analysis of the simulati...

  20. Domain Structure of Black Hole Space-Times with a Cosmological Constant

    CERN Document Server

    Armas, Jay; Harmark, Troels

    2011-01-01

    We generalize the domain structure for stationary black hole space-times to include asymptotically de Sitter and Anti-de Sitter space-times. Given a set of commuting Killing vector fields of a space-time the domain structure lives on the submanifold of the orbit space on which at least one of the Killing vector fields has zero norm. In general the domain structure provides topological and geometrical invariants of black hole space-times that in specific cases have proven to be a crucial part of a full characterization leading to uniqueness theorems. In four and five dimensions the domain structure generalizes the rod structure. We examine in detail the domain structure for four, five, six and seven-dimensional black hole space-times including a very general class of spherically symmetric and static black hole space-times as well as the exact solutions for Kerr-(Anti)-de Sitter black holes. While for asymptotically Anti-de Sitter space-times the domain structures resemble that of asymptotically flat space-time...

  1. Variable speed of light cosmology, primordial fluctuations and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, J.W. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, Ontario (Canada)

    2016-03-15

    A variable speed of light (VSL) cosmology is described in which the causal mechanism of generating primordial perturbations is achieved by varying the speed of light in a primordial epoch. This yields an alternative to inflation for explaining the formation of the cosmic microwave background (CMB) and the large scale structure (LSS) of the universe. The initial value horizon and flatness problems in cosmology are solved. The model predicts primordial scalar and tensor fluctuation spectral indices n{sub s} = 0.96 and n{sub t} = - 0.04, respectively. We make use of the δN formalism to identify signatures of primordial nonlinear fluctuations, and this allows the VSL model to be distinguished from inflationary models. In particular, we find that the parameter f{sub NL} = 5 in the variable speed of light cosmology. The value of the parameter g{sub NL} evolves during the primordial era and shows a running behavior. (orig.)

  2. Inflationary Perturbations and Precision Cosmology

    CERN Document Server

    Habib, S; Heitmann, K; Jungman, G; Habib, Salman; Heinen, Andreas; Heitmann, Katrin; Jungman, Gerard

    2005-01-01

    Inflationary cosmology provides a natural mechanism for the generation of primordial perturbations which seed the formation of observed cosmic structure and lead to specific signals of anisotropy in the cosmic microwave background radiation. In order to test the broad inflationary paradigm as well as particular models against precision observations, it is crucial to be able to make accurate predictions for the power spectrum of both scalar and tensor fluctuations. We present detailed calculations of these quantities utilizing direct numerical approaches as well as error-controlled uniform approximations, comparing with the (uncontrolled) traditional slow-roll approach. A simple extension of the leading-order uniform approximation yields results for the power spectra amplitudes, the spectral indices, and the running of spectral indices, with accuracy of the order of 0.1% - approximately the same level at which the transfer functions are known. Several representative examples are used to demonstrate these resul...

  3. Cosmological Tests of Gravity

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.

  4. Cosmology emerging as the gauge structure of a nonlinear quantum system

    CERN Document Server

    Kam, Chon-Fai

    2016-01-01

    Berry phases and gauge structures in parameter spaces of quantum systems are the foundation of a broad range of quantum effects such as quantum Hall effects and topological insulators. The gauge structures of interacting many-body systems, which often present exotic features, are particularly interesting. While quantum systems are intrinsically linear due to the superposition principle, nonlinear quantum mechanics can arise as an effective theory for interacting systems (such as condensates of interacting bosons). Here we show that gauge structures similar to curved spacetime can arise in nonlinear quantum systems where the superposition principle breaks down. In the canonical formalism of the nonlinear quantum mechanics, the geometric phases of quantum evolutions can be formulated as the classical geometric phases of a harmonic oscillator that represents the Bogoliubov excitations. We find that the classical geometric phase can be described by a de Sitter universe. The fundamental frequency of the harmonic o...

  5. Religion, theology and cosmology

    Directory of Open Access Journals (Sweden)

    John T. Fitzgerald

    2013-10-01

    Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.

  6. Cosmology and astrophysics 1992

    CERN Document Server

    Krauss, L M

    1992-01-01

    I review recent developments in cosmology and astrophysics relevant to particle physics, focussing on the following questions: What's new in 1992? What have we learned since the last ICHEP meeting in 1990? and What are the prospects for the future? AMong the topics explicitly discussed are: COBE, Large Scale Structure, and Dark Matter; Bib Bang Nucleosynthesis; the Solar Neutrino Problem; and High Energy Gamma Ray PHysics.

  7. Quantum Cosmology

    OpenAIRE

    Bojowald, Martin

    1999-01-01

    A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...

  8. Rastall cosmology

    CERN Document Server

    Fabris, J C; Rodrigues, D C; Batista, C E M; Daouda, M H

    2012-01-01

    We review the difficulties of the generalized Chaplygin gas model to fit observational data, due to the tension between background and perturbative tests. We argue that such issues may be circumvented by means of a self-interacting scalar field representation of the model. However, this proposal seems to be successful only if the self-interacting scalar field has a non-canonical form. The latter can be implemented in Rastall's theory of gravity, which is based on a modification of the usual matter conservation law. We show that, besides its application to the generalized Chaplygin gas model, other cosmological models based on Rastall's theory have many interesting and unexpected new features.

  9. Physical and Relativistic Numerical Cosmology

    Directory of Open Access Journals (Sweden)

    Peter Anninos

    1998-01-01

    Full Text Available In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark--hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  10. Turbulence and Vorticity in Galaxy Clusters Generated by Structure Formation

    CERN Document Server

    Vazza, F; Brüggen, M; Brunetti, G; Gheller, C; Porter, D; Ryu, D

    2016-01-01

    Turbulence is a key ingredient for the evolution of the intracluster medium, whose properties can be predicted with high resolution numerical simulations. We present initial results on the generation of solenoidal and compressive turbulence in the intracluster medium during the formation of a small-size cluster using highly resolved, non-radiative cosmological simulations, with a refined monitoring in time. In this first of a series of papers, we closely look at one simulated cluster whose formation was distinguished by a merger around $z \\sim 0.3$. We separate laminar gas motions, turbulence and shocks with dedicated filtering strategies and distinguish the solenoidal and compressive components of the gas flows using Hodge-Helmholtz decomposition. Solenoidal turbulence dominates the dissipation of turbulent motions ($\\sim 95\\%$) in the central cluster volume at all epochs. The dissipation via compressive modes is found to be more important ($\\sim 30 \\%$ of the total) only at large radii ($\\geq 0.5 ~r_{\\rm vi...

  11. Coasting cosmologies with time dependent cosmological constant

    CERN Document Server

    Pimentel, L O; Pimentel, Luis O.

    1999-01-01

    The effect of a time dependent cosmological constant is considered in a family of scalar tensor theories. Friedmann-Robertson-Walker cosmological models for vacumm and perfect fluid matter are found. They have a linear expansion factor, the so called coasting cosmology, the gravitational "constant" decreace inversely with time; this model satisfy the Dirac hipotesis. The cosmological "constant" decreace inversely with the square of time, therefore we can have a very small value for it at present time.

  12. Symmetron Cosmology

    CERN Document Server

    Hinterbichler, Kurt; Levy, Aaron; Matas, Andrew

    2011-01-01

    The symmetron is a scalar field associated with the dark sector whose coupling to matter depends on the ambient matter density. The symmetron is decoupled and screened in regions of high density, thereby satisfying local constraints from tests of gravity, but couples with gravitational strength in regions of low density, such as the cosmos. In this paper we derive the cosmological expansion history in the presence of a symmetron field, tracking the evolution through the inflationary, radiation- and matter-dominated epochs, using a combination of analytical approximations and numerical integration. For a broad range of initial conditions at the onset of inflation, the scalar field reaches its symmetry-breaking vacuum by the present epoch, as assumed in the local analysis of spherically-symmetric solutions and tests of gravity. For the simplest form of the potential, the energy scale is too small for the symmetron to act as dark energy, hence we must add a cosmological constant to drive late-time cosmic acceler...

  13. Fermionic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, L P; Forte, M [Physics Department, UBA, 1428 Buenos Aires (Argentina); Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L, E-mail: kremer@fisica.ufpr.br, E-mail: devecchi@fisica.ufpr.br, E-mail: chimento@df.uba.ar [Physics Department, UFPR, 81531-990 Curitiba (Brazil)

    2011-07-08

    In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.

  14. Newtonian cosmology - Problems of cosmological didactics

    Energy Technology Data Exchange (ETDEWEB)

    Skarzynski, E.

    1983-03-01

    The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.

  15. Precise limits on cosmological variability of the fine-structure constant with zinc and chromium quasar absorption lines

    Science.gov (United States)

    Murphy, Michael T.; Malec, Adrian L.; Prochaska, J. Xavier

    2016-09-01

    The strongest transitions of Zn and Cr II are the most sensitive to relative variations in the fine-structure constant (Δα/α) among the transitions commonly observed in quasar absorption spectra. They also lie within just 40 Å of each other (rest frame), so they are resistant to the main systematic error affecting most previous measurements of Δα/α: long-range distortions of the wavelength calibration. While Zn and Cr II absorption is normally very weak in quasar spectra, we obtained high signal-to-noise, high-resolution echelle spectra from the Keck and Very Large Telescopes of nine rare systems where it is strong enough to constrain Δα/α from these species alone. These provide 12 independent measurements (three quasars were observed with both telescopes) at redshifts 1.0-2.4, 11 of which pass stringent reliability criteria. These 11 are all consistent with Δα/α = 0 within their individual uncertainties of 3.5-13 parts per million (ppm), with a weighted mean Δα/α = 0.4 ± 1.4stat ± 0.9sys ppm (1σ statistical and systematic uncertainties), indicating no significant cosmological variations in α. This is the first statistical sample of absorbers that is resistant to long-range calibration distortions (at the <1 ppm level), with a precision comparable to previous large samples of ˜150 (distortion-affected) absorbers. Our systematic error budget is instead dominated by much shorter range distortions repeated across echelle orders of individual spectra.

  16. Relativistic Fractal Cosmologies

    CERN Document Server

    Ribeiro, Marcelo B

    2009-01-01

    This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...

  17. Holography from quantum cosmology

    CERN Document Server

    Rashki, M

    2014-01-01

    The Weyl-Wigner-Groenewold-Moyal formalism of deformation quantization is applied to the closed Friedmann-Lema\\^itre-Robertson-Walker (FLRW) cosmological model. We show that the phase space average for the surface of the apparent horizon is quantized in units of the Planck's surface, and that the total entropy of the universe is also quantized. Taking into account these two concepts, it is shown that 't Hooft conjecture on the cosmological holographic principle (CHP) in radiation and dust dominated quantum universes is satisfied as a manifestation of quantization. This suggests that the entire universe (not only inside the apparent horizon) can be seen as a two-dimensional information structure encoded on the apparent horizon.

  18. Cosmological extrapolation of MOND

    CERN Document Server

    Kiselev, V V

    2011-01-01

    Regime of MOND, which is used in astronomy to describe the gravitating systems of island type without the need to postulate the existence of a hypothetical dark matter, is generalized to the case of homogeneous distribution of usual matter by introducing a linear dependence of the critical acceleration on the size of region under consideration. We show that such the extrapolation of MOND in cosmology is consistent with both the observed dependence of brightness on the redshift for type Ia supernovae and the parameters of large-scale structure of Universe in the evolution, that is determined by the presence of a cosmological constant, the ordinary matter of baryons and electrons as well as the photon and neutrino radiation without any dark matter.

  19. Connections between abstract quantum theory and space-time structure. II. A model of cosmological evolution

    Energy Technology Data Exchange (ETDEWEB)

    Goernitz, T.

    1988-06-01

    In the first part of the present work, I treated the global structure of space by ur-theoretic considerations and also introduced a smallest physically accessible length. This enterprise led to a cosmography, a description of a cosmic model at a fixed time. Of course, there must also be a description of its time development, of the change of the number of urs with time. There has been no a priori assumption for this process. Here an attempt is made to treat this evolution by means of general relativity and to compare the result with observations. This means that general relativity is used as an existing and adequate theory; it is hoped that general relativity can be reconstructed from ur theory.

  20. Cosmology with a spin

    CERN Document Server

    Magueijo, Joao; Kibble, T W B

    2013-01-01

    Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but it can be re-interpreted as a 4-fermion self-interaction within a torsion-free theory. The self-interaction may or may not break parity invariance, and may contribute positively or negatively to the energy density, depending on the couplings considered. We then examine cosmological models ruled by a spinorial field within this theory. We find that while there are cases for which no significant cosmological novelties emerge, the self-interaction can also turn a mass potential into an upside-down Mexican hat potential. Then, as a general rule, the model leads to cosmologies with a bounce, for which there is a maximal energy density, and where the cosmic singularity has been removed. These solutions are stable, and range from the very simple to the very complex.

  1. Formation of galaxies in {\\Lambda}CDM cosmologies. I. The fine structure of disc galaxies

    CERN Document Server

    Doménech-Moral, Mariola; Domínguez-Tenreiro, Rosa; Serna, Arturo

    2012-01-01

    We present a detailed analysis of the global and fine structure of four middle-mass disc galaxies obtained from simulations in a $\\Lambda$CDM scenario. These objects have photometric D/T ratios in good agreement with those observed for late-type spirals, as well as kinematic properties in agreement with the observational Tully-Fisher relation. We identify the different dynamical components at z=0 on the basis of both orbital parameters and the binding energy of stars in the galaxy. In this way, we recognize a slowly rotating centrally concentrated spheroid, and two disc components supported by rotation: a thin disc with stars in nearly circular orbits, and a thick disc with orbital parameters transitional between the thin disc and the spheroid. The spheroidal component is composed mainly by old, metal-poor and {\\alpha}-enhanced stars. The distribution of metals in this component shows, however, a clear bimodality with a low-metallicity peak, which could be related to a classical bulge, and a high-metallicity ...

  2. Physical Properties and Evolution of Gravitationally Bound Halo Structures in Cosmological Dark Matter Simulations

    Science.gov (United States)

    Lin, David; Rocha, Miguel E.; Primack, Joel R.

    2015-01-01

    Dark matter halos existing around visible galaxies are important for studies of galaxy formation and evolution. Since dark matter does not interact with light and cannot be observed directly, studies of dark matter halos are advanced by computer simulations. Normally, halos are defined by their virialized regions; however, regions that are non-virialized can still be gravitationally bound, like the collision-bound Milky Way and Andromeda galaxies. Our project is the first comprehensive characterization of gravitationally bound halo structures, their properties, and their evolution. This study found the bound regions surrounding every dark matter halo from a 100 Mpc cube of the Bolshoi Simulation at redshifts 0, 1, and 2. We optimized computation by removing subhalos, implementing a search radius, and parallelizing code across 160 supercomputer cores. Then, we created a mass function, circular velocity function, and correlation function to describe these regions. The evolution of these properties was consistent with predictions from a ΛCDM universe model. We characterized the sizes and shapes of these bound regions across different mass intervals and redshifts. Most bound regions are elongated, although they become more spheroidal with time. The results enable astronomers to predict how dark matter halos behave in non-virialized regions of space and deepen our understanding of galaxy formation.

  3. Negative Energy Cosmology and the Cosmological Constant

    CERN Document Server

    Prokopec, Tomislav

    2011-01-01

    It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universe's evolution. In this letter we present two simple nonlocal modifications of the standard Friedmann cosmology that can lead to observationally viable cosmologies with an initial (negative) cosmological constant. The nonlocal operators we include are toy models for the quantum cosmological backreaction. In Model I an initial quasiperiodic oscillatory epoch is followed by inflation and a late time matter era, representing a dark matter candidate. The backreaction in Model II quickly compensates the negative cosmological term such that the Ricci curvature scalar rapidly approaches zero, and the Universe ends up in a late time radiation era.

  4. Cosmological networks

    CERN Document Server

    Boguna, Marian; Krioukov, Dmitri

    2013-01-01

    Networks often represent systems that do not have a long history of studies in traditional fields of physics, albeit there are some notable exceptions such as energy landscapes and quantum gravity. Here we consider networks that naturally arise in cosmology. Nodes in these networks are stationary observers uniformly distributed in an expanding open FLRW universe with any scale factor, and two observers are connected if one can causally influence the other. We show that these networks are growing Lorentz-invariant graphs with power-law distributions of node degrees. New links in these networks not only connect new nodes to existing ones, but also appear at a certain rate between existing nodes, as they do in many complex networks.

  5. Cosmology with Standard Sirens: the Importance of the Shape of the Lensing Magnification Distribution

    CERN Document Server

    Shang, Cien

    2010-01-01

    The gravitational waves (GWs) emitted by inspiraling binary black holes, expected to be detected by the Laser Interferometer Space Antenna (LISA), could be used to determine the luminosity distance to these sources with the unprecedented precision of <~ 1%. We study cosmological parameter constraints from such standard sirens, in the presence of gravitational lensing by large-scale structure. Lensing introduces magnification with a probability distribution function (PDF) whose shape is highly skewed and depends on cosmological parameters. We use Monte-Carlo simulations to generate mock samples of standard sirens, including a small intrinsic scatter, as well as the additional, larger scatter from lensing, in their inferred distances. We derive constraints on cosmological parameters, by simultaneously fitting the mean and the distribution of the residuals on the distance vs redshift (d_L - z) Hubble diagram. We find that for standard sirens at redshift z ~ 1, the sensitivity to a single cosmological paramete...

  6. Analysis of Numerically Generated Wake Structures

    DEFF Research Database (Denmark)

    Ivanell, S.; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming;

    2009-01-01

    Direct numerical simulations of the Navier-Stokes equations are performed to achieve a better understanding of the behaviour of wakes generated by wind turbines. The simulations are performed by combining the in-house developed computer code EllipSys3D with the actuator-line methodology. In the a......Direct numerical simulations of the Navier-Stokes equations are performed to achieve a better understanding of the behaviour of wakes generated by wind turbines. The simulations are performed by combining the in-house developed computer code EllipSys3D with the actuator-line methodology...

  7. On an Alternative Cosmology

    CERN Document Server

    Vankov, A

    1998-01-01

    The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.

  8. Cosmology and astroparticles

    CERN Document Server

    Gelmini, Graciela B

    1996-01-01

    Talks given at the V Taller de Particulas y Campos (V-TPyC) and V Taller Latinoam. de Fenomenologia de las Interac. Fundam. (V-TLFIF), Puebla, Mexico, 10/30 - 11/3 1995. These lectures are devoted to elementary particle physicists and assume the reader has very little or no knowledge of cosmology and astrophysics. After a brief historical introduction to the development of modern cosmology and astro-particles in which the Hot Big Bang model is defined, the Robertson-Walker metric and the dynamics of the Friedmann-Robertson-Walker cosmology are discussed in section 2. In section 3 the main observational features of the Universe are reviewed, including a description of our neighbourhood, homogeneity and isotropy, the cosmic background radiation, the expansion, the age and the matter content of the Universe. A brief account of the thermal history of the Universe follows in section 4, and relic abundances are discussed in section 5. Section 6 is devoted to primordial nucleosynthesis, section 7 to structure format...

  9. Tilted string cosmologies

    Science.gov (United States)

    Clancy, Dominic; Feinstein, Alexander; Lidsey, James E.; Tavakol, Reza

    1999-04-01

    Global symmetries of the string effective action are employed to generate tilted, homogeneous Bianchi type VIh string cosmologies from a previously known stiff perfect fluid solution to Einstein gravity. The dilaton field is not constant on the surfaces of homogeneity. The future asymptotic state of the models is interpreted as a plane wave and is itself an exact solution to the string equations of motion to all orders in the inverse string tension. An inhomogeneous generalization of the Bianchi type III model is also found.

  10. Structured Beam Generation with a Single Metasurface

    CERN Document Server

    Yue, Fuyong; Xin, Jingtao; Gerardot, Brian; Li, Jensen; Chen, Xianzhong

    2016-01-01

    Despite a plethora of applications ranging from quantum memories to high-resolution lithography, the current technologies to generate vector vortex beams (VVBs) suffer from less efficient energy use, poor resolution, low damage threshold, bulky size and complicated experimental setup, preventing further practical applications. We propose and experimentally demonstrate an approach to generate VVBs with a single metasurface by locally tailoring phase and transverse polarization distribution. This method features the spin-orbit coupling and the superposition of the converted part with an additional phase pickup and the residual part without a phase change. By maintaining the equal components for the converted part and the residual part, the cylindrically polarized vortex beams carrying orbital angular momentum are experimentally demonstrated based on a single metasurface at subwavelength scale. The proposed approach provides unprecedented freedom in engineering the properties of optical waves with the high-effic...

  11. Characteristic flow patterns generated by macrozoobenthic structures

    Science.gov (United States)

    Friedrichs, M.; Graf, G.

    2009-02-01

    A laboratory flume channel, equipped with an acoustic Doppler flow sensor and a bottom scanning laser, was used for detailed, non-intrusive flow measurements (at 2 cm s - 1 and 10 cm s - 1 ) around solitary biogenic structures, combined with high-resolution mapping of the structure shape and position. The structures were replicates of typical macrozoobenthic species commonly found in the Mecklenburg Bight and with a presumed influence on both, the near-bed current regime and sediment transport dynamics: a worm tube, a snail shell, a mussel, a sand mound, a pit, and a cross-stream track furrow. The flow was considerably altered locally by the different protruding structures (worm tube, snail, mussel and mound). They reduced the horizontal approach velocity by 72% to 79% in the wake zone at about 1-2 cm height, and the flow was deflected around the structures with vertical and lateral velocities of up to 10% and 20% of the free-stream velocity respectively in a region adjacent to the structures. The resulting flow separation (at flow Reynolds number of about 4000 and 20,000 respectively) divided an outer deflection region from an inner region with characteristic vortices and the wake region. All protruding structures showed this general pattern, but also produced individual characteristics. Conversely, the depressions (track and pit) only had a weak influence on the local boundary layer flow, combined with a considerable flow reduction within their cavities (between 29% and 53% of the free-stream velocity). A longitudinal vortex formed, below which a stagnant space was found. The average height affected by the structure-related mass flow rate deficit for the two velocities was 1.6 cm and 1.3 cm respectively (80% of height and 64%) for the protruding structures and 0.6 cm and 0.9 cm (90% and 127% of depth) for the depressions. Marine benthic soft-bottom macrozoobenthos species are expected to benefit from the flow modifications they induce, particularly in terms of

  12. The Early Universe in Loop Quantum Cosmology

    OpenAIRE

    Bojowald, M.

    2005-01-01

    Loop quantum cosmology applies techniques derived for a background independent quantization of general relativity to cosmological situations and draws conclusions for the very early universe. Direct implications for the singularity problem as well as phenomenology in the context of inflation or bouncing universes result, which will be reviewed here. The discussion focuses on recent new results for structure formation and generalizations of the methods.

  13. Baryogenesis and the new cosmology

    Indian Academy of Sciences (India)

    Mark Trodden

    2004-02-01

    I begin this talk with a brief review of the status of approaches to understanding the origin of the baryon asymmetry of the Universe (BAU). I then describe a recent model unifying three seemingly distinct problems facing particle cosmology: the origin of inflation, the generation of the BAU and the nature of dark energy.

  14. MPS/CAS Partner Group on Cosmology

    Institute of Scientific and Technical Information of China (English)

    Jing Yipeng; Gerhard B(o)rner

    2004-01-01

    @@ The Partner Group does research in cosmology, focussing on the quantitative modeling of the structure and evolution of galaxies and galaxy clusters, the pattern of galaxies and of larger structures.

  15. The Cosmology - Particle Physics Connection

    CERN Document Server

    Trodden, M

    2006-01-01

    Modern cosmology poses deep and unavoidable questions for fundamental physics. In this plenary talk, delivered in slightly different forms at the {\\it Particles and Nuclei International Conference} (PANIC05) in Santa Fe, in October 2005, and at the {\\it CMB and Physics of the Early Universe International Conference}, on the island of Ischia, Italy, in April 2006, I discuss the broad connections between cosmology and particle physics, focusing on physics at the TeV scale, accessible at the next and future generations of colliders

  16. Quantized Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, M

    2003-11-19

    This paper discusses the problem of inflation in the context of Friedmann-Robertson-Walker Cosmology. We show how, after a simple change of variables, one can quantize the problem in a way which parallels the classical discussion. The result is that two of the Einstein equations arise as exact equations of motion; one of the usual Einstein equations (suitably quantized) survives as a constraint equation to be imposed on the space of physical states. However, the Friedmann equation, which is also a constraint equation and which is the basis of the Wheeler-DeWitt equation, acquires a welcome quantum correction that becomes significant for small scale factors. We then discuss the extension of this result to a full quantum mechanical derivation of the anisotropy ({delta}{rho}/{rho}) in the cosmic microwave background radiation and the possibility that the extra term in the Friedmann equation could have observable consequences. Finally, we suggest interesting ways in which these techniques can be generalized to cast light on the question of chaotic or eternal inflation. In particular, we suggest that one can put an experimental bound on how far away a universe with a scale factor very different from our own must be, by looking at its effects on our CMB radiation.

  17. Cosmological daemon

    Science.gov (United States)

    Aref'eva, I. Ya.; Volovich, I. V.

    2011-08-01

    Classical versions of the Big Bang cosmological models of the universe contain a singularity at the start of time, hence the time variable in the field equations should run over a half-line. Nonlocal string field theory equations with infinite number of derivatives are considered and an important difference between nonlocal operators on the whole real line and on a half-line is pointed out. We use the heat equation method and show that on the half-line in addition to the usual initial data a new arbitrary function (external source) occurs that we call the daemon function. The daemon function governs the evolution of the universe similar to Maxwell's demon in thermodynamics. The universe and multiverse are open systems interacting with the daemon environment. In the simplest case the nonlocal scalar field reduces to the usual local scalar field coupled with an external source which is discussed in the stochastic approach to inflation. The daemon source can help to get the chaotic inflation scenario with a small scalar field.

  18. Interacting galaxies and cosmological parameters

    CERN Document Server

    Reboul, H

    2006-01-01

    We propose a (physical)-geometrical method to measure the present rates of the density cosmological parameters for a Friedmann-Lemaitre universe. The distribution of linear separations between two interacting galaxies,when both of them undergo a first massive starburst, is used as a standard of length. Statistical properties of the linear separations of such pairs of ``interactivated'' galaxies are estimated from the data in the Two Degree Field Galaxy Redshift Survey. Synthetic samples of interactivated pairs are generated with random orientations and a likely distribution of redshifts. The resolution of the inverse problem provides the probability densities of the retrieved cosmological parameters. The accuracies that can be achieved by that method on matter and cosmological constant densities parameters are computed depending on the size of ongoing real samples. Observational prospects are investigated as the foreseeable surface densities on the sky and magnitudes of those objects.

  19. Thermal fluctuations in loop cosmology

    CERN Document Server

    Magueijo, J; Magueijo, Joao; Singh, Parampreet

    2007-01-01

    Quantum gravitational effects in loop quantum cosmology lead to a resolution of the initial singularity and have the potential to solve the horizon problem and generate a quasi scale-invariant spectrum of density fluctuations. We consider loop modifications to the behavior of the inverse scale factor below a critical scale in closed models and assume a purely thermal origin for the fluctuations. We show that the no-go results for scale invariance in classical thermal models can be evaded even if we just consider modifications to the background (zeroth order) gravitational dynamics. Since a complete and systematic treatment of the perturbed Einstein equations in loop cosmology is still lacking, we simply parameterize their expected modifications. These change quantitatively, but not qualitatively, our conclusions. We thus urge the community to more fully work out this complex aspect of loop cosmology, since the full picture would not only fix the free parameters of the theory, but also provide a model for a no...

  20. Cosmological Calculations on the GPU

    CERN Document Server

    Bard, Deborah; Allen, Mark T; Yepremyan, Hasmik; Kratochvil, Jan M

    2012-01-01

    Cosmological measurements require the calculation of nontrivial quantities over large datasets. The next generation of survey telescopes (such as DES, PanSTARRS, and LSST) will yield measurements of billions of galaxies. The scale of these datasets, and the nature of the calculations involved, make cosmological calculations ideal models for implementation on graphics processing units (GPUs). We consider two cosmological calculations, the two-point angular correlation function and the aperture mass statistic, and aim to improve the calculation time by constructing code for calculating them on the GPU. Using CUDA, we implement the two algorithms on the GPU and compare the calculation speeds to comparable code run on the CPU. We obtain a code speed-up of between 10 - 180x faster, compared to performing the same calculation on the CPU. The code has been made publicly available.

  1. Cosmology in Mr. Tompkins' Lifetime

    Science.gov (United States)

    Lindner, Rudi Paul

    2016-01-01

    Mr. Tompkins, the hero of George Gamow's most famous book, was born in the first decade of the twentieth century and lived until its end. A bank clerk by day, Mr. Tompkins had wide-ranging interests, and his curiosity led him to popular scientific presentations, and these in turn brought him a long and happy marriage to Maud, the daughter of a professor of physics. His lifetime offers an appropriate framework for a meditation on the history of cosmology during the century in which cosmology became a scientific enterprise. As it happens, Mr. Tompkins' first exposure to cosmology, in which he observed both the expansion and contraction of an oscillating universe in 1939, happened during the long night of relativity, the generation in which relativity specialists became few and, like the galaxies, far between. This talk will consider the heyday of early relativistic cosmology from 1917 to 1935, the causes and consequences of the "long night" from 1935 until 1963, and the renaissance of cosmology, which, occurring as it did upon the retirement of Mr. Tompkins, afforded him great pleasure in his later years.

  2. Nano Structured Devices for Energy Generation

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej

    This work focuses on the enhancement of α-sexithiophene / buckminsterfullerene (α-6T / C60) inverted bilayer organic solar cell effciency by the introduction of crystalline nanostructures in the electron donor layer. In order to utilize the charge carrier mobility anisotropy in crystalline α-6T......?uorescence polarimetry and X-ray diffractometry (XRD). Layer thicknesses of inverted α-6T / C60 bilayer organic solar cells fabricated at room temperature were optimized to obtain the model device for the performance enhancement studies. By variation of the substrate temperature during deposition of α-6T, the structures...... structures in solar cells, the orientation of the individual molecules should favor charge transport perpendicular to the substrate plane. Such orientation is realized from α-6T molecules lying on the substrate, which additionally infers the preferred orientation of the transition dipole for maximal light...

  3. A computer generator for randomly layered structures

    Institute of Scientific and Technical Information of China (English)

    YU Jia-shun; HE Zhen-hua

    2004-01-01

    An algorithm is introduced in this paper for the synthesis of randomly layered earth models. Under the assumption that the layering and the physical parameters for a layer are random variables with truncated normal distributions, random numbers sampled from the distributions can be used to construct the layered structure and determine physical parameters for the layers. To demonstrate its application, random models were synthesized for the modelling of seismic ground motion amplification of a site with uncertainties in its model parameters.

  4. Deformed extra space and the smallness of the cosmological constant

    CERN Document Server

    Rubin, Sergey G

    2016-01-01

    The mechanism of different universes formation is elaborated. Each universe is characterized by a unique cosmological constant. It is shown that the set of cosmological constants has the cardinality of the continuum and contains zero cosmological constant. Those universes with cosmological constants near zero could be filled by complex structures. There is no necessity in a special mechanism of the fine tuning. The role of quantum fluctuations is studied.

  5. Newtonian cosmology revisited

    Science.gov (United States)

    Tipler, Frank J.

    1996-09-01

    I show that if Newtonian gravity is formulated in geometrical language, then Newtonian cosmology is as rigorous as relativistic cosmology. In homogeneous and isotropic universes, the geodesic deviation equation in Newtonian cosmology is proven to be exactly the same as the geodesic deviation equation in relativistic Friedmann cosmologies. This equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: by generalizing the flat-space Newtonian gravity force law to Riemannian metrics, I show that ever-expanding and recollapsing universes are allowed in any homogeneous and isotropic spatial geometry.

  6. Cosmological tests of modified gravity

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  7. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  8. Cosmology on a Mesh

    CERN Document Server

    Gill, S P D; Gibson, B K; Flynn, C; Ibata, R A; Lewis, G F; Gill, Stuart P.D.; Knebe, Alexander; Gibson, Brad K.; Flynn, Chris; Ibata, Rodrigo A.; Lewis, Geraint F.

    2002-01-01

    An adaptive multi grid approach to simulating the formation of structure from collisionless dark matter is described. MLAPM (Multi-Level Adaptive Particle Mesh) is one of the most efficient serial codes available on the cosmological 'market' today. As part of Swinburne University's role in the development of the Square Kilometer Array, we are implementing hydrodynamics, feedback, and radiative transfer within the MLAPM adaptive mesh, in order to simulate baryonic processes relevant to the interstellar and intergalactic media at high redshift. We will outline our progress to date in applying the existing MLAPM to a study of the decay of satellite galaxies within massive host potentials.

  9. The velocity field in MOND cosmology

    CERN Document Server

    Candlish, G N

    2016-01-01

    The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAyMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAyMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to $\\Lambda$CDM, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard $\\Lambda$CDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAyMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field ...

  10. The current status of observational cosmology

    Indian Academy of Sciences (India)

    Jeremiah P Ostriker; Tarun Souradeep

    2004-10-01

    Observational cosmology has indeed made very rapid progress in recent years. The ability to quantify the universe has largely improved due to observational constraints coming from structure formation. The transition to precision cosmology has been spearheaded by measurements of the anisotropy in the cosmic microwave background (CMB) over the past decade. Observations of the large scale structure in the distribution of galaxies, high red-shift supernova, have provided the required complementary information. We review the current status of cosmological parameter estimates from joint analysis of CMB anisotropy and large scale structure (LSS) data. We also sound a note of caution on overstating the successes achieved thus far.

  11. Nano Structured Devices for Energy Generation

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej

    This work focuses on the enhancement of α-sexithiophene / buckminsterfullerene (α-6T / C60) inverted bilayer organic solar cell effciency by the introduction of crystalline nanostructures in the electron donor layer. In order to utilize the charge carrier mobility anisotropy in crystalline α-6T...... structures in solar cells, the orientation of the individual molecules should favor charge transport perpendicular to the substrate plane. Such orientation is realized from α-6T molecules lying on the substrate, which additionally infers the preferred orientation of the transition dipole for maximal light...... temperatures and a shutter were controlled by the supervisory control and data acquisition (SCADA) system, which has been implemented in LabVIEW environment. The temperatures, process pressure, and deposition rate were stored for future analysis. By variation of the substrate temperature during deposition...

  12. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2008-07-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.

  13. Loop Quantum Cosmology

    Directory of Open Access Journals (Sweden)

    Bojowald Martin

    2005-12-01

    Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.

  14. Unimodular-Mimetic Cosmology

    CERN Document Server

    Nojiri, S; Oikonomou, V K

    2016-01-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to solve the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology, of the perfect fluid with constant equation of state cosmology, of the Type IV singular cosmology and of the $R^2$ inflation cosmology. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, the graceful exit from inflation problem might exist, we provide a qualita...

  15. An introduction to cosmology

    CERN Document Server

    Kunze, Kerstin E

    2016-01-01

    Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.

  16. Cosmological dynamics of extended chameleons

    CERN Document Server

    Tamanini, Nicola

    2016-01-01

    We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from $\\Lambda$CDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.

  17. Concordance cosmology without dark energy

    CERN Document Server

    Rácz, Gábor; Beck, Róbert; Szapudi, István; Csabai, István

    2016-01-01

    According to the general relativistic Birkhoff's theorem, spherically symmetric regions in an isotropic universe behave like mini-universes with their own cosmological parameters. We estimate local expansion rates for a large number of such regions, and use the volume-averaged increment of the scale parameter at each time step in an otherwise standard cosmological $N$-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical backreaction calculation. We show that a volume-averaged simulation with the $\\Omega_m=1$ Einstein--de~Sitter setting in each region closely tracks the expansion and structure growth history of a $\\Lambda$CDM cosmology, and confirm the numerical results with analytic calculations as well. The very similar expansion history guarantees consistency with the concordance model and, due to the small but characte...

  18. Introduction to cosmology

    CERN Document Server

    Roos, Matts

    2015-01-01

    The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.

  19. Elements of String Cosmology

    Science.gov (United States)

    Gasperini, Maurizio

    2011-03-01

    Preface; Acknowledgements; Notation, units and conventions; 1. A short review of standard and inflationary cosmology; 2. The basic string cosmology equations; 3. Conformal invariance and string effective action; 4. Duality symmetries and cosmological solutions; 5. Inflationary kinematics; 6. The string phase; 7. The cosmic background of relic gravitational waves; 8. Scalar perturbations and the anisotropy of the CMB radiation; 9. Dilaton phenomenology; 10. Elements of brane cosmology; Index.

  20. The Higgs boson and cosmology

    Science.gov (United States)

    Shaposhnikov, Mikhail

    2015-01-01

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.

  1. Structured adaptive grid generation using algebraic methods

    Science.gov (United States)

    Yang, Jiann-Cherng; Soni, Bharat K.; Roger, R. P.; Chan, Stephen C.

    1993-01-01

    The accuracy of the numerical algorithm depends not only on the formal order of approximation but also on the distribution of grid points in the computational domain. Grid adaptation is a procedure which allows optimal grid redistribution as the solution progresses. It offers the prospect of accurate flow field simulations without the use of an excessively timely, computationally expensive, grid. Grid adaptive schemes are divided into two basic categories: differential and algebraic. The differential method is based on a variational approach where a function which contains a measure of grid smoothness, orthogonality and volume variation is minimized by using a variational principle. This approach provided a solid mathematical basis for the adaptive method, but the Euler-Lagrange equations must be solved in addition to the original governing equations. On the other hand, the algebraic method requires much less computational effort, but the grid may not be smooth. The algebraic techniques are based on devising an algorithm where the grid movement is governed by estimates of the local error in the numerical solution. This is achieved by requiring the points in the large error regions to attract other points and points in the low error region to repel other points. The development of a fast, efficient, and robust algebraic adaptive algorithm for structured flow simulation applications is presented. This development is accomplished in a three step process. The first step is to define an adaptive weighting mesh (distribution mesh) on the basis of the equidistribution law applied to the flow field solution. The second, and probably the most crucial step, is to redistribute grid points in the computational domain according to the aforementioned weighting mesh. The third and the last step is to reevaluate the flow property by an appropriate search/interpolate scheme at the new grid locations. The adaptive weighting mesh provides the information on the desired concentration

  2. Summary of cosmology workshop

    Indian Academy of Sciences (India)

    Tarun Sandeep

    2004-10-01

    Cosmology is passing through a golden phase of rapid advance. The cosmology workshop at ICGC-2004 attracted a large number of research contributions to diverse topics of cosmology. I attempt to classify and summarize the research work and results of the oral and poster presentations made at the meeting.

  3. The Case Against Cosmology

    CERN Document Server

    Disney, M J

    2000-01-01

    It is argued that some of the recent claims for cosmology are grossly overblown. Cosmology rests on a very small database: it suffers from many fundamental difficulties as a science (if it is a science at all) whilst observations of distant phenomena are difficult to make and harder to interpret. It is suggested that cosmological inferences should be tentatively made and sceptically received.

  4. Ultra-compact structure in intermediate-luminosity radio quasars: building a sample of standard cosmological rulers and improving the dark energy constraints up to z 3

    Science.gov (United States)

    Cao, Shuo; Zheng, Xiaogang; Biesiada, Marek; Qi, Jingzhao; Chen, Yun; Zhu, Zong-Hong

    2017-09-01

    Context. Ultra-compact structure in radio sources (especially in quasars that can be observed up to very high redshifts), with milliarcsecond angular sizes measured by very-long-baseline interferometry (VLBI), is becoming an important astrophysical tool for probing both cosmology and the physical properties of AGN. Aims: We present a newly compiled data set of 120 milliarcsec. compact radio sources representing intermediate-luminosity quasars covering the redshift range 0.46 quasars observed at 2.29 GHz show negligible dependence on redshifts and intrinsic luminosity, and thus represent a fixed comoving-length of standard ruler. Methods: For a cosmological ruler with intrinsic length lm, the angular size-redshift relation can be written as θ(z) = lm/DA(z, where θ(z) is the angular size at redshift z, and DA(z) is the corresponding angular diameter distance. We use a compilation of angular size and redshift data for ultra-compact radio sources from a well-known VLBI survey, and implement a new cosmology-independent technique to calibrate the linear size of this standard ruler, which is also used to test different cosmological models with and without the flat universe assumption. Results: We determine the linear size of this standard ruler as lm = 11.03 ± 0.25 pc, which is the typical radius at which AGN jets become opaque at the observed frequency ν 2 GHz. Our measurement of this linear size is also consistent with the previous and recent radio observations at other different frequencies. In the framework of flat ΛCDM model, we find a high value of the matter density parameter, Ωm = 0.322+0.244-0.141, and a low value of the Hubble constant, H0 = 67.6+7.8-7.4 km s-1 Mpc-1, which is in excellent agreement with the cosmic microwave background (CMB) anisotropy measurements by Planck. We obtain Ωm = 0.309+0.215-0.151, w = -0.970+0.500-1.730 at 68.3% CL for the constant w of a dynamical dark-energy model, which demonstrates no significant deviation from the

  5. Automated quadrilateral mesh generation for digital image structures

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...

  6. The Standard Cosmological Model

    CERN Document Server

    Scott, D

    2005-01-01

    The Standard Model of Particle Physics (SMPP) is an enormously successful description of high energy physics, driving ever more precise measurements to find "physics beyond the standard model", as well as providing motivation for developing more fundamental ideas that might explain the values of its parameters. Simultaneously, a description of the entire 3-dimensional structure of the present-day Universe is being built up painstakingly. Most of the structure is stochastic in nature, being merely the result of the particular realisation of the "initial conditions" within our observable Universe patch. However, governing this structure is the Standard Model of Cosmology (SMC), which appears to require only about a dozen parameters. Cosmologists are now determining the values of these quantities with increasing precision in order to search for "physics beyond the standard model", as well as trying to develop an understanding of the more fundamental ideas which might explain the values of its parameters. Althoug...

  7. Quantum Cosmology

    Science.gov (United States)

    Bojowald, Martin

    The universe, ultimately, is to be described by quantum theory. Quantum aspects of all there is, including space and time, may not be significant for many purposes, but are crucial for some. And so a quantum description of cosmology is required for a complete and consistent worldview. At any rate, even if we were not directly interested in regimes where quantum cosmology plays a role, a complete physical description could not stop at a stage before the whole universe is reached. Quantum theory is essential in the microphysics of particles, atoms, molecules, solids, white dwarfs and neutron stars. Why should one expect this ladder of scales to end at a certain size? If regimes are sufficiently violent and energetic, quantum effects are non-negligible even on scales of the whole cosmos; this is realized at least once in the history of the universe: at the big bang where the classical theory of general relativity would make energy densities diverge. 1.Lachieze-Rey, M., Luminet, J.P.: Phys. Rept. 254,135 (1995), gr-qc/9605010 2.BSDeWitt1967Phys. Rev.160511131967PhRv..160.1113D0158.4650410.1103/PhysRev.160.1113DeWitt, B.S.: Phys. Rev. 160(5), 1113 (1967) 3.Wiltshire, D.L.: In: Robson B., Visvanathan N., Woolcock W.S. (eds.) Cosmology: The Physics of the Universe, pp. 473-531. World Scientific, Singapore (1996). gr-qc/0101003 4.Isham C.J.: In: DeWitt, B.S., Stora, R. (eds.) Relativity, Groups and Topology II. Lectures Given at the 1983 Les Houches Summer School on Relativity, Groups and Topology, Elsevier Science Publishing Company (1986) 5.Klauder, J.: Int. J. Mod. Phys. D 12, 1769 (2003), gr-qc/0305067 6.Klauder, J.: Int. J. Geom. Meth. Mod. Phys. 3, 81 (2006), gr-qc/0507113 7.DGiulini1995Phys. Rev. D5110563013381161995PhRvD..51.5630G10.1103/PhysRevD.51.5630Giulini, D.: Phys. Rev. D 51(10), 5630 (1995) 8.Kiefer, C., Zeh, H.D.: Phys. Rev. D 51, 4145 (1995), gr-qc/9402036 9.WFBlythCJIsham1975Phys. Rev. D117684086991975PhRvD..11..768B10.1103/PhysRevD.11.768Blyth, W

  8. Indian cosmogonies and cosmologies

    Directory of Open Access Journals (Sweden)

    Pajin Dušan

    2011-01-01

    Full Text Available Various ideas on how the universe appeared and develops, were in Indian tradition related to mythic, religious, or philosophical ideas and contexts, and developed during some 3.000 years - from the time of Vedas, to Puranas. Conserning its appeareance, two main ideas were presented. In one concept it appeared out of itself (auto-generated, and gods were among the first to appear in the cosmic sequences. In the other, it was a kind of divine creation, with hard work (like the dismembering of the primal Purusha, or as emanation of divine dance. Indian tradition had also various critiques of mythic and religious concepts (from the 8th c. BC, to the 6c., who favoured naturalistic and materialistic explanations, and concepts, in their cosmogony and cosmology. One the peculiarities was that indian cosmogony and cosmology includes great time spans, since they used a digit system which was later (in the 13th c. introduced to Europe by Fibonacci (Leonardo of Pisa, 1170-1240.

  9. Late-time vacuum phase transitions: Connecting sub-eV scale physics with cosmological structure formation

    Science.gov (United States)

    Patwardhan, Amol V.; Fuller, George M.

    2014-09-01

    We show that a particular class of postrecombination phase transitions in the vacuum can lead to localized overdense regions on relatively small scales, roughly 106 to 1010M⊙, potentially interesting for the origin of large black hole seeds and for dwarf galaxy evolution. Our study suggests that this mechanism could operate over a range of conditions which are consistent with current cosmological and laboratory bounds. One byproduct of phase transition bubble-wall decay may be extra radiation energy density. This could provide an avenue for constraint, but it could also help reconcile the discordant values of the present Hubble parameter (H0) and σ8 obtained by cosmic microwave background (CMB) fits and direct observational estimates. We also suggest ways in which future probes, including CMB considerations (e.g., early dark energy limits), 21-cm observations, and gravitational radiation limits, could provide more stringent constraints on this mechanism and the sub-eV scale beyond-standard-model physics, perhaps in the neutrino sector, on which it could be based. Late phase transitions associated with sterile neutrino mass and mixing may provide a way to reconcile cosmological limits and laboratory data, should a future disagreement arise.

  10. Elements of String Cosmology

    CERN Document Server

    Tseytlin, Arkady A

    1992-01-01

    Aspects of string cosmology for critical and non-critical strings are discussed emphasizing the necessity to account for the dilaton dynamics for a proper incorporation of ``large - small" duality. This drastically modifies the intuition one has with Einstein's gravity. For example winding modes, even though contribute to energy density, oppose expansion and if not annihilated will stop the expansion. Moreover we find that the radiation dominated era of the standard cosmology emerges quite naturally in string cosmology. Our analysis of non-critical string cosmology provides a reinterpretation of the (universal cover of the) recently studied two dimensional black hole solution as a conformal realization of cosmological solutions found previously by Mueller.

  11. Workshop III – Cosmology: Observations versus theories

    Indian Academy of Sciences (India)

    T R Seshadri

    2000-10-01

    The topics on which there were presentations in this workshop can broadly be divided into the following categories: Observational aspects of large-scale structures in the universities; phase transitions in the early universe; cosmic microwave background radiation; observational cosmology.

  12. A natural cosmological constant from chameleons

    Directory of Open Access Journals (Sweden)

    Horatiu Nastase

    2015-07-01

    Full Text Available We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero and the coincidence problem (why Λ is comparable to the matter density now.

  13. Noether symmetry in f(R) cosmology

    CERN Document Server

    Vakili, Babak

    2008-01-01

    The Noether symmetry of a generic $f(R)$ cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generators of the desired symmetry. We explicitly calculate the form of $f(R)$ for which such symmetries exist. It is shown that the resulting form of $f(R)$ yields a power law expansion for the cosmological scale factor. We also obtain the effective equation of state parameter for the corresponding cosmology and show that our model can provide a gravitational alternative to the quintessence.

  14. A natural cosmological constant from chameleons

    Energy Technology Data Exchange (ETDEWEB)

    Nastase, Horatiu, E-mail: nastase@ift.unesp.br [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Weltman, Amanda, E-mail: amanda.weltman@uct.ac.za [Astrophysics, Cosmology & Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7700 (South Africa)

    2015-07-30

    We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru–Kallosh–Linde–Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why Λ is so small, yet nonzero) and the coincidence problem (why Λ is comparable to the matter density now)

  15. Rigorous Newtonian cosmology

    Science.gov (United States)

    Tipler, Frank J.

    1996-10-01

    It is generally believed that it is not possible to rigorously analyze a homogeneous and isotropic cosmological model in Newtonian mechanics. I show on the contrary that if Newtonian gravity theory is rewritten in geometrical language in the manner outlined in 1923-1924 by Élie Cartan [Ann. Ecole Norm. Sup. 40, 325-412 (1923); 41, 1-25 (1924)], then Newtonian cosmology is as rigorous as Friedmann cosmology. In particular, I show that the equation of geodesic deviation in Newtonian cosmology is exactly the same as equation of geodesic deviation in the Friedmann universe, and that this equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: Ever-expanding and recollapsing universes are allowed in any noncompact homogeneous and isotropic spatial topology. I shall give a brief history of attempts to do cosmology in the framework of Newtonian mechanics.

  16. Mutation Sampling Technique for the Generation of Structural Test Data

    CERN Document Server

    Scholive, M; Robach, C; Flottes, M L; Rouzeyre, B

    2011-01-01

    Our goal is to produce validation data that can be used as an efficient (pre) test set for structural stuck-at faults. In this paper, we detail an original test-oriented mutation sampling technique used for generating such data and we present a first evaluation on these validation data with regard to a structural test.

  17. Fundamental Questions of Practical Cosmology Exploring the Realm of Galaxies

    CERN Document Server

    Baryshev, Yurij

    2012-01-01

    This book guides readers (astronomers, physicists, and university students) through central questions of Practical Cosmology, a term used by the late Allan Sandage to denote the modern scientific endeavor to find the cosmological model best describing the universe of galaxies, its geometry, size, age, and matter composition. The authors draw on their personal experience in astrophysics and cosmology to explain key concepts of cosmology, both observational and theoretical, and to highlight several items which give cosmology its special character. These highlighted items are: - Idiosyncratic features of the “cosmic laboratory” - Malmquist bias in the determination of cosmic distances - Theory of gravitation as a cornerstone of cosmological models - Crucial tests for checking the reality of space expansion - Methods of analyzing the structures of the universe as mapped by galaxies -  Usefulness of fractals as a model to describe the large-scale structure - New cosmological physics inherent in the Frie...

  18. Cosmology with matter diffusion

    CERN Document Server

    Calogero, Simone

    2013-01-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field $\\phi$ which we identify with the dark energy component of the Universe. The model is characterized by only one new degree of freedom, the diffusion parameter $\\sigma$. The standard $\\Lambda$CDM model can be recovered by setting $\\sigma=0$. If diffusion takes place ($\\sigma >0$) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the Universe can serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the Universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integr...

  19. Concordance cosmology without dark energy

    Science.gov (United States)

    Rácz, Gábor; Dobos, László; Beck, Róbert; Szapudi, István; Csabai, István

    2017-07-01

    According to the separate universe conjecture, spherically symmetric sub-regions in an isotropic universe behave like mini-universes with their own cosmological parameters. This is an excellent approximation in both Newtonian and general relativistic theories. We estimate local expansion rates for a large number of such regions, and use a scale parameter calculated from the volume-averaged increments of local scale parameters at each time step in an otherwise standard cosmological N-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical estimation of the effect of non-linear evolution of structure on the expansion rate. Using our algorithm, a simulation with an initial Ωm = 1 Einstein-de Sitter setting closely tracks the expansion and structure growth history of the Λ cold dark matter (ΛCDM) cosmology. Due to small but characteristic differences, our model can be distinguished from the ΛCDM model by future precision observations. Moreover, our model can resolve the emerging tension between local Hubble constant measurements and the Planck best-fitting cosmology. Further improvements to the simulation are necessary to investigate light propagation and confirm full consistency with cosmic microwave background observations.

  20. Cosmological perturbation theory and quantum gravity

    CERN Document Server

    Brunetti, Romeo; Hack, Thomas-Paul; Pinamonti, Nicola; Rejzner, Katarzyna

    2016-01-01

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  1. Cosmological perturbation theory and quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  2. Cosmological Magnetic Fields

    CERN Document Server

    Kunze, Kerstin E

    2013-01-01

    Magnetic fields are observed on nearly all scales in the universe, from stars and galaxies upto galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early universe and might therefore be able to tell us whether cosmic magnetic fields are of primordial, cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  3. Noncommutative Fluid and Cosmological Perturbations

    CERN Document Server

    Das, Praloy

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the NC fluid dynamics and kinematics. In the second part we construct an extension of Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing in anisotropy and inhomogeneity in th...

  4. Random generation of RNA secondary structures according to native distributions

    Directory of Open Access Journals (Sweden)

    Nebel Markus E

    2011-10-01

    Full Text Available Abstract Background Random biological sequences are a topic of great interest in genome analysis since, according to a powerful paradigm, they represent the background noise from which the actual biological information must differentiate. Accordingly, the generation of random sequences has been investigated for a long time. Similarly, random object of a more complicated structure like RNA molecules or proteins are of interest. Results In this article, we present a new general framework for deriving algorithms for the non-uniform random generation of combinatorial objects according to the encoding and probability distribution implied by a stochastic context-free grammar. Briefly, the framework extends on the well-known recursive method for (uniform random generation and uses the popular framework of admissible specifications of combinatorial classes, introducing weighted combinatorial classes to allow for the non-uniform generation by means of unranking. This framework is used to derive an algorithm for the generation of RNA secondary structures of a given fixed size. We address the random generation of these structures according to a realistic distribution obtained from real-life data by using a very detailed context-free grammar (that models the class of RNA secondary structures by distinguishing between all known motifs in RNA structure. Compared to well-known sampling approaches used in several structure prediction tools (such as SFold ours has two major advantages: Firstly, after a preprocessing step in time O(n2 for the computation of all weighted class sizes needed, with our approach a set of m random secondary structures of a given structure size n can be computed in worst-case time complexity Om⋅n⋅ log(n while other algorithms typically have a runtime in O(m⋅n2. Secondly, our approach works with integer arithmetic only which is faster and saves us from all the discomforting details of using floating point arithmetic with

  5. Absorption-reduced waveguide structure for efficient terahertz generation

    Energy Technology Data Exchange (ETDEWEB)

    Pálfalvi, L., E-mail: palfalvi@fizika.ttk.pte.hu [Institute of Physics, University of Pécs, Ifjúság ú. 6, 7624 Pécs (Hungary); Fülöp, J. A. [MTA-PTE High-Field Terahertz Research Group, Ifjúság ú. 6, 7624 Pécs (Hungary); Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, 7624 Pécs (Hungary); Hebling, J. [Institute of Physics, University of Pécs, Ifjúság ú. 6, 7624 Pécs (Hungary); MTA-PTE High-Field Terahertz Research Group, Ifjúság ú. 6, 7624 Pécs (Hungary); Szentágothai Research Centre, University of Pécs, Ifjúság ú. 20, 7624 Pécs (Hungary)

    2015-12-07

    An absorption-reduced planar waveguide structure is proposed for increasing the efficiency of terahertz (THz) pulse generation by optical rectification of femtosecond laser pulses with tilted-pulse-front in highly nonlinear materials with large absorption coefficient. The structure functions as waveguide both for the optical pump and the generated THz radiation. Most of the THz power propagates inside the cladding with low THz absorption, thereby reducing losses and leading to the enhancement of the THz generation efficiency by up to more than one order of magnitude, as compared with a bulk medium. Such a source can be suitable for highly efficient THz pulse generation pumped by low-energy (nJ-μJ) pulses at high (MHz) repetition rates delivered by compact fiber lasers.

  6. Network Cosmology

    CERN Document Server

    Krioukov, Dmitri; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguna, Marian

    2012-01-01

    Causal sets are an approach to quantum gravity in which the causal structure of spacetime plays a fundamental role. The causal set is a quantum network which underlies the fabric of spacetime. The nodes in this network are tiny quanta of spacetime, with two such quanta connected if they are causally related. Here we show that the structure of these networks in de Sitter spacetime, such as our accelerating universe, is remarkably similar to the structure of complex networks -- the brain or the Internet, for example. Specifically, we show that the node degree distribution of causal sets in de Sitter spacetime is described by a power law with exponent 2, similar to many complex networks. Quantifying the differences between the causal set structure in de Sitter spacetime and in the real universe, we find that since the universe today is relatively young, its power-law exponent is not 2 but 3/4, yet exponent 2 is currently emerging. Finally, we show that as a consequence of a simple geometric duality, the growth d...

  7. A generative, probabilistic model of local protein structure

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Mardia, Kanti V.; Taylor, Charles C.;

    2008-01-01

    Despite significant progress in recent years, protein structure prediction maintains its status as one of the prime unsolved problems in computational biology. One of the key remaining challenges is an efficient probabilistic exploration of the structural space that correctly reflects the relative...... conformational stabilities. Here, we present a fully probabilistic, continuous model of local protein structure in atomic detail. The generative model makes efficient conformational sampling possible and provides a framework for the rigorous analysis of local sequence-structure correlations in the native state...

  8. Generating function approach to reliability analysis of structural systems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The generating function approach is an important tool for performance assessment in multi-state systems. Aiming at strength reliability analysis of structural systems, generating function approach is introduced and developed. Static reliability models of statically determinate, indeterminate systems and fatigue reliability models are built by constructing special generating functions, which are used to describe probability distributions of strength (resistance), stress (load) and fatigue life, by defining composite operators of generating functions and performance structure functions thereof. When composition operators are executed, computational costs can be reduced by a big margin by means of collecting like terms. The results of theoretical analysis and numerical simulation show that the generating function approach can be widely used for probability modeling of large complex systems with hierarchical structures due to the unified form, compact expression, computer program realizability and high universality. Because the new method considers twin loads giving rise to component failure dependency, it can provide a theoretical reference and act as a powerful tool for static, dynamic reliability analysis in civil engineering structures and mechanical equipment systems with multi-mode damage coupling.

  9. Duality extended Chaplygin cosmologies with a big rip

    CERN Document Server

    Chimento, L P; Chimento, Luis P.; Lazkoz, Ruth

    2006-01-01

    We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show those modifications can be framed within a theory with self-interacting gravity, where the term self-interaction refers here to the presence of functions of $\\rho$ and $p$ in the right hand side of the Einstein equations. We then discuss the construction of the duals of the cosmologies generated within that framework. After that we investigate the modifications required to generate generalized and modified Chaplygin cosmologies and show that their duals belong to a larger family of cosmologies we call extended Chaplygin cosmologies. Finally, by letting the parameters of those models take values not earlier considered in the literature we show some representatives of that family of cosmologies display sudden future singularities, which indicates their behavior is rather different from generalized or modified Chaplygin gas cosmologies. T...

  10. Duality gives rise to Chaplygin cosmologies with a big rip

    Science.gov (United States)

    Chimento, Luis P.; Lazkoz, Ruth

    2006-05-01

    We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show that these approaches can be framed within a theory with modified gravity, and we discuss the construction of the duals of the cosmologies generated within that framework. We then investigate the modifications required to generate extended, generalized and modified Chaplygin cosmologies, and then show that their duals belong to a larger family of cosmologies we call enlarged Chaplygin cosmologies. Finally, by letting the parameters of these models take values not earlier considered in the literature we show that some representatives of that family of cosmologies display sudden future singularities. This fact indicates that the behaviour of these spacetimes is rather different from that of generalized or modified Chaplygin gas cosmologies. This reinforces the idea that modifications of gravity can be responsible for unexpected evolutionary features in the universe.

  11. Structural Learning of Attack Vectors for Generating Mutated XSS Attacks

    Directory of Open Access Journals (Sweden)

    Yi-Hsun Wang

    2010-09-01

    Full Text Available Web applications suffer from cross-site scripting (XSS attacks that resulting from incomplete or incorrect input sanitization. Learning the structure of attack vectors could enrich the variety of manifestations in generated XSS attacks. In this study, we focus on generating more threatening XSS attacks for the state-of-the-art detection approaches that can find potential XSS vulnerabilities in Web applications, and propose a mechanism for structural learning of attack vectors with the aim of generating mutated XSS attacks in a fully automatic way. Mutated XSS attack generation depends on the analysis of attack vectors and the structural learning mechanism. For the kernel of the learning mechanism, we use a Hidden Markov model (HMM as the structure of the attack vector model to capture the implicit manner of the attack vector, and this manner is benefited from the syntax meanings that are labeled by the proposed tokenizing mechanism. Bayes theorem is used to determine the number of hidden states in the model for generalizing the structure model. The paper has the contributions as following: (1 automatically learn the structure of attack vectors from practical data analysis to modeling a structure model of attack vectors, (2 mimic the manners and the elements of attack vectors to extend the ability of testing tool for identifying XSS vulnerabilities, (3 be helpful to verify the flaws of blacklist sanitization procedures of Web applications. We evaluated the proposed mechanism by Burp Intruder with a dataset collected from public XSS archives. The results show that mutated XSS attack generation can identify potential vulnerabilities.

  12. Combination and interpretation of observables in Cosmology

    Directory of Open Access Journals (Sweden)

    Virey Jean-Marc

    2010-04-01

    Full Text Available The standard cosmological model has deep theoretical foundations but need the introduction of two major unknown components, dark matter and dark energy, to be in agreement with various observations. Dark matter describes a non-relativistic collisionless fluid of (non baryonic matter which amount to 25% of the total density of the universe. Dark energy is a new kind of fluid not of matter type, representing 70% of the total density which should explain the recent acceleration of the expansion of the universe. Alternatively, one can reject this idea of adding one or two new components but argue that the equations used to make the interpretation should be modified consmological scales. Instead of dark matter one can invoke a failure of Newton's laws. Instead of dark energy, two approaches are proposed : general relativity (in term of the Einstein equation should be modified, or the cosmological principle which fixes the metric used for cosmology should be abandonned. One of the main objective of the community is to find the path of the relevant interpretations thanks to the next generation of experiments which should provide large statistics of observationnal data. Unfortunately, cosmological in formations are difficult to pin down directly fromt he measurements, and it is mandatory to combine the various observables to get the cosmological parameters. This is not problematic from the statistical point of view, but assumptions and approximations made for the analysis may bias our interprettion of the data. Consequently, a strong attention should be paied to the statistical methods used to make parameters estimation and for model testing. After a review of the basics of cosmology where the cosmological parameters are introduced, we discuss the various cosmological probes and their associated observables used to extract cosmological informations. We present the results obtained from several statistical analyses combining data of diferent nature but

  13. Cosmology and time

    Directory of Open Access Journals (Sweden)

    Balbi Amedeo

    2013-09-01

    Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.

  14. Cosmology for physicists

    CERN Document Server

    Lyth, David

    2016-01-01

    Written by an award-winning cosmologist, this brand new textbook provides advanced undergraduate and graduate students with coverage of the very latest developments in the observational science of cosmology. The book is separated into three parts; part I covers particle physics and general relativity, part II explores an account of the known history of the universe, and part III studies inflation. Full treatment of the origin of structure, scalar fields, the cosmic microwave background and the early universe are provided. Problems are included in the book with solutions provided in a separate solutions manual. More advanced extension material is offered in the Appendix, ensuring the book is fully accessible to students with a wide variety of background experience.

  15. Cosmological quantum entanglement

    CERN Document Server

    Martin-Martinez, Eduardo

    2012-01-01

    We review recent literature on the connection between quantum entanglement and cosmology, with an emphasis on the context of expanding universes. We discuss recent theoretical results reporting on the production of entanglement in quantum fields due to the expansion of the underlying spacetime. We explore how these results are affected by the statistics of the field (bosonic or fermionic), the type of expansion (de Sitter or asymptotically stationary), and the coupling to spacetime curvature (conformal or minimal). We then consider the extraction of entanglement from a quantum field by coupling to local detectors and how this procedure can be used to distinguish curvature from heating by their entanglement signature. We review the role played by quantum fluctuations in the early universe in nucleating the formation of galaxies and other cosmic structures through their conversion into classical density anisotropies during and after inflation. We report on current literature attempting to account for this trans...

  16. Cosmological disformal invariance

    CERN Document Server

    Domènech, Guillem; Sasaki, Misao

    2015-01-01

    The invariance of physical observables under disformal transformations is considered. It is known that conformal transformations leave physical observables invariant. However, whether it is true for disformal transformations is still an open question. In this paper, it is shown that a pure disformal transformation without any conformal factor is equivalent to rescaling the time coordinate. Since this rescaling applies equally to all the physical quantities, physics must be invariant under a disformal transformation, that is, neither causal structure, propagation speed nor any other property of the fields are affected by a disformal transformation itself. This fact is presented at the action level for gravitational and matter fields and it is illustrated with some examples of observable quantities. We also find the physical invariance for cosmological perturbations at linear and high orders in perturbation, extending previous studies. Finally, a comparison with Horndeski and beyond Horndeski theories under a d...

  17. Cosmology with coalescing massive black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Scott A; Holz, Daniel E [Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 (United States)

    2003-05-21

    The gravitational waves generated in the coalescence of massive binary black holes will be measurable by LISA to enormous distances. Redshifts z {approx} 10 or larger (depending somewhat on the mass of the binary) can potentially be probed by such measurements, suggesting that binary coalescences can be made into cosmological tools. We discuss two particularly interesting types of probe. First, by combining gravitational-wave measurements with information about the cosmography of the universe, we can study the evolution of black-hole masses and merger rates as a function of redshift, providing information about the growth of structures at high redshift and possibly constraining hierarchical merger scenarios. Second, if it is possible to associate an 'electromagnetic' counterpart with a coalescence, it may be possible to measure both redshift and luminosity distance to an event with less than {approx}1% error. Such a measurement would constitute an amazingly precise cosmological standard candle. Unfortunately, gravitational lensing uncertainties will reduce the quality of this candle significantly. Though not as amazing as might have been hoped, such a candle would nonetheless very usefully complement other distance-redshift probes, in particular providing a valuable check on systematic effects in such measurements.

  18. Injecting Structured Data to Generative Topic Model in Enterprise Settings

    Science.gov (United States)

    Xiao, Han; Wang, Xiaojie; Du, Chao

    Enterprises have accumulated both structured and unstructured data steadily as computing resources improve. However, previous research on enterprise data mining often treats these two kinds of data independently and omits mutual benefits. We explore the approach to incorporate a common type of structured data (i.e. organigram) into generative topic model. Our approach, the Partially Observed Topic model (POT), not only considers the unstructured words, but also takes into account the structured information in its generation process. By integrating the structured data implicitly, the mixed topics over document are partially observed during the Gibbs sampling procedure. This allows POT to learn topic pertinently and directionally, which makes it easy tuning and suitable for end-use application. We evaluate our proposed new model on a real-world dataset and show the result of improved expressiveness over traditional LDA. In the task of document classification, POT also demonstrates more discriminative power than LDA.

  19. Galaxy formation from annihilation-generated supersonic turbulence in the baryon-symmetric big-bang cosmology and the gamma ray background spectrum

    Science.gov (United States)

    Stecker, F. W.; Puget, J. L.

    1972-01-01

    Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.

  20. The case for the cosmological constant

    Indian Academy of Sciences (India)

    Varun Sahni

    2000-07-01

    I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (or -term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe. A flat accelerating universe is strongly favoured by combining supernovae observations with observations of CMB anisotropies on degree scales which give the `best-fit’ values ≃ 0.7 and m ≃ 0.3. A time dependent cosmological -term can be generated by scalar field models with exponential and power law potentials. Some of these models can alleviate the `fine tuning’ problem which faces the cosmological constant.

  1. Sociology of Modern Cosmology

    Science.gov (United States)

    López-Corredoira, M.

    2009-08-01

    Certain results of observational cosmology cast critical doubt on the foundations of standard cosmology but leave most cosmologists untroubled. Alternative cosmological models that differ from the Big Bang have been published and defended by heterodox scientists; however, most cosmologists do not heed these. This may be because standard theory is correct and all other ideas and criticisms are incorrect, but it is also to a great extent due to sociological phenomena such as the ``snowball effect'' or ``groupthink''. We might wonder whether cosmology, the study of the Universe as a whole, is a science like other branches of physics or just a dominant ideology.

  2. Simulating cosmologies beyond $\\Lambda$CDM with PINOCCHIO

    CERN Document Server

    Rizzo, Luca Alberto; Monaco, Pierluigi; Munari, Emiliano; Borgani, Stefano; Castorina, Emanuele; Sefusatti, Emiliano

    2016-01-01

    We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: $\

  3. Inflationary Cosmology: Is Our Universe Part of a Multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Guth, Alan (MIT)

    2008-11-06

    In 1981, Guth proposed the theory of the inflationary universe, a modification of the Big Bang theory, which is generally accepted by scientists to explain how the universe began. Nevertheless, the Big Bang theory leaves some questions, and the theory of inflation attempts to answer them. Guth states that a repulsive gravitational force generated by an exotic form of matter brought about the expansion of the universe. He postulates that the universe underwent an expansion of astronomical proportions within the first trillionth of a second of its existence, during which the seeds for its large-scale structure were generated. Guth and colleagues have further explored the possibility of mimicking inflation in a hypothetical laboratory, thereby creating a new universe, and they concluded that it might be theoretically possible. If it happened, the new universe would not endanger our own universe. Instead, it would slip through a wormhole, a hypothetical space-time travel shortcut, and rapidly disconnect from our universe. In this talk, Guth will explain the inflationary theory and review the features that make it scientifically plausible. In addition, he will discuss the biggest mystery in cosmology: Why is the value of the cosmological constant, sometimes called the "anti-gravity" effect, so remarkably small compared to theoretical expectations? Guth will explain how the inflationary theory, combined with other ideas from elementary particle physics and cosmology, can provide a possible explanation for this discrepancy.

  4. A Structural Algorithm for Complex Natural Languages Parse Generation

    Directory of Open Access Journals (Sweden)

    Enikuomehin, A. O.

    2013-06-01

    Full Text Available In artificial intelligence, the study of how humans understand natural languages is cognitive based and such science is essential in the development of a modern day embedded robotic systems. Such systems should have the capability to process natural languages and generate meaningful output. As against machines, humans have the ability to understand a natural language sentence due to the in-born facility inherent in them and such is used to process it. Robotics requires appropriate PARSE systems to be developed in order to handle language based operations. In this paper, we present a new method of generating parse structures on complex natural language using algorithmic processes. The paper explores the process of generating meaning via parse structure and improves on the existing results using well established parsing scheme. The resulting algorithm was implemented in Java and a natural language interface for parse generation is presented. The result further shows that tokenizing sentences into their respective units affects the parse structure in the first instance and semantic representation in the larger scale. Efforts were made to limit the rules used in the generation of the grammar since natural language rules are almost infinite depending on the language set. (Abstract

  5. Learning Orthographic Structure With Sequential Generative Neural Networks.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-04-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in connectionist modeling. Here, we investigated a sequential version of the restricted Boltzmann machine (RBM), a stochastic recurrent neural network that extracts high-order structure from sensory data through unsupervised generative learning and can encode contextual information in the form of internal, distributed representations. We assessed whether this type of network can extract the orthographic structure of English monosyllables by learning a generative model of the letter sequences forming a word training corpus. We show that the network learned an accurate probabilistic model of English graphotactics, which can be used to make predictions about the letter following a given context as well as to autonomously generate high-quality pseudowords. The model was compared to an extended version of simple recurrent networks, augmented with a stochastic process that allows autonomous generation of sequences, and to non-connectionist probabilistic models (n-grams and hidden Markov models). We conclude that sequential RBMs and stochastic simple recurrent networks are promising candidates for modeling cognition in the temporal domain.

  6. Late-time vacuum phase transitions: connecting sub-eV scale physics with cosmological structure formation

    CERN Document Server

    Patwardhan, Amol V

    2014-01-01

    We show that a post-recombination phase transition in the vacuum can lead to localized over-dense regions on relatively small scales, roughly 10^6 to 10^10 M_sun, potentially interesting for the origin of large black hole seeds and for dwarf galaxy evolution. Our study suggests that this mechanism could operate over a range of conditions which are consistent with current cosmological and laboratory bounds. One byproduct of phase transition bubble-wall decay may be extra radiation energy density. This could provide an avenue for constraint, but it could also help reconcile the discordant values of the present Hubble parameter (H_0) and sigma_8 obtained by Cosmic Microwave Background (CMB) fits and direct observational estimates. We also suggest ways in which future probes, including CMB considerations (e.g., early dark energy limits), 21-cm observations, and gravitational radiation limits, could provide more stringent constraints on this mechanism and the sub-eV scale beyond-standard- model physics, perhaps in...

  7. The Impact of Baryonic Physics on the Structure of Dark Matter Halos: the View from the FIRE Cosmological Simulations

    Science.gov (United States)

    Keung Chan, Tsang; Keres, Dusan; Oñorbe, Jose; Hopkins, Philip F.; Muratov, Alexander; Faucher-Giguere, Claude-Andre; Quataert, Eliot

    2016-06-01

    We study the distribution of cold dark matter (CDM) in cosmological simulations from the FIRE (Feedback In Realistic Environments) project, which incorporates explicit stellar feedback in the multi-phase ISM, with energetics from stellar population models. We find that stellar feedback, without ``fine-tuned'' parameters, greatly alleviates small-scale problems in CDM. Feedback causes bursts of star formation and outflows, altering the DM distribution. As a result, the inner slope of the DM halo profile (α) shows a strong mass dependence: profiles are shallow at Mh ˜ 1010-1011 M⊙ and steepen at higher/lower masses. The resulting core sizes and slopes are consistent with observations. Because the star formation efficiency, Ms/Mh is strongly halo mass dependent, a rapid change in α occurs around Mh ˜1010M⊙, (Ms˜106-107M⊙) as sufficient feedback energy becomes available to perturb the DM. Large cores are not established during the period of rapid growth of halos because of ongoing DM mass accumulation. Instead, cores require several bursts of star formation after the rapid buildup has completed. Stellar feedback dramatically reduces circular velocities in the inner kpc of massive dwarfs; this could be sufficient to explain the ``Too Big To Fail'' problem without invoking non-standard DM. Finally, feedback and baryonic contraction in Milky Way-mass halos produce DM profiles slightly shallower than the Navarro-Frenk-White profile, consistent with the normalization of the observed Tully-Fisher relation.

  8. Structural looseness investigation in slow rotating permanent magnet generators

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Mijatovic, Nenad; Sweeney, Christian Walsted;

    2016-01-01

    Structural looseness in electric machines is a condition influencing the alignment of the machine and thus the overall bearing health. In this work, assessment of the above mentioned failure mode is tested on a slow rotating (running speed equal to 0.7Hz) permanent magnet generator (PMG), while...

  9. Learning Orthographic Structure with Sequential Generative Neural Networks

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; Sperduti, Alessandro; Zorzi, Marco

    2016-01-01

    Learning the structure of event sequences is a ubiquitous problem in cognition and particularly in language. One possible solution is to learn a probabilistic generative model of sequences that allows making predictions about upcoming events. Though appealing from a neurobiological standpoint, this approach is typically not pursued in…

  10. Structural Learning of Attack Vectors for Generating Mutated XSS Attacks

    CERN Document Server

    Wang, Yi-Hsun; Lee, Hahn-Ming; 10.4204/EPTCS.35.2

    2010-01-01

    Web applications suffer from cross-site scripting (XSS) attacks that resulting from incomplete or incorrect input sanitization. Learning the structure of attack vectors could enrich the variety of manifestations in generated XSS attacks. In this study, we focus on generating more threatening XSS attacks for the state-of-the-art detection approaches that can find potential XSS vulnerabilities in Web applications, and propose a mechanism for structural learning of attack vectors with the aim of generating mutated XSS attacks in a fully automatic way. Mutated XSS attack generation depends on the analysis of attack vectors and the structural learning mechanism. For the kernel of the learning mechanism, we use a Hidden Markov model (HMM) as the structure of the attack vector model to capture the implicit manner of the attack vector, and this manner is benefited from the syntax meanings that are labeled by the proposed tokenizing mechanism. Bayes theorem is used to determine the number of hidden states in the model...

  11. Gauge Invariant Cosmological Perturbation Theory

    CERN Document Server

    Durrer, R

    1993-01-01

    After an introduction to the problem of cosmological structure formation, we develop gauge invariant cosmological perturbation theory. We derive the first order perturbation equations of Einstein's equations and energy momentum ``conservation''. Furthermore, the perturbations of Liouville's equation for collisionless particles and Boltzmann's equation for Compton scattering are worked out. We fully discuss the propagation of photons in a perturbed Friedmann universe, calculating the Sachs--Wolfe effect and light deflection. The perturbation equations are extended to accommodate also perturbations induced by seeds. With these general results we discuss some of the main aspects of the texture model for the formation of large scale structure in the Universe (galaxies, clusters, sheets, voids). In this model, perturbations in the dark matter are induced by texture seeds. The gravitational effects of a spherically symmetric collapsing texture on dark matter, baryonic matter and photons are calculated in first orde...

  12. Virtual Screening and Structure Generation Applied to Drug Design

    Institute of Scientific and Technical Information of China (English)

    FAN B.T.; CHEN H. F.; XIE L.; YUAN S. G.; A. PANAYE; J-P. DOUCET

    2004-01-01

    The methods of computer-aided drug design can be divided into two categories according to whether or not the structures of receptors are known1, corresponding to two principal strategies:(1) searching the bio-active ligands against virtual combinatorial libraries and calculating the affinity energy between ligand and receptor by docking ; (2) QSAR and 3D-structure data-mining.3D-QSAR method is now applied widely to drug discovery, but this method is generally limited to refine the structures of known bio-active compounds. During the process of drug design, we have usually the prejudice that certain groups or structural fragments will play or not important roles on the activity. This will sometimes be misleading, and prevent us from obtaining expected results.The method of generating firstly diverse structures, then screening out the promising structures by means of a computational method or QSAR model, is an efficient way for drug discovery. We developed an efficient virtual and rational drag design method. It combines virtual bioactive compound generation using genetic algorithms with 3D-QSAR model and docking. Using this method can generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study on a set of anti-tumor drugs, colchicine analogs2. With the constraints of pharmacophore obtained determined by DISCO, 97 virtual bioactive compounds were generated,and their anti-tumor activities were predicted by CoMFA. 8 structures with high activity were selected and screened by 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity (see fig.1). This drug design method could also avoid the conflict between the insufficiency of active structures and the great quantity of compounds needed for high-throughput screening. This method has been also applied to anti-HIV drug design.We have developed equally another approach of virtual

  13. Survey on the consciousness structure toward nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, M.; Yoshida, T. (Nomura Research Institute, Kamakura, Kanagawa (Japan))

    1981-05-01

    A survey on the popular consciousness toward nuclear power generation was carried out by direct means of questionnaire to 1600 persons, ages from 20 to 69, in power demand areas (Tokyo and Osaka) and power supply areas (sites of nuclear power generation) from early February to early March, 1980, and the recovery rate was 74.4% (1190 persons). The results are described by way of their explanation. The purpose is to clarify the structure of popular consciousness toward nuclear energy, in particular nuclear power generation, and the nature of its acceptance. That is, it was surveyed how general people in the power supply and the power demand areas are taking nuclear power generation concerning its need and safety, and further how the attitudes are constituted and vary.

  14. Effect of Structural Modification on Second Harmonic Generation in Collagen

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, P C; Reiser, K M; Celliers, P M; Rubenchik, A M

    2003-04-04

    The effects of structural perturbation on second harmonic generation in collagen were investigated. Type I collagen fascicles obtained from rat tails were structurally modified by increasing nonenzymatic cross-linking, by thermal denaturation, by collagenase digestion, or by dehydration. Changes in polarization dependence were observed in the dehydrated samples. Surprisingly, no changes in polarization dependence were observed in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable second harmonic signal. Prior to loss of signal, no change in polarization dependence was observed in partially heated or digested collagen.

  15. Effect of structural modification on second harmonic generation in collagen

    Science.gov (United States)

    Stoller, Patrick C.; Reiser, Karen M.; Celliers, Peter M.; Rubenchik, Alexander M.

    2003-07-01

    The effects of structural perturbation on second harmonic generation in collagen were investigated. Type I collagen fascicles obtained from rat tails were structurally modified by increasing nonenzymatic cross-linking, by thermal denaturation, by collagenase digestion, or by dehydration. Changes in polarization dependence were observed in the dehydrated samples. Surprisingly, no changes in polarization dependence were observed in highly crosslinked samples, despite significant alterations in packing structure. Complete thermal denaturation and collagenase digestion produced samples with no detectable second harmonic signal. Prior to loss of signal, no change in polarization dependence was observed in partially heated or digested collagen.

  16. Exact cosmological solutions for MOG

    Energy Technology Data Exchange (ETDEWEB)

    Roshan, Mahmood [Ferdowsi University of Mashhad, Department of Physics, P.O. Box 1436, Mashhad (Iran, Islamic Republic of)

    2015-09-15

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  17. Graviton spectra in string cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Galluccio, Massimo [Osservatorio Astronomico di Roma (Roma-IT); Litterio, Marco [Istituto Astronomico dell' Universita (Roma-IT); Occhionero, Franco [Osservatorio Astronomico di Roma (Roma-IT)

    1996-08-01

    We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an ω³ increase and initiates an ω⁻⁷ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.

  18. Graviton Spectra in String Cosmology

    CERN Document Server

    Galluccio, M; Occhionero, F; Galluccio, Massimo; Litterio, Marco; Occhionero, Franco

    1997-01-01

    We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an $\\omega^3$ increase and initiates an $\\omega^{-7}$ decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.

  19. Dipolar Dark Matter and Cosmology

    CERN Document Server

    Blanchet, Luc; Tiec, Alexandre Le; Marsat, Sylvain

    2013-01-01

    The phenomenology of the modified Newtonian dynamics (MOND) can be recovered from a mechanism of "gravitational polarization" of some dipolar medium playing the role of dark matter. We review a relativistic model of dipolar dark matter (DDM) within standard general relativity to describe, at some effective level, a fluid polarizable in a gravitational field. At first order in cosmological perturbation theory, this model is equivalent to the concordance cosmological scenario, or Lambda-cold dark matter (CDM) model. At second order, however, the internal energy of DDM modifies the curvature perturbation generated by CDM. This correction, which depends quadratically on the dipole, induces a new type of non-Gaussianity in the bispectrum of the curvature perturbation with respect to standard CDM. Recent observations by the Planck satellite impose stringent constraints on the primordial value of the dipole field.

  20. Code Generation for Embedded Software for Modeling Clear Box Structures

    Directory of Open Access Journals (Sweden)

    V. Chandra Prakash

    2011-09-01

    Full Text Available Cleanroom software Engineering (CRSE recommended that the code related to the Application systems be generated either manually or through code generation models or represents the same as a hierarchy of clear box structures. CRSE has even advocated that the code be developed using the State models that models the internal behavior of the systems. No framework has been recommended by any Author using which the Clear boxes are designed using the code generation methods. Code Generation is one of the important quality issues addressed in cleanroom software engineering. It has been investigated that CRSE can be used for life cycle management of the embedded systems when the hardware-software co-design is in-built as part and parcel of CRSE by way of adding suitable models to CRSE and redefining the same. The design of Embedded Systems involves code generation in respect of hardware and Embedded Software. In this paper, a framework is proposed using which the embedded software is generated. The method is unique that it considers various aspects of the code generation which includes Code Segments, Code Functions, Classes, Globalization, Variable propagation etc. The proposed Framework has been applied to a Pilot project and the experimental results are presented.

  1. On the origin of cosmological magnetic fields by plasma instabilities

    Science.gov (United States)

    Schlickeiser, Reinhard

    2005-05-01

    The existence of magnetic fields is a mandatory requirement for the onset of most nonthermal phenomena in cosmological sources, especially gamma-ray burst sources and relativistic jet sources. The processes leading to the magnetization of the intergalactic medium are not yet known. Large-scale structures in the universe, like filaments and sheets of galaxies, evolve by the gravitational collapse of initially overdense regions giving rise to an intense relative motion of fully ionized gaseous matter and strong gaseous shock structures. We investigate analytically and numerically the generation of magnetic fields in the intergalactic medium by Weibel-type instabilities involving interpenetrating electron streams. Because of the hot temperatures of the intergalactic medium the investigation of the Weibel instability is based on the now available covariantly correct dispersion theory of linear waves, and thus improves on the existing non-relativistic treatments in the literature. These primordial Weibel magnetic fields may serve as cosmological seed fields for even stronger magnetic fields in cosmological sources.

  2. Observational constraints on undulant cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2005-10-01

    In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.

  3. Big Bang, inflation, standard Physics… and the potentialities of new Physics and alternative cosmologies. Present statuts of observational and experimental Cosmology. Open questions and potentialities of alternative cosmologies

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2016-11-01

    A year ago, we wrote [1] that the field of Cosmology was undergoing a positive and constructive crisis. The possible development of more direct links between the Mathematical Physics aspects of cosmological patterns and the interpretation of experimental and observational results was particularly emphasized. Controversies on inflation are not really new, but in any case inflation is not required in pre-Big Bang models and the validity of the standard Big Bang + inflation + ΛCDM pattern has not by now been demonstrated by data. Planck has even explicitly reported the existence of "anomalies". Remembering the far-reaching work of Yoichiro Nambu published in 1959-61, it seems legitimate to underline the need for a cross-disciplinary approach in the presence of deep, unsolved theoretical problems concerning new domains of matter properties and of the physical world. The physics of a possible preonic vacuum and the associated cosmology constitute one of these domains. If the vacuum is made of superluminal preons (superbradyons), and if standard particles are vacuum excitations, how to build a suitable theory to describe the internal structure of such a vacuum at both local and cosmic level? Experimental programs (South Pole, Atacama, AUGER, Telescope Array…) and observational ones (Planck, JEM-EUSO…) devoted to the study of cosmic microwave background radiation (CMB) and of ultra-high energy cosmic rays (UHECR) are crucial to elucidate such theoretical interrogations and guide new phenomenological developments. Together with a brief review of the observational and experimental situation, we also examine the main present theoretical and phenomenological problems and point out the role new physics and alternative cosmologies can potentially play. The need for data analyses less focused a priori on the standard models of Particle Physics and Cosmology is emphasized in this discussion. An example of a new approach to both fields is provided by the pre-Big Bang pattern

  4. Phantom cosmologies and fermions

    CERN Document Server

    Chimento, Luis P; Forte, Monica; Kremer, Gilberto M

    2007-01-01

    Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the "phantomization" process exhibits a new class of possible accelerated regimes.

  5. Perspectives in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.ed [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2010-01-01

    The 'new standard cosmology', based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.

  6. Cosmological implications of Geometrothermodynamics

    CERN Document Server

    Luongo, Orlando

    2013-01-01

    We use the formalism of Geometrothermodynamics to derive a series of fundamental equations for thermodynamic systems. It is shown that all these fundamental equations can be used in the context of relativistic cosmology to derive diverse scenarios which include the standard cosmological model, a unified model for dark energy and dark matter, and an effective inflationary model.

  7. Cosmological Implications of Geometrothermodynamics

    Science.gov (United States)

    Luongo, O.; Quevedo, H.

    2015-01-01

    We use the formalism of Geometrothermodynamics to derive a series of fundamental equations for thermodynamic systems. It is shown that all these fundamental equations can be used in the context of relativistic cosmology to derive diverse scenarios which include the standard cosmological model, a unified model for dark energy and dark matter, and an effective inflationary model.

  8. Neutrino properties from cosmology

    DEFF Research Database (Denmark)

    Hannestad, S.

    2013-01-01

    In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-s...

  9. Dwarf-Galaxy Cosmology

    CERN Document Server

    Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey

    2010-01-01

    Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.

  10. Friedmann cosmology with decaying vacuum density

    CERN Document Server

    Borges, H A

    2005-01-01

    Among the several proposals to solve the incompatibility between the observed small value of the cosmological constant and the huge value obtained by quantum field theories, we can find the idea of a decaying vacuum energy density, leading from high values at early times of universe evolution to the small value observed nowadays. In this paper we consider a variation law for the vacuum density recently proposed by Schutzhold on the basis of quantum field estimations in the curved, expanding background, characterized by a vacuum density proportional to the Hubble parameter. We show that, in the context of an isotropic and homogeneous, spatially flat model, the corresponding solutions retain the well established features of the standard cosmology, and, in addition, are in accordance with the observed cosmological parameters. Our scenario presents an initial phase dominated by radiation, followed by a dust era long enough to permit structure formation, and by an epoch dominated by the cosmological term, which te...

  11. Julien Lesgourgues presents his book "Neutrino Cosmology"

    CERN Multimedia

    2013-01-01

    The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics.   In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis and from their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and statistical mechanics in the expanding Universe, before discussing the history of neutrinos chronologically from the very early stages until today. "Neutrino Cosmology" by Julien Lesgourgues, Gianpiero Mangano, Gennaro Miele, Sergio Pastor, Cambridge University Press, 2013, ISBN 9781107013957. Monday 22 April 2013 at 4 p.m. in the Library, 52-1-052. Tea and coffee will be served...

  12. A Thousand Problems in Cosmology: Horizons

    CERN Document Server

    Bolotin, Yu L

    2013-01-01

    This is one chapter of the collection of problems in cosmology, in which we assemble the problems that concern one of the most distinctive features of general relativity and cosmology---the horizons. The first part gives an elementary introduction into the concept in the cosmological context, then we move to more formal exposition of the subject and consider first simple, and then composite models, such as $\\Lambda$CDM. The fourth section elevates the rigor one more step and explores the causal structure of different simple cosmological models in terms of conformal diagrams. The section on black holes relates the general scheme of constructing conformal diagrams for stationary black hole spacetimes. The consequent parts focus on more specific topics, such as the various problems regarding the Hubble sphere, inflation and holography. This version contains only formulations of 97 problems. The full collection, with solutions included, is available in the form of a wiki-based resource at http://universeinproblem...

  13. Efficient exploration of cosmology dependence in the EFT of LSS

    CERN Document Server

    Cataneo, Matteo; Senatore, Leonardo

    2016-01-01

    The most effective use of data from current and upcoming large scale structure~(LSS) and CMB observations requires the ability to predict the clustering of LSS with very high precision. The Effective Field Theory of Large Scale Structure (EFTofLSS) provides an instrument for performing analytical computations of LSS observables with the required precision in the mildly nonlinear regime. In this paper, we develop efficient implementations of these computations that allow for an exploration of their dependence on cosmological parameters. They are based on two ideas. First, once an observable has been computed with high precision for a reference cosmology, for a new cosmology the same can be easily obtained with comparable precision just by adding the difference in that observable, evaluated with much less precision. Second, most cosmologies of interest are sufficiently close to the Planck best-fit cosmology that observables can be obtained from a Taylor expansion around the reference cosmology. These ideas are ...

  14. Classical and quantum cosmology

    CERN Document Server

    Calcagni, Gianluca

    2017-01-01

    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...

  15. Cosmology and particle physics

    Science.gov (United States)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  16. Testing loop quantum cosmology

    Science.gov (United States)

    Wilson-Ewing, Edward

    2017-03-01

    Loop quantum cosmology predicts that quantum gravity effects resolve the big-bang singularity and replace it by a cosmic bounce. Furthermore, loop quantum cosmology can also modify the form of primordial cosmological perturbations, for example by reducing power at large scales in inflationary models or by suppressing the tensor-to-scalar ratio in the matter bounce scenario; these two effects are potential observational tests for loop quantum cosmology. In this article, I review these predictions and others, and also briefly discuss three open problems in loop quantum cosmology: its relation to loop quantum gravity, the trans-Planckian problem, and a possible transition from a Lorentzian to a Euclidean space-time around the bounce point.

  17. Introduction to cosmology

    CERN Document Server

    Ryden, Barbara

    2002-01-01

    Introduction to Cosmology provides a rare combination of a solid foundation of the core physical concepts of cosmology and the most recent astronomical observations. The book is designed for advanced undergraduates or beginning graduate students and assumes no prior knowledge of general relativity. An emphasis is placed on developing the readers' physical insight rather than losing them with complex math. An approachable writing style and wealth of fresh and imaginative analogies from "everyday" physics are used to make the concepts of cosmology more accessible. The book is unique in that it not only includes recent major developments in cosmology, like the cosmological constant and accelerating universe, but also anticipates key developments expected in the next few years, such as detailed results on the cosmic microwave background.

  18. Preferred axis in cosmology

    CERN Document Server

    Zhao, Wen

    2016-01-01

    The foundation of modern cosmology relies on the so-called cosmological principle which states an homogeneous and isotropic distribution of matter in the universe on large scales. However, recent observations, such as the temperature anisotropy of the cosmic microwave background (CMB) radiation, the motion of galaxies in the universe, the polarization of quasars and the acceleration of the cosmic expansion, indicate preferred directions in the sky. If these directions have a cosmological origin, the cosmological principle would be violated, and modern cosmology should be reconsidered. In this paper, by considering the preferred axis in the CMB parity violation, we find that it coincides with the preferred axes in CMB quadrupole and CMB octopole, and they all align with the direction of the CMB kinematic dipole. In addition, the preferred directions in the velocity flows, quasar alignment, anisotropy of the cosmic acceleration, the handedness of spiral galaxies, and the angular distribution of the fine-structu...

  19. Brain anatomical structure segmentation by hybrid discriminative/generative models.

    Science.gov (United States)

    Tu, Z; Narr, K L; Dollar, P; Dinov, I; Thompson, P M; Toga, A W

    2008-04-01

    In this paper, a hybrid discriminative/generative model for brain anatomical structure segmentation is proposed. The learning aspect of the approach is emphasized. In the discriminative appearance models, various cues such as intensity and curvatures are combined to locally capture the complex appearances of different anatomical structures. A probabilistic boosting tree (PBT) framework is adopted to learn multiclass discriminative models that combine hundreds of features across different scales. On the generative model side, both global and local shape models are used to capture the shape information about each anatomical structure. The parameters to combine the discriminative appearance and generative shape models are also automatically learned. Thus, low-level and high-level information is learned and integrated in a hybrid model. Segmentations are obtained by minimizing an energy function associated with the proposed hybrid model. Finally, a grid-face structure is designed to explicitly represent the 3-D region topology. This representation handles an arbitrary number of regions and facilitates fast surface evolution. Our system was trained and tested on a set of 3-D magnetic resonance imaging (MRI) volumes and the results obtained are encouraging.

  20. Cosmological arrow of time in f(R) gravity

    CERN Document Server

    Yadav, Bal Krishna

    2016-01-01

    The cosmological arrow of time may be linked to the thermodynamic arrow by second law of thermodynamics. The time asymmetry is also associated with dissipative fluid as Tolman introduced a viscous fluid to generate an arrow of time in cyclic cosmology. An arrow of time in cyclic cosmology has been shown using scalar field.In this work we find out the cosmological arrow of time in f(R) gravity. Here we use the relation between a new scalar field and $f(R)$. The dynamics of this new scalar field may emerge the arrow of time.

  1. CIF2Cell: Generating geometries for electronic structure programs

    Science.gov (United States)

    Björkman, Torbjörn

    2011-05-01

    The CIF2Cell program generates the geometrical setup for a number of electronic structure programs based on the crystallographic information in a Crystallographic Information Framework (CIF) file. The program will retrieve the space group number, Wyckoff positions and crystallographic parameters, make a sensible choice for Bravais lattice vectors (primitive or principal cell) and generate all atomic positions. Supercells can be generated and alloys are handled gracefully. The code currently has output interfaces to the electronic structure programs ABINIT, CASTEP, CPMD, Crystal, Elk, Exciting, EMTO, Fleur, RSPt, Siesta and VASP. Program summaryProgram title: CIF2Cell Catalogue identifier: AEIM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 3 No. of lines in distributed program, including test data, etc.: 12 691 No. of bytes in distributed program, including test data, etc.: 74 933 Distribution format: tar.gz Programming language: Python (versions 2.4-2.7) Computer: Any computer that can run Python (versions 2.4-2.7) Operating system: Any operating system that can run Python (versions 2.4-2.7) Classification: 7.3, 7.8, 8 External routines: PyCIFRW [1] Nature of problem: Generate the geometrical setup of a crystallographic cell for a variety of electronic structure programs from data contained in a CIF file. Solution method: The CIF file is parsed using routines contained in the library PyCIFRW [1], and crystallographic as well as bibliographic information is extracted. The program then generates the principal cell from symmetry information, crystal parameters, space group number and Wyckoff sites. Reduction to a primitive cell is then performed, and the resulting cell is output to suitably named files along with documentation of the information source generated from any bibliographic information contained in the CIF

  2. Structured Reporting Method for ePR Generation

    Directory of Open Access Journals (Sweden)

    Arash Ebrahimi

    2007-08-01

    Full Text Available Appropriate electronic medical report-making soft-wares help physicians to personally generate records for paper printing and ePR access. Flat data-sheets with check-boxes that have been already used in traditional medical paper reports, do not satisfy today's physician demands for more professional reports."nAlternatively, Structured Reporting (SR as the modified version of flat check-box based reporting method is being selected. In this method, items are nested in a hieratical tree so that each reporting item includes several substitutions. Hence, computer generates professional sentences with logical pre-defined combination of selected items. In our work, on the basis of SR method, we provided solution for reporting of Endoscopy procedures that is accepted by several Gastroenterologists as a proper software. In addi-tion, successful results in generation of ePRs using SR are newly achieved in Cardiology.

  3. Nanosecond pulsed laser generation of holographic structures on metals

    Science.gov (United States)

    Wlodarczyk, Krystian L.; Ardron, Marcus; Weston, Nick J.; Hand, Duncan P.

    2016-03-01

    A laser-based process for the generation of phase holographic structures directly onto the surface of metals is presented. This process uses 35ns long laser pulses of wavelength 355nm to generate optically-smooth surface deformations on a metal. The laser-induced surface deformations (LISDs) are produced by either localized laser melting or the combination of melting and evaporation. The geometry (shape and dimension) of the LISDs depends on the laser processing parameters, in particular the pulse energy, as well as on the chemical composition of a metal. In this paper, we explain the mechanism of the LISDs formation on various metals, such as stainless steel, pure nickel and nickel-chromium Inconel® alloys. In addition, we provide information about the design and fabrication process of the phase holographic structures and demonstrate their use as robust markings for the identification and traceability of high value metal goods.

  4. Structural materials for the next generation of technologies

    CERN Document Server

    Van de Voorde, Marcel Hubert

    1996-01-01

    1. Overview of advanced technologies; i.e. aerospace-aeronautics; automobile; energy technology; accelerator engineering etc. and the need for new structural materials. 2. Familiarisation with polymers, metals and alloys, structural ceramics, composites and surface engineering. The study of modern materials processing, generation of a materials data base, engineering properties includind NDE, radiation damage etc. 3. Development of new materials for the next generation of technologies; including the spin-off of materials developed for space and military purposes to industrial applications. 4. Materials selection for modern accelerator engineering. 5. Materials research in Europe, USA and Japan. Material R & D programmes sponsored by the European Union and the collaboration of CERN in EU sponsored programmes.

  5. Harmonic and subharmonic acoustic wave generation in finite structures.

    Science.gov (United States)

    Alippi, A; Bettucci, A; Germano, M; Passeri, D

    2006-12-22

    The generation of harmonic and subharmonic vibrations is considered in a finite monodimensional structure, as it is produced by the nonlinear acoustic characteristics of the medium. The equation of motion is considered, where a general function of the displacement and its derivatives acts as the forcing term for (sub)harmonic generation and a series of 'selection rules' is found, depending on the sample constrains. The localization of the nonlinear term is also considered that mimics the presence of defects or cracks in the structure, together with the spatial distribution of subharmonic modes. Experimental evidence is given relative to the power law dependence of the harmonic modes vs. the fundamental mode displacement amplitude, and subharmonic mode distribution with hysteretic effects is also reported in a cylindrical sample of piezoelectric material.

  6. Cosmological experiments in superfluid helium?

    Science.gov (United States)

    Zurek, W. H.

    1985-10-01

    Symmetry breaking phase transitions occurring in the early Universe are expected to leave behind long-lived topologically stabel structures such as monopoles, strings or domain walls. The author discusses the analogy between cosmological strings and vortex lines in the superfluid, and suggests a cryogenic experiment which tests key elements of the cosmological scenario for string formation. In a superfluid obtained through a rapid pressure quench, the phase of the Bose condensate wavefunction - the 4He analogue of the broken symmetry of the field-theoretic vacuum - will be chosen randomly in domains of some characteristic size d. When the quench is performed in an annulus of circumference C the typical value of the phase mismatch around the loop will be ≡(C/d)1/2. The resulting phase gradient can be sufficiently large to cause the superfluid to flow with a measurable, randomly directed velocity.

  7. SABATPG-A Structural Analysis Based Automatic Test Generation System

    Institute of Scientific and Technical Information of China (English)

    李忠诚; 潘榆奇; 闵应骅

    1994-01-01

    A TPG system, SABATPG, is given based on a generic structural model of large circuits. Three techniques of partial implication, aftereffect of identified undetectable faults and shared sensitization with new concepts of localization and aftereffect are employed in the system to improve FAN algorithm. Experiments for the 10 ISCAS benchmark circuits show that the computing time of SABATPG for test generation is 19.42% less than that of FAN algorithm.

  8. Generating a 2D Representation of a Complex Data Structure

    Science.gov (United States)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  9. Inflation after COBE: Lectures on inflationary cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1992-01-01

    In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the initial data'' for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.

  10. Inflation after COBE: Lectures on inflationary cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1992-12-31

    In these lectures I review the standard hot big-bang cosmology, emphasizing its successes, its shortcomings, and its major challenge-a detailed understanding of the formation of structure in the Universe. I then discuss the motivations for and the fundamentals of inflationary cosmology, particularly emphasizing the quantum origin of metric (density and gravity-wave) perturbations. Inflation addresses the shortcomings of the standard cosmology and provides the ``initial data`` for structure formation. I conclude by addressing the implications of inflation for structure formation, evaluating the various cold dark matter models in the light of the recent detection of temperature anisotropies in the cosmic background radiation by COBE. In the near term, the study of structure formation offers a powerful probe of inflation, as well as specific inflationary models.

  11. Cosmological Perturbations: Vorticity, Isocurvature and Magnetic Fields

    CERN Document Server

    Christopherson, Adam J

    2014-01-01

    In this paper I review some recent, interlinked, work undertaken using cosmological perturbation theory -- a powerful technique for modelling inhomogeneities in the Universe. The common theme which underpins these pieces of work is the presence of non-adiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or non-adiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduc...

  12. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  13. Dark matter and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N.

    1992-03-01

    The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.

  14. Cosmology Theory and Observations

    CERN Document Server

    Dolgov, A D

    1998-01-01

    The comparison of the Standard Cosmological Model (SCM) with astronomical observations, i.e. theory versus experiment, and with the Minimal Standard Model (MSM) in particle physics, i.e. theory versus theory, is discussed. The main issue of this talk is whether cosmology indicates new physics beyond the standard $SU(3)\\times SU(2)\\times U(1)$ model with minimal particle content. The answer to this question is strongly and definitely "YES". New, yet unknown, physics exists and cosmology presents very weighty arguments in its favor.

  15. Semi-Analytic Galaxy Formation in Massive Neutrinos Cosmologies

    CERN Document Server

    Fontanot, Fabio; Bianchi, Davide; Viel, Matteo

    2014-01-01

    The present constraints on neutrino masses led to the revision of their cosmological role, as the presence of a cosmological neutrino background is a clear prediction of the current standard cosmological models. In this paper, we extend the study of the impact of such background on the spatial distribution of both Dark Matter (DM) and galaxies in the Universe, by coupling N-body numerical simulations with semi-analytic models (SAMs) of galaxy formation. Starting from the same initial conditions, massive neutrino cosmologies predict a slower evolution of DM perturbations with respect to the corresponding LCDM cosmology and a suppression on the matter power spectrum on small and intermediate scales. The resulting statistical properties of model galaxies reflect the different growth of the Large Scale Structure, but we explicitly show that most of the deviations from a LCDM realisation are due to the different $\\sigma_8$ associated with the massive neutrino cosmologies. We thus conclude that an independent estim...

  16. Structural materials issues for the next generation fission reactors

    Science.gov (United States)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  17. FRW Cosmology in Ghost Free Massive Gravity

    CERN Document Server

    Comelli, D; Nesti, F; Pilo, L

    2011-01-01

    We study FRW homogeneous cosmological solutions in the recently found ghost free massive gravity. In previous works it was shown that when the additional extra metric, needed to generate the mass term, is taken as non-dynamical and flat, no homogeneous FRW cosmology exists. We show that, when the additional metric is a dynamical field, a perfectly safe FRW universe exists. FRW solutions fall in two branches. In the first branch the massive deformation is equivalent to an effectively generated cosmological constant whose scale is determined by the graviton mass. The second branch is quite rich: we have FRW cosmology in the presence of a "gravitational" fluid. The control parameter xi is the ratio of the two conformal factors. When xi is large, generically the cosmological evolution greatly differs from GR at the early time. In the small xi region, the evolution is similar to GR and the universe flows at late time toward an attractor represented by a dS phase.

  18. Particle Theory & Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Shafi, Qaisar [Univ. of Delaware, Newark, DE (United States); Barr, Steven [Univ. of Delaware, Newark, DE (United States); Gaisser, Thomas [Univ. of Delaware, Newark, DE (United States); Stanev, Todor [Univ. of Delaware, Newark, DE (United States)

    2015-03-31

    investigations in cosmology, specifically on supergravity and GUT infl models, primordial gravity waves, dark matter models. The origin of baryon and dark matter in the universe has been explored by Professors Barr and Shafi The research program of Professors Gaisser and Stanev address current research topics in Particle Astrophysics, in particular atmospheric and cosmogenic neutrinos and ultra-high energy cosmic rays. Work also included use of LHC data to improve tools for interpreting cascades generated in the atmosphere by high-energy particles from the cosmos. Cosmogenic neutrinos produced by interactions of ultra-high energy cosmic rays as they propagate through the cosmic microwave background radiation provides insight into the origin of the highest energy particles in nature. Overall, the research covered topics in the energy, cosmic and intensity frontiers.

  19. Bim Automation: Advanced Modeling Generative Process for Complex Structures

    Science.gov (United States)

    Banfi, F.; Fai, S.; Brumana, R.

    2017-08-01

    The new paradigm of the complexity of modern and historic structures, which are characterised by complex forms, morphological and typological variables, is one of the greatest challenges for building information modelling (BIM). Generation of complex parametric models needs new scientific knowledge concerning new digital technologies. These elements are helpful to store a vast quantity of information during the life cycle of buildings (LCB). The latest developments of parametric applications do not provide advanced tools, resulting in time-consuming work for the generation of models. This paper presents a method capable of processing and creating complex parametric Building Information Models (BIM) with Non-Uniform to NURBS) with multiple levels of details (Mixed and ReverseLoD) based on accurate 3D photogrammetric and laser scanning surveys. Complex 3D elements are converted into parametric BIM software and finite element applications (BIM to FEA) using specific exchange formats and new modelling tools. The proposed approach has been applied to different case studies: the BIM of modern structure for the courtyard of West Block on Parliament Hill in Ottawa (Ontario) and the BIM of Masegra Castel in Sondrio (Italy), encouraging the dissemination and interaction of scientific results without losing information during the generative process.

  20. Cosmological perturbations beyond linear order

    CERN Document Server

    CERN. Geneva

    2013-01-01

    Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.

  1. Bayesian Cosmological inference beyond statistical isotropy

    Science.gov (United States)

    Souradeep, Tarun; Das, Santanu; Wandelt, Benjamin

    2016-10-01

    With advent of rich data sets, computationally challenge of inference in cosmology has relied on stochastic sampling method. First, I review the widely used MCMC approach used to infer cosmological parameters and present a adaptive improved implementation SCoPE developed by our group. Next, I present a general method for Bayesian inference of the underlying covariance structure of random fields on a sphere. We employ the Bipolar Spherical Harmonic (BipoSH) representation of general covariance structure on the sphere. We illustrate the efficacy of the method with a principled approach to assess violation of statistical isotropy (SI) in the sky maps of Cosmic Microwave Background (CMB) fluctuations. The general, principled, approach to a Bayesian inference of the covariance structure in a random field on a sphere presented here has huge potential for application to other many aspects of cosmology and astronomy, as well as, more distant areas of research like geosciences and climate modelling.

  2. Cosmology with photometric redshift surveys

    CERN Document Server

    Blake, C; Blake, Chris; Bridle, Sarah

    2004-01-01

    We explore the utility of future photometric redshift imaging surveys for delineating the large-scale structure of the Universe, and assess the resulting constraints on the cosmological model. We perform two complementary types of analysis: (1) We quantify the statistical confidence and accuracy with which such surveys will be able to detect and measure characteristic features in the clustering power spectrum such as the acoustic oscillations and the turnover, in a model-independent fashion. For example, we show that a 10000 sq deg imaging survey with depth r = 22.5 and photometric redshift accuracy dz/(1+z) = 0.03 will detect the acoustic oscillations with 99.9% confidence, measuring the associated cosmological scale with 2% precision. Such a survey will also detect the turnover with 95% confidence, determining the corresponding scale with 20% accuracy. (2) By assuming a Lambda-CDM cosmology we calculate the confidence with which a non-zero baryon fraction can be deduced from such future surveys. After margi...

  3. Post-Newtonian cosmological models

    CERN Document Server

    Sanghai, Viraj A A

    2015-01-01

    We construct a framework to probe the effect of non-linear structure formation on the large-scale expansion of the universe. We take a bottom-up approach to cosmological modelling by splitting our universe into cells. The matter content within each cell is described by the post-Newtonian formalism. We assume that most of the cell is in the vicinity of weak gravitational fields, so that it can be described using a perturbed Minkowski metric. Our cells are patched together using the Israel junction conditions. We impose reflection symmetry across the boundary of these cells. This allows us to calculate the equation of motion for the boundary of the cell and, hence, the expansion rate of the universe. At Newtonian order, we recover the standard Friedmann-like equations. At post-Newtonian orders, we obtain a correction to the large-scale expansion of the universe. Our framework does not depend on the process of averaging in cosmology. As an example, we use this framework to investigate the cosmological evolution ...

  4. The Age of Precision Cosmology

    Science.gov (United States)

    Chuss, David T.

    2012-01-01

    In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.

  5. Higgs Physics and Cosmology

    Science.gov (United States)

    Roberts, Alex

    2016-08-01

    Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. We elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein. We explore supersymmetric theories in which the Higgs mass is boosted by the non-decoupling D-terms of an extended U(1) X gauge symmetry, defined here to be a general linear combination of hypercharge, baryon number, and lepton number. Crucially, the gauge coupling, gX, is bounded from below to accommodate the Higgs mass, while the quarks and leptons are required by gauge invariance to carry non-zero charge under U(1)X. This induces an irreducible rate, sigmaBR, for pp → X → ll relevant to existing and future resonance searches, and gives rise to higher dimension operators that are stringently constrained by precision electroweak measurements. Combined, these bounds define a maximally allowed region in the space of observables, (sigmaBR, mX), outside of which is excluded by naturalness and experimental limits. If natural supersymmetry utilizes non-decoupling D-terms, then the associated X boson can only be observed within this window, providing a model independent 'litmus test' for this broad

  6. Power spectrum of large-scale structure cosmological models in the framework of scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Meza, M A, E-mail: marioalberto.rodriguez@inin.gob.m [Instituto Avanzado de Cosmologia, IAC, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F. (Mexico)

    2010-05-01

    We study the large-scale structure formation in the Universe in the frame of scalar-tensor theories as an alternative to general relativity. We review briefly the Newtonian limit of non-minimally coupled scalar-tensor theories and the evolution equations of the N-body system that is appropriate to study large-scale structure formation in the Universe. We compute the power-spectrum of the universe at present epoch and show how the large-scale structure depends on the scalar field contribution.

  7. Cosmology with Nonminimal Derivative Couplings

    CERN Document Server

    Amendola, L

    1993-01-01

    We study a theory which generalizes the nonminimal coupling of matter to gravity by including derivative couplings. This leads to several interesting new dynamical phenomena in cosmology. In particular, the range of parameters in which inflationary attractors exist is greatly expanded. We also numerically integrate the field equations and draw the phase space of the model in second order approximation. The model introduced here may display different inflationary epochs, generating a non-scale-invariant fluctuation spectrum without the need of two or more fields. Finally, we comment on the bubble spectrum arising during a first-order phase transition occurring in our model.

  8. Building Cosmological Frozen Stars

    CERN Document Server

    Kastor, David

    2016-01-01

    Janis-Newman-Winicour (JNW) spacetimes generalize the Schwarzschild solution to include a massless scalar field. Although suffering from naked singularities, they share the `frozen star' features of Schwarzschild black holes. Cosmological versions of the JNW spacetimes were discovered some time ago by Husain, Martinez and Nunez and by Fonarev. Unlike Schwarzschild-deSitter black holes, these solutions are dynamical, and the scarcity of exact solutions for dynamical black holes in cosmological backgrounds motivates their further study. Here we show how the cosmological JNW spacetimes can be built, starting from simpler, static, higher dimensional, vacuum `JNW brane' solutions via two different generalized dimensional reduction schemes that together cover the full range of JNW parameter space. Cosmological versions of a BPS limit of charged dilaton black holes are also known. JNW spacetimes represent a different limiting case of the charged, dilaton black hole family. We expect that understanding this second da...

  9. Cosmology Beyond Einstein

    CERN Document Server

    Solomon, Adam R

    2015-01-01

    The accelerating expansion of the Universe poses a major challenge to our understanding of fundamental physics. One promising avenue is to modify general relativity and obtain a new description of the gravitational force. Because gravitation dominates the other forces mostly on large scales, cosmological probes provide an ideal testing ground for theories of gravity. In this thesis, we describe two complementary approaches to the problem of testing gravity using cosmology. In the first part, we discuss the cosmological solutions of massive gravity and its generalisation to a bimetric theory. These theories describe a graviton with a small mass, and can potentially explain the late-time acceleration in a technically-natural way. We describe these self-accelerating solutions and investigate the cosmological perturbations in depth, beginning with an investigation of their linear stability, followed by the construction of a method for solving these perturbations in the quasistatic limit. This allows the predictio...

  10. Cosmological Ontology and Epistemology

    CERN Document Server

    Page, Don N

    2014-01-01

    In cosmology, we would like to explain our observations and predict future observations from theories of the entire universe. Such cosmological theories make ontological assumptions of what entities exist and what their properties and relationships are. One must also make epistemological assumptions or metatheories of how one can test cosmological theories. Here I shall propose a Bayesian analysis in which the likelihood of a complete theory is given by the normalized measure it assigns to the observation used to test the theory. In this context, a discussion is given of the trade-off between prior probabilities and likelihoods, of the measure problem of cosmology, of the death of Born's rule, of the Boltzmann brain problem, of whether there is a better principle for prior probabilities than mathematical simplicity, and of an Optimal Argument for the Existence of God.

  11. Cosmology: macro and micro

    CERN Document Server

    Holland, Jonathan

    2014-01-01

    A new approach to cosmology and space-time is developed, which emphasizes the description of the matter degrees of freedom of Einstein's theory of gravity by a family of K\\"ahler-Einstein Fano manifolds.

  12. Tensors, relativity, and cosmology

    CERN Document Server

    Dalarsson, Mirjana

    2015-01-01

    Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...

  13. Testing Fractional Action Cosmology

    CERN Document Server

    Shchigolev, V K

    2015-01-01

    The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests that gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.

  14. Testing fractional action cosmology

    Science.gov (United States)

    Shchigolev, V. K.

    2016-08-01

    The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.

  15. Cosmological diagrammatic rules

    CERN Document Server

    Giddings, Steven B

    2010-01-01

    A simple set of diagrammatic rules is formulated for perturbative evaluation of ``in-in" correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.

  16. Cosmological diagrammatic rules

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, Steven B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sloth, Martin S., E-mail: giddings@physics.ucsb.edu, E-mail: sloth@cern.ch [CERN, Physics Department, Theory Unit, CH-1211 Geneva 23 (Switzerland)

    2010-07-01

    A simple set of diagrammatic rules is formulated for perturbative evaluation of ''in-in'' correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes.

  17. Discrete Newtonian Cosmology

    CERN Document Server

    Gibbons, Gary W

    2013-01-01

    In this paper we lay down the foundations for a purely Newtonian theory of cosmology, valid at scales small compared with the Hubble radius, using only Newtonian point particles acted on by gravity and a possible cosmological term. We describe the cosmological background which is given by an exact solution of the equations of motion in which the particles expand homothetically with their comoving positions constituting a central configuration. We point out, using previous work, that an important class of central configurations are homogeneous and isotropic, thus justifying the usual assumptions of elementary treatments. The scale factor is shown to satisfy the standard Raychaudhuri and Friedmann equations without making any fluid dynamic or continuum approximations. Since we make no commitment as to the identity of the point particles, our results are valid for cold dark matter, galaxies, or clusters of galaxies. In future publications we plan to discuss perturbations of our cosmological background from the p...

  18. Introduction to cosmology

    CERN Document Server

    Ryden, Barbara

    2017-01-01

    This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.

  19. Cosmology as geodesic motion

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Paul K [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Wohlfarth, Mattias N R [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2004-12-07

    For gravity coupled to N scalar fields, with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N + 1)-dimensional 'augmented' target space of Lorentzian signature (1, N), timelike if V > 0, null if V = 0 and spacelike if V < 0. Accelerating cosmologies correspond to timelike geodesics that lie within an 'acceleration subcone' of the 'lightcone'. Non-flat (k = {+-}1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N + 2, of signature (1, N + 1) for k = -1 and signature (2, N) for k = +1. This formalism is illustrated by cosmological solutions of models with an exponential potential, which are comprehensively analysed; the late-time behaviour for other potentials of current interest is deduced by comparison.

  20. Parallel and Streaming Generation of Ghost Data for Structured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Lindstrom, P; Childs, H

    2008-04-15

    Parallel simulations decompose large domains into many blocks. A fundamental requirement for subsequent parallel analysis and visualization is the presence of ghost data that supplements each block with a layer of adjacent data elements from neighboring blocks. The standard approach for generating ghost data requires all blocks to be in memory at once. This becomes impractical when there are fewer processors - and thus less aggregate memory - available for analysis than for simulation. We describe an algorithm for generating ghost data for structured grids that uses many fewer processors than previously possible. Our algorithm stores as little as one block per processor in memory and can run on as few processors as are available (possibly just one). The key idea is to slightly change the size of the original blocks by declaring parts of them to be ghost data, and by later padding adjacent blocks with this data.

  1. Generation of nanometer structures on surfaces of ionic solids generated by laser and electron beam irradiation

    Science.gov (United States)

    Dawes, M. L.; Langford, S. C.; Dickinson, J. Thomas

    2001-03-01

    Radiation effects on hydrated single crystals are poorly understood. We find that dense arrays of nanoscale conical structures, with aspect ratios on the order of 200, are produced when single crystal brushite (CaHPO_4^.2H_2O) is exposed to energetic electrons (2 keV). Other three dimensional nanostructures are generated by exposing brushite to excimer laser irradiation. We show that the mechanism involves: (a) photo/electron stimulated decomposition of the matrix, and (b) thermally stimulated migration of water (in this case, crystalline) and ionic material. We have isolated these factors to some extent and present plausible mechanisms for structure formation. In addition, we have recently exposed non-hydrated ionic crystals to radiation in the presence of background water (pp_water ~ 10-7 Torr), which produces exceedingly fine structures (sub-10 nm). The optical and luminescence properties of these features will be presented. An example of a “stealth surface” will be given with possible applications for the laser generation of x-rays.

  2. Classification of cosmological milestones

    CERN Document Server

    Fernández-Jambrina, L

    2006-01-01

    In this paper causal geodesic completeness of FLRW cosmological models is analysed in terms of generalised power expansions of the scale factor in coordinate time. The strength of the found singularities is discussed following the usual definitions due to Tipler and Krolak. It is shown that while classical cosmological models are both timelike and lightlike geodesically incomplete, certain observationally alllowed models which have been proposed recently are lightlike geodesically complete.

  3. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  4. Accelerating Cosmologies from Compactification

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2003-01-01

    A solution of the (4+n)-dimensional vacuum Einstein equations is found for which spacetime is compactified on a compact hyperbolic manifold of time-varying volume to a flat four-dimensional FLRW cosmology undergoing accelerated expansion in Einstein conformal frame. This shows that the `no-go' theorem forbidding acceleration in `standard' (time-independent) compactifications of string/M-theory does not apply to `cosmological' (time-dependent) hyperbolic compactifications.

  5. Relativistic cosmological hydrodynamics

    CERN Document Server

    Hwang, J

    1997-01-01

    We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.

  6. Building cosmological frozen stars

    Science.gov (United States)

    Kastor, David; Traschen, Jennie

    2017-02-01

    Janis–Newman–Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild–deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.

  7. Emergent cosmology revisited

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Satadru; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Pune 411007 (India); Shtanov, Yuri [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine); Unnikrishnan, Sanil, E-mail: satadru@iucaa.ernet.in, E-mail: varun@iucaa.ernet.in, E-mail: shtanov@bitp.kiev.ua, E-mail: sanil@lnmiit.ac.in [Department of Physics, The LNM Institute of Information Technology, Jaipur 302031 (India)

    2014-07-01

    We explore the possibility of emergent cosmology using the effective potential formalism. We discover new models of emergent cosmology which satisfy the constraints posed by the cosmic microwave background (CMB). We demonstrate that, within the framework of modified gravity, the emergent scenario can arise in a universe which is spatially open/closed. By contrast, in general relativity (GR) emergent cosmology arises from a spatially closed past-eternal Einstein Static Universe (ESU). In GR the ESU is unstable, which creates fine tuning problems for emergent cosmology. However, modified gravity models including Braneworld models, Loop Quantum Cosmology (LQC) and Asymptotically Free Gravity result in a stable ESU. Consequently, in these models emergent cosmology arises from a larger class of initial conditions including those in which the universe eternally oscillates about the ESU fixed point. We demonstrate that such an oscillating universe is necessarily accompanied by graviton production. For a large region in parameter space graviton production is enhanced through a parametric resonance, casting serious doubts as to whether this emergent scenario can be past-eternal.

  8. Automatic structures and growth functions for finitely generated abelian groups

    CERN Document Server

    Kamei, Satoshi

    2011-01-01

    In this paper, we consider the formal power series whose n-th coefficient is the number of copies of a given finite graph in the ball of radius n centred at the identity element in the Cayley graph of a finitely generated group and call it the growth function. Epstein, Iano-Fletcher and Uri Zwick proved that the growth function is a rational function if the group has a geodesic automatic structure. We compute the growth function in the case where the group is abelian and see that the denominator of the rational function is determined from the rank of the group.

  9. Cosmological N -body simulations including radiation perturbations

    DEFF Research Database (Denmark)

    Brandbyge, Jacob; Rampf, Cornelius; Tram, Thomas

    2017-01-01

    Cosmological $N$-body simulations are the standard tool to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects such as th......Cosmological $N$-body simulations are the standard tool to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects...

  10. String cosmology versus standard and inflationary cosmology

    CERN Document Server

    Gasperini, M

    2000-01-01

    This paper presents a review of the basic, model-independent differences between the pre-big bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude in favour either of one or of the other scenario, but to raise questions that are left to the reader's meditation. Warnings: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.

  11. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    CERN Document Server

    Haro, Jaime

    2013-01-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) could be studied from two totally different ways. The first one, called holonomy corrected LQC, is performed in the Hamiltonian framework, where the Asthekar connection is replaced by a suitable sinus function (holonomy correction), in order to have a well-defined quantum analogue. The alternative approach is based in the fact that isotropic LQC could be also obtained as a particular case of teleparallel $F(T)$ gravity (teleparallel LQC). Then, working in the Lagrangian framework and using the well-know perturbation equations in $F(T)$ gravity, we have obtained, in teleparallel LQC, the equations for scalar and tensor perturbations, and the corresponding Mukhanov-Sasaki equations. For scalar perturbations, our equation only differs from the one obtained by holonomy corrections in the velocity of sound, leading both formulations, essentially to the same scale invariant power spectrum when a matter-dominated universe is considered. However for tensor pe...

  12. Cosmological perturbations without inflation

    Science.gov (United States)

    Melia, Fulvio

    2017-01-01

    A particularly attractive feature of inflation is that quantum fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic microwave background (CMB) and the formation of large-scale structure. In this paper, we demonstrate that a scalar field with zero active mass, i.e. with an equation of state ρ +3p=0 , where ρ and p are its energy density and pressure, respectively, could also have produced an essentially scale-free fluctuation spectrum, though without inflation. This alternative mechanism is based on the Hollands–Wald concept of a minimum wavelength for the emergence of quantum fluctuations into the semi-classical universe. A cosmology with zero active mass does not have a horizon problem, so it does not need inflation to solve this particular (non) issue. In this picture, the {{1}\\circ}{ {--}}{{10}\\circ} fluctuations in the CMB correspond almost exactly to the Planck length at the Planck time, firmly supporting the view that CMB observations may already be probing trans-Planckian physics.

  13. Cosmological Perturbations without Inflation

    CERN Document Server

    Melia, Fulvio

    2016-01-01

    A particularly attractive feature of inflation is that quantum fluctuations in the inflaton field may have seeded inhomogeneities in the cosmic microwave background (CMB) and the formation of large-scale structure. In this paper, we demonstrate that a scalar field with zero active mass, i.e., with an equation of state rho+3p=0, where rho and p are its energy density and pressure, respectively, could also have produced an essentially scale-free fluctuation spectrum, though without inflation. This alternative mechanism is based on the Hollands-Wald concept of a minimum wavelength for the emergence of quantum fluctuations into the semi-classical universe. A cosmology with zero active mass does not have a horizon problem, so it does not need inflation to solve this particular (non) issue. In this picture, the 1-10 degree fluctuations in the CMB correspond almost exactly to the Planck length at the time these modes were produced, firmly supporting the view that CMB observations may already be probing trans-Plancki...

  14. Cosmological perturbations from an inhomogeneous phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Tomohiro, E-mail: matsuda@sit.ac.j [Laboratory of Physics, Saitama Institute of Technology, Fusaiji, Okabe-machi, Saitama 369-0293 (Japan)

    2009-07-21

    A mechanism for generating metric perturbations in inflationary models is considered. Long-wavelength inhomogeneities of light scalar fields in a decoupled sector may give rise to superhorizon fluctuations of couplings and masses in the low-energy effective action. Cosmological phase transitions may then occur that are not simultaneous in space, but occur with time lags in different Hubble patches that arise from the long-wavelength inhomogeneities. Here an interesting model in which cosmological perturbations may be created at the electroweak phase transition is considered. The results show that phase transitions may be a generic source of non-Gaussianity.

  15. Exploring Bouncing Cosmologies with Cosmological Surveys

    CERN Document Server

    Cai, Yi-Fu

    2014-01-01

    In light of the recent observational data coming from the sky we have two significant directions in the field of theoretical cosmology recently. First, we are now able to make use of present observations, such as the Planck and BICEP2 data, to examine theoretical predictions from the standard inflationary $\\Lambda$CDM which were made decades of years ago. Second, we can search for new cosmological signatures as a way to explore physics beyond the standard cosmic paradigm. In particular, a subset of early universe models admit a nonsingular bouncing solution that attempts to address the issue of the big bang singularity. These models have achieved a series of considerable developments in recent years, in particular in their perturbative frameworks, which made brand-new predictions of cosmological signatures that could be visible in current and forthcoming observations. In this article we present two representative paradigms of very early universe physics. The first is the so-called new matter (or matter-ekpyro...

  16. BOOK REVIEW: Observational Cosmology Observational Cosmology

    Science.gov (United States)

    Howell, Dale Andrew

    2013-04-01

    Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations

  17. Managing ambiguity in reference generation: the role of surface structure.

    Science.gov (United States)

    Khan, Imtiaz H; van Deemter, Kees; Ritchie, Graeme

    2012-04-01

    This article explores the role of surface ambiguities in referring expressions, and how the risk of such ambiguities should be taken into account by an algorithm that generates referring expressions, if these expressions are to be optimally effective for a hearer. We focus on the ambiguities that arise when adjectives occur in coordinated structures. The central idea is to use statistical information about lexical co-occurrence to estimate which interpretation of a phrase is most likely for human readers, and to avoid generating phrases where misunderstandings are likely. Various aspects of the problem were explored in three experiments in which responses by human participants provided evidence about which reading was most likely for certain phrases, which phrases were deemed most suitable for particular referents, and the speed at which various phrases were read. We found a preference for ''clear'' expressions to ''unclear'' ones, but if several of the expressions are ''clear,'' then brief expressions are preferred over non-brief ones even though the brief ones are syntactically ambiguous and the non-brief ones are not; the notion of clarity was made precise using Kilgarriff's Word Sketches. We outline an implemented algorithm that generates noun phrases conforming to our hypotheses.

  18. Gravitation and cosmology with York time

    CERN Document Server

    Roser, Philipp

    2016-01-01

    [Shortened abstract:] In this thesis we investigate a solution to the `problem of time' in canonical quantum gravity by splitting spacetime into surfaces of constant mean curvature parameterised by York time. We argue that there are reasons to consider York time a viable candidate for a physically meaningful notion of time. We investigate a number York-time Hamiltonian-reduced cosmological models and explore some technical aspects, such as the non-canonical Poisson structure. We develop York-time Hamiltonian-reduced cosmological perturbation theory by solving the Hamiltonian constraint perturbatively around a homogeneous background for the physical (non-vanishing) Hamiltonian that is the momentum conjugate to the York time parameter. We proceed to canonically quantise the cosmological models and the perturbation theory and discuss a number of conceptual and technical points, such as volume eigenfunctions and the absence of a momentum representation due to the non-standard commutator structure. We propose an a...

  19. The cosmological principle is not in the sky

    Science.gov (United States)

    Park, Chan-Gyung; Hyun, Hwasu; Noh, Hyerim; Hwang, Jai-chan

    2017-08-01

    The homogeneity of matter distribution at large scales, known as the cosmological principle, is a central assumption in the standard cosmological model. The case is testable though, thus no longer needs to be a principle. Here we perform a test for spatial homogeneity using the Sloan Digital Sky Survey Luminous Red Galaxies (LRG) sample by counting galaxies within a specified volume with the radius scale varying up to 300 h-1 Mpc. We directly confront the large-scale structure data with the definition of spatial homogeneity by comparing the averages and dispersions of galaxy number counts with allowed ranges of the random distribution with homogeneity. The LRG sample shows significantly larger dispersions of number counts than the random catalogues up to 300 h-1 Mpc scale, and even the average is located far outside the range allowed in the random distribution; the deviations are statistically impossible to be realized in the random distribution. This implies that the cosmological principle does not hold even at such large scales. The same analysis of mock galaxies derived from the N-body simulation, however, suggests that the LRG sample is consistent with the current paradigm of cosmology, thus the simulation is also not homogeneous in that scale. We conclude that the cosmological principle is neither in the observed sky nor demanded to be there by the standard cosmological world model. This reveals the nature of the cosmological principle adopted in the modern cosmology paradigm, and opens a new field of research in theoretical cosmology.

  20. Introduction to particle cosmology the standard model of cosmology and its open problems

    CERN Document Server

    Bambi, Cosimo

    2016-01-01

    This book introduces the basic concepts of particle cosmology and covers all the main aspects of the Big Bang Model (expansion of the Universe, Big Bang Nucleosynthesis, Cosmic Microwave Background, large scale structures) and the search for new physics (inflation, baryogenesis, dark matter, dark energy). It also includes the majority of recent discoveries, such as the precise determination of cosmological parameters using experiments like WMAP and Planck, the discovery of the Higgs boson at LHC, the non-discovery to date of supersymmetric particles, and the search for the imprint of gravitational waves on the CMB polarization by Planck and BICEP.   This textbook is based on the authors’ courses on Cosmology, and aims at introducing Particle Cosmology to senior undergraduate and graduate students. It has been especially written to be accessible even for those students who do not have a strong background in General Relativity and quantum field theory. The content of this book is organized in an easy-to-use ...

  1. School on Particle Physics, Gravity and Cosmology

    Science.gov (United States)

    Brandenberger, Robert

    These lectures present a brief review of inflationary cosmology, provide an overview of the theory of cosmological perturbations, and then focus on the conceptual problems of the current paradigm of early universe cosmology, thus motivating an exploration of the potential of string theory to provide a new paradigm. Specifically, the string gas cosmology model is introduced, and a resulting mechanism for structure formation which does not require a period of cosmological inflation is discussed. The School consisted of level-up courses intended for PhD students, as well as updating courses for postdocs and researchers. In addition, a few propaedeutical crash courses were organized to bridge the gaps in the attendance and to facilitate an active participation. The courses were held mostly on the blackboard. The audience was assumed to have at least a PhD student level either in phenomenological particle theory, in astroparticle physics or in field and string theory. One of the aims of the School was to bring together researchers of these different areas and to update them on one another's discipline. The School was divided in two workshops: Interface between Cosmology and Particle Physics Courses: W. GRIMUS and S. PETCOV: Neutrino Phenomenology A. MASIERO and F. FERUGLIO: Beyond the Standard Model P. ULLIO: Introduction to Dark Matter N. BILIC: Black holes phenomenology 2) Particle Physics, Gravity and String Theory Courses: R. BRANDENBERGER: Topics in Cosmology J. ZANELLI: Black holes physics C. NUNEZ: StringsGauge Correspondence A. JEVICKI: AdS/CFT G. DALL'AGATA: String vacua and moduli stabilization C. BURGESS: Cosmology and Strings G. CARDOSO: Black Holes and String Theory Seminars were held during the School: Seminars: D. DENEGRI: New physics at LHC D. WARK: Neutrino Experiments C. BACCIGALUPI: Review on Cosmological Experiments A. MUELLER: Experimental evidence of Black Holes S. LIBERATI: Astrophysical constraints on Lorentz violation In addition the following

  2. Conformal symmetries of FRW accelerating cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Department of Theoretical Physics and Center for Astroparticle Physics (CAP) 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Riotto, A. [Department of Theoretical Physics and Center for Astroparticle Physics (CAP) 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2014-07-15

    We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage.

  3. Quantum cosmological consistency condition for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Calcagni, Gianluca [Instituto de Estructura de la Materia, CSIC, calle Serrano 121, 28006 Madrid (Spain); Kiefer, Claus [Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln (Germany); Steinwachs, Christian F., E-mail: calcagni@iem.cfmac.csic.es, E-mail: kiefer@thp.uni-koeln.de, E-mail: christian.steinwachs@physik.uni-freiburg.de [Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany)

    2014-10-01

    We investigate the quantum cosmological tunneling scenario for inflationary models. Within a path-integral approach, we derive the corresponding tunneling probability distribution. A sharp peak in this distribution can be interpreted as the initial condition for inflation and therefore as a quantum cosmological prediction for its energy scale. This energy scale is also a genuine prediction of any inflationary model by itself, as the primordial gravitons generated during inflation leave their imprint in the B-polarization of the cosmic microwave background. In this way, one can derive a consistency condition for inflationary models that guarantees compatibility with a tunneling origin and can lead to a testable quantum cosmological prediction. The general method is demonstrated explicitly for the model of natural inflation.

  4. Quantum cosmological consistency condition for inflation

    CERN Document Server

    Calcagni, Gianluca; Steinwachs, Christian F

    2014-01-01

    We investigate the quantum cosmological tunneling scenario for inflationary models. Within a path-integral approach, we derive the corresponding tunneling probability distribution. A sharp peak in this distribution can be interpreted as the initial condition for inflation and therefore as a quantum cosmological prediction for its energy scale. This energy scale is also a genuine prediction of any inflationary model by itself, as the primordial gravitons generated during inflation leave their imprint in the B-polarization of the cosmic microwave background. In this way, one can derive a consistency condition for inflationary models that guarantees compatibility with a tunneling origin and can lead to a testable quantum cosmological prediction. The general method is demonstrated explicitly for the model of natural inflation.

  5. Modern Cosmology: Assumptions and Limits

    Science.gov (United States)

    Hwang, Jai-Chan

    2012-06-01

    Physical cosmology tries to understand the Universe at large with its origin and evolution. Observational and experimental situations in cosmology do not allow us to proceed purely based on the empirical means. We examine in which sense our cosmological assumptions in fact have shaped our current cosmological worldview with consequent inevitable limits. Cosmology, as other branches of science and knowledge, is a construct of human imagination reflecting the popular belief system of the era. The question at issue deserves further philosophic discussions. In Whitehead's words, ``philosophy, in one of its functions, is the critic of cosmologies.'' (Whitehead 1925).

  6. Modern Cosmology: Assumptions and Limits

    CERN Document Server

    Hwang, Jai-chan

    2012-01-01

    Physical cosmology tries to understand the Universe at large with its origin and evolution. Observational and experimental situations in cosmology do not allow us to proceed purely based on the empirical means. We examine in which sense our cosmological assumptions in fact have shaped our current cosmological worldview with consequent inevitable limits. Cosmology, as other branches of science and knowledge, is a construct of human imagination reflecting the popular belief system of the era. The question at issue deserves further philosophic discussions. In Whitehead's words, "philosophy, in one of its functions, is the critic of cosmologies". (Whitehead 1925)

  7. Generations.

    Science.gov (United States)

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  8. Loop quantum cosmology: Recent progress

    Indian Academy of Sciences (India)

    Martin Bojowald

    2004-10-01

    Aspects of the full theory of loop quantum gravity can be studied in a simpler context by reducing to symmetric models like cosmological ones. This leads to several applications where loop effects play a significant role when one is sensitive to the quantum regime. As a consequence, the structure of and the approach to classical singularities are very different from general relativity. The quantum theory is free of singularities, and there are new phenomenological scenarios for the evolution of the very early universe such as inflation. We give an overview of the main effects, focussing on recent results obtained by different groups.

  9. Cosmology and astrophysics from relaxed galaxy clusters - II. Cosmological constraints

    Science.gov (United States)

    Mantz, A. B.; Allen, S. W.; Morris, R. G.; Rapetti, D. A.; Applegate, D. E.; Kelly, P. L.; von der Linden, A.; Schmidt, R. W.

    2014-05-01

    This is the second in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. The data set employed here consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive for hot (kT ≳ 5 keV), massive, morphologically relaxed systems, as well as high-quality weak gravitational lensing data for a subset of these clusters. Here we present cosmological constraints from measurements of the gas mass fraction, fgas, for this cluster sample. By incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, we significantly reduce systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in fgas, 7.4 ± 2.3 per cent in a spherical shell at radii 0.8-1.2 r2500 (˜1/4 of the virial radius), consistent with the expected level of variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest redshift data in our sample, five clusters at z 1, we obtain consistent results for Ωm and interesting constraints on dark energy: Ω _{{Λ }}=0.65^{+0.17}_{-0.22}> for non-flat ΛCDM (cosmological constant) models, and w = -0.98 ± 0.26 for flat models with a constant dark energy equation of state. Our results are both competitive and consistent with those from recent cosmic microwave background, Type Ia supernova and baryon acoustic oscillation data. We present constraints on more complex models of evolving dark energy from the combination of fgas data with these external data sets, and comment on the possibilities for improved fgas constraints using current and next-generation X-ray observatories and lensing data.

  10. Sandwich-structured hollow fiber membranes for osmotic power generation

    KAUST Repository

    Fu, Feng Jiang

    2015-11-01

    In this work, a novel sandwich-structured hollow fiber membrane has been developed via a specially designed spinneret and optimized spinning conditions. With this specially designed spinneret, the outer layer, which is the most crucial part of the sandwich-structured membrane, is maintained the same as the traditional dual-layer membrane. The inner substrate layer is separated into two layers: (1) an ultra-thin middle layer comprising a high molecular weight polyvinylpyrrolidone (PVP) additive to enhance integration with the outer polybenzimidazole (PBI) selective layer, and (2) an inner-layer to provide strong mechanical strength for the membrane. Experimental results show that a high water permeability and good mechanical strength could be achieved without the expensive post treatment process to remove PVP which was necessary for the dual-layer pressure retarded osmosis (PRO) membranes. By optimizing the composition, the membrane shows a maximum power density of 6.23W/m2 at a hydraulic pressure of 22.0bar when 1M NaCl and 10mM NaCl are used as the draw and feed solutions, respectively. To our best knowledge, this is the best phase inversion hollow fiber membrane with an outer selective PBI layer for osmotic power generation. In addition, this is the first work that shows how to fabricate sandwich-structured hollow fiber membranes for various applications. © 2015 Elsevier B.V.

  11. Analysis of the control structure of wind energy generation systems based on a permanent magnet synchronous generator

    OpenAIRE

    Carranza Castillo, Oscar; Figueres Amorós, Emilio; Garcerá Sanfeliú, Gabriel; González Medina, Raul

    2013-01-01

    This paper presents the analysis of the two usual control structures for variable speed and fixed pitch wind energy generation systems, namely speed and torque control, to determine the most appropriate structure to improve both robustness and reliability of this kind of distributed generators. The study considers all the elements of a typical wind power generation system and it has been carried out in a general way, so that conclusions are independent of the kind of the AC/DC converter that ...

  12. Inhomogeneous anisotropic cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kleban, Matthew [Center for Cosmology and Particle Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University,382 Via Pueblo Mall, Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States)

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  13. Thermal Tachyacoustic Cosmology

    CERN Document Server

    Agarwal, Abhineet

    2014-01-01

    An intriguing possibility that can address pathologies in both early universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. non-renormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early universe is the Tachyacoustic (or Speedy Sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study Thermal Tachyacoustic Cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early universe, around the scale of Grand Unified Theories (GUT scale; $T\\sim 10^{15}$ GeV), during which the speed of sound drops by $25$ orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of ten...

  14. Thermal tachyacoustic cosmology

    Science.gov (United States)

    Agarwal, Abhineet; Afshordi, Niayesh

    2014-08-01

    An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).

  15. Conceptual Problems in Cosmology

    CERN Document Server

    Vieira, F J Amaral

    2011-01-01

    In this essay a critical review of present conceptual problems in current cosmology is provided from a more philosophical point of view. In essence, a digression on how could philosophy help cosmologists in what is strictly their fundamental endeavor is presented. We start by recalling some examples of enduring confrontations among philosophers and physicists on what could be contributed by the formers to the day-time striving of the second ones. Then, a short review of the standard model Friedmann-Lema\\^itre-Robertson-Walter (FLRW) of cosmology is given. It seems apparent that cosmology is living a golden age with the advent of observations of high precision. Nonetheless, a critical revisiting of the direction in which it should go on appears also needed, for misconcepts like "quantum backgrounds for cosmological classical settings" and "quantum gravity unification" have not been properly constructed up-to-date. Thus, knowledge-building in cosmology, more than in any other field, should begin with visions of...

  16. Inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kleban, Matthew; Senatore, Leonardo

    2016-10-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  17. ARBUS: A FORTRAN tool for generating tree structure diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Ferrero, C. [Kernforschungszentrum Karlsruhe GmbH (Germany). Hauptabteilung Ingenieurtechnik; Zanger, M.

    1992-02-01

    The FORTRAN77 stand-alone code ARBUS has been designed to aid the user by providing a tree structure diagram generating utility for computer programs written in FORTRAN language. This report is intended to describe the main purpose and features of ARBUS and to highlight some additional applications of the code by means of practical test cases. (orig.). [Deutsch] Das FORTRAN77-Rechenprogramm ARBUS wurde entwickelt, um dem Benutzer die graphische Darstellung des Aufrufbaumdiagramms bzw. der Aufrufstruktur der einzelnen Unterprogramme in einem beliebigen FORTRAN-Programm zu ermoeglichen. In diesem Bericht wird auf die Zielsetzung und die Hauptmerkmale von ARBUS eingegangen. Ausserdem werden einige Anwendungen des Codes anhand von praktischen Beispielen erlaeutert. (orig.).

  18. Rate Structures for Customers With Onsite Generation: Practice and Innovation

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, L.; Takahashi, K.; Weston, F.; Murray, C.

    2005-12-01

    Recognizing that innovation and good public policy do not always proclaim themselves, Synapse Energy Economics and the Regulatory Assistance Project, under a contract with the California Energy Commission (CEC) and the National Renewable Energy Laboratory (NREL), undertook a survey of state policies on rates for partial-requirements customers with onsite distributed generation. The survey investigated a dozen or so states. These varied in geography and the structures of their electric industries. By reviewing regulatory proceedings, tariffs, publications, and interviews, the researchers identified a number of approaches to standby and associated rates--many promising but some that are perhaps not--that deserve policymakers' attention if they are to promote the deployment of cost-effective DG in their states.

  19. Generative Benchmark Models for Mesoscale Structures in Multilayer Networks

    CERN Document Server

    Bazzi, Marya; Arenas, Alex; Howison, Sam D; Porter, Mason A

    2016-01-01

    Multilayer networks allow one to represent diverse and interdependent connectivity patterns --- e.g., time-dependence, multiple subsystems, or both --- that arise in many applications and which are difficult or awkward to incorporate into standard network representations. In the study of multilayer networks, it is important to investigate "mesoscale" (i.e., intermediate-scale) structures, such as dense sets of nodes known as "communities" that are connected sparsely to each other, to discover network features that are not apparent at the microscale or the macroscale. A variety of methods and algorithms are available to identify communities in multilayer networks, but they differ in their definitions and/or assumptions of what constitutes a community, and many scalable algorithms provide approximate solutions with little or no theoretical guarantee on the quality of their approximations. Consequently, it is crucial to develop generative models of networks to use as a common test of community-detection tools. I...

  20. Brane-world cosmology with black strings

    Science.gov (United States)

    Gergely, László Á.

    2006-07-01

    We consider the simplest scenario when black strings/cigars penetrate the cosmological brane. As a result, the brane has a Swiss-cheese structure, with Schwarzschild black holes immersed in a Friedmann-Lemaître-Robertson-Walker brane. There is no dark radiation in the model, the cosmological regions of the brane are characterized by a cosmological constant Λ and flat spatial sections. Regardless of the value of Λ, these brane-world universes forever expand and forever decelerate. The totality of source terms in the modified Einstein equation sum up to a dust, establishing a formal equivalence with the general relativistic Einstein-Straus model. However in this brane-world scenario with black strings the evolution of the cosmological fluid strongly depends on Λ. For Λ≤0 it has positive energy density ρ and negative pressure p and at late times it behaves as in the Einstein-Straus model. For (not too high) positive values of Λ the cosmological evolution begins with positive ρ and negative p, but this is followed by an epoch with both ρ and p positive. Eventually, ρ becomes negative, while p stays positive. A similar evolution is present for high positive values of Λ, however in this case the evolution ends in a pressure singularity, accompanied by a regular behavior of the cosmic acceleration. This is a novel type of singularity appearing in brane-worlds.

  1. Axions : Theory and Cosmological Role

    OpenAIRE

    Kawasaki, Masahiro; Nakayama, Kazunori

    2013-01-01

    We review recent developments on axion cosmology. Topics include : axion cold dark matter, axions from topological defects, axion isocurvature perturbation and its non-Gaussianity and axino/saxion cosmology in supersymmetric axion model.

  2. Precise limits on cosmological variability of the fine-structure constant with zinc and chromium quasar absorption lines

    CERN Document Server

    Murphy, Michael T; Prochaska, J Xavier

    2016-01-01

    The strongest transitions of Zn and CrII are the most sensitive to relative variations in the fine-structure constant ($\\Delta\\alpha/\\alpha$) among the transitions commonly observed in quasar absorption spectra. They also lie within just 40 \\AA\\ of each other (rest frame), so they are resistant to the main systematic error affecting most previous measurements of $\\Delta\\alpha/\\alpha$: long-range distortions of the wavelength calibration. While Zn and CrII absorption is normally very weak in quasar spectra, we obtained high signal-to-noise, high-resolution echelle spectra from the Keck and Very Large Telescopes of 9 rare systems where it is strong enough to constrain $\\Delta\\alpha/\\alpha$ from these species alone. These provide 12 independent measurements (3 quasars were observed with both telescopes) at redshifts 1.0--2.4, 11 of which pass stringent reliability criteria. These 11 are all consistent with $\\Delta\\alpha/\\alpha=0$ within their individual uncertainties of 3.5--13 parts per million (ppm), with a we...

  3. Does cosmological expansion affect local physics?

    CERN Document Server

    Giulini, Domenico

    2013-01-01

    In this contribution I wish to address the question whether, and how, the global cosmological expansion influences local physics. I argue that a pseudo Newtonian picture can be quite accurate if ``expansion'' is taken to be an attribute of the inertial structure rather than of ``space'' in some substantivalist sense. This contradicts the often-heard suggestion to imagine cosmological expansion as that of ``space itself''. Regarding General Relativity, I emphasise the need for proper geometric characterisations in order to meaningfully compare localised systems in different spacetimes, like black holes in static and expanding environments. Examples of this sort are discussed in some detail to clearly map out the problems.

  4. Cosmology and the neutrino mass ordering

    DEFF Research Database (Denmark)

    Hannestad, Steen; Schwetz, Thomas

    2016-01-01

    We propose a simple method to quantify a possible exclusion of the inverted neutrino mass ordering from cosmological bounds on the sum of the neutrino masses. The method is based on Bayesian inference and allows for a calculation of the posterior odds of normal versus inverted ordering. We apply...... the method for a specific set of current data from Planck CMB data and large-scale structure surveys, providing an upper bound on the sum of neutrino masses of 0.14 eV at 95% CL. With this analysis we obtain posterior odds for normal versus inverted ordering of about 2:1. If cosmological data is combined...

  5. Radiation-dominated area metric cosmology

    CERN Document Server

    Schuller, Frederic P

    2007-01-01

    We provide further crucial support for a refined, area metric structure of spacetime. Based on the solution of conceptual issues, such as the consistent coupling of fermions and the covariant identification of radiation fields on area metric backgrounds, we show that the radiation-dominated epoch of area metric cosmology is equivalent to that epoch in standard Einstein cosmology. This ensures, in particular, successful nucleosynthesis. This surprising result complements the previously derived prediction of a small late-time acceleration of an area metric universe.

  6. Strongly Coupled Cosmologies

    CERN Document Server

    Bonometto, S A; Musco, I; Mainini, R; Maccio', A V

    2014-01-01

    Models including an energy transfer from CDM to DE are widely considered in the literature, namely to allow DE a significant high-z density. Strongly Coupled cosmologies assume a much larger coupling between DE and CDM, together with the presence of an uncoupled warm DM component, as the role of CDM is mostly restricted to radiative eras. This allows us to preserve small scale fluctuations even if the warm particle, possibly a sterile neutrino, is quite light, O(100 eV). Linear theory and numerical simulations show that these cosmologies agree with LCDM on supergalactic scales; e.g., CMB spectra are substantially identical. Simultaneously, simulations show that they significantly ease problems related to the properties of MW satellites and cores in dwarfs. SC cosmologies also open new perspectives on early black hole formation, and possibly lead towards unificating DE and inflationary scalar fields.

  7. The philosophy of cosmology

    CERN Document Server

    Silk, Joseph; Barrow, John D; Saunders, Simon

    2017-01-01

    Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.

  8. Cosmological Black Holes

    CERN Document Server

    Stornaiolo, C

    2002-01-01

    In this letter we propose the existence of low density black holes and discuss its compatibility with the cosmological observations. The origin of these black holes can be traced back to the collapse of long wavelength cosmological perturbations during the matter dominated era, when the densities are low enough to neglect any internal and thermal pressure. By introducing a threshold density $\\hat{\\rho}$ above which pressure and non-gravitational interactions become effective, we find the highest wavelength for the perturbations that can reach an equilibrium state instead of collapsing to a black hole. The low density black holes introduced here, if they exist, can be observed through weak and strong gravitational lensing effects. Finally we observe that we obtained here a cosmological model which is capable to explain in a qualitative way the void formation together with the value $\\Omega=1$. But we remark that it needs to be improved by considering non spherical symmetric black holes.

  9. Cosmological Perturbations in Antigravity

    CERN Document Server

    Oltean, Marius

    2014-01-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely-signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the Standard Model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically-complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity", during each successive transition from a Big Crunch to a Big Bang. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, its cosmological solutions are stable at the perturbative level.

  10. Time in quantum cosmology

    CERN Document Server

    Bojowald, Martin

    2016-01-01

    A cosmological model with two global internal times shows that time reparameterization invariance, and therefore covariance, is not guaranteed by deparameterization. In particular, it is impossible to derive proper-time effective equations from a single deparameterized model if quantum corrections from fluctuations and higher moments are included. The framework of effective constraints shows how proper-time evolution can consistently be defined in quantum cosmological systems, such that it is time reparameterization invariant when compared with other choices of coordinate time. At the same time, it allows transformations of moment corrections in different deparameterizations of the same model, indicating partial time reparameterization of internal-time evolution. However, in addition to corrections from moments such as quantum fluctuations, also factor ordering corrections may appear. The latter generically break covariance in internal-time formulations. Fluctuation effects in quantum cosmology are therefore ...

  11. Cosmology as Geodesic Motion

    CERN Document Server

    Townsend, P K; Townsend, Paul K.; Wohlfarth, Mattias N.R.

    2004-01-01

    For gravity coupled to N scalar fields with arbitrary potential V, it is shown that all flat (homogeneous and isotropic) cosmologies correspond to geodesics in an (N+1)-dimensional `extended target space' of Lorentzian signature (1,N), timelike if V>0 and spacelike if V<0. Accelerating cosmologies correspond to timelike geodesics that lie within an `acceleration subcone' of the `lightcone'. Non-flat (k=-1,+1) cosmologies are shown to evolve as projections of geodesic motion in a space of dimension N+2, of signature (1,N+1) for k=-1 and signature (2,N) for k=+1. We illustrate these results for various potentials of current interest, including exponential and inverse power potentials.

  12. General relativity and cosmology

    CERN Document Server

    Bucher, Martin

    2015-01-01

    This year marks the hundredth anniversary of Einstein's 1915 landmark paper "Die Feldgleichungen der Gravitation" in which the field equations of general relativity were correctly formulated for the first time, thus rendering general relativity a complete theory. Over the subsequent hundred years physicists and astronomers have struggled with uncovering the consequences and applications of these equations. This contribution, which was written as an introduction to six chapters dealing with the connection between general relativity and cosmology that will appear in the two-volume book "One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity," endeavors to provide a historical overview of the connection between general relativity and cosmology, two areas whose development has been closely intertwined.

  13. The strained state cosmology

    CERN Document Server

    Tartaglia, Angelo

    2015-01-01

    Starting from some relevant facts concerning the behaviour of the universe over large scale and time span, the analogy between the geometric approach of General Relativ- ity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time repro- duces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theor...

  14. Quantum Exclusion of Positive Cosmological Constant?

    CERN Document Server

    Dvali, Gia

    2014-01-01

    We show that a positive cosmological constant is incompatible with the quantum-corpuscular resolution of de Sitter metric in form of a coherent state. The reason is very general and is due to the quantum self-destruction of the coherent state because of the scattering of constituent graviton quanta. This process creates an irreversible quantum clock, which precludes eternal de Sitter. It also eliminates the possibility of Boltzmann brains and Poincare recurrences. This effect is expected to be part of any microscopic theory that takes into account the quantum corpuscular structure of the cosmological background. This observation puts the cosmological constant problem in a very different light, promoting it, from a naturalness problem, into a question of quantum consistency. We are learning that quantum gravity cannot tolerate exceedingly-classical sources.

  15. Cosmological parameters from lenses distance ratio

    CERN Document Server

    Cardone, Vincenzo F; Scudellaro, Paolo

    2015-01-01

    Strong lensing provides popular techniques to investigate the mass distribution of intermediate redshift galaxies, testing galaxy evolution and formation scenarios. It especially probes the background cosmic expansion, hence constraining cosmological parameters. The measurement of Einstein radii and central velocity dispersions indeed allows to trace the ratio D_s/D_ls between the distance D_s from the observer to the source and the distance D_ls from the lens to the source. We present an improved method to explicitly include the two - component structure in the galaxy lens modeling, in order to analyze the role played by the redshift and the model dependence on a nuisance parameter, F_E, which is usually marginalized in the cosmological applications. We show how to deal with these problems and carry on a Fisher matrix analysis to infer the accuracy on cosmological parameters achieved by this method.

  16. Eddington-Born-Infeld cosmology: a cosmographic approach, a tale of doomsdays and the fate of bound structures

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-Lopez, Mariam [Universidade da Beira Interior, Departamento de Fisica, Covilha (Portugal); Centro de Matematica e Aplicacoes da Universidade da Beira Interior (CMA-UBI), Covilha (Portugal); University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Chen, Che-Yu [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, Graduate Institute of Astrophysics, Taipei (China); Chen, Pisin [National Taiwan University, Department of Physics, Taipei (China); National Taiwan University, LeCosPA, Taipei (China); National Taiwan University, Graduate Institute of Astrophysics, Taipei (China); Stanford University, SLAC National Accelerator Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA (United States)

    2015-02-01

    The Eddington-inspired-Born-Infeld scenario (EiBI) can prevent the big bang singularity for a matter content whose equation of state is constant and positive. In a recent paper [Bouhmadi-Lopez et al. (Eur. Phys. J. C 74:2802, 2014)] we showed that, on the contrary, it is impossible to smooth a big rip in the EiBI setup. In fact the situations are still different for other singularities. In this paper we show that a big freeze singularity in GR can in some cases be smoothed to a sudden or a type IV singularity under the EiBI scenario. Similarly, a sudden or a type IV singularity in GR can be replaced in some regions of the parameter space by a type IV singularity or a loitering behaviour, respectively, in the EiBI framework. Furthermore, we find that the auxiliary metric related to the physical connection usually has a smoother behaviour than that based on the physical metric. In addition, we show that bound structures close to a big rip or a little rip will be destroyed before the advent of the singularity and will remain bound close to a sudden, big freeze or type IV singularity. We then constrain the model following a cosmographic approach, which is well known to be model independent, for a given Friedmann-Lemaitre-Robertson-Walker geometry. It turns out that among the various past or present singularities, the cosmographic analysis can pick up the physical region that determines the occurrence of a type IV singularity or a loitering effect in the past. Moreover, to determine which of the future singularities or doomsdays is more probable, observational constraints on the higher-order cosmographic parameters are required. (orig.)

  17. Cosmological Reflection of Particle Symmetry

    OpenAIRE

    Maxim Khlopov

    2016-01-01

    The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetr...

  18. Brane cosmology in teleparallel gravity

    CERN Document Server

    Atazadeh, K

    2014-01-01

    We consider cosmology of brane-world scenario in the frame work of teleparallel gravity in that way matter is localized on the brane. We show that the cosmology of such branes is different from the standard cosmology in teleparallelism. In particular, we obtain a class of new solutions with a constant five-dimensional radius and cosmologically evolving brane in the context of constant torsion $f(T)$ gravity.

  19. First ICTP Advanced School on Cosmology

    CERN Document Server

    2015-01-01

    The purpose of the School is to present in a pedagogical way some current themes of research in cosmology, including the search for inflationary B-modes and various aspects of the Large Scale Structure. It is intended for advanced graduate students, as well as more Senior Researchers.

  20. Remarks on the Theory of Cosmological Perturbation

    Institute of Scientific and Technical Information of China (English)

    林文斌

    2001-01-01

    It is shown that the power spectrum defined in the synchronous gauge cannot be directly used to calculate the predictions of cosmological models on the large-scale structure of the Universe, which should be calculated directly by a suitable gauge-invariant power spectrum or the power spectrum defined in the Newtonian gauge.

  1. Discrete Higgs and the Cosmological Constant

    CERN Document Server

    Amore, Paolo; Diaz-Cruz, J Lorenzo

    2008-01-01

    It is proposed that the Higgs vacuum possesses a small-scale structure that can explain the large discrepancy between the predicted electroweak vacuum energy density and the observed cosmological constant. An effective Lagrangian description is employed to obtain modifications to the Standard Model predictions that can be tested at collider experiments.

  2. Scale invariant density perturbations from cyclic cosmology

    Science.gov (United States)

    Frampton, Paul Howard

    2016-04-01

    It is shown how quantum fluctuations of the radiation during the contraction era of a comes back empty (CBE) cyclic cosmology can provide density fluctuations which re-enter the horizon during the subsequent expansion era and at lowest order are scale invariant, in a Harrison-Zel’dovich-Peebles sense. It is necessary to be consistent with observations of large scale structure.

  3. Entropy and cosmology.

    Science.gov (United States)

    Zucker, M. H.

    This paper is a critical analysis and reassessment of entropic functioning as it applies to the question of whether the ultimate fate of the universe will be determined in the future to be "open" (expanding forever to expire in a big chill), "closed" (collapsing to a big crunch), or "flat" (balanced forever between the two). The second law of thermodynamics declares that entropy can only increase and that this principle extends, inevitably, to the universe as a whole. This paper takes the position that this extension is an unwarranted projection based neither on experience nonfact - an extrapolation that ignores the powerful effect of a gravitational force acting within a closed system. Since it was originally presented by Clausius, the thermodynamic concept of entropy has been redefined in terms of "order" and "disorder" - order being equated with a low degree of entropy and disorder with a high degree. This revised terminology more subjective than precise, has generated considerable confusion in cosmology in several critical instances. For example - the chaotic fireball of the big bang, interpreted by Stephen Hawking as a state of disorder (high entropy), is infinitely hot and, thermally, represents zero entropy (order). Hawking, apparently focusing on the disorderly "chaotic" aspect, equated it with a high degree of entropy - overlooking the fact that the universe is a thermodynamic system and that the key factor in evaluating the big-bang phenomenon is the infinitely high temperature at the early universe, which can only be equated with zero entropy. This analysis resolves this confusion and reestablishes entropy as a cosmological function integrally linked to temperature. The paper goes on to show that, while all subsystems contained within the universe require external sources of energization to have their temperatures raised, this requirement does not apply to the universe as a whole. The universe is the only system that, by itself can raise its own

  4. Relativistic Cosmology Revisited

    Directory of Open Access Journals (Sweden)

    Crothers S. J.

    2007-04-01

    Full Text Available In a previous paper the writer treated of particular classes of cosmological solutions for certain Einstein spaces and claimed that no such solutions exist in relation thereto. In that paper the assumption that the proper radius is zero when the line-element is singular was generally applied. This general assumption is unjustified and must be dropped. Consequently, solutions do exist in relation to the aforementioned types, and are explored herein. The concept of the Big Bang cosmology is found to be inconsistent with General Relativity

  5. Fluids in cosmology

    CERN Document Server

    Cervantes-Cota, Jorge L

    2014-01-01

    We review the role of fluids in cosmology by first introducing them in General Relativity and then applied to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.

  6. Horizons of cosmology

    CERN Document Server

    Silk, Joseph

    2011-01-01

    Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p

  7. The Cosmological Mass Function

    CERN Document Server

    Monaco, P

    1997-01-01

    This thesis aims to review the cosmological mass function problem, both from the theoretical and the observational point of view, and to present a new mass function theory, based on realistic approximations for the dynamics of gravitational collapse. Chapter 1 gives a general introduction on gravitational dynamics in cosmological models. Chapter 2 gives a complete review of the mass function theory. Chapters 3 and 4 present the ``dynamical'' mass function theory, based on truncated Lagrangian dynamics and on the excursion set approach. Chapter 5 reviews the observational state-of-the-art and the main applications of the mass function theories described before. Finally, Chapter 6 gives conclusions and future prospects.

  8. Advances in modern cosmology

    CERN Document Server

    2011-01-01

    The twentieth century elevated our understanding of the Universe from its early stages to what it is today and what is to become of it. Cosmology is the weapon that utilizes all the scientific tools that we have created to feel less lost in the immensity of our Universe. The standard model is the theory that explains the best what we observe. Even with all the successes that this theory had, two main questions are still to be answered: What is the nature of dark matter and dark energy? This book attempts to understand these questions while giving some of the most promising advances in modern cosmology.

  9. Adventures in cosmology

    CERN Document Server

    2012-01-01

    This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.

  10. On the structure of finitely generated shift-invariant subspaces

    OpenAIRE

    Kazarian, K. S.

    2016-01-01

    A characterization of finitely generated shift-invariant subspaces is given when generators are g-minimal. An algorithm is given for the determination of the coefficients in the well known representation of the Fourier transform of an element of the finitely generated shift-invariant subspace as a linear combination of Fourier transformations of generators. An estimate for the norms of those coefficients is derived. For the proof a sort of orthogonalization procedure for generators is used wh...

  11. Cosmological constraints on a classical limit of quantum gravity

    CERN Document Server

    Easson, D A; Trodden, M; Wohlfarth, M N R; Easson, Damien A.; Schuller, Frederic P.; Trodden, Mark; Wohlfarth, Mattias N.R.

    2005-01-01

    We investigate the cosmology of a recently proposed deformation of Einstein gravity, emerging from quantum gravity heuristics. The theory is constructed to have de Sitter space as a vacuum solution, and thus to be relevant to the accelerating universe. However, this solution turns out to be unstable, and the true phase space of cosmological solutions is significantly more complex, displaying two late-time power-law attractors -- one accelerating and the other dramatically decelerating. It is also shown that non-accelerating cosmologies sit on a separatrix between the two basins of attraction of these attractors. Hence it is impossible to pass from a decelerating cosmology to an accelerating one, as required in standard cosmology for consistency with nucleosynthesis and structure formation and compatibility with the data inferred from supernovae Ia. We point out that alternative models of the early universe, such as the one investigated here might provide possible ways to circumvent these requirements.

  12. Testing cosmological models with the Integrated Sachs-Wolfe effect

    Energy Technology Data Exchange (ETDEWEB)

    Raccanelli, Alvise, E-mail: alvise.raccanelli@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom)

    2011-02-01

    The cross correlation between the Cosmic Microwave Background and the Large Scale Structure of the Universe is a powerful probe to test our cosmological models. This correlation can be used to detect the Integrated Sachs-Wolfe effect, and it depends on both the geometry of the Universe and the properties of the clustering and evolution of structures; for this reason it can be used to test and constrain cosmological models and parameters as well as theories of gravity. In this proceeding we briefly introduce the ISW effect and present some of the recent cosmological tests done using it.

  13. Meteoritics and cosmology among the Aboriginal cultures of Central Australia

    CERN Document Server

    Hamacher, Duane W

    2011-01-01

    The night sky played an important role in the social structure, oral traditions, and cosmology of the Arrernte and Luritja Aboriginal cultures of Central Australia. A component of this cosmology relates to meteors, meteorites, and impact craters. This paper discusses the role of meteoritic phenomena in Arrernte and Luritja cosmology, showing not only that these groups incorporated this phenomenon in their cultural traditions, but that their oral traditions regarding the relationship between meteors, meteorites and impact structures suggests the Arrernte and Luritja understood that they are directly related.

  14. Quantum cosmological metroland model

    NARCIS (Netherlands)

    Anderson, E.; Franzen, A.T.

    2010-01-01

    Relational particle mechanics is useful for modelling whole-universe issues such as quantum cosmology or the problem of time in quantum gravity, including some aspects outside the reach of comparably complex mini-superspace models. In this paper, we consider the mechanics of pure shape and not scale

  15. Cosmological dynamical systems

    CERN Document Server

    Leon, Genly

    2014-01-01

    In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...

  16. Relativistic cosmology; Cosmologia Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Bastero-Gil, M.

    2015-07-01

    Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)

  17. Cosmology and the Bispectrum

    Energy Technology Data Exchange (ETDEWEB)

    Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York

    2006-04-01

    The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.

  18. Notes on Hadza cosmology

    DEFF Research Database (Denmark)

    Skaanes, Thea

    2015-01-01

    Abstract: This article concerns Hadza cosmology examined through objects, rituals and the Hadza concept of epeme. A brief background to the Hadza and the eldwork that informs this study is followed by a close analysis of three key objects that are central to the argument presented. The objects ar...

  19. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    B B Bhowmik; A Rajput

    2004-06-01

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  20. Some epistemic questions of cosmology

    CERN Document Server

    Grujic, Petar V

    2007-01-01

    We discuss a number of fundamental aspects of modern cosmological concepts, from the phenomenological, observational, theoretical and epistemic points of view. We argue that the modern cosmology, despite a great advent, in particular in the observational sector, is yet to solve important problems, posed already by the classical times. In particular the stress is put on discerning the scientific features of modern cosmological paradigms from the more speculative ones, with the latter immersed in some aspects deeply into mythological world picture. We finally discuss the principal paradigms, which are present in the modern cosmological studies and evaluate their epistemic merits. KEY WORDS: cosmology, epistemology, methodology, mythology, philosophy of science

  1. Constraints on the Cosmological Parameters using CMB observations

    OpenAIRE

    Rocha, Graca

    1999-01-01

    This paper covers several techniques of intercomparison of Cosmic Microwave Background (CMB) anisotropy experiments and models of structure formation. It presents the constraints on several cosmological parameters using current CMB observations.

  2. PRESAGE: Protecting Structured Address Generation against Soft Errors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Vishal C.; Gopalakrishnan, Ganesh; Krishnamoorthy, Sriram

    2016-12-28

    Modern computer scaling trends in pursuit of larger component counts and power efficiency have, unfortunately, lead to less reliable hardware and consequently soft errors escaping into application data ("silent data corruptions"). Techniques to enhance system resilience hinge on the availability of efficient error detectors that have high detection rates, low false positive rates, and lower computational overhead. Unfortunately, efficient detectors to detect faults during address generation have not been widely researched (especially in the context of indexing large arrays). We present a novel lightweight compiler-driven technique called PRESAGE for detecting bit-flips affecting structured address computations. A key insight underlying PRESAGE is that any address computation scheme that propagates an already incurred error is better than a scheme that corrupts one particular array access but otherwise (falsely) appears to compute perfectly. Ensuring the propagation of errors allows one to place detectors at loop exit points and helps turn silent corruptions into easily detectable error situations. Our experiments using the PolyBench benchmark suite indicate that PRESAGE-based error detectors have a high error-detection rate while incurring low overheads.

  3. A model for self-tuning the cosmological constant

    CERN Document Server

    Kim, J E; Lee, H M; Kim, Jihn E.; Kyae, Bumseok; Lee, Hyun Min

    2001-01-01

    The vanishing cosmological constant in the four dimensional space-time is obtained in a 5D Randall-Sundrum model with a brane (B1) located at $y=0$. The matter fields can be located at the brane. For settling any vacuum energy generated at the brane to zero, we need a three index antisymmetric tensor field $A_{MNP}$ with a specific form for the Lagrangian. For the self-tuning mechanism, the bulk cosmological constant should be negative.

  4. A critical review of classical bouncing cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Battefeld, Diana, E-mail: dbattefe@astro.physik.uni-goettingen.de [Institut for Astrophysics, University of Goettingen, Friedrich-Hund Platz 1, D-37077 (Germany); Peter, Patrick, E-mail: peter@iap.fr [Institut d’Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98 bis boulevard Arago, 75014 Paris (France)

    2015-04-01

    Given the proliferation of bouncing models in recent years, we gather and critically assess these proposals in a comprehensive review. The PLANCK data shows an unmistakably red, quasi scale-invariant, purely adiabatic primordial power spectrum and no primary non-Gaussianities. While these observations are consistent with inflationary predictions, bouncing cosmologies aspire to provide an alternative framework to explain them. Such models face many problems, both of the purely theoretical kind, such as the necessity of violating the NEC and instabilities, and at the cosmological application level, as exemplified by the possible presence of shear. We provide a pedagogical introduction to these problems and also assess the fitness of different proposals with respect to the data. For example, many models predict a slightly blue spectrum and must be fine-tuned to generate a red spectral index; as a side effect, large non-Gaussianities often result. We highlight several promising attempts to violate the NEC without introducing dangerous instabilities at the classical and/or quantum level. If primordial gravitational waves are observed, certain bouncing cosmologies, such as the cyclic scenario, are in trouble, while others remain valid. We conclude that, while most bouncing cosmologies are far from providing an alternative to the inflationary paradigm, a handful of interesting proposals have surfaced, which warrant further research. The constraints and lessons learned as laid out in this review might guide future research.

  5. Multiverses and Cosmology: Philosophical Issues

    CERN Document Server

    Stöger, W R; Kirchner, U

    2004-01-01

    The idea of a multiverse -- an ensemble of universes or universe domains -- has received increasing attention in cosmology, both as the outcome of the originating process that generated our own universe, and as an explanation for why our universe appears to be fine-tuned for life and consciousness. Here we carefully consider how multiverses should be defined, stressing the distinction between the collection of all possible universes, and ensembles of really existing universes, which are essential for an anthropic argument. We show that such realised multiverses are by no means unique, and in general require the existence of a well-defined and physically motivated distribution function on the space of all possible universes. Furthermore, a proper measure on these spaces is also needed, so that probabilities can be calculated. We then discuss several other major physical and philosophical problems which arise in the context of ensembles of universes, including the emergence and causal effectiveness of self-cons...

  6. Cosmological Origami: Properties of Cosmic-Web Components When a Non-Stretchy Dark-Matter Sheet Folds

    CERN Document Server

    Neyrinck, Mark C

    2014-01-01

    In the current cosmological paradigm, an initially flat three-dimensional manifold that pervades space (the `dark-matter sheet') folds up to build concentrations of mass (galaxies), and a cosmic web between them. Galaxies are nodes, connected by a network of filaments and walls. The folding is in six-dimensional (3D position, plus 3D velocity) phase space. The positions of creases, or caustics, mark the edges of structures. Here, I introduce an origami approximation to cosmological structure formation, in which the dark-matter sheet is not allowed to stretch. But it still produces an idealized cosmic web, with nodes, filaments, walls and voids. In 2D, nodes form in `polygonal collapse' (a twist-fold in origami), necessarily generating filaments simultaneously. In 3D, nodes form in `polyhedral collapse,' simultaneously generating filaments and walls. The masses, spatial arrangement, and angular momenta of nodes and filaments are related in the model. I describe some `tetrahedral collapse', or tetrahedral twist...

  7. Expert system for elucidation of structures of organic compounds——Structural generator of ESESOC-II

    Institute of Scientific and Technical Information of China (English)

    胡昌玉; 许禄

    1995-01-01

    An expert system for the elucidation of the structures of organic compounds--ESESOC-IIhas been designed. It is composed of three parts: spectroscopic data analysis, structure generator, and evaluation of the candidate structures. The heart of ESESOC is the structure generator, as an integral part, which accepts the specific types of information, e.g. molecular formulae, substructure constraints, and produces an exhaustive and irredundant list of candidate structures. The scheme for the structural generation is given, in which the depth-first search strategy is used to fill the bonding adjacency matrix (BAM) and a new method is introduced to remove the duplicates.

  8. 2nd Generation RLV Airframe Structures and Materials

    Science.gov (United States)

    Johnson, Theodore F.

    2000-01-01

    The goals and objectives of the project summarized in this viewgraph presentation are the following: (1) Develop and demonstrate verified airframe and cryotank structural design and analysis technologies, including damage tolerance, safety, reliability, and residual strength technologies, robust nonlinear shell and cryotank analysis technologies, high-fidelity analysis and design technologies for local structural detail features and joints, and high-fidelity analysis technologies for sandwich structures; (2) Demonstrate low cost, robust materials and processing, including polymeric matrix composite (PMC) and metallic materials and processing, and refractory composite and metallic hot structures materials and processing; (3) Develop and demonstrate robust airframe structures and validated integrated airframe structural concepts, including low cost fabrication and joining, operations efficient designs and inspection techniques (non-destructive evaluation), scale-up and integrated thermal structure tests, and airframe structures IVHM; (4) Demonstrate low cost, robust repair techniques; and (5) Develop verified integrated airframe structural concepts, including integrated structural concepts.

  9. Precision Cosmology with a New Probabilistic Photometric Redshifts Approach

    Science.gov (United States)

    Carrasco Kind, Matias; Brunner, R. J.

    2013-06-01

    A complete understanding of both dark energy and dark matter remains one of most important challenges in astrophysics today. Recent theoretical and numerical computations have made important progress in quantifying the role of these dark components on the formation and evolution of galaxies through cosmic time, but observational verification of these predictions and the development of new, more stringent constraints has not kept pace. It is in this context that, photometric redshifts have become more important with the growth of large imaging surveys, such as DES and LSST, that have been designed to address this issue. But their basic implementation has not changed significantly from their original development, as most techniques provide a single photometric redshift estimate and an associated error for the an extragalactic source. In this work, we present a unique and powerful solution that leverages the full information contained in the photometric data to address this cosmological challenge with a new approach that provides accurate photometric redshift probability density functions (PDF) for galaxies. This new approach, which scales efficiently to massive data, efficiently combines standard template fitting techniques with powerful machine learning methods. Included in this framework is our recently developed technique entitled Trees for PhotoZ (TPZ); a new, robust, parallel photometric redshift code that uses prediction trees and random forests to generate photo-z PDFs in a reliable and fast manner. In addition, our approach also provides ancillary information about the internal structure of the data, including the relative importance of variables used during the redshift estimation, an identification of areas in the training sample that provide poor predictions, and an accurate outlier rejection method. We will also present current results of this approach on a variety of datasets and discuss, by using specific examples, how the full photo-z PDF can be

  10. Cosmology on Compact and Stable Supergravity Background

    CERN Document Server

    Hailu, Girma

    2012-01-01

    We propose a cosmological model of D3-brane universe on compact and stable supergravity background of wrapped D7-branes in type IIB string theory previously argued to be dual to pure N=1 SU(N) gauge theory in four dimensions. A model universe of order Planck size near the UV boundary dynamically flows toward the IR with constant total energy density and accelerating expansion followed by smooth transition to decelerating expansion and collides with the wrapped D7-branes at the IR boundary. The model addresses the horizon and flatness problems with most of the expansion produced during the decelerating expansion phase. The inflationary scenario is used to generate sources of inhomogeneities in the cosmic microwave background radiation and seeds for large scale structure formation from quantum fluctuations which exit the Hubble radius early during the accelerating expansion phase and the model addresses the inhomogeneity problem with red tilt in the power spectrum. We propose that the kinetic energy of the mode...

  11. Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints

    DEFF Research Database (Denmark)

    Vikhlinin, A.; Kravtsov, A. V.; Burenin, R. A.

    2009-01-01

    , and nearly a factor of 2 improvement in systematics compared with constraints that can be obtained without clusters. The joint analysis of these four data sets puts a conservative upper limit on the masses of light neutrinos ∑m ν ...Chandra observations of large samples of galaxy clusters detected in X-rays by ROSAT provide a new, robust determination of the cluster mass functions at low and high redshifts. Statistical and systematic errors are now sufficiently small, and the redshift leverage sufficiently large for the mass...... function evolution to be used as a useful growth of a structure-based dark energy probe. In this paper, we present cosmological parameter constraints obtained from Chandra observations of 37 clusters with langzrang = 0.55 derived from 400 deg2 ROSAT serendipitous survey and 49 brightest z ≈ 0.05 clusters...

  12. Conformal frames in cosmology

    CERN Document Server

    Domènech, Guillem

    2016-01-01

    From higher dimensional theories, e.g. string theory, one expects the presence of non-minimally coupled scalar fields. We review the notion of conformal frames in cosmology and emphasize their physical equivalence, which holds at least at a classical level. Furthermore, if there is a field, or fields, which dominates the universe, as it is often the case in cosmology, we can use such notion of frames to treat our system, matter and gravity, as two different sectors. On one hand, the gravity sector which describes the dynamics of the geometry and on the other hand the matter sector which has such geometry as a playground. We use this interpretation to build a model where the fact that a curvaton couples to a particular frame metric could leave an imprint in the CMB.

  13. Wormholes in viscous cosmology

    CERN Document Server

    Wang, Deng

    2016-01-01

    We study the wormhole spacetime configurations in bulk viscosity cosmology. Considering three classes of viscous models, i.e., bulk viscosity as a function of Hubble parameter $H$, temperature $T$ and dark energy density $\\rho$, respectively, we obtain nine wormhole solutions. Through the analysis for the anisotropic solutions, we conclude that, to some extent, these three classes of viscous models have very high degeneracy with each other. Subsequently, without the loss of generality, to investigate the traversabilities, energy conditions and stability for the wormhole solution, we study the wormhole solution of the constant redshift function of the viscous $\\omega$CDM model with a constant bulk viscosity coefficient. We obtain the following conclusions: the value of traversal velocity decreases for decreasing bulk viscosity, and the traversal velocity for a traveler depends on not only the wormhole geometry but also the effects of cosmological background evolution; the null energy condition will be violated...

  14. Fundamentals of cosmology

    CERN Document Server

    Rich, James

    2009-01-01

    The book is aimed at astrophysics students and professional physicists who wish to understand the basics of cosmology and general relativity as well as the observational foundations of the LambdaCDM model of the Universe. The book provides a self-contained introduction to general relativity that is based on the homogeneity and isotropy of the local universe. The simplicity of this space allows general relativity to be presented in a very elementary manner while laying the foundation for the treatment of more complicated problems. The new edition presents the most recent observations, including those of CMB anisotropies by WMAP and of Baryon Acoustic Oscillations by SDSS. Future observational and theoretical challenges for the understanding of dark energy and dark matter are discussed. From 1st edition reviews: "The book provides a comprehensive and thorough explication of current cosmology at a level appropriate for a beginning graduate student or an advanced and motivated undergraduate. ... This is an extrem...

  15. Integrable Cosmological Potentials

    CERN Document Server

    Sokolov, V V

    2016-01-01

    The problem of classification of the Einstein--Friedman cosmological Hamiltonians $H$ with a single scalar inflaton field $\\varphi$ that possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint $H=0$ is considered. Necessary and sufficient conditions for the existence of first, second, and third degree integrals are derived. These conditions have the form of ODEs for the cosmological potential $V(\\varphi)$. In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in a parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described and sporadic superintegrable cases are discussed.

  16. Cosmological memory effect

    Science.gov (United States)

    Tolish, Alexander; Wald, Robert M.

    2016-08-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of (1 +z ).

  17. The Cosmological Memory Effect

    CERN Document Server

    Tolish, Alexander

    2016-01-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of $(1 + z)$.

  18. Cosmology at the crossroads

    CERN Document Server

    Steinhardt, Paul Joseph

    1995-01-01

    Observational tests during the next decade may determine if the evolution of the Universe can be understood from fundamental physical principles, or if special initial conditions, coincidences, and new, untestable physical laws must be invoked. The inflationary model of the Universe is an important example of a predictive cosmological theory based on physical principles. In this talk, we discuss the distinctive fingerprint that inflation leaves on the cosmic microwave background anisotropy. We then suggest a series of five milestone experimental tests of the microwave background which could determine the validity of the inflationary hypothesis within the next decade. The paper is a Review based on a Plenary talk given at the Snowmass Workshop on Particle Astrophysics and Cosmology, 1995 It will appear in the Proceedings edited by E. Kolb and R.Peccei. Software package for computing filter functions and band power estimates available thru world-wide-web at http://dept.physics.upenn.edu/~www/as tro-cosmo/ .

  19. Successful Modular Cosmology

    CERN Document Server

    Kadota, K; Kadota, Kenji; Stewart, Ewan D.

    2003-01-01

    We present a modular cosmology scenario where the difficulties encountered in conventional modular cosmology are solved in a self-consistent manner, with definite predictions to be tested by observation. Notably, the difficulty of the dilaton finding its way to a precarious weak coupling minimum is made irrelevant by having eternal modular inflation at the vacuum supersymmetry breaking scale after the dilaton is stabilised. Neither this eternal inflation nor the subsequent non-slow-roll modular inflation destabilise the dilaton from its precarious minimum due to the low energy scale of the inflation and consequent small back reaction on the dilaton potential. The observed flat CMB spectrum is obtained from fluctuations in the angular component of a modulus near a symmetric point, which are hugely magnified by the roll down of the modulus to Planckian values, allowing them to dominate the final curvature perturbation. We also give precise calculations of the spectral index and its running.

  20. An Improved Cosmological Model

    CERN Document Server

    Tsamis, N C

    2016-01-01

    We study a class of non-local, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense universe the nonlocal screening terms become constant as the universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller anti-screening effect that could explain the current phase of acceleration.