WorldWideScience

Sample records for cosmic radiation exposure

  1. Cosmic radiation exposure to airline flight passenger

    International Nuclear Information System (INIS)

    Momose, Mitsuhiro

    2000-01-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  2. Cosmic radiation exposure to airline flight passenger

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Mitsuhiro [Shinshu Univ., Matsumoto, Nagano (Japan). School of Medicine

    2000-08-01

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  3. Cosmic radiation exposure and persistent cognitive dysfunction

    Science.gov (United States)

    Parihar, Vipan K.; Allen, Barrett D.; Caressi, Chongshan; Kwok, Stephanie; Chu, Esther; Tran, Katherine K.; Chmielewski, Nicole N.; Giedzinski, Erich; Acharya, Munjal M.; Britten, Richard A.; Baulch, Janet E.; Limoli, Charles L.

    2016-01-01

    The Mars mission will result in an inevitable exposure to cosmic radiation that has been shown to cause cognitive impairments in rodent models, and possibly in astronauts engaged in deep space travel. Of particular concern is the potential for cosmic radiation exposure to compromise critical decision making during normal operations or under emergency conditions in deep space. Rodents exposed to cosmic radiation exhibit persistent hippocampal and cortical based performance decrements using six independent behavioral tasks administered between separate cohorts 12 and 24 weeks after irradiation. Radiation-induced impairments in spatial, episodic and recognition memory were temporally coincident with deficits in executive function and reduced rates of fear extinction and elevated anxiety. Irradiation caused significant reductions in dendritic complexity, spine density and altered spine morphology along medial prefrontal cortical neurons known to mediate neurotransmission interrogated by our behavioral tasks. Cosmic radiation also disrupted synaptic integrity and increased neuroinflammation that persisted more than 6 months after exposure. Behavioral deficits for individual animals correlated significantly with reduced spine density and increased synaptic puncta, providing quantitative measures of risk for developing cognitive impairment. Our data provide additional evidence that deep space travel poses a real and unique threat to the integrity of neural circuits in the brain. PMID:27721383

  4. Radiation Exposure of Passengers to Cosmic Radiation

    International Nuclear Information System (INIS)

    Salah El-Din, T.; Gomaa, M.A.; Sallah, N.

    2010-01-01

    The main aim of the present study is to review exposure of Egyptian passengers and occupational workers to cosmic radiation during their work. Computed effective dose of passengers by computer code CARI-6 using during either short route, medium route or long route as well as recommended allowed number of flights per year

  5. Radiation protection of aviation personnel at exposure by cosmic radiation

    International Nuclear Information System (INIS)

    Vicanova, M.; Pinter, I.; Liskova, A.

    2008-01-01

    For determination of radiation dose of aviation personnel we used the software EPCARD (European Program Package for the Calculation of Aviation Route Doses) developed by National Research Center for Environmental Health - Institute of Radiation Protection (Neuherberg, Germany) and the software CARI 6, developed by the FAA's Civil Aerospace Medical Institute (USA). Both codes are accomplished by the Joint Aviation Authorities. Experimental measurement and estimation of radiation doses of aviation personnel at exposure by cosmic radiation were realised in the period of lowered solar activity. All-year effective dose of pilots, which worked off at least 11 months exceeds the value 1 mSv in 2007. The mean all-year effective dose of member of aviation personnel at exposure by cosmic radiation is 2.5 mSv and maximal all-year effective dose, which we measured in 2007 was 4 mSv. We assumed that in the period of increased solar activity the all-year effective doses may by higher

  6. Radiation dosimetry for crewmember exposure to cosmic radiation during astronaut training operations

    International Nuclear Information System (INIS)

    Shavers, M.R.; Gersey, B.B.; Wilkins, R.T.; Semones, E.J.; Cucinotta, F.A.

    2003-01-01

    'Atmospheric exposures' of astronauts to cosmic ions and secondary particles during air-flight training are being measured and analytically modeled for inclusion in the astronaut medical records database. For many of the ∼170 astronauts currently in the astronaut corps, their occupational radiation exposure history will be dominated by cosmic ion exposures during air-travel rather than short-duration spaceflight. Relatively low (usually <10 μSv hr -1 ) and uniform organ dose rates result from the penetrating mix of cosmic particles during atmospheric exposures at all altitudes, but at rates that vary greatly due to differences in flight profiles and the geomagnetic conditions at the time of flight. The precision and accuracy to which possible deleterious effects of the exposures can be assessed suffers from limitations that similarly impact assessment of human exposures in low-Earth orbit: uncertainties associated with the environmental measurements and their interpretation, uncertainties associated with the analytical tools that transport the cosmic radiation environment, and uncertain biological responses to low-dose-rate exposures to radiation fields of mixed radiation 'quality'. Lineal energy spectra will be measured using a Tissue Equivalent Proportional Counter designed for training and operational sorties frequently flown in T-38, Space Shuttle Trainer, and high altitude WB-57 aircraft. Linear energy spectra will be measured over multiple flights using CR-39 plastic nuclear track detectors, as well. Flight records are available for nearly 200,000 sorties flown in NASA aircraft by astronauts and flight officers in the Johnson Space Center Aircraft Operations Division over the past 25 years, yet this database only partially documents the complete exposure histories. Age-dependent risk analysis indicates significant impact, particularly to young women who anticipate lengthy on-orbit careers

  7. Exposure to cosmic radiation: a developing major problem in radiation protection

    International Nuclear Information System (INIS)

    Lowder, W.M.; Hajnal, F.

    1992-01-01

    'Full Text:' Cosmic radiation at ground altitudes is usually a relatively minor contributor to human radiation exposure, producing a global collective dose equivalent that is about 10 percent of the total from all natural sources. However, more than a million people living at high altitudes receive annual dose equivalents in excess of 5 mSv. In recent years, there has been increasing concern about the exposure of aircraft flight crews and passengers, for whom annual dose equivalents of up to several mSv have been estimated. Recent EML results indicate the presence of an important high-energy neutron component at jet aircraft altitudes, perhaps producing dose equivalents of the order of 0.1. mSv/h at high latitudes. Finally, space agencies have been long concerned with the potential exposures of astronauts, especially from the rare massive solar flare events. As more people venture into space, this source of human radiation exposure will become increasingly important. Available date on those aspects of cosmic radiation exposure will be reviewed, along with current and anticipated future research activities that may yield and improve assessment of the problem. The question of how such exposures might be controlled will be addressed, but not answered. (author)

  8. Occupational cosmic radiation exposure and cancer in airline cabin crew

    International Nuclear Information System (INIS)

    Kojo, K.

    2013-03-01

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  9. Occupational cosmic radiation exposure and cancer in airline cabin crew.

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, K.

    2013-03-15

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  10. Dosimetry for occupational exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bartlett, D.T.; McAulay, I.R.; Schrewe, U.J.

    1997-01-01

    Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, aircraft structure, etc. This has been recognised for some time and estimates of the exposure of aircraft crew have been made previously and included in, for example, UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) publications. The recent increased interest has been brought about by several factors - the consideration that the relative biological effectiveness of the neutron component was being underestimated; the trend towards higher cruising altitudes for subsonic commercial aircraft and business jet aircraft; and most importantly, the recommendations of the International Commission on Radiological Protection (ICRP) in Publication 60, and the revision of the Euratom Basic Safety Standards Directive (BSS). In 1992, the European Dosimetry Group (EURADOS) established a Working Group to consider the exposure to cosmic radiation of aircraft crew, and the scientific and technical problems associated with radiation protection dosimetry for this occupational group. The Working Group was composed of fifteen scientists (plus a corresponding member) involved in this field of study and with knowledge of radiation measurement at aviation altitudes. This paper is based on the findings of this Working Group. (author)

  11. Management of cosmic radiation exposure for aircraft crew in Japan

    International Nuclear Information System (INIS)

    Yasuda, H.; Sato, T.; Yonehara, H.; Kosako, T.; Fujitaka, K.; Sasaki, Y.

    2011-01-01

    The International Commission on Radiological Protection has recommended that cosmic radiation exposure of crew in commercial jet aircraft be considered as occupational exposure. In Japan, the Radiation Council of the government has established a guideline that requests domestic airlines to voluntarily keep the effective dose of cosmic radiation for aircraft crew below 5 mSv y -1 . The guideline also gives some advice and policies regarding the method of cosmic radiation dosimetry, the necessity of explanation and education about this issue, a way to view and record dose data, and the necessity of medical examination for crew. The National Inst. of Radiological Sciences helps the airlines to follow the guideline, particularly for the determination of aviation route doses by numerical simulation. The calculation is performed using an original, easy-to-use program package called 'JISCARD EX' coupled with a PHITS-based analytical model and a GEANT4-based particle tracing code. The new radiation weighting factors recommended in 2007 are employed for effective dose determination. The annual individual doses of aircraft crew were estimated using this program. (authors)

  12. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    Energy Technology Data Exchange (ETDEWEB)

    Spurny, F; Votockova, I [Academy of the Sciences of Czech Republic, Prague (Czech Republic). Nuclear Physics Institute, Department of Radiation Dosimetry

    1996-12-31

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ({sup 60}Co, {sup 252}Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS `Exposure of air crew to cosmic radiation` has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. (Abstract Truncated)

  13. Is cosmic radiation exposure of air crew amenable to control?

    International Nuclear Information System (INIS)

    McEwan, A.C.

    1999-01-01

    ICRP Committee 4 currently has a Working Party on Cosmic Ray Exposure in Aircraft and Space Flight. It has assembled information on doses arising in aircraft and space flight and considered the appropriateness of the Commission's recommendations relating to air crew. A central issue is whether the exposures received should be considered amenable to control. Factors of relevance to the enhanced cosmic radiation exposure of air crew, and frequent fliers such as couriers, are doses to pregnant staff, the issue of controllability of doses, and the implementation of regulatory controls. It is concluded that while air crew in the current range of subsonic jet aircraft are exposed to enhanced levels of cosmic radiation, these exposures are not readily controllable nor likely to exceed about 6 mSv/y. The revised ICRP Recommendations in 1991 (ICRP 60) propose air crew be designated as occupationally exposed. However, none of the usual optimisation of dose actions associated with regulation of practices, such as classification of work areas and rules governing working procedures, can be implemented, and in practice the doses are not amenable to control. The International Basic Safety Standards therefore leave this designation to the judgement of national regulatory authorities. One requirement that stems from designation as occupational exposure is that of restriction of doses to pregnant women. Both from the points of view that it is questionable whether exposure of air crew can reasonably be considered to be amenable to control, and the magnitude of the risks from exposures incurred, there is little reason to invoke additional restrictions to limit exposures of pregnant air crew. Copyright (1999) Australasian Radiation Protection Society Inc

  14. To the exposure of air crew members to cosmic radiation

    International Nuclear Information System (INIS)

    Spurny, F.; Kovar, I.; Bottollier-Depois, J.F.; Plawinski, L.

    1998-01-01

    According to an ICRP recommendation, the exposure of jet aircraft crew to radiation should be considered as occupational exposure when the annual equivalent doses are liable to exceed 1 mSv. Many new data on this type of exposure collected since 1991 are presented and analyzed. The dose equivalent rates established are fitted as a function of flight altitude. An analysis of data from cosmic ray monitors has shown that the presence of cosmic rays in the Earth's atmosphere is rather stable since early 1992. An estimation was therefore made of the possible influence of the solar cycle phase by means of a transport code. The results obtained are compared with experimental data

  15. Inconstant sun: how solar evolution has affected cosmic and ultraviolet radiation exposure over the history of life on Earth.

    Science.gov (United States)

    Karam, P Andrew

    2003-03-01

    Four billion years ago, sea-level UV exposure was more than 400 times as intense as today, the dose from solar cosmic rays was five times present levels, and galactic cosmic rays accounted for only about 10% their current contribution to sea-level radiation doses. Exposure to cosmic radiation accounts for about 10% of natural background radiation exposure today and includes dose from galactic cosmic rays and solar charged particles. There is little exposure to ionizing wavelengths of UV due to absorption by ozone. The sun has evolved significantly over its life; in the past there were higher levels of particulate radiation and lower UV emissions from the sun, and a stronger solar wind reduced radiation dose in the inner solar system from galactic cosmic rays. Finally, since the early atmosphere contained little to no oxygen, surface levels of UV radiation were far higher in the past.

  16. Contribution of cosmic rays to radiation exposure of the population

    International Nuclear Information System (INIS)

    Sztanyik, L.B.; Nikl, I.

    1982-01-01

    To evaluate the exposure of the Hungarian population to cosmic rays, the absorbed dose rate in air of cosmic radiation was directly measured by high pressure ionization chamber at ground level on the surface of different bodies of water and at various altitudes on the board of an aircraft. From the dose rates measured this way, the outdoor dose equivalent rate from the ionizing components of cosmic radiation to people living at sea level would be 300-325 μSv per year. Taking into account the altitude distribution of the population, the average weighted dose equivalent is about 320 μSv per year. At Kekestetoe, the highest peak of the Matra Mountains, (the highest altitude in Hungary), the annual dose equivalent is about 50 per cent higher than on the Great Hungarian Plain. (author)

  17. Investigations of aircrews exposure to cosmic radiation - results, conclusions and suggestions

    CERN Document Server

    Bilski, P; Horwacik, T; Marczewska, B; Ochab, E; Olko, P

    2002-01-01

    In frame of a research project undertaken in collaboration with Polish airlines LOT, analysis of aircrews exposure to cosmic radiation has been performed. The applied methods included measurements of radiation doses with thermoluminescent detectors (MTS-N, MCP-N) and track detectors (CR-39) and also calculations of route doses with the CARI computer code. The obtained results indicate that aircrews of nearly all airplanes, with exception of these flying only on ATR aircraft, exceed regularly or may exceed in some conditions, effective doses of 1 mSv. In case of Boeing-767 aircrews such exceeding occurs always, independently of solar activity. Investigations revealed, that during these periods of the solar cycle, when intensity of cosmic radiation is high, exceeding of 6 mSv level is also possible. These results indicate, that according to Polish and European regulations it is necessary for airlines to provide regular estimations of radiation exposure of aircrews. Basing on the obtained results a system for pe...

  18. Air crew exposure to cosmic radiation. New analysis, recommendations EURADOS

    International Nuclear Information System (INIS)

    Spurny, F.; Votockova, I.

    1995-01-01

    Cosmic radiation on the board of an aircraft consist of two components: directly ionizing radiation (electron, proton - low LET) and neutrons (high LET). Neither composition nor the energy spectrum of usual on-Earth calibration sources ( 60 Co, 252 Cf) do not correspond to the field on a board. Therefore high energy reference fields behind shielding high energy accelerator at CERN and Dubna have been created and intensively studied. Their typical characteristics following from the results of our measurements were obtained. In-flight measurements on the board of commercial aircraft have been realized since 1991 during about 20 flights, Flight routes extended from the 1.3 grad N up to about 65 grad N, flying altitudes varied from 8.2 km to 12.5 km. The exposure level due to galactic cosmic radiation is inversely proportional to the solar activity. Some radiation protection aspects were concluded: (a) The usual limits of annual air crew flight hours correspond at 11.3 km to about 4 mSv per year, with new ICRP conversion factors to about 5 mSv per year; (b) Monthly flight hours limit does not exclude that the exposure of a pregnant women can exceed 1 mSv during this period; (c) The air crew exposure should therefore be checked, controlled a nd administered as conscientiously as for any other group of occupationally exposed persons. A Working group 11 of EURADOS 'Exposure of air crew to cosmic radiation' has been formed (1992-1995) to prepare basic analysis and recommendations concerning the topics. The basic recommendations are the following: (a) air crew flying routinely at altitudes over 8 km are deemed to be category B workers, it is therefore important to estimate, record, control and, where necessary, to limit the doses; (b) the preferred procedure in order to estimate doses to air crew or frequent flyers is to determine route doses and fold these data with data on staff rostering; (c) where doses may exceed the limit for category B workers (6 mSv per year), on

  19. Cosmic radiation and air crew exposure

    International Nuclear Information System (INIS)

    Vukovic, B.; Lisjak, I.; Vekic, B.; Planinic, J.

    2005-01-01

    When the primary particles from space, mainly protons, enter the atmosphere, they interact with the air nuclei and induce cosmic-ray shower. When an aircraft is in the air, the radiation field within includes many types of radiation of large energy range; the field comprises mainly photons, electrons, positrons and neutrons. Cosmic radiation dose for crews of air crafts A 320 and ATR 42 was measured using TLD-100 (LiF: Mg, Ti) detectors and the Mini 6100 semiconductor dosimeter; radon concentration in the atmosphere was measured using the Alpha Guard radon detector. The total annual dose estimated for the A 320 aircraft crew, at altitudes up to 12000 meters, was 5.3 mSv (including natural radon radiation dose of 1.1 mSv).(author)

  20. Human population exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Bouville, A.; Lowder, W.M.

    1988-01-01

    Critical evaluations of existing data on cosmic radiation in the atmosphere and in interplanetary space have been carried out in order to estimate the exposure of the world's population to this important component of natural background radiation. Data on population distribution and mean terrain heights on a 1 x 1 degree grid have been folded in to estimate regional and global dose distributions. The per caput annual dose equivalent at ground altitudes is estimated to be 270 μSv from charged particles and 50 μSv from neutrons. More than 100 million people receive more than 1 mSv in a year, and two million in excess of 5 mSv. Aircraft flight crews and frequent flyers receive an additional annual dose equivalent in the order of 1 mSv, though the global per caput annual dose equivalent from airplane flights is only about 1 μSv. Future space travellers on extended missions are likely to receive dose equivalents in the range 0.11 Sv, with the possibility of higher doses at relatively high dose rates from unusually large solar flares. These results indicate a critical need for a better understanding of the biological significance of chronic neutron and heavy charged particle exposure. (author)

  1. Cosmic ray exposure in aircraft and space flight

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Sugiura, Nobuyuki; Iimoto, Takeshi

    2000-01-01

    The exposure from cosmic ray radiation to the workers and public is a new aspect of exposure that was cased by the development of science and technology. ICRP Publication 60 says: 'to provide some practical guidance, the Commission recommends that there should be a requirement to include exposure to natural sources as part of occupational exposure only in the following cases: radon..., some natural radionuclides..., operation of jet air craft, space flight'. For this situation what kind of radiation protection concept is applicable? And what kind of radiation guideline and procedure are possible to propose? Here, we would like to review the past activities on this issue and to summarize the concepts in ICRP concerning to these exposure. Then the recommended radiation protection system will be proposed as one trial to this solution. In the paper the characters of cosmic ray were firstly reviewed. Cosmic rays are consisted by solar one and galactic one. Both of them have high energy and this will cause the difficulty of dosimetry because of lacking of physical and biological data. Next discussion point is a classification of exposure. For this, several classifications were done: jet airplane flight, supersonic airplane flight and space flight. Other classification is aircrew (occupational exposure), passengers (public exposure), frequent flyers (gray zone), space astronauts (special mission), and pregnant women. Considering the real level of radiation the practical radiation control is proposed including the cosmic radiation exposure prediction method by computer codes. The discussion of space astronauts is a little different for the highness of radiation doses. The dose levels will be obtained through the discussion of lifetime risk balancing their mission importance. (author)

  2. Real-Time Aircraft Cosmic Ray Radiation Exposure Predictions from the NAIRAS Model

    Science.gov (United States)

    Mertens, C. J.; Tobiska, W.; Kress, B. T.; Xu, X.

    2012-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. There is also interest in extending NAIRAS to the LEO environment to address radiation hazard issues for the emerging commercial spaceflight industry. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. Real-time observations are required at a variety of locations within the geospace environment. The NAIRAS model is driven by real-time input data from ground-, atmospheric-, and space-based platforms. During the development of the NAIRAS model, new science questions and observational data gaps were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. The focus of this talk is to present the current capabilities of the NAIRAS model, discuss future developments in aviation radiation modeling and instrumentation, and propose strategies and methodologies of bridging known gaps in current modeling and observational capabilities.

  3. Mapping the exposure of the Brazilian population to natural background radiation - cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rochedo, Elaine R.R., E-mail: elaine@ird.gov.br [Instituto de Radioprotecao e Dosimetria (lRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Salles, Krause C.S.; Prado, Nadya M.C., E-mail: krausesalles@yahoo.com.br, E-mail: nadya@ime.ib.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The main objective of this work is to statically and graphically describe the exposure of the Brazilian population to natural background radiation. in this stage, doses due to cosmic rays is being assessed based on sea level dose rates, corrected by latitude and altitude, according to the model recommended by UNSCEAR. In this work, the doses were estimated for ali Brazilian municipalities with more than 100.000 inhabitants. The 253 municipalities selected for this study include about 52% of the Brazilian population. Average dose rate was estimated to be about 50 n Sv/h with a variation coefficient of 31%. The estimated doses have shown a strong influence of altitude on dose rates, with a correlation coefficient of 0,998 for ao exponential fit. This result confirms previous studies that show a large effect of the altitude 00 exposure from cosmic radiation. Considering the same occupation and shielding conditions used by UNSCEAR as global averages, average annual dose was estimated to be 0,37 (0,24 - 0,76) mSv/y, very close to UNSCEAR worldwide average of 0,38 (0,3 - 1,0) mSv/y. (author)

  4. Mapping the exposure of the Brazilian population to natural background radiation - cosmic radiation

    International Nuclear Information System (INIS)

    Rochedo, Elaine R.R.; Salles, Krause C.S.; Prado, Nadya M.C.

    2013-01-01

    The main objective of this work is to statically and graphically describe the exposure of the Brazilian population to natural background radiation. in this stage, doses due to cosmic rays is being assessed based on sea level dose rates, corrected by latitude and altitude, according to the model recommended by UNSCEAR. In this work, the doses were estimated for ali Brazilian municipalities with more than 100.000 inhabitants. The 253 municipalities selected for this study include about 52% of the Brazilian population. Average dose rate was estimated to be about 50 n Sv/h with a variation coefficient of 31%. The estimated doses have shown a strong influence of altitude on dose rates, with a correlation coefficient of 0,998 for ao exponential fit. This result confirms previous studies that show a large effect of the altitude 00 exposure from cosmic radiation. Considering the same occupation and shielding conditions used by UNSCEAR as global averages, average annual dose was estimated to be 0,37 (0,24 - 0,76) mSv/y, very close to UNSCEAR worldwide average of 0,38 (0,3 - 1,0) mSv/y. (author)

  5. Cosmic radiation exposure of aircraft crew: compilation of measured and calculated data

    Czech Academy of Sciences Publication Activity Database

    Lindborg, L.; Bartlett, D.; Beck, P.; McAulay, I.; Schnuer, K.; Schraube, H.; Spurný, František

    2004-01-01

    Roč. 110, 1-4 (2004), s. 417-422 ISSN 0144-8420 Grant - others:EC project(XE) FIGM-CT2000-00068 Institutional research plan: CEZ:AV0Z1048901 Keywords : cosmic radiation exposure * aircraft crew * measurement Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.617, year: 2003

  6. What is cosmic radiation?

    International Nuclear Information System (INIS)

    2004-01-01

    The earth was indeed receiving ionizing radiations from the heavens. This cosmic radiation consists of particles travelling near the speed of light. It consists of two components, the first of which is permanent and of galactic origin, while the other is more sporadic, depending on the sun's activities. Natural land-based sources expose each of us to an average total dose of 2.4 mSv per year (source UNSCEAR). In addition, the human activities using ionizing radiation contribute to an average annual exposure of 1.4 mSv, originating primarily with medical activities ( radiodiagnostic and radiation therapy). Members of flights crew are subject to exposure. The total dose of cosmic radiation received is is directly proportional with the duration of exposure, and thus with the duration of the flight. Measurement taken on board aircraft during the 1990's showed that flight personnel (on long haul flights) receive an average dose of approximately the same magnitude as the one due to exposure to natural radioactivity in France. The damage caused by ionizing radiation depends on the quantity of energy released by radiation into the cells of each organ or tissue of the human body(exposure dose). For a given quantity of absorbed energy (dose expressed in Gray), the damage will vary according to the nature of the radiation and the affected organ. These effects are of two types: acute effects and deferred effects. Two measurements are essential for radiation protection: the measurements of the dose of radiation absorbed by the body and the assessment of the risk associated with the absorbed dose. Two units were thus created: the gray and the sievert. (N.C.)

  7. Cosmic radiation exposure of future hypersonic flight missions

    International Nuclear Information System (INIS)

    Koops, L.

    2017-01-01

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, air crews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. (author)

  8. Assessing exposure to cosmic radiation aboard aircraft: the Sievert system

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Biau, A.; Clairand, I.; Saint-Lo, D.; Valero, M.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2003-01-01

    The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milli-sieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - Paul-Emile Victor (IPEV). This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft Various results obtained are presented. (authors)

  9. Cosmic radiation exposure in supersonic and subsonic flight

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    The main body of this document consists of four major sections: (1) an introduction describing the scope of Committee operations and proving a brief exposition of the concepts of radiation protection; (2) a survey of experimental and theoretical data on cosmic radiations that have been obtained in individual research projects with emphasis on investigations that were performed under the sponsorship of the Committee. The studies evaluate galactic and solar radiation as a function of altitude and magnetic latitude; (3) best current estimates of cosmic radiation levels in the atmosphere; and (4) radiation protection recommendations dealing with maximum permissible doses and operational aspects covering satellite warning systems, on-board instrumentation, and forecasting. Nine annexes submitted by individual authors cover various of these subjects in greater detail

  10. Cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Capdevielle, J N

    1984-01-01

    First, the different instruments and techniques of cosmic particle detection are presented. Then the passage of the cosmic particles through the atmosphere is studied: electrons, photons, muons. The collective behavior of the different categories is also studied, the electromagnetic cascade is distinguished from the hadron cascade. Through the principal physical properties of the radiation and the medium, the ''mean'' aspects of the radiation are then successively dealt with out of the atmosphere, at different altitudes until the sea level, then at great depths. A chapter is devoted to cosmic radiation of more than 10,000 GeV, studied separately. Then solar radiation in universe is studied through their propagation in solar system and their origin. At last, the cosmic radiation effects are studied in environment (cosmic biophysics) and some applications of cosmic radiation are presented.

  11. Cosmic radiation during air travel: trends in exposure of aircrews and airline passengers

    NARCIS (Netherlands)

    Blaauboer RO; LSO

    2004-01-01

    An unfavourable effect of flying is the enhanced exposure of both passengers and aircrew to cosmic radiation at high altitudes. On the basis of a detailed survey on passengers arriving at or departing from Amsterdam Schiphol Airport in the 1988-1997 period, estimates of individual effective dose for

  12. Cosmic Radiation Exposure of Future Hypersonic Flight Missions.

    Science.gov (United States)

    Koops, L

    2017-06-15

    Cosmic radiation exposure in air traffic grows with flight altitude, geographical latitude and flight time. For future high-speed intercontinental point-to-point travel, the trade-off between reduced flight time and enhanced dose rate at higher flight altitudes is investigated. Various representative (partly) hypersonic cruise missions are considered and in dependence on solar activity the integral route dose is calculated for envisaged flight profiles and trajectories. Our results are compared to those for corresponding air connections served by present day subsonic airliners. During solar maximum, we find a significant reduction in route dose for all considered high-speed missions compared to the subsonic reference. However, during solar minimum, comparable or somewhat larger doses result on transpolar trajectories with (partly) hypersonic cruise at Mach 5. Both solar activity and routing are hence found to determine, whether passengers can profit from shorter flight times in terms of radiation exposure, despite of altitude-induced higher dose rates. Yet, aircrews with fixed number of block hours are always subject to larger annual doses, which in the considered cases take values up to five times the reference. We comment on the implications of our results for route planning and aviation decision-making in the absence of radiation shielding solutions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Assessing exposure to cosmic radiation aboard aircraft: the SIEVERT system

    International Nuclear Information System (INIS)

    Bottolier-Depois, J.F.; Clairand, I.; Blanchard, P.; Dessarps, P.; Lantos, P.

    2005-01-01

    Full text: The study of naturally-occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on board aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some milliSieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerized system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This dose assessment tool was developed by the French General Directorate of Civil Aviation (DGAC) and partners: the Institute for Radiation Protection and Nuclear Safety (IRSN), the Paris Observatory and the French Institute for Polar Research - PaulEmile Victor (IPEV). This professional service is available since more than two years on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented: experimental validation, in particular for the ground level event model (large solar eruption), and statistics on routes and personal doses. (author)

  14. Control of occupational exposure to cosmic radiation outside the atmosphere

    International Nuclear Information System (INIS)

    Katoh, Kazuaki; Kaneko, Masahito

    2000-01-01

    Japan is participating in the project of constructing ISS, International Space Station, and taking part of constructing JEM, Japan Experimental Module. It is expected that people working in this module upon completion should be controlled their exposure to cosmic radiation according to Japanese laws. Hence, the issue has been studied by a committee in NASDA, National Space Development Agency of Japan. In 1999, its interim report was released and public comments had been invited. In this presentation, following the introduction of the gist of the interim report as well as comments by the authors, countermeasures are proposed. (author)

  15. Cosmic radiation algorithm utilizing flight time tables

    International Nuclear Information System (INIS)

    Katja Kojo, M.Sc.; Mika Helminen, M.Sc.; Anssi Auvinen, M.D.Ph.D.; Katja Kojo, M.Sc.; Anssi Auvinen, M.D.Ph.D.; Gerhard Leuthold, D.Sc.

    2006-01-01

    Cosmic radiation is considerably higher on cruising altitudes used in aviation than at ground level. Exposure to cosmic radiation may increase cancer risk among pilots and cabin crew. The International Commission on Radiation Protection (ICRP) has recommended that air crew should be classified as radiation workers. Quantification of cosmic radiation doses is necessary for assessment of potential health effects of such occupational exposure. For Finnair cabin crew (cabin attendants and stewards), flight history is not available for years prior to 1991 and therefore, other sources of information on number and type of flights have to be used. The lack of systematically recorded information is a problem for dose estimation for many other flight companies personnel as well. Several cosmic radiation dose estimations for cabin crew have been performed using different methods (e.g. 2-5), but they have suffered from various shortcomings. Retrospective exposure estimation is not possible with personal portable dosimeters. Methods that employ survey data for occupational dose assessment are prone to non-differential measurement error i.e. the cabin attendants do not remember correctly the number of past flights. Assessment procedures that utilize surrogate measurement methods i.e. the duration of employment, lack precision. The aim of the present study was to develop an assessment method for individual occupational exposure to cosmic radiation based on flight time tables. Our method provides an assessment method that does not require survey data or systematic recording of flight history, and it is rather quick, inexpensive, and possible to carry out in all other flight companies whose past time tables for the past periods exist. Dose assessment methods that employ survey data are prone to random error i.e. the cabin attendants do not remember correctly the number or types of routes that they have flown during the past. Our method avoids this since survey data are not needed

  16. Measurements and simulations of the radiation exposure to aircraft crew workplaces due to cosmic radiation in the atmosphere

    International Nuclear Information System (INIS)

    Beck, P.; Latocha, M.; Dorman, L.; Pelliccioni, M.; Rollet, S.

    2007-01-01

    As required by the European Directive 96/29/Euratom, radiation exposure due to natural ionizing radiation has to be taken into account at workplaces if the effective dose could become more than 1 mSv per year. An example of workers concerned by this directive is aircraft crew due to cosmic radiation exposure in the atmosphere. Extensive measurement campaigns on board aircraft have been carried out to assess ambient dose equivalent. A consortium of European dosimetry institutes within EURADOS WG5 summarized experimental data and results of calculations, together with detailed descriptions of the methods for measurements and calculations. The radiation protection quantity of interest is the effective dose, E (ISO). The comparison of results by measurements and calculations is done in terms of the operational quantity ambient dose equivalent, H*(10). This paper gives an overview of the EURADOS Aircraft Crew In-Flight Database and it presents a new empirical model describing fitting functions for this data. Furthermore, it describes numerical simulations performed with the Monte Carlo code FLUKA-2005 using an updated version of the cosmic radiation primary spectra. The ratio between ambient dose equivalent and effective dose at commercial flight altitudes, calculated with FLUKA-2005, is discussed. Finally, it presents the aviation dosimetry model AVIDOS based on FLUKA-2005 simulations for routine dose assessment. The code has been developed by Austrian Research Centers (ARC) for the public usage (http://avidos.healthphysics.at. (authors)

  17. Cosmic Radiation - An Aircraft Manufacturer's View

    International Nuclear Information System (INIS)

    Hume, C.

    1999-01-01

    The relevance and context of cosmic radiation to an aircraft maker Airbus Industrie are outlined. Some future developments in aircraft and air traffic are described, along with their possible consequences for exposure. (author)

  18. Dose evaluation and protection of cosmic radiation

    International Nuclear Information System (INIS)

    Iwai, Satoshi; Takagi, Toshiharu

    2004-01-01

    This paper explained the effects of cosmic radiation on aircraft crews and astronauts, as well as related regulations. International Commission on Radiological Protection (ICRP) recommends the practice of radiation exposure management for the handling/storage of radon and materials containing natural radioactive substances, as well as for boarding jet aircraft and space flight. Common aircraft crew members are not subject to radiation exposure management in the USA and Japan. In the EU, the limit value is 6 mSv per year, and for the crew group exceeding this value, it is recommended to keep records containing appropriate medical examination results. Pregnant female crewmembers are required to keep an abdominal surface dose within 1 mSv. For astronauts, ICRP is in the stage of thinking about exposure management. In the USA, National Council on Radiation Protection and Measurement has set dose limits for 30 days, 1 year, and lifetime, and recommends lifetime effective dose limits against carcinogenic risk for each gender and age group. This is the setting of the dose limits so that the risk of carcinogenesis, to which space radiation exposure is considered to contribute, will reach 3%. For cosmic radiation environments at spacecraft inside and aircraft altitude, radiation doses can be calculated for astronauts and crew members, using the calculation methods for effective dose and dose equivalent for tissue. (A.O.)

  19. Aircrew Exposure To Cosmic Radiation Evaluated By Means Of Several Methods; Results Obtained In 2006

    International Nuclear Information System (INIS)

    Ploc, Ondrej; Spurny, Frantisek; Jadrnickova, Iva; Turek, Karel

    2008-01-01

    Routine evaluation of aircraft crew exposure to cosmic radiation in the Czech Republic is performed by means of calculation method. Measurements onboard aircraft work as a control tool of the routine method, as well as a possibility of comparison of results measured by means of several methods. The following methods were used in 2006: (1) mobile dosimetry unit (MDU) type Liulin--a spectrometer of energy deposited in Si-detector; (2) two types of LET spectrometers based on the chemically etched track detectors (TED); (3) two types of thermoluminescent detectors; and (4) two calculation methods. MDU represents currently one of the most reliable equipments for evaluation of the aircraft crew exposure to cosmic radiation. It is an active device which measures total energy depositions (E dep ) in the semiconductor unit, and, after appropriate calibration, is able to give a separate estimation for non-neutron and neutron-like components of H*(10). This contribution consists mostly of results acquired by means of this equipment; measurements with passive detectors and calculations are mentioned because of comparison. Reasonably good agreement of all data sets could be stated

  20. Cosmic radiation and airline pilots: Exposure pattern as a function of aircraft type

    International Nuclear Information System (INIS)

    Tveten, U.; Haldorsen, T.; Reitan, J.

    2000-01-01

    The project presented here has been carried out as part of an epidemiological project on Norwegian aircraft personnel, entitled 'Exposure to low level ionising radiation and incidence of cancer in airline pilots and crew'. The purpose of the main project is to determine if there may be a relationship between exposure to cosmic radiation at aircraft cruising altitudes and the incidence of cancer. The methodology used as basis for estimating the radiation exposures is presented. The information used as basis for the dose estimations comes from a variety of sources: the files at the Personnel Licensing Section and the Aviation Medical Section of Norwegian Aviation Administration, the route tables of Scandinavian Airlines System (SAS), large amounts of expert information contributed by members of the Pilot's Associations in Norway and a couple of non-Norwegian pilots and from other members of the staff of SAS and other airlines. The estimation for each pilot was based on individual information of annual block hours and an estimated dose rate for each type of aircraft. The latter was estimated as a weighted average of CARI-estimated doses on a selection of routes flown by the airplanes in the different time periods. The project includes all pilots that have been licensed in Norway since 1946. These pilots have been flying a large variety of different types of aircraft and routes. The cosmic radiation intensity is a function of altitude in the atmosphere and, less markedly, of geographical latitude and of the intensity of the radiation from the sun (quantified as the heliocentric potential). Different types of aircraft fly at different altitudes and are used for different purposes (passenger traffic, cargo, air photography, preparation of maps etc) and used on different routes. The end results of the project described in this article are radiation exposures per block hour for each type of aircraft, and for each individual year (the differences between years reflect the

  1. CONCORD: comparison of cosmic radiation detectors in the radiation field at aviation altitudes

    Czech Academy of Sciences Publication Activity Database

    Meier, M.; Trompier, F.; Ambrožová, Iva; Kubančák, Ján; Matthia, D.; Ploc, Ondřej; Santen, N.; Wirtz, M.

    2016-01-01

    Roč. 6, MAY (2016), A24 ISSN 2115-7251 Institutional support: RVO:61389005 Keywords : aviation * radiation exposure of aircrew * comparison of radiation detectors * galactic cosmic radiation * ambient dose equivalent Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 2.446, year: 2016

  2. Cosmic radiation and airline pilots. Exposure patterns of Norwegian SAS-pilots 1960 to 1994

    International Nuclear Information System (INIS)

    Tveten, U.

    1997-02-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots employed by the Scandinavian Airline System (SAS). The results presented in this report (radiation doserates for the different types of aircraft in the different years) will, in a later stage of the project, be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for this work is the collection of old SAS time tables found in the SAS Museum at Fornebu Airport in Oslo, and information provided by members of the Pilots Associations

  3. Cosmic radiation and airline pilots. Exposure patterns of Norwegian SAS-pilots 1960 to 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.

    1997-02-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots employed by the Scandinavian Airline System (SAS). The results presented in this report (radiation doserates for the different types of aircraft in the different years) will, in a later stage of the project, be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for this work is the collection of old SAS time tables found in the SAS Museum at Fornebu Airport in Oslo, and information provided by members of the Pilots Associations.

  4. Cosmic rays exposure during aircraft flight (3). Guideline and dose evaluation

    International Nuclear Information System (INIS)

    Yasuda, Hiroshi

    2007-01-01

    Radiation Council of MEXT drew up the Guideline of Cosmic Ray Exposure Control for Air Crew in 2006. The content of the Guideline and evaluation methods of dose are explained. The Guideline stated five items for Airline Company. It consists of 1) exposure dose control for air crew, 2) evaluation methods of cosmic rays exposure dose of air crew, 3) explanation and education of cosmic rays exposure for air crew, 4) reading, record and store of cosmic rays exposure dose of air crew, and 5) health control of air crew. The doses of four airlines were calculated by the Civil Aeromedical Research Institute (CARI) code and the European Program package for the Calculation of Aviation Route Doses (EPCARD) code. The difference of two codes was about 15 to 25%. Japanese Internet System for Calculation of Aviation Route Doses (JISCAED) has been developed by Japan. (S.Y.)

  5. Cosmic radiation and airline pilots: Exposure pattern as a function of aircraft type

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.; Haldorsen, T.; Reitan, J

    2000-07-01

    The project presented here has been carried out as part of an epidemiological project on Norwegian aircraft personnel, entitled 'Exposure to low level ionising radiation and incidence of cancer in airline pilots and crew'. The purpose of the main project is to determine if there may be a relationship between exposure to cosmic radiation at aircraft cruising altitudes and the incidence of cancer. The methodology used as basis for estimating the radiation exposures is presented. The information used as basis for the dose estimations comes from a variety of sources: the files at the Personnel Licensing Section and the Aviation Medical Section of Norwegian Aviation Administration, the route tables of Scandinavian Airlines System (SAS), large amounts of expert information contributed by members of the Pilot's Associations in Norway and a couple of non-Norwegian pilots and from other members of the staff of SAS and other airlines. The estimation for each pilot was based on individual information of annual block hours and an estimated doserate for each type of aircraft. The latter was estimated as a weighted average of CARI-estimated doses on a selection of routes flown by the airplanes in the different time periods. The project includes all pilots that have been licensed in Norway since 1946. These pilots have been flying a large variety of different types of aircraft and routes. The cosmic radiation intensity is a function of altitude in the atmosphere and, less markedly, of geographical latitude and of the intensity of the radiation from the sun (quantified as the heliocentric potential). Different types of aircraft fly at different altitudes and are used for different purposes (passenger traffic, cargo, air photography, preparation of maps etc) and used on different routes. The end results of the project described in this article are radiation exposures per block hour for each type of aircraft, and for each individual year (the differences between years

  6. Comparison and application study on cosmic radiation dose calculation received by air crew

    International Nuclear Information System (INIS)

    Zhou Qiang; Xu Cuihua; Ren Tianshan; Li Wenhong; Zhang Jing; Lu Xu

    2009-01-01

    Objective: To facilitate evaluation on Cosmic radiation dose received by flight crew by developing a convenient and effective measuring method. Methods: In comparison with several commonly used evaluating methods, this research employs CARI-6 software issued by FAA (Federal Aviation Administration) to measure Cosmic radiation dose for flight crew members exposed to. Results: Compared with other methods, CARI-6 is capable of providing reliable calculating results on radiation dose and applicable to all flight crew of different airlines. Conclusion: Cosmic radiation received by flight crew is on the list of occupational radiation. For a smooth running of Standards for controlling exposure to cosmic radiation of air crew, CARI software may be a widely applied tool in radiation close estimation of for flight crew. (authors)

  7. Occupational cosmic radiation exposure in Portuguese airline pilots: study of a possible correlation with oxidative biological markers.

    Science.gov (United States)

    Silva, Rodrigo; Folgosa, Filipe; Soares, Paulo; Pereira, Alice S; Garcia, Raquel; Gestal-Otero, Juan Jesus; Tavares, Pedro; Gomes da Silva, Marco D R

    2013-05-01

    Several studies have sought to understand the health effects of occupational exposure to cosmic radiation. However, only few biologic markers or associations with disease outcomes have so far been identified. In the present study, 22 long- and 26 medium-haul male Portuguese airline pilots and 36 factory workers who did not fly regularly were investigated. The two groups were comparable in age and diet, were non-smokers, never treated with ionizing radiation and other factors. Cosmic radiation exposure in pilots was quantified based on direct monitoring of 51 flights within Europe, and from Europe to North and South America, and to Africa. Indirect dose estimates in pilots were performed based on the SIEVERT (Système informatisé d'évaluation par vol de l'exposition au rayonnement cosmique dans les transports aériens) software for 6,039 medium- and 1,366 long-haul flights. Medium-haul pilots had a higher cosmic radiation dose rate than long-haul pilots, that is, 3.3 ± 0.2 μSv/h and 2.7 ± 0.3 μSv/h, respectively. Biological tests for oxidative stress on blood and urine, as appropriate, at two time periods separated by 1 year, included measurements of antioxidant capacity, total protein, ferritin, hemoglobin, creatinine and 8-hydroxy-2-deoxyguanosine (8OHdG). Principal components analysis was used to discriminate between the exposed and unexposed groups based on all the biological tests. According to this analysis, creatinine and 8OHdG levels were different for the pilots and the unexposed group, but no distinctions could be made among the medium- and the long-haul pilots. While hemoglobin levels seem to be comparable between the studied groups, they were directly correlated with ferritin values, which were lower for the airline pilots.

  8. Dosemetry for exposures to cosmic radiation in civilian aircraft - Part 1: Conceptual basis for measurements

    International Nuclear Information System (INIS)

    2006-01-01

    Aircraft crew are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union (EU) introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionizing radiation, including cosmic radiation, as occupational exposure. The Directive requires account to be taken of the exposure of aircraft crew liable to receive more than 1 mSv per year. It then identifies the following four protection measures: (i) to assess the exposure of the crew concerned; (ii) to take into account the assessed exposure, when organizing working schedules with a view to reducing the doses of highly exposed crew; (iii) to inform the workers concerned of the health risks their work involves; and (iv) to apply the same special protection during pregnancy to female crew in respect of the 'child to be born' as to other female workers. The EU Council Directive has already been incorporated into laws and regulations of EU Member States and is being included in the aviation safety standards and procedures of the Joint Aviation Authorities and the European Air Safety Agency. For regulatory and legislative purposes, the radiation protection quantities of interest are equivalent dose (to the foetus) and effective dose. The cosmic radiation exposure of the body is essentially uniform and the maternal abdomen provides no effective shielding to the foetus. As a result, the magnitude of equivalent dose to the foetus can be put equal to that of the effective dose received by the mother. Doses on board aircraft are generally predictable, and events comparable to unplanned exposure in other radiological workplaces cannot normally occur (with the rare exceptions of extremely intense and energetic solar particle events). Personal dosemeters for

  9. Environmental radioactivity and radiation exposure

    International Nuclear Information System (INIS)

    1980-01-01

    In 1977 population exposure in the Federal Republic of Germany has not changed as compared to the previous years. The main share of the total exposure, nearly two thirds, is attributed to natural radioactive substances and cosmic radiation. The largest part (around 85%) of the artificial radiation exposure is caused by X-ray diagnostics. In comparison to this, radiation exposure from application of ionizing radiation in medical therapy, use of radioactive material in research and technology, or from nuclear facilities is small. As in the years before, population exposure caused by nuclear power plants and other nuclear facilities is distinctly less than 1% of the natural radiation exposure. This is also true for the average radiation exposure within a radius of 3 km around nuclear facilities. On the whole, the report makes clear that the total amount of artificial population exposure will substantially decrease only if one succeeds in reducing the high contribution to the radiation exposure caused by medical measures. (orig.) [de

  10. Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign

    Science.gov (United States)

    Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; hide

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.

  11. Natural and anthropogenic radiation exposure of humans in Germany

    International Nuclear Information System (INIS)

    Koelzer, Winfried

    2016-12-01

    The contribution on natural and anthropogenic radiation exposure in Germany covers the following issues: (1) natural radiation exposure: external radiation exposure - cosmic and terrestric radiation, internal radiation exposure - primordial and cosmogenic radionuclides; radiation exposure due to sola neutrinos and geo-neutrinos. (2) Anthropogenic radiation exposure: radiation exposure in medicine, radioactivity in industrial products, radiation exposure during flights, radiation exposure due to nuclear facilities, radiation exposure due to fossil energy carriers in power generation, radiation exposure due to nuclear explosions, radiation exposure due to nuclear accidents. (3) Occupational radiation exposure in Germany: radiation monitoring with personal dosimeters in medicine and industry, dose surveillance of the aviation personal, working places with increases radiation exposure by natural radiation sources.

  12. Aircrew Exposure from Cosmic Radiation on Commercial Airline Routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; McCall, M.J.; Green, A.R.; Bennett, L.G.I.; Pierre, M.; Schrewe, U.J.; O' Brien, K.; Felsberger, E

    2001-07-01

    As a result of the recent recommendations of the ICRP 60, and in anticipation of possible regulation on occupational exposure of Canadian-based aircrew, an extensive study was carried out by the Royal Military College of Canada over a one-year period to measure the cosmic radiation at commercial jet altitudes. A tissue-equivalent proportional counter was used to measure the ambient total dose equivalent rate on 62 flight routes, resulting in over 20,000 data points at one-minute intervals at various altitudes and geomagnetic latitudes (i.e. which span the full cut-off rigidity of the Earth's magnetic field). These data were then compared to similar experimental work at the Physikalisch Technische Bundesanstalt, using a different suite of equipment, to measure separately the low and high linear energy transfer components of the mixed radiation field, and to predictions with the LUIN transport code. All experimental and theoretical results were in excellent agreement. From these data, a semi-empirical model was developed to allow for the interpolation of the dose rate for any global position, altitude and date (i.e. heliocentric potential). Through integration of the dose rate function over a great circle flight path, a computer code was developed to provide an estimate of the total dose equivalent on any route worldwide at any period in the solar cycle. (author)

  13. Americans' Average Radiation Exposure

    International Nuclear Information System (INIS)

    2000-01-01

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body

  14. Cosmic Radiation and Aircrew Exposure: Implementation of European Requirements in Civil Aviation, Dublin, 1-3 July 1998

    Science.gov (United States)

    Talbot, Lee

    1999-03-01

    The European Union's Basic Safety Standards Directive (96/29/Euratom) lays down safety standards for the protection of workers and the general public against the effects of ionising radiations. Article 42 of the Directive deals with the protection of aircrew. It states that for crew of jet aircraft who are likely to be subject to exposure to more than 1 mSv y-1 appropriate measures must be taken, in particular: to assess the exposure of the crew concerned, to take into account the assessed exposure when organising working schedules with a view to reducing the doses of highly exposed aircrew, to inform concerned workers of the health risks involved in their work, to apply Article 10 to female aircrew. (The unborn child shall be treated like a member of the public.) This Directive must be transformed into national law of the 15 member states of the European Union by 13 May 2000. The European Commission and the Radiological Protection Institute of Ireland sponsored this International Conference. The objective of this conference was to assist both the airline industry and the national regulatory organisations in identifying the means available to comply with the requirements of the Directive. Over 200 delegates attended the conference from more than 25 countries. The welcoming addresses were made by Mary Upton (Director of the Radiological Protection Institute of Ireland), Joe Jacob (Minister for State responsible for Nuclear Safety) and James Currie (Director-General for the Environment, Nuclear Safety and Civil Protection). Mr Currie stated that there was a need for political decisions to be based on good science, and that technological trends will lead to higher and longer flights, and therefore higher radiation doses. The first day concentrated on the scientific basis of measurement, calculation and monitoring of cosmic radiation. The first speaker, Dr Heinrich from the University of Siegen, Germany, talked about the physics of cosmic radiation fields. He pointed

  15. ACREM: A new air crew radiation exposure measuring system

    International Nuclear Information System (INIS)

    Beck, P.; Duftschmid, K.; Kerschbaumer, S.; Schmitzer, C.; Strachotinsky, C.; Grosskopf, A.; Winkler, N.

    1996-01-01

    Cosmic radiation has already been discovered in 1912 by the Austrian Nobel Laureate Victor F. Hess. After Hess up to now numerous measurements of the radiation exposure by cosmic rays in different altitudes have been performed, however, this has not been taken serious in view of radiation protection.Today, with the fast development of modern airplanes, an ever increasing number of civil aircraft is flying in increasing altitudes for considerable time. Members of civil aircrew spending up to 1000 hours per year in cruising altitudes and therefore are subject to significant levels of radiation exposure. In 1990 ICRP published its report ICRP 60 with updated excess cancer risk estimates, which led to significantly higher risk coefficients for some radiation qualities. An increase of the radiation weighting factors for mean energy neutron radiation increases the contribution for the neutron component to the equivalent dose by about 60%, as compared to the earlier values of ICRP26. This higher risk coefficients lead to the recommendation of the ICRP, that cosmic radiation exposure in civil aviation should be taken into account as occupational exposure. Numerous recent exposure measurements at civil airliners in Germany, Sweden, USA, and Russia show exposure levels in the range of 3-10 mSv/year. This is significantly more than the average annual dose of radiation workers (in Austria about 1.5 mSv/year). Up to now no practicable and economic radiation monitoring system for routine application on board exits. A fairly simple and economic approach to a practical, active in-flight dosimeter for the assessment of individual crew exposure is discussed in this paper

  16. Cosmic radiation and airline pilots. Exposure patterns of Norwegian pilots flying aircraft not used by SAS

    International Nuclear Information System (INIS)

    Tveten, U.

    1997-05-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots flying a great diversity of different aircrafts. Aircrafts that appear in the time-tables of the Scandinavian Airline System (SAS) have been treated in an earlier report. The results presented in this report (radiation doserates for the different types of aircrafts in the different years) will, in a later stage of the project be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for the work in this report is information provided by several active pilots, members of the Pilots Associations, along with calculations performed using US Federal Aviation Administration's computer code CARI-3N. 2 refs

  17. Cosmic radiation and airline pilots. Exposure patterns of Norwegian pilots flying aircraft not used by SAS

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U.

    1997-05-01

    The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institutt for Energiteknikk (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). The project has been partially financed by the Norwegian Research Council. Originating from the Norwegian project, a number of similar projects have been started or are in the planning stage in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots flying a great diversity of different aircrafts. Aircrafts that appear in the time-tables of the Scandinavian Airline System (SAS) have been treated in an earlier report. The results presented in this report (radiation doserates for the different types of aircrafts in the different years) will, in a later stage of the project be utilized to estimate the individual radiation exposure histories. The major sources of information used as basis for the work in this report is information provided by several active pilots, members of the Pilots Associations, along with calculations performed using US Federal Aviation Administration`s computer code CARI-3N. 2 refs.

  18. Environmental radioactivity and radiation exposure in 2013; Umweltradioaktivitaet und Strahlenbelastung im Jahr 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    The report on the environmental radioactivity and radiation exposure in 2013 covers the natural radiation exposure due to radon, food, cosmic and terrestric radiation and the radiation exposure due to nuclear medicine nuclear facilities, mining, industry household and fallout. Special issues are the occupational radiation exposure the medical radiation exposure and the exposure to non-ionizing radiation.

  19. Natural environmental radioactivity with particular regard to radon gas and cosmic radiation

    International Nuclear Information System (INIS)

    Lowder, W.M.

    1993-01-01

    A paper given at the previous workshop described the growth of our knowledge of the nature and sources of human exposure to naturally-occurring radiation and radionuclides, and summarized assessments of the individual components of this exposure. Here, some recent developments relevant to the earlier conclusions are described, and a closer look is taken at the increasingly important human exposure contribution of cosmic radiation, especially at aircraft altitudes. (author). 21 refs, 1 tab

  20. Aircrew radiation exposure: sources-risks-measurement

    International Nuclear Information System (INIS)

    Duftschmid, K.E.

    1994-05-01

    A short review is given on the actual aircrew exposure and its sources. The resulting risks for harmful effects to the health and discuss methods for in-flight measurements of exposure is evaluated. An idea for a fairly simple and economic approach to a practical, airborne active dosimeter for the assessment of individual crew exposure is presented. The exposure of civil aircrew to cosmic radiation, should not be considered a tremendous risk to the health, there is no reason for panic. However, being significantly higher than the average exposure to radiation workers, it can certainly not be neglected. As recommended by ICRP, aircrew exposure has to be considered occupational radiation exposure and aircrews are certainly entitled to the same degree of protection, as other ground-based radiation workers have obtained by law, since long time. (author)

  1. The HZE radiation problem. [highly-charged energetic galactic cosmic rays

    Science.gov (United States)

    Schimmerling, Walter

    1990-01-01

    Radiation-exposure limits have yet to be established for missions envisioned in the framework of the Space Exploration Initiative. The radiation threat outside the earth's magnetosphere encompasses protons from solar particle events and the highly charged energetic particles constituting galactic cosmic rays; radiation biology entails careful consideration of the extremely nonuniform patterns of such particles' energy deposition. The ability to project such biological consequences of exposure to energetic particles as carcinogenicity currently involves great uncertainties from: (1) different regions of space; (2) the effects of spacecraft structures; and (3) the dose-effect relationships of single traversals of energetic particles.

  2. Rock Formation and Cosmic Radiation Exposure Ages in Gale Crater Mudstones from the Mars Science Laboratory

    Science.gov (United States)

    Mahaffy, Paul; Farley, Ken; Malespin, Charles; Gellert, Ralph; Grotzinger, John

    2014-05-01

    The quadrupole mass spectrometer (QMS) in the Sample Analysis at Mars (SAM) suite of the Mars Science Laboratory (MSL) has been utilized to secure abundances of 3He, 21Ne, 36Ar, and 40Ar thermally evolved from the mudstone in the stratified Yellowknife Bay formation in Gale Crater. As reported by Farley et al. [1] these measurements of cosmogenic and radiogenic noble gases together with Cl and K abundances measured by MSL's alpha particle X-ray spectrometer enable a K-Ar rock formation age of 4.21+0.35 Ga to be established as well as a surface exposure age to cosmic radiation of 78+30 Ma. Understanding surface exposures to cosmic radiation is relevant to the MSL search for organic compounds since even the limited set of studies carried out, to date, indicate that even 10's to 100's of millions of years of near surface (1-3 meter) exposure may transform a significant fraction of the organic compounds exposed to this radiation [2,3,4]. Transformation of potential biosignatures and even loss of molecular structural information in compounds that could point to exogenous or endogenous sources suggests a new paradigm in the search for near surface organics that incorporates a search for the most recently exposed outcrops through erosional processes. The K-Ar rock formation age determination shows promise for more precise in situ measurements that may help calibrate the martian cratering record that currently relies on extrapolation from the lunar record with its ground truth chronology with returned samples. We will discuss the protocol for the in situ noble gas measurements secured with SAM and ongoing studies to optimize these measurements using the SAM testbed. References: [1] Farley, K.A.M Science Magazine, 342, (2013). [2] G. Kminek et al., Earth Planet Sc Lett 245, 1 (2006). [3] Dartnell, L.R., Biogeosciences 4, 545 (2007). [4] Pavlov, A. A., et al. Geophys Res Lett 39, 13202 (2012).

  3. What is cosmic radiation?; Qu'est ce-que le rayonnement cosmique?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The earth was indeed receiving ionizing radiations from the heavens. This cosmic radiation consists of particles travelling near the speed of light. It consists of two components, the first of which is permanent and of galactic origin, while the other is more sporadic, depending on the sun's activities. Natural land-based sources expose each of us to an average total dose of 2.4 mSv per year (source UNSCEAR). In addition, the human activities using ionizing radiation contribute to an average annual exposure of 1.4 mSv, originating primarily with medical activities ( radiodiagnostic and radiation therapy). Members of flights crew are subject to exposure. The total dose of cosmic radiation received is is directly proportional with the duration of exposure, and thus with the duration of the flight. Measurement taken on board aircraft during the 1990's showed that flight personnel (on long haul flights) receive an average dose of approximately the same magnitude as the one due to exposure to natural radioactivity in France. The damage caused by ionizing radiation depends on the quantity of energy released by radiation into the cells of each organ or tissue of the human body(exposure dose). For a given quantity of absorbed energy (dose expressed in Gray), the damage will vary according to the nature of the radiation and the affected organ. These effects are of two types: acute effects and deferred effects. Two measurements are essential for radiation protection: the measurements of the dose of radiation absorbed by the body and the assessment of the risk associated with the absorbed dose. Two units were thus created: the gray and the sievert. (N.C.)

  4. PROTECTION FROM COSMIC RADIATION IN LONG-TERM MANNED SPACEFLIGHTS

    Directory of Open Access Journals (Sweden)

    Marco Durante

    2012-06-01

    Full Text Available Current space programs are shifting toward planetary exploration, and in particular towards human missions to the moon and Mars. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared to radiation on Earth, leading to large uncertainties in the projection of health risks. Even if uncertainties in risk assessment will be reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Unfortunately, passive (bulk shielding is currently unable to provide adequate protection, because cosmic rays have very high energy and nuclear fragmentation in the absorbers produce light fragments. Material science could provide new materials with better shielding properties for space radiation. Active (magnetic shielding could be an interesting alternative, pending technical improvements.

  5. Evaluation of exposure to cosmic radiation of flight crews of Lithuanian Airlines

    International Nuclear Information System (INIS)

    Morkunas, G.; Pilkyte, L.; Ereminas, D.

    2003-01-01

    In Lithuania the average annual effective dose due to cosmic radiation at the sea level is 0.38 mSv. The dose rate caused by cosmic radiation increases with altitude due to the decrease in attenuation of cosmic radiation by atmosphere. Dose rates altitudes of commercial flights are tens times higher than those at the sea level. For this reason people who frequently fly receive higher doses which might even be subject to legal regulations. The European Council Directive (96/29 EURATOM) on basic radiation safety standards requires that doses of air crews members be assessed and appropriate measures taken, depending on the assessment results. The aim of this study was to evaluate potential doses, which can be received by members of air crews of Lithuania Airlines. The assessment was done by performing measurements and calculations. Measurements were performed in flying aircraft by thermoluminescent detectors, Geiger Muller counters and neutron rem counter. Such an approach lead to evaluation of doses due to directly ionizing particles and neutrons. Calculations were done with the help of the code CARI-6M. Such parameters as flight route, solar activity, duration and altitudes of flight were taken into account. Doses received during different flights and in different air crafts were assessed. The results of measurements and calculations were compared and differences discussed. The results were also compared with the data obtained in other similar studies. It was found that the highest doses are received in flights to Paris, London, Amsterdam, and Frankfurt by aircraft B737. A number of flights causing annual doses higher than 1 mSv was estimated. Despite the fact that only European flights are operated by Lithuanian Airlines the dose of 1 mSv may be exceeded under some circumstances. If it happens some radiation protection measures shall be taken. These measures are also discussed. (author)

  6. Exposure to background radiation in Australia

    International Nuclear Information System (INIS)

    Solomon, S.B.

    1997-01-01

    The average effective dose received by the Australian population is estimated to be ∼1.8 mSv / year. One half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This paper reviews a number of research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background, particularly in the workplace and illustrate approaches to the quantification and management of exposure to natural radiation. The average radiation doses to the Australian population are relatively low; the average annual radon concentration ranged from 6 Bq m -3 in Queensland to 16 Bq m -3 in the Australian Capital Territory (ACT). Of more importance is the emerging issue of exposure to elevated background radiation in the workplace. Two situation are presented; the radiation exposure to air crues and show cave tour guides. Annual doses up to 3.8 mSv were estimated for international crew members while the highest estimate for show cave tour guides was 9 mSv per year

  7. Solar Modulation of Atmospheric Cosmic Radiation:. Comparison Between In-Flight and Ground-Level Measurements

    Science.gov (United States)

    Iles, R. H. A.; Taylor, G. C.; Jones, J. B. L.

    January 2000 saw the start of a collaborative study involving the Mullard Space Science Laboratory, Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory in a program to investigate the cosmic radiation exposure to aircrew. The study has been undertaken in view of EU Directive 96/291 (May 2000) which requires the assessment of the level of radiation exposure to aircrew. The project's aims include validation of radiation dose models and evaluation of space weather effects on atmospheric cosmic radiation levels, in particular those effects not accounted for by the models. Ground level measurements are often used as a proxy for variations in cosmic radiation dose levels at aircraft altitudes, especially during Forbush Decreases (FDs) and Solar Energetic Particle (SEP) events. Is this estimation realistic and does the ground level data accurately represent what is happening at altitude? We have investigated the effect of a FD during a flight from Hong Kong to London Heathrow on the 15th July 2000 and compared count rate and dose measurements with simultaneous variations measured at ground level. We have also compared the results with model outputs.

  8. Hazards of cosmic radiation

    International Nuclear Information System (INIS)

    Bonnet-Bidaud, J.M.; Dzitko, H.

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: i) the magnetic field generated by the solar wind, ii) the earth magnetic field (magnetosphere), and iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  9. Evaluation of natural radiation exposure of the French population

    International Nuclear Information System (INIS)

    Billon, S.; Morin, A.; Baysson, H.; Gambard, J.P.; Rannou, A.; Tirmarche, M.; Laurier, D.; Caer, S.

    2004-01-01

    Exposure of the French population to ionising radiation is mainly due to natural radiation (i.e. exposure through: inhalation of radon decay products, external radiation of terrestrial and cosmic origin and water and food ingestion). In an epidemiological context, it is necessary to estimate as precisely as possible the population exposure, in order to study its influence on health indicators. In this aim, indicators of population exposure should be created taking into account results of environmental measurements by controlling the different factors that may influence these measurements (dwelling characteristics, seasonal variations, population density). The distribution of these exposures should also be studied at different geographical levels (department, job area). This work updates the estimation of the French population exposure to natural radiation. Radon exposure indicators have been based on concentrations measured in dwellings, corrected on season and dwelling characteristics (departmental range: 19-297 Bq/m 3 ). Indicators of terrestrial gamma ray exposure have been based on measured indoor and outdoor dose rates adjusted on dwelling characteristics (22-95 nSv/h). Cosmic ray exposure has been evaluated from altitude and weighted by population density (0.27-0.38 mSv/yr). Due to these three components, the effective annual dose was estimated to be at 2.2 mSv. (author)

  10. Radiation exposure profile and dose estimates to flyers en route Frankfurt to Mumbai

    International Nuclear Information System (INIS)

    Rao, D.D.; Hegde, A.G.

    2010-01-01

    The earth is continuously bombarded by the high energy radiation (galactic radiation) from solar system commonly known as cosmic radiation. Intensity of cosmic ray radiation exposures change with altitude and increases rapidly with the increase in altitude from the earth. Passenger and cargo flights fly at different altitudes and therefore the crew and passengers are exposed to radiation levels significantly higher than the average background levels on the earth. A typical commercial jet aircraft fly at an altitude of 30,000 - 40,000 feet (9-12 km) and at these heights radiation exposure rates increase by about 100 times from the background levels. European countries have guidelines and suggestions on radiation exposure to air crew members in sectors that may potentially expose them to levels exceeding 1 mSv per annum. The paper details the radiation exposure profile recorded in Frankfurt-Dubai-Mumbai sector and evaluation of average radiation exposure received by the flyers and air crew members

  11. French population's exposure to ionizing radiations

    International Nuclear Information System (INIS)

    2016-01-01

    This report deals with the exposure of the French population to ionizing radiation. The exposures taken into account are related to cosmic and telluric radiations, to radon, to ingestion of natural radionuclides, to medical imaging and to industrial and military sources. Additionally to the mean effective dose, considered as the macroscopic indicator of the population exposure, the variations of the effective dose for each source of exposure are also presented. Then, the variation of the total effective dose is presented. (authors)

  12. Natural background radiation exposures world-wide

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1993-01-01

    The average radiation dose to the world's population from natural radiation sources has been assessed by UNSCEAR to be 2.4 mSv per year. The components of this exposure, methods of evaluation and, in particular, the variations in the natural background levels are presented in this paper. Exposures to cosmic radiation range from 0.26 mSv per year at sea level to 20 times more at an altitude of 6000 m. Exposures to cosmogenic radionuclides ( 3 H, 14 C) are relatively insignificant and little variable. The terrestrial radionuclides 40 K, 238 U, and 232 Th and the decay products of the latter two constitute the remainder of the natural radiation exposure. Wide variations in exposure occur for these components, particularly for radon and its decay products, which can accumulate to relatively high levels indoors. Unusually high exposures to uranium and thorium series radionuclides characterize the high natural background areas which occur in several localized regions in the world. Extreme values in natural radiation exposures have been estimated to range up to 100 times the average values. (author). 15 refs, 3 tabs

  13. Exposures to natural radiation in Switzerland

    International Nuclear Information System (INIS)

    Murith, Ch.; Gurtner, A.

    1999-01-01

    The exposure of human beings to ionising radiation from natural sources is a continuing and inescapable feature of life on earth. There are two main sources that contribute to this exposure: high-energy cosmic-ray particles incident to the earth's atmosphere and radioactive nuclides that originated in the earth's crust and are present everywhere in the environment, including human body itself. Both external and internal exposures to humans arise from these sources. Exposures to natural radiation sources in Switzerland and some of their variations are here summarised and the resulting effective doses are compared to those from man-made sources exposures. It results that the natural background exposures are more significant for the population than most exposures to man-made sources. (authors)

  14. Track-etched detectors for the dosimetry of the radiation of cosmic origin

    International Nuclear Information System (INIS)

    Spurny, F.; Turek, K.

    2004-01-01

    Cosmic rays contribute to the exposure on the Earth's surface as well as in its surroundings. At the surface and/or at aviation altitudes, there are mostly secondary particles created through the cosmic rays interaction in the atmosphere, which contribute to this type of exposure. Onboard a spacecraft, the exposure comes mostly from primary cosmic rays. Track-etched detectors (TED) are able to characterise both these types of exposure. The contribution of neutrons, of cosmic origin, on the Earth's surface was studied at altitudes from few hundreds to 3000 m using TED in a moderator sphere. The results obtained are compared with other data on this type of natural radiation background. The results of studies performed onboard aircraft and/or spacecraft are presented afterwards. We used TED-based neutron dosemeter, as well as a spectrometer of linear energy transfer based on a chemically etched TED. The results of studies performed onboard aircraft, as well as spacecraft, are presented and discussed, including an attempt to estimate a neutron component onboard the spacecraft. It was found that they correlate with the results of other independent investigations. (authors)

  15. Cosmic-ray exposure records and origins of meteorites

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1985-01-01

    The cosmic-ray records of meteorites can be used to infer much about their origins and recent histories. Some meteorites had simple cosmic-ray exposure histories, while others had complex exposure histories with their cosmogenic products made both before and after a collision in space. The methods used to interpret meteorites' cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Besides spallogenic radionuclides and stable nuclides, measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measurements, plus theoretical modeling of complex histories, will improve our ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages

  16. Exposure of the Spanish population to radiation from natural sources

    International Nuclear Information System (INIS)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L.

    2006-01-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value by a conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  17. Exposure of the Spanish population to radiation from natural sources

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Talavera, M.; Suarez, E.; Matarranz, J.L.; Salas, R.; Ramos, L. [Consejo de Seguridad Nuclear. Justo Dorado, Madrid (Spain)

    2006-07-01

    We have assessed the exposure of the Spanish population to natural radiation sources. The annual average effective dose is estimated to be 2.38 mSv, taking into account contributions from cosmic radiation (13.8%), terrestrial gamma radiation (39%), radon and thoron inhalation (34%) and ingestion (13.2%). Cosmic radiation doses were calculated from town altitude data. Terrestrial gamma ray exposure outdoors was derived from the M.A.R.N.A. (natural gamma radiation map of Spain). Indoor gamma ray exposure was calculated by multiplying the corresponding outdoor value conversion factor, which was obtained by a linear least-squares fit of experimental measurements. Radon doses were estimated from national surveys carried out throughout the country. To assess doses by ingestion of water and foodstuffs we considered the results from a detailed study on consumption habits by age and geographical area in Spain, promoted by C.S.N., and average radioactivity values from UNSCEAR. (authors)

  18. Exposure to background radiation in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B. [Australian Radiation Lab., Melbourne, VIC (Australia)

    1997-12-31

    The average effective dose received by the Australian population is estimated to be {approx}1.8 mSv / year. One half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This paper reviews a number of research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background, particularly in the workplace and illustrate approaches to the quantification and management of exposure to natural radiation. The average radiation doses to the Australian population are relatively low; the average annual radon concentration ranged from 6 Bq m{sup -3} in Queensland to 16 Bq m{sup -3} in the Australian Capital Territory (ACT). Of more importance is the emerging issue of exposure to elevated background radiation in the workplace. Two situation are presented; the radiation exposure to air crues and show cave tour guides. Annual doses up to 3.8 mSv were estimated for international crew members while the highest estimate for show cave tour guides was 9 mSv per year. 9 refs., 2 tabs., 4 figs.

  19. Risk evaluation of cosmic-ray exposure in long-term manned space mission

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu; Majima, Hideyuki; Ando, Koichi; Yasuda, Hiroshi; Suzuki, Masao

    1999-03-01

    Long-term manned space missions are planned to be implemented within the first two decades of the 21st century. The International Space Station (ISS) will be ready to run, and a plan to visit Mars is also under way. Humans will live in space for long periods of time and we are planning to do experiments in space to examine various aspects of space science. The main risk in long-term manned space missions is large exposure to space radiation. Human safety must be ensured in space where exposure to cosmic rays is almost 1 mSv a day. As such missions will inevitably result in significant exposure for astronauts, there is increasing need to protect them adequately based on both physical and biological knowledge. A good method to evaluate realistic risk associated with space missions will be in urgent demand. At the National Institute of Radiological Sciences (NIRS), Chiba, Japan, a research institutes of the Science Technology Agency of Japan, high energy cosmic radiation can be simulated only with heavy ion irradiation accelerated by the particle accelerator, Heavy Ion Medical Accelerator (HIMAC). Research to evaluate risk of space radiation, including physical measurement techniques, protective effects, biological effects and risk adjustment, aging, neuronal cell damage and cancer risk are undergoing. We organized a workshop of the latest topics and experimental results of physics and biology related to space radiation supported by Japan Science and Technology Corporation (JST). This workshop was held as a satellite meeting associated with the 32nd Committee on Space Research (COSPAR) Scientific Assembly (Nagoya, July 12-19th, 1998). This volume is an extended proceedings of the workshop. The proceedings contain six main subjects covering the latest information on Risk Evaluation of Cosmic-Ray Exposure in Long-Term Manned Space Mission'. 1. Risk Estimation of Heavy Ion Exposure in Space. 2. Low Dose-Rate Effects and Microbeam-Related Heavy Ions. 3. Chromosome and

  20. To the problem of superfluous cosmic radiation

    International Nuclear Information System (INIS)

    Savenko, I.A.; Saraeva, M.A.; Shavrin, P.I.

    1979-01-01

    From consideration of a number of basic works on the excessive cosmic radiation given is the most probable composition (electron, proton, and nuclear components) of this radiation in equatorial regions at altitudes corresponding to minimum altitudes of the drift trajectories hsub(min) <= 0, in case of detecting by detector on the artificial satellite of the Earth (ASE) with the mass up to 1t and of the heavier ASE. The disagreement in spectra of solar cosmic rays obtained along the latitude effect on the ASE. ''Molniya-1'' and in the experiments out of the magnetosphere on the ASE ''Explorer-41'' is explained by excessive radiation production of solar cosmic rays. The comparison of readings of the neutron channel with those of the charged particle channels of the apparatus on the ASE ''Molniya-1'' during the proton event on 25.01.1971 does not contradict to the supposition on the similarity of excessive cosmic radiation production of galactic and solar cosmic rays

  1. Radiation Protection Concepts and Quantities for the Occupational Exposure to Cosmic Radiation

    International Nuclear Information System (INIS)

    Bartlett, D.T.

    1999-01-01

    For the purposes of dose limitation and dose control, the harm, or detriment, of exposure to radiation is assessed by the quantity effective dose. Effective dose is evaluated by the application of factors to the averaged absorbed dose in the organs and tissues of the body. Radiation monitoring instruments are generally calibrated in terms of the quantity ambient dose equivalent which is defined in a simple spherical phantom. The relationship of these quantities is described. Requirements for the radiation protection of aircraft crew are given in the European Union Council Directive 96/29/EURATOM. There are requirements to assess the exposure of aircraft crew, to inform them of health risks, to reduce higher doses, and to control the dose to the foetus. There are no explicit dose limits, other than a dose objective to be applied to the exposure of the foetus, and no requirements for designation of areas or classification of workers. There are significant differences between the exposure condition of aircraft crew and workers in most other industries where there is occupational exposure to radiation. There are greater ranges of radiation types and energy, and there are different dose distributions and characteristics of the working populations. However, the field intensity is predictable and, with the exception of rare solar events, there is no risk of significant unexpected exposures. Dose assessment is anticipated to be by folding staff roster information with estimates of route doses, since there is little variability of dose rate within an aircraft. Route doses, which may be either an agreed average value for a given airport pairing and aircraft type, or be flight specific, will be closely linked to measured values. Requirements as to the accuracy of dose assessment should be applied which are broadly similar to those used in individual monitoring generally. (author)

  2. Cosmic radiation doses at flight level altitudes of airliners

    International Nuclear Information System (INIS)

    Viragh, E.; Petr, I.

    1985-01-01

    Changes are discussed in flux density of cosmic radiation particles with time as are the origin of cosmic radiation, the level of cosmic radiation near the Earth's surface, and the determination of cosmic radiation doses in airliners. Doses and dose rates are given measured on different flight routes. In spite of the fact that the flight duration at an altitude of about 10 km makes for about 80% of the total flight time, the overall radiation burden of the crews at 1000 flight hours a year is roughly double that of the rest of the population. (J.C.)

  3. Cosmic Ray Modulation and Radiation Dose of Aircrews During Possible Grand Minimum

    Science.gov (United States)

    Miyake, S.; Kataoka, R.; Sato, T.; Imada, S.; Miyahara, H.; Shiota, D.; Matsumoto, T.; Ueno, H.

    2017-12-01

    The Sun is exhibiting low solar activity levels since the descending phase of the last solar cycle, and it is likely to be continued as well as in the case of the past grand solar minima. The cosmic-ray modulation, which is the variation of the galactic cosmic ray (GCR) spectrum caused by the heliospheric environmental change, is basically anti-correlated with the solar activity. In the recent weak solar cycle, we thus expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude, we have developed the time-dependent and three-dimensional model of the cosmic-ray modulation. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind speed, the strength of the heliospheric magnetic field (HMF), and its tilt angle. We solve the gradient-curvature drift motion of GCRs in the HMF, and therefore reproduce the 22-year variation of the cosmic-ray modulation. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In our previous study [1], we calculated the radiation dose at a flight altitude during the coming solar cycle by assuming the variation of the solar wind speed and the strength of the HMF expressed by sinusoidal curve, and obtained that an annual radiation dose of aircrews in 5 years around the next solar minimum will be up to 19% higher than that at the last cycle. In this study, we predict the new model of the heliospheric environmental change on the basis of a prediction model for the sunspot number. The quantitative predictions of the cosmic-ray modulation and the radiation dose at a flight altitude during possible Grand Minimum considering

  4. Cosmic-ray exposure records and origins of meteorites

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1985-01-01

    The cosmic-ray records of meteorites are used to infer much about their origins and recent histories. The methods used to interpret meteorites cosmic-ray records, especially identifying simple or complex exposure histories, often are inadequate. Spallogenic radionuclides, stable nuclides, and measurements of products that have location-sensitive production rates, such as the tracks of heavy cosmic-ray nuclei or neutron-capture nuclides, are very useful in accurately determining a meteorite's history. Samples from different, known locations of a meteorite help in studying the cosmic-ray record. Such extensive sets of meteorite measuremetns, plus theoretical modeling of complex histories, improves the ability to predict the production of cosmogenic nuclides in meteorites, to distinguish simple and complex exposure histories, and to better determine exposure ages

  5. Background radiation levels and medical exposure levels in Australia

    International Nuclear Information System (INIS)

    Webb, D.V.; Solomon, S.B.; Thomson, J.E.M.

    1999-01-01

    The average effective background dose received by the Australian population has been reassessed to be ∼1.5 millisievert (mSv) per year. Over half of this exposure arises from exposure from terrestrial radiation and cosmic rays, the remainder from radionuclides within the body and from inhalation of radon progeny. This background is to be compared with medical radiation, primarily diagnostic, which could add half as much again to the population exposure. This paper reviews research programmes carried out by the Australian Radiation Laboratory to study radiation exposure from natural background and from medical use. While the latter exposure is accepted to have a social benefit, there is a need to ensure that doses are no more than necessary to provide effective diagnosis and optimal treatment. Copyright (1999) Australasian Radiation Protection Society Inc

  6. Numerical investigations of radiation exposure in civil aviation

    International Nuclear Information System (INIS)

    Beck, P.; Felsberger, E.; O'Brien, K.; Kindl, P.

    1998-01-01

    Previous in-flight measurements of radiation exposure to air crews is compared with calculations by cosmic ray transport codes. Primary cosmic ray particle spectra modifications by solar modulation and by the geomagnetic field are discussed. The cosmic ray propagation and behaviour in the atmosphere is described by the Boltzmann equation. Results of calculations are shown in graphical form, including the altitude dependence of the effective dose rate at various geomagnetic latitudes, the effect of the 11-year solar modulation cycle, and 3 world maps of effective dose rates at usual flight altitudes. (A.K.)

  7. The new Internet tool: the information and evaluation system by flight, of exposure to cosmic radiation in the new air transports S.I.E.V.E.R.T

    International Nuclear Information System (INIS)

    2002-03-01

    In France, the public authorities put a new Internet tool at air companies disposal, in order they can evaluate the radiations doses received by their flying crews during their flights. This tool called information and evaluation system by flight of exposure to cosmic radiation in air transport (S.I.E.V.E.R.T.). (N.C.)

  8. Atmospheric ions and pollution. Ions of the cosmic radiation

    International Nuclear Information System (INIS)

    Cachon, A.

    1977-01-01

    The principal historical steps before the so-called 'cosmic radiation' was known as an extra-terrestrial radiation are described. The origin, nature and energy of the radiation are discussed together with its evolution all along its path through atmosphere, in view of the interaction that occurs between the radiation and the atmosphere. The mechanism of the ionization induced by cosmic radiation is analyzed, the corresponding energy balance is established and the possible singularities in air ionization induced by cosmic rays are discussed [fr

  9. Radiation exposure of the aircrew and passengers on some Czechoslovak air lines

    International Nuclear Information System (INIS)

    Spurny, F.; Michalik, V.; Obraz, O.; Pernicka, F.; Votockova, I.

    1993-01-01

    According to the ICRP 60 recommendation, the aircrew should be included among workers whose exposure to cosmic radiation is considered to be occupational exposure. This brings about the need for a more precise determination and the mapping of the exposure level on different air routes. The results are presented of measurements performed by the staff of the Institute of Radiation Dosimetry on board of CSA aircraft (TU 154 M and A 310-300 Airbus) in 1991-1992. A number of passive and active devices were used to measure the ionizing and neutron component of cosmic radiation. The results obtained confirm the basic ideas about the influence of various factors on the exposure level. The interpretation of data is discussed in detail, particularly with respect to its possible modification based on new data on particle spectra on board of subsonic civil transport aircraft. (author) 2 tabs., 4 figs., 24 refs

  10. Cosmic rays and radiations from the cosmos

    International Nuclear Information System (INIS)

    Parizot, E.

    2005-12-01

    This document gathers a lot of recent information concerning cosmic radiations, it is divided into 4 parts. Part I: energy, mass and angular spectra of cosmic rays. Part II: general phenomenology of cosmic rays, this part deals with the standard model, the maximal energy of protons inside supernova remnants, nucleosynthesis of light elements, and super-bubbles. Part III: radiations from the cosmos, this part deals with high energy gamma rays, non-thermal radiation of super-bubbles, positron transport, and the Compton trail of gamma-ray bursts. Part IV: the Pierre Auger observatory (OPA), this part deals with the detection of gamma ray bursts at OPA, the measurement of anisotropy, and top-down models. (A.C.)

  11. Cosmic gamma-ray background radiation. Current understandings and problems

    International Nuclear Information System (INIS)

    Inoue, Yoshiyuki

    2015-01-01

    The cosmic gamma-ray background radiation is one of the most fundamental observables in the gamma-ray band. Although the origin of the cosmic gamma-ray background radiation has been a mystery for a long time, the Fermi gamma-ray space telescope has recently measured it at 0.1-820 GeV and revealed that the cosmic GeV gamma-ray background is composed of blazars, radio galaxies, and star-forming galaxies. However, Fermi still leaves the following questions. Those are dark matter contribution, origins of the cosmic MeV gamma-ray background, and the connection to the IceCube TeV-PeV neutrino events. In this proceeding, I will review the current understandings of the cosmic gamma-ray background and discuss future prospects of cosmic gamma-ray background radiation studies. (author)

  12. Astronaut exposure to space radiation - Space Shuttle experience

    International Nuclear Information System (INIS)

    Atwell, W.

    1990-01-01

    Space Shuttle astronauts are exposed to both the trapped radiation and the galactic cosmic radiation environments. In addition, the sun periodically emits high-energy particles which could pose a serious threat to flight crews. NASA adheres to federal regulations and recommended exposure limits for radiation protection and has established a radiological health and risk assessment program. Using models of the space radiation environment, a Shuttle shielding model, and an anatomical human model, crew exposure estimates are made for each Shuttle flight. The various models are reviewed. Dosimeters are worn by each astronaut and are flown at several fixed locations to obtain inflight measurements. The dosimetry complement is discussed in detail. A comparison between the premission calculations and measurements is presented. Extrapolation of Shuttle experience to long-duration exposure is explored. 14 refs

  13. Radiation exposure in manned spaceflight

    Energy Technology Data Exchange (ETDEWEB)

    Buecker, H. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Horneck, G. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Facius, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany)); Reitz, G. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Koeln (Germany))

    1993-08-01

    Space missions exposure humans to a radiation environment of a particulate composition and intensity not encountered within our biosphere. The natural radiation environment encountered in Earth orbit is a complex mixture of charged particles of galactic and solar origin and of those trapped by the geomagnetic field. In addition, secondaries are produced by interaction of cosmic ray primaries with the spacecraft shielding material. Among this large variety of radiation components in space, it is likely that the heavy ions are the significant species as far as radiobiological effects are concerned. In addition, a synergistic interaction of microgravity and radiation on living systems has been reported in some instances. Based on an admissible risk of 3% mortality due to cancers induced during a working career, radiation protection guidelines have been developed for this radiation environment. (orig.)

  14. Cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1979-01-01

    The 20-ft horn-reflector antenna at Bell Laboratories is discussed in detail with emphasis on the 7.35 cm radiometer. The circumstances leading to the detection of the cosmic microwave background radiation are explored

  15. The effects of cosmic radiation on implantable medical devices

    International Nuclear Information System (INIS)

    Bradley, P.

    1996-01-01

    Metal oxide semiconductor (MOS) integrated circuits, with the benefits of low power consumption, represent the state of the art technology for implantable medical devices. Three significant sources of radiation are classified as having the ability to damage or alter the behavior of implantable electronics; Secondary neutron cosmic radiation, alpha particle radiation from the device packaging and therapeutic doses(up to 70 Gγ) of high energy radiation used in radiation oncology. The effects of alpha particle radiation from the packaging may be eliminated by the use of polyimide or silicone rubber die coatings. The relatively low incidence of therapeutic radiation incident on an implantable device and the use of die coating leaves cosmic radiation induced secondary neutron single event upset (SEU) as the main pervasive ionising radiation threat to the reliability of implantable devices. A theoretical model which predicts the susceptibility of a RAM cell to secondary neutron cosmic radiation induced SEU is presented. The model correlates well within the statistical uncertainty associated with both the theoretical and field estimate. The predicted Soft Error Rate (SER) is 4.8 x l0 -12 upsets/(bit hr) compared to an observed upset rate of 8.5 x 10 -12 upsets/(bit hr) from 20 upsets collected over a total of 284672 device days. The predicted upset rate may increase by up to 20% when consideration is given to patients flying in aircraft The upset rate is also consistent with the expected geographical variations of the secondary cosmic ray neutron flux, although insufficient upsets precluded a statistically significant test. This is the first clinical data set obtained indicating the effects of cosmic radiation on implantable devices. Importantly, it may be used to predict the susceptibility of future to the implantable device designs to the effects of cosmic radiation

  16. Natural and anthropogenic radiation exposure of humans in Germany; Natuerliche und zivilisatorische Strahlenexposition des Menschen in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Koelzer, Winfried

    2016-12-15

    The contribution on natural and anthropogenic radiation exposure in Germany covers the following issues: (1) natural radiation exposure: external radiation exposure - cosmic and terrestric radiation, internal radiation exposure - primordial and cosmogenic radionuclides; radiation exposure due to sola neutrinos and geo-neutrinos. (2) Anthropogenic radiation exposure: radiation exposure in medicine, radioactivity in industrial products, radiation exposure during flights, radiation exposure due to nuclear facilities, radiation exposure due to fossil energy carriers in power generation, radiation exposure due to nuclear explosions, radiation exposure due to nuclear accidents. (3) Occupational radiation exposure in Germany: radiation monitoring with personal dosimeters in medicine and industry, dose surveillance of the aviation personal, working places with increases radiation exposure by natural radiation sources.

  17. Natural radiation exposure modified by human activities

    International Nuclear Information System (INIS)

    Fujimoto, Kenzo

    1995-01-01

    We are now living in the radiation environment modified by our technology. It is usually called 'Technologically Enhanced Natural Radiation' and have been discussed in the UNSCEAR Reports as an important source of exposure. The terrestrial radionuclide concentrations as well as the intensity of cosmic rays are considered to have been constant after our ancestors came down from trees and started walking on their two feet. However, we have been changing our environment to be more comfortable for our life and consequently ambient radiation levels are nomore what used to be. In this paper exposures due to natural radiation modified by our following activities are discussed: housing, balneology, cave excursion, mountain climbing, skiing, swimming, smoking and usage of mineral water, well water, coal, natural gas, phosphate rocks and minerals. In the ICRP Publication No. 39, it is clearly mentioned that even natural radiation should be controlled as far as it is controllable. We have to pay more attention to our activities not to enhance the exposure due to unnecessary, avoidable radiation. (author)

  18. Estimation of effective dose to public from external exposure to natural background radiation in saudi arabia

    International Nuclear Information System (INIS)

    Khalid, A. A.

    2003-01-01

    The effective dose values in sixteen cities in Saudi Arabia due to external exposure to natural radiation were evaluated. These doses are based on natural background components including external exposure to terrestrial radiation and cosmic rays. The importance of evaluating the effective dose to the public due to external exposure to natural background radiation lies in its epidemiological and dosimetric importance and in forming a basis for the assessment of the level of radioactive contamination or pollution in the environment in the future. The exposure to terrestrial radiation was measured using thermoluminescent dosimeters (TLD). The exposure from cosmic radiation was determined using empirical correlation. The values evaluated for the total annual effective dose in all cities were within the world average values. The highest total annual effective dose measured in Al-Khamis city was 802 μSv/y, as compared to 305 μSv/y in Dammam city, which was considered the lowest value

  19. Transition-radiation detectors for cosmic-ray research

    International Nuclear Information System (INIS)

    Mueller, D.; Chicago Univ., Ill.

    1975-01-01

    Transition-radiation detectors for cosmic-ray work are described which consist of plastic foam of multiple plastic foil radiators, followed by proportional chambers. A summary of the properties of such detectors is given, and the detection and discrimination efficiencies for energetic particles are discussed. Several possible applications of such devices for studies of cosmic-ray particles in the energy region γ=E/mc 2 >10 3 are advertised

  20. Summary of ionizing radiation analysis on the Long Duration Exposure Facility

    Science.gov (United States)

    Parnell, T. A.

    1992-01-01

    The ionizing radiation measurements flown on the Long Duration Exposure Facility (LDEF) were contained in 15 experiments which utilized passive detectors to pursue objectives in astrophysics and to measure the radiation environment and dosimetric quantities. The spacecraft structure became sufficiently radioactive to permit additional important studies. The induced activity allows extensive radiation mapping in the structure, and independent comparison with experiment dosimetric techniques, and significant studies of secondary effects. The long exposure time, attitude stability, and number and types of measurements produced a unique and critical set of data for low Earth orbit that will not be duplicated for more than a decade. The data allow an unprecedented test, and improvement if required, of models of the radiation environment and the radiation transport methods that are used to calculate the internal radiation and its effects in spacecraft. Results of measurements in the experiments, as well as from radioactivity in the structure, have clearly shown effects from the directional properties of the radiation environment, and progress was made in the dosimetric mapping of LDEF. These measurements have already influenced some Space Station Freedom design requirements. Preliminary results from experiments, reported at this symposium and in earlier papers, show that the 5.8 years exposure considerably enhanced the scientific return of the radiation measurements. The early results give confidence that the experiments will make significant advances in the knowledge of ultra heavy cosmic rays, anomalous cosmic rays, and heavy ions trapped in the radiation belts. Unexpected phenomena were observed, which require explanation. These include stopping iron group ions between the energy ranges anticipated for anomalous and galactic cosmic rays in the LDEF orbit. A surprising concentration of the Be-7 nuclide was discovered on the 'front' surface of LDEF, apparently

  1. Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25

    Science.gov (United States)

    Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko

    2017-04-01

    Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.

  2. Shielding from cosmic radiation for interplanetary missions Active and passive methods

    CERN Document Server

    Spillantini, P; Durante, M; Müller-Mellin, R; Reitz, G; Rossi, L; Shurshakov, V; Sorbi, M

    2007-01-01

    Shielding is arguably the main countermeasure for the exposure to cosmic radiation during interplanetary exploratory missions. However, shielding of cosmic rays, both of galactic or solar origin, is problematic, because of the high energy of the charged particles involved and the nuclear fragmentation occurring in shielding materials. Although computer codes can predict the shield performance in space, there is a lack of biological and physical measurements to benchmark the codes. An attractive alternative to passive, bulk material shielding is the use of electromagnetic fields to deflect the charged particles from the spacecraft target. Active shielding concepts based on electrostatic fields, plasma, or magnetic fields have been proposed in the past years, and should be revised based on recent technological improvements. To address these issues, the European Space Agency (ESA) established a Topical Team (TT) in 2002 including European experts in the field of space radiation shielding and superconducting magn...

  3. Hazards of cosmic radiation; Radiation cosmique: danger dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet-Bidaud, J M; Dzitko, H

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: (i) the magnetic field generated by the solar wind, (ii) the earth magnetic field (magnetosphere), and (iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  4. Cosmic radiation and airline pilots. Exposure patterns of Norwegian SAS-pilots 1960 to 1994. Revised Version

    International Nuclear Information System (INIS)

    Tveten, U.

    1999-02-01

    The present report is a revised version of an earlier report (IFE/KR/E-96/008). The revision has been carried out since a completely new version of the computational tool has recently been released. All calculations have been redone. The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institute for Energy Technology (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). Originating from the Norwegian project, a number of similar projects have been started in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots employed by the the Scandinavian Airlines System (SAS). The result presented in this report (radiation dose rates for the different types of aircraft in the different years) were calculated with the most recent computer program for this purpose, the CARI-5E from the United States Civil Aviation Authority. The other major sources of information used as basis for this work is the collection of old SAS time tables found the the SAS Museum at Fornebu Airport in Oslo, and information provided by members of the Pilots Association in Norway

  5. Cosmic radiation and airline pilots. Exposure patterns of Norwegian SAS-pilots 1960 to 1994. Revised Version

    Energy Technology Data Exchange (ETDEWEB)

    Tveten, U

    1999-02-01

    The present report is a revised version of an earlier report (IFE/KR/E-96/008). The revision has been carried out since a completely new version of the computational tool has recently been released. All calculations have been redone. The work which is presented in this report is part of a Norwegian epidemiological project, carried out in cooperation between Institute for Energy Technology (IFE), the Norwegian Cancer Registry (NCR) and the Norwegian Radiation Protection Authority (NRPA). Originating from the Norwegian project, a number of similar projects have been started in a number of European countries. The present report lays the ground for estimation of individual exposure histories to cosmic radiation of pilots employed by the the Scandinavian Airlines System (SAS). The result presented in this report (radiation dose rates for the different types of aircraft in the different years) were calculated with the most recent computer program for this purpose, the CARI-5E from the United States Civil Aviation Authority. The other major sources of information used as basis for this work is the collection of old SAS time tables found the the SAS Museum at Fornebu Airport in Oslo, and information provided by members of the Pilots Association in Norway.

  6. Cosmic radiation induced chromosomal aberrations in human lymphocytes

    International Nuclear Information System (INIS)

    De Angelis, G.; Facius, R.; Reitz, G.

    2003-01-01

    Since decades, elevated frequencies of dicentric chromosomes (DIC) in human lymphocytes have successfully been used as a biological dosimeter in cases of acute, often accidental exposures to ionizing radiation. As long as duration and time lags after exposure are small compared to the lifetime of DIC, their frequencies can also be used to assess doses from protracted, chronic irradiation. E.g., within the substantial range of uncertainties, the frequencies of DIC observed in cosmonauts are compatible with the frequencies expected from doses of low and high LET radiation to which they were exposed in low earth orbit (LEO). On the other hand, frequencies of DIC detected in lymphocytes of civilian aviation crewmembers rarely correlate with the doses accumulated all along their professional career. For such long duration exposures with relatively low induction rates, the concomitant decay of DIC frequencies due to the removal during exposure of lymphocytes carrying DIC has to be taken into account. We present temporal profiles of frequencies of DIC during the exposure calculated with a model of exponential decay of DIC for some scenarios of chronic exposure to cosmic radiation. E.g., even after a 'heavily' shielded Mars mission, the expected frequencies of DIC in lymphocytes of astronauts will be 10 to 40 times higher than the terrestrial control levels. For air flight personnel we calculated the time profiles of frequencies of DIC in lymphocytes of a 'typical' pilot, a male cabin attendant and a female cabin attendant whose professional radiation exposures were recalculated for the actual flight routes flown during their entire flight career as recorded in detailed duty logs. These results demonstrate that experimental (epidemiological) studies concerning DIC in air or space flight personnel must explicitly take into consideration the temporal exposure profiles in the prospective study population and that the point in time at which blood samples are to be drawn must

  7. Information by the German Federal Government. Environmental radioactivity and radiation exposure in 2010

    International Nuclear Information System (INIS)

    2010-01-01

    The information by the German Federal Government on the environmental radioactivity and radiation exposure in 2010 includes five chapters. (I) Natural radiation exposure: radiation sources, contributions from cosmic radiation, contaminated construction materials, food and drinking water, and radon, evaluation of the different components of natural radiation exposure. (II) Civilization caused radiation exposure: nuclear power plants, research centers, nuclear fuel processing plants, other nuclear facilities (interim storage facilities, repositories); summarizing evaluation for nuclear facilities; environmental radioactivity due to mining; radioactive materials in research, technology and households; industrial and mining residues; fall-out as a consequence of the Chernobyl reactor accident and nuclear weapon testing. (III) Occupational radiation exposure: civil radiation sources, natural radiation sources, special events. (IV) Medical radiation exposure; X-ray diagnostics; nuclear medicine; radiotherapy using ionizing radiation; radiotherapy using open radioactive materials; evaluation of radiotherapy. (V) Non-ionizing radiation: electromagnetic fields; optical radiation; certification of solaria.

  8. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  9. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    Science.gov (United States)

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  10. Criteria for radiological protection against exposure to natural radiation

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan

    2012-01-01

    Ionizing radiation includes natural radiation which has been part cosmic radiation. Radon in homes, irradiation, gamma, among others, they have also been part of ionizing radiation. The activities that have lead to natural radiation materials are: mining and processing of uranium, radio application and thorium, phosphate industry, mining and smelting of metals, oil and gas extraction, coal mining and power generation, rare earth industry and titanium, zirconium and ceramics, building materials, waste water purification. Therefore, different criteria for radiation protection have had to create against exposure to natural radiation. Distinct rules and regulations to control were created in that sense [es

  11. Hazards of cosmic radiation; Radiation cosmique: danger dans l'espace

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet-Bidaud, J.M.; Dzitko, H

    2000-06-01

    The main limitations on long-distance space transport is neither the energy source nor the propulsion system but appears to be the protection of cosmonauts from radiation. Cosmic radiation is made up of protons (87%), alpha particles (12%) and heavy nuclei (1%), all these particles travel through interstellar space and come from the explosion of stars at the end of their life. The earth is protected from cosmic radiation by 3 natural shields: (i) the magnetic field generated by the solar wind, (ii) the earth magnetic field (magnetosphere), and (iii) the earth atmosphere, this elusive layer of air is equivalent to a 10 meter-high volume of water. Magnetosphere and atmosphere reduce the radiation dose by a factor 4000. According to a European directive (1996) air crews must be considered as radiation workers. (A.C.)

  12. Dosimetry of environmental radiations (cosmic ray)

    International Nuclear Information System (INIS)

    Yamasaki, Keizo

    1978-01-01

    Cosmic ray is dominant as environmental radiation, though the experimental determination made on cosmic ray doses is few in Japan. The free air ionization intensity at sea level due to cosmic ray has been estimated in the Bay of Wakasa, Japan, at middle geomagnetic latitude (25 deg. N), in October 1977. The ionization chambers used were two air and one argon types. Where the responses to cosmic and terrestrial gamma rays were equal, the ionization intensity due to cosmic ray was obtained by subtracting the ionization intensity due to terrestrial gamma ray from the total ionization intensity. As the terrestrial gamma ray, (1) U-238 series, Th-232 series, and K-40 in seawater, (2) K-40 in the material of a wooden ship, and (3) Rn-222 and its daughter products in the atmosphere were considered. The result of free air ionization due to cosmic ray with the argon chamber was slightly smaller than those with the other two air chambers; however, both were in good agreement within standard errors. (JPN.)

  13. Population exposure to ionising radiation in India

    International Nuclear Information System (INIS)

    Narayanan, K.K.; Krishnan, D.; Subba Ramu, M.C.

    1991-01-01

    Estimates of exposure from various radiation sources to Indian population are given. The per caput dose from all the identifiable sources, both natural and man-made is estimated to be 2490 μSv per year to the present population of India. 97.9% of this dose is contributed by natural sources which include cosmic and terrestrial radiations, 1.93% by medical sources used for diagnostic and treatment purpose, 0.3% by exposures due to activities related nuclear fuel cycle, nuclear tests and nuclear accidents, and 0.07% by miscellaneous sources such as industrial applications, consumer products, research activities, air travel etc. The monograph is written for the use of the common man. (M.G.B.). 25 refs., 7 tabs., 7 figs

  14. Exposure to natural sources of radiation in Spain

    International Nuclear Information System (INIS)

    Quindos, L.S.; Fernandez, P.L.; Soto, J.

    1992-01-01

    Studies carried by us during last three years have produced a map of natural radiation for Spain. The map contains, by administrative region, the respective contributions of terrestrial gamma rays, both outdoors and indoors, cosmic rays and indoor radon. Terrestrial gamma rays have been measured outdoors 'in situ' in more than 1,000 locations. Data for indoor gamma rays were derived from the radioactivity content of more typical spanish building materials as also by 'in situ'measurements in approximately 100 houses. The cosmic ray component is calculated from latitude and altitude. Values for indoor radon exposure have been derived from a national survey and covering more than 2,000 individual measurements employing active and passive detectors. When account is taken of exposures elsewhere, the mean annual effective dose equivalent from these sources is evaluated. Doses from thoron decay products and internal exposure due to natural activity retained in the body from diet are not dealt with in this evaluation. (author)

  15. Anisotropy of the cosmic background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The characteristics of the cosmic microwave background radiation (CBR) are reviewed, focusing on intrinsic anisotropies caused by primordial matter fluctuations. The basic elements of the CBR are outlined and the contributions to anisotropy at different angular scales are discussed. Possible fluctuation spectra that can generate the observed large-scale structure of the universe through gravitational instability and nonlinear evolution are examined and compared with observational searches for cosmic microwave anisotropies. 21 refs

  16. Search for Antihelium in the Cosmic Radiation

    DEFF Research Database (Denmark)

    Streitmatter, R.E.; Barbier, L.M.; Christian, E.R.

    1996-01-01

    The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba Canada on July 16-17, 1992. Sixteen hours of data were taken. Measurements of multiple dE/dX, rigidity, and time of flight were used to search for antihelium in the cosmic radiation. A report on the r......The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba Canada on July 16-17, 1992. Sixteen hours of data were taken. Measurements of multiple dE/dX, rigidity, and time of flight were used to search for antihelium in the cosmic radiation. A report...

  17. Routine medicare and radiation exposure. Introductory remarks

    International Nuclear Information System (INIS)

    Hirata, Hideki; Saito, Tsutomu

    2013-01-01

    As an introduction of the title series, outlines of radiation in physics, chemistry, biochemistry, biological effect and protection are explained from the clinical doctors' aspect of routine medicare, and of radiation exposure in which people's interest is raised after the Fukushima Nuclear Power Plant Accident in 2011. For physics, ionizing effects of radiation are described in relation to its quantum energy transfer and its medical utilization like imaging and radiotherapy. Then mentioned in brief is the radiation from elements consisting of human body, cosmic ray and background radiation from the earth, with reference to natural and standardized limits of exposure doses. Radiations from 226 Rn and 40 K are explained as an instance of environmental natural sources together with the concepts of radioactive decay series/scheme, of internal exposure, of hazard like double strand break (DSB) and of medical use such as boron neutron capture therapy (BNCT). For an artifact radiation source, shown are fission products of 235 U by neutron, first yielded in 1945. Evidence of evolution in biochemical repair mechanisms of DSB is explained with a comparison of irradiated drosophila mutation where linear non-threshold (LNT) hypothesis is proposed, and human non-homologous end joining and homologous recombination. Historical process of occupational, medical, public exposures and their protection is finally described from the discovery of X-ray in 1895 to the first ICRP publication in 1958 via the A-bomb explosion in 1945. (T.T.)

  18. Assessment of Aircrew Radiation Exposure by further measurements and model development

    International Nuclear Information System (INIS)

    Lewis, B. J.; Desormeaux, M.; Green, A. R.; Bennett, L. G. I.; Butler, A.; McCall, M.; Saez Vergara, J. C.

    2004-01-01

    A methodology is presented for collecting and analysing exposure measurements from galactic cosmic radiation using a portable equipment suite and encapsulating these data into a semi-empirical model/Predictive Code for Aircrew Radiation Exposure (PCAIRE) for the assessment of aircrew radiation exposure on any flight over the solar cycle. The PCAIRE code has been validated against integral route dose measurements at commercial aircraft altitudes during experimental flights made by various research groups over the past 5 y with code predictions typically within ±20% of the measured data. An empirical correlation, based on ground-level neutron monitoring data, is detailed further for estimation of aircrew exposure from solar particle events. The semi-empirical models have been applied to predict the annual and career exposure of a flight crew member using actual flight roster data, accounting for contributions from galactic radiation and several solar energetic-particle events over the period 1973-2002. (authors)

  19. On the radiative and thermodynamic properties of the cosmic radiations using COBE FIRAS instrument data: I. Cosmic microwave background radiation

    Science.gov (United States)

    Fisenko, Anatoliy I.; Lemberg, Vladimir

    2014-07-01

    Using the explicit form of the functions to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, and pressure in the finite range of frequencies v 1≤ v≤ v 2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60-600 GHz frequency interval at the temperature T=2.72548 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude T amp=3.358 mK. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The expressions for new astrophysical parameters, such as the entropy density/Boltzmann constant, and number density of CMB photons are obtained. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at redshift z≈1089 are calculated.

  20. DNDO Report: Predicting Solar Modulation Potentials for Modeling Cosmic Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Behne, Patrick Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-08

    The modeling of the detectability of special nuclear material (SNM) at ports and border crossings requires accurate knowledge of the background radiation at those locations. Background radiation originates from two main sources, cosmic and terrestrial. Cosmic background is produced by high-energy galactic cosmic rays (GCR) entering the atmosphere and inducing a cascade of particles that eventually impact the earth’s surface. The solar modulation potential represents one of the primary inputs to modeling cosmic background radiation. Usosokin et al. formally define solar modulation potential as “the mean energy loss [per unit charge] of a cosmic ray particle inside the heliosphere…” Modulation potential, a function of elevation, location, and time, shares an inverse relationship with cosmic background radiation. As a result, radiation detector thresholds require adjustment to account for differing background levels, caused partly by differing solar modulations. Failure to do so can result in higher rates of false positives and failed detection of SNM for low and high levels of solar modulation potential, respectively. This study focuses on solar modulation’s time dependence, and seeks the best method to predict modulation for future dates using Python. To address the task of predicting future solar modulation, we utilize both non-linear least squares sinusoidal curve fitting and cubic spline interpolation. This material will be published in transactions of the ANS winter meeting of November, 2016.

  1. The natural sources of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Maximilien, R.

    1982-01-01

    Natural sources of ionizing radiation include external sources (cosmic rays, natural radionuclides present in the crust of the earth and in building materials) and internal sources (naturally occuring radionuclides in the human body, especially the potassium 40 and radon short lived decay products). The principal ways of human exposure to theses different components in ''normal'' areas are reviewed; some examples of the variability of exposure with respect to different regions of the world or the habits of life are given. Actual estimations of the doses delivered to the organs are presented; for the main contributors to population exposure, the conversion into effective dose equivalent has been made for allowing a better evaluation of their respective importance [fr

  2. TeV Blazars and Cosmic Infrared Background Radiation

    OpenAIRE

    Aharonian, F. A.

    2001-01-01

    The recent developments in studies of TeV radiation from blazars are highlighted and the implications of these results for derivation of cosmologically important information about the cosmic infrared background radiation are discussed.

  3. European Legalisation on Protection Against Cosmic Radiation

    International Nuclear Information System (INIS)

    Courades, M.

    1999-01-01

    Specific provisions on protection of aircrew against cosmic radiation have been laid down for the first time at EU level as part of the Basic Safety Standards for the Health Protection of the General Public and Workers against the Dangers of Ionizing Radiation (Council Directive 96/29/Euratom of 13 May 1996). These provisions, focusing mainly on health and radiological surveillance, are minimal requirements; therefore the Directive leaves significant discretion to the Member States as regards actions to be taken; Member States have to transpose these provisions into national law before 13 May 2000. Further harmonisation of Community regulations on civil aviation safety will be needed in the field of protection against cosmic radiation. This is to obtain a high level of radiation protection for the aircrew and to maintain fair competition under the common transport policy. Additionally, particular requirement are foreseen for detection and monitoring devices as well as for working instructions (Operations Manual). (author)

  4. The evaluation and use of a portable TEPC system for measuring in-flight exposure to cosmic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.C.; Bentley, R.D.; Conroy, T.J.; Hunter, R.; Jones, J.B.L.; Pond, A.; Thomas, D.J

    2002-07-01

    A recent EC directive has called for all member states to introduce legislation covering the assessment and restriction of air crew exposure to cosmic radiation. In the UK the Civil Aviation Authority, in conjunction with the Department of the Environment, Transport and the Regions issued guidelines suggesting the use of a predictive code such as CARI for this purpose. In order to validate the use of calculated route doses, an extensive programme of measurements is being carried out in conjunction with Virgin Atlantic Airways, using a prototype HAWK TEPC developed by Far West Technology. This programme began in January 2000 and by the end of February 2001 had resulted in the accumulation of data from 74 flights. In this paper the instrument design is discussed, together with the calibration program. An overview of the in-flight results is also presented, including comparisons between measurements and calculations, which indicates that CARI under-predicts the route doses by approximately 20%. (author)

  5. The evaluation and use of a portable TEPC system for measuring in-flight exposure to cosmic radiation

    International Nuclear Information System (INIS)

    Taylor, G.C.; Bentley, R.D.; Conroy, T.J.; Hunter, R.; Jones, J.B.L.; Pond, A.; Thomas, D.J.

    2002-01-01

    A recent EC directive has called for all member states to introduce legislation covering the assessment and restriction of air crew exposure to cosmic radiation. In the UK the Civil Aviation Authority, in conjunction with the Department of the Environment, Transport and the Regions issued guidelines suggesting the use of a predictive code such as CARI for this purpose. In order to validate the use of calculated route doses, an extensive programme of measurements is being carried out in conjunction with Virgin Atlantic Airways, using a prototype HAWK TEPC developed by Far West Technology. This programme began in January 2000 and by the end of February 2001 had resulted in the accumulation of data from 74 flights. In this paper the instrument design is discussed, together with the calibration program. An overview of the in-flight results is also presented, including comparisons between measurements and calculations, which indicates that CARI under-predicts the route doses by approximately 20%. (author)

  6. Modelling of aircrew radiation exposure during solar particle events

    Science.gov (United States)

    Al Anid, Hani Khaled

    In 1990, the International Commission on Radiological Protection recognized the occupational exposure of aircrew to cosmic radiation. In Canada, a Commercial and Business Aviation Advisory Circular was issued by Transport Canada suggesting that action should be taken to manage such exposure. In anticipation of possible regulations on exposure of Canadian-based aircrew in the near future, an extensive study was carried out at the Royal Military College of Canada to measure the radiation exposure during commercial flights. The radiation exposure to aircrew is a result of a complex mixed-radiation field resulting from Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs). Supernova explosions and active galactic nuclei are responsible for GCRs which consist of 90% protons, 9% alpha particles, and 1% heavy nuclei. While they have a fairly constant fluence rate, their interaction with the magnetic field of the Earth varies throughout the solar cycles, which has a period of approximately 11 years. SEPs are highly sporadic events that are associated with solar flares and coronal mass ejections. This type of exposure may be of concern to certain aircrew members, such as pregnant flight crew, for which the annual effective dose is limited to 1 mSv over the remainder of the pregnancy. The composition of SEPs is very similar to GCRs, in that they consist of mostly protons, some alpha particles and a few heavy nuclei, but with a softer energy spectrum. An additional factor when analysing SEPs is the effect of flare anisotropy. This refers to the way charged particles are transported through the Earth's magnetosphere in an anisotropic fashion. Solar flares that are fairly isotropic produce a uniform radiation exposure for areas that have similar geomagnetic shielding, while highly anisotropic events produce variable exposures at different locations on the Earth. Studies of neutron monitor count rates from detectors sharing similar geomagnetic shielding properties

  7. Cerenkov radiation from cosmic rays

    International Nuclear Information System (INIS)

    Turver, K.E.

    1988-01-01

    It is almost 40 years since it was suggested that Cerenkov radiations may be produced in the atmosphere by the passage of the cosmic radiation and account for a small part of the night sky brightness. The first detection of this visible Cerenkov radiation followed within a few years and by the 1960s the atmospheric Cerenkov radiation technique was established as a tool in high energy astrophysics. An exciting new field of astronomy, high energy gamma ray astronomy, has developed which relies on the atmospheric Cerenkov light. We here review the mechanism for the production of Cerenkov light in the atmosphere and summarize the contributions to high energy astrophysics made using the technique. (author)

  8. Prediction of LDEF exposure to the ionizing radiation environment

    Science.gov (United States)

    Watts, J. W.; Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Predictions of the LDEF mission's trapped proton and electron and galactic cosmic ray proton exposures have been made using the currently accepted models with improved resolution near mission end and better modeling of solar cycle effects. An extension of previous calculations, to provide a more definitive description of the LDEF exposure to ionizing radiation, is represented by trapped proton and electron flux as a function of mission time, presented considering altitude and solar activity variation during the mission and the change in galactic cosmic ray proton flux over the mission. Modifications of the AP8MAX and AP8MIN fluence led to a reduction of fluence by 20%. A modified interpolation model developed by Daly and Evans resulted in 30% higher dose and activation levels, which better agreed with measured values than results predicted using the Vette model.

  9. Radiative hazard of solar flares in the nearterrestrial cosmic space

    International Nuclear Information System (INIS)

    Kolomenskij, A.V.; Petrov, V.M.; Zil', M.V.; Eremkina, T.M.

    1978-01-01

    Simulation of radiation enviroment due to solar cosmic rays was carried out in the near-terrestrial space. Systematized are the data on cosmic ray flux and spectra detected during 19-th and 20-th cycles of solar activity. 127 flares are considered with proton fluxes of more than 10 proton/cm 2 at energies higher than 30 MeV. Obtained are distribution functions of intervals between flares, flux distribution of flares and characteristic rigidity, and also distribution of magnetic disturbances over Dsub(st)-variation amplitude. The totality of these distributions presents the statistic model of radiation enviroment caused by solar flare protons for the period of maximum solar .activity. This model is intended for estimation of radiation hazard at manned cosmic flights

  10. Assessment of Human Exposures to Natural Sources of Radiation in Kenya

    International Nuclear Information System (INIS)

    Mustapha, A.O.; Patel, J.P.

    1999-01-01

    Levels of exposures to different components of natural background radiation in Kenya were assessed from measured data and published conversion factors. Among them, the average annual per capital effective dose from terrestrial external radiation is 0.76 mSv and the annual per capital effective dose from external exposure to cosmic radiation at ground levels is 0.41 mSv. The total average annual effective dose is greater than the global average. Also among the measured data, concentrations of radon ( 222 Rn) vary from 5 to 1200 Bq m -3 in indoor air of dwellings, and from 1 to 410 KBq m -3 in drinking water. An unusual pathway to internal exposure was discovered among the female population who engage in consumption of some earth materials, some of which are rich in thorium

  11. Radiobiological studies on eggs of the rice weevil (Tribolium confusum) after exposure to heavy primary particles of the cosmic radiation

    International Nuclear Information System (INIS)

    Geyer, B.

    1982-01-01

    The thesis explains the radiation effects observed during the holometabolism of Tribolium confusum after exposure of the eggs to heavy primary particles of cosmic radiation, i.e. to atomic nuclei of relatively high energy with a mass greater than helium atoms. The first section describes the technical layout of the BIOSTACK experiment and the fixation of the Tribolium eggs and the positioning of the nuclear track detectors. This part is followed by the description of methods used to detect the eggs hit by the heavy nuclei, and their isolation and subsequent growth. Terrestrial irradiation of eggs with x-rays served as a control, as well as unirradiated egg cultures. The amount of larvae produced from incubated eggs hit by heavy nuclei was 66%, that of eggs exposed to cosmic background radiation was 69%, and that produced by the control culture kept on the earth was 87%. Investigations of egg samples during various stages of embryogenesis showed differences in the histological findings of the various groups, especially between the two groups of the BIOSTACK experiment. The letality of larvae in the period from emergence up to pupal stage was relatively high (50%) in the group hit by heavy nuclei, especially when compared to the other BIOSTACK experimental group, where this percentage was 10%, and to the terrestrial control group (3%). Also, vitality of larvae of the first group was considerably reduced. In the pupal stage, the letality observed in all three test groups was relatively low with 2-4%. From the animals produced from eggs hit by heavy nuclei, only 25% were still alive after 4 months, from the other space flight group these were 75%, and from the terrestrial control group 93%. Also, the animals from the first group showed a significant increase in bodily anomalies. (orig./MG) [de

  12. The assessment of the aircrew exposure

    International Nuclear Information System (INIS)

    Tommasino, L.

    2002-01-01

    In 1991 ICRP first included exposure of aircraft crew to cosmic radiation as occupational exposure. The European Dosimetry Group (EURADOS) established a working group in 1992 to address this issue. The report 'Exposure of Air Crew to Cosmic Radiation' was published in the European Commission's Radiation Protection series as report 85. The first section of the report assesses the existing data on radiation exposure, describes the radiation environment at civil aviation altitudes and summarizes the computational models that have been developed to describe the cosmic ray radiation field in the atmosphere. The second section describes the quantities used to assess the radiation doses. It is clear that conventional radiation protection dosimetry as applied on the ground is not quite applicable to the situation for air crews. A multinational European research project was launched to investigate the problem of cosmic rays and dosimetry at aviation altitudes. The major objective was to measure the flux and energy spectra of neutrons and charged particles over a wide energy interval at aviation altitudes and compare the results with those calculated with various computer codes. Within the project much progress was made in different areas, for instance the determination of the fundamental physical characteristics of the cosmic radiation field at aircraft altitudes, development of instrumentation, measurements of dose rates and route doses and application of routine radiation protection. Surveys of air crew exposure have been carried out with different advanced dosimetric systems and comparisons were made between passive and real-time detector systems

  13. Galactic and solar radiation exposure to aircrew during a solar cycle

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bennett, L.G.I.; Green, A.R.; McCall, M.J.; Ellaschuk, B.; Butler, A.; Pierre, M.

    2002-01-01

    An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H*(10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events. (author)

  14. Cosmic radiation dose in the aircraft

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Varga, M.; Planinic, J.; Vekic, B.

    2006-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A 320 and ATR 42 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb - Paris - Buenos Aires and reversely, when one measured cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the total dose of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to the Japan (24 hours-flight: Zagreb - Frankfurt - Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude the neutron component curried about 50% of the total dose, that was near other known data. (author)

  15. Primary cosmic radiation

    International Nuclear Information System (INIS)

    Anderson, H.R.

    1972-01-01

    The term cosmic radiation means the charged particle flux that reaches the earth from outside its magnetosphere with energies above the solar wind energy of a few keV. There are two sources of flux. Sporadically the sun produces such particles, generally within the energy range 1--200 MeV, and these solar cosmic rays arrive at the earth for a period ranging from hours to days. There may be a small, rather constant flux from the sun also, but the bulk of the steady flux originates outside the earth's orbit. Although some have conjectured that part of this latter flux may be accelerated in the outer portions of the solar system where the outward flowing interplanetary medium meets the interstellar medium, it is generally thought that most or all of it arises in unique systems such as supernovae, and is distributed throughout the galaxy. These galactic particles range in energy from a few MeV to at least 10 13 MeV and consist primarily of protons with significant numbers of heavier nuclei, positrons and electrons. They are supposed to fill our galaxy, or at least the disc, more or less uniformly. However, the flux with energies below a few GeV that reaches earth's orbit is modulated by the interplanetary medium so that the number at earth varies inversely with solar activity and is always somewhat below the interstellar flux. A discussion is presented of primary galactic radiation at earth, its modulation by solar activity, and its interaction with the geomagnetic field. (U.S.)

  16. Health Effects of Exposure to Low Dose of Radiation

    International Nuclear Information System (INIS)

    Alatas, Zubaidah

    2003-01-01

    Human beings are exposed to natural radiation from external sources include radionuclides in the earth and cosmic radiation, and by internal radiation from radionuclides, mainly uranium and thorium series, incorporated into the body. Living systems have adapted to the natural levels of radiation and radioactivity. But some industrial practices involving natural resources enhance these radionuclides to a degree that they may pose risk to humans and the environment if they are not controlled. Biological effects of ionizing radiation are the outcomes of physical and chemical processes that occur immediately after the exposure, then followed by biological process in the body. These processes will involve successive changes in the molecular, cellular, tissue and whole organism levels. Any dose of radiation, no matter how small, may produce health effects since even a single ionizing event can result in DNA damage. The damage to DNA in the nucleus is considered to be the main initiating event by which radiation causes damage to cells that results in the development of cancer and hereditary disease. It has also been indicated that cytogenetic damage can occur in cells that receive no direct radiation exposure, known as bystander effects. This paper reviews health risks of low dose radiation exposure to human body causing stochastic effects, i.e. cancer induction in somatic cells and hereditary disease in genetic cells. (author)

  17. Cosmic microwave background radiation of black hole universe

    Science.gov (United States)

    Zhang, T. X.

    2010-11-01

    Modifying slightly the big bang theory, the author has recently developed a new cosmological model called black hole universe. This new cosmological model is consistent with the Mach principle, Einsteinian general theory of relativity, and observations of the universe. The origin, structure, evolution, and expansion of the black hole universe have been presented in the recent sequence of American Astronomical Society (AAS) meetings and published recently in a scientific journal: Progress in Physics. This paper explains the observed 2.725 K cosmic microwave background radiation of the black hole universe, which grew from a star-like black hole with several solar masses through a supermassive black hole with billions of solar masses to the present universe with hundred billion-trillions of solar masses. According to the black hole universe model, the observed cosmic microwave background radiation can be explained as the black body radiation of the black hole universe, which can be considered as an ideal black body. When a hot and dense star-like black hole accretes its ambient materials and merges with other black holes, it expands and cools down. A governing equation that expresses the possible thermal history of the black hole universe is derived from the Planck law of black body radiation and radiation energy conservation. The result obtained by solving the governing equation indicates that the radiation temperature of the present universe can be ˜2.725 K if the universe originated from a hot star-like black hole, and is therefore consistent with the observation of the cosmic microwave background radiation. A smaller or younger black hole universe usually cools down faster. The characteristics of the original star-like or supermassive black hole are not critical to the physical properties of the black hole universe at present, because matter and radiation are mainly from the outside space, i.e., the mother universe.

  18. Measurements of the cosmic background radiation

    International Nuclear Information System (INIS)

    Weiss, R.

    1980-01-01

    Measurements of the attributes of the 2.7-K microwave background radiation (CBR) are reviewed, with emphasis on the analytic phase of CBR studies. Methods for the direct measurement of the CBR spectrum are discussed. Attention is given to receivers, antennas, absolute receiver calibration, atmospheric emission and absorption, the galactic background contribution, the analysis of LF measurements, and recent HF observations of the CBR spectrum. Measurements of the large-angular-scale intensity distribution of the CBR (the most convincing evidence that the radiation is of cosmological origin) are examined, along with limits on the linear polarization of the CBR. A description is given of the NASA-sponsored Cosmic Background Explorer (COBE) satellite mission. The results of the COBE mission will be a set of sky maps showing, in the wave number range from 1 to 10,000 kaysers, the galactic background radiation due to synchrotron emission from galactic cosmic rays, to diffuse thermal emission from H II regions, and to diffuse thermal emission from interstellar and interplanetary dust, as well as a residue consisting of the CBR and whatever other cosmological background might exist

  19. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    International Nuclear Information System (INIS)

    Angelis, G. De; Ballard, T.; Lagorio, S.; Verdecchia, A.

    2000-01-01

    All risk assessment techniques for possible health effects from low dose rate radiation exposure should combine knowledge both of the radiation environment and of the biological response, whose effects (e.g. carcinogenesis) are usually evaluated through mathematical models and/or animal and cell experiments. Data on human exposure to low dose rate radiation exposure and its effects are not readily available, especially with regards to stochastic effects, related to carcinogenesis and therefore to cancer risks, for which the event probability increases with increasing radiation exposure. The largest source of such data might be airline flight personnel, if enrolled for studies on health effects induced by the cosmic-ray generated atmospheric ionizing radiation, whose total dose, increasing over the years, might cause delayed radiation-induced health effects, with the high-LET and highly ionizing neutron component typical of atmospheric radiation. In 1990 flight personnel has been given the status of 'occupationally exposed to radiation' by the International Commission for Radiation Protection (ICRP), with a received radiation dose that is at least twice larger than that of the general population. The studies performed until now were limited in scope and cohort size, and moreover no information whatsoever on radiation occupational exposure (e.g. dose, flight hours, route haul, etc.) was used in the analysis, so no correlation has been until now possible between atmospheric ionizing radiation and (possibly radiation-induced) observed health effects. Our study addresses the issues, by considering all Italian civilian airline flight personnel, both cockpit and cabin crew members, with about 10,000 people selected, whose records on work history and actual flights (route, aircraft type, date, etc. for each individual flight for each person where possible) are considered. Data on actual flight routes and profiles have been obtained for the whole time frame. The actual dose

  20. Ionizing radiation exposure of LDEF (pre-recovery estimates)

    Science.gov (United States)

    Benton, E. V.; Heinrich, W.; Parnell, T. A.; Armstrong, T. W.; Derrickson, J. H.; Fishman, G. J.; Frank, A. L.; Watts, J. W. Jr; Wiegel, B.

    1992-01-01

    The long duration exposure facility (LDEF), launched into a 258 nautical mile orbit with an inclination of 28.5 degrees, remained in space for nearly 6 yr. The 21,500 lb NASA satellite was one of the largest payloads ever deployed by the Space Shuttle. LDEF completed 32,422 orbits and carried 57 major experiments representing more than 200 investigators from 33 private companies, 21 universities and nine countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures and power and propulsion. A number of the experiments were specifically designed to measure the radiation environment. These experiments are of specific interest, since the LDEF orbit is essentially the same as that of the Space Station Freedom. Consequently, the radiation measurements on LDEF will play a significant role in the design of radiation shielding of the space station. The contributions of the various authors presented here attempt to predict the major aspects of the radiation exposure received by the various LDEF experiments and therefore should be helpful to investigators who are in the process of analyzing experiments which may have been affected by exposure to ionizing radiation. The paper discusses the various types and sources of ionizing radiation including cosmic rays, trapped particles (both protons and electrons) and secondary particles (including neutrons, spallation products and high-LET recoils), as well as doses and LET spectra as a function of shielding. Projections of the induced radioactivity of LDEF are also discussed.

  1. Cosmic radiation monitoring equipment for the Ministry of Posts and Telecommunications; Yuseisho muke uchu denpa kanshi shisetsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The equipment analyzes radio waves transmitted by a geostationary satellite toward the earth and collates the received waves to the registered satellite data for the exposure of illegality or unlawfulness, if any. A feature of the equipment is that it operates only one antenna to catch waves belonging in three different frequency bands, that is, L, Ku, and Ka. Another feature is that it follows a procedure which is automatically executed by computers, the procedure including the analysis of the spectrum of the continuously arriving waves for the isolation of the carrier wave for the determination of the position where the satellite rests and for the extraction of wave data. Cosmic radiation monitoring is manually performed in Germany, Britain, etc., and the equipment introduced here is the first computer-aided automatic cosmic radiation monitoring system in the world. (translated by NEDO)

  2. The cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, R.W.

    1980-01-01

    The history is described of the discovery of microwave radiation of the cosmic background using the 20-foot horn antenna at the Bell Laboratories back in 1965. Ruby masers with travelling wave were used, featuring the lowest noise in the world. The measurement proceeded on 7 cm. In measuring microwave radiation from the regions outside the Milky Way continuous noise was discovered whose temperature exceeded the calculated contributions of the individual detection system elements by 3 K. A comparison with the theory showed that relict radiation from the Big Bang period was the source of the noise. The discovery was verified by measurements on the 20.1 cm wavelength and by other authors' measurements on 0.5 mm to 74 cm, and by optical measurements of the interstellar molecule spectrum. (Ha)

  3. NASA Space Radiation Protection Strategies: Risk Assessment and Permissible Exposure Limits

    Science.gov (United States)

    Huff, J. L.; Patel, Z. S.; Simonsen, L. C.

    2017-01-01

    Permissible exposure limits (PELs) for short-term and career astronaut exposures to space radiation have been set and approved by NASA with the goal of protecting astronauts against health risks associated with ionizing radiation exposure. Short term PELs are intended to prevent clinically significant deterministic health effects, including performance decrements, which could threaten astronaut health and jeopardize mission success. Career PELs are implemented to control late occurring health effects, including a 3% risk of exposure induced death (REID) from cancer, and dose limits are used to prevent cardiovascular and central nervous system diseases. For radiation protection, meeting the cancer PEL is currently the design driver for galactic cosmic ray and solar particle event shielding, mission duration, and crew certification (e.g., 1-year ISS missions). The risk of cancer development is the largest known long-term health consequence following radiation exposure, and current estimates for long-term health risks due to cardiovascular diseases are approximately 30% to 40% of the cancer risk for exposures above an estimated threshold (Deep Space one-year and Mars missions). Large uncertainties currently exist in estimating the health risks of space radiation exposure. Improved understanding through radiobiology and physics research allows increased accuracy in risk estimation and is essential for ensuring astronaut health as well as for controlling mission costs, optimization of mission operations, vehicle design, and countermeasure assessment. We will review the Space Radiation Program Element's research strategies to increase accuracy in risk models and to inform development and validation of the permissible exposure limits.

  4. Effect of seeds of heavy charged particles of galactic cosmic radiation

    International Nuclear Information System (INIS)

    Maksimova, Y.N.

    1985-01-01

    The experiments were carried out on Lactuca sativa seeds exposed for 20, 66, 123 and 308 days in a biostack also containing physical detectors of heavy charged particles. The yield of aberrant cells and its dependence on the exposure time and the site where particles hit the object were measured. The cytogenetic examination demonstrated a significant difference between the seeds that were or were not hit by heavy charged particles. A significant contribution of galactic cosmic radiation to the radiobiological effect is indicated. The yield of aberrant cells as a function of the localization of heavy charged particles in the seed is established. The most sensitive target is the root meristem

  5. Natural radio-exposure

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Although the amounts are small, man is exposed on a daily basis to alpha, beta, and gamma radiation emitted by radioactive elements present in the earth's crust. The natural radioactive elements are measurable, either by physicochemical means or by radiometric methods and can be the cause of external or internal exposure in man. Also of importance is cosmic radiation. Of galactic or solar origin, primary cosmic rays cause external radiation exposure. The majority of these particles disintegrate rapidly. They reach the ground at a mean rate of the order of one particle per square centimeter per minute

  6. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    Science.gov (United States)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  7. Natural radiation doses for cosmic and terrestrial components in Costa Rica

    International Nuclear Information System (INIS)

    Mora, Patricia; Picado, Esteban; Minato, Susumu

    2007-01-01

    A study of external natural radiation, cosmic and terrestrial components, was carried out with in situ measurements using NaI scintillation counters while driving along the roads in Costa Rica for the period July 2003-July 2005. The geographical distribution of the terrestrial air-absorbed dose rates and the total effective dose rates (including cosmic) are represented on contour maps. Information on the population density of the country permitted the calculation of the per capita doses. The average effective dose for the total cosmic component was 46.88±18.06 nSv h -1 and the average air-absorbed dose for the terrestrial component was 29.52±14.46 nGy h -1 . The average total effective dose rate (cosmic plus terrestrial components) was 0.60±0.18 mSv per year. The effective dose rate per capita was found to be 83.97 nSv h -1 which gives an annual dose of 0.74 mSv. Assuming the world average for the internal radiation component, the natural radiation dose for Costa Rica will be 2.29 mSv annually

  8. The anisotropy of the cosmic background radiation from local dynamic density perturbations

    International Nuclear Information System (INIS)

    Dyer, C.C.; Ip, P.S.S.

    1988-01-01

    Contrary to the usual assumption, it is shown here that the anisotropy of the cosmic background radiation need not be dominated by perturbations at the last scattering surface. The results of computer simulations are shown in which local dynamic density perturbations, in the form of Swiss cheese holes with finite, uniform density central lumps, are the main source of anisotropy of the cosmic background radiation. (author)

  9. Cosmic rays and radiations from the cosmos; Rayons cosmiques et rayonnement du cosmos

    Energy Technology Data Exchange (ETDEWEB)

    Parizot, E

    2005-12-01

    This document gathers a lot of recent information concerning cosmic radiations, it is divided into 4 parts. Part I: energy, mass and angular spectra of cosmic rays. Part II: general phenomenology of cosmic rays, this part deals with the standard model, the maximal energy of protons inside supernova remnants, nucleosynthesis of light elements, and super-bubbles. Part III: radiations from the cosmos, this part deals with high energy gamma rays, non-thermal radiation of super-bubbles, positron transport, and the Compton trail of gamma-ray bursts. Part IV: the Pierre Auger observatory (OPA), this part deals with the detection of gamma ray bursts at OPA, the measurement of anisotropy, and top-down models. (A.C.)

  10. Ionizing and non-ionizing radiation and the risk of childhood cancer-illustrated with domestic radon and radio frequency electromagnetic field exposure

    OpenAIRE

    Hauri, Dimitri

    2013-01-01

    Background Children are exposed to many different environmental factors, including exposure to low-dose ionizing radiation and to non-ionizing radiation. Low-dose ionizing radiation comprises anthropogenic modified radiation and natural ionizing radiation from cosmic rays from the atmosphere, terrestrial gamma radiation from radionuclides in rocks and soils and radiation from radon. Non-ionizing radiation comprises optical radiation and radiation from electromagnetic fields. The la...

  11. Collapse of radiating fluid spheres and cosmic censorship

    International Nuclear Information System (INIS)

    Unruh, W.G.

    1985-01-01

    The radiating-fluid-sphere model studied by Lake and Hellaby is reanalyzed to show that flat spacetime is a valid C 1 extension to their model and thus it does not force a violation of strong cosmic censorship

  12. Noncommutative black-body radiation: Implications on cosmic microwave background

    International Nuclear Information System (INIS)

    Fatollahi, A.H.; Hajirahimi, M.

    2006-01-01

    Including loop corrections, black-body radiation in noncommutative space is anisotropic. A direct implication of possible space non-commutativity on the cosmic microwave background map is argued. (authors)

  13. Effect of heavy charged particles of galactic cosmic radiation on seeds

    International Nuclear Information System (INIS)

    Maksimova, E.N.

    1985-01-01

    The experiments were carried out on Lactuca sativa seeds exposed for 20, 66, 123 and 308 days in a biostack also containing physical detectors of heavy charged particles. The puppose of the experiments was to measure the yield of abberrant cells and its dependence on the exposure time and the site where particles hit the object. The cytogenetic examination demonstrated a significant difference between the seeds that were or were not hit by heavy charged particles. This is indicative of a significant contribution of galactic cosmic radiation to the radiobiological effect. The yield of aberrant cells as a function of the localization of heavy charged particles in the seed was established. The most sensitive target was the root meristem

  14. Progress in Space Weather Modeling and Observations Needed to Improve the Operational NAIRAS Model Aircraft Radiation Exposure Predictions

    Science.gov (United States)

    Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.

    2011-12-01

    The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.

  15. Measurements of national radiation exposure rates on train lines in Tokai area

    International Nuclear Information System (INIS)

    Matsuda, Hideharu

    1996-01-01

    For data accumulation of natural radiation exposure rate derived from gamma-ray and cosmic-ray to evaluate population dose, the author measured the rate in the running vehicles of 12 JR Tokai lines, 17 Nagoya Railway lines, 4 Kinkinippon Railway lines and 1 line of Nagoya City Bus. A portable gamma spectrometer equipped with 3' in diameter x 3' NaI (Tl) scintillation detector was placed on the seat of the vehicle for measurement in the period of December, 1992-August, 1995. Gamma-ray and cosmic-ray exposure rates in air were assessed separately as reported before and expressed in Gy/h. The average exposure rate of gamma-ray in JR Tokai lines was 19.8 nGy/h and of cosmic-ray, 28.5 nGy/h, both of which were markedly varied from line to line. The average rates of gamma-and cosmic-ray were 21.6 nGy/h and 29.0 nGy/h, respectively, in Nagoya Railway lines and 20.9 nGy/h and 28.7 nGy/h, respectively, in Kinkinippon lines. In the city bus, the respective rates were 27.2 nGy/h and 27.0 nGy/h. Thus, the average rates of gamma-ray (about 20 nGy/h) and cosmic-ray (about 29 nGy/h) were not so different between JR and other private railway lines. In the bus, the former rate was slightly lower and the latter, slightly higher. However, the total rates of both rays were in the range of about 50-55 nGy/h in all vehicles examined. (H.O.)

  16. Diffuse Cosmic Infrared Background Radiation

    Science.gov (United States)

    Dwek, Eli

    2002-01-01

    The diffuse cosmic infrared background (CIB) consists of the cumulative radiant energy released in the processes of structure formation that have occurred since the decoupling of matter and radiation following the Big Bang. In this lecture I will review the observational data that provided the first detections and limits on the CIB, and the theoretical studies explaining the origin of this background. Finally, I will also discuss the relevance of this background to the universe as seen in high energy gamma-rays.

  17. Focusing of cosmic radiation near power lines. A theoretical approach

    International Nuclear Information System (INIS)

    Skedsmo, A.; Vistnes, A.I.

    1997-02-01

    The purpose of this work was to determine if, and to what extent, cosmic radiation can be focused by power lines. As an alternative to experimental measurements, a computer program was developed for simulation of particle trajectories. Starting from given initial values, the cosmic particles trajectories through the electromagnetic field surrounding power lines were simulated. Particular efforts have been made to choose initial values which represent the actual physical condition of the cosmic radiation at ground level. The results show an average decrease in the particle flux density in an area below a power line and a corresponding increased flux between 12 m and 45 m on either side of the centre of the power line. The average shift in flux density is, however, extremely small (less than 0.1%) and probably not measurable with existing detector technology. 11 refs., 4 figs., 2 tabs

  18. Cosmic radiation dose in aircraft - a neutron track etch detector

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia); Planinic, J. [Department of Physics, University of Osijek, 31000 Osijek, P.O. Box 125, Gajev trg 6 (Croatia)], E-mail: planinic@ffos.hr

    2007-12-15

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect.

  19. Cosmic radiation dose in aircraft - a neutron track etch detector

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Miklavcic, I.; Poje, M.; Varga, M.; Planinic, J.

    2007-01-01

    Cosmic radiation bombards us at high altitude by ionizing particles. The radiation environment is a complex mixture of charged particles of solar and galactic origin, as well as of secondary particles produced in interaction of the galactic cosmic particles with the nuclei of atmosphere of the Earth. The radiation field at aircraft altitude consists of different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard ATR 42 and A 320 aircrafts (flight level of 8 and 11 km, respectively) was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter. The estimated occupational effective dose for the aircraft crew (A 320) working 500 h per year was 1.64 mSv. Other experiments, or dose rate measurements with the neutron dosimeter, consisting of LR-115 track detector and boron foil BN-1 or 10B converter, were performed on five intercontinental flights. Comparison of the dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level showed that the neutron component carried about 50% of the total dose. The dose rate measurements on the flights from the Middle Europe to the South and Middle America, then to Korea and Japan, showed that the flights over or near the equator region carried less dose rate; this was in accordance with the known geomagnetic latitude effect

  20. Cosmic Dark Radiation and Neutrinos

    Directory of Open Access Journals (Sweden)

    Maria Archidiacono

    2013-01-01

    Full Text Available New measurements of the cosmic microwave background (CMB by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H0, inferred from the Planck data and local measurements of H0 can to some extent be alleviated by enlarging the minimal ΛCDM model to include additional relativistic degrees of freedom. From a fundamental physics point of view, dark radiation is no less interesting. Indeed, it could well be one of the most accessible windows to physics beyond the standard model, for example, sterile neutrinos. Here, we review the most recent cosmological results including a complete investigation of the dark radiation sector in order to provide an overview of models that are still compatible with new cosmological observations. Furthermore, we update the cosmological constraints on neutrino physics and dark radiation properties focusing on tensions between data sets and degeneracies among parameters that can degrade our information or mimic the existence of extra species.

  1. RADIATION PROTECTION FOR HUMAN SPACEFLIGHT

    OpenAIRE

    Hellweg, C.E.; Baumstark-Khan, C.; Berger, T.

    2017-01-01

    Space is a special workplace not only because of microgravity and the dependency on life support systems, but also owing to a constant considerable exposure to a natural radiation source, the cosmic radiation. Galactic cosmic rays (GCR) and solar cosmic radiation (SCR) are the primary sources of the radiation field in space. Whereas the GCR component comprises all particles from protons to heavy ions with energies up to 10¹¹ GeV, the SCR component ejected in Solar Energetic Particle events (S...

  2. Current Evidence for Developmental, Structural, and Functional Brain Defects following Prenatal Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Tine Verreet

    2016-01-01

    Full Text Available Ionizing radiation is omnipresent. We are continuously exposed to natural (e.g., radon and cosmic and man-made radiation sources, including those from industry but especially from the medical sector. The increasing use of medical radiation modalities, in particular those employing low-dose radiation such as CT scans, raises concerns regarding the effects of cumulative exposure doses and the inappropriate utilization of these imaging techniques. One of the major goals in the radioprotection field is to better understand the potential health risk posed to the unborn child after radiation exposure to the pregnant mother, of which the first convincing evidence came from epidemiological studies on in utero exposed atomic bomb survivors. In the following years, animal models have proven to be an essential tool to further characterize brain developmental defects and consequent functional deficits. However, the identification of a possible dose threshold is far from complete and a sound link between early defects and persistent anomalies has not yet been established. This review provides an overview of the current knowledge on brain developmental and persistent defects resulting from in utero radiation exposure and addresses the many questions that still remain to be answered.

  3. Environmental radiation and exposure to radiation

    International Nuclear Information System (INIS)

    1981-02-01

    Compared to 1977 the exposure to radiation of the population of the Federal Republic of Germany from both natural and artificial radiation sources has not greatly charged. The amin part of exposure to natural radiation is caused by environmental radiation and by the absorption of naturally radioactive substances into the body. Artificial exposure to radiation of the population is essentially caused by the use of ionizing rays and radioactive substances in medicine. When radioactive materials are released from nuclear facilities the exposure to radiation of the population is only very slightly increased. The real exposure to radiation of individual people can even in the worst affected places, have been at most fractions of a millirem. The exposure to radiation in the worst afected places in the area of a hard-coal power station is higher than that coming from a nuclear power station of the same capacity. The summation of all contributions to the exposure of radiation by nuclear facilities to the population led in 1978 in the Federal Republic of Germany to a genetically significant dose of clearly less than 1 millerem per year. The medium-ranged exposure to radiation by external radiation effects through professional work was in 1978 at 80 millirems. No difference to 1977. The contribution of radionuclide from the fallout coming from nuclear-weapon tests and which has been deposited in the soil, to the whole-body dose for 1978 applies the same as the genetically significant dose of the population with less than 1 millirem. (orig./HP) [de

  4. Natural radiation

    International Nuclear Information System (INIS)

    Feliciano, Vanusa Maria Delage

    2016-01-01

    Cosmic radiation, as well as cosmogenic radiation, terrestrial radiation, radon and thorium are introduced in this chapter 3. The distribution of natural radiation sources is treated, where the percentage distribution of the contribution relative to exposure to radiation from natural and artificial sources is also included

  5. Canadian-based aircrew exposure from cosmic radiation on commercial airline routes

    Energy Technology Data Exchange (ETDEWEB)

    McCall, M.J.; Green, A.R.; Lewis, B.J.; Bennett, L.G.I.; Pierre, M. [Royal Military College of Canada, Kingston, Ontario (Canada); Schrewe, U. [Physikalisch Technische Bundesanstalt, Braunschweig (Germany); O' Brien, K. [Northern Arizona Univ., Flagstaff, Arizona (United States); Feldsberger, E. [University of Graz (Austria)

    2000-07-01

    As part of a continuing study on the occupational exposure of Canadian-based aircrew, a Tissue Equivalent Proportional Counter (TEPC) was used to monitor this exposure on 64 flight routes spanning a range of geomagnetic latitudes between 40{sup o}S and 85{sup o}N. The microdosimetric data obtained from these flights were compared to that obtained from several terrestrial sources and were used to characterize the radiation field at jet altitudes. From 20 000 ambient dose equivalent rates obtained at various altitudes and geomagnetic latitudes, a correlation was developed to allow for the interpolation of the dose rate for any global position, altitude and date. By integration of this dose rate function over a great circle flight path, a predictive code was developed to provide a total ambient dose equivalent prediction for a given flight. (author)

  6. Cosmic radiation exposure on Canadian-based commercial airline routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R

    1998-07-01

    As a result of the recent recommendations of the ICRP-60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-phase investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. In the first phase of the study, dedicated scientific flights on a Northern round-trip route between Ottawa and Resolute Bay provided the opportunity to characterize the complex mixed-radiation field, and to intercompare various instrumentation using both a conventional suite of powered detectors and passive dosimetry. In the second phase, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flights and computer code (CART-LF) calculations. This study has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP-60 public limit of 1 mSv y{sup -1} but will be well below the occupational limit of 20 mSv y{sup -1}. (author)

  7. Cosmic Radiation Exposure on Canadian-Based Commercial Airline Routes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Tume, P.; Bennett, L.G.I.; Pierre, M.; Green, A.R.; Cousins, T.; Hoffarth, B.E.; Jones, T.A.; Brisson, J.R

    1999-07-01

    As a result of the recent recommendations of ICRP 60 and in anticipation of possible regulation on occupational exposure of commercial aircrew, a two-part investigation was carried out over a one-year period to determine the total dose equivalent on representative Canadian-based flight routes. As part of the study, a dedicated scientific measurement flight (using both a conventional suite of powered detectors and passive dosimetry) was used to characterise the complex mixed radiation field and to intercompare the various instrumentation. In the other part of the study, volunteer aircrew carried (passive) neutron bubble detectors during their routine flight duties. From these measurements, the total dose equivalent was derived for a given route with a knowledge of the neutron fraction as determined from the scientific flight and computer code (CARI-LF) calculations. This investigation has yielded an extensive database of over 3100 measurements providing the total dose equivalent for 385 different routes. By folding in flight frequency information and the accumulated flight hours, the annual occupational exposures of 26 flight crew have also been determined. This study has indicated that most Canadian-based domestic and international aircrew will exceed the proposed annual ICRP 60 public limit of 1 mSv.y{sup -1}, but will be below the occupational limit of 20 mSv.y{sup -1}. (author)

  8. An Overview of NASA's Risk of Cardiovascular Disease from Radiation Exposure

    Science.gov (United States)

    Patel, Zarana S.; Huff, Janice L.; Simonsen, Lisa C.

    2015-01-01

    The association between high doses of radiation exposure and cardiovascular damage is well established. Patients that have undergone radiotherapy for primary cancers of the head and neck and mediastinal regions have shown increased risk of heart and vascular damage and long-term development of radiation-induced heart disease [1]. In addition, recent meta-analyses of epidemiological data from atomic bomb survivors and nuclear industry workers has also shown that acute and chronic radiation exposures is strongly correlated with an increased risk of circulatory disease at doses above 0.5 Sv [2]. However, these analyses are confounded for lower doses by lifestyle factors, such as drinking, smoking, and obesity. The types of radiation found in the space environment are significantly more damaging than those found on Earth and include galactic cosmic radiation (GCR), solar particle events (SPEs), and trapped protons and electrons. In addition to the low-LET data, only a few studies have examined the effects of heavy ion radiation on atherosclerosis, and at lower, space-relevant doses, the association between exposure and cardiovascular pathology is more varied and unclear. Understanding the qualitative differences in biological responses produced by GCR compared to Earth-based radiation is a major focus of space radiation research and is imperative for accurate risk assessment for long duration space missions. Other knowledge gaps for the risk of radiation-induced cardiovascular disease include the existence of a dose threshold, low dose rate effects, and potential synergies with other spaceflight stressors. The Space Radiation Program Element within NASA's Human Research Program (HRP) is managing the research and risk mitigation strategies for these knowledge gaps. In this presentation, we will review the evidence and present an overview of the HRP Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure.

  9. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1993-01-01

    According to the Section 32 of the Radiation Act (592/91) the Finnish Centre for Radiation and Nuclear Safety gives instructions concerning the monitoring of the radiation exposure and the application of the dose limits in Finland. The principles to be applied to calculating the equivalent and the effective doses are presented in the guide. Also the detailed instructions on the application of the maximum exposure values for the radiation work and for the natural radiation as well as the instructions on the monitoring of the exposures are given. Quantities and units for assessing radiation exposure are presented in the appendix of the guide

  10. The Effect of Topography on the Exposure of Airless Bodies to Space Radiation: Phobos Case Study

    Science.gov (United States)

    Stubbs, T. J.; Wang, Y.; Guo, J.; Schwadron, N.; Cooper, J. F.; Wimmer-Schweingruber, R. F.; Spence, H. E.; Jordan, A.; Sturner, S. J.; Glenar, D. A.; Wilson, J. K.

    2017-12-01

    The surfaces of airless bodies, such as the Moon and Phobos (innermost Martian moon), are directly exposed to the surrounding space environment, including energetic particle radiation from both the ever-present flux of galactic cosmic rays (GCRs) and episodic bursts of solar energetic particles (SEPs). Characterizing this radiation exposure is critical to our understanding of the evolution of these bodies from space weathering processes, such as radiation damage of regolith, radiolysis of organics and volatiles, and dielectric breakdown. Similarly, this also has important implications for the long-term radiation exposure of future astronauts and equipment on the surface. In this study, the focus is the influence of Phobian topography on the direct exposure of Phobos to space radiation. For a given point on its surface, this exposure depends on: (i) the solid angle subtended by the sky, (ii) the solid angle of the sky blocked by Mars, and (iii) the energy and angular distributions of ambient energetic particle populations. The sky solid angle, determined using the elevation of the local horizon calculated from a digital elevation model (DEM), can be significantly reduced around topographic lows, such as crater floors, or increased near highs like crater rims. The DEM used in this study was produced using images from the Mars Express High Resolution Stereo Camera (HRSC), and has the highest available spatial resolution ( 100m). The proximity of Phobos to Mars means the Martian disk appears large in the Phobian sky, but this only effects the moon's near side due its tidally locked orbit. Only isotropic distributions of energetic particles are initially considered, which is typically a reasonable assumption for GCRs and sometimes for SEPs. Observations of the radiation environments on Mars by Curiosity's Radiation Assessment Detector (RAD), and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard the Lunar Reconnaissance Orbiter (LRO) at the Moon

  11. Measurements of K/Π ratio in cosmic radiation

    International Nuclear Information System (INIS)

    Mahon, J.R.P.

    1986-01-01

    Measurements of k/Π ratio in cosmic radiation by its half lives and its fluxes, were carried out. The kaon flux was obtained using the Cherenkov detector, and for pion flux scintillation detectors were used. The final results of K/Π ratio ∼ 0.2 was obtained. (M.C.K.) [pt

  12. Search for the Cosmic Infrared Background Radiation using COBE Data

    Science.gov (United States)

    Hauser, Michael

    2001-01-01

    This project was initiated to allow completion of the primary investigation of the Diffuse Infrared Background Experiment (DIRBE) on NASA's Cosmic Background Explorer (CORE) mission, and to study the implications of those findings. The Principal Investigator (PI) on this grant was also the Principal Investigator on the DIRBE team. The project had two specific goals: Goal 1: Seek improved limits upon, or detections of, the cosmic infrared background radiation using data from the COBE Diffuse Infrared Background Experiment (DIRBE). Goal 2: Explore the implications of the limits and measured values of the cosmic infrared background for energy releases in the Universe since the formation of the first luminous sources. Both of these goals have been successfully accomplished.

  13. Angular anisotropy of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1982-01-01

    The theory of fluctuations in the cosmic microwave background radiation is reviewed. Anisotropy on large-scale (dipole and quadrupole) and on small scales is discussed. The smoothing effects of secondary ionization (fractional ionization x) are found to be unimportant over an angular scale greater than approx.= 5(OMEGAx)sup(1/3) degrees. (author)

  14. Radiation exposure records management

    International Nuclear Information System (INIS)

    Boiter, H.P.

    1975-12-01

    Management of individual radiation exposure records begins at employment with the accumulation of data pertinent to the individual and any previous occupational radiation exposure. Appropriate radiation monitorinng badges or devices are issued and accountability established. A computer master file is initiated to include the individual's name, payroll number, social security number, birth date, assigned department, and location. From this base, a radiation exposure history is accumulated to include external ionizing radiation exposure to skin and whole body, contributing neutron exposure, contributing tritium exposure, and extremity exposure. It is used also to schedule bioassay sampling and in-vivo counts and to provide other pertinent information. The file is used as a basis for providing periodic reports to management and monthly exposure summaries to departmental line supervision to assist in planning work so that individual annual exposures are kept as low as practical. Radiation exposure records management also includes documentation of radiation surveys performed by the health physicist to establish working rates and the individual estimating and recording his estimated exposure on a day-to-day basis. Exposure information is also available to contribute to Energy Research and Development Administration statistics and to the National Transuranium Registry

  15. Application of maximum radiation exposure values and monitoring of radiation exposure

    International Nuclear Information System (INIS)

    1996-01-01

    The guide presents the principles to be applied in calculating the equivalent dose and the effective dose, instructions on application of the maximum values for radiation exposure, and instruction on monitoring of radiation exposure. In addition, the measurable quantities to be used in monitoring the radiation exposure are presented. (2 refs.)

  16. Air traffic and cosmic radiation. An epidemiological study among aircraft crews in Germany

    International Nuclear Information System (INIS)

    Blettner, M.; Hammer, G.P.; Langner, I.; Zeeb, H.

    2003-01-01

    Airline pilots and cabin crew are exposed to cosmic ionizing radiation and other occupational factors that may influence their health status. The mortality of some 6,000 pilots and 20,000 cabin crew members was investigated in a cohort study. Overall a pronounced healthy worker effect was seen. The cancer mortality risk is slightly lower than in the general population. Currently there is no indication for an increase in cancer mortality due to cosmic radiation. A further follow-up is planned. (orig.) [de

  17. Cosmic background radiation anisotropy in an open inflation, cold dark matter cosmogony

    Science.gov (United States)

    Kamionkowski, Marc; Ratra, Bharat; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We compute the cosmic background radiation anisotropy, produced by energy-density fluctuations generated during an early epoch of inflation, in an open cosmological model based on the cold dark matter scenario. At Omega(sub 0) is approximately 0.3-0.4, the Cosmic Background Explorer (COBE) normalized open model appears to be consistent with most observations.

  18. COMPARISON OF COSMIC RAYS RADIATION DETECTORS ON-BOARD COMMERCIAL JET AIRCRAFT

    Czech Academy of Sciences Publication Activity Database

    Kubančák, Ján; Ambrožová, Iva; Pachnerová Brabcová, Kateřina; Jakoubek, J.; Kyselová, D.; Ploc, Ondřej; Bemš, J.; Štěpán, Václav; Uchihori, Y.

    2015-01-01

    Roč. 164, č. 4 (2015), s. 484-488 ISSN 0144-8420 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : cosmic radiation * commercial jet aircraft * radiation dose Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  19. Snowpack snow water equivalent measurement using the attenuation of cosmic gamma radiation

    International Nuclear Information System (INIS)

    Osterhuber, R.; Condreva, K.

    1998-01-01

    Incoming, background cosmic radiation constantly fluxes through the earth's atmosphere. The high energy gamma portion of this radiation penetrates many terrestrial objects, including the winter snowpack. The attenuation of this radiation is exponentially related to the mass of the medium through which it penetrates. For the past three winters, a device measuring cosmic gamma radiation--and its attenuation through snow--has been installed at the Central Sierra Snow Laboratory, near Donner Pass, California. This gamma sensor, measuring energy levels between 5 and 15 MeV, has proved to be an accurate, reliable, non-invasive, non-mechanical instrument with which to measure the total snow water equivalent of a snowpack. This paper analyzes three winters' worth of data and discusses the physics and practical application of the sensor for the collection of snow water equivalent data from a remote location

  20. Long-range correlation in cosmic microwave background radiation.

    Science.gov (United States)

    Movahed, M Sadegh; Ghasemi, F; Rahvar, Sohrab; Tabar, M Reza Rahimi

    2011-08-01

    We investigate the statistical anisotropy and gaussianity of temperature fluctuations of Cosmic Microwave Background (CMB) radiation data from the Wilkinson Microwave Anisotropy Probe survey, using the Multifractal Detrended Fluctuation Analysis, Rescaled Range, and Scaled Windowed Variance methods. Multifractal Detrended Fluctuation Analysis shows that CMB fluctuations has a long-range correlation function with a multifractal behavior. By comparing the shuffled and surrogate series of CMB data, we conclude that the multifractality nature of the temperature fluctuation of CMB radiation is mainly due to the long-range correlations, and the map is consistent with a gaussian distribution.

  1. Radiation safety in aviation

    International Nuclear Information System (INIS)

    2005-06-01

    The guide presents the requirements governing radiation safety of aircrews exposed to cosmic radiation and monitoring of such exposure. It applies to enterprises engaged in aviation under a Finnish operating licence and to Finnish military aviation at altitudes exceeding 8,000 metres. The radiation exposure of aircrews at altitudes of less than 8,000 metres is so minimal that no special measures are generally required to investigate or limit exposure to radiation

  2. Elucidation of the fluctuation history of cosmic radiation and global environmental using AMS

    International Nuclear Information System (INIS)

    Horiuchi, Kazuho

    2008-01-01

    Recently, accuracy of AMS has further been raised in trace amounts of sample. Besides application of 14 C to the age estimation, it has been able to restore in detail the past fluctuation of cosmic radiation strength using the other radioactive isotopes ( 10 Be, 36 Cl etc) in environmental samples and to elucidate the correlation of this with the fluctuation of climate and environment. In this report, the attempts to elucidate the fluctuation history of cosmic radiation and global environment with ice cores using AMS are presented. (M.H.)

  3. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Science.gov (United States)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  4. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fragos, Tassos [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland)

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  5. Interpretation of observed cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alfven, H.; Mendis, A.

    1977-01-01

    It is stated that the observed cosmic microwave background radiation, which closely fits a 2.7 K black body spectrum, is generally claimed to be the strongest piece of evidence in support of hot big bang cosmologies by its proponents. It is here stated that the observed radiation corresponds to the distribution of dust in galaxies or protogalaxies with a temperature approximately 110 K at the epoch corresponding to Z approximately 40, and not to a plasma of temperature > approximately 3000 K at an earlier epoch (Z > approximately 1000), as indicated by the canonical model of big bang cosmologies. The claim that the latter lends strong support to hot big bang cosmologies is stated to be without foundation. It is concluded that the microwave background radiation must be explained not in terms of a coupling between matter and radiation at the present epoch, but in terms of a coupling in a previous epoch within the framework of an evolutionary cosmology. (U.K.)

  6. Hazards of radiation exposure

    International Nuclear Information System (INIS)

    Solomon, S.B.

    1982-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risks to health from exposure to low levels of radiation. There is scant data on somatic and genetic risks at environmental and occupational levels of radiation exposure. The available data on radiation induced carcinogenesis and mutagenesis are for high doses and high dose rates of radiation. Risk assessments for low level radiation are obtained using these data, assuming a linear dose-response relationship. During uranium mining the chief source of radiation hazard is inhalation of radon daughters. The correlation between radon daughter exposure and the increased incidence of lung cancer has been well documented. For radiation exposures at and below occupational limits, the associated risk of radiation induced cancers and genetic abnormalities is small and should not lead to a detectable increase over naturally occurring rates

  7. Investigation of energy spectrum and nuclear interactions of primary cosmic radiation; Badanie widma energetycznego i oddzialywan jadrowych pierwotnego promieniowania kosmicznego

    Energy Technology Data Exchange (ETDEWEB)

    Wilczynski, H. [Dept. of High Energy Physics, The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the paper the JACEE experiment data analysis: energy spectra in the energy range 10{sup 12} - 10{sup 15} eV of different nuclides in cosmic radiation and some aspects of nuclear interactions at energy above 10{sup 12} eV/nucleon is presented. The data were compared with results of theory of cosmic radiation acceleration by striking waves arises from supernova stars explosions. In the interactions of cosmic radiation nuclei the short-lived particles production has been observed what agrees with long-distance component of cascades initiated by cosmic radiation interactions. In one case an interaction with asymmetric photons emission were observed 72 refs, 33 figs, 4 tabs

  8. Cosmic thermalization and the microwave background radiation

    International Nuclear Information System (INIS)

    Rana, N.C.

    1981-01-01

    A different origin of the microwave background radiation (MBR) is suggested in view of some of the difficulties associated with the standard interpretation. Extensive stellar-type nucleosynthesis could provide radiation with the requisite energy density of the MBR and its spectral features are guaranteed by adequate thermalization of the above radiation by an ambient intergalactic dust medium. This thermalization must have occurred in quite recent epochs, say around epochs of redshift z = 7. The model emerges with consistent limits on the cosmic abundance of helium, the general luminosity evolution of the extragalactic objects, the baryonic matter density in the Universe (or, equivalently the deceleration parameter) and the degree of isotropy of MBR. The model makes definite predictions on issues like the properties of the intergalactic thermalizers, the degree of isotropy of MBR at submillimetre wavelengths and cluster emission in the far infrared. (author)

  9. Radiation camera exposure control

    International Nuclear Information System (INIS)

    Martone, R.J.; Yarsawich, M.; Wolczek, W.

    1976-01-01

    A system and method for governing the exposure of an image generated by a radiation camera to an image sensing camera is disclosed. The exposure is terminated in response to the accumulation of a predetermined quantity of radiation, defining a radiation density, occurring in a predetermined area. An index is produced which represents the value of that quantity of radiation whose accumulation causes the exposure termination. The value of the predetermined radiation quantity represented by the index is sensed so that the radiation camera image intensity can be calibrated to compensate for changes in exposure amounts due to desired variations in radiation density of the exposure, to maintain the detectability of the image by the image sensing camera notwithstanding such variations. Provision is also made for calibrating the image intensity in accordance with the sensitivity of the image sensing camera, and for locating the index for maintaining its detectability and causing the proper centering of the radiation camera image

  10. Nuclear interactions between cosmic radiation and interstellar gas, and nucleosynthesis of lithium, beryllium, and boron

    International Nuclear Information System (INIS)

    Meneguzzi, Maurice.

    1975-01-01

    The effects of nuclear interactions between the nuclei of cosmic radiation and those of interstellar gas were studied. The variation in the chemical composition of cosmic radiation with energy shows that the quantity of matter it passes through decreases between 1 and 100GeV/nucleon from 6 to 1g/cm 2 approximately. The chemical and isotopic composition for C, N and O suggests that the relative abundances of these nuclei at the source are much the same as the universal abundances except for the ratio C/O, higher by about a factor 1.5 in cosmic radiation sources. The enrichment of interstellar gas in light elements Li, Be and B was calculated. The value obtained accounts well for the universal abundances of the four isotopes 6 Li, 9 Be, 10 B, 11 B independently of the model used. It may be assumed that large fluxes of low-energy cosmic rays exist in the remains of supernovae and that 7 Li is produced in these objects and then spread out in the galaxy. These objects could be extended sources of nuclear γ's, which are observable, but the same process proves unable to produce sufficient quantities of the very heavy proton-rich elements of dubious origin. Inelastic collisions or spallation reactions between cosmic and interstellar gas nuclei induce a quantity of nuclear γ ray emission not necessarily undetectable. The position flux of a few MeV from the β + disintegration of unstable spallation products is too low on the other hand to give an estimate of the low-energy cosmic radiation flux in the interstellar medium [fr

  11. Radiation exposure analysis of female nuclear medicine radiation workers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Young [Dept. of Biomedical Engineering Graduate School, Chungbuk National University, Cheongju (Korea, Republic of); Park, Hoon Hee [Dept. of Radiological Technologist, Shingu College, Sungnam (Korea, Republic of)

    2016-06-15

    In this study, radiation workers who work in nuclear medicine department were analyzed to find the cause of differences of radiation exposure from General Characteristic, Knowledge, Recognition and Conduct, especially females working on nuclear medicine radiation, in order to pave the way for positive defense against radiation exposure. The subjects were 106 radiation workers who were divided into two groups of sixty-four males and forty-two females answered questions about their General Characteristic, Knowledge, Recognition, Conduct, and radiation exposure dose which was measured by TLD (Thermo Luminescence Dosimeter). The results of the analysis revealed that as the higher score of knowledge and conduct was shown, the radiation exposure decreased in female groups, and as the higher score of conduct was shown, the radiation exposure decreased in male groups. In the correlation analysis of female groups, the non-experienced in pregnancy showed decreasing amount of radiation exposure as the score of knowledge and conduct was higher and the experienced in pregnancy showed decreasing amount of radiation exposure as the score of recognition and conduct was higher. In the regression analysis on related factors of radiation exposure dose of nuclear medicine radiation workers, the gender caused the meaningful result and the amount of radiation exposure of female groups compared to male groups. In the regression analysis on related factors of radiation exposure dose of female groups, the factor of conduct showed a meaningful result and the amount of radiation exposure of the experienced in pregnancy was lower compared to the non-experienced. The conclusion of this study revealed that radiation exposure of female groups was lower than that of male groups. Therefore, male groups need to more actively defend themselves against radiation exposure. Among the female groups, the experienced in pregnancy who have an active defense tendency showed a lower radiation exposure. Thus

  12. Radiation exposure analysis of female nuclear medicine radiation workers

    International Nuclear Information System (INIS)

    Lee, Ju Young; Park, Hoon Hee

    2016-01-01

    In this study, radiation workers who work in nuclear medicine department were analyzed to find the cause of differences of radiation exposure from General Characteristic, Knowledge, Recognition and Conduct, especially females working on nuclear medicine radiation, in order to pave the way for positive defense against radiation exposure. The subjects were 106 radiation workers who were divided into two groups of sixty-four males and forty-two females answered questions about their General Characteristic, Knowledge, Recognition, Conduct, and radiation exposure dose which was measured by TLD (Thermo Luminescence Dosimeter). The results of the analysis revealed that as the higher score of knowledge and conduct was shown, the radiation exposure decreased in female groups, and as the higher score of conduct was shown, the radiation exposure decreased in male groups. In the correlation analysis of female groups, the non-experienced in pregnancy showed decreasing amount of radiation exposure as the score of knowledge and conduct was higher and the experienced in pregnancy showed decreasing amount of radiation exposure as the score of recognition and conduct was higher. In the regression analysis on related factors of radiation exposure dose of nuclear medicine radiation workers, the gender caused the meaningful result and the amount of radiation exposure of female groups compared to male groups. In the regression analysis on related factors of radiation exposure dose of female groups, the factor of conduct showed a meaningful result and the amount of radiation exposure of the experienced in pregnancy was lower compared to the non-experienced. The conclusion of this study revealed that radiation exposure of female groups was lower than that of male groups. Therefore, male groups need to more actively defend themselves against radiation exposure. Among the female groups, the experienced in pregnancy who have an active defense tendency showed a lower radiation exposure. Thus

  13. Ionizing radiation, radiation sources, radiation exposure, radiation effects. Pt. 2

    International Nuclear Information System (INIS)

    Schultz, E.

    1985-01-01

    Part 2 deals with radiation exposure due to artificial radiation sources. The article describes X-ray diagnosis complete with an analysis of major methods, nuclear-medical diagnosis, percutaneous radiation therapy, isotope therapy, radiation from industrial generation of nucler energy and other sources of ionizing radiation. In conclusion, the authors attempt to asses total dose, genetically significant dose and various hazards of total radiation exposure by means of a summation of all radiation impacts. (orig./WU) [de

  14. Occupational radiation exposure in Germany in 2006. Report of the radiation protection register

    International Nuclear Information System (INIS)

    Frasch, G.; Fritzsche, E.; Kammerer, L.; Karofsky, R.; Spiesl, J.; Stegemann, R.

    2008-06-01

    In Germany, persons occupationally exposed to radiation are monitored by several official dosimetric services who transmit their records about individual radiation doses to the Radiation Protection Register of the Federal Office for Radiation Protection (BfS). The number of dose recordings reported to the Radiation Protection Register has annually increased to more than three million records per year and thus accumulated to more than 34 million dose records at the end of 2006. The purpose of the Radiation Protection Register is to supervise the keeping of the dose limits by each radiation worker and to monitor the compliance with the radiation protection principle ''optimisation'' by performing detailed annual statistical analyses of the monitored persons and their radiation exposure. Amongst others, the annual report of the Radiation Protection Register provides information about status and development of occupational radiation exposure in Germany. In 2006, about 312,000 workers were monitored with dosimeters for occupational radiation exposure. About 18 % of the monitored persons received a measurable personal dose. The average annual dose of these exposed workers was 0.75 mSv. This value is the lowest average annual dose since dose monitoring for occupational worker was introduced. It remains below the dose limit of 1 mSv for the general public and amounts only 4 % of the annual dose limit of 20 mSv for radiation workers. Since 2003 aircraft crew personnel is subject to dose monitoring if it is employed in accordance with the German employment act and likely to receive an effective dose of at least 1 mSv per year from cosmic radiation during flight operation. This accounts for about 33.000 pilots and flight attendants. 45 airlines report the monthly accumulated dose values of their personnel via the Federal Office for Civil Aviation (''Luftfahrt-Bundesamt, LBA'') to the BfS. The collective dose of the aircraft crew personnel is 71 Person-Sv and thus

  15. Radiative processes of two entangled atoms in cosmic string spacetime

    Science.gov (United States)

    Cai, Huabing; Ren, Zhongzhou

    2018-01-01

    We investigate the radiative processes of two static two-level atoms in a maximally entangled state coupled to vacuum electromagnetic field in the cosmic string spacetime. We find that the decay rate from the entangled state to the ground state crucially depends on the atomic separation, the polarization directions of the individual atoms, the atom-string distance and the deficit angle induced by the string. As the atom-string distance increases, the decay rate oscillates around the result in Minkowski spacetime and the amplitude gradually decreases. The oscillation is more severe for larger planar angle deficit. We analyze the decay rate in different circumstances such as near zone and specific polarization cases. Some comparisons between symmetric and antisymmetric states are performed. By contrast with the case in Minkowski spacetime, we can reveal the effects of the cosmic string on the radiative properties of the entangled atoms.

  16. Cosmic rays in space

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu

    2005-01-01

    Cosmos is a mysterious space by which many researchers are fascinated for many years. But, going into space means that we will receive extra exposure due to existence of cosmic rays. Cosmic rays are mainly composed of highly energetic protons. It was born in the last stage of stellar life. Understanding of cosmos will certainly bring right understanding of radiation energy, or energy itself. As no one could see the very early stage of cosmic rays, there is only a speculation. But it is better to speculate something based on certain side evidences, than to give up the whole. Such attitude shall be welcomed in the space researches. Anyway, cosmic rays were born in the last explosion of a star, which is called as Super Nova. After cosmic rays are emitted from the Super Nova, it will reach to the human surroundings. To indicate its intensity, special unit of ''dose rate'' is used. When a man climbs a mountain, cosmic ray intensity surely increases. It doubles as he goes up every 1500m elevation. It was ascertained by our own measurements. Then what happens when the goes up more? At aviation altitude, where airplanes fly, the dose rate will be increased up to 100times the high mountain cases. And what is expected when he goes up further more, up to space orbit altitude? In this case, the dose rate increases up to 10times the airplane cases. Geomagnetism affects the dose rate very much. As primary cosmic ray particles are charged particles, they cannot do well with existence of the magnetic field. In effect, cosmic rays can penetrate into the polar atmosphere along geomagnetic lines of forces which stand almost vertical, but penetration of low energy cosmic rays will be banned when they intend to penetrate crossing the geomagnetic lines of forces in equatorial region. Therefore, exposure due to cosmic rays will become large in polar region, while it remains small in equatorial region. In effect, airplanes which fly over the equator. Only, we have to know that the cosmos

  17. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    International Nuclear Information System (INIS)

    Vukovic, B.; Radolic, V.; Lisjak, I.; Vekic, B.; Poje, M.; Planinic, J.

    2008-01-01

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or 10 B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 μSv/h and the TLD dosimeter registered the dose equivalent of 75 μSv or the average dose rate of 2.7 μSv/h; the neutron dosimeter gave the dose rate of 2.4 μSv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 μSv/h; the neutron dosimeter gave the dose rate of 2.5 μSv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data

  18. Some cosmic radiation dose measurements aboard flights connecting Zagreb Airport

    Energy Technology Data Exchange (ETDEWEB)

    Vukovic, B.; Radolic, V. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Lisjak, I. [Croatia Airlines, Zagreb (Croatia); Vekic, B. [Rudjer Boskovic Institute, Zagreb (Croatia); Poje, M. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia); Planinic, J. [Department of Physics, University of Osijek, Osijek, P.O. Box 125 (Croatia)], E-mail: planinic@ffos.hr

    2008-02-15

    When primary particles from space, mainly protons, enter the atmosphere, they produce interactions with air nuclei, and cosmic-ray showers are induced. The radiation field at aircraft altitude is complex, with different types of particles, mainly photons, electrons, positrons and neutrons, with a large energy range. The non-neutron component of cosmic radiation dose aboard A320 and ATR40 aircraft was measured with TLD-100 (LiF:Mg,Ti) detectors and the Mini 6100 semiconductor dosimeter; the neutron dose was measured with the neutron dosimeter consisted of LR-115 track detector and boron foil BN-1 or {sup 10}B converter. The estimated occupational effective dose for the aircraft crew (A320) working 500 h per year was 1.64 mSv. Another experiment was performed at the flights Zagreb-Paris-Buenos Aires and reversely, when one measured non-neutron cosmic radiation dose; for 26.7 h of flight, the MINI 6100 dosimeter gave an average dose rate of 2.3 {mu}Sv/h and the TLD dosimeter registered the dose equivalent of 75 {mu}Sv or the average dose rate of 2.7 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.4 {mu}Sv/h. In the same month, February 2005, a traveling to Japan (24-h-flight: Zagreb-Frankfurt-Tokyo and reversely) and the TLD-100 measurement showed the average dose rate of 2.4 {mu}Sv/h; the neutron dosimeter gave the dose rate of 2.5 {mu}Sv/h. Comparing dose rates of the non-neutron component (low LET) and the neutron one (high LET) of the radiation field at the aircraft flight level, we could conclude that the neutron component carried about 50% of the total dose, that was near other known data.

  19. Monitoring of radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The guide specifies the requirements for the monitoring of radiation exposure in instances where radiation is used. In addition to workers, the guide covers students, apprentices and visitors. The guide shall also apply to exposure from natural radiation. However, the monitoring of radiation exposure in nuclear power plants is dealt with in YVL Guide 7.10 and 7.11. The guide defines the concepts relevant to the monitoring of radiation exposure and provides guidelines for determining the necessity of monitoring and subsequently arranging such in different operations. In addition, the guide specifies the criteria for the approval and regulatory control of the dosimetric service.

  20. Monitoring of radiation exposure

    International Nuclear Information System (INIS)

    2000-02-01

    The guide specifies the requirements for the monitoring of radiation exposure in instances where radiation is used. In addition to workers, the guide covers students, apprentices and visitors. The guide shall also apply to exposure from natural radiation. However, the monitoring of radiation exposure in nuclear power plants is dealt with in YVL Guide 7.10 and 7.11. The guide defines the concepts relevant to the monitoring of radiation exposure and provides guidelines for determining the necessity of monitoring and subsequently arranging such in different operations. In addition, the guide specifies the criteria for the approval and regulatory control of the dosimetric service

  1. Alteration of Organic Compounds in Small Bodies and Cosmic Dusts by Cosmic Rays and Solar Radiation

    Science.gov (United States)

    Kobayashi, Kensei; Kaneko, Takeo; Mita, Hajime; Obayashi, Yumiko; Takahashi, Jun-ichi; Sarker, Palash K.; Kawamoto, Yukinori; Okabe, Takuto; Eto, Midori; Kanda, Kazuhiro

    2012-07-01

    amino acids. Complex amino acid precursors with high molecular weights could be formed in simulated dense cloud environments. They would have been altered in the early solar system by irradiation with soft X-rays from the young Sun, which caused increase of hydrophobicity of the organics of interstellar origin. They were taken up by parent bodies of meteorites or comets, and could have been delivered to the Earth by meteorites, comets and cosmic dusts. Cosmic dusts were so small that they were directly exposed to the solar radiation, which might be critical for the survivability of organics in them. In order to evaluate the roles of space dusts as carriers of bioorganic compounds to the primitive Earth, we are planning the Tanpopo Mission, where collection of cosmic dusts by using ultra low-density aerogel, and exposure of amino acids and their precursors for years are planned by utilizing the Japan Experimental Module / Exposed Facility of the ISS [2]. The mission is now scheduled to start in 2013. We thank Dr. Katsunori Kawasaki of Tokyo Institute of Technology, and Dr. Satoshi Yoshida of National Institute of Radiological Sciences for their help in particles irradiation. We also thank to the members of JAXA Tanpopo Working Group (PI: Prof. Akihiko Yamagishi) for their helpful discussion. [1] K. Kobayashi, et al., in ``Astrobiology: from Simple Molecules to Primitive Life,'' ed. by V. Basiuk, American Scientific Publishers, Valencia, CA, (2010), pp. 175-186. [2] K. Kobayashi, et al., Trans. Jpn. Soc. Aero. Space Sci., in press (2012).

  2. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, P.; Badhwar, G.; Obot, V.; Wilson, B.; Jejelewo, O.

    2001-01-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far. the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space. exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  3. Radiation transport modeling and assessment to better predict radiation exposure, dose, and toxicological effects to human organs on long duration space flights

    Science.gov (United States)

    Denkins, Pamela; Badhwar, Gautam; Obot, Victor; Wilson, Bobby; Jejelewo, Olufisayo

    2001-08-01

    NASA is very interested in improving its ability to monitor and forecast the radiation levels that pose a health risk to space-walking astronauts as they construct the International Space Station and astronauts that will participate in long-term and deep-space missions. Human exploratory missions to the moon and Mars within the next quarter century, will expose crews to transient radiation from solar particle events which include high-energy galactic cosmic rays and high-energy protons. Because the radiation levels in space are high and solar activity is presently unpredictable, adequate shielding is needed to minimize the deleterious health effects of exposure to radiation. Today, numerous models have been developed and used to predict radiation exposure. Such a model is the Space Environment Information Systems (SPENVIS) modeling program, developed by the Belgian Institute for Space Aeronautics. SPENVIS, which has been assessed to be an excellent tool in characterizing the radiation environment for microelectronics and investigating orbital debris, is being evaluated for its usefulness with determining the dose and dose-equivalent for human exposure. Thus far, the calculations for dose-depth relations under varying shielding conditions have been in agreement with calculations done using HZETRN and PDOSE, which are well-known and widely used models for characterizing the environments for human exploratory missions. There is disagreement when assessing the impact of secondary radiation particles since SPENVIS does a crude estimation of the secondary radiation particles when calculating LET versus Flux. SPENVIS was used to model dose-depth relations for the blood-forming organs. Radiation sickness and cancer are life-threatening consequences resulting from radiation exposure. In space, exposure to radiation generally includes all of the critical organs. Biological and toxicological impacts have been included for discussion along with alternative risk mitigation

  4. Assessing public exposure in commercial flights in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vanusa A.; Rochedo, Elaine R.R.; Damasceno, Nadya M.P., E-mail: vanusa_abreu@ymail.com, E-mail: elainerochedo@gmail.com, E-mail: nadya@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Silva, Diogo N.G., E-mail: diogongs@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The exposure to cosmic radiation from air traveling is significantly higher than that at ground level, varying according to the route due to the effect of latitude and flight time, to the flight altitude, due to the type of airplane and to the year, due to the effect of solar cycle on the galactic cosmic rays flux. The computer code CARI-6, developed by the U.S. Federal Aviation Administration, is aimed to calculate the effective dose of galactic cosmic radiation received by an individual in an airplane, flying the shortest route between two airports in the world. The objective of this work is to estimate the contribution of the exposure to cosmic radiation on domestic commercial flights for the Brazilian customers. The work shall serve as a baseline for future comparisons of the growth of civil aviation in the country. It shall also open perspectives for discussions on the concept of risk and its public acceptance, relevant to the establishment of radiological protection guidelines. Average effective doses for individual flights ranged from 0.2 to 8.8 μSv. This is a very small contribution to average overall exposure to natural background radiation (2.4 mSv/y). Doses for the most frequent flight routes in the country have been assessed. These include flights to and from Rio de Janeiro, Sao Paulo and Brasilia. Doses for frequent flyers and collective doses are discussed in perspective of other exposure sources. (author)

  5. Assessing public exposure in commercial flights in Brazil

    International Nuclear Information System (INIS)

    Alves, Vanusa A.; Rochedo, Elaine R.R.; Damasceno, Nadya M.P.; Silva, Diogo N.G.

    2013-01-01

    The exposure to cosmic radiation from air traveling is significantly higher than that at ground level, varying according to the route due to the effect of latitude and flight time, to the flight altitude, due to the type of airplane and to the year, due to the effect of solar cycle on the galactic cosmic rays flux. The computer code CARI-6, developed by the U.S. Federal Aviation Administration, is aimed to calculate the effective dose of galactic cosmic radiation received by an individual in an airplane, flying the shortest route between two airports in the world. The objective of this work is to estimate the contribution of the exposure to cosmic radiation on domestic commercial flights for the Brazilian customers. The work shall serve as a baseline for future comparisons of the growth of civil aviation in the country. It shall also open perspectives for discussions on the concept of risk and its public acceptance, relevant to the establishment of radiological protection guidelines. Average effective doses for individual flights ranged from 0.2 to 8.8 μSv. This is a very small contribution to average overall exposure to natural background radiation (2.4 mSv/y). Doses for the most frequent flight routes in the country have been assessed. These include flights to and from Rio de Janeiro, Sao Paulo and Brasilia. Doses for frequent flyers and collective doses are discussed in perspective of other exposure sources. (author)

  6. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is <10 ppm, then the "light," potentially "biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  7. Cosmic microwave background radiation anisotropies in brane worlds.

    Science.gov (United States)

    Koyama, Kazuya

    2003-11-28

    We propose a new formulation to calculate the cosmic microwave background (CMB) spectrum in the Randall-Sundrum two-brane model based on recent progress in solving the bulk geometry using a low energy approximation. The evolution of the anisotropic stress imprinted on the brane by the 5D Weyl tensor is calculated. An impact of the dark radiation perturbation on the CMB spectrum is investigated in a simple model assuming an initially scale-invariant adiabatic perturbation. The dark radiation perturbation induces isocurvature perturbations, but the resultant spectrum can be quite different from the prediction of simple mixtures of adiabatic and isocurvature perturbations due to Weyl anisotropic stress.

  8. Cosmic background radiation spectral distortion and radiative decays of relic neutral particles

    International Nuclear Information System (INIS)

    Berezhiani, Z.G.; Doroshkevich, A.G.; Khlopov, M.Yu.; Yurov, V.P.; Vysotskij, M.I.

    1989-01-01

    The recently observed excess of photons on a short wavelength side of the peak of a cosmic background radiation spectrum can be described by radiative decays of relic neutral particles. The lifetime and mass of a decaying particle must satisfy the following conditions: 2x10 9 s 14 s, 0.4 eV -9 -8x10 -8 ) μ b , and the interaction of new particles with the usual matter must be rather strong. The generalization of the standard SU(3)xSU(2)xU(1) model is presented which includes new particles with the desired properties. 18 refs.; 3 figs.; 2 tabs

  9. The new Internet tool: the information and evaluation system by flight, of exposure to cosmic radiation in the new air transports S.I.E.V.E.R.T; Un nouvel outil internet: le systeme d'information et d'evaluation par vol, de l'exposition au rayonnement cosmique dans les transports aeriens SIEVERT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    In France, the public authorities put a new Internet tool at air companies disposal, in order they can evaluate the radiations doses received by their flying crews during their flights. This tool called information and evaluation system by flight of exposure to cosmic radiation in air transport (S.I.E.V.E.R.T.). (N.C.)

  10. Natural radiation; A radiacao natural

    Energy Technology Data Exchange (ETDEWEB)

    Feliciano, Vanusa Maria Delage

    2016-07-01

    Cosmic radiation, as well as cosmogenic radiation, terrestrial radiation, radon and thorium are introduced in this chapter 3. The distribution of natural radiation sources is treated, where the percentage distribution of the contribution relative to exposure to radiation from natural and artificial sources is also included.

  11. The analysis of radiation exposure of hospital radiation workers

    International Nuclear Information System (INIS)

    Jeong, Tae Sik; Shin, Byung Chul; Moon, Chang Woo; Cho, Yeong Duk; Lee, Yong Hwan; Yum, Ha Yong

    2000-01-01

    This investigation was performed in order to improve the health care of radiation workers, to predict a risk, to minimize the radiation exposure hazard to them and for them to realize radiation exposure danger when they work in radiation area in hospital. The documentations checked regularly for personal radiation exposure in four university hospitals in Pusan city in Korea between January 1, 1993 and December 31, 1997 were analyz ed. There were 458 persons in this documented but 111 persons who worked less then one year were excluded and only 347 persons were included in this study. The average of yearly radiation exposure of 347 persons was 1.52±1.35 mSv. Though it was less than 5OmSv, the limitaion of radiation in law but 125 (36%) people received higher radiation exposure than non-radiation workers. Radiation workers under 30 year old have received radiation exposure of mean 1.87±1.01 mSv/year, mean 1.22±0.69 mSv between 31 and 40 year old and mean 0.97±0.43 mSv/year over, 41year old (p<0.001). Men received mean 1.67±1.54 mSv/year were higher than women who received mean 1.13±0.61 mSv/year (p<0.01). Radiation exposure in the department of nuclear medicine department in spite of low energy sources is higher than other departments that use radiations in hospital (p<0.05). And the workers who received mean 3.69±1.81 mSv/year in parts of management of radiation sources and injection of sources to patient receive high radiation exposure in nuclear medicine department (0<0.01). In department of diagnostic radiology high radiation exposure is in barium enema rooms where workers received mean 3.74±1.74 mSv/year and other parts where they all use fluoroscopy such as angiography room of mean 1.17±0.35 mSv/year and upper gastrointestinal room of mean 1.74±1.34 mSv/year represented higher radiation exposure than average radiation exposure in diagnostic radiology (p<0.01). Doctors and radiation technologists received higher radiation exposure of each mean 1.75±1

  12. Cloud chamber photographs of the cosmic radiation

    CERN Document Server

    Rochester, George Dixon

    1952-01-01

    Cloud Chamber Photographs of the Cosmic Radiation focuses on cloud chamber and photographic emulsion wherein the tracks of individual subatomic particles of high energy are studied. The publication first offers information on the technical features of operation and electrons and cascade showers. Discussions focus on the relationship in time and space of counter-controlled tracks; techniques of internal control of the cloud chamber; cascade processes with artificially-produced electrons and photons; and nuclear interaction associated with an extensive shower. The manuscript then elaborates on

  13. Noble gases, nitrogen and cosmic ray exposure age of the Sulagiri chondrite

    Directory of Open Access Journals (Sweden)

    Ramakant R. Mahajan

    2017-01-01

    Full Text Available The Sulagiri meteorite fell in India on 12 September 2008, LL6 chondrite class is the largest among all the Indian meteorites. Isotopic compositions of noble gases (He, Ne, Ar, Kr and Xe and nitrogen in the Sulagiri meteorite and cosmic ray exposure history are discussed. Low cosmogenic (22Ne/21Nec ratio is consistent with irradiation in a large body. Cosmogenic noble gases indicate that Sulagiri has a 4π cosmic-ray exposure (CRE age of 27.9 ± 3.4 Ma and is a member of the peak of CRE age distribution of LL chondrites. Radiogenic 4He and 40Ar concentrations in Sulagiri yields the radiogenic ages as 2.29 and 4.56 Ga, indicating the loss of He from the meteorite. Xenon and krypton are mixture of Q and spallogenic components.

  14. Noble gases, nitrogen and cosmic ray exposure age of the Sulagiri chondrite

    Institute of Scientific and Technical Information of China (English)

    Ramakant R. Mahajan

    2017-01-01

    The Sulagiri meteorite fell in India on 12 September 2008, LL6 chondrite class is the largest among all the Indian meteorites. Isotopic compositions of noble gases (He, Ne, Ar, Kr and Xe) and nitrogen in the Sulagiri meteorite and cosmic ray exposure history are discussed. Low cosmogenic (22Ne/21Ne)c ratio is consistent with irradiation in a large body. Cosmogenic noble gases indicate that Sulagiri has a 4πcosmic-ray exposure (CRE) age of 27.9 ± 3.4 Ma and is a member of the peak of CRE age distribution of LL chondrites. Radiogenic 4He and 40Ar concentrations in Sulagiri yields the radiogenic ages as 2.29 and 4.56 Ga, indicating the loss of He from the meteorite. Xenon and krypton are mixture of Q and spallo-genic components.

  15. Cosmic gamma radiation of ultra high energy of primordial origin

    International Nuclear Information System (INIS)

    Aquino Filho, F.G. de.

    1984-01-01

    The quantum mechanical effects near a collapsing black hole as shown by Stephen W.Hawking in 1974 to produce streaming particles through tunneling effect was explored in the context of cosmic gamma ray production. In this thesis, we show the possible production of gamma rays of high energies (ν approx 10 41 Hz) in the initial stages of the formation of the Universe by the explosion of primordial mini black holes. These mini black hole explosions happening at 10 -43 s to 10 -37 s after the start perhaps may account for the existing universal cosmic background radiation of 2.7 0 K. (Author) [pt

  16. Occupational radiation exposure in Germany: many monitored persons = high exposure?

    International Nuclear Information System (INIS)

    Nitschke, J.

    1996-01-01

    Natural radiation affects the entire population in Germany, and most of Germany's inhabitants are exposed to medical radiation in their lifetime. Occupational radiation exposure, however, is a kind of exposure affecting only a limited and well-defined group of the population, and this radiation exposure has been recorded and monitored as precisely as technically possible ever since the radiation protection laws made occupational radiation exposure monitoring a mandatory obligation. Official personal dosimetry applying passive dosemeters in fact does not offer direct protection against the effects of ionizing radiation, as dosemeter read-out and dose calculation is a post-exposure process. But it nevertheless is a rewarding monitoring duty under radiation protection law, as is shown by the radiation exposure statistics accumulated over decades: in spite of the number of monitored persons having been increasing over the years, the total exposure did not, due to the corresponding improvements in occupational radiation protection. (orig.) [de

  17. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1999-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We analysed nearly 100,000 events of energies above 10 15 eV registered by the Lodz hodoscope. We have developed the method of data analysis which allows us to verify different models of cosmic ray mass composition. In our research in high energy cosmic rays we also used experimental data from other collaborating experiments in Karlsruhe, Baksan and THEMISTOCLE. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Science, University of Perpignan and Uppsala University (Sweden). (author)

  18. Department of Cosmic Radiation Physics - Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1997-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of the asymptotic properties of hadronic interactions from the analysis of cosmic ray propagation in the atmosphere. -Studies of structure and properties of Extensive Air Showers induced by cosmic ray particles. -Search for point sources of high energy cosmic rays. -Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. -Studies of the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed employing results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register electromagnetic components of cosmic ray showers in the atmosphere as well as muons at two energy thresholds. Data collected by the Lodz array are also used to study mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. The Lodz group collaborates with foreign institutes and laboratories on construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de France, the Institute for Nuclear Studies of the Russian Academy of Sciences, the University of Durham, and the University of Perpignan. (author)

  19. Natural radiation in the environment

    International Nuclear Information System (INIS)

    Moeller, D.W.

    1990-01-01

    The speaker discusses natural radiation in the environment. He outlines the external sources of exposure (cosmic and terrestrial), as well as the internal sources (ingestion and inhalation). He states that a clear understanding of these sources and their impacts is necessary in order to properly evaluate both the environment and human radiation exposure

  20. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2000-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. -Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for high-energy cosmic ray point sources. - Studies of cosmic ray propagation in the Galaxy and particle acceleration mechanisms. -Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mainly on the basis of the results obtained by the Lodz Extensive Air Shower Array. We have analysed nearly 100,000 events of energies above 10 15 eV registered in the Lodz hodoscope. We have developed a method to verify different models of cosmic ray mass composition. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). (author)

  1. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1998-01-01

    (full text) The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. -Studies of the structure and properties of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range l0 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed based on the results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register the electromagnetic component of cosmic ray showers developing in the atmosphere as well as muons of two energy thresholds. Data collected by the Lodz array are also used to study the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de' France, the Institute for Nuclear Studies of the Russian Academy of Science, the University of Perpignan (France) and Uppsala University (Sweden). (author)

  2. Assessment of cosmic radiation doses received by air crew

    International Nuclear Information System (INIS)

    McAulay, I.R.

    1998-01-01

    Cosmic radiation in the atmosphere is such a complex mixture of radiation type that it is difficult to get a single instrument which is suitable for such measurements. Passive devices such as film badges and track etch detectors have also been used, but again present difficulties of interpretation and requirements of multiple devices to accommodate the different types of radiation encountered. In summary, air crew are the occupational group most highly exposed to radiation. The radiation doses experienced by them are sufficiently high as to require assessment on a regular basis and possible control by appropriate rostering. There appears little possibility of the dose limit for workers being exceeded, except possibly in the case of pregnant female crew. This category of air crew should be the subject of special controls aimed at ensuring that the dose limits for the foetus should not be exceeded

  3. Evaluation of Differences in Response of DOD Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component

    Science.gov (United States)

    2014-03-01

    Defense Threat Reduction Agency 8725 John J. Kingman Road, MS-6201 Fort Belvoir, VA 22060-6201...Attention to the Cosmic Radiation Component DISTRIBUTION A. Approved for public release: distribution is unlimited March 2014...Portable Instruments and Solid-State Detectors used by MEXT for Measurement of External Radiations with Attention to the Cosmic Radiation Component 5a

  4. Computation of cosmic radiation spectra and application to aircrew dosimetry

    International Nuclear Information System (INIS)

    Yoo, Song Jae

    2002-02-01

    Using the Monte Carlo radiation transport code FLUKA- 99, secondary cosmic radiation energy spectra and intensities of neutrons, protons, photons, electrons, and muons were calculated for different geographical latitude and longitude at the commercial jet's altitudes ranging from 27000 ft to 41000 ft. The Badhwar's proton model was used to construct the primary cosmic radiation spectrum and effect of the vertical cutoff rigidity was considered after spectra similar to those given in literature were resulted. By applying the effective dose conversion factors, a calculation tool for aircrew doses was developed. According to the resulting dose rate distribution, effective dose rate over North pole region is around three times of that over equator region due to the geomagnetical shielding effect. Illustrative assessments of aircrew doses were made for four distinctive routes of Korean airliners : Seoul - New York (USA), London (UK), Sydney (Australia) and Mumbai(India). The effective doses to aircrew incurred from a round trip were 0.047, 0.055, 0.018, and 0.018μSv, respectively. If aircrew work 500 hour s a year at the cruise altitude of a international airline, the individual dose would reach 2 mSv which is about the same size as the average annual dose of workers at a nuclear power plant

  5. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    International Nuclear Information System (INIS)

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  6. New physical model calculates airline crews' radiation exposure

    Science.gov (United States)

    Schultz, Colin

    2013-12-01

    Airline pilots and crews, who spend hundreds of hours each year flying at high altitude, are exposed to increased doses of radiation from galactic cosmic rays and solar energy particles, enough that airline crew members are actually considered radiation workers by the International Commission on Radiological Protection.

  7. Radiation transport of cosmic ray nuclei in lunar material and radiation doses

    International Nuclear Information System (INIS)

    Silberberg, R.; Tsao, C.H.; Adams, J.H. Jr.; Letaw, J.R.

    1985-01-01

    The radiation environment on the lunar surface is inhospitable. The permanent settlers may work ten hours per 24-hour interval for the two-week-long lunar day on the lunar surface, or 20 percent of the total time. At moderate depths below the lunar surface (less than 200 g/sq cm) the flux of secondary neutrons exceeds considerably that in the upper atmosphere of the earth, due to cosmic-ray interactions with lunar material. The annual dose equivalent due to neutrons is about 20 or 25 rem within the upper meter of the lunar surface. The dose equivalent due to gamma rays generated by nuclear interactions near the lunar surface is only on the order of 1 percent of that due to neutrons. However, gamma-ray line emission from excited nuclei and nuclear spallation products generated by cosmic rays near the lunar surface is of considerable interest: these lines permit the partial determination of lunar composition by gamma spectroscopy. 12 references

  8. Determination of exposure rates from natural background radiation in Khartoum using LiF:Mg,Cu,P (GR-200) and CaSo4: Mn TLD chips

    International Nuclear Information System (INIS)

    Suliman, I.I.; Khangi, F.A.; Shaddad, I.A.; Suliman, I.A.; El Amin, O.I.

    2002-01-01

    The exposure rates from natural background radiation - including terrestrial gamma radiation and the ionizing component of cosmic rays - were measured for the first time in the city of khartoum using two types of TLD materials: LiF:Mg,Cu,P (GR-200) and CaSo 4 :Mn TLD chips. Measurements were performed at two sites simultaneously, one site was selected on land in the vicinity of the Sudan Atomic Energy Commission, for the purposes of the measurement of the total exposure rate outdoors, while the other site was located on a buoy anchored in the Blue Nile, and was selected to measure the exposure rate due to the ionizing component of cosmic rays. The investigations were conducted for periods of between 5 and 28 days. Calibration was performed on a selected number of dosimeters to determine the exposure rates at each site. The exposure rates from the ionizing component of cosmic rays in Khartoum were found to be respectively 33 nGy.h -1 and 30 nGy.h -1 , in the measurements performed within the scope of this work using GR-200 and CaSo 4 :Mn dosimeters, while the total values for exposure on land were found to be 45 nGy.h -1 and 42 nGy.h -1 respectively. These values compare reasonably well with other national averages reported in the UNSCEAR publication. The comparison of the results for the two dosimetric materials demonstrates both the sensitivity and suitability of GR-200 for the purposes of environmental monitoring (orig.)

  9. Validation of modelling the radiation exposure due to solar particle events at aircraft altitudes

    International Nuclear Information System (INIS)

    Beck, P.; Bartlett, D. T.; Bilski, P.; Dyer, C.; Flueckiger, E.; Fuller, N.; Lantos, P.; Reitz, G.; Ruehm, W.; Spurny, F.; Taylor, G.; Trompier, F.; Wissmann, F.

    2008-01-01

    Dose assessment procedures for cosmic radiation exposure of aircraft crew have been introduced in most European countries in accordance with the corresponding European directive and national regulations. However, the radiation exposure due to solar particle events is still a matter of scientific research. Here we describe the European research project CONRAD, WP6, Subgroup-B, about the current status of available solar storm measurements and existing models for dose estimation at flight altitudes during solar particle events leading to ground level enhancement (GLE). Three models for the numerical dose estimation during GLEs are discussed. Some of the models agree with limited experimental data reasonably well. Analysis of GLEs during geomagnetically disturbed conditions is still complex and time consuming. Currently available solar particle event models can disagree with each other by an order of magnitude. Further research and verification by on-board measurements is still needed. (authors)

  10. Staff radiation exposure in radiation diagnostics

    International Nuclear Information System (INIS)

    Khakimova, N.U.; Malisheva, E.Yu.; Shosafarova, Sh.G.

    2010-01-01

    Present article is devoted to staff radiation exposure in radiation diagnostics. Data on staff radiation exposure obtained during 2005-2008 years was analyzed. It was found that average individual doses of staff of various occupations in Dushanbe city for 2008 year are at 0.29-2.16 mSv range. They are higher than the average health indicators but lower than maximum permissible dose. It was defined that paramedical personnel receives the highest doses among the various categories of staff.

  11. Effects after prenatal radiation exposures

    International Nuclear Information System (INIS)

    Streffer, C.

    2001-01-01

    The mammalian organism is highly radiosensitive during all prenatal developmental periods. For most effects a dose relationship with a threshold is observed. These threshold doses are generally above the exposures from medical diagnostic procedures. The quality and extent of radiation effects are very much dependent on the developmental stage during which an exposure takes place and on the radiation dose. An exposure during the preimplantation period will cause lethality. Malformations are usually induced after exposures during the major organogenesis. Growth retardation is also possible during the late organogenesis and foetal periods. The lower limits of threshold doses for these effects are in the range of 100 mGy. A radiation exposure during the early foetal period can lead to severe mental retardation and impairment of intelligence. There are very serious effects with radiation doses above 0.3 Gy. Carcinogenesis can apparently occur after radiation exposures during the total prenatal development period. The radiation risk factor up to now has not been clear, but it seems that it is in the range of risk factors for cancer that are observed after exposures during childhood. For radiation doses that are used in radiological diagnostics the risk is zero or very low. A termination of pregnancy after doses below 100 mGy should not be considered. (author)

  12. Radiation exposures: risks and realities

    International Nuclear Information System (INIS)

    Ganesh, G.

    2010-01-01

    Discovery of radioactivity in 1869 by Henry Becquerel and artificial radioactivity by Irene Curie in 1934 led to the development of nuclear field and nuclear materials in 20th century. They are widely used for man-kind across the globe in electricity production, carbon dating, treatment and diagnosis of diseases etc. While deriving benefits and utilizing nuclear resources for the benefit of man-kind, it is inevitable that exposure to radiation can not be avoided. Radiation exists all around us either natural or man-made which can not be totally eliminated or avoided. Radiation exposures from natural background contribute 2.4 to 3.6 mSv in a year. Radiation exposures incurred by a member of public due to nuclear industries constitute less than one hundredth of annual dose due to natural background. Hence it is important to understand the risk posed by radiation and comparison of radiation risk with various risks arising due to other sources. Studies have indicated that risks due to environmental pollution, cigarette smoking, alcohol consumption, heart diseases are far higher in magnitude compared to radiation risks from man made sources. This paper brings about the details and awareness regarding radiation exposures, radiation risk, various risks associated with other industries and benefits of radiation exposures. (author)

  13. Radiation exposure during ESWL

    International Nuclear Information System (INIS)

    McCullough, D.L.; Van Swearingen, F.L.; Dyer, R.B.; Appel, B.

    1987-01-01

    This paper discusses exposure to ionizing radiation by the ESWL patient and for health professionals. Although the patient is exposed acutely to the highest level of radiation, the lithotripter team is chronically exposed to ionizing radiation at varying levels. Attention to detail is important in reducing that exposure. The operator should follow the guidelines set forth in this chapter in order to minimize exposure to the patient, himself or herself, and to all co-workers. At the present time, investigation of an alternative modality for stone localization, ultrasound, is being investigated

  14. Distortions in the Rayleigh-Jeans region of the cosmic background radiation spectrum

    International Nuclear Information System (INIS)

    De Zotti, G.

    1982-01-01

    The theory of the origin and evolution of distortions in the Rayleigh-Jeans region of the cosmic background radiation spectrum is reviewed. Some proposed experiments, designed to substantially improve our knowledge of that portion of the spectrum, are briefly described. (author)

  15. Minimizing radiation exposure during percutaneous nephrolithotomy.

    Science.gov (United States)

    Chen, T T; Preminger, G M; Lipkin, M E

    2015-12-01

    Given the recent trends in growing per capita radiation dose from medical sources, there have been increasing concerns over patient radiation exposure. Patients with kidney stones undergoing percutaneous nephrolithotomy (PNL) are at particular risk for high radiation exposure. There exist several risk factors for increased radiation exposure during PNL which include high Body Mass Index, multiple access tracts, and increased stone burden. We herein review recent trends in radiation exposure, radiation exposure during PNL to both patients and urologists, and various approaches to reduce radiation exposure. We discuss incorporating the principles of As Low As reasonably Achievable (ALARA) into clinical practice and review imaging techniques such as ultrasound and air contrast to guide PNL access. Alternative surgical techniques and approaches to reducing radiation exposure, including retrograde intra-renal surgery, retrograde nephrostomy, endoscopic-guided PNL, and minimally invasive PNL, are also highlighted. It is important for urologists to be aware of these concepts and techniques when treating stone patients with PNL. The discussions outlined will assist urologists in providing patient counseling and high quality of care.

  16. Contribution gives the cosmic radiation to the doses for exhibition to the natural radiation in the Cuban population

    International Nuclear Information System (INIS)

    Tomas Zerquera, J.; Peres Sanchez, D.; Prendes Alonso, M

    1998-01-01

    With the objective to specify the preponderant contribution the cosmic component the radiation in the dose that the Cuban population receives you carries out a program she gives mensurations she gives this component in the whole country

  17. Measurement of the cosmic background radiation temperature at 6.3 cm

    International Nuclear Information System (INIS)

    Mandolesi, N.; Calzolari, P.; Cortiglioni, S.; Morigi, G.

    1984-01-01

    We present results of a measurement of the cosmic background radiation temperature at a wavelength of 6.3 cm. We obtained the value T/sub CBR/ = 2.71 +- 0.20 K. This is in good agreement with, and has a smaller error than, any previous measurement at equal or longer wavelengths

  18. DOE 2010 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-11-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE.* The DOE 2010 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with DOE Part 835 dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past 5 years.

  19. Natural radiation exposure indoors

    International Nuclear Information System (INIS)

    Brown, L.; Cliff, K.D.; Wrixon, A.D.

    1981-01-01

    A brief review is presented of the state of knowledge of indoor natural radiation exposure in the U.K. and the current survey work the N.R.P.B. is carrying out in this field. Discussion is limited in this instance to the improvement in estimation of population exposure and the identification of areas and circumstances in which high exposure occur, rather than the study of properties of a building and methods of building affecting exposure to radiation. (U.K.)

  20. Cosmic radiation and mortality from cancer among male German airline pilots: extended cohort follow-up

    International Nuclear Information System (INIS)

    Hammer, Gaël Paul; Blettner, Maria; Langner, Ingo; Zeeb, Hajo

    2012-01-01

    Commercial airline pilots are exposed to cosmic radiation and other specific occupational factors, potentially leading to increased cancer mortality. This was analysed in a cohort of 6,000 German cockpit crew members. A mortality follow-up for the years 1960–2004 was performed and occupational and dosimetry data were collected for this period. 405 deaths, including 127 cancer deaths, occurred in the cohort. The mortality from all causes and all cancers was significantly lower than in the German population. Total mortality decreased with increasing radiation doses (rate ratio (RR) per 10 mSv: 0.85, 95 % CI: 0.79, 0.93), contrasting with a non-significant increase of cancer mortality (RR per 10 mSv: 1.05, 95 % CI: 0.91, 1.20), which was restricted to the group of cancers not categorized as radiogenic in categorical analyses. While the total and cancer mortality of cockpit crew is low, a positive trend of all cancer with radiation dose is observed. Incomplete adjustment for age, other exposures correlated with duration of employment and a healthy worker survivor effect may contribute to this finding. More information is expected from a pooled analysis of updated international aircrew studies.

  1. Annama H chondrite-Mineralogy, physical properties, cosmic ray exposure, and parent body history

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Haloda, J.; Halodová, P.; Meiner, M. M. M.; Maden, C.; Busemann, H.; Laubenstein, M.; Caffee, M. W.; Welten, K.C.; Hopp, J.; Trieloff, M.; Mahajan, R. R.; Naik, S.; Trigo-Rodríguez, J.M.; Moyano-Cambero, C. E.; Oshtrakh, M. I.; Maksimova, A. A.; Chukin, A. V.; Semionkin, V. A.; Karabanalov, M. S.; Felner, I.; Petrova, E. V.; Brusnitsyna, E. V.; Grokhovsky, V. I.; Yakovlev, G. A.; Gritsevich, M.; Lyytinen, E.; Moilanen, J.; Kruglikov, N. A.; Ishchenko, A. V.

    2017-01-01

    Roč. 52, č. 8 (2017), s. 1525-1541 ISSN 1086-9379 Institutional support: RVO:67985831 Keywords : Annama * chondrite * cosmic-ray exposure * radionuclide Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 2.391, year: 2016

  2. DOE 2012 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-10-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site.

  3. DOE 2011 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2011 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. The occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site over the past five years.

  4. DOE 2013 occupational radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-11-01

    The Office of Analysis within the U.S. Department of Energy (DOE) Office of Environment, Health, Safety and Security (EHSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2013 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past five-year period, the occupational radiation exposure information has been analyzed in terms of aggregate data, dose to individuals, and dose by site.

  5. Radiation exposure during ureteroscopy

    International Nuclear Information System (INIS)

    Bagley, D.H.; Cubler-Goodman, A.

    1990-01-01

    Use of fluoroscopy during ureteroscopy increases the risk of radiation exposure to the urologist and patient. Radiation entrance dosages were measured at skin level in 37 patients, and at the neck, trunk and finger of the urologist, and neck and trunk of the circulating nurse. Radiation exposure time was measured in 79 patients, and was related to the purpose of the procedure and the type of ureteroscope used, whether rigid or flexible. Exposure could be minimized by decreasing the fluoroscopy time. A portable C-arm fluoroscopy unit with electronic imaging and last image hold mode should be used to minimize exposure time. Lead aprons and thyroid shields should be used by the urologist and other personnel in the endoscopy room

  6. High energy radiation from black holes gamma rays, cosmic rays, and neutrinos

    CERN Document Server

    Dermer, Charles D

    2009-01-01

    Bright gamma-ray flares observed from sources far beyond our Milky Way Galaxy are best explained if enormous amounts of energy are liberated by black holes. The highest- energy particles in nature--the ultra-high-energy cosmic rays--cannot be confined by the Milky Way's magnetic field, and must originate from sources outside our Galaxy. Understanding these energetic radiations requires an extensive theoretical framework involving the radiation physics and strong-field gravity of black holes. In High Energy Radiation from Black Holes, Charles Dermer and Govind Menon present a systemat

  7. Overview of the Radiation Dosimetry Experiment (RaD-X) Flight Mission

    Science.gov (United States)

    Mertens, Christopher J.

    2016-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission addresses the need to reduce the uncertainty in predicting human exposure to cosmic radiation in the aircraft environment. Measurements were taken that characterize the dosimetric properties of cosmic ray primaries, the ultimate source of aviation radiation exposure, and the cosmic ray secondary radiations that are produced and transported to aviation altitudes. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. RaD-X was successfully launched from Fort Sumner, New Mexico (34.5 N, 104.2 W), on 25 September 2015. Over 18 h of science data were obtained from a total of four different type dosimeters at altitudes above 20 km. The RaD-X flight mission was supported by laboratory radiation exposure testing of the balloon flight dosimeters and also by coordinated radiation measurements taken on ER-2 and commercial aircraft. This paper provides the science background and motivation for the RaD-X flight mission, a brief description of the balloon flight profile and the supporting aircraft flights, and a summary of the articles included in the RaD-X special collection and their contributions to the science goals of the RaD-X mission.

  8. The sources of radiation exposure

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1992-01-01

    Radiation protection of workers and of members of the public requires an assessment of the various sources of exposure, their variations in time or under specific conditions or circumstances, and the possibilities for control or limitation. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) has evaluated the various components of natural and man-made sources in some detail. Natural exposures form the largest component of radiation exposure of man. Variability in exposures depends on elevation, the concentrations of radionuclides in soil, food and water, the composition of building materials and the susceptibility of indoor spaces to radon build-up. Man-made sources have included exposures to fallout from atmospheric nuclear testing and discharged from nuclear fuel cycle installations in routine operations or in accidents. The other main source of radiation exposures of individuals is in medical diagnostic examinations and therapeutic treatments. (author)

  9. Epistemology of radiation protection

    International Nuclear Information System (INIS)

    Malcolm, C.

    2010-01-01

    The scientific committee had assess Status of levels, effects and risks of ionizing radiation for General assembly, scientific community and public. The review of levels, sources and exposures. The natural sources of radiation include cosmic rays, terrestrial and artificial sources include medical issues, military activities, civil nuclear power occupational exposure and accidents. The global average exposure is 80% natural source, 20% medical examination 0.2% weapon fallout < 0.1% cherbonyl accidents and < 0.1 nuclear power. The effects of radiation incudes health effects, hereditable effects, bystander effects, and abscopal effects. The randon risks include lancer risk, plant and animal

  10. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  11. Comparison of cosmic rays radiation detectors on-board commercial jet aircraft.

    Science.gov (United States)

    Kubančák, Ján; Ambrožová, Iva; Brabcová, Kateřina Pachnerová; Jakůbek, Jan; Kyselová, Dagmar; Ploc, Ondřej; Bemš, Július; Štěpán, Václav; Uchihori, Yukio

    2015-06-01

    Aircrew members and passengers are exposed to increased rates of cosmic radiation on-board commercial jet aircraft. The annual effective doses of crew members often exceed limits for public, thus it is recommended to monitor them. In general, the doses are estimated via various computer codes and in some countries also verified by measurements. This paper describes a comparison of three cosmic rays detectors, namely of the (a) HAWK Tissue Equivalent Proportional Counter; (b) Liulin semiconductor energy deposit spectrometer and (c) TIMEPIX silicon semiconductor pixel detector, exposed to radiation fields on-board commercial Czech Airlines company jet aircraft. Measurements were performed during passenger flights from Prague to Madrid, Oslo, Tbilisi, Yekaterinburg and Almaty, and back in July and August 2011. For all flights, energy deposit spectra and absorbed doses are presented. Measured absorbed dose and dose equivalent are compared with the EPCARD code calculations. Finally, the advantages and disadvantages of all detectors are discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Some characteristics and effects of natural radiation

    International Nuclear Information System (INIS)

    Mc Laughlin, J.P.

    2015-01-01

    Since life first appeared on the Earth, it has, in all its subsequent evolved forms including human, been exposed to natural radiation in the environment both from terrestrial and extra-terrestrial sources. Being an environmental mutagen, ionising natural radiation may have played a role of some significance in the evolution of early life forms on Earth. It has been estimated by United Nations Scientific Committee on the Effects of Atomic Radiation that at the present time, exposure to natural radiation globally results in an annual average individual effective dose of about 2.4 mSv. This represents about 80 % of the total dose from all sources. The three most important components of natural radiation exposure are cosmic radiation, terrestrial radioactivity and indoor radon. Each of these components exhibits both geographical and temporal variabilities with indoor radon exposure being the most variable and also the largest contributor to dose for most people. In this account, an overview is given of the characteristics of the main components of the natural radiation environment and some of their effects on humans. In the case of cosmic radiation, these range from radiation doses to aircrew and astronauts to the controversial topic of its possible effect on climate change. In the case of terrestrial natural radiation, accounts are given of a number of human exposure scenarios. (author)

  13. Radiation doses at high altitudes and during space flights

    International Nuclear Information System (INIS)

    Spurny, F.

    2001-01-01

    There are three main sources of radiation exposure during space flights and at high altitudes--galactic cosmic radiation, solar cosmic radiation and radiation of the earth's radiation belt. Their basic characteristics are presented in the first part of this paper.Man's exposure during space flights is discussed in the second part of the paper. Particular attention is devoted to the quantitative and qualitative characteristics of the radiation exposure on near-earth orbits: both theoretical estimation as well as experimental data are presented. Some remarks on radiation protection rules on-board space vehicles are also given.The problems connected with the radiation protection of air crew and passengers of subsonic and supersonic air transport are discussed in the last part of the paper. General characteristics of on-board radiation fields and their variations with flight altitude, geomagnetic parameters of a flight and the solar activity are presented, both based on theoretical estimates and experimental studies. The questions concerning air crew and passenger radiation protection arising after the publication of ICRP 60 recommendation are also discussed. Activities of different institutions relevant to the topic are mentioned; strategies to manage and check this type of radiation exposure are presented and discussed. Examples of results based on the author's personal experience are given, analyzed and discussed. (author)

  14. Health consequences of ionizing radiation exposure

    International Nuclear Information System (INIS)

    Dalci, D.; Dorter, G.; Guclu, I.

    2004-01-01

    The increasing use of ionizing radiations all over the world induces an ever increasing interest of the professionals as well as of the whole society in health protection and the risk due to these practices. Shortly after its discovery, it was recognized that ionizing radiation can have adverse health effects and knowledge of its detrimental effects has accumulated. The fact that ionizing radiation produces biological damage has been known for many years. The biological effects of ionizing radiation for radiation protection considerations are grouped into two categories: The deterministic and the stochastic ones. Deterministic radiation effects can be clinically diagnosed in the exposed individual and occur when above a certain 'threshold' an appropriately high dose is absorbed in the tissues and organs to cause the death of a large number of cells and consequently to impair tissue or organ functions early after exposure. A clinically observable biological effect (Acute Radiation Syndromes, ARS) that occurs days to months after an acute radiation dose. ARS is a complex of acute injury manifestations that occur after a sufficiently large portion of a person's body is exposed to a high dose of ionizing radiation. Such irradiation initially injures all organs to some extent, but the timing and extent of the injury manifestations depend upon the type, rate, and dose of radiation received. Stochastic radiation effects are the chronic effects of radiation result from relatively low exposure levels delivered over long periods of time. These are sort of effects that might result from occupational exposure, or to the background exposure levels (includes radioactive pollution). Such late effects might be the development of malignant (cancerous) disease and of the hereditary consequences. These effects may be observed many years after the radiation exposure. There is a latent period between the initial radiation exposure and the development of the biological effect. In this

  15. Radiation in the Einstein universe and the cosmic background

    International Nuclear Information System (INIS)

    Segal, I.E.

    1983-01-01

    It is shown that the cosmic background radiation is not at all uniquely or scientifically relatively economically indicative of a ''big bang.'' Specifically, essentially any temporally homogeneous theory in the Einstein universe is consistent with the existence of a cosmic background radiation (CBR) conforming to the Planck law; in particular, the chronometric cosmology is such. It is noted that the Einstein universe appears particularly natural as a habitat for photons by virtue of the absence of infrared divergences and of the absolute convergence of the trace for associated Gibbs-state density matrices. These features are connected with the closed character of space in the Einstein universe, and facilitate the use of the latter in modeling local phenomena, in place of Minkowski space with periodic boundary conditions or the like, with minimal loss of covariance or effect on the wave functions. In particular, the Einstein universe may be used in the analysis of the perturbation of a Planck-law spectrum due to a local nonvanishing isotropic angular momentum of the CBR, of whatever origin. The estimated distortion of the spectrum due to such a kinematically admissible effect is in very good agreement with that observed by Woody and Richards, which is opposite in direction to those earlier predicted by big-bang theories. The theoretical analysis involves a preliminary treatment of equilibria of linear quantum fields with supplementary quasilinear constraints

  16. Intentional exposure to ultraviolet radiation

    International Nuclear Information System (INIS)

    Kivisakk, E.

    1987-01-01

    Exposure to UV radiation can cause a number of detrimental effects to human health. Some of these are particularly grave, as for instance the induction of skin cancer. Nevertheless, intentional exposure to UV radiation is commonly practiced for many purposes, ranging from medical treatment to merely a simple form of pastime. From the radiation point of view, the risks associated with exposure to UV radiation in any particular application should be carefully considered, and only accepted if they are obviously compensated by the benefits of the irradiation. This is not always the case today, to some extent due to shortage of information about the effect of UV radiation - especially on a long term basis

  17. Measurements of natural radiation exposure rates in various living environment, (2)

    International Nuclear Information System (INIS)

    Matsuda, Hideharu

    1991-01-01

    Natural gamma-ray and cosmic-ray exposure rates were measured indoors and outdoors for 94 model houses of housing exhibition centers in Nagoya to obtain basic data for estimation of the population dose. Influence of the structure of houses on indoor exposure rates and relationship between indoor and outdoor natural gamma-ray exposure rates were studied. Exposure rates were measured with a 1.5''φ x 4''NaI(Tl) scintillation counter and a 6''φ spherical plastic scintillation counter. The mean indoor natural gamma-ray exposure rate in ferro-concrete buildings was about 40 % higher than that in fire-proof wooden houses and about 60 % higher than that in light weight steel framed buildings; that in fire-proof wooden houses was about 10 % higher than that in light weight steel framed buildings. The ratio of indoor to outdoor natural gamma-ray exposure rate was found to be 0.95 ± 0.15, 0.77 ± 0.10 and 0.72 ± 0.13 for ferro-concrete buildings, fire-proof wooden houses and light weight steel framed buildings, respectively. The mean indoor cosmic-ray exposure rate in ferro-concrete buildings was 2.8 μR/h, which was about 18 % lower than the outdoor value. The indoor cosmic-ray exposure rate both in fire-proof wooden houses and in light weight steel framed buildings were about 3.2 μR/h, which was 6 % lower than the outdoor value. (author)

  18. CRaTER: The Cosmic Ray Telescope for the Effects of Radiation Experiment on the Lunar Reconnaissance Orbiter Mission

    OpenAIRE

    Spence, H. E.; Case, A. W.; Golightly, M. J.; Heine, T.; Larsen, B. A.; Blake, J. B.; Caranza, P.; Crain, W. R.; George, J.; Lalic, M.; Lin, A.; Looper, M. D.; Mazur, J. E.; Salvaggio, D.; Kasper, J. C.

    2009-01-01

    The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter (LRO) characterizes the radiation environment to be experienced by humans during future lunar missions. CRaTER measures the effects of ionizing energy loss in matter due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR), specifically in silicon solid-state detectors and after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaT...

  19. CALIBRATION OF MODIFIED LIULIN DETECTOR FOR COSMIC RADIATION MEASUREMENTS ON-BOARD AIRCRAFT

    Czech Academy of Sciences Publication Activity Database

    Kyselová, Dagmar; Ambrožová, Iva; Krist, Pavel; Kubančák, Ján; Uchihori, Y.; Kitamura, H.; Ploc, Ondřej

    2015-01-01

    Roč. 164, č. 4 (2015), s. 489-492 ISSN 0144-8420 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Liulin detector * on-board aircraft * cosmic radiation measurement Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.894, year: 2015

  20. Thick Galactic Cosmic Radiation Shielding Using Atmospheric Data

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Starr, Stanley O.; Koontz, Steven L.

    2013-01-01

    NASA is concerned with protecting astronauts from the effects of galactic cosmic radiation and has expended substantial effort in the development of computer models to predict the shielding obtained from various materials. However, these models were only developed for shields up to about 120 g!cm2 in thickness and have predicted that shields of this thickness are insufficient to provide adequate protection for extended deep space flights. Consequently, effort is underway to extend the range of these models to thicker shields and experimental data is required to help confirm the resulting code. In this paper empirically obtained effective dose measurements from aircraft flights in the atmosphere are used to obtain the radiation shielding function of the earth's atmosphere, a very thick shield. Obtaining this result required solving an inverse problem and the method for solving it is presented. The results are shown to be in agreement with current code in the ranges where they overlap. These results are then checked and used to predict the radiation dosage under thick shields such as planetary regolith and the atmosphere of Venus.

  1. A new radiation exposure record system

    International Nuclear Information System (INIS)

    Lyon, M.; Berndt, V.L.; Trevino, G.W.; Oakley, B.M.

    1993-04-01

    The Hanford Radiological Records Program (HRRP) serves all Hanford contractors as the single repository for radiological exposure for all Hanford employees, subcontractors, and visitors. The program administers and preserves all Hanford radiation exposure records. The program also maintains a Radiation Protection Historical File which is a historical file of Hanford radiation protection and dosimetry procedures and practices. Several years ago DOE declared the existing UNIVAC mainframe computer obsolete and the existing Occupational Radiation Exposure (ORE) system was slated to be redeveloped. The new system named the Radiological Exposure (REX) System is described in this document

  2. PET radiation exposure control for nurses

    International Nuclear Information System (INIS)

    Kawabata, Yumiko; Kikuta, Daisuke; Anzai, Taku

    2005-01-01

    Recently, the number of clinical PET centers is increasing all over Japan. For this reason, the monitoring and control of radiation exposure of employees, especially nurses, in PET-dedicated clinics and institutions are becoming very important issues for their health. We measured the radiation exposure doses of the nurses working at Nishidai Diagnostic Imaging Center, and analyzed the exposure data obtained from them. The exposure doses of the nurses were found to be 4.8 to 7.1 mSv between April 2003 and March 2004. We found that the nurses were mostly exposed to radiation when they had to have contact with patients received an FDG injection or they had trouble with the FDG automatic injection system. To keep radiation exposure of nurses to a minimum we reconfirmed that a proper application of the three principles of protection against radiation exposure was vital. (author)

  3. Radiation exposure management

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1985-01-01

    Radiation exposure management includes administrative control, education and training, monitoring and dose assessments and planning of work and radiation protection. The information and discussion given in the paper are based on experiences in Sweden mainly from nuclear power installations. (Author)

  4. Radiation exposure from incorporated isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Beleznay, F [Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics

    1985-01-01

    Recommendations for the limitation of the burden of the human body from radiation exposure were developed to avoid direct radiation health damage such that the occurrence of stochastic damage can be held below a resonable risk level. The recommendations, published under ICRP 26 and ICRP 30, contain several guidelines and concepts which are discussed here. They include the primary internal dose exposure limits, secondary and implied limits for the monitoring of internal radiation exposure (Annual Limit of Intake, Derived Air Concentrations). Methods are presented for inspection and monitoring of internal exposure in medical laboratories, inspection of incorporation of sup(131)I and sup(99m)Tc.

  5. Measurements of indoor and outdoor natural radiation exposure rates in model houses

    International Nuclear Information System (INIS)

    Matsuda, Hideharu; Fukaya, Mitsuharu; Minato, Susumu

    1990-01-01

    Natural gamma-ray and cosmic-ray exposure rates were measured indoors and outdoors for 94 model houses of four housing centers in Nagoya to obtain basic data for estimation of the population dose. Influence of the structure of houses on indoor exposure rates and relationship between indoor and outdoor natural gamma-ray exposure rates were studied. Exposure rates were measured with a 1.5'' φ x 4'' NaI (Tl) scintillation counter and a 6''φ spherical plastic scintillation counter. The mean indoor natural gamma-ray exposure rate in ferro-concrete buildings was about 40% higher than that in fireproof wooden houses, about 60% higher than that in light-weight steel-framed buildings, in fireproof wooden houses, it was also about 10% higher than in light-weight steel-framed building. The ratio of indoor to outdoor natural gamma-ray exposure rate was found to be about 0.95±0.15, 0.77±0.10, and 0.72±0.13 for ferro-concrete buildings, fireproof wooden houses and light-weight steel-framed buildings, respectively. The mean indoor cosmic-ray exposure rate in ferro-concrete buildings was 2.8 μR/h, about 18% lower than the outdoors. The indoor cosmic-ray exposure rate in fireproof wooden houses and light-weight steel-framed buildings were 3.2 μR/h, about 6% lower than the outdoors. (author)

  6. New limits to the small scale fluctuations in the cosmic background radiation

    International Nuclear Information System (INIS)

    Kellermann, K.I.; Fomalont, E.B.; Wall, J.V.

    1983-01-01

    The VLA has been used at 4.9 GHz to observe a small region of sky in order to extend the radio source count to low flux density (Fomalont et al., these proceedings) and to look for small scale fluctuations in the 2.7 K cosmic microwave background radiation. (Auth.)

  7. Ice-based altitude distribution of natural radiation annual exposure rate in the Antarctica zone over the latitude range 69 deg S-77 deg S using a pair-filter thermoluminescence method

    International Nuclear Information System (INIS)

    Nakajima, Toshiyuki; Kamiyama, Takayoshi; Fujii, Yoshiyuki; Motoyama, Hideaki; Esumi, Shuuichi

    1995-01-01

    Both ice-based altitude distributions of natural ionizing radiation exposure and the quasi-effective energy of natural radiation over Antarctica over the latitude range 69 o S-77 o S during approx. 500 days were measured using thermoluminescent dosimeters. The results shows that dependence on altitude above sea level of the exposure rate increases by almost three-fold with each increase of 2000 m of altitude, thus deviating from the general rule stating that the exposure rate should double with each 2000 m. Although the exposure rate shows a dependence on altitude, altitude dependence of the quasi-effective energy of natural radiation over Antarctica is not observed. In the present study it is observed that natural radiation occurring over the ice base of Antarctica consists mainly of cosmic rays. (Author)

  8. Ice-based altitude distribution of natural radiation annual exposure rate in the Antarctica zone over the latitude range 69 degrees S-77 degrees S using a pair-filter thermoluminescence method.

    Science.gov (United States)

    Nakajima, T; Kamiyama, T; Fujii, Y; Motoyama, H; Esumi, S

    1995-12-01

    Both ice-based altitude distributions of natural ionizing radiation exposure and the quasi-effective energy of natural radiation over Antartica over the latitude range 69 degrees S - 77 degrees S during approx. 500 days were measured using thermoluminescent dosimeters. The results shows that dependence on altitude above sea level of the exposure rate increases by almost three-fold with each increase of 2000 m of altitude, thus deviating from the general rule stating that the exposure rate should double with each 2000 m. Although the exposure rate shows a dependence on altitude, altitude dependence of the quasi-effective energy of natural radiation over Antartica is not observed. In the present study it is observed that natural radiation occurring over the ice base of Antartica consists mainly of cosmic rays.

  9. Radiation exposure and radiation protection

    International Nuclear Information System (INIS)

    Heuck, F.; Scherer, E.

    1985-01-01

    The present volume is devoted to the radiation hazards and the protective measures which can be taken. It describes the current state of knowledge on the changes which exposure to ionizing rays and other forms of physical energy can induce in organs and tissues, in the functional units and systems of the organism. Special attention is paid to general cellular radiation biology and radiation pathology and to general questions of the biological effects of densely ionizing particle radiation, in order to achieve a better all-round understanding of the effects of radiation on the living organism. Aside from the overviews dealing with the effects of radiation on the abdominal organs, urinary tract, lungs, cerebral and nervous tissue, bones, and skin, the discussion continues with the lymphatic system, the bone marrow as a bloodforming organ, and the various phases of reaction in the reproductive organs, including damage and subsequent regeneration. A special section deals with environmental radiation hazards, including exposure to natural radiation and the dangers of working with radioactive substances, and examines radiation catastrophes from the medical point of view. Not only reactor accidents are covered, but also nuclear explosions, with exhaustive discussion of possible damage and treatment. The state of knowledge on chemical protection against radiation is reviewed in detail. Finally, there is thorough treatment of the mechanism of the substances used for protection against radiation damage in man and of experience concerning this subject to date. In the final section of the book the problems of combined radiotherapy are discussed. The improvement in the efficacy of tumor radiotherapy by means of heavy particles is elucidated, and the significance of the efficacy of tumor therapy using electron-affinitive substances is explained. There is also discussion of the simultaneous use of radiation and pharmaceuticals in the treatment of tumors. (orig./MG) [de

  10. Radiation exposure during travelling in Malaysia

    International Nuclear Information System (INIS)

    Omar, M.; Hassan, A.; Sulaiman, I.

    2006-01-01

    Absorbed dose rates in vehicles during travelling by different modes of transport in Malaysia were measured. Radiation levels measured on roads in Peninsular Malaysia were within a broad range, i.e. between 36 and 1560 nGy h -1 . The highest reading, recorded while travelling near monazite and zircon mineral dumps, was 13 times the mean environmental radiation level of Malaysia. It is evident that radioactive material dumps on the roadsides can influence the radiation level on the road. The absorbed dose rates measured while travelling on an ordinary train were between 60 and 350 nGy h -1 . The highest reading was measured when the train passed a tunnel built through a granite rock hill. The measurement during sea travelling by ferries gave the lowest radiation level owing to merely cosmic radiation at the sea level. (authors)

  11. Calculation on cosmic-ray muon exposure rate in non-walled concrete buildings

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu; Abe, Siro

    1984-01-01

    Computer simulations on the exposure indoors from cosmic ray muons were practiced in the framework of non-scattering and non-cascade assumptions. The model buildings were two-dimensional, rectangular, and were made of a normal concrete. A stratified structure was assumed in each building, where no mezzanine was considered. Walls were not taken into account yet. The distributions of the exposure rates in 26-story buildings were illustrated in contour maps for various sets of parameters. All of them gave basically archlike patterns. Analyses of the results showed that the exposure rate is affected most largely by the floor board thickness. The ceiling height would be an insignificant factor for short buildings. The min/max ratio of the muon exposure rate in a moderate size building was estimated to be more than 0.7. (author)

  12. Radiation Exposure and Pregnancy

    Science.gov (United States)

    Fact Sheet Adopted: June 2010 Updated: June 2017 Health Physics Society Specialists in Radiation Safety Radiation Exposure and ... radiation and pregnancy can be found on the Health Physics Society " Ask the Experts" Web site. she should ...

  13. Exposure to natural radiation

    International Nuclear Information System (INIS)

    Green, B.M.R.

    1985-01-01

    A brief report is given of a seminar on the exposure to enhanced natural radiation and its regulatory implications held in 1985 at Maastricht, the Netherlands. The themes of the working sessions included sources of enhanced natural radiation, parameters influencing human exposure, measurement and survey programmes, technical countermeasures, risk and assessment studies, philosophies of dose limitations and national and international policies. (U.K.)

  14. Sources of radiation exposure - an overview

    International Nuclear Information System (INIS)

    Mason, G.C.

    1990-01-01

    Sources of radiation exposure are reviewed from the perspective of mining and milling of radioactive ores in Australia. The major sources of occupational and public exposure are identified and described, and exposures from mining and milling operations are discussed in the context of natural radiation sources and other sources arising from human activities. Most radiation exposure of humans comes from natural sources. About 80% of the world average of the effective dose equivalents received by individual people arises from natural radiation, with a further 15-20% coming from medical exposures*. Exposures results from human activities, such as mining and milling of radioactive ores, nuclear power generation, fallout from nuclear weapons testing and non-medical use of radioisotopes and X-rays, add less than 1% to the total. 9 refs., 4 tabs., 10 figs

  15. Studying the high energy cosmic radiation: contributions to its detection and to the exploration of its origin

    International Nuclear Information System (INIS)

    Lamanna, Giovanni

    2009-01-01

    The Astro-particle Physics is a discipline where scientists from both the astrophysics and the particle physics communities meets to investigate the Universe aiming to answer to fundamental questions in the field of physics, cosmology and astrophysics. The high energy astrophysics domain, which explores the extremes sources where the larger collective transfer of energy take place, studies the most energetic cosmic radiation as privileged messengers of the history of the Universe. My research path, summarized in this work, is made of personal contributions in the development of new detection technologies, in the data analysis, perspectives and phenomenological studies about the scientific purposes of large experiments: e.g. AMS, ANTARES, HESS, CTA, POLAR. My contributions are the results of research activities in coherence with two main scientific goals in the context of the astro-particle physics domain: - The implication of the high energy cosmic radiation measurement for the investigation on the nature and distribution of the dark matter; - The investigation of the origin of the galactic cosmic radiation for the understanding of the most energetic processes in the Universe. (author)

  16. Biological effects of single HZE-particles of the cosmic radiation: Free Flyer Biostack

    International Nuclear Information System (INIS)

    1989-01-01

    The Free Flyer Biostack is designed as a passive, longer term experiment for investigations into the dosimetry of cosmic HZE particles (high-charge energetic particles), the effects of single HZE particles on isolated biological samples, and the synergistic effects of conditions in space, as e.g. zero gravity and presence of a permanent, weakly ionizing component of the cosmic radiation. For the experiments summarized in this project report, the AgCl detector type developed in Frankfurt has been used, consisting of monocrystalline AgCl films, about 130-150 μm thick, and doped with 5000 ppm of Cd. (DG) With 9 figs [de

  17. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    Science.gov (United States)

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  18. Cosmic rays, clouds, and climate

    DEFF Research Database (Denmark)

    Marsh, N.; Svensmark, Henrik

    2000-01-01

    cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability......A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role...... in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation...

  19. Environmental radioactivity and radiation exposure

    International Nuclear Information System (INIS)

    1976-01-01

    The environmental radioactivity in the Federal Republic of Germany was almost as high in 1976 as in 1975. It only increased temporarily in autumn 1976 as a result of the above-ground nuclear weapons test of the People's Republic of China on September 29th 1976 and then returned to its previous level. The radioactivity in food had a slight decreasing trend in 1976, apart from a temporary increase in the radioactivity in milk also caused by the nuclear weapons test mentioned. The population exposure remains basically unchanged in 1976 compared with 1975. The artificial radiation exposure is about half as high as the natural radiation exposure to which man has always been exposed. The former is based to 83% on using X-rays in medicine, particularly for X-ray diagnostic purposes. The population exposure due to nuclear power plants and other nuclear plants is still well below 1% of the natural radiation exposure although in 1976 three new nuclear power plants were put into operation. This is also true for the average radiation exposure within an area of 3 km around the nuclear plant. (orig.) [de

  20. Cosmic ray production curves below reworking zones

    International Nuclear Information System (INIS)

    Blanford, G.E.

    1980-01-01

    A method is presented for calculating cosmic ray production profiles below reworking zones. The method uses an input reworking depth determined from data such as signatures in the depth profile of ferromagnetic resonance intensity and input cosmic ray production profiles for an undisturbed surface. Reworking histories are simulated using Monte Carlo techniques, and depth profiles are used to determine cosmic ray exposure age limits with a specified probability. It is shown that the track density profiles predict cosmic ray exposure ages in lunar cores that are consistent with values determined by other methods. Results applied to neutron fluence and spallation rare gases eliminate the use of reworking depth as an adjustable parameter and give cosmic ray exposure ages that are compatible with each other

  1. Biotropic Effect of Radiation Conditions on Orbital Cosmic Stations

    Science.gov (United States)

    Tsetlin, Vladimir; Ushakov, Igor; Gurieva, Tamar; Moisa, Svetlana; Zotin, Alexei; Lobanov, Alexei

    On the orbit of pilot orbital stations the crews undergo to low doses of chronic irradiation of cosmic radiation. The studying of radiobiological effects in different living systems were carried out in the ship’s side (OC “MIR” and ICS) and model surface experiments (power dose 200 mGy/day, density of neutron flow 30 particles/sm2 sec). It was shown that ionized radiation effects on embryonal development of Japanese quail embryo, inducing morphological disturbances in 12% of embryos. Many years ontogenesis (more 15 years of life in OC “MIR”) of microbial association evoked replacement of dominant types of micromycetes and bacterium and increasing of colony-formed units (CFU) in four orders. In laboratory low doses of γ-radiation induced the increasing of flight strain biomass of Aspergillus niger that corresponds to a radiation hormezis and also the increasing of radio-sensitivity. Moreover, under γ-neutron radiation were marked some deviations in morphology of supporting cell and numerous head falls of Aspergillus niger. The irradiation of Protozoa by low doses led to that spontaneous motion activity of spirostoms (Spirostomum ambiguum Ehbg.) accommodated in water processing by mixed γ-neutron radiation decreased twice that testified the fact that the definite factor of γ-neutron radiation effect is the changing of water medium state. In dry seeds of the highest plants wetting in water of preliminary low doses α-and γ-irradiation cells gradually decreased. In hypomagnetic camera the opposite tendency was observed. It is established the phenomena of stimulating effect of low doses of continuous γ-radiation (source of radiation Co60, period of radiation 10 days, average daily power dose 1,5-2,0 mGy, summary dose 15 mGy) on mezenchim stem cells of mice bone brain - a radiation hormezis which revealed in the intensifying of proliferative activity and increasing of number of colony-formed units-F in bone brain in 1,5-4,5 times. Regenerative capacity of

  2. Generalized Chaplygin gas and cosmic microwave background radiation constraints

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2003-01-01

    We study the dependence of the location of the cosmic microwave background radiation peaks on the parameters of the generalized Chaplygin gas model, whose equation of state is given by p=-A/ρ α , where A is a positive constant and 0<α≤1. We find, in particular, that observational data arising from Archeops, BOOMERANG, supernova and high-redshift observations allow constraining significantly the parameter space of the model. Our analysis indicates that the emerging model is clearly distinguishable from the α=1 Chaplygin case and the ΛCDM model

  3. Medical exposure and the effects of radiation

    International Nuclear Information System (INIS)

    Okuyama, Chio

    2011-01-01

    Radiation gives cracks to genes. The influence is divided into deterministic effect with a threshold value, and the stochastic effect (tumor and genetic effect) which increases according to the exposure amount. Although we are put to various non-artificial radiations, which we cannot be avoided, on the earth, the contamination by artificial radiation can be defended. Artificial radioactive exposure includes medical exposure and non-medical exposure for example by nuclear power plant. As to medical examinations using radiation, the inquiry about the radiation exposure is increasing after the occurrence of the first nuclear power plant disaster of Fukushima. While concern about non-medical radioactive exposure increases, the uneasiness to medical irradiation is also increasing. The dose limit by artificial radioactive exposure other than medical exposure is set up in order to prevent the influence on the health. While the dose limit of the public exposure is set to the lower value than the total dose of non-artificial exposure concerning of a safety margin for all people, the dose limit of medical exposure is not defined, since it is thought that medical irradiation has a benefit for those who receive irradiation. Making an effort to decrease the radiation dose in performing the best medical treatment is the responsibility with which we are burdened. (author)

  4. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Science.gov (United States)

    the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando . Smoot, blackbody, and anisotropy of the Cosmic Microwave Background (CMB) radiation is available in full

  5. Radiation exposure and infant cancer

    Energy Technology Data Exchange (ETDEWEB)

    Watari, T [Tokyo Univ. (Japan). Faculty of Medicine

    1974-12-01

    Medical exposures accompanied by an increase in radiation use in the field of pediatrics were described. Basic ideas and countermeasures to radiation injuries were outlined. In order to decrease the medical exposure, it is necessary for the doctor, x-ray technician and manufacturer to work together. The mechanism and characteristics of radio carcinogenesis were also mentioned. Particularly, the following two points were described: 1) How many years does it take before carcinogenesis appears as a result of radiation exposure in infancy 2) How and when does the effect of fetus exposure appear. Radiosensitivity in infants and fetuses is greater than that of an adult. The occurrence of leukemia caused by prenatal exposure was reviewed. The relation between irradiation for therapy and morbidity of thyroid cancer was mentioned. Finally, precautions necessary for infants, pregnant women and nursing mothers when using radioisotopes were mentioned.

  6. Superposition of Planckian spectra and the distortions of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Alexanian, M.

    1982-01-01

    A fit of the spectrum of the cosmic microwave background radiation (CMB) by means of a positive linear superposition of Planckian spectra implies an upper bound to the photon spectrum. The observed spectrum of the CMB gives a weighting function with a normalization greater than unity

  7. External exposure due to natural radiation (KINKI)

    International Nuclear Information System (INIS)

    1978-01-01

    A field survey of exposure rates due to natural radiation has been conducted throughout the Kinki district of Japan during both September and October 1973. In each location, measurements of exposures at one to fifteen sites, one of where contained 5 stations at least, were made. A total of 143 sites were measured. Observations were made using a spherical ionization chamber and several scintillation surveymeters. The spherical plastic ionization chamber of which inner diameter and wall thickness are 200 mm and 3 mm (acrylate) respectively has adequate sensitivity for field survey. The chamber was used as a standard of apparatus, but it is difficult to use the apparatus in all locations only by the apparatus, so that a surveymeter with a NaI(Tl) 1''phi x 1'' scintillator was used for regular measurements. Two types of surveymeters, the one with a 2''phi x 2'' NaI(Tl) scintillator and the other with a 3''phi x 3'' NaI(Tl) scintillator, were used as auxiliary devices. Both the chamber and the surveymeter were used in 20 sites and their readings were compared for drawing a relationship between them. Practically the direct reading of the surveymeter were reduced into the corresponding value of the plastic chamber through the relationship of linear proportion. Systematic error at calibration ( 60 Co) and reading error (rodoh) of the plastic chamber were within +-6% (maximum over all error) and within +-3.5% (standard error for 6μ R/hr) respectively. Reading error of the surveymeter is about +-3% (standard error for 6μ R/hr). Measurements in open bare field were made at one meter above the ground and outdoor gamma-rays exposure rates (μ R/hr) were due to cosmic rays as well as terrestrial radiation, as it may be considered that the contribution of fallout due to artificial origin was very small. (J.P.N.)

  8. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  9. Novel Concepts for Radiation Shielding Materials

    Data.gov (United States)

    National Aeronautics and Space Administration — The likelihood of safely sending astronauts to Mars is becoming bleaker because of the health risks that would result from exposure to galactic cosmic radiation...

  10. Occupational exposure to ionizing radiation for crews of suborbital spacecraft : questions & answers.

    Science.gov (United States)

    2013-12-01

    Crewmembers on future suborbital commercial spaceflights will be occupationally exposed to ionizing radiation, principally from galactic cosmic radiation. On infrequent occasions, the sun or thunderstorms may also contribute significantly to the ioni...

  11. Occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Snihs, J.O.

    1985-01-01

    An overview of occupational exposure is presented. Concepts and quantities used for radiation protection are explained as well as the ICRP system of dose limitation. The risks correlated to the limits are discussed. However, the actual exposure are often much lower than the limits and the average risk in radiation work is comparable with the average risk in other safe occupations. Actual exposures in various occupations are presented and discussed. (author)

  12. Cosmic radiation dosimetry in international flights argentine airlines

    International Nuclear Information System (INIS)

    Ciancio, Vicente R.; Oliveri, Pedro V.; Di Giovan B, Gustavo; Ciancio, Vanina L.; Lewis, Brent J.; Green, Anna R.; Bennet, L.

    2008-01-01

    Full text: Introduction: In commercial aviation the most important determinants of radiation exposure in humans are the altitude, latitude, flight duration and the solar cycle's period. This study was conducted to address this type of exposure trough radiation dosimetry. Method: The study was performed in the business-class cabin of an Airbus 340-200 aircraft, provided by Argentine Airlines, during 2 flights routes: New York-Miami-Buenos Aires (trans equatorial) and Buenos Aires-Auckland (circumpolar). Measurements addressed the electromagnetic spectrum or low Linear Energy Transfer (LET) and corpuscular radiation (High LET). The instruments used were an Ion Chamber (IC), to measure the ionizing component of radiation (i.e., gamma radiation), the SWENDI, to measure only the neutron component, and the Tissue Equivalent Proportional Counter (TEPC) for measuring all radiation types. Results: The routes' dose rates are presented in the table. TEPC rates agreed with the LET findings. The total dose rates of high latitude flights were higher than those of low latitude flights. The SWENDI (High LET) results for the flights over the equator, at low latitude, represented only 1/3 of the total radiation. The New York-Miami and Buenos Aires-Auckland flights, at high latitude, represented just under 1/2 of the Total radiation (-45%). Conclusion: Based on the results of this study, the annual dose rates of radiation exposure of air crew personnel serving on international flights offered by Argentine Airlines is between 3 and 7 mSv. This rate is higher than the maximum recommended for the general population by the International Commission on Radiological Protection (ICRP), which is 1 milli Sv./y. Therefore, these personnel must be officially considered 'Occupationally Exposed to Radiation' in way to provide the appropriate measures that must be implemented for their protection in accordance to ICRP guidelines. Dose(uSv): Route N Y-Miami, IC 6.07, SWENDI 5.07, TEPC 11.04; Route

  13. Estimation of Cosmic Induced Contamination in Ultra-low Background Detector Materials

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Orrell, John L.; Berguson, Timothy J.; Greene, Austen T.

    2012-08-01

    Executive Summary This document presents the result of investigating a way to reliably determine cosmic induced backgrounds for ultra-low background materials. In particular, it focuses on those radioisotopes produced by the interactions with cosmic ray particles in the detector materials that act as a background for experiments looking for neutrinoless double beta decay. This investigation is motivated by the desire to determine background contributions from cosmic ray activation of the electroformed copper that is being used in the construction of the MAJORANA DEMONSTRATOR. The most important radioisotope produced in copper that contributes to the background budget is 60Co, which has the potential to deposit energy in the region of interest of this experiment. Cobalt-60 is produced via cosmic ray neutron collisions in the copper. This investigation aims to provide a method for determining whether or not the copper has been exposed to cosmic radiation beyond the threshold which the Majorana Project has established as the maximum exposure. This threshold is set by the Project as the expected contribution of this source of background to the overall background budget. One way to estimate cosmic ray neutron exposure of materials on the surface of the Earth is to relate it to the cosmic ray muon exposure. Muons are minimum-ionizing particles and the available technologies to detect muons are easier to implement than those to detect neutrons. We present the results of using a portable, ruggedized muon detector, the µ-Witness made by our research group, for determination of muon exposure of materials for the MAJORANA DEMONSTRATOR. From the muon flux measurement, this report presents a method to estimate equivalent sea-level exposure, and then infer the neutron exposure of the tracked material and thus the cosmogenic activation of the copper. This report combines measurements of the muon flux taken by the µ-Witness detector with Geant4 simulations in order to assure our

  14. Bases for establishing radiation exposure limits

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1977-01-01

    It is an essential requirement of good radiation protection that all unnecessary exposure of people should be avoided and that any necessary exposure, whether of workers or of members of the general public, should be minimized. It is, however, an additional requirement that such necessary exposures should not exceed certain stated limits. These principles are based on the possibility that even the smallest exposures may involve some risk of harm, that any risk of harm should be justifiable by the circumstances necessitating it, and that risk should always be limited to an appropriately low level. The bases for establishing exposure limits must therefore involve an assessment of the risk involved in any form of radiation exposure, and an opinion as to the degree of safety that should be ensured in circumstances which necessitate any occupational or public exposure to radiation. There is increasing quantitative evidence on the frequency on which harm, and particularly the induction of malignancies, may be caused in people exposed to radiation at high doses; and somewhat clearer bases than previously for inferring the possible frequencies at low doses. It is therefore easier to assess the degree of safety ensured by restricting radiation exposure to particular levels. It is clear also that a comparable degree of safety should be ensured whether the radiation exposure involves the whole body more of less uniformly, or individual tissues or organs selectively. The ''weighting'' factors appropriate to irradiation of particular tissues from internal emitters can thus be defined in terms of their likely individual contributions to the harm of whole-body irradiation. In this way the limits for different modes of exposure by external or internal radiation can be related so as to ensure that protection should be equally effective for different distributions of absorbed dose in the body. In particular, the over-simplified concept of a single critical organ determining the

  15. Malignant mesothelioma following radiation exposure

    International Nuclear Information System (INIS)

    Antman, K.H.; Corson, J.M.; Li, F.P.; Greenberger, J.; Sytkowski, A.; Henson, D.E.; Weinstein, L.

    1983-01-01

    Mesothelioma developed in proximity to the field of therapeutic radiation administered 10-31 years previously in four patients. In three, mesothelioma arose within the site of prior therapeutic radiation for another cancer. Mesothelioma in the fourth patient developed adjacent to the site of cosmetic radiation to a thyroidectomy scar. None of these four patients recalled an asbestos exposure or had evidence of asbestosis on chest roentgenogram. Lung tissue in one patient was negative for ferruginous bodies, a finding considered to indicate no significant asbestos exposure. Five other patients with radiation-associated mesothelioma have been reported previously, suggesting that radiation is an uncommon cause of human mesothelioma. Problems in the diagnosis of radiation-associated mesotheliomas are considered

  16. External radiation exposure of the public

    International Nuclear Information System (INIS)

    Mehl, J.

    1977-01-01

    Results of several ten thousand measurements on external radiation (outside buildings, in living rooms) are used for illustrating by isodose charts covering the total area of the Federal Republic of Germany the exposure of the public from external radiation originating from natural radiation of the environment. Results of calculations on external radiation exposure of the public due to releases of radioactivity in air from nuclear installations are used for illustrating by coloured isodose charts the exposure of the public in the plant site vicinity. From comparison of the exposure levels it becomes obvious that if exposure levels of several 10 mrem per year are considered to be of real concern to public health, control of natural radoactivity in the environment of man would require more attention than present and foreseeable releases of radioactivity in air from nuclear inst

  17. Calculating radiation exposure and dose

    International Nuclear Information System (INIS)

    Hondros, J.

    1987-01-01

    This paper discusses the methods and procedures used to calculate the radiation exposures and radiation doses to designated employees of the Olympic Dam Project. Each of the three major exposure pathways are examined. These are: gamma irradiation, radon daughter inhalation and radioactive dust inhalation. A further section presents ICRP methodology for combining individual pathway exposures to give a total dose figure. Computer programs used for calculations and data storage are also presented briefly

  18. Evaluation of the radiation exposure. Recommendation of the radiation protection commission

    International Nuclear Information System (INIS)

    Baldauf, Daniela

    2014-01-01

    The recommendation of the Strahlenschutzkommission (radiation protection commission) deals with the realistic requirements for the radiation exposure assessment based on radio-ecological modeling. The recommendation is applicable for all exposure situations that can be derived from FEP (features, events processes) exposure scenarios. In this case the exposure scenario consists of natural and technical features and a set of processes and events that can influence the radiation exposure of the population. The report includes the scientific justification, the previous procedure in Germany and abroad (EURATOM, France, UK, Ukraine, USA).

  19. Radiation-induced taste aversion: effects of radiation exposure level and the exposure-taste interval

    International Nuclear Information System (INIS)

    Spector, A.C.; Smith, J.C.; Hollander, G.R.

    1986-01-01

    Radiation-induced taste aversion has been suggested to possibly play a role in the dietary difficulties observed in some radiotherapy patients. In rats, these aversions can still be formed even when the radiation exposure precedes the taste experience by several hours. This study was conducted to examine whether increasing the radiation exposure level could extend the range of the exposure-taste interval that would still support the formation of a taste aversion. Separate groups of rats received either a 100 or 300 R gamma-ray exposure followed 1, 3, 6, or 24 h later by a 10-min saccharin (0.1% w/v) presentation. A control group received a sham exposure followed 1 h later by a 10-min saccharin presentation. Twenty-four hours following the saccharin presentation all rats received a series of twelve 23-h two-bottle preference tests between saccharin and water. The results indicated that the duration of the exposure-taste interval plays an increasingly more important role in determining the initial extent of the aversion as the dose decreases. The course of recovery from taste aversion seems more affected by dose than by the temporal parameters of the conditioning trial

  20. Bases for establishing radiation exposure limits

    International Nuclear Information System (INIS)

    Pochin, E.E.

    1977-01-01

    It is an essential requirement of good radiation protection that all unnecessary exposure of people should be avoided and that any necessary exposure, whether of workers or of members of the general public, should be minimised. It is, however, an additional requirement that such necessary exposures should not exceed certain stated limits. These principles are based on the possibility that even the smallest exposures may involve some risk of harm, that any risk of harm should be justifiable by the circumstances necessitating it, and that risk should always be limited to an appropriately low level. The bases for establishing exposure limits must therefore involve an assessment of the risk involved in any form of radiation exposure, and an opinion as to the degree of safety that should be ensured in circumstances which necessitate any occupational or public exposure to radiation. There is increasing quantitative evidence on the frequency on which harm, and particularly the induction of malignancies, may be caused in people exposed to radiation at high doses; and somewhat clearer bases than previously for inferring the possible frequencies at low doses. It is therefore easier to assess the degree of safety ensured by restricting radiation exposure to particular levels. The degree of safety which should be regarded as appropriate in different circumstances remains a matter for review, but suggestions are made as to levels which would be advocated by informed opinion, and the exposure limits which would correspond to these. It is clear also that a comparable degree of safety should be ensured whether the radiation exposure involves the whole body more of less uniformly, or individual tissues or organs selectively. Increasing epidemiological evidence is available on the relative sensitivity to radiation induction of malignancies in a number of organs, and to the apparently much lower sensitivity of other organs; and experimental evidence in animals allows a comparable

  1. Evaluation on the Radiation Exposure of Radiation Workers in Proton Therapy

    International Nuclear Information System (INIS)

    Lee, Seung Hyun; Jang, Yo Jong; Kim, Tae Yoon; Jeong, Do Hyung; Choi, Gye Suk

    2012-01-01

    Unlike the existing linear accelerator with photon, proton therapy produces a number of second radiation due to the kinds of nuclide including neutron that is produced from the interaction with matter, and more attention must be paid on the exposure level of radiation workers for this reason. Therefore, thermoluminescence dosimeter (TLD) that is being widely used to measure radiation was utilized to analyze the exposure level of the radiation workers and propose a basic data about the radiation exposure level during the proton therapy. The subjects were radiation workers who worked at the proton therapy center of National Cancer Center and TLD Badge was used to compare the measured data of exposure level. In order to check the dispersion of exposure dose on body parts from the second radiation coming out surrounding the beam line of proton, TLD (width and length: 3 mm each) was attached to on the body spots (lateral canthi, neck, nipples, umbilicus, back, wrists) and retained them for 8 working hours, and the average data was obtained after measuring them for 80 hours. Moreover, in order to look into the dispersion of spatial exposure in the treatment room, TLD was attached on the snout, PPS (Patient Positioning System), Pendant, block closet, DIPS (Digital Image Positioning System), Console, doors and measured its exposure dose level during the working hours per day. As a result of measuring exposure level of TLD Badge of radiation workers, quarterly average was 0.174 mSv, yearly average was 0.543 mSv, and after measuring the exposure level of body spots, it showed that the highest exposed body spot was neck and the lowest exposed body spot was back (the middle point of a line connecting both scapula superior angles). Investigation into the spatial exposure according to the workers' movement revealed that the exposure level was highest near the snout and as the distance becomes distant, it went lower. Even a small amount of exposure will eventually increase

  2. Exploring the Large Scale Anisotropy in the Cosmic Microwave Background Radiation at 170 GHz

    Science.gov (United States)

    Ganga, Kenneth Matthew

    1994-01-01

    In this thesis, data from the Far Infra-Red Survey (FIRS), a balloon-borne experiment designed to measure the large scale anisotropy in the cosmic microwave background radiation, are analyzed. The FIRS operates in four frequency bands at 170, 280, 480, and 670 GHz, using an approximately Gaussian beam with a 3.8 deg full-width-at-half-maximum. A cross-correlation with the COBE/DMR first-year maps yields significant results, confirming the DMR detection of anisotropy in the cosmic microwave background radiation. Analysis of the FIRS data alone sets bounds on the amplitude of anisotropy under the assumption that the fluctuations are described by a Harrison-Peebles-Zel'dovich spectrum and further analysis sets limits on the index of the primordial density fluctuations for an Einstein-DeSitter universe. Galactic dust emission is discussed and limits are set on the magnitude of possible systematic errors in the measurement.

  3. Occupational radiation protection: Protecting workers against exposure to ionizing radiation. Contributed papers

    International Nuclear Information System (INIS)

    2003-07-01

    Occupational exposure to ionizing radiation can occur in a range of industries, mining and milling; medical institutions, educational and research establishments and nuclear fuel cycle facilities. The term 'occupational exposure' refers to the radiation exposure incurred by a worker, which is attributable to the worker's occupation and committed during a period of work. According to the latest (2000) Report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), an estimated 11 million workers are monitored for exposure to ionizing radiation. They incur radiation doses attributable to their occupation, which range from a small fraction of the global average background exposure to natural radiation up to several times that value. It should be noted that the UNSCEAR 2000 Report describes a downward trend in the exposure of several groups of workers, but it also indicates that occupational exposure is affecting an increasingly large group of people worldwide. The International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS), which are co-sponsored by, inter alia, the International Atomic Energy Agency (IAEA), the International Labour Organization (ILO), the OECD Nuclear Energy Agency (NEA) and the World Health Organization (WHO), establish a system of radiation protection which includes radiation dose limits for occupational exposure. Guidance supporting the requirements of the BSS for occupational protection is provided in three interrelated Safety Guides, jointly sponsored by the IAEA and the ILO. These Guides describe, for example, the implications for employers in discharging their main responsibilities (such as setting up appropriate radiation protection programmes) and similarly for workers (such as properly using the radiation monitoring devices provided to them). The IAEA i organized its first International Conference on Occupational Radiation Protection. The

  4. DOE occupational radiation exposure. Report 1992--1994

    International Nuclear Information System (INIS)

    1997-01-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE's performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace

  5. On the anisotropies of cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Molnar, Z.

    1996-01-01

    The work gives a brief overview of the topic of cosmic microwave background radiation anisotropies. Then is deals with the so-called Rees-Sciama affect; i.e. with the anisotropies arising between the last scattering surface and us due to transparent huge irregularities. Using the formulas of Special Theory of Relativity it is proven that in the neighbourhood of expanding spherical body the Meszaros calculation (Meszaros 1994) are correct; the inaccuracy is maximally of order 10 -12 . Then the profile of the blue shift of expansion caused by an expanding sphere is calculated for the case, when the radius of this sphere is much smaller that the relevant Hubble radius. Hence the profiles of the shifts of light periods through a void and through a supercluster are given in the most general cases. These cases contain all the three Friedmannian models and both the synchronous and asynchronous clusters. Then the obtained profiles are explicitly decomposed into the sum of the multipole terms, and it is shown that the observed difference between the measured direction of the maximum of dipole anisotropy of cosmic microwave background radiation and the result of Lauer and Postman (1994) is not explainable by the Rees-Sciama effect. This means that no alternative exists to the two possibilities for the explanation of the data of Lauer and Postman; either the either the huge system of Abell clusters is streaming, or the Friedmannian model is queried. The third possibility is, of course, that the data of observations of Lauer and Postman are incorrect. However, any of these three possibilities seem to be strange enough; hence, the problems coming from data of Lauer and Postman further holds. This is the key result of paper. As a further technical result it is also shown that in principle there is no upper limit of Rees-Sciama effect. (author)

  6. Interstellar cyanogen and the temperature of the cosmic microwave background radiation

    Science.gov (United States)

    Roth, Katherine C.; Meyer, David M.; Hawkins, Isabel

    1993-01-01

    We present the results of a recently completed effort to determine the amount of CN rotational excitation in five diffuse interstellar clouds for the purpose of accurately measuring the temperature of the cosmic microwave background radiation (CMBR). In addition, we report a new detection of emission from the strongest hyperfine component of the 2.64 mm CN rotational transition (N = 1-0) in the direction toward HD 21483. We have used this result in combination with existing emission measurements toward our other stars to correct for local excitation effects within diffuse clouds which raise the measured CN rotational temperature above that of the CMBR. After making this correction, we find a weighted mean value of T(CMBR) = 2.729 (+0.023, -0.031) K. This temperature is in excellent agreement with the new COBE measurement of 2.726 +/- 0.010 K (Mather et al., 1993). Our result, which samples the CMBR far from the near-Earth environment, attests to the accuracy of the COBE measurement and reaffirms the cosmic nature of this background radiation. From the observed agreement between our CMBR temperature and the COBE result, we conclude that corrections for local CN excitation based on millimeter emission measurements provide an accurate adjustment to the measured rotational excitation.

  7. ICRP PUBLICATION 123: Assessment of Radiation Exposure of Astronauts in Space

    International Nuclear Information System (INIS)

    Dietze, G.; Bartlett, D.T.; Cool, D.A.; Cucinotta, F.A.; Jia, X.; McAulay, I.R.; Pelliccioni, M.; Petrov, V.; Reitz, G.; Sato, T.

    2013-01-01

    During their occupational activities in space, astronauts are exposed to ionising radiation from natural radiation sources present in this environment. They are, however, not usually classified as being occupationally exposed in the sense of the general ICRP system for radiation protection of workers applied on Earth. The exposure assessment and risk-related approach described in this report is clearly restricted to the special situation in space, and should not be applied to any other exposure situation on Earth. The report describes the terms and methods used to assess the radiation exposure of astronauts, and provides data for the assessment of organ doses. Chapter 1 describes the specific situation of astronauts in space, and the differences in the radiation fields compared with those on Earth. In Chapter 2, the radiation fields in space are described in detail, including galactic cosmic radiation, radiation from the Sun and its special solar particle events, and the radiation belts surrounding the Earth. Chapter 3 deals with the quantities used in radiological protection, describing the Publication 103 (ICRP, 2007) system of dose quantities, and subsequently presenting the special approach for applications in space; due to the strong contribution of heavy ions in the radiation field, radiation weighting is based on the radiation quality factor, Q, instead of the radiation weighting factor, w R . In Chapter 4, the methods of fluence and dose measurement in space are described, including instrumentation for fluence measurements, radiation spectrometry, and area and individual monitoring. The use of biomarkers for the assessment of mission doses is also described. The methods of determining quantities describing the radiation fields within a spacecraft are given in Chapter 5. Radiation transport calculations are the most important tool. Some physical data used in radiation transport codes are presented, and the various codes used for calculations in high

  8. Psychiatric disorders after radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kokai, Masahiro [Hyogo Coll. of Medicine, Nishinomiya (Japan); Soejima, Toshinori; Wang, Shangdong; Shinfuku, Naotaka

    2001-04-01

    This review focuses on the mental and psychological effects of medical radiation exposure, the nuclear accident at Three Mile Island, the Chernobyl disaster, atomic bomb explosions at Nagasaki and Hiroshima, and accidents at nuclear power plants and nuclear waste plants. Studies have shown that anxiety about the adverse effects of radiation in medicine (such as infertility, carcinogenicity, and genotoxicity) and fear for exposure has caused psychiatric disorders. Several studies on the mental health effects of the nuclear accident at Three Mile Island were conducted, and the results indicated that psychiatric distress persisted for a certain period of time, particularly in pregnant women and women who have children, even when no evidence of substantial of radiation exposure is seen clinically. The psychological consequences of the Chernobyl disaster have been investigated continuously, and various problems, e.g., acute stress reaction, neurosis, and psychosis, have been identified, although no physical damage due to the radiation or PTSD have been reported. By contrast, PTSD has been seen in survivors of the Nagasaki and Hiroshima nuclear explosions. A study in Ohio, (United States), which has a nuclear waste plant, investigated PTSD in people living near the plant and found that the symptom level was mild. In general, the most common symptoms among people with mental and psychological disorders due to radiation exposure are depression and anxiety, with many people having associated somatoform disorders, and some people complain of PTSD. Vague anxiety and fear of sequelae, regardless of the exposure dose, appears to cause such psychiatric disorders. Although it is rare for psychiatrists to see such cases of psychiatric disorders due to radiation exposure, their number may increase as psychiatric services become more widely available. (K.H.)

  9. Psychiatric disorders after radiation exposure

    International Nuclear Information System (INIS)

    Kokai, Masahiro; Soejima, Toshinori; Wang, Shangdong; Shinfuku, Naotaka

    2001-01-01

    This review focuses on the mental and psychological effects of medical radiation exposure, the nuclear accident at Three Mile Island, the Chernobyl disaster, atomic bomb explosions at Nagasaki and Hiroshima, and accidents at nuclear power plants and nuclear waste plants. Studies have shown that anxiety about the adverse effects of radiation in medicine (such as infertility, carcinogenicity, and genotoxicity) and fear for exposure has caused psychiatric disorders. Several studies on the mental health effects of the nuclear accident at Three Mile Island were conducted, and the results indicated that psychiatric distress persisted for a certain period of time, particularly in pregnant women and women who have children, even when no evidence of substantial of radiation exposure is seen clinically. The psychological consequences of the Chernobyl disaster have been investigated continuously, and various problems, e.g., acute stress reaction, neurosis, and psychosis, have been identified, although no physical damage due to the radiation or PTSD have been reported. By contrast, PTSD has been seen in survivors of the Nagasaki and Hiroshima nuclear explosions. A study in Ohio, (United States), which has a nuclear waste plant, investigated PTSD in people living near the plant and found that the symptom level was mild. In general, the most common symptoms among people with mental and psychological disorders due to radiation exposure are depression and anxiety, with many people having associated somatoform disorders, and some people complain of PTSD. Vague anxiety and fear of sequelae, regardless of the exposure dose, appears to cause such psychiatric disorders. Although it is rare for psychiatrists to see such cases of psychiatric disorders due to radiation exposure, their number may increase as psychiatric services become more widely available. (K.H.)

  10. Space radiation and astronaut safety

    CERN Document Server

    Seedhouse, Erik

    2018-01-01

    This brief explores the biological effects of long-term radiation on astronauts in deep space. As missions progress beyond Earth's orbit and away from the protection of its magnetic shielding, astronauts risk constant exposure to higher levels of galactic cosmic rays and solar particle events. The text concisely addresses the full spectrum of biomedical consequences from exposure to space radiation and goes on to present possible ways to mitigate such dangers and protect astronauts within the limitations of existing technologies.

  11. DOE Occupational Radiation Exposure, 2001 report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2001-12-31

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are “As Low As Reasonably Achievable” (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  12. DOE occupational radiation exposure. Report 1992--1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The DOE Occupational Radiation Exposure Report, 1992-1994 reports occupational radiation exposures incurred by individuals at US Department of Energy (DOE) facilities from 1992 through 1994. This report includes occupational radiation exposure information for all DOE employees, contractors, subcontractors, and visitors. This information is analyzed and trended over time to provide a measure of the DOE`s performance in protecting its workers from radiation. Occupational radiation exposure at DOE has been decreasing over the past 5 years. In particular, doses in the higher dose ranges are decreasing, including the number of doses in excess of the DOE limits and doses in excess of the 2 rem Administrative Control Level (ACL). This is an indication of greater attention being given to protecting these individuals from radiation in the workplace.

  13. Enhanced polarization of the cosmic microwave background radiation from thermal gravitational waves.

    Science.gov (United States)

    Bhattacharya, Kaushik; Mohanty, Subhendra; Nautiyal, Akhilesh

    2006-12-22

    If inflation was preceded by a radiation era, then at the time of inflation there will exist a decoupled thermal distribution of gravitons. Gravitational waves generated during inflation will be amplified by the process of stimulated emission into the existing thermal distribution of gravitons. Consequently, the usual zero temperature scale invariant tensor spectrum is modified by a temperature dependent factor. This thermal correction factor amplifies the B-mode polarization of the cosmic microwave background radiation by an order of magnitude at large angles, which may now be in the range of observability of the Wilkinson Microwave Anisotropy Probe.

  14. Optimised polarimeter configurations for measuring the Stokes parameters of the Cosmic Microwave Background Radiation

    OpenAIRE

    Couchot, F.; Delabrouille, J.; Kaplan, J.; Revenu, B.

    1998-01-01

    We present configurations of polarimeters which measure the three linear Stokes parameters of the Cosmic Microwave Background Radiation with a nearly diagonal error matrix, independent of the global orientation of the polarimeters in the focal plane. These configurations also provide the smallest possible error box volume.

  15. Radiation risk due to occupational exposure

    International Nuclear Information System (INIS)

    Kargbo, A.A

    2012-04-01

    Exposure to ionizing radiation occurs in many occupations. Workers can be exposed to both natural and artificial sources of radiation. Any exposure to ionizing radiation incurs some risk, either to the individual or to the individual's progeny. This dissertation investigated the radiation risk due to occupational exposure in industrial radiography. Analysis of the reported risk estimates to occupational exposure contained in the UNSCEAR report of 2008 in industrial radiography practice was done. The causes of accidents in industrial radiography include: Lack of or inadequate regulatory control, inadequate training, failure to follow operational procedures, human error, equipment malfunction or defect, inadequate maintenance and wilful violation have been identified as primary causes of accidents. To minimise radiation risks in industrial radiography exposure devices and facilities should be designed such that there is intrinsic safety and operational safety ensured by establishing a quality assurance programme, safety culture fostered and maintained among all workers, industrial radiography is performed in compliance with approved local rules, workers engaged have appropriate qualifications and training, available safe operational procedures are followed, a means is provided for detecting incidents and accidents and an analysis of the causes and lessons learned. (author)

  16. Ionizing radiation and cancer prevention

    International Nuclear Information System (INIS)

    Hoel, D.G.

    1995-01-01

    Ionizing radiation long has been recognized as a cause of cancer. Among environmental cancer risks, radiation in unique in the variety of organs and tissues that it can affect. Numerous epidemiological studies with good dosimetry provide the basis for cancer risk estimation, including quantitative information derived from observed dose-response relationships. The amount of cancer attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to ionizing radiation is difficult to estimate, but numbers such as 1 to 3% have been suggested. Some radiation-induced cancers attributable to naturally occurring exposures, such as cosmic and terrestrial radiation, are not preventable. The major natural radiation exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure, radon, can often be reduced, especially in the home, but not entirely eliminated. Medical use of radiation constitutes the other main category of exposure; because of the importance of its benefits to one's health, the appropriate prevention strategy is to simply work to minimize exposures. 9 refs., 1 fig., 5 tabs

  17. Criteria for radiological protection against exposure to natural radiation

    International Nuclear Information System (INIS)

    Cardenas Herrera, Juan

    2012-01-01

    Exposure of humans to natural sources of radiation has been a continuous and inevitable feature of life on earth. This exposure exceeds all due to artificial sources combined for most people. Many exposures to natural radiation sources are modified by human action. In particular, natural radionuclides are released into the environment in mineral processing and in activities such as the production of phosphate fertilizers and the use of fossil fuels. An increase of exposures to this natural radiation is caused. The relevance of exposure to natural radiation is confirmed by the fact that, for most people, the exposures to natural background radiation have been much more significant than exposures to artificial sources, with exceptions. Among these exceptions have been noted: medical exposures, accidents with release of radionuclides and some specific workplaces. In all cases, however, the natural background radiation has formed the basis on which all the others exposures are added and is a common level serving as compared to other exposures. Regulations and instructions have begun to establish in some countries to regulate natural radiation, countries like Spain, have already incorporated into its regulations on health protection against ionizing radiation the subject of natural radiation. (author) [es

  18. Cosmic Accelerators: An Introduction

    International Nuclear Information System (INIS)

    Kanbach, Gottfried

    2005-01-01

    High energy, relativistic, particles are an essential component of the Universe and play a major role in astrophysics. In a few years we will reach the centennial of the discovery of cosmic rays; all through this century the properties, origin, and effects of this radiation have intrigued researchers in astrophysics and elementary particles alike. We briefly review the history, current status, and future perspectives of cosmic ray research. Emphasis will be placed on the multitude of cosmic accelerators, direct observations of these objects, and the effects of cosmic rays in the Galaxy and beyond

  19. Radiation environment measurements with the cosmic ray experiments on-board the KITSAT-1 and PoSAT-1 micro-satellites

    International Nuclear Information System (INIS)

    Underwood, C.I.; Brock, D.J.; Williams, P.S.; Kim, S.; Dilao, R.; Santos, P.R.; Brito, M.C.; Dyer, C.S.; Sims, A.J.

    1994-01-01

    The success of the Cosmic Radiation Environment and Dosimetry (CREDO) experiment carried on-board the UoSAT-3 micro-satellite (launched in 1990) has lead to the development of a new instrument called the Cosmic-Ray Experiment (CRE) which has flown on-board the KITSAT-1 and PoSAT-1 micro-satellites, launched in 1992 and 1993 respectively. The results from both CRE instruments show excellent agreement with those of CREDO for the galactic cosmic-ray environment. However, there are some differences in the CRE and CREDO response to the trapped proton environment of the South Atlantic Anomaly which can be explained by the differences in the detector response time. The fit between the flight results and predictions from the standard models is generally good, but some differences are noted. The CRE and CREDO instruments should provide continuous coverage of the near-Earth radiation environment across a complete solar cycle. This is important in view of the dynamic nature of the radiation environment - as amply demonstrated by the results from the CRRES spacecraft

  20. Theory of geomagnetic effects of cosmic rays: its past and presence

    Energy Technology Data Exchange (ETDEWEB)

    Gall, R [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Geofisica

    1981-03-01

    The interest expressed by Lemaitre and Vallarta in the nature of universal corpuscular radiation, remnant of the exploded primogenitive atom, culminated in 1932, in the development of their theory of the geomagnetic effects of cosmic rays, a tool since its publication, basic to cosmic radiation research and to the advancement of cosmic ray astronomy. Between 1940 and 1960 challenging experimental data from proliferating cosmic radiation stations and of direct detection techniques provided geomagnetic field models for greater theoretical precision. The discoveries since the advent of the space age of the Earth's cavity and geomagnetic tail, and of the nonrelativistic solar cosmic rays have resulted in a new branch of the theory dealing with magnetosphere effects in the propagation of low energy cosmic radiations. The theory's importance and application to cosmic bodies other than the Earth is discussed.

  1. Global levels of radiation exposure: Latest international findings

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1993-01-01

    The radiation exposure of the world's population has recently been reviewed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR has reconfirmed that the normal operation of all peaceful nuclear installations contributes insignificantly to the global exposure to radiation. Even taking into account all the nuclear accidents to date (including Chernobyl), the additional exposure would be equivalent to only about 20 days of natural exposure. Military uses of nuclear energy have committed the world to most of the radiation exposure caused by human activities

  2. Atmospheric and biospheric effects of cosmic

    International Nuclear Information System (INIS)

    Cardenas, Rolando

    2007-01-01

    We briefly review and classify the action that different sources of cosmic radiations might have had on Earth climate and biosphere in the geological past and at present times. We present the action of both sparse explosive phenomena, like gamma-ray bursts and supernovae, and permanent ones like cosmic rays and ultraviolet radiation backgrounds. Very energetic cosmic radiation coming from explosions can deplete the ozone lawyer due to initial ionization reactions, while soft backgrounds might trigger low altitude cloud formation through certain microphysical amplification processes. We examine a hypothesis concerning the potential role of cosmic rays on present Global Climatic Change. We also present the potential of UV astronomy to probe some of above scenarios, and speak on the possibilities for the Cuban participation in the international mega-project World Space Observatory, a UV telescope to be launched in the period 2007-2009. (Author)

  3. Biological monitoring of radiation exposure

    Science.gov (United States)

    Horneck, G.

    1998-11-01

    Complementary to physical dosimetry, biological dosimetry systems have been developed and applied which weight the different components of environmental radiation according to their biological efficacy. They generally give a record of the accumulated exposure of individuals with high sensitivity and specificity for the toxic agent under consideration. Basically three different types of biological detecting/monitoring systems are available: (i) intrinsic biological dosimeters that record the individual radiation exposure (humans, plants, animals) in measurable units. For monitoring ionizing radiation exposure, in situ biomarkers for genetic (e.g. chromosomal aberrations in human lymphocytes, germ line minisatellite mutation rates) or metabolic changes in serum, plasma and blood (e.g. serum lipids, lipoproteins, lipid peroxides, melatonin, antibody titer) have been used. (ii) Extrinsic biological dosimeters/indicators that record the accumulated dose in biological model systems. Their application includes long-term monitoring of changes in environmental UV radiation and its biological implications as well as dosimetry of personal UV exposure. (iii) Biological detectors/biosensors for genotoxic substances and agents such as bacterial assays (e.g. Ames test, SOS-type test) that are highly sensitive to genotoxins with high specificity. They may be applicable for different aspects in environmental monitoring including the International Space Station.

  4. Hydrology and Cosmic radiation

    DEFF Research Database (Denmark)

    Andreasen, Mie

    and calibration. Yet, soil moisture measurements are traditionally provided on either point or kilometer scale from electromagnetic based sensors and satellite retrievals, respectively. Above the ground surface, the cosmic-ray neutron intensity (eV range) is inversely correlated to all hydrogen present...

  5. Sarcoma risk after radiation exposure

    Directory of Open Access Journals (Sweden)

    Berrington de Gonzalez Amy

    2012-10-01

    Full Text Available Abstract Sarcomas were one of the first solid cancers to be linked to ionizing radiation exposure. We reviewed the current evidence on this relationship, focusing particularly on the studies that had individual estimates of radiation doses. There is clear evidence of an increased risk of both bone and soft tissue sarcomas after high-dose fractionated radiation exposure (10 + Gy in childhood, and the risk increases approximately linearly in dose, at least up to 40 Gy. There are few studies available of sarcoma after radiotherapy in adulthood for cancer, but data from cancer registries and studies of treatment for benign conditions confirm that the risk of sarcoma is also increased in this age-group after fractionated high-dose exposure. New findings from the long-term follow-up of the Japanese atomic bomb survivors suggest, for the first time, that sarcomas can be induced by acute lower-doses of radiation (

  6. A Cherenkov imager for the charge measurement of the elements of nuclear cosmic radiation

    International Nuclear Information System (INIS)

    Sallaz-Damaz, Y.

    2008-10-01

    A Cherenkov imager, CHERCAM (Cherenkov Camera) has been designed and built for the CREAM (Cosmic Ray Energetics and Mass) balloon-borne experiment. The instrument will perform charge measurements of nuclear cosmic-ray over a range extending from proton to iron in the energy domain from 10 10 to 10 15 eV. This work has focused on the development of CHERCAM by creating a simulation of the detector and on the aerogel plan characterization for the radiator. But it has also expanded on the technical aspects of the construction of the detector and its various tests, as well as the development of calibration software and data analysis. (author)

  7. Experiments on studying solar cosmic radiation nuclear composition and energy spectra on the Prognoz-9 sattelite

    International Nuclear Information System (INIS)

    Belyakov, S.A.; Gordeev, Yu.P.; Denisov, Yu.I.; Kolesov, G.Ya; Podorol'skij, A.N.; Nikitin, B.A.

    1986-01-01

    Performances of the SKI-1 device installed on board the artificial satellite of the Earth ''Prognoz-9'' and intended for measurements of a nuclear component of solar cosmic radiation are considered. The device permits to determine intensites of proton fluxes in the 10-30, 30-60, 60-90 and 90-120 MeV energy ranges and nuclei with charges z=1-30 and the following energies: 5-20 MeV for 1 H and 4 He nuclei, 10-26 MeV for C nuclei, 12-42 MeV for O nuclei, 23-80 MeV for Fe nuclei. The SKI-1 comprises two similar telescopes. The telescope includes 4 silicon semiconducting detectors. Energy spectra of solar cosmic radiation and data characterizing time dependence of their intensity are given

  8. Estimated radiation exposure of German commercial airline cabin crew in the years 1960-2003 modeled using dose registry data for 2004-2015.

    Science.gov (United States)

    Wollschläger, Daniel; Hammer, Gaël Paul; Schafft, Thomas; Dreger, Steffen; Blettner, Maria; Zeeb, Hajo

    2018-05-01

    Exposure to ionizing radiation of cosmic origin is an occupational risk factor in commercial aircrew. In a historic cohort of 26,774 German aircrew, radiation exposure was previously estimated only for cockpit crew using a job-exposure matrix (JEM). Here, a new method for retrospectively estimating cabin crew dose is developed. The German Federal Radiation Registry (SSR) documents individual monthly effective doses for all aircrew. SSR-provided doses on 12,941 aircrew from 2004 to 2015 were used to model cabin crew dose as a function of age, sex, job category, solar activity, and male pilots' dose; the mean annual effective dose was 2.25 mSv (range 0.01-6.39 mSv). In addition to an inverse association with solar activity, exposure followed age- and sex-dependent patterns related to individual career development and life phases. JEM-derived annual cockpit crew doses agreed with SSR-provided doses for 2004 (correlation 0.90, 0.40 mSv root mean squared error), while the estimated average annual effective dose for cabin crew had a prediction error of 0.16 mSv, equaling 7.2% of average annual dose. Past average annual cabin crew dose can be modeled by exploiting systematic external influences as well as individual behavioral determinants of radiation exposure, thereby enabling future dose-response analyses of the full aircrew cohort including measurement error information.

  9. Spectrum of the cosmic background radiation: early and recent measurements from the White Mountain Research Station

    International Nuclear Information System (INIS)

    Smoot, G.F.

    1985-09-01

    The White Mountain Research Station has provided a support facility at a high, dry, radio-quiet site for measurements that have established the blackbody character of the cosmic microwave background radiation. This finding has confirmed the interpretation of the radiation as a relic of the primeval fireball and helped to establish the hot Big Bang theory as the standard cosmological model

  10. Nature of activities and natural, artificial, accidental exposures. Magnitude of these exposures

    International Nuclear Information System (INIS)

    Aurengo, A.

    2009-01-01

    The exposure to ionizing radiation (I.R.) is linked to radioelements of organism (9%), earth (12%), cosmic radiation (10%), radon (37%), atmospheric fallout ( nuclear tests 2.5% and industry 0.5%) and to medical procedures (29%). The natural exposure varies in France from 2.5 to 5 mSv by year. In some areas in the world it reaches several tens of mSv by year. The medical exposure is very heterogeneous and concerns particularly old people. For a same examination, the patients exposure varies in an important way ( sometimes from 1 to 10) according to the country, even in France. In France, 250 000 persons are occupationally exposed to ionizing radiation. Among these ones, the most of cases exceeded regulatory limits for exposure to IR concern the health sector. The accidental exposures are in relation with industrial activities (51%) research (20%) civil nuclear (13%) or military (5%) and medical activities (11%). The exposures and then the consequences are very variable, ranging from death to unapparent consequences. in the most of cases a human error is involved and these accidents could have been avoided through measures of prevention and training. (N.C.)

  11. Analytic solutions in the dyon black hole with a cosmic string: Scalar fields, Hawking radiation and energy flux

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Silva, G.V., E-mail: gislainevs@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2015-11-15

    Charged massive scalar fields are considered in the gravitational and electromagnetic field produced by a dyonic black hole with a cosmic string along its axis of symmetry. Exact solutions of both angular and radial parts of the covariant Klein–Gordon equation in this background are obtained, and are given in terms of the confluent Heun functions. The role of the presence of the cosmic string in these solutions is showed up. From the radial solution, we obtain the exact wave solutions near the exterior horizon of the black hole, and discuss the Hawking radiation spectrum and the energy flux. -- Highlights: •A cosmic string is introduced along the axis of symmetry of the dyonic black hole. •The covariant Klein–Gordon equation for a charged massive scalar field in this background is analyzed. •Both angular and radial parts are transformed to a confluent Heun equation. •The resulting Hawking radiation spectrum and the energy flux are obtained.

  12. Radiation Doses Received by the Irish Population

    International Nuclear Information System (INIS)

    Colgan, P.A.; Organo, C.; Hone, C.; Fenton, D.

    2008-05-01

    Some chemical elements present in the environment since the Earth was formed are naturally radioactive and exposure to these sources of radiation cannot be avoided. There have also been additions to this natural inventory from artificial sources of radiation that did not exist before the 1940s. Other sources of radiation exposure include cosmic radiation from outer space and the use of radiation in medical diagnosis and treatment. There can be large variability in the dose received by invividual members of the population from any given source. Some sources of radiation expose every member of the population while, in other cases, only selected individuals may be exposed. For example, natural radioactivity is found in all soils and therefore everybody receives some radiation dose from this activity. On the other hand, in the case of medical exposures, only those who undergo a medical procedure using radiation will receive a radiation dose. The Radiological Protection Institute of Ireland (RPII) has undertaken a comprehensive review of the relevant data on radiation exposure in Ireland. Where no national data have been identified, the RPII has either undertaken its own research or has referred to the international literature to provide a best estimate of what the exposure in Ireland might be. This has allowed the relative contribution of each source to be quantified. This new evaluation is the most up-to-date assessment of radiation exposure and updates the assessment previously reported in 2004. The dose quoted for each source is the annual 'per caput' dose calculated on the basis of the most recently available data. This is an average value calculated by adding the doses received by each individual exposed to a given radiation source and dividing the total by the current population of 4.24 million. All figures have been rounded, consistent with the accuracy of the data. In line with accepted international practice, where exposure takes place both indoors and

  13. Intervention in emergency situations involving radiation exposure (1990)

    International Nuclear Information System (INIS)

    1992-01-01

    This document covers radiation protection aspects arising in emergency situations. It does not cover the measures necessary to reduce the health consequences of radiation exposure, i.e. the medical care of exposed individuals, nor does it cover psychological problems arising from the exposure of individuals or of a population. These problems may arise from anxiety about possible late effects of radiation exposure and from any actions implemented to reduce exposure. Even though radiation exposure levels may be low and insignificant, these problems must be taken into account in determining any action to be implemented to reduce radiation exposure. The primary concern of this document is with exposure in areas which are close to the source and in the period immediately after a source is out of control. It outlines the principles which can be used for planning and implementing countermeasures for protection of the public. 24 refs., 13 tabs

  14. Radiation exposure of uranium mill workers

    International Nuclear Information System (INIS)

    Jha, Giridhar; Saha, S.C.

    1982-01-01

    The uranium mill workers at Jaduguda were covered by a regular film badge service from 1969 onwards. Since the log normal plot is useful in interpreting occupational exposure, a statistical analysis of the radiation exposure data was attempted. Exposure data for each year has been plotted as cumulative percentage and worker's population with exposure levels in different class intervals. The plot for each of the year under investigation shows an occupational exposure distribution more or less consistent with the log normal distribution function. The analysis shows that more than 98% of radiation workers received less than 200 mrem (2 mSv). (author)

  15. Bursts of gravitational radiation from superconducting cosmic strings and the neutrino mass spectrum

    International Nuclear Information System (INIS)

    Mosquera Cuesta, Herman J.

    2001-02-01

    Berezinsky, Hnatyk and Vilenkin showed that superconducting cosmic strings could be central engines for cosmological gamma-ray bursts and for producing the neutrino component of ultra-high energy cosmic rays. A consequence of this mechanism would be that a detectable cusp-triggered gravitational wave burst should be release simultaneously with the γ-ray surge. If contemporary measurements of both γ and ν radiation could be made for any particular source, then the cosmological time-delay between them might be useful for putting unprecedently tight bounds on the neutrino mass spectrum. Such measurements could consistently verify or rule out the model since strictly correlated behaviour is expected for the duration of the event and for the time variability of the spectra. (author)

  16. Radiation exposure and protection during angiography

    Energy Technology Data Exchange (ETDEWEB)

    Biazzi, L; Garbagna, P [Pavia Univ. (Italy)

    1979-05-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recommendations to reduce radiation exposure without prejudicing the exam results.

  17. Radiation exposure and radiation hazards of human population. Pt. 1

    International Nuclear Information System (INIS)

    Jacobi, W.

    1982-01-01

    The present Part I provides a survey on the various sources of natural and artificial radiation exposure of human population. Furthermore, biological radiation effects and radiation damages are surveyed. In an appendix, radiation types, radiation doses, and radiation dose units are explained. (orig./GSCH) [de

  18. DOE Basic Overview of Occupational Radiation Exposure_2011 pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    ORAU

    2012-08-08

    This pamphlet focusses on two HSS activities that help ensure radiation exposures are accurately assessed and recorded, namely: 1) the quality and accuracy of occupational radiation exposure monitoring, and 2) the recording, reporting, analysis, and dissemination of the monitoring results. It is intended to provide a short summary of two specific HSS programs that aid in the oversight of radiation protection activities at DOE. The Department of Energy Laboratory Accreditation Program (DOELAP) is in place to ensure that radiation exposure monitoring at all DOE sites is precise and accurate, and conforms to national and international performance and quality assurance standards. The DOE Radiation Exposure Monitoring Systems (REMS) program provides for the collection, analysis, and dissemination of occupational radiation exposure information. The annual REMS report is a valuable tool for managing radiological safety programs and for developing policies to protect individuals from occupational exposure to radiation. In tandem, these programs provide DOE management and workers an assurance that occupational radiation exposures are accurately measured, analyzed, and reported.

  19. Second dip as a signature of ultrahigh energy proton interactions with cosmic microwave background radiation.

    Science.gov (United States)

    Berezinsky, V; Gazizov, A; Kachelrieb, M

    2006-12-08

    We discuss as a new signature for the interaction of extragalactic ultrahigh energy protons with cosmic microwave background radiation a spectral feature located at E= 6.3 x 10(19) eV in the form of a narrow and shallow dip. It is produced by the interference of e+e(-)-pair and pion production. We show that this dip and, in particular, its position are almost model-independent. Its observation by future ultrahigh energy cosmic ray detectors may give the conclusive confirmation that an observed steepening of the spectrum is caused by the Greisen-Zatsepin-Kuzmin effect.

  20. Effects of high vs low-level radiation exposure

    International Nuclear Information System (INIS)

    Bond, V.P.

    1983-01-01

    In order to appreciate adequately the various possible effects of radiation, particularly from high-level vs low-level radiation exposure (HLRE, vs LLRE), it is necessary to understand the substantial differences between (a) exposure as used in exposure-incidence curves, which are always initially linear and without threshold, and (b) dose as used in dose-response curves, which always have a threshold, above which the function is curvilinear with increasing slope. The differences are discussed first in terms of generally familiar nonradiation situations involving dose vs exposure, and then specifically in terms of exposure to radiation, vs a dose of radiation. Examples are given of relevant biomedical findings illustrating that, while dose can be used with HLRE, it is inappropriate and misleading the LLRE where exposure is the conceptually correct measure of the amount of radiation involved

  1. Risks and management of radiation exposure.

    Science.gov (United States)

    Yamamoto, Loren G

    2013-09-01

    High-energy ionizing radiation is harmful. Low-level exposure sources include background, occupational, and medical diagnostics. Radiation disaster incidents include radioactive substance accidents and nuclear power plant accidents. Terrorism and international conflict could trigger intentional radiation disasters that include radiation dispersion devices (RDD) (a radioactive dirty bomb), deliberate exposure to industrial radioactive substances, nuclear power plant sabotage, and nuclear weapon detonation. Nuclear fissioning events such as nuclear power plant incidents and nuclear weapon detonation release radioactive fallout that include radioactive iodine 131, cesium 137, strontium 90, uranium, plutonium, and many other radioactive isotopes. An RDD dirty bomb is likely to spread only one radioactive substance, with the most likely substance being cesium 137. Cobalt 60 and strontium 90 are other RDD dirty bomb possibilities. In a radiation disaster, stable patients should be decontaminated to minimize further radiation exposure. Potassium iodide (KI) is useful for iodine 131 exposure. Prussian blue (ferric hexacyanoferrate) enhances the fecal excretion of cesium via ion exchange. Ca-DTPA (diethylenetriaminepentaacetic acid) and Zn-DTPA form stable ionic complexes with plutonium, americium, and curium, which are excreted in the urine. Amifostine enhances chemical and enzymatic repair of damaged DNA. Acute radiation sickness ranges in severity from mild to lethal, which can be assessed by the nausea/vomiting onset/duration, complete blood cell count findings, and neurologic symptoms.

  2. Stony meteoroid space erosion and drag: Effect on cosmic ray exposure ages

    Science.gov (United States)

    Rubincam, David Parry

    2017-09-01

    Collisions with dust particles in retrograde orbits cause space erosion on stony meteoroids in addition to the particle drag which causes drift toward resonances. The spacing between resonances determines the maximum drift time and sets upper limits on the neon-21 cosmic ray exposure (CRE) ages for meteoroids less than ∼1 m in radius, while space erosion controls the limit for radii greater than ∼1 m; the limits accord well with the measured CRE ages of stony meteorites.

  3. Sensitiveness to cosmic radiation: on some aspects of data collection and their representation

    International Nuclear Information System (INIS)

    Leray, J.L.; Musseau, O.; Marti, A.; Coic, Y.

    1987-07-01

    During simulation of cosmic radiation effects, the energy deposition by length unit is altered because of energy lowering along the range. This mechanism is illustrated by exhaustive data got from the microprocessor type 2901. Wrong conclusions may be deduced concerning behavior in space field. New representations of cross sections are presented; they lead to safer predictions on behavior in space environment [fr

  4. Genetic and molecular dosimetry of HZE radiation (US-1 RADIAT)

    Science.gov (United States)

    Nelson, Gregory A.; Schubert, W. W.; Kazarians, G. A.; Richards, G. F.; Benton, E. V.; Benton, E. R.; Henke, R. P.

    1995-01-01

    In order to estimate radiation exposure in space, experiments were conducted during the 1st International Microgravity Laboratory (IML-1) mission in order to isolate genetic changes in animal cells caused by cosmic rays. The space measurements were evaluated against results from synthetic cosmic rays produced by particle accelerators on the ground. The biological material used was the tiny soil nematode, Caenorhabditis elegans. The measurements were made by thermoluminescent detectors and plastic nuclear track detectors. The development and the chromosome mechanics in microgravity were studied, and the mutagenesis induced by radiation exposure was analyzed. The results showed that there are no obvious differences in the development, behavior and chromosome mechanics, as a function of gravity unloading (reproduction, self-fertilization and mating of males with hermaphrodites, gross anatomy, symmetry and gametogenesis, pairing, disjoining and recombination of chromosomes). A variety of mutants were isolated, and it was noted that mutants isolated from regions of identified high particles were more severely affected than those isolated by random screening. Linear energy transfer particles seem to favor large scale genetic lesions.

  5. Radiation exposure and radiation risk of the population

    International Nuclear Information System (INIS)

    Jacobi, W.; Paretzke, H.G.; Ehling, U.H.

    1981-02-01

    The major scientifically founded results concerning the assessment of the radiation exposure and the analysis and evaluation of the radiationhazards for the population, particularly in the range of low doses, are presented. As to the risk analysis special attention is paid to the rays with low ionization density (X-, γ-, β- and electronrays). Contents: 1) Detailed survey of the results and conclusions; 2) Data on the radiation load of the population; 3) Results to epidemiological questioning on the risk of cancer; 4) Genetical radiation hazards of the population. For quantification purposes of the risk of cancer by γ-radiation the observations with the a-bomb survivors in Japan are taken as a basis, as the available dosimetrical data have to be revised. Appendices: 1) German translation of the UNSCEAR-Report (1977); 2) BEIR-Report (1980); 3) Comments from the SSK on the comparability of the risks of natural-artificial radiation exposure; 4) Comments from the SSK on the importance of synergistical influences for the radiation protection (23.9.1977). (HP) [de

  6. Radiation exposure and protection during angiography

    International Nuclear Information System (INIS)

    Biazzi, L.; Garbagna, P.

    1979-01-01

    The authors describe the radiological techniques during angiography examinations in their hospital. For every technique they measured the radiation exposure and dose to the staff of doctors, assistants and nurses in their standard positions in the room and the radiation dose at various points on their bodies. The results are critically discussed and alternative protection devices are analysed, since there are many difficulties concerning the employ of usual radiation protection systems. Cardiologists, above all, are given some recomandations to reduce radiation exposure without prejudicing the exam results [fr

  7. Radiation exposure dose on persons engaged in radiation-related industries in Korea

    International Nuclear Information System (INIS)

    Lim, Bong Sik

    2006-01-01

    This study investigated the status of radiation exposure doses since the establishment of the 'Regulations on Safety Management of Diagnostic Radiation Generation Device' in January 6, 1995. The level of radiation exposure in people engaged or having been engaged in radiation-related industries of inspection organizations, educational organization, military units, hospitals, public health centers, businesses, research organizations or clinics over a 5 year period from Jan. 1, 2000 to Dec. 31, 2004 was measured. The 149,205 measurement data of 57,136 workers registered in a measurement organization were analysed in this study. Frequency analysis, a Chi-square test, Chi-square trend test, and ANOVA was used for data analysis. Among 57,136 men were 40,870 (71.5%). 50.3% of them were radiologic technologists, otherwise medical doctors (22.7%), nurse (2.9%) and others (24.1%). The average of depth radiation and surface radiation during the 5-year period were found to decrease each year. Both the depth radiation and surface radiation exposure were significantly higher in males, in older age groups, in radiological technologists of occupation. The departments of nuclear medicine had the highest exposure of both depth and surface radiation of the divisions of labor. There were 1.98 and 2.57 per 1,000 person-year were exposed more than 20 mSv (limit recommended by International Commission on Radiological Protection) in depth and surface radiation consequently. The total exposure per worker was significantly decreased by year. But Careful awareness is needed for the workers who exposed over 20 mSv per year. In order to minimize exposure to radiation, each person engaged in a radiation-related industry must adhere to the individual safety management guidelines more thoroughly. In addition, systematic education and continuous guidance aimed at increasing the awareness of safety must be provided

  8. Acute radiation syndrome caused by accidental radiation exposure - therapeutic principles

    Directory of Open Access Journals (Sweden)

    Dörr Harald

    2011-11-01

    Full Text Available Abstract Fortunately radiation accidents are infrequent occurrences, but since they have the potential of large scale events like the nuclear accidents of Chernobyl and Fukushima, preparatory planning of the medical management of radiation accident victims is very important. Radiation accidents can result in different types of radiation exposure for which the diagnostic and therapeutic measures, as well as the outcomes, differ. The clinical course of acute radiation syndrome depends on the absorbed radiation dose and its distribution. Multi-organ-involvement and multi-organ-failure need be taken into account. The most vulnerable organ system to radiation exposure is the hematopoietic system. In addition to hematopoietic syndrome, radiation induced damage to the skin plays an important role in diagnostics and the treatment of radiation accident victims. The most important therapeutic principles with special reference to hematopoietic syndrome and cutaneous radiation syndrome are reviewed.

  9. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    Science.gov (United States)

    Wenzler, David L.; Abbott, Joel E.; Su, Jeannie J.; Shi, William; Slater, Richard; Miller, Daniel; Siemens, Michelle J.; Sur, Roger L.

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at two academic institutions. This was collected using the Instadose™ dosimeter and reported both continuously and categorically as high and low dose using a 10 mrem dose threshold, the approximate amount of radiation received from one single chest X-ray. Predictors of increased radiation exposure were determined using multivariate analysis. Results: A total of 91 PNL cases in 66 patients were reviewed. Median surgery duration and fluoroscopy time were 142 (38–368) min and 263 (19–1809) sec, respectively. Median attending urologist, urology resident, anesthesia, and nurse radiation exposure per case was 4 (0–111), 4 (0–21), 0 (0–5), and 0 (0–5) mrem, respectively. On univariate analysis, stone area, partial or staghorn calculi, surgery duration, and fluoroscopy time were associated with high attending urologist and resident radiation exposure. Preexisting access that was utilized was negatively associated with resident radiation exposure. However, on multivariate analysis, only fluoroscopy duration remained significant for attending urologist radiation exposure. Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury. PMID:28216931

  10. Radiation -- A Cosmic Hazard to Human Habitation in Space

    Science.gov (United States)

    Lewis, Ruthan; Pellish, Jonathan

    2017-01-01

    Radiation exposure is one of the greatest environmental threats to the performance and success of human and robotic space missions. Radiation permeates all space and aeronautical systems, challenges optimal and reliable performance, and tests survival and survivability. We will discuss the broad scope of research, technological, and operational considerations to forecast and mitigate the effects of the radiation environment for deep space and planetary exploration.

  11. Extrapolating cosmic ray variations and impacts on life: Morlet wavelet analysis

    Science.gov (United States)

    Zarrouk, N.; Bennaceur, R.

    2009-07-01

    Exposure to cosmic rays may have both a direct and indirect effect on Earth's organisms. The radiation may lead to higher rates of genetic mutations in organisms, or interfere with their ability to repair DNA damage, potentially leading to diseases such as cancer. Increased cloud cover, which may cool the planet by blocking out more of the Sun's rays, is also associated with cosmic rays. They also interact with molecules in the atmosphere to create nitrogen oxide, a gas that eats away at our planet's ozone layer, which protects us from the Sun's harmful ultraviolet rays. On the ground, humans are protected from cosmic particles by the planet's atmosphere. In this paper we give estimated results of wavelet analysis from solar modulation and cosmic ray data incorporated in time-dependent cosmic ray variation. Since solar activity can be described as a non-linear chaotic dynamic system, methods such as neural networks and wavelet methods should be very suitable analytical tools. Thus we have computed our results using Morlet wavelets. Many have used wavelet techniques for studying solar activity. Here we have analysed and reconstructed cosmic ray variation, and we have better depicted periods or harmonics other than the 11-year solar modulation cycles.

  12. Estimation of health risks from radiation exposures

    International Nuclear Information System (INIS)

    Randolph, M.L.

    1983-08-01

    An informal presentation is given of the cancer and genetic risks from exposures to ionizing radiations. The risks from plausible radiation exposures are shown to be comparable to other commonly encountered risks

  13. Estimation of health risks from radiation exposures

    Energy Technology Data Exchange (ETDEWEB)

    Randolph, M.L.

    1983-08-01

    An informal presentation is given of the cancer and genetic risks from exposures to ionizing radiations. The risks from plausible radiation exposures are shown to be comparable to other commonly encountered risks.

  14. Evidence Report: Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure

    Science.gov (United States)

    Patel, Zarana; Huff, Janice; Saha, Janapriya; Wang, Minli; Blattnig, Steve; Wu, Honglu; Cucinotta, Francis

    2015-01-01

    (SI unit for ionizing radiation dosage, i.e. one joule of radiation energy per one kilogram of matter)) to facilitate risk prediction. This risk has considerable uncertainty associated with it, and no acceptable model for projecting degenerative tissue risk is currently available. In particular, risk factors such as obesity, alcohol, and tobacco use can act as confounding factors that contribute to the large uncertainties. The PELs could be violated under certain scenarios, including following a large SPE (solar proton event) or long-term GCR (galactic cosmic ray) exposure. Specifically, for a Mars mission, the accumulated dose is sufficiently high that epidemiology data and preliminary risk estimates suggest a significant risk for cardiovascular disease. Ongoing research in this area is intended to provide the evidence base for accurate risk quantification to determine criticality for extended duration missions. Data specific to the space radiation environment must be compiled to quantify the magnitude of this risk to decrease the uncertainty in current PELs and to determine if additional protection strategies are required. New research results could lead to estimates of cumulative radiation risk from CNS and degenerative tissue diseases that, when combined with the cancer risk, may have major negative impacts on mission design, costs, schedule, and crew selection. The current report amends an earlier report (Human Research Program Requirements Document, HRP-47052, Rev. C, dated Jan 2009) in order to provide an update of evidence since 2009.

  15. Exposure of the orthopaedic surgeon to radiation

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Kiyonobu; Koga, Takamasa; Matsuzaki, Akio; Kido, Masaki; Satoh, Tetsunori [Fukuoka Univ. (Japan). Chikushi Hospital

    1995-09-01

    We monitored the amount of radiation received by surgeons and assistants during surgery carried out with fluoroscopic assistance. The radiation was monitored with the use of MYDOSE MINIX PDM107 made by Aloka Co. Over a one year period from Aug 20, 1992 to Aug 19, 1993, a study was undertaken to evaluate exposure of the groin level to radiation with or without use of the lead apron during 106 operation (Group-1). In another group, radiation was monitored at the breast and groin level outside of the lead apron during 39 operations (Group-2). In Group-1, the average exposure per person during one year was 46.0 {mu}SV and the average exposure for each procedure was 1.68 {mu}SV. The use of the lead apron affirmed its protective value; the average radiation dose at the groin level out-side of the apron was 9.11 {mu}SV, the measured dose beneath the apron 0.61 {mu}SV. The average dose of exposure to the head, breast at groin level outside of the lead apron, were 7.68 {mu}SV, 16.24 {mu}SV, 32.04 {mu}SV respectively. This study and review of the literature indicate that the total amount of radiation exposure during surgery done with fluoroscopic control remains well within maximum exposure limits. (author).

  16. Exposure of the orthopaedic surgeon to radiation

    International Nuclear Information System (INIS)

    Katoh, Kiyonobu; Koga, Takamasa; Matsuzaki, Akio; Kido, Masaki; Satoh, Tetsunori

    1995-01-01

    We monitored the amount of radiation received by surgeons and assistants during surgery carried out with fluoroscopic assistance. The radiation was monitored with the use of MYDOSE MINIX PDM107 made by Aloka Co. Over a one year period from Aug 20, 1992 to Aug 19, 1993, a study was undertaken to evaluate exposure of the groin level to radiation with or without use of the lead apron during 106 operation (Group-1). In another group, radiation was monitored at the breast and groin level outside of the lead apron during 39 operations (Group-2). In Group-1, the average exposure per person during one year was 46.0 μSV and the average exposure for each procedure was 1.68 μSV. The use of the lead apron affirmed its protective value; the average radiation dose at the groin level out-side of the apron was 9.11 μSV, the measured dose beneath the apron 0.61 μSV. The average dose of exposure to the head, breast at groin level outside of the lead apron, were 7.68 μSV, 16.24 μSV, 32.04 μSV respectively. This study and review of the literature indicate that the total amount of radiation exposure during surgery done with fluoroscopic control remains well within maximum exposure limits. (author)

  17. Early reionization by decaying particles and cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Kasuya, S.; Kawasaki, M.

    2004-01-01

    We study the reionization scenario in which ionizing UV photons emitted from decaying particle, in addition to usual contributions from stars and quasars, ionize the universe. It is found that the scenario is consistent with both the first year data of the Wilkinson Microwave Anisotropy Probe and the fact that the universe is not fully ionized until z∼6 as observed by Sloan Digital Sky Survey. Likelihood analysis revealed that rather broad parameter space can be chosen. This scenario will be discriminated by future observations, especially by the EE polarization power spectrum of cosmic microwave background radiation

  18. Gravitational Collapse of Radiating Dyon Solution and Cosmic Censorship Hypothesis

    International Nuclear Information System (INIS)

    Patil, K. D.; Zade, S. S.; Mohod, A. N.

    2008-01-01

    We investigate the possibility of cosmic censorship violation in the gravitational collapse of radiating dyon solution. It is shown that the final outcome of the collapse depends sensitively on the electric and magnetic charge parameters. The graphs of the outer apparent horizon, inner Cauchy horizon for different values of parameters are drawn. It is found that the electric and magnetic components push the apparent horizon towards the retarded time-coordinate axis, which in turn reduces the radius of the apparent horizon in Vaidya spacetime. Also, we extend the earlier work of Chamorro and Virbhadra [Pramana, J. Phys. 45 (1995) 181

  19. The report of medical exposures in diagnostic radiology. Pt. 1. The questionnaire of medical exposure and standard radiation exposure

    International Nuclear Information System (INIS)

    Sasakawa, Yasuhiro; Matsumura, Yoshitaka; Iwasaki, Takanobu; Segawa, Hiroo; Yasuda, Sadatoshi; Kusuhara, Toshiaki

    1997-01-01

    We had made reports of patient radiation exposure for doctors to judge adaptation of medical radiation rightly. By these reports the doctors can be offered data of exposure dose and somatic effect. First, we sent out questionnaires so that we grasped the doctor's understanding about radiation exposure. Consequently we understood that the doctors had demanded data of exposure dose and somatic effect. Secondly, by the result of questionnaires we made the tables of exposure dose about radiological examination. As a result we have be able to presume exposure dose about high radiation sensitive organization as concrete figures. (author)

  20. Doses from radiation exposure

    International Nuclear Information System (INIS)

    Menzel, H-G.; Harrison, J.D.

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection’s (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP’s 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effective dose. In preparation for the calculation of new dose coefficients, Committee 2 and its task groups have provided updated nuclear decay data (ICRP Publication 107) and adult reference computational phantoms (ICRP Publication 110). New dose coefficients for external exposures of workers are complete (ICRP Publication 116), and work is in progress on a series of reports on internal dose coefficients to workers from inhaled and ingested radionuclides. Reference phantoms for children will also be provided and used in the calculation of dose coefficients for public exposures. Committee 2 also has task groups on exposures to radiation in space and on the use of effective dose.

  1. Production of positron annihilation radiation by cosmic-rays near sea level

    CERN Document Server

    Puzovic, J M

    2002-01-01

    Production of positron annihilation radiation by cosmic-rays in Al, Fe, Sn and Pb is measured by means of a triggered HPGe detector. The equipment is located in Belgrade, at an absolute height of 125 m a.s.l. The production rate per unit mass is found to be proportional to the square of the atomic number of the material divided by its mass number, with the proportionality constant equal to 8.1(3)x10 sup - sup 6 s sup - sup 1 g sup - sup 1.

  2. Simulation of cosmic ray interaction at Saturne

    International Nuclear Information System (INIS)

    Michel, R.

    1996-01-01

    Accelerator experiments provide the basis for the development of physical models describing the production of cosmogenic nuclides by cosmic ray particles. Here, experiments are presented by which the irradiation of stony and iron meteoroids in space by galactic cosmic ray protons was successfully simulated; two thick spherical targets made of gabbro and of steel with radii of 25 and 10 cm, respectively, were isotropically irradiated with 1.6 GeV protons at LNS. The artificial meteoroids contained large numbers of individual small targets of up to 27 elements in which the depth-dependent production of radioactive and stable nuclides was analyzed by model calculations based on depth-dependent spectra of primary and secondary particles calculated by the HERMES code system and on experimental and theoretical thin-target cross sections. Due to the results of the two simulation experiments at LNS a consistent modelling of cosmogenic nuclide production rates in stony and iron meteorites was achieved for the first time which allows to interpret the observed abundances of cosmogenic nuclides in stony and iron meteorites with respect to their exposure histories and to describe the history of the cosmic radiation itself. (author)

  3. Occupational radiation exposure in the GDR in 1977

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1980-01-01

    In 1977, radiation workers were monitored for external and internal radiation exposure on the basis of film badges (37,348 persons), measurements with a whole-body counter (198 persons) and analyses of biosamples (174 persons). According to the film badge data, the monthly over-exposures (more than 4 mGy) totalled 253. In 6 cases the monthly exposure exceeded 30 mGy and the 9 highest annual exposure values were in the range of 50 to 120 mGy. Also, annual collective and annual per caput doses have been given for the exposed population as a whole and some subgroups. Based on model considerations, the internal radiation exposure situation resulting from unintentional intakes of radionuclides has been assessed in terms of committed dose equivalents to members of two selected groups of radiation workers: (a) persons with more-than-average internal contamination levels; (b) persons subjected to frequent individual monitoring. Except for some organ doses, the individual radiation exposure was below one-tenth the maximum permissible dose. (author)

  4. Biological effects and hazards of radiation exposure

    International Nuclear Information System (INIS)

    Boas, J.F.; Solomon, S.B.

    1990-01-01

    Radiation induced carcinogenesis and mutagenesis form the main risk to health from exposure to low levels of radiation. This risk effects can be at least qualitatively understood by considering the effects of radiation on cell DNA. Whilst exposure to high levels of radiation results in a number of identifiable effects, exposure to low levels of radiation may result in effects which only manifest themselves after many years. Risk estimates for low levels of radiation have been derived on the basis of a number of assumptions. In the case of uranium mine workers a major hazard arises from the inhalation of radon daughters. Whilst the correlation between radon daughter exposure and lung cancer incidence is well established, the numerical value of the risk factor is the subject of controversy. ICRP 50 gives a value of 10 cases per 10 6 person-years at risk per WLM (range 5-15 x 10 -6 PYR -1 WLM -1 ). The effect of smoking on lung cancer incidence rates amongst miners is also controversial. Nevertheless, smoking by miners should be discouraged

  5. Integrated occupational radiation exposure information system

    International Nuclear Information System (INIS)

    Hunt, H.W.

    1983-06-01

    The integrated (Occupational Radiation Exposure) data base information system has many advantages. Radiation exposure information is available to operating management in a more timely manner and in a more flexible mode. The ORE system has permitted the integration of scattered files and data to be stored in a more cost-effective method that permits easy and simultaneous access by a variety of users with different data needs. The external storage needs of the radiation exposure source documents are several orders of magnitude less through the use of the computer assisted retrieval techniques employed in the ORE system. Groundwork is being layed to automate the historical files, which are maintained to help describe the radiation protection programs and policies at any one point in time. The file unit will be microfilmed for topical indexing on the ORE data base

  6. Perception of radiation hazards

    International Nuclear Information System (INIS)

    Sorenson, J.A.

    1986-01-01

    The health risks of radiation have been carefully studied and are relatively well understood in comparison with other risks to the human environment. Public perception of these risks often is distorted, due in part to lack of familiarity with the actual risk levels involved. There is a need for dissemination to the public of accurate information on radiation risks as well as to patients and volunteer subjects for studies involving radiation exposures. Often such information can be presented meaningfully by comparing the risks of radiation exposure with other, more familiar risks. Natural background radiation is a universally present and generally accepted source of risk, and thus serves as one reference against which to compare the risks of other radiation exposures. Natural background radiation averages about 100 mrem/yr, but much higher levels are encountered in some parts of the US (400 mrem/yr) and worldwide (2000 mrem/yr). These variations are due primarily to differences in cosmic ray intensity with altitude and in terrestrial radiation originating from soil and rocks. Radiation risks also may be compared with the risks of other human activities, both voluntary and involuntary. The former are useful for comparisons with the risks of voluntary radiation exposures such as occupational exposure and participation in medical or research procedures involving radiation. Involuntary radiation exposure, such as might result from the transportation and disposal of radioactive waste, poses a more complicated issue. Comparisons of such exposures to natural background radiation levels and their variations are helpful. Two other concepts that have been proposed for assessing the relative risk of low-level radiation exposure are de minimus risk and probability of causation. 28 references

  7. Measurement of cosmic-ray muons with the Distributed Electronic Cosmic-ray Observatory, a network of smartphones

    International Nuclear Information System (INIS)

    Vandenbroucke, J.; Bravo, S.; Karn, P.; Meehan, M.; Plewa, M.; Schultz, D.; Tosi, D.; BenZvi, S.; Jensen, K.; Peacock, J.; Ruggles, T.; Santander, M.; Simons, A.L.

    2016-01-01

    Solid-state camera image sensors can be used to detect ionizing radiation in addition to optical photons. We describe the Distributed Electronic Cosmic-ray Observatory (DECO), an app and associated public database that enables a network of consumer devices to detect cosmic rays and other ionizing radiation. In addition to terrestrial background radiation, cosmic-ray muon candidate events are detected as long, straight tracks passing through multiple pixels. The distribution of track lengths can be related to the thickness of the active (depleted) region of the camera image sensor through the known angular distribution of muons at sea level. We use a sample of candidate muon events detected by DECO to measure the thickness of the depletion region of the camera image sensor in a particular consumer smartphone model, the HTC Wildfire S. The track length distribution is fit better by a cosmic-ray muon angular distribution than an isotropic distribution, demonstrating that DECO can detect and identify cosmic-ray muons despite a background of other particle detections. Using the cosmic-ray distribution, we measure the depletion thickness to be 26.3 ± 1.4 μm. With additional data, the same method can be applied to additional models of image sensor. Once measured, the thickness can be used to convert track length to incident polar angle on a per-event basis. Combined with a determination of the incident azimuthal angle directly from the track orientation in the sensor plane, this enables direction reconstruction of individual cosmic-ray events using a single consumer device. The results simultaneously validate the use of cell phone camera image sensors as cosmic-ray muon detectors and provide a measurement of a parameter of camera image sensor performance which is not otherwise publicly available

  8. Assessing public exposure in commercial flights in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vanusa A.; Rochedo, Elaine R.R.; Prado, Nadya M.P.D. [Instituto Militar de Engenharia, Pc. Gen. Tiburcio, 80, Praia Vermelha, Rio de Janeiro, 22290-270 RJ (Brazil); Wasserman, Maria Angelica V. [Instituto de Engenharia Nuclear, Cidade Universitaria, Ilha do Fundao, 21941-906, Rio de Janeiro RJ (Brazil)

    2014-07-01

    The exposure to cosmic radiation in aircraft travel is higher than at ground level and varies with the year, the latitude, the altitude of flight and the flight time. The aim of this work was to estimate the contribution of cosmic radiation exposure on commercial flights to the Brazilian population. A database, including about 4000 domestic flights was implemented in Excel spreadsheet. The computer program CARI-6, developed by the U.S. Federal Aviation Administration, was used to calculate doses received in each route. Individual effective doses for commercial flights within Brazil ranged from 0.3 to 8.8 μSv, with a total collective annual dose of 312 man Sv. This value is low, about 5 % of the collective dose estimated for domestic flights in US and about 20 % of the collective doses from all flights in UK. This work shall serve as a baseline for future comparisons of exposures due to the growth of civil aviation in the country and open discussions on the concept of risk and its public acceptance, which are relevant aspects for defining radiological protection guidelines. (authors)

  9. Dosimetric significance of cosmic radiation in the altitude of SST and in free space

    Energy Technology Data Exchange (ETDEWEB)

    Allkofer, O C [Kiel Univ. (Germany, F.R.). Inst. fuer Reine und Angewandte Kernphysik

    1977-01-01

    The integral cosmic-ray flux, and hence the dose rate, increases with altitude. At the cruising altitude of the subsonic jets, about 10 km, the dose rate is already about a factor 70 higher than at sea level. At the higher altitudes of SST the situation is different because the composition of the galactic component differs from that at the subsonic level, the solar flares are more efficient, and a small number of heavy nuclei are still present. In free space an additional radiation hazard appears when the radiation belts have to be crossed.

  10. Radiation exposure reduction in APR1400

    International Nuclear Information System (INIS)

    Bae, C. J.; Hwang, H. R.; Matteson, D. M.

    2002-01-01

    The primary contributors to the total occupational radiation exposure in operating nuclear power plants are operation and maintenance activities during refueling outages. The Advanced Power Reactor 1400 (APR1400) includes a number of design improvements and plans to utilize advanced maintenance methods and robotics to minimize the annual collective dose. The major radiation exposure reduction features implemented in APR1400 are a permanent refueling pool seal, quick opening transfer tube blind flange, improved hydrogen peroxide injection at shutdown, improved permanent steam generator work platforms, and more effective temporary shielding. The estimated average annual occupational radiation exposure for APR1400 based on the reference plant experience and an engineering judgment is determined to be in the order of 0.4 man-Sv, which is well within the design goal of 1 man-Sv. The basis of this average annual occupational radiation exposure estimation is an eighteen (18) month fuel cycle with maintenance performed to steam generators and reactor coolant pumps during refueling outage. The outage duration is assumed to be 28 days. The outage work is to be performed on a 24 hour per day basis, seven (7) days a week with overlapping twelve (12) hour work shifts. The occupational radiation exposure for APR1400 is also determined by an alternate method which consists of estimating radiation exposures expected for the major activities during the refueling outage. The major outage activities that cause the majority of the total radiation exposure during refueling outage such as fuel handling, reactor coolant pump maintenance, steam generator inspection and maintenance, reactor vessel head area maintenance, decontamination, and ICI and instrumentation maintenance activities are evaluated at a task level. The calculated value using this method is in close agreement with the value of 0.4 man-Sv, that has been determined based on the experience and engineering judgement

  11. Worldwide exposures to ionizing radiation

    International Nuclear Information System (INIS)

    Bennett, B.G.

    1993-01-01

    All of mankind is exposed to ionizing radiation from natural sources, from human practices that release natural and artificial radionuclides to the environment, and from medical radiation procedures. This paper reviews the assessment in the UNSCEAR 1993 Report of the exposures of human populations worldwide to the various sources of ionizing radiation

  12. External radiation exposure after deposition of man-made radionuclides

    International Nuclear Information System (INIS)

    Jacob, P.

    1991-01-01

    The first step in assessing the external radiation exposure of the population is the determination of the gamma dose rate over meadows, which are used as reference points for various reasons. The second step is the description of external radiation exposures in urban and rural environments. The relation to the radiation exposure in a meadow is a function of the radionuclide distribution, i.e. the type of deposition. Finally, a simple method of calculating external radiation exposure is developed on the basis of recent findings. The method is compared with the method used in the UNSCEAR report for calculating radiation exposures after Chernobyl and with the method described in the AVV (General Administrative Regulation) of the Radiation Protection Ordinance. (orig./HP) [de

  13. Distribution of Radiation Exposure from Natural Radiation in Big Cities

    International Nuclear Information System (INIS)

    Udiyani, P.M.; Ahmad, Yus R.

    2000-01-01

    The measurement of radiation exposure from the natural radiation in the big city in Java such as Jakarta, Bandung, Semarang, Yogyakarta, and Surabaya have be done. Based on radiation dose and population at the sample location, the dose collective and risk probability will be know. The maximal exposure at Yogyakarta is 0.291 mSv/year and the minimal exposure at Surabaya is 0.216 mSv/year. Collective dose at Jakarta is 1.649.526 men mSv/year; Bandung 124.844 men mSv/year; Semarang : 64.558 men mSv/year; Yogyakarta 136.188 men mSv/year; and Surabaya 145.152 men mSv/year. The person probability of radiation disease at jakarta is 16.49 person/year, Bandung is 1.24 person/year, Semarang 1.64 person/year, Yogyakarta is 1.36 person/year, and Surabaya is 1.45 person/year

  14. Health risk assessment of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Ogata, Hiromitsu

    2011-01-01

    Risk assessment is an essential process for evaluating the human health effects of exposure to ionizing radiation and for determining acceptable levels of exposure. There are two major components of radiation risk assessment: a measure of exposure level and a measure of disease occurrence. For quantitative estimation of health risks, it is important to evaluate the association between exposure and disease occurrence using epidemiological or experimental data. In these approaches, statistical risk models are used particularly for estimating cancer risks related to exposure to low levels of radiation. This paper presents a summary of basic models and methods of risk assessment for studying exposure-risk relationships. Moreover, quantitative risk estimates are subject to several sources of uncertainty due to inherent limitations in risk assessment studies. This paper also discusses the limitations of radiation risk assessment. (author)

  15. Distortions in the cosmic background radiation and big-bang 4He nucleosynthesis

    International Nuclear Information System (INIS)

    Mathews, G.J.; Alhassid, Y.; Fuller, G.M.

    1981-01-01

    The observed distortion of the cosmic background radiation is analyzed in the framework of information theory to derive a simple form of the photon occupation probability. Taking this distribution function as indicative of the Lagrange parameters which might characterize the era of nucleosynthesis during the big bang, and assuming equilibrium among the constituents present, we find that the primordial 4 He abundance may be reduced by as much as 15% from the standard big-bang prediction

  16. Radiation hormesis: an outcome of exposure to low level ionizing radiation

    International Nuclear Information System (INIS)

    Kant, Krishan

    2012-01-01

    Ionizing radiation is a benign environmental agent at background levels. Human population is always exposed to ionizing radiation from natural sources. Important sources are cosmic rays which come from outer space and from the surface of the sun, terrestrial radionuclides which occur in the earths crust in various geological formations in soils, rocks, building materials, plants, water, food, air and in the human body itself. With the increasing use of radiation in health facilities, scientific research, industry and agriculture, the study of impact of low-level ionizing radiation on environment and possible health effects on future generations has been a cause of concern in recent years. As regards the effects, it is established fact that high doses of ionizing radiation are harmful to health, there exists, however, a substantial controversy regarding the effects of low doses of ionizing radiation (LLIR). In the present paper, brief review of the available literature, data and reports on stimulation by low-dose irradiation and recent data supporting radiation hormesis. A linear quadratic model has been given illustrating the validity of radiation hormesis, besides the comparison of the dose rates arising from natural and manmade sources to the Indian population. This overview summarizes various reports

  17. Safety of natural radiation exposure. A meta-analysis of epidemiological studies on natural radiation

    International Nuclear Information System (INIS)

    Osaki, S.

    2000-01-01

    People have been exposed every time and everywhere to natural radiation and ''intuitively'' know the safety of this radiation exposure. On the other hand the theory of no threshold value on radiological carcinogenesis is known widely, and many people feel danger with even a smallest dose of radiation exposure. The safety of natural radiation exposure can be used for the risk communication with the public. For this communication, the safety of natural radiation exposure should be proved ''scientifically''. Safety is often discussed scientifically as the risks of the mortality from many practices, and the absolute risks of safe practices on the public are 1E-5 to 1E-6. The risks based on the difference of natural radiation exposure on carcinogenesis have been analyzed by epidemiological studies. Much of the epidemiological studies have been focused on the relationship between radiation doses and cancer mortalities, and their results have been described as relative risks or correlation factors. In respect to the safety, however, absolute risks are necessary for the discussion. Cancer mortalities depend not only on radiation exposure, but also on ethnic groups, sexes, ages, social classes, foods, smoking, environmental chemicals, medical radiation, etc. In order to control these confounding factors, the data are collected from restricted groups or/and localities, but any these ecological studies can not perfectly compensate the confounding factors. So positive or negative values of relative risks or the meaningful correlation factors can not be confirmed that their values are derived originally from the difference of their exposure doses. The absolute risks on these epidemiological studies are also affected by many factors containing radiation exposure. The absolute risk or the upper value of the confidence limit obtained from the epidemiological study which is well regulated confounding factors is possible to be a maximum risk on the difference of the exposure doses

  18. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  19. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, J. W.; Goldhagen, P.; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2004-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes especially along the coastal plain and interior low lands and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.

  20. Occupational radiation exposures in Canada - 1982

    International Nuclear Information System (INIS)

    Fujimoto, K.R.; Wilson, J.A.; Ashmore, J.P.; Grogan, D.

    1983-12-01

    This report is the fifth in a series of annual reports in Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which contains dose records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included, and individual cases are briefly summarized where the maximum permissible dose is exceeded

  1. Fluctuations in the cosmic microwave background

    International Nuclear Information System (INIS)

    Banday, A.J.; Wolfendale, A.W.

    1990-01-01

    In view of the importance to contemporary cosmology, and to our understanding of the Universe, of the precise nature of the Cosmic Microwave Background (CMB) spectrum, we consider the effects on this spectrum of contamination by other radiation fields of both galactic and extragalactic origin. Particular attention is given to the significance of measurements of the fluctuations in the 'background' radiation detected at 10.46 GHz and we conclude that these fluctuations are of the same magnitude as those expected from galactic cosmic-ray effects. A more detailed study of the cosmic-ray induced fluctuations and measurements at higher frequencies will be needed before genuine CMB fluctuations can be claimed. (author)

  2. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  3. Cosmic antimatter

    International Nuclear Information System (INIS)

    Tarle, G.; Swordy, S.

    1998-01-01

    In 1928 Paul Dirac forecasted the existence of antimatter and 4 years later Carl Anderson detected the first antiparticle: the positron in a cloud chamber while studying cosmic radiation. Antiprotons were more difficult to find but in 1955 physicists from Lawrence Berkeley Laboratory got some in a particle accelerator. In 1995 a team from the CERN synthesized atoms of anti-hydrogen by binding positrons to antiprotons in a particle accelerator. Astrophysicists have built more and more complex detectors to study cosmic rays. The detector HEAT (high energy antimatter telescope) has been designed to study positrons above the atmosphere. This detector has been launched for the first time in 1994 and has measured cosmic radiation for 32 hours at an altitude of 37000 meters. The results were challenging: whereas the number of low energy positrons detected agrees with the theory, the number of high energy positrons is too important. It suggests the existence of unknown sources of positrons somewhere in the universe. The massive particles that interact weakly (WIMP) could be such sources. This article draws the history of the quest for antimatter and its implications in cosmology, the detector HEAT is described. (A.C.)

  4. Maintenance hemodialysis patients have high cumulative radiation exposure.

    LENUS (Irish Health Repository)

    Kinsella, Sinead M

    2010-10-01

    Hemodialysis is associated with an increased risk of neoplasms which may result, at least in part, from exposure to ionizing radiation associated with frequent radiographic procedures. In order to estimate the average radiation exposure of those on hemodialysis, we conducted a retrospective study of 100 patients in a university-based dialysis unit followed for a median of 3.4 years. The number and type of radiological procedures were obtained from a central radiology database, and the cumulative effective radiation dose was calculated using standardized, procedure-specific radiation levels. The median annual radiation dose was 6.9 millisieverts (mSv) per patient-year. However, 14 patients had an annual cumulative effective radiation dose over 20 mSv, the upper averaged annual limit for occupational exposure. The median total cumulative effective radiation dose per patient over the study period was 21.7 mSv, in which 13 patients had a total cumulative effective radiation dose over 75 mSv, a value reported to be associated with a 7% increased risk of cancer-related mortality. Two-thirds of the total cumulative effective radiation dose was due to CT scanning. The average radiation exposure was significantly associated with the cause of end-stage renal disease, history of ischemic heart disease, transplant waitlist status, number of in-patient hospital days over follow-up, and death during the study period. These results highlight the substantial exposure to ionizing radiation in hemodialysis patients.

  5. 14. European cosmic ray symposium. Symposium program and abstracts

    International Nuclear Information System (INIS)

    1994-08-01

    The abstracts of the 14. European Cosmic Ray Symposium are presented. The papers cover a large variety of topics in cosmic ray physics, both from the theoretical and the experimental point of view. Sun physics, and the effects on the inner heliosphere, the composition, and the properties of the primary and secondary cosmic radiation, galactic acceleration and the results of accelerator physics relevant to cosmic radiation physics, and the description and the results of large detector systems are presented. 63 items are indexed for INIS database. (K.A.)

  6. Energy and flux measurements of ultra-high energy cosmic rays observed during the first ANITA flight

    Energy Technology Data Exchange (ETDEWEB)

    Schoorlemmer, H.; Belov, K.; Romero-Wolf, A.; García-Fernández, D.; Bugaev, V.; Wissel, S. A.; Allison, P.; Alvarez-Muñiz, J.; Barwick, S. W.; Beatty, J. J.; Besson, D. Z.; Binns, W. R.; Carvalho Jr., W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dowkontt, P. F.; DuVernois, M. A.; Field, R. C.; Goldstein, D.; Gorham, P. W.; Hast, C.; Huege, T.; Heber, C. L.; Hoover, S.; Israel, M. H.; Javaid, A.; Kowalski, J.; Lam, J.; Learned, J. G.; Link, J. T.; Lusczek, E.; Matsuno, S.; Mercurio, B. C.; Miki, C.; Miočinović, P.; Mulrey, K.; Nam, J.; Naudet, C. J.; Ng, J.; Nichol, R. J.; Palladino, K.; Rauch, B. F.; Roberts, J.; Reil, K.; Rotter, B.; Rosen, M.; Ruckman, L.; Saltzberg, D.; Seckel, D.; Urdaneta, D.; Varner, G. S.; Vieregg, A. G.; Walz, D.; Wu, F.; Zas, E.

    2016-04-01

    The first flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment recorded 16 radio signals that were emitted by cosmic-ray induced air showers. The dominant contribution to the radiation comes from the deflection of positrons and electrons in the geomagnetic field, which is beamed in the direction of motion of the air shower. For 14 of these events, this radiation is reflected from the ice and subsequently detected by the ANITA experiment at a flight altitude of ~36 km. In this paper, we estimate the energy of the 14 individual events and find that the mean energy of the cosmic-ray sample is 2.9 × 1018 eV, which is significantly lower than the previous estimate. By simulating the ANITA flight, we calculate its exposure for ultra-high energy cosmic rays. We estimate for the first time the cosmic-ray flux derived only from radio observations and find agreement with measurements performed at other observatories. In addition, we find that the ANITA data set is consistent with Monte Carlo simulations for the total number of observed events and with the properties of those events.

  7. Constraining the cosmic radiation density due to lepton number

    International Nuclear Information System (INIS)

    Mangano, Gianpiero; Miele, Gennaro; Pastor, Sergio; Pisanti, Ofelia; Sarikas, Srdjan

    2013-01-01

    The cosmic energy density in the form of radiation before and during Big Bang Nucleosynthesis is typically parameterized in terms of the effective number of neutrinos N eff , and it is a key parameters in cosmological models slightly more general than the successful minimal ΛCDM scenario. This quantity, in case of no extra degrees of freedom, depends upon the chemical potential and the temperature characterizing the three active neutrino distributions, as well as by their possible non-thermal features. We summarize here the results of a recent analysis to determine the BBN bound on N eff from primordial neutrino–antineutrino asymmetries, with a careful treatment of the dynamics of neutrino oscillations, and considering quite a wide range for the total lepton number in the neutrino sector, η ν =η ν e +η ν μ +η ν τ and the initial electron neutrino asymmetry η ν e in . Comparing these results with the forthcoming measurement of N eff by the Planck satellite will give insight on the nature of the radiation content of the universe

  8. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS.

    Directory of Open Access Journals (Sweden)

    Tatsuhiko Sato

    Full Text Available By extending our previously established model, here we present a new model called "PHITS-based Analytical Radiation Model in the Atmosphere (PARMA version 3.0," which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni, muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth's atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS simulation performed by Particle and Heavy Ion Transport code System (PHITS. The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS. Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research.

  9. COMPARISON OF COSMIC-RAY ENVIRONMENTS ON EARTH, MOON, MARS AND IN SPACECARFT USING PHITS.

    Science.gov (United States)

    Sato, Tatsuhiko; Nagamatsu, Aiko; Ueno, Haruka; Kataoka, Ryuho; Miyake, Shoko; Takeda, Kazuo; Niita, Koji

    2017-09-29

    Estimation of cosmic-ray doses is of great importance not only in aircrew and astronaut dosimetry but also in evaluation of background radiation exposure to public. We therefore calculated the cosmic-ray doses on Earth, Moon and Mars as well as inside spacecraft, using Particle and Heavy Ion Transport code System PHITS. The same cosmic-ray models and dose conversion coefficients were employed in the calculation to properly compare between the simulation results for different environments. It is quantitatively confirmed that the thickness of physical shielding including the atmosphere and soil of the planets is the most important parameter to determine the cosmic-ray doses and their dominant contributors. The comparison also suggests that higher solar activity significantly reduces the astronaut doses particularly for the interplanetary missions. The information obtained from this study is useful in the designs of the future space missions as well as accelerator-based experiments dedicated to cosmic-ray research. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors.

    Science.gov (United States)

    Frasch, Gerhard; Kammerer, Lothar; Karofsky, Ralf; Schlosser, Andrea; Stegemann, Ralf

    2014-12-01

    The exposure of German aircraft crews to cosmic radiation varies both with solar activity and operational factors of airline business. Data come from the German central dose registry and cover monthly exposures of up to 37,000 German aircraft crewmembers that were under official monitoring. During the years 2004 to 2009 of solar cycle 23 (i.e., in the decreasing phase of solar activity), the annual doses of German aircraft crews increased by an average of 20%. Decreasing solar activity allows more galactic radiation to reach the atmosphere, increasing high-altitude doses. The rise results mainly from the less effective protection from the solar wind but also from airline business factors. Both cockpit and cabin personnel differ in age-dependent professional and social status. This status determines substantially the annual effective dose: younger cabin personnel and the elder pilots generally receive higher annual doses than their counterparts. They also receive larger increases in their annual dose when the solar activity decreases. The doses under this combined influence of solar activity and airline business factors result in a maximum of exposure for German aircrews for this solar cycle. With the increasing solar activity of the current solar cycle 24, the doses are expected to decrease again.

  11. Evaluation of environmental radiation exposure

    International Nuclear Information System (INIS)

    Imai, Kazuhiko

    1974-01-01

    The environmental radiation exposure due to radioactive rare gases is most important both at the time of reactor accidents and also in the long-term normal operation of reactor plants. The exposure dose is usually calculated by means of computers. The procedure of the calculation on environmental exposure dose is divided in several consecutive steps. The calculational formulae frequently used and those proposed recently are given with the explanation on released radionuclides, release to the atmosphere, concentration in the atmosphere, β-ray exposure, γ-ray exposure, and calculation of long-term exposure dose. (Mori, K.)

  12. Cosmic rays on earth

    International Nuclear Information System (INIS)

    Allkofer, O.C.; Grieder, P.K.F.

    1984-01-01

    A data collection is presented that covers cosmic rays on earth. Included are all relevant data on flux and intensity measurements, energy spectra, and related data of all primary and secondary components of the cosmic radiation at all levels in the atmosphere, at sea level and underground. In those cases where no useful experimental data have been available, theoretical predictions were substituted. (GSCH)

  13. Robustness of cosmic neutrino background detection in the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Audren, Benjamin [Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Bellini, Emilio; Cuesta, Antonio J.; Verde, Licia [Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Gontcho, Satya Gontcho A; Pérez-Ràfols, Ignasi [Dept. d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E08028 Barcelona (Spain); Lesgourgues, Julien [CERN, Theory Division, CH-1211 Geneva 23 (Switzerland); Niro, Viviana [Departamento de Física Teórica, Universidad Autónoma de Madrid and Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Pellejero-Ibanez, Marcos; Tramonte, Denis [Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, E-38200, La Laguna, Tenerife (Spain); Poulin, Vivian [LAPTh, Université de Savoie, CNRS, B.P.110, Annecy-le-Vieux F-74941 (France); Tram, Thomas, E-mail: emilio.bellini@icc.ub.edu [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom)

    2015-03-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effective parameters do not vary significantly when considering an arbitrary value of the particle mass, or extended cosmological models with a free effective neutrino number, dynamical dark energy or a running of the primordial spectrum tilt. We conclude that it is possible to make a robust statement about the detection of the cosmic neutrino background by CMB experiments.

  14. Constraints on cosmic strings due to black holes formed from collapsed cosmic string loops

    International Nuclear Information System (INIS)

    Caldwell, R.R.; Gates, E.

    1993-05-01

    The cosmological features of primordial black holes formed from collapsed cosmic string loops are studied. Observational restrictions on a population of primordial black holes are used to restrict f, the fraction of cosmic string loops which collapse to form black holes, and μ, the cosmic string mass-per-unit-length. Using a realistic model of cosmic strings, we find the strongest restriction on the parameters f and μ is due to the energy density in 100MeV photons radiated by the black holes. We also find that inert black hole remnants cannot serve as the dark matter. If earlier, crude estimates of f are reliable, our results severely restrict μ, and therefore limit the viability of the cosmic string large-scale structure scenario

  15. Exposures to natural radiation sources. Annex B

    International Nuclear Information System (INIS)

    1982-01-01

    The assessment of the radiation doses from natural sources in humans is presented. Both external sources of extraterrestrial origin (cosmic rays) and of terrestrial origin, and internal sources, comprising the naturally-occurring radionuclides which are taken into the human body, are discussed. This Annex is to a large extent a summary of Annex B of the 1977 report of the Committee. The doses due to the radon isotopes and to their short-lived decay products are briefly reviewed.

  16. 47 CFR 1.1310 - Radiofrequency radiation exposure limits.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Radiofrequency radiation exposure limits. 1... Procedures Implementing the National Environmental Policy Act of 1969 § 1.1310 Radiofrequency radiation... exposure to radiofrequency (RF) radiation as specified in § 1.1307(b), except in the case of portable...

  17. In vitro and in vivo assessment of direct effects of simulated solar and galactic cosmic radiation on human hematopoietic stem/progenitor cells.

    Science.gov (United States)

    Rodman, C; Almeida-Porada, G; George, S K; Moon, J; Soker, S; Pardee, T; Beaty, M; Guida, P; Sajuthi, S P; Langefeld, C D; Walker, S J; Wilson, P F; Porada, C D

    2017-06-01

    Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation, and likely one or more solar particle events (SPEs). Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions. We show that exposing human hematopoietic stem/progenitor cells (HSC) to extended mission-relevant doses of accelerated high-energy protons and iron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces in vitro colony formation; (3) markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, of what appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone. Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.

  18. Technologically modified exposures to natural radiation. Annex C

    International Nuclear Information System (INIS)

    1982-01-01

    This Annex deals with some examples of technologically modified exposures to natural radiation. Radiation exposures due to coal-fired power plants, geothermal energy production, exploitation of phosphate rock, aircraft travel, and consumer products are discussed. The present state of knowledge does not allow an accurate estimate of the collective effective dose equivalent from technologically modified exposures to natural radiation to be made. This annex has an extensive bibliography with at least 200 references.

  19. Applied physics of external radiation exposure dosimetry and radiation protection

    CERN Document Server

    Antoni, Rodolphe

    2017-01-01

    This book describes the interaction of living matter with photons, neutrons, charged particles, electrons and ions. The authors are specialists in the field of radiation protection. The book synthesizes many years of experiments with external radiation exposure in the fields of dosimetry and radiation shielding in medical, industrial and research fields. It presents the basic physical concepts including dosimetry and offers a number of tools to be used by students, engineers and technicians to assess the radiological risk and the means to avoid them by calculating the appropriate shields. The theory of radiation interaction in matter is presented together with empirical formulas and abacus. Numerous numerical applications are treated to illustrate the different topics. The state of the art in radiation protection and dosimetry is presented in detail, especially in the field of simulation codes for external exposure to radiation, medical projects and advanced research. Moreover, important data spread in differ...

  20. Radiation doses - maps and magnitudes

    International Nuclear Information System (INIS)

    1989-01-01

    A NRPB leaflet in the 'At-a-Glance' Series presents information on the numerous sources and magnitude of exposure of man to radiation. These include the medical use of radiation, radioactive discharges to the environment, cosmic rays, gamma rays from the ground and buildings, radon gas and food and drink. A Pie chart represents the percentage contribution of each of those sources. Finally, the terms becquerel, microsievert and millisievert are explained. (U.K.)

  1. Radiation exposure during equine radiography

    International Nuclear Information System (INIS)

    Ackerman, N.; Spencer, C.P.; Hager, D.A.; Poulos, P.W. Jr.

    1988-01-01

    All personnel present in the X-ray examination room during equine radiography were monitored using low energy direct reading ionization chambers (pockets dosimeters) worn outside the lead apron at neck level. The individuals' task and dosimeter readings were recorded after each examination. Average doses ranged from 0 to 6 mrad per study. The greatest exposures were associated with radiography of the shoulder and averaged less than 4 mrad. The individual extending the horse's limb was at greatest risk although the individual holding the horse's halter and the one making the X-ray exposure received similar exposures. A survey of the overhead tube assembly used for some of the X-ray examinations also was performed. Meter readings obtained indicated an asymetric dose distribution around the tube assembly, with the highest dose occurring on the side to which the exposure cord was attached. Although the exposures observed were within acceptable limits for occupational workers, we have altered our protocol and no longer radiograph the equine shoulder unless the horse is anesthetized. Continued use of the pocket dosimeters and maintenance of a case record of radiation exposure appears to make the technologists more aware of radiation hazards

  2. Radiation exposure and management of medical employes

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, C [Nagoya Univ. (Japan)

    1981-11-01

    Medical employes handling medical radiation are increasing in recent years. In connection with the radiation exposure management, it was surveyed how much their cumulative exposure doses are and how many employes distribute in respective exposure levels. The medical employes surveyed are physicians, radiation technicians and nurses, working in the hospitals of educational institutions. The period of survey is every three years, from 1962 to 1977. For X-ray and ..gamma..-ray, respectively, the yearly cumulative exposure doses were measured by film badges, stepwise starting from below 500 mrem upward to over 5000 mrem; for the respective groups of employes, the percentage in each dose level was shown. The percentage in the level below 500 mrem was the largest in all groups, and in both X-ray and ..gamma..-ray, the percentages in higher levels decreased sharply to less than 7%. The exposure management has been improved in recent years.

  3. Radiation exposure in diagnostic medicine

    International Nuclear Information System (INIS)

    Haehnel, S.; Michalczak, H.; Reinoehl-Kompa, S.

    1995-01-01

    This volume includes the manuscripts of the papers read at the conference as well as a summary and assessment of its results. The scientific discussions were centred upon the following issues: - International surveys and comparisons of rdiation exposures in diagnostic radiology and nuclear medicine, frequency of the individual diagnostic procedures and age distribution of patients examined; - policies and regulations for the radiation protection of patients, charcteristic dosimetric values and practical usefulness of the effective dose concept during medical examinations; - assessments of the relative benefits and risks and measures to reduce the radiation exposure in the light of quality assurance aspects. The main objective of this conference not only was to evaluate the risks from diagnostic radiology and nuclear medicine but also to encourgage a critical analysis and adjustment of examination routines followed in everyday practice. Among the measures recommended were quality assurance, maintenace of international standards, development of guidelines, introduction of standard doses, improved training and professional education of personnel as well as surveys and analyses of certain examination procedures associated with substantial radiation exposure. (orig./MG) [de

  4. Gardening process of lunar surface layer inferred from the galactic cosmic-ray exposure ages of lunar samples

    International Nuclear Information System (INIS)

    Iriyama, Jun; Honda, Masatake.

    1979-01-01

    From the cosmic-ray exposure age data, (time scale 10 7 - 10 8 years), of the lunar surface materials, we discuss the gardening process of the lunar surface layer caused by the meteoroid impact cratering. At steady state, it is calculated that, in the region within 10 - 50 m of the surface, a mixing rate of 10 -4 to 10 -5 mm/yr is necessary to match the exposure ages. Observed exposure ages of the lunar samples could be explained by the gardening effect calculated using a crater formation rate which is slightly modified from the current crater population data. (author)

  5. Occupational radiation exposure in the GDR in 1978

    International Nuclear Information System (INIS)

    Poulheim, K.F.; Rothe, W.; Scheler, R.

    1980-01-01

    In 1978, radiation workers were monitored for external and internal radiation exposure on the basis of film badges (37,980 persons), measurements with a whole-body counter (186 persons) and analyses of biosamples (144 persons). According to the film badge data, the monthly over-exposures (more than 4 mGy) totalled 427. In 13 cases the monthly exposure exceeded 30 mGy, 8 persons received annual doses in the range of 50 to 120 mGy, and the highest annual dose was above 250 mGy. Also, annual collective and annual per caput doses have been given for the exposed population as a whole and some subgroups. Based on model considerations, the internal radiation exposure situation resulting from unintentional intakes of radionuclides has been assessed in terms of committed dose equivalents to members of two selected groups of radiation workers: (a) persons with more-than-average internal contamination levels; (b) persons subjected to frequent individual monitoring. Except for some organ doses, the individual internal radiation exposure was well below one-tenth the maximum permissible dose. (author)

  6. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    Science.gov (United States)

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  7. Understanding of radiation protection in medicine. Pt. 2. Occupational exposure and system of radiation protection

    International Nuclear Information System (INIS)

    Iida, Hiroji; Yamamoto, Tomoyuki; Shimada, Yasuhiro

    1997-01-01

    Using a questionnaire we investigated whether radiation protection is correctly understood by medical doctors (n=140) and nurses (n=496). Although medical exposure is usually understood by medical doctors and dentists, their knowledge was found to be insufficient. Sixty-eight percent of medical doctors and 50% of dentists did not know about the system of radiation protection. Dose monitoring was not correctly carried out by approximately 20% of medical staff members, and medical personnel generally complained of anxiety about occupational exposure rather than medical exposure. They did not receive sufficient education on radiation exposure and protection in school. In conclusion, the results of this questionnaire suggested that they do not have adequate knowledge about radiation exposure and protection. The lack of knowledge about protection results in anxiety about exposure. To protect oneself from occupational exposure, individual radiation doses must be monitored, and medical practice should be reconsidered based on the results of monitoring. To eliminate unnecessary medical and occupational exposure and to justify practices such as radiological examinations, radiation protection should be well understood and appropriately carried out by medical doctors and dentists. Therefore, the education of medical students on the subject of radiation protection is required as is postgraduate education for medical doctors, dentists and nurses. (author)

  8. Cosmic microwave background distortions at high frequencies

    International Nuclear Information System (INIS)

    Peter, W.; Peratt, A.L.

    1988-01-01

    The authors analyze the deviation of the cosmic background radiation spectrum from the 2.76+-0.02 0 Κ blackbody curve. If the cosmic background radiation is due to absorption and re-emission of synchrotron radiation from galactic-width current filaments, higher-order synchrotron modes are less thermalized than lower-order modes, causing a distortion of the blackbody curve at higher frequencies. New observations of the microwave background spectrum at short wavelengths should provide an indication of the number of synchrotron modes thermalized in this process. The deviation of the spectrum from that of a perfect blackbody can thus be correlated with astronomical observations such as filament temperatures and electron energies. The results are discussed and compared with the theoretical predictions of other models which assume the presence of intergalactic superconducting cosmic strings

  9. Radically Reducing Radiation Exposure during Routine Medical Imaging

    Science.gov (United States)

    Exposure to radiation from medical imaging in the United States has increased dramatically. NCI and several partner organizations sponsored a 2011 summit to promote efforts to reduce radiation exposure from medical imaging.

  10. Techniques for controlling radiation exposure

    International Nuclear Information System (INIS)

    Ocken, H.; Wood, C.J.

    1993-01-01

    The US nuclear power industry has been remarkably successful in reducing worker radiation exposure over the past 10 years. There has been more than a fourfold reduction in person-rem per MW-year of electric power generated: from 1.8 person-rems in 1980 to only 0.4 person-rems in 1991. Despite this substantial improvement, challenges for the industry remain. Individual exposure limits have been tightened in the 1990 Recommendations of the International Commission on Radiological Protection, ICRP Publication 60, and there will be more requirements for special maintenance work as plants age, suggesting that vigorous efforts will be required to meet the 1995 industry goals for unit median collective exposure. No one method will suffice, but implementing suitable combinations from this compendium will help utilities to achieve their exposure goals. Radiation reduction is generally cost-effective: Outages are shorter, staffing requirements are reduced, and work quality is improved. Despite up-front costs, the benefits over the following one to three years typically outweigh the expenses

  11. Occupational radiation exposure to low doses of ionizing radiation and female breast cancer

    International Nuclear Information System (INIS)

    Adelina, P.; Bliznakov, V.; Bairacova, A.

    2003-01-01

    The aim of this study is to examine the relationship between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed and registered breast cancer [probability of causation - PC] among Bulgarian women who have used different ionizing radiation sources during their working experience. The National Institute of Health (NIH) in US has developed a method for estimating the probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and cases of diagnosed cancer. We have used this method. A group of 27 women with diagnosed breast cancer has been studied. 11 of them are former workers in NPP - 'Kozloduy', and 16 are from other sites using different sources of ionizing radiation. Analysis was performed for 14 women, for whom full personal data were available. The individual radiation dose for each of them is below 1/10 of the annual dose limit, and the highest cumulative dose for a period of 14 years of occupational exposure is 50,21 mSv. The probability of causation (PC) values in all analyzed cases are below 1%, which confirms the extremely low probability of causation (PC) between past occupational radiation exposure to low doses of ionizing radiation and occurring cases of breast cancer. (orig.)

  12. Radiation Exposure from Medical Exams and Procedures

    Science.gov (United States)

    Fact Sheet Adopted: January 2010 Health Physics Society Specialists in Radiation Safety Radiation Exposure from Medical Exams and Procedures Ionizing radiation is used daily in hospitals and clinics ...

  13. A study of the terrestrial and cosmic gamma-rays in Jordan

    International Nuclear Information System (INIS)

    Mansi, M. A.

    1996-01-01

    Natural terrestrial gamma and cosmic radiations dose rates in Jordan were measured during a period of three years in thirty four stations distributed over all Jordanian territories using the thermoluminescence dosimeter(TLD) Coso 4 :Tm. The average absorbed dose rates in air from terrestrial gamma and cosmic radiations were found to vary from(57 ±3;9) n Gy/hr in Assafi to (350 ± 14; 42) n Gy/hr in Manjam Alhisa. The mean dose rate due to terrestrial gamma radiations was found to be equal to (55 ± 2; 13) nGy/hr, and that due to cosmic radiations was calculated to be(35 ± 1;4) n Gy/hr. The annual effective dose equivalent from terrestrial and cosmic gamma radiations was found to be equal to(0.65±0.02; 0.12)mSv/year. It was found that the absorbed dose rate due to cosmic radiations in Jordan can be fitted by the formula, D c osmic=27+5.2 h+1.86 h 2 where h is the altitude reference to the Dead Sea measured in km. 19 refs., 17 figs., 6 tabs.(Author)

  14. Radiation and health: low-level-ionizing radiation exposure and effects

    International Nuclear Information System (INIS)

    Kant, Krishan

    2013-01-01

    In the present paper, brief review of the available literature, data and reports of various radiation exposure and protection studies is presented. An in-depth analysis of reports available suggests that the possible beneficial outcomes of exposure to LLIR are: increased Growth rate, Development, Neurogenesis, Memory, Fecundity (Fertility), Immunity (Resistance to diseases due to large doses of radiation) and Lifespan (Longevity) Decreased Cancer deaths, Cardiovascular deaths, Respiratory deaths, Neonatal deaths, Sterility, Infection, Premature deaths. The findings also suggest that the LNT theory is overly stated for assessing carcinogenic risks at low doses. It is not scientifically justified and should be banned as it creates radio phobia thereby blocking the efforts to supply reliable, environmentally friendly nuclear energy and important medical therapies. There is no need for anyone to live in fear of serious health consequences from the radioactivity that comes out from nuclear installations and exposures in the range of background radiation. A linear quadratic model has been given illustrating the validity of radiation hormesis, besides the comparison of the dose rates arising from natural and manmade sources to Indian population

  15. Far Infrared Spectrometry of the Cosmic Background Radiation

    Science.gov (United States)

    Mather, J. C.

    1974-01-01

    I describe two experiments to measure the cosmic background radiation near 1 mm wavelength. The first was a ground-based search for spectral lines, made with a Fabry-Perot interferometer and an InSb detector. The second is a measurement of the spectrum from 3 to 18 cm{sup -1}, made with a balloon-borne Fourier transform spectrometer. It is a polarizing Michelson interferometer, cooled in liquid helium, and operated with a germanium bolometer. I give the theory of operation, construction details, and experimental results. The first experiment was successfully completed but the second suffered equipment malfunction on its first flight. I describe the theory of Fourier transformations and give a new understanding of convolutional phase correction computations. I discuss for infrared bolometer calibration procedures, and tabulate test results on nine detectors. I describe methods of improving bolometer sensitivity with immersion optics and with conductive film blackening.

  16. Autonomous low-noise system for broadband measurements of the cosmic microwave background radiation

    Science.gov (United States)

    Dekoulis, George

    2009-05-01

    This paper describes the digital side implementation of a new suborbital experiment for the measurement of broadband radiation emissions of the Cosmic Microwave Background (CMB) anisotropy. The system has been used in campaign mode for initial mapping of the galactic radiation power received at a single frequency. The recorded galactic sky map images are subsequently being used to forecast the emitted radiation at neighboring frequencies. A planned second campaign will verify the prediction algorithms efficiency in an autonomous manner. The system has reached an advanced stage in terms of hardware and software combined operation and intelligence, where other Space Physics measurements are performed autonomously depending on the burst event under investigation. The system has been built in a modular manner to expedite hardware and software upgrades. Such an upgrade has recently occurred mainly to expand the frequency range of space observations.

  17. Hygiene of ionizing radiations

    International Nuclear Information System (INIS)

    Legare, I.-M.; Conceicao Cunha, M. da

    1976-01-01

    The concepts of quality factor and rem are introduced and a table of biological effects of external ionizing radiation sources is presented. Natural exposures, with tables of background radiation sources and of doses due to cosmic rays on high altitude areas and their populations are treated, as well as medical exposures; artificial background; fallout; scientific, industrial and other sources. The maximum and limit doses for man are given and tables of maximum admissible doses of ionizing radiations for 16-18 year old workers professionaly exposed, for professionals eventually subjected to radiation in their work and for people eventually exposed. Professional protection is discussed and tables are given of half-value layer of water, concrete, iron and lead for radiations of different energies, as well as the classification of exposure zones to the radiations and of maximum acceptable contamination for surfaces. The basic safety standards for radiation protection are summarized; tables are given also with emergency references for internal irradiation. Procedures with patients which received radioisotopes are discussed. At last, consideration is given to the problem of radioactive wastes in connection with the medical use of radionuclides [pt

  18. Electromagnetic Radiation Exposure from Cellular Base Station: A ...

    African Journals Online (AJOL)

    Electromagnetic Radiation Exposure from Cellular Base Station: A Concern for Public ... as well as safety guidelines relating to exposure of non-ionizing radiation. Global System for Mobile Communication (GSM) operators claimed that their ...

  19. Correlation between natural radiation exposure and cancer mortality, (4)

    International Nuclear Information System (INIS)

    Noguchi, Kunikazu; Shimizu, Masami; Sairenji, Eiko; Anzai, Ikuro.

    1987-01-01

    In the previous studies, using Pearson's product moment correlation coefficient, we found that in most cases of cancers, statistically significant positive correlations were observed between natural background radiation exposure rate and crude cancer mortality rate over the period 1950 - 1978. Furthermore, we found that the statistical significance of correlation between natural background radiation exposure rate and the age-adjusted cancer mortality rate in the same period mostly disappeared. We studied the cause of this apparent correlation and found that the prefecture with a higher natural background radiation exposure rate had a greater component ratio of older people. In Japan, a number of prefectures with a higher natural background exposure rate are located in relatively thinly populated districts which have been experiencing an outflow of the younger generation to more highly industrialized and urbanized areas. Therefore, statistically significant positive correlations were observed for almost all cancers between natural background radiation exposure rate and crude cancer mortality rate. In the present investigation, we statistically tested the frequency distributions of natural background radiation exposure rate and age-adjusted cancer mortality rate, and calculated Spearman's rank correlation coefficient between natural background radiation exposure rate and the age-adjusted cancer mortality rate. The frequency distribution of the natural background radiation exposure rate and that of the age-adjusted mortality rate appeared normal in most cases of cancer, and the statistical significance of correlation between natural background exposure rate and the age-adjusted cancer mortality rate did not differ much on the whole, even though we used Spearman's rank correlation coefficient between them. (author)

  20. Correlation between natural radiation exposure and cancer mortality, (4)

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Kunikazu; Shimizu, Masami; Sairenji, Eiko; Anzai, Ikuro

    1987-03-01

    In the previous studies, using Pearson's product moment correlation coefficient, we found that in most cases of cancers, statistically significant positive correlations were observed between natural background radiation exposure rate and crude cancer mortality rate over the period 1950 - 1978. Furthermore, we found that the statistical significance of correlation between natural background radiation exposure rate and the age-adjusted cancer mortality rate in the same period mostly disappeared. We studied the cause of this apparent correlation and found that the prefecture with a higher natural background radiation exposure rate had a greater component ratio of older people. In Japan, a number of prefectures with a higher natural background exposure rate are located in relatively thinly populated districts which have been experiencing an outflow of the younger generation to more highly industrialized and urbanized areas. Therefore, statistically significant positive correlations were observed for almost all cancers between natural background radiation exposure rate and crude cancer mortality rate. In the present investigation, we statistically tested the frequency distributions of natural background radiation exposure rate and age-adjusted cancer mortality rate, and calculated Spearman's rank correlation coefficient between natural background radiation exposure rate and the age-adjusted cancer mortality rate. The frequency distribution of the natural background radiation exposure rate and that of the age-adjusted mortality rate appeared normal in most cases of cancer, and the statistical significance of correlation between natural background exposure rate and the age-adjusted cancer mortality rate did not differ much on the whole, even though we used Spearman's rank correlation coefficient between them.

  1. Radiation exposure and management of medical employes

    International Nuclear Information System (INIS)

    Yamamoto, Chiaki

    1981-01-01

    Medical employes handling medical radiation are increasing in recent years. In connection with the radiation exposure management, it was surveyed how much their cumulative exposure doses are and how many employes distribute in respective exposure levels. The medical employes surveyed are physicians, radiation technicians and nurses, working in the hospitals of educational institutions. The period of survey is every three years, from 1962 to 1977. For X-ray and ν-ray, respectively, the yearly cumulative exposure doses were measured by film badges, stepwise starting from below 500 mrem upward to over 5000 mrem; for the respective groups of employes, the percentage in each dose level was shown. The percentage in the level below 500 mrem was the largest in all groups, and in both X-ray and ν-ray, the percentages in higher levels decreased sharply to less than 7%. The exposure management has been improved in recent years. (J.P.N.)

  2. Radiation Practices. Annual Report 2005

    International Nuclear Information System (INIS)

    Rantanen, E.

    2006-06-01

    1764 safety licences for the use of radiation were current at the end of 2005. 1907 responsible parties were engaged in notifiable licence-exempt dental X-ray practices. Regulatory control of the use of radiation was performed through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. STUK conducted 458 inspections of licensed practices and 62 inspections of notifiable licence-exempt dental X-ray practices in 2005. 273 remedial orders and recommendations were issued. Use of one appliance was prohibited. A total of 11 698 workers engaged in radiation work were subject to individual monitoring in 2005. 137 000 dose entries were made in the Dose Register. In no case did the individual dose of any worker exceed the dose limits stipulated in the Radiation Decree. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 90 workplaces including a total of 233 work areas were subject to radon monitoring during 2005. 2600 pilots and cabin crew members were monitored for exposure to cosmic radiation. Metrological activities continued with calibration and development work as in previous years. Regulatory control of the use of non-ionizing radiation in 2005 continued to focus particularly on mobile phones and sunbeds. 15 mobile phone types were tested in market surveillance of mobile phones. A total of 44 sunbed appliances were inspected at 36 sunbed facilities. Most research and development work took place within jointly financed research projects. This work focused especially on developing testing and measuring methods for determining exposure to electromagnetic fields caused by mobile phones and their base stations. There were 13 abnormal incidents involving the use of radiation in 2005. Eight of these incidents concerned

  3. Measurement of neutron radiation exposure of commercial airline pilots using bubble detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.J.; Kosierb, R. (Royal Military College of Canada, Kingston, Ontario (Canada). Dept. of Chemistry and Chemical Engineering); Cousins, T. (Defense Research Establishment Ottawa, Ontario (Canada). Space Systems and Technology Section); Hudson, D.F. (Air Canada Flight Operations, Vancouver, British Columbia (Canada)); Guery, G. (Air France-Direction des Operations Aeriennes, Roissy Charles de Gaulle (France))

    1994-06-01

    Neutron bubble detectors have been used over a 1-yr period by commercial airline pilots from Air Canada and Air France to measure the high-altitude neutron radiation exposure produced by galactic cosmic rays. The present work yielded measurements of the neutron flux of 1.0 to 4.6 n/cm[sup 2][center dot]s, and the neutron dose equivalent rates of 1.7 to 7.7 [mu]S[nu]/h. These measurements are in agreement with previous studies using high-altitude aircraft and conventional neutron instrumentation. The total dose equivalents for the Air Canada flights are also consistent with predictions of the CARI code. Considering that the neutron component contributes [approximately] 50% of the total dose equivalent, this study indicates that the annual dose for the air crew member would exceed the new recommendations of the International Commission on Radiological Protection (ICRP-60) for the general public.

  4. Measurement of neutron radiation exposure of commercial airline pilots using bubble detectors

    International Nuclear Information System (INIS)

    Lewis, B.J.; Kosierb, R.; Guery, G.

    1994-01-01

    Neutron bubble detectors have been used over a 1-yr period by commercial airline pilots from Air Canada and Air France to measure the high-altitude neutron radiation exposure produced by galactic cosmic rays. The present work yielded measurements of the neutron flux of 1.0 to 4.6 n/cm 2 ·s, and the neutron dose equivalent rates of 1.7 to 7.7 μSν/h. These measurements are in agreement with previous studies using high-altitude aircraft and conventional neutron instrumentation. The total dose equivalents for the Air Canada flights are also consistent with predictions of the CARI code. Considering that the neutron component contributes ∼ 50% of the total dose equivalent, this study indicates that the annual dose for the air crew member would exceed the new recommendations of the International Commission on Radiological Protection (ICRP-60) for the general public

  5. An intercomparison of detectors for measurement of background radiation

    International Nuclear Information System (INIS)

    Nielsen, S.P.; Boetter-Jensen, L.

    1981-04-01

    Measurements of the background radiation were made in 1978 at 14 locations with a high-pressure ionization chamber, thermoluminiscence dosimeters (TLD's), two NaI(Tl) detectors, and a Ge(Li) spectrometer system. Simultaneous measurements with the ionization chamber and the spectrometer system provide reliable estimates of the total background exposure rate, of the individual contributors to the terrestrial exposure rate, and of the exposure rate from the secondary cosmic radiation. The TLD results agree with those of the ionization chamber. The NaI(Tl) detector results show that accurate estimates of the terrestrial exposure rate can be obtained if empirical corrections are applied. (author)

  6. Understanding of radiation protection in medicine. Pt. 1. Knowledge about radiation exposure and anxiety about radiation injury

    International Nuclear Information System (INIS)

    Iida, Hiroji; Yamamoto, Tomoyuki; Shimada, Yasuhiro

    1997-01-01

    Using a questionnaire we investigated whether radiation exposure in correctly understood by medical doctors (n=140), nurses (n=496) and the general public (n=236). Thirty-three percent of medical doctors, 53% of nurses and the general public did not know who is legally allowed to irradiate the human body. Forty-five percent of doctors, 63% of nurses and 48% of the general public complained of anxiety about radiation injury. Fifty-six percent of patients did not ask medical doctors or nurses for an explanation of the risk of exposure. Moreover, 64% of doctors did not explain the risk to patients. In addition, 21% of doctors, 46% of nurses and the general public incorrectly understood that x-rays remain in the examination room. Twenty-seven percent of doctors, 49% of nurses and 80% of the general public did not know the t en-day rule . In conclusion, the results of this questionnaire indicated that basic knowledge about radiation exposure was not adequate. To protect against medical radiation exposure, personnel who are licensed to irradiate to the human body should be well recognized by medical staff and the general public. It is also important that informed consent for radiological examinations be based on fundamental knowledge about radiation exposure. Therefore, to reach a general consensus on radiological examinations and to reduce individual exposure, general public education regarding radiation protection is required. Postgraduate education on radiation protection for medical doctors and nurses is also strongly recommended. (author)

  7. Interaction of ultrahigh energy cosmic rays with microwave background radiation

    International Nuclear Information System (INIS)

    Aharonyan, F.A.; Kanevskij, B.L.; Vardanyan, V.V.

    1989-01-01

    The formation of the bump and black-body cutoff in the cosmic-ray (CR) spectrum arising from the π-meson photoproduction reaction in collisions of CR protons with the microwave background radiation (MBR) photons is studied. A kinetic equation which describes CR proton propagation in MBR with account of a catastrophic of the π-meson photoproduction process is derived. The equilibrium CR proton spectrum obtained from the solution of the stationary kinetic equation is in general agreement with spectrum obtained under assumption of continuous energy loss approximation. However spectra from local sources especially for the times of propagation t>10 9 years differ noticeably from those obtained in the continuous loss approximation. 24 refs.; 5 figs

  8. Cosmic rays: an in-flight hazard?

    International Nuclear Information System (INIS)

    O'Sullivan, Denis

    2000-01-01

    muons and electrons makes up about 10% of the natural background at sea level. Some years ago, the European Union expressed concern at the patchy knowledge available on the radiation field at aircraft altitudes. It funded a major investigation during the last minimum in solar activity between 1995 and 1998. These investigations have recently received further significant support and a major European study will be continued through the solar maximum between 2000 and 2003. But why the sudden interest in the situation now? After all, we have been travelling at altitudes up to 17 km for decades, and few of us seem to care about being bombarded by high-energy particles. One of the main reasons is concern that the relative biological damage caused by neutrons may have been underestimated in the past. In addition, there is an increasing trend for subsonic aircraft to fly at higher cruising altitudes. And the International Commission on Radiological Protection (ICRP) has recently made a series of recommendations concerning exposure to cosmic rays. Neutrons are the major source of concern because they occur in significant numbers at aircraft altitudes. An improved understanding of their role in the radiation field is therefore important. Following the ICRP recommendations, the European Union has revised its basic safety-standards directive to include, for the first time, exposure to naturally occurring sources of ionizing radiation including cosmic radiation as an occupational hazard. The revised directive is being incorporated into the laws of the EU member states this month, and monitoring of aircrew will soon become mandatory. The research team has developed several different types of detector for the project, some of which have operated at high altitude on the Zugspitze mountain in Germany and Chacaltaya in Bolivia. In addition, the detectors were placed in high-energy beams at particle accelerators at Uppsala University in Sweden, the GSI laboratory in Germany and at CERN in

  9. Economic impact and effectiveness of radiation protection measures in aviation during a ground level enhancement

    Directory of Open Access Journals (Sweden)

    Matthiä Daniel

    2015-01-01

    Full Text Available In addition to the omnipresent irradiation from galactic cosmic rays (GCR and their secondary products, passengers and aircraft crew may be exposed to radiation from solar cosmic rays during ground level enhancements (GLE. In general, lowering the flight altitude and changing the flight route to lower latitudes are procedures applicable to immediately reduce the radiation exposure at aviation altitudes. In practice, however, taking such action necessarily leads to modifications in the flight plan and the consequential, additional fuel consumption constrains the mitigating measures. In this work we investigate in a case study of the ground level event of December 13th 2006 how potential mitigation procedures affect the total radiation exposure during a transatlantic flight from Seattle to Cologne taking into account constraints concerning fuel consumption and range.

  10. The Cosmic Microwave Background Radiation-A Unique Window on the Early Universe

    Science.gov (United States)

    Hinshaw, Gary

    2010-01-01

    The cosmic microwave background radiation is the remnant heat from the Big Bang. It provides us with a unique probe of conditions in the early universe, long before any organized structures had yet formed. The anisotropy in the radiation's brightness yields important clues about primordial structure and additionally provides a wealth of information about the physics of the early universe. Within the framework of inflationary dark matter models, observations of the anisotropy on sub-degree angular scales reveals the signatures of acoustic oscillations of the photon-baryon fluid at a redshift of 11 00. Data from the first seven years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature and polarization anisotropy. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. WMAP, part of NASA's Explorers program, was launched on June 30, 2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Oxford University; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  11. DOE occupational radiation exposure 1996 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ``As Low As Reasonably Achievable`` (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources.

  12. DOE occupational radiation exposure 1996 report

    International Nuclear Information System (INIS)

    1996-01-01

    The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ''As Low As Reasonably Achievable'' (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources

  13. Robustness of cosmic neutrino background detection in the cosmic microwave background

    CERN Document Server

    Audren, Benjamin; Cuesta, Antonio J; Gontcho, Satya Gontcho A; Lesgourgues, Julien; Niro, Viviana; Pellejero-Ibanez, Marcos; Pérez-Ràfols, Ignasi; Poulin, Vivian; Tram, Thomas; Tramonte, Denis; Verde, Licia

    2015-01-01

    The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by searching for the typical signatures of the fluctuations of free-streaming species in the temperature and polarisation power spectrum. Previous studies have already proposed a rather generic parametrisation of these fluctuations, that could help to discriminate between the signature of ordinary free-streaming neutrinos, or of more exotic dark radiation models. Current data are compatible with standard values of these parameters, which seems to bring further evidence for the existence of a cosmic neutrino background. In this work, we investigate the robustness of this conclusion under various assumptions. We generalise the definition of an effective sound speed and viscosity speed to the case of massive neutrinos or other dark radiation components experiencing a non-relativistic transition. We show that current bounds on these effectiv...

  14. Isotropization of the cosmic background radiation due to galactic gravitational screening

    International Nuclear Information System (INIS)

    Tomita, Kenji.

    1988-04-01

    The primordial objects with the masses of galaxies or their clusters formed at early stages such as z > 10 can play a powerful role of gravitational lenses and their random multiple scattering brings an effective screening for the cosmic background radiation. In a cold-dark-matter dominant model with the white-noise spectrum of initial density perturbations, it is shown that, if the primordial objects with the masses 10 12 h -1 (solar mass) are in the nonlinear stage at the epochs 1 + z = 10 ∼ 20, the objects with 6 x 10 14 h -1 (solar mass) are in the nonlinear stage at 1 + z = 6.3 ∼ 14, and accordingly the small-scale anisotropy of the radiation may be smoothed-out within 13 ∼ 28 minutes by this gravitational screening, where the Hubble constant H o = 100 h km s -1 Mpc -1 . (author)

  15. Occupational radiation exposure in nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: This symposium forms an essential part of the continuing tradition of subjecting nuclear energy to periodic review to assess the adequacy of radiation protection practices and experiences and to identify those areas needing further study and development. Specifically, the symposium focused on a review of statistical data on radiation exposure experience to workers in the nuclear fuel cycle through 1978. The technical sessions were concerned with occupational exposures: experienced in Member States; in research and development facilities; in nuclear power plants; in nuclear Fuel reprocessing facilities; in waste management facilities; and techniques to minimize doses. A critical review was made of internal and external exposures to the following occupational groups: uranium miners; mill workers; fuel fabricators; research personnel, reactor workers; maintenance staff; hot cell workers; reprocessing plant personnel; waste management personnel. In particular, attention was devoted to the work activities causing the highest radiation exposures and successful techniques which have been used to minimize individual and collective doses. Also there was an exchange of information on the trends of occupational exposure over the lifespan of individual nuclear power plants and other facilities in the nuclear fuel cycle. During the last session there was a detailed panel discussion on the conclusions and future needs highlighted during the symposium. While past symposia on nuclear power and its fuel cycle have presented data on occupational dose statistics, this symposium was the first to focus attention on the experience and trends of occupational exposure in recent years. The papers presented an authoritative account of the status of the levels and trends of the average annual individual dose as well as the annual collective dose for occupational workers in most of the world up to 1979. From the data presented it became evident that considerable progress has been

  16. Occupational radiation exposures in Canada - 1980

    International Nuclear Information System (INIS)

    Ashmore, J.P.; Fujimoto, K.R.; Wilson, J.A.; Grogan, D.

    1981-08-01

    This report is the third in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The decrease in the overall average doses established over the last 20 years appears to be changing. In some occupational categories a consistent upward trend is observed

  17. The estimation of the dose from cosmic radiation received by the population living at mainland of China

    International Nuclear Information System (INIS)

    Jin Hua; Yue Qingyu

    1989-11-01

    The measurement of ionization distribution caused by the cosmic ray ionizing components in the air, the survey of population distribution in geography and the investigation of total passengers taking air liners at the mainland of China have been completed. By taking the data from the census of the year 1986 and the population distribution of the mainland, considering the cosmic ray distribution with the height and referring the distribution of neutron flux density in cosmic ray, the population-weighted mean annual effective dose equivalent, which is obtained from 2017 counties and 353 cities, for inhabitants living in every provinces and municipalities directly under Central Government has been calculated. The collective dose equivalent produced by the external exposure of cosmic ray is also estimated when people are taking air liners. The results which are effected by the population distribution show that the annual effective dose equivalant received by the population of China from the cosmic ray is 28% lower than the population of the world. The most of Chinese people are living at the north hemisphere area having lower elevation and geomagnetic latitude, and 53.6% among them is in the area of elevation below 100 m and 91% is in the area of geomagnetic latitude below 30 deg N

  18. Diagnostic and therapeutic radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Russell, W J [Radiation Effects Research Foundation, Hiroshima (Japan)

    1975-09-01

    Diagnostic and therapeutic radiology were studied as possible contaminants in the evaluations of A-bomb survivors in the ABCC-JNIH Adult Health Study for radiation effects. Hiroshima and Nagasaki subjects received X-ray examinations elsewhere within three months of their ABCC visits at rates of 23 and 12%, respectively. Medical X-ray examinations were more frequent among survivors than comparison subjects. Hiroshima and Nagasaki radiologic practice steadily increased since 1948, and differed markedly by city. From 1946-70 the Hiroshima and Nagasaki X-ray bone marrow doses were 2,300 and 1,000 g-rads, respectively. By 1970, cumulated medical X-ray doses approximated A-bomb doses at distances from the hypocenters of 2,000 m in Hiroshima and 2,800 m in Nagasaki. ABCC X-ray examination doses per subject are routinely updated for comparison with A-bomb doses. Each subject's reported fluoroscopy, photofluorography and radiation therapy exposure elsewhere are for future reference. Dental radiography, though increasing, was not currently an important contributor to survivors' overall exposure. Radiation therapy exposures of 137 subjects were confirmed, and doses estimated for most. Two-thirds the treatments were for malignancies; therapy differed markedly by city; and five cancers possibly arose from earlier radiation therapy. This underscores the importance of considering diagnostic and therapeutic radiology when attributing diseases to the atomic bombs.

  19. Public exposure in commercial national flights to and from Rio de Janeiro, Brazil

    International Nuclear Information System (INIS)

    Alves, Vanusa A.; Rochedo, Elaine R.R.; Ferreira, Nadya M.P.D.

    2013-01-01

    The exposure to cosmic radiation in aircraft travel is significantly higher than at ground level and varies with the route due to the effect of latitude, the altitude of flight, the flight time, and the year according to the solar cycle effects in galactic cosmic ray flux. A database, including about 4000 domestic flights in Brazil, was implemented in Excel spreadsheets based on data flights for November 2011. The fields included on the database are the origin and destination of flights, time of departure and arrival, plane type, number of passengers, airline and total time of flight. In this work, doses from flights to and from the town of Rio de Janeiro within Brazil have been assessed using the computer program CARI-6, developed by the U.S. Federal Aviation Administration, that calculates the effective dose of galactic cosmic radiation received by an individual in an aircraft flying the shortest route between two airports of the world. Average effective doses for individual flights ranged from 0.2 to 8.8 μSv. This is a very small contribution to average overall exposure to natural background radiation (2.4 mSv/y). A frequent flyer with weekly flights on the most usual route, Rio-São Paulo, would receive about 0.18 mSv/y, which means about 7,5 % increase to its usual exposure to natural radiation sources. Collective dose to passengers due to all national flights to and from Rio de Janeiro was estimated to be about 100 manSv per year. (author)

  20. Public exposure in commercial national flights to and from Rio de Janeiro, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vanusa A.; Rochedo, Elaine R.R.; Ferreira, Nadya M.P.D., E-mail: vanusa_abreu@ymail.com, E-mail: elainerochedo@gmail.com, E-mail: nadya@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The exposure to cosmic radiation in aircraft travel is significantly higher than at ground level and varies with the route due to the effect of latitude, the altitude of flight, the flight time, and the year according to the solar cycle effects in galactic cosmic ray flux. A database, including about 4000 domestic flights in Brazil, was implemented in Excel spreadsheets based on data flights for November 2011. The fields included on the database are the origin and destination of flights, time of departure and arrival, plane type, number of passengers, airline and total time of flight. In this work, doses from flights to and from the town of Rio de Janeiro within Brazil have been assessed using the computer program CARI-6, developed by the U.S. Federal Aviation Administration, that calculates the effective dose of galactic cosmic radiation received by an individual in an aircraft flying the shortest route between two airports of the world. Average effective doses for individual flights ranged from 0.2 to 8.8 μSv. This is a very small contribution to average overall exposure to natural background radiation (2.4 mSv/y). A frequent flyer with weekly flights on the most usual route, Rio-São Paulo, would receive about 0.18 mSv/y, which means about 7,5 % increase to its usual exposure to natural radiation sources. Collective dose to passengers due to all national flights to and from Rio de Janeiro was estimated to be about 100 manSv per year. (author)

  1. Childhood cancer and occupational radiation exposure in parents

    International Nuclear Information System (INIS)

    Hicks, N.; Zack, M.; Caldwell, G.G.; Fernbach, D.J.; Falletta, J.M.

    1984-01-01

    To test the hypothesis that a parent's job exposure to radiation affeOR). its his or her child's risk of cancer, the authors compared this exposure during the year before the child's birth for parents of children with and without cancer. Parents of children with cancer were no more likely to have worked in occupations, industries, or combined occupations and industries with potential ionizing radiation exposure. Bone cancer and Wilms' tumor occurred more frequently among children of fathers in all industries with moderate potential ionizing radiation exposure. Children with cancer more often had fathers who were aircraft mechanics (odds ratio (OR)) . infinity, one-sided 95% lower limit . 1.5; P . 0.04). Although four of these six were military aircraft mechanics, only children whose fathers had military jobs with potential ionizing radiation exposure had an increased cancer risk (OR . 2.73; P . 0.01). Four cancer types occurred more often among children of fathers in specific radiation-related occupations: rhabdomyosarcoma among children whose fathers were petroleum industry foremen; retinoblastoma among children whose fathers were radio and television repairmen; central nervous system cancers and other lymphatic cancers among children of Air Force fathers. Because numbers of case fathers are small and confidence limits are broad, the associations identified by this study need to be confirmed in other studies. Better identification and gradation of occupational exposure to radiation would increase the sensitivity to detect associations

  2. Radiation exposure in CT-guided interventions

    Energy Technology Data Exchange (ETDEWEB)

    Kloeckner, Roman, E-mail: Roman.Kloeckner@unimedizin-mainz.de [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany); Santos, Daniel Pinto dos; Schneider, Jens [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany); Kara, Levent [Department of Radiology, Inselspital Bern, Freiburgstraße 18, 3010 Bern (Switzerland); Dueber, Christoph; Pitton, Michael B. [Department of Diagnostic and Interventional Radiology, Johannes Gutenberg-University, Langenbeckstraße 1, 55131 Mainz (Germany)

    2013-12-01

    Purpose: To investigate radiation exposure in computed tomography (CT)-guided interventions, to establish reference levels for exposure, and to discuss strategies for dose reduction. Materials and methods: We analyzed 1576 consecutive CT-guided procedures in 1284 patients performed over 4.5 years, including drainage placements; biopsies of different organs; radiofrequency and microwave ablations (RFA/MWA) of liver, bone, and lung tumors; pain blockages, and vertebroplasties. Data were analyzed with respect to scanner settings, overall radiation doses, and individual doses of planning CT series, CT intervention, and control CT series. Results: Eighy-five percent of the total radiation dose was applied during the pre- and post-interventional CT series, leaving only 15% applied by the CT-guided intervention itself. Single slice acquisition was associated with lower doses than continuous CT-fluoroscopy (37 mGy cm vs. 153 mGy cm, p < 0.001). The third quartile of radiation doses varied considerably for different interventions. The highest doses were observed in complex interventions like RFA/MWA of the liver, followed by vertebroplasty and RFA/MWA of the lung. Conclusions: This paper suggests preliminary reference levels for various intervention types and discusses strategies for dose reduction. A multicenter registry of radiation exposure including a broader spectrum of scanners and intervention types is needed to develop definitive reference levels.

  3. Snow measurement by cosmic radiation; Mesure de la neige par rayonnement cosmique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The knowledge of the water content equivalence of the snow cover is an important element for the improvement of the water resource management. It allows in particular to evaluate and foresee the filling up supplies of big seasonal reservoirs. Electricite de France (EdF), in collaboration with the national center of scientific research (CNRS) and Meteo France, has developed a new generation of sensors, the cosmic radiation snow gauge, allowing the automatic monitoring of the status of snow stocks by the measurement of the water value of the snow cover. (J.S.)

  4. Ralph A. Alpher, Robert C. Herman, and the Cosmic Microwave Background Radiation

    Science.gov (United States)

    Alpher, Victor S.

    2012-09-01

    Much of the literature on the history of the prediction and discovery of the Cosmic Microwave Background Radiation (CMBR) is incorrect in some respects. I focus on the early history of the CMBR, from its prediction in 1948 to its measurement in 1964, basing my discussion on the published literature, the private papers of Ralph A. Alpher, and interviews with several of the major figures involved in the prediction and measurement of the CMBR. I show that the early prediction of the CMBR continues to be widely misunderstood.

  5. Flight attendant radiation dose from solar particle events.

    Science.gov (United States)

    Anderson, Jeri L; Mertens, Christopher J; Grajewski, Barbara; Luo, Lian; Tseng, Chih-Yu; Cassinelli, Rick T

    2014-08-01

    Research has suggested that work as a flight attendant may be related to increased risk for reproductive health effects. Air cabin exposures that may influence reproductive health include radiation dose from galactic cosmic radiation and solar particle events. This paper describes the assessment of radiation dose accrued during solar particle events as part of a reproductive health study of flight attendants. Solar storm data were obtained from the National Oceanic and Atmospheric Administration Space Weather Prediction Center list of solar proton events affecting the Earth environment to ascertain storms relevant to the two study periods (1992-1996 and 1999-2001). Radiation dose from exposure to solar energetic particles was estimated using the NAIRAS model in conjunction with galactic cosmic radiation dose calculated using the CARI-6P computer program. Seven solar particle events were determined to have potential for significant radiation exposure, two in the first study period and five in the second study period, and over-lapped with 24,807 flight segments. Absorbed (and effective) flight segment doses averaged 6.5 μGy (18 μSv) and 3.1 μGy (8.3 μSv) for the first and second study periods, respectively. Maximum doses were as high as 440 μGy (1.2 mSv) and 20 flight segments had doses greater than 190 μGy (0.5 mSv). During solar particle events, a pregnant flight attendant could potentially exceed the equivalent dose limit to the conceptus of 0.5 mSv in a month recommended by the National Council on Radiation Protection and Measurements.

  6. Monitoring and control of occupational radiation exposure in Switzerland

    International Nuclear Information System (INIS)

    Moser, M.

    1997-01-01

    Occupational exposure is the most prominent example for the prolonged exposure to low level ionizing radiation characterized by low doses and dose rates. In this paper the occupational exposure in Switzerland is presented and the regulatory control of this exposure in the framework of the new radiation protection regulations is discussed. (author)

  7. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    Science.gov (United States)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2016-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  8. Galactic cosmic ray-induced radiation dose on terrestrial exoplanets.

    Science.gov (United States)

    Atri, Dimitra; Hariharan, B; Grießmeier, Jean-Mathias

    2013-10-01

    This past decade has seen tremendous advancements in the study of extrasolar planets. Observations are now made with increasing sophistication from both ground- and space-based instruments, and exoplanets are characterized with increasing precision. There is a class of particularly interesting exoplanets that reside in the habitable zone, which is defined as the area around a star where the planet is capable of supporting liquid water on its surface. Planetary systems around M dwarfs are considered to be prime candidates to search for life beyond the Solar System. Such planets are likely to be tidally locked and have close-in habitable zones. Theoretical calculations also suggest that close-in exoplanets are more likely to have weaker planetary magnetic fields, especially in the case of super-Earths. Such exoplanets are subjected to a high flux of galactic cosmic rays (GCRs) due to their weak magnetic moments. GCRs are energetic particles of astrophysical origin that strike the planetary atmosphere and produce secondary particles, including muons, which are highly penetrating. Some of these particles reach the planetary surface and contribute to the radiation dose. Along with the magnetic field, another factor governing the radiation dose is the depth of the planetary atmosphere. The higher the depth of the planetary atmosphere, the lower the flux of secondary particles will be on the surface. If the secondary particles are energetic enough, and their flux is sufficiently high, the radiation from muons can also impact the subsurface regions, such as in the case of Mars. If the radiation dose is too high, the chances of sustaining a long-term biosphere on the planet are very low. We have examined the dependence of the GCR-induced radiation dose on the strength of the planetary magnetic field and its atmospheric depth, and found that the latter is the decisive factor for the protection of a planetary biosphere.

  9. Radiation exposure in gastroenterology: improving patient and staff protection.

    LENUS (Irish Health Repository)

    Ho, Immanuel K H

    2014-08-01

    Medical imaging involving the use of ionizing radiation has brought enormous benefits to society and patients. In the past several decades, exposure to medical radiation has increased markedly, driven primarily by the use of computed tomography. Ionizing radiation has been linked to carcinogenesis. Whether low-dose medical radiation exposure will result in the development of malignancy is uncertain. This paper reviews the current evidence for such risk, and aims to inform the gastroenterologist of dosages of radiation associated with commonly ordered procedures and diagnostic tests in clinical practice. The use of medical radiation must always be justified and must enable patients to be exposed at the lowest reasonable dose. Recommendations provided herein for minimizing radiation exposure are based on currently available evidence and Working Party expert consensus.

  10. Radiation exposure of nursing personnel to brachytherapy patients

    International Nuclear Information System (INIS)

    Cobb, P.D.; Kase, K.R.; Bjaerngard, B.E.

    1978-01-01

    The radiation exposure of nursing personnel to brachytherapy patients has been analyzed from data collected during the years 1973-1976, at four different hospitals. The average annual dose per exposed nurse ranged between 25 and 150 mrem. The radiation exposure per nurse was found to be proportional to the total potential exposure and was uncorrelated with the size of the nursing staff. (author)

  11. Epistemological limitation for attributing health effects to natural radiation exposure

    International Nuclear Information System (INIS)

    González, Abel J.

    2010-01-01

    The attribution of health effects to prolonged radiation exposure situations, such as those experienced in nature, is a challenging problem. The paper describes the epistemological limitations for such attribution it demonstrate that in most natural exposure situations, the theory of radiation-related sciences is not capable to provide the scientific evidence that health effects actually occur (or do not occur) and, therefore, that radiation effects are attributable to natural exposure situations and imputable to nature. Radiation exposure at high levels is known to provoke health effects as tissue reactions. If individuals experience these effects they can be attributed to the specific exposure with a high degree of confidence under the following conditions: the dose incurred have been higher that the relevant dose-threshold for the specific effect; and an unequivocal pathological diagnosis is attainable ensuring that possible competing causes have been eliminated. Only under these conditions, the occurrence of the effect may be properly attested and attributed to the exposure. However, even high levels of natural radiation exposure are lower than relevant dose-thresholds for tissue reactions and, therefore, natural radiation exposure is generally unable to cause these type of effects. One exception to this general rule could be situations of high levels of natural radiation exposure that might be sufficient to induce opacities in the lens of the eyes (which could be considered a tissue-reaction type of effect)

  12. A computer system for occupational radiation exposure information

    International Nuclear Information System (INIS)

    Hunt, H.W.

    1984-01-01

    A computerized occupational radiation exposure information system has been developed to maintain records for contractors at the U.S. Department of Energy's (DOE) Hanford Site. The system also allows indexing and retrieval of three million documents from microfilm, thus significantly reducing storage needs and costs. The users are linked by display terminals to the data base permitting them instant access to dosemetry and other radiation exposure information. Personnel dosemeter and bioassay results, radiation training, respirator fittings, skin contaminations and other radiation occurrence records are included in the data base. The system yields immediate analysis of radiological exposures for operating management and health physics personnel, thereby releasing personnel to use their time more effectively

  13. Cosmic ray investigations

    International Nuclear Information System (INIS)

    Zatsepin, Georgii T; Roganova, Tat'yana M

    2009-01-01

    The history of cosmic ray research at the Lebedev Institute beginning with the first work and continuing up to now is reviewed. The milestones and main avenues of research are outlined. Pioneering studies on the nuclear cascade process in extensive air showers, investigations of the Vavilov-Cherenkov radiation, and some work on the origin of cosmic rays are discussed. Recent data on ultrahigh-energy particle detection at the Pierre Auger Observatory and the High Resolution Fly's Eye (HiRes) experiments are presented. (conferences and symposia)

  14. Prenatal radiation exposure. Conclusions in the light of radiology

    International Nuclear Information System (INIS)

    Leppin, W.

    1987-01-01

    Within 6 years of the appearance of the guideline for action to be taken by doctors in the event of prenatal exposure to radiation, intended as a proposal for discussion, the following has turned out: in no case has termination of pregnancy become necessary following prenatal radiation exposure, prenatal radiation exposure was always low (about 20 mSv), there is no risk below respective threshold doses, teratogenesis is a non-stochastic process, which is why risk assessment was modified, the sensitivity of the human fetus to radiation is highest during the period of neuroblast development (9th to 16th week p.c.), and knowledge about an existing pregnancy can be taken for granted by that time, so radiation exposure is calculable and can be restricted to negligible quantities. (TRV) [de

  15. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane

    CERN Document Server

    Goldhagen, P E; Kniss, T; Reginatto, M; Singleterry, R C; Van Steveninck, W; Wilson, J W

    2002-01-01

    Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the atmospheric ionizing radiation (AIR) project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (t...

  16. Radiation exposure of nurses in a coronary care unit

    International Nuclear Information System (INIS)

    Jankowski, C.B.

    1984-01-01

    In response to increasing awareness of radiation as a possible occupational hazard, nursing personnel staffing a hospital CCU were monitored over a 3-year period to determine occupational exposure. Portable x-ray machines, fluoroscopic units, and patients injected with radiopharmaceuticals were all potential radiation sources on such a unit. Whole-body TLD badges, exchanged monthly, indicated no cumulative exposures over 80 mR during the entire study period. The minimal exposures reported do not justify regular use of dosimeters. Adherence to standard protective measures precludes most exposure to machine-produced radiation. Close, prolonged contact with a patient after an RVG study that utilizes /sup 99m/Tc may account for some exposure. The data indicate that radiation is not a significant occupational hazard for CCU nurses at this hospital; similar minimal exposures would be expected of other nonoccupationally exposed nursing personnel in like environments

  17. Registration and monitoring of radiation exposure from radiological imaging

    International Nuclear Information System (INIS)

    Jungmann, F.; Pinto dos Santos, D.; Hempel, J.; Dueber, C.; Mildenberger, P.

    2013-01-01

    Strategies for reducing radiation exposure are an important part of optimizing medical imaging and therefore a relevant quality factor in radiology. Regarding the medical radiation exposure, computed tomography has a special relevance. The use of the integrating the healthcare enterprise (IHE) radiation exposure monitoring (REM) profile is the upcoming standard for organizing and collecting exposure data in radiology. Currently most installed base devices do not support this profile generating the required digital imaging and communication in medicine (DICOM) dose structured reporting (SR). For this reason different solutions had been developed to register dose exposure measurements without having the dose SR object. Registration and analysis of dose-related parameters is required for constantly optimizing examination protocols, especially computed tomography (CT) examinations based on the latest research results in order to minimize the individual radiation dose exposure from medical imaging according to the principle as low as reasonably achievable (ALARA). (orig.) [de

  18. Verification of radiation exposure using lead shields

    International Nuclear Information System (INIS)

    Hayashida, Keiichi; Yamamoto, Kenyu; Azuma, Masami

    2016-01-01

    A long time use of radiation during IVR (intervention radiology) treatment leads up to an increased exposure on IVR operator. In order to prepare good environment for the operator to work without worry about exposure, the authors examined exposure reduction with the shields attached to the angiography instrument, i. e. lead curtain and lead glass. In this study, the lumber spine phantom was radiated using the instrument and the radiation leaked outside with and without shields was measured by the ionization chamber type survey meter. The meter was placed at the position which was considered to be that for IVR operator, and changed vertically 20-100 cm above X-ray focus by 10 cm interval. The radiation at the position of 80 cm above X-ray focus was maximum without shield and was hardly reduced with lead curtain. However, it was reduced with lead curtain plus lead glass. Similar reduction effects were observed at the position of 90-100 cm above X-ray focus. On the other hand, the radiation at the position of 70 cm above X-ray focus was not reduced with either shield, because that position corresponded to the gap between lead curtain and lead glass. The radiation at the position of 20-60 cm above X-ray focus was reduced with lead curtain, even if without lead glass. These results show that lead curtain and lead glass attached to the instrument can reduce the radiation exposure on IVR operator. Using these shields is considered to be one of good means for IVR operator to work safely. (author)

  19. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    OpenAIRE

    David L Wenzler; Joel E Abbott; Jeannie J Su; William Shi; Richard Slater; Daniel Miller; Michelle J Siemens; Roger L Sur

    2017-01-01

    Background: Limited studies have reported on radiation risks of increased ionizing radiation exposure to medical personnel in the urologic community. Fluoroscopy is readily used in many urologic surgical procedures. The aim of this study was to determine radiation exposure to all operating room personnel during percutaneous nephrolithotomy (PNL), commonly performed for large renal or complex stones. Materials and Methods: We prospectively collected personnel exposure data for all PNL cases at...

  20. Study of radiation background at various high altitude locations in preparation for rare event search in cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, R.; Dey, S.; Ghosh, Sanjay K.; Maulik, A.; Raha, Sibaji; Syam, D., E-mail: rupamoy@gmail.com, E-mail: dey_s2001@yahoo.com, E-mail: sanjay@jcbose.ac.in, E-mail: atanu.maulik@jcbose.ac.in, E-mail: sibaji.raha@jcbose.ac.in, E-mail: syam.debapriyo@gmail.com [Centre for Astroparticle Physics and Space Science, Bose Institute, Block-EN, Sector-V, Kolkata-700091 (India)

    2017-04-01

    Various phenomenological models presented over the years have hinted at the possible presence of strangelets, which are nuggets of Strange Quark Matter (SQM), in cosmic rays. One way to search for such rare events is through the deployment of large area Nuclear Track Detector (NTD) arrays at high mountain altitudes. Before the deployment of any such array can begin, a detailed study of the radiation background is essential. Also, a proper understanding of the response of detectors exposed to extreme weather conditions is necessary. With that aim, pilot studies were carried out at various high altitude locations in India such as Darjeeling (2200 m a.m.s.l), Ooty (2200 m a.m.s.l) and Hanle (4500 m a.m.s.l). Small arrays of CR-39 as well as high threshold Polyethylene Terephthalate (PET) detectors were given open air exposures for periods ranging from three months to two years. The findings of such studies are reported in this paper.

  1. Radiation exposure of children during cardiac catheterisation

    International Nuclear Information System (INIS)

    Popp, W.

    1979-01-01

    It is well known that in adults, cardiac catheterisation involves the highest possible radiation exposure for a single examination. The paper now investigates the radiation exposure in paediatric cardiac cathetrisations. Dosimeters attached to the children during the examination were used as well as phantom measurements under the conditions of cardiac catheterisation. With the aid of the phantom, also the total energy absorption during an examination procedure was determined. This value was estimated to be 80 mJ. In spite of the high individual exposure, the contribution to the population exposure is low due to the small number of cardiac catheterisations. (orig.) 891 AJ/orig. 892 MKO [de

  2. Predictors of radiation exposure to providers during percutaneous nephrolithotomy

    Directory of Open Access Journals (Sweden)

    David L Wenzler

    2017-01-01

    Conclusion: Increased stone burden, partial or staghorn calculi, surgery and fluoroscopy duration, and absence of preexisting access were associated with high provider radiation exposure. Radiation safety awareness is essential to minimize exposure and to protect the patient and all providers from potential radiation injury.

  3. A measurement of the low frequency spectrum of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Levin, S.M.

    1987-04-01

    As part of a larger effort to measure the spectrum of the Cosmic Background Radiation (CBR) at low frequencies, the intensity of the CBR has been measured at a frequency of 1.410 GHz. The measurement was made by comparing the power received from the sky with the power received from a specially designed cooled calibration target with known properties. Sources of radiation other than the CBR were then identified and subtracted to calculate the antenna temperature of the CBR at 1.410 GHz. The instrument used to measure the CBR was a total-power microwave radiometer with a 25 MHz bandwidth centered at 1.410 GHz. The radiometer had a noise temperature of 80 K, and sufficient data were taken that radiometer noise did not contribute significantly to the total measurement error. The sources of error were predominantly systematic in nature, and the largest error was due to uncertainty in the reflection characteristics of the cold-load calibrator. Identification and subtraction of signals from the Galaxy (0.7 K) and the Earth's atmosphere (0.8 K) were also significant parts of the data reduction and error analysis. The brightness temperature of the Cosmic Background Radiation at 1.410 GHz is 222. +- 0.55 Kelvin. The spectrum of the CBR, as determined by this measurement and other published results, is consistent with a blackbody spectrum of temperature 2.741 +- 0.016. Constraints on the amount by which the CBR spectrum deviates from Planck spectrum are used to place limits on energy releases early in the history of the universe. 55 refs., 25 figs., 8 tabs

  4. Occupational radiation exposures in Canada, 1981

    International Nuclear Information System (INIS)

    Fujimoto, K.R.; Wilson, J.A.; Ashmore, J.P.; Grogan, D.

    1983-12-01

    This report is the fourth in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes those records for radiation workers. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The decrease in the overall average doses established over the last 20 years appears to have resumed after an interruption during 1979 to 1980. A brief summary of extremity dose data is also included

  5. Impact of climate change on occupational exposure to solar radiation.

    Science.gov (United States)

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  6. DOE occupational radiation exposure 2000 report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2000-12-31

    The U.S. Department of Energy (DOE) Office of Safety and Health publishes the annual DOE Occupational Radiation Exposure Report. This report is intended to be a valuable tool for DOE and DOE contractor managers in managing radiological safety programs and to assist them in prioritizing resources. We appreciate the efforts and contributions from the various stakeholders within and outside DOE in making this report most useful to them. This report includes occupational radiation exposure information for all monitored DOE employees, contractors, subcontractors, and visitors. The exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. For the purposes of examining trends, data for the past 5 years are included in the analysis.

  7. Indoor exposure to natural radiation in Denmark

    International Nuclear Information System (INIS)

    Ulbak, K.; Stenum, B.; Soerensen, A.; Majborn, B.; Boetter-Jensen, L.; Nielsen, S.P.

    1988-01-01

    Assessment of the exposures to the Danish population from different natural radiation sources including building materials, drinking water, fly ash etc. has been performed from 1975 and up till now. In 1987 a comprehensive nationwide investigation of the gamma exposures and radon levels in 500 randomly selected Danish dwellings will be concluded by the National Institute of Radiation Hygiene. At the same time the Danish authorities will publish a control strategy for limiting the exposure of the Danish population from natural sources, especially from radon daughter exposure in dwellings. The presentation will outline the main results of the nationwide survey in Danish dwellings together with the main principles behind and the consequences of the initiated control strategy for limiting the exposures from natural radioactive sources

  8. Isotopic Evidence for Multi-stage Cosmic-ray Exposure Histories of Lunar Meteorites: Long Residence on the Moon and Short Transition to the Earth

    International Nuclear Information System (INIS)

    Hidaka, Hiroshi; Sakuma, Keisuke; Nishiizumi, Kunihiko; Yoneda, Shigekazu

    2017-01-01

    It is known that most lunar meteorites have complicated cosmic-ray exposure experiences on the Moon and in space. In this study, cosmic-ray irradiation histories of six lunar meteorites, Dhofar 489, Northwest Africa 032 (NWA 032), NWA 479, NWA 482, NWA 2995, and NWA 5000, were characterized from neutron-captured isotopic shifts of Sm and Gd, and from the abundances of long-lived cosmogenic radionuclides like 10 Be, 26 Al, 36 Cl, and 41 Ca. Sm and Gd isotopic data of all of six meteorites show significant isotopic shifts of 149 Sm– 150 Sm and 157 Gd– 158 Gd caused by accumulation of neutron capture reactions due to cosmic-ray irradiation, corresponding to the neutron fluences of (1.3–9.6) × 10 16 n cm −2 . In particular, very large Sm and Gd isotopic shifts of NWA 482 are over those of a lunar regolith 70002, having the largest isotopic shifts among the Apollo regolith samples, corresponding to cosmic-ray exposure duration over 800 million years in the lunar surface (2 π irradiation). Meanwhile, the concentrations of cosmogenic radionuclides for individual six meteorites show the short irradiation time less than one million years as their bodies in space (4 π irradiation). Our data also support the results of previous studies, revealing that most of lunar meteorites have long exposure ages at shallow depths on the Moon and short transit times from the Moon to the Earth.

  9. Theoretical investigations of the anisotropy of the cosmic microwave background radiation

    International Nuclear Information System (INIS)

    Wilson, M.L.

    1981-01-01

    In this work, the anisotropy of the cosmic microwave background radiation is calculated within the context of the standard Big Bang cosmological model. The results of the calculations for different initial conditions are compared to the observational data available in order to try to learn more about conditions in the early universe. It is found that a model which has isothermal fluctuations superimposed on the standard model can explain all of the observations so far. In fact, a range of models with different initial densities can explain the observations. There is not enough information at present to choose among these models, but more data should be available in the near future

  10. Impact of rocket propulsion technology on the radiation risk in missions to Mars

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M. [GSI Helmholtzzentrum fur Schwerionenforschung, Biophysics Department, Darmstadt (Germany); Technical University of Darmstadt, Department of Condensed Matter Physics, Darmstadt (Germany); Bruno, C. [Dipartimento di Meccanica e Aeronautica, Universita -La Sapienza-, Roma (Italy)

    2010-10-15

    Exposure to cosmic radiation is today acknowledged as a major obstacle to human missions to Mars. In fact, in addition to the poor knowledge on the late effects of heavy ions in the cosmic rays, simple countermeasures are apparently not available. Shielding is indeed very problematic in space, because of mass problems and the high-energy of the cosmic rays, and radio-protective drugs or dietary supplements are not effective. However, the simplest countermeasure for reducing radiation risk is to shorten the duration time, particularly the transit time to Mars, where the dose rate is higher than on the planet surface. Here we show that using nuclear electric propulsion (NEP) rockets, the transit time could be substantially reduced to a point where radiation risk could be considered acceptable even with the current uncertainty on late effects. (authors)

  11. The absence of distortion in the cosmic microwave background spectrum and superconducting cosmic strings

    International Nuclear Information System (INIS)

    Sanchez, N.; Signore, M.

    1990-01-01

    From the results of recent measurements we place new constraints on superconducting cosmic strings (SCS) and on their cosmological evolution, independently of numerical simulation results. The absence of distortion in the cosmic microwave background radiation (MBR) spectrum recently reported from the preliminary data of the COBE (Cosmic background explorer) satellite, together with the available MBR angular temperature ΔT/T measurements and the latest fast pulsar timings, allow us to obtain (i) the electromagnetic-to-gravitational radiation ratio released by SCS loops, f -2 , (ii) the chemical potential due to SCS, μ 0SCS -3 , (iii) constraints on the loop evolution parameters which we confront to those given by numerical simulations, and (iv) limits on the string parameter Gμ: those obtained from COBE's data (Gμ -6 ) converge to those given by the latest PSR 1937+21 timing. Both limits on Gμ are reduced by an order of magnitude when taking into account numerical simulation results. (orig.)

  12. Gamma-ray astronomy and cosmic-ray origin theory

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1973-01-01

    A theory of the origin of cosmic radiation is discussed in light of the advances made in gamma-ray astronomy. Arguments against metagalactic models for the origin of cosmic rays are emphasized. (U.S.)

  13. Eighth annual occupational radiation exposure report, 1975

    International Nuclear Information System (INIS)

    Brooks, B.G.

    1976-10-01

    This is a report by the U.S. Nuclear Regulatory Commission on the operation of the Commission's centralized repository of personnel occupational radiation exposure information. Annual reports were received from 387 covered licensees indicating that some 78,713 individuals, having an average exposure of 0.36 rems, were monitored for exposure to radiation during 1975 and that 21,601 individuals terminated their employment or work assignment with covered licensees in 1975. The number of personnel overexposures reported in 1975 decreased from previous years. The most significant overexposures which occurred in 1975 are summarized

  14. Radiation exposure from radium-226 ingestion

    International Nuclear Information System (INIS)

    Keefer, D.H.; Fenyves, E.J.

    1980-01-01

    The contribution of radium to total radiation exposure resulting from the consumption of natural levels of 226 Ra in several public water supplies in an Oklahoma county was determined. A pilot-level study of total dietary intake indicated that the culinary use of water anomalously high in radium and the consumption of water-based beverages contributed significantly to radiation exposure. The mean dietary intake of 226 Ra was 20.6 pCi/day in one community and resulted in an estimated bone dose of 310 mrem/year

  15. Radiation exposure of airline crew members to the atmospheric ionizing radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, G. E-mail: gianni.deangelis@iol.it; Caldora, M.; Santaquilani, M.; Scipione, R.; Verdecchia, A

    2001-06-01

    A study of radiation exposures in the ionizing radiation environment of the atmosphere is currently in progress for the Italian civil aviation flight personnel. After a description of the considered data sources/ the philosophy of the study is presented/ and an overview is given of the data processing with regard to flight routes/ the computational techniques for radiation dose evaluation along the flight paths and for the exposure matrix building/ along with an indication of the results that the study should provide.

  16. NTPR Radiation Exposure Reports

    Science.gov (United States)

    History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak Atoll Cleanup Documents TRAC About Who We Are Our Values History Locations Our Leadership Director Support Center Contact Us FAQ Sheet Links Success Stories Contracts Business Opportunities Current

  17. Exposure to ultraviolet radiation: recommendations for cosmetic use

    International Nuclear Information System (INIS)

    Dias, C.; Carvalho, F.R.S.

    2000-01-01

    The beginning of the so-called tanning industry made possible the acquisition of a tanned skin independently of the available solar radiation. The tan is produced by ultraviolet radiation and, as well as in solar exposure, there are additional risks on the use of the so-called sun-beds. The damaging effects of ultraviolet exposure are well documented and reasonably quantified. The objective of this paper is to inform the potential effects of ultraviolet radiation exposure in sun-beds and to provide recommendations in order to reduce the associated risks. These recommendations are adapted for cosmetics use only (author)

  18. Radiation in complex exposure situations. Assessing health risks at low levels from concomitant exposures to radiation and chemicals

    International Nuclear Information System (INIS)

    Hornhardt, S.; Jung, T.; Burkart, W.

    2000-01-01

    Health effects from exposures to ionizing radiation are in general the result of complex multi-step reaction chains involving changes and responses on the level of molecules, cells, tissues and organisms. In environmental low dose exposure situations ionizing radiation only contributes a small fraction to the life-long attack on DNA by other exogenous and endogenous genotoxins. Nevertheless, efforts to assess and quantify deleterious effects at low exposure levels are directed mainly towards radiation as a single isolated agent, and rarely towards the concomitant presence of other natural and anthropogenic toxicants. Only these combined exposures may lead to observable health risk effects. In addition they might differ from those expected from simple addition of the individual risks due to interaction. The existing data base on combined effects is rudimentary, mainly descriptive and rarely covers exposure ranges large enough to make direct inferences to present day low dose exposure situations. Therefore, any risk assessment will have to consider the question whether combined effects, i.e. interaction between two or more agents will influence the health outcome from specific exposure situations in such a way that predictions derived from simple standard exposure situations would have to be revised. In view of the multitude of possible interactions between the large number of potentially harmful agents in the human environment, descriptive approaches will have to be supplemented by the use of mechanistic models for critical health endpoints such as cancer. Agents will have to be grouped depending on their physical or chemical mode of action at the molecular and cellular level, to generalize and predict the outcome of combined exposures at low exposure levels and the possibility of interactions. (author)

  19. Radiation exposure of operator during various interventional procedures

    International Nuclear Information System (INIS)

    Yu, In Kyu; Chung, Jin Wook; Han, Joon Koo; Park, Jae Hyung; Kang, Wee Saing

    1994-01-01

    To investigate the levels of radiation exposure of an operator which may be influenced by the wearing an apron, type of procedure, duration of fluoroscopy and operator's skill during various interventional procedures. Radiation doses were measured both inside and outside the apron(0.5 mm lead equivalent) of the operator by a film badge monitoring method and the duration of fluoroscopy was measured in 96 procedures prospectively. The procedures were 30 transcatheter arterial embolization (TAE), 25 percutaneous transhepatic biliary drainages (PTBD), 16 stone removals (SR), 15 percutaneous needle aspirations (PNCA) and 10 percutaneous nephrostomies(PCN). To assess the difference of exposure by the operator's skill, the procedures of TAE and PTBD were done separately by groups of staffs and residents. Average protective effect of the apron was 72.8%. Average radiation exposure(unit: μ Sv/procedure was 23.3 in PTBD by residents, 10.0 in PTBD by staffs, 10.0 in SR, 8.7 in TAE by residents, 7.3 in TAE by staffs, 9.0 in PCN and 6.0 in PCNA. Average radiation exposure of residents were 1.9 times greater than those of staffs. Radiation exposure was not proportionally related to the duration of fluoroscopy, but influenced by wearing an apron, various types of procedure and operator's skills

  20. Gamma radiation in ceramic capacitors: a study for space missions

    Science.gov (United States)

    dos Santos Ferreira, Eduardo; Sarango Souza, Juliana

    2017-10-01

    We studied the real time effects of the gamma radiation in ceramic capacitors, in order to evaluate the effects of cosmic radiation on these devices. Space missions have electronic circuits with various types of devices, many studies have been done on semiconductor devices exposed to gamma radiation, but almost no studies for passive components, in particular ceramic capacitors. Commercially sold ceramic capacitors were exposed to gamma radiation, and the capacitance was measured before and after exposure. The results clearly show that the capacitance decreases with exposure to gamma radiation. We confirmed this observation in a real time capacitance measurement, obtained using a data logging system developed by us using the open source Arduino platform.

  1. Comparison of the response of various TLDs to cosmic radiation and ion beams: Current results of the HAMLET project

    International Nuclear Information System (INIS)

    Bilski, P.; Berger, T.; Hajek, M.; Reitz, G.

    2011-01-01

    HAMLET is an European Commission research project aiming at optimal scientific exploitation of the data produced within the space experiment MATROSHKA. During phase 1 of this experiment a human phantom equipped with several thousands of radiation detectors (mainly TLDs) was exposed outside the International Space Station for 1.5 years. Besides the measurements realized in Earth orbit, the HAMLET project includes also a ground-based program of intercomparison of detector response to high-energy ion beams. Within the paper, the relative response of main glow-curve peaks of various TLDs (mostly based on LiF) used in frame of the MATROSHKA experiment by three laboratories (DLR Cologne, ATI Vienna and IFJ Krakow) for radiation in space and several ion beams, has been compared. For LiF:Mg,Ti detectors a very good agreement between results obtained by the three laboratories was observed, both for space and accelerator-based exposures. This should be considered a remarkable result, taking into account that the studied TLDs originated from six different batches, manufactured by two producers exploiting different production techniques and were processed by three laboratories, using significantly different protocols (annealing, readout, calibration, glow-curve analysis). Another type of TL detectors, LiF:Mg,Cu,P, was found to show response to cosmic radiation lower than that of LiF:Mg,Ti by 5%–18%.

  2. On the radiation exposure in temporomandibular joint examinations

    International Nuclear Information System (INIS)

    Rother, U.; Hildebrandt, K.H.

    1979-01-01

    The radiation exposure caused by standardized examinations of the temporomandibular joint has been determined with the aid of 660 exposures of an Alderson phantom. Comparative examinations were performed with the classic contact technique according to Parma to elucidate the results obtained. The lowest surface exposure was observed in contact examinations of the temporomandibular joint. Application of a flat cone led to a 13-fold reduction in surface exposure compared to contact examinations according to Parma. Furthermore, radiation exposure strongly decreased from the irradiation field to the adjacent area if a cone (flat cone and ear cone) was used. (author)

  3. Physical and biomedical countermeasures for space radiation risk

    International Nuclear Information System (INIS)

    Durante, Marco

    2008-01-01

    Radiation exposure represents a serious hindrance for long-term interplanetary missions because of the high uncertainty on risk coefficients, and to the lack of simple countermeasures. Even if uncertainties in risk assessment will he reduced in the next few years, there is little doubt that appropriate countermeasures have to be taken to reduce the exposure or the biological damage produced by cosmic radiation. In addition, it is necessary to provide effective countermeasures against solar particle events, which can produce acute effects, even life threatening, for inadequately protected crews. Strategies that may prove to he effective in reducing exposure, or the effects of the irradiation, include shielding, administration of drugs or dietary supplements to reduce the radiation effects, crew selection based on a screening of individual radiation sensitivity. It is foreseeable that research in passive and active radiation shielding, radioprotective chemicals, and individual susceptibility will boost in the next years to provide efficient countermeasures to the space radiation threat. (orig.)

  4. Monitoring occupational exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Button, J.B.C.

    1997-01-01

    A brief overview is presented of methods of monitoring occupational exposure to ionizing radiation together with reasons for such monitoring and maintaining dose histories of radiation occupationally exposed persons. The various Australian providers of external radiation monitoring services and the types of dosemeters they supply are briefly described together with some monitoring results. Biological monitoring methods, are used to determine internal radiation dose. Whole body monitors, used for this purpose are available at Australian Radiation Lab., ANSTO and a few hospitals. Brief mention is made of the Australian National Radiation Dose Register and its objectives

  5. Long-term radiation exposure of inhabitants in the Bryansk region in South-western Russia

    International Nuclear Information System (INIS)

    Bernhardsson, Christian; Christiansson, Maria; Raeaef, Christopher; Mattsson, Soeren

    2008-01-01

    Since 1990 the effective doses from external and internal irradiation to residents in the Bryansk area, Russia, have been followed. In the 1990s field surveys in a number of villages took place annually and after 1998 more irregularly. All surveys were carried out in September-October, The individual doses of the inhabitants were assessed using TL-dosemeters and 'in vivo' measurements of 134 , 137 Cs. Twenty years after the Chernobyl accident, the average effective dose rate from internal and external exposure of 137 Cs to the inhabitants of the surveyed settlements - due to Chernobyl - was estimated to 0.6 mSv year -1 . This additional dose contribution is comparable with the yearly dose from cosmic radiation and naturally occurring radionuclides in the human body. During the first three years of the survey (1990-1993), the temporal variation in the effective dose rate from external irradiation can be described by a 20% annual decrease and then slowing down to a 12% decrease per year up to 1998. After that, there is a much slower decrease. In 2006 the fraction of the total effective dose rate associated with external exposure, was in the order of 0.4 mSv year -1 , which is twice as high as the dose from exposure of internal 137 Cs sources. The temporal variation in the internal exposure of 134 , 137 Cs is much more complex and related to several environmental and social factors. Hence, large variations are observed during different years and also between villages and within a specific village. In the present paper, results from all the field surveys are compared and the temporal evolution of the radiation environment during 20 years is discussed. (author)

  6. Assessing public and crew exposure in commercial flights in Brazil

    International Nuclear Information System (INIS)

    Rochedo, E.R.R.; Alves, V.A.; Silva, D.N.G.

    2015-01-01

    The exposure to cosmic radiation in aircraft travel is significantly higher than at ground level and varies with the route due to the effect of latitude, the altitude of flight, the flight time, and the year according to the solar cycle effects in galactic cosmic ray flux. The computer program CARI-6, developed by the U.S. Federal Aviation Administration, calculates the effective dose of galactic cosmic radiation received by an individual in an aircraft flying the shortest route between two airports of the world. The program takes into account changes in altitude and geographic location during the course of a flight. The aim of this project is to estimate the contribution of cosmic radiation exposure on commercial flights to the Brazilian population. A database, including about 4,000 domestic flights in Brazil, was implemented in Excel spreadsheets based on data flights information for November 2011. Main fields included on the database are the origin and destination of flights, time of departure and arrival, plane type, number of passengers, flight times (take-off, landing and cruse altitude times) and number of flights per year. This information was used to estimate individual and collective doses for crew and passengers. Doses for domestic flights in Brazil range from 1.8 to 8.8 μSv. Considering the occupational limit of 850 h of flight per year for crew members and numbers of flights for each route, average occupational dose would be about 0.76 mSv/y. Collective doses, for the total number of flights per year and airplane types were estimated to be 214 and 11 manSv/y for passengers and crew members, respectively. (authors)

  7. Overview of the hazards of low-level exposure to radiation

    International Nuclear Information System (INIS)

    Ritenour, E.R.

    1984-01-01

    In this chapter the authors are concerned with low-level radiation, doses of ionizing radiations that are ten to thousands of times smaller than those required to contract ARS. Low-level radiation may be defined as an absorbed dose of 10 rem or less delivered over a short period of time. A larger dose delivered over a long period of time, for instance, 50 rem in 10 years, may also be considered low level. The definition is purposely loose so as to cover a wide variety of sources of radiation exposure, such as natural background (100 mrem/year) occupational exposures (<5 rem/year), and medical applications, such as diagnostic radiography (<1 rem). Low-level radiation exposure does not produce ARS. The health effects that may be of concern in regard to low-level radiation are its long-term sequelae. Studies of survivors of high-level radiation exposure (both human and laboratory animals) have indicated that there are three health effects that should be examined at low levels of exposure: induction of cancer, birth abnormalities (from irradiation in utero), and genetic effects. No other long-term effects of low-level exposure have been conclusively demonstrated in animals or humans

  8. Radiation practices. Annual report 2008

    International Nuclear Information System (INIS)

    Rantanen, E.

    2009-09-01

    1775 safety licences for the use of radiation were current at the end of 2008. 1831 responsible parties were engaged in notifiable licence-exempt dental X-ray activities. Use of radiation was controlled through regular inspections performed at places of use, test packages sent by post to dental X-ray facilities and maintenance of the Dose Register. Radiation safety guides were also published and research was conducted in support of regulatory control. STUK conducted 424 inspections of licensed practices and 18 inspections of notifiable licence-exempt dental X-ray practices in 2008. 209 repair orders and recommendations were issued. Use of one appliance was prohibited. A total of just over 11 500 workers were subject to individual monitoring in 2008, and about 140 000 dose entries were made in the Dose Register maintained by STUK. Regulatory control of natural radiation focused on radon at workplaces and exposure of aircrews to cosmic radiation. 89 workplaces including a total of 201 work areas were subject to radon monitoring during 2008. Some 3700 pilots and cabin crew members were monitored for exposure to cosmic radiation. Metrological activities continued with calibration and development work as in previous years. Regulatory control of the use of non-ionizing radiation in 2008 focused particularly on mobile phones, sunbeds and lasers. Ten mobile phone types and five baby monitors were tested in market surveillance of wireless communication devices. 25 sunbed facilities were inspected and nine laser display inspections were performed. There were 22 abnormal incidents involving the use of radiation in 2008. Seventeen of these incidents concerned the use of radiation in industry, research or transportation, four concerned the use of radiation in health care, and one concerned the use of non-ionizing radiation. None of these incidents had serious consequences. (orig.)

  9. Determination of Rn-222 in drinking water. An important parameter for the natural radioactivity exposure assessment; Bestimmung von {sup 222}Rn in Trinkwasser. Ein wichtiger Parameter fuer die Erfassung der natuerlich bedingten Strahlenbelastung

    Energy Technology Data Exchange (ETDEWEB)

    Zoiy, Myroslav [Forschungszentrum Juelich GmbH (Germany)

    2017-08-01

    The natural radiation exposure includes external exposure due to terrestric and cosmic radiation and internal exposure due to respiration and food - incorporation. Incorporated radionuclides are partially absorbed in the vascular and lymphatic systems and partially excreted after a certain biological half-time through kidneys and intestines, and partially the lungs. The radiation exposure is defined as effective annual dose in Sievert. In Germany the medium natural exposure is 2.1 mSv per year.

  10. Workplaces with elevated levels of exposure to natural radiation: The situation in Sweden

    International Nuclear Information System (INIS)

    Mjoenes, L.; Aakerblom, G.

    2002-01-01

    Because of the geological conditions with an abundance of granites and pegmatites rich in uranium and thorium together with large areas of uranium-rich alum shale, exposure from natural radiation is not unusual in certain types of industries and other work activities in Sweden. Although no representative survey of radon at regular workplaces has been performed in Sweden, smaller surveys and the high radon concentrations in dwellings indicate that workplaces with elevated radon levels are frequent in Sweden. Very high levels of indoor radon have been found in waterworks. Radon in mines has been regulated in Sweden since 1972 and radon in other workplaces since 1990. The situation in schools and day-care centres was thoroughly investigated in 2000. The estimated number of school and child care buildings with radon concentrations exceeding the action level 400 Bq/m 3 , is 800, about 200 of these have been identified and in about 100 buildings remedial measures have been taken. Regulations for natural radioactivity in building materials (for new buildings) have been in force since 1980. Lightweight concrete produced from uranium-rich alum shale was in use between 1929 and 1975. Almost 400,000 dwellings, 10 percent of the building stock, contain this material. The situation at NORM (Naturally Occurring Radioactive Material) industries is currently being investigated. Since the beginning of the 1950s it is known that residues from several industrial activities contain enhanced levels of natural radioactivity. Some examples are burnt alum shale from lime burning, radium-rich slag from metal production and waste gypsum from sulphuric acid production. The impact of the exposure from these residues is now being reinvestigated. So far no systematic search for up to now unknown work activities where substantial exposures from natural radiation could occur, has been initiated. For the protection of aircrew from cosmic radiation the responsible Swedish authorities have

  11. Radiation exposure to patients during extracorporeal shock wave lithotripsy

    International Nuclear Information System (INIS)

    Van Swearingen, F.L.; McCullough, D.L.; Dyer, R.; Appel, B.

    1987-01-01

    Extracorporeal shock wave lithotripsy is rapidly becoming an accepted treatment of renal calculi. Since fluoroscopy is involved to image the stones it is important to know how much radiation the patient receives during this procedure. Surface radiation exposure to the patient was measured in more than 300 fluoroscopic and radiographic procedures using thermoluminescent dosimeters. Initial results showed an average skin exposure of 10.1 rad per procedure for each x-ray unit, comparing favorably with exposure rates for percutaneous nephrostolithotomy and other routine radiological procedures. Factors influencing exposure levels include stone characteristics (location, size and opacity), physician experience and number of shocks required. Suggestions are given that may result in a 50 per cent reduction of radiation exposure

  12. Cosmic microwave background, where next?

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Ground-based, balloon-borne and space-based experiments will observe the Cosmic Microwave Background in greater details to address open questions about the origin and the evolution of the Universe. In particular, detailed observations the polarization pattern of the Cosmic Microwave Background radiation have the potential to directly probe physics at the GUT scale and illuminate aspects of the physics of the very early Universe.

  13. Cosmic ray exposure ages of features and events at the Apollo landing sites

    International Nuclear Information System (INIS)

    Arvidson, R.; Crozaz, G.; Drozd, R.J.; Hohenberg, C.M.; Morgan, C.J.

    1975-01-01

    Cosmic ray exposure ages of lunar samples have been used to date surface features related to impact cratering and downslope movement of material. Only when multiple samples related to a feature have the same rare gas exposure age, or when a single sample has the same 81 Kr-Kr and track exposure age can a feature be considered reliably dated. Because any single lunar sample is likely to have had a complex history, assignment of ages to features based upon only one determination by any method should be avoided. Based on the above criteria, there are only five well-dated lunar features: Cone Crater (Apollo 14) 26 m.y., North Ray Crater (Apollo 16) 50 m.y., South Ray Crater (Apollo 16) 2 m.y., the emplacement of the Station 6 boulders (Apollo 17) 22 m.y., and the emplacement of the Station 7 boulder (Apollo 17) 28 m.y. Other features are tentatively dated or have limits set on their ages: Bench Crater (Apollo 12) =50 m.y. (Auth.)

  14. Cosmic Rays Astrophysics: The Discipline, Its Scope, and Its Applications

    Science.gov (United States)

    Barghouty, A. F.

    2009-01-01

    This slide presentation gives an overview of the discipline surrounding cosmic ray astrophysics. It includes information on recent assertions surrounding cosmic rays, exposure levels, and a short history with specific information on the origin, acceleration, transport, and modulation of cosmic rays.

  15. Occupational radiation exposures in canada-1983

    International Nuclear Information System (INIS)

    Fujimoto, K.; Wilson, J.A.; Ashmore, J.P.; Grogan, D.

    1984-08-01

    This is the sixth in a series of annual reports on Occupational Radiation Exposures in Canada. The information is derived from the National Dose Registry of the Radiation Protection Bureau, Department of National Health and Welfare. As in the past this report presents by occupation: average yearly whole body doses by region, dose distributions, and variations of the average doses with time. The format has been changed to provide more detailed information regarding the various occupations. Statistical data concerning investigations of high exposures reported by the National Dosimetry Services are tabulated in summary form

  16. Doses from radiation exposure

    CERN Document Server

    Menzel, H G

    2012-01-01

    Practical implementation of the International Commission on Radiological Protection's (ICRP) system of protection requires the availability of appropriate methods and data. The work of Committee 2 is concerned with the development of reference data and methods for the assessment of internal and external radiation exposure of workers and members of the public. This involves the development of reference biokinetic and dosimetric models, reference anatomical models of the human body, and reference anatomical and physiological data. Following ICRP's 2007 Recommendations, Committee 2 has focused on the provision of new reference dose coefficients for external and internal exposure. As well as specifying changes to the radiation and tissue weighting factors used in the calculation of protection quantities, the 2007 Recommendations introduced the use of reference anatomical phantoms based on medical imaging data, requiring explicit sex averaging of male and female organ-equivalent doses in the calculation of effecti...

  17. Environmental radioactivity and radiation exposure in 2015; Umweltradioaktivitaet und Strahlenbelastung im Jahr 2015

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2017-07-20

    The information of the German Federal Government on the environmental radioactivity and radiation exposure in 2015 covers the following issues: selected topics of radiation protection, natural radiation exposure; civilizing (artificial) radiation exposure: nuclear power plants and other nuclear facilities, uranium mine recultivation, radioactive materials in industry and households, fallout from nuclear weapon testing and reactor accidents; occupational radiation exposure: exposed personnel in nuclear facilities, aviation personnel, radiation accidents; medical radiation exposure: nuclear medical diagnostics and therapy; non-ionizing radiation: electromagnetic fields, UV radiation, optical radiation.

  18. Cosmic ray radio emission as air shower detection

    International Nuclear Information System (INIS)

    Curutiu, Alexandru; Rusu, Mircea; Isar, Gina; Zgura, Sorin

    2004-01-01

    The possibility of radio-detection of ultra-high energy cosmic rays (within the 10 to 100 MHz range) are discussed. Currently, air showers are detected by various methods, mainly based on particle detectors (KASCADE, Auger) or optical detection (Cerenkov radiation). Recently,to detect radio emission from cosmic ray air showers a method using electromagnetic radiation in low frequency domain (LOFAR) was proposed. We are investigating this possibility, using simulation codes created to investigate electromagnetic radiation of intricate antennae structure, for example fractal antennas. Some of the preliminary results will be communicated in this session. (authors)

  19. Occupational radiation exposures in Canada - 1979

    International Nuclear Information System (INIS)

    Ashmore, J.P.; Fujimoto, K.R.; Wilson, J.A.; Grogan, D.

    1980-12-01

    This report is the second in a series of annual reports on Occupational Radiation Exposures in Canada. The data is derived from the Radiation Protection Bureau's National Dose Registry which includes dose records for radiation workers in Canada. The report presents average yearly doses by region and occupational category, dose distributions, and variation of average doses with time. Statistical data concerning investigations of high exposures are included and individual cases are briefly summarized where the maximum permissible dose is exceeded. The 1979 data indicate that the gradually decreasing trend of the last two decades may be changing. In a number of areas the overall average doses and the averages for some job categories have increased over the corresponding values for 1977 and 1978

  20. Cosmic-ray-induced radiation environment and dose to man for low-orbit space applications

    International Nuclear Information System (INIS)

    Sandmeier, H.A.; Hansen, G.E.; Battat, M.E.; O'Brien, K.

    1981-09-01

    Neutrons and photons resulting from the interaction of galactic cosmic rays with the material of an orbiting satellite or an orbiting space station at an altitude of some few hundreds of kilometers, and below the level of the radiation belts, have been calculated as a function of geomagnetic latitude and solar activity level. The photon and neutron leakage currents from the top of the atmosphere have been computed. The radiation dose-equivalent rate to an unshielded astronaut has also been calculated. The maximum dose-equivalent rate, near the magnetic poles, was 2 mrem/h. In deep space this would amount to 18 rem/y, indicating that for a prolonged stay in space, shielding would be needed