WorldWideScience

Sample records for cosine pulse shaping

  1. Comparison of Performance Metrics for QPSK and OQPSK Transmission Using Root Raised Cosine and Raised Cosine Pulse shaping Filters for Applications in Mobile Communication

    CERN Document Server

    Chattopadhyay, Sudipta

    2009-01-01

    Quadrature Phase Shift Keying (QPSK) and Offset Quadrature Phase Shift Keying (OQPSK) are two well accepted modulation techniques used in Code Division Multiple Access (CDMA) system. The Pulse Shaping Filters play an important role in digital transmission. The type of Pulse Shaping Filter used, and its behavior would influence the performance of the communication system. This in turn, would have an effect on the performance of the Mobile Communication system, in which the digital communication technique has been employed. In this paper we have presented comparative study of some performance parameters or performance metrics of a digital communication system like, Error Vector Magnitude (EVM), Magnitude Error, Phase Error and Bandwidth Efficiency for a QPSK transmission system. Root Raised Cosine (RRC) and Raised Cosine (RC) Pulse shaping filters have been used for comparison. The measurement results serve as a guideline to the system designer to select the proper pulse shaping filter with the appropriate valu...

  2. ICI Alleviation in OFDM System Utilizing Scale Alpha Pulse Shaping

    Directory of Open Access Journals (Sweden)

    Nor Adibah Ibrahim

    2015-05-01

    Full Text Available In this study, a new pulse shaping method namely scale alpha is proposed for mitigating Inter-Carrier Interference (ICI effect in Orthogonal Frequency-Division Multiplexing (OFDM system. The suggested pulse shape is designed and simulated using MATLAB software. Results show that the new pulse shape has lower ICI power and better impulse response performance than Franks, raised cosine and double-jump pulses.

  3. Propagation Dynamics of Nonspreading Cosine-Gauss Water-Wave Pulses.

    Science.gov (United States)

    Fu, Shenhe; Tsur, Yuval; Zhou, Jianying; Shemer, Lev; Arie, Ady

    2015-12-18

    Linear gravity water waves are highly dispersive; therefore, the spreading of initially short wave trains characterizes water surface waves, and is a universal property of a dispersive medium. Only if there is sufficient nonlinearity does this envelope admit solitary solutions which do not spread and remain in fixed forms. Here, in contrast to the nonlinear localized wave packets, we present both theoretically and experimentally a new type of linearly nondispersive water wave, having a cosine-Gauss envelope, as well as its higher-order Hermite cosine-Gauss variations. We show that these waves preserve their width despite the inherent dispersion while propagating in an 18-m wave tank, accompanied by a slowly varying carrier-envelope phase. These wave packets exhibit self-healing; i.e., they are restored after bypassing an obstacle. We further demonstrate that these nondispersive waves are robust to weakly nonlinear perturbations. In the strong nonlinear regime, symmetry breaking of these waves is observed, but their cosine-Gauss shapes are still approximately preserved during propagation.

  4. Analysis of ultra-short pulse shaping with programmable amplitude and phase masks

    Institute of Scientific and Technical Information of China (English)

    Shanhong You; Weidong Shao; Wenfeng Cai; Honglong Cao; M. Kavehrad

    2011-01-01

    @@ Specified ultra-short pulse waveforms could be synthesized with high-resolution zero-dispersion pulse shaping system.The system and parameters are analyzed and discussed.The pulse shaping system with optimized parameters could resolve the frequency components of ultra-broad bandwidth pulse and prevent the spatial shaping of individual frequency components.The specified waveforms, Meyer wavelet and square root raised cosine pulses, are generated with programmable amplitude and phase masks.%Specified ultra-short pulse waveforms could be synthesized with high-resolution zero-dispersion pulse shaping system. The system and parameters are analyzed and discussed. The pulse shaping system with optimized parameters could resolve the frequency components of ultra-broad bandwidth pulse and prevent the spatial shaping of individual frequency components. The specified waveforms, Meyer wavelet and square root raised cosine pulses, are generated with programmable amplitude and phase masks.

  5. STUDY ON RECTANGULAR WAVEGUIDE GRATING SLOW-WAVE STRUCTURE WITH COSINE-SHAPED GROOVES

    Institute of Scientific and Technical Information of China (English)

    Lu Zhigang; Wei Yanyu; Gong Yubin; Wu Zhoumiao; Wang Wenxiang

    2007-01-01

    This paper focuses on a new rectangular waveguide grating Slow-Wave Structure(SWS)with cosine-shaped grooves and studies the propagation characteristics of the wave in the SWS.By using the approximate field-matching conditions,the dispersion equation and the coupling impedance of this circuit are obtained.The dispersion curves and coupling impedances of the fundamental wave are calculated and the influences of the various geometrical dimensions are discussed.The results show that the bandwidth of the cosine-shaped groove SWS is much wider than that of rectangular-shaped groove one.And reducing the groove width can broaden the frequency-band and decrease the phase-velocity,while increment of the groove-depth can also decrease phase-velocity.For above cases,the coupling impedance is more than 16Ω.The present analysis will be helpful on further study and design of the RF systems used in millimeter wave Traveling Wave Tube(TWT).

  6. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    Science.gov (United States)

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes.

  7. Inter-carrier Interference Mitigation in OFDM System Using a New Pulse Shaping Approach

    Directory of Open Access Journals (Sweden)

    Nor Adibah Ibrahim

    2014-12-01

    Full Text Available In this paper, we suggest a new pulse shaping method namely scale alpha for orthogonal frequency-division multiplexing (OFDM system. The proposed pulse shape is designed and simulated using Matlab software. Results and discussions are made to analyze the performance of the new pulse shape, particularly regarding two parameters that are inter-carrier interference (ICI power reduction, and eye diagrams. It is shown that the new pulse is better in ICI power reduction performance than Franks, raised cosine, and double-jump pulses.

  8. Pulse shaping using a spatial light modulator

    CSIR Research Space (South Africa)

    Botha, N

    2009-07-01

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  9. Nonparametric Interference Suppression Using Cyclic Wiener Filtering: Pulse Shape Design and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Anass Benjebbour

    2008-02-01

    Full Text Available In the future, there will be a growing need for more flexible but efficient utilization of radio resources. Increased flexibility in radio transmission, however, yields a higher likelihood of interference owing to limited coordination among users. In this paper, we address the problem of flexible spectrum sharing where a wideband single carrier modulated signal is spectrally overlapped by unknown narrowband interference (NBI and where a cyclic Wiener filter is utilized for nonparametric NBI suppression at the receiver. The pulse shape design for the wideband signal is investigated to improve the NBI suppression capability of cyclic Wiener filtering. Specifically, two pulse shaping schemes, which outperform existing raised cosine pulse shaping schemes even for the same amount of excess bandwidth, are proposed. Based on computer simulation, the interference suppression capability of cyclic Wiener filtering is evaluated for both the proposed and existing pulse shaping schemes under several interference conditions and over both AWGN and Rayleigh fading channels.

  10. Nonparametric Interference Suppression Using Cyclic Wiener Filtering: Pulse Shape Design and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Benjebbour Anass

    2008-01-01

    Full Text Available Abstract In the future, there will be a growing need for more flexible but efficient utilization of radio resources. Increased flexibility in radio transmission, however, yields a higher likelihood of interference owing to limited coordination among users. In this paper, we address the problem of flexible spectrum sharing where a wideband single carrier modulated signal is spectrally overlapped by unknown narrowband interference (NBI and where a cyclic Wiener filter is utilized for nonparametric NBI suppression at the receiver. The pulse shape design for the wideband signal is investigated to improve the NBI suppression capability of cyclic Wiener filtering. Specifically, two pulse shaping schemes, which outperform existing raised cosine pulse shaping schemes even for the same amount of excess bandwidth, are proposed. Based on computer simulation, the interference suppression capability of cyclic Wiener filtering is evaluated for both the proposed and existing pulse shaping schemes under several interference conditions and over both AWGN and Rayleigh fading channels.

  11. Steerable Discrete Cosine Transform

    OpenAIRE

    Fracastoro, Giulia; Fosson, Sophie; Magli, Enrico

    2017-01-01

    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely, a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, an...

  12. High-speed pulse-shape generator, pulse multiplexer

    Science.gov (United States)

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  13. Pulse-shaping strategies in short-pulse fiber amplifiers

    Energy Technology Data Exchange (ETDEWEB)

    Schimpf, Damian Nikolaus

    2010-02-09

    Ultrashort pulse lasers are an important tool in scientific and industrial applications. However, many applications are demanding higher average powers from these ultrashort pulse sources. This can be achieved by combining direct diode pumping with novel gain media designs. In particular, ultrashort pulse fiber lasers are now delivering average powers in the kW range. However, the design of fiber lasers, producing pulses with high peak-powers, is challenging due to the impact of nonlinear effects. To significantly reduce these detrimental effects in ultrashort pulse fiber amplifers, the combination of chirped pulse amplification (CPA) and large mode area fibers is employed. Using these methods, the pulse energy of fiber lasers has been steadily increasing for the past few years. Recently, a fiber-based CPA-system has been demonstrated which produces pulse energies of around 1 mJ. However, both the stretching and the enlargement of the mode area are limited, and therefore, the impact of nonlinearity is still noticed in systems employing such devices. The aim of this thesis is the analysis of CPA-systems operated beyond the conventional nonlinear limit, which corresponds to accumulated nonlinear phase-shifts around 1 rad. This includes a detailed discussion of the influence of the nonlinear effect self-phase modulation on the output pulse of CPA-systems. An analytical model is presented. Emphasis is placed on the design of novel concepts to control the impact of self-phase modulation. Pulse-shaping is regarded as a powerful tool to accomplish this goal. Novel methods to control the impact of SPM are experimentally demonstrated. The design of these concepts is based on the theoretical findings. Both amplitude- and phase-shaping are studied. Model-based phase-shaping is implemented in a state-of-the-art fiber CPA-system. The influence of the polarization state is also highlighted. Additionally, existing techniques and recent advances are put into context. (orig.)

  14. Multiple-beam pulse shaping and preamplification

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.B.; VanWonterghem, B.W.; Burkhart, S.C.; Davin, J.M.

    1994-11-09

    Glass fusion laser systems typically use a master oscillator-power amplifier (MOPA) architecture, where control of the optical pulse temporal and spatial parameters is accomplished mainly in the master oscillator and low power optics. The pulses from this low power ``front end`` are amplified in the power amplifier, which modifies the pulse shape temporally and spatially. Nonlinear frequency conversion crystals following the amplifier further change the pulse before it reaches the target. To effectively control the optical pulse on target for different types of experiments, and compensate for nonlinearity in the preceding optics, the front end system must be versatile enough to easily control many pulse parameters over a large range. The front end pulse generation system described in this article represents a new approach to this problem. The proposed National Ignition Facility (NIF) has 192 beamlines, each of which requires an input pulse of up to 12 Joules in around 4 ns equivalent square pulse length. Considerations of laser architecture for supplying each of these beamlines from a central oscillator system were crucial in the design of the front end. Previous lasers have used bulk optics to split a single oscillator signal and report beams to multiple amplifier chains. A key idea in the current design is to replace bulk optic transport with fibers, eliminating large opto-mechanical subsystems. Another important concept is convenient pulse forming using low voltage integrated optic modulators. The integrated optic and fiber optic concepts resulted in the current pulse generation designs for NEF. An important advantage is that each of the beamlines can have an independently controlled temporal pulse shape, which provides for precise balance of instantaneous power on target.

  15. Laser pulse shaping for high gradient accelerators

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  16. Laser pulse shaping for high gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Villa, F., E-mail: fabio.villa@lnf.infn.it [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Anania, M.P.; Bellaveglia, M. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Bisesto, F. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Chiadroni, E. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN-Roma Tor Vergata and Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy); Moreno, M.; Petrarca, M. [Università La Sapienza di Roma, Via A. Scarpa 14, Rome (Italy); Pompili, R.; Vaccarezza, C. [INFN-Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati (Italy)

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc-lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  17. Shaping metallic glasses by electromagnetic pulsing

    Science.gov (United States)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  18. Shaping metallic glasses by electromagnetic pulsing

    Science.gov (United States)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-02-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  19. Drop shaping by laser-pulse impact

    CERN Document Server

    Klein, Alexander L; Visser, Claas Willem; Lhuissier, Henri; Sun, Chao; Snoeijer, Jacco H; Villermaux, Emmanuel; Lohse, Detlef; Gelderblom, Hanneke

    2015-01-01

    We study the hydrodynamic response of a falling drop hit by a laser pulse. Combining high-speed with stroboscopic imaging we report that a millimeter-sized dyed water drop hit by a milli-Joule nanosecond laser-pulse deforms and propels forward at several meters per second, until it eventually fragments. We show that the drop motion results from the recoil momentum imparted at the drop surface by water vaporization. We measure the propulsion speed and the time-deformation law of the drop, complemented by boundary integral simulations. We explain the drop propulsion and shaping in terms of the laser pulse energy and drop surface tension. These findings are crucial for the generation of extreme ultraviolet (EUV) light in lithography machines.

  20. On discrete cosine transform

    CERN Document Server

    Zhou, Jianqin

    2011-01-01

    The discrete cosine transform (DCT), introduced by Ahmed, Natarajan and Rao, has been used in many applications of digital signal processing, data compression and information hiding. There are four types of the discrete cosine transform. In simulating the discrete cosine transform, we propose a generalized discrete cosine transform with three parameters, and prove its orthogonality for some new cases. A new type of discrete cosine transform is proposed and its orthogonality is proved. Finally, we propose a generalized discrete W transform with three parameters, and prove its orthogonality for some new cases.

  1. Steerable Discrete Cosine Transform

    Science.gov (United States)

    Fracastoro, Giulia; Fosson, Sophie M.; Magli, Enrico

    2017-01-01

    In image compression, classical block-based separable transforms tend to be inefficient when image blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, namely a discrete cosine transform (DCT) that can be steered in any chosen direction. Such transform, called steerable DCT (SDCT), allows to rotate in a flexible way pairs of basis vectors, and enables precise matching of directionality in each image block, achieving improved coding efficiency. The optimal rotation angles for SDCT can be represented as solution of a suitable rate-distortion (RD) problem. We propose iterative methods to search such solution, and we develop a fully fledged image encoder to practically compare our techniques with other competing transforms. Analytical and numerical results prove that SDCT outperforms both DCT and state-of-the-art directional transforms.

  2. Single-cycle optical pulse shaping

    Science.gov (United States)

    Shverdin, Miroslav Y.

    Observation and control of ultrafast processes such as chemical reactions, biological interactions, and atomic processes is at the heart of the field of ultrafast physics. Decreasing the pulse duration enables probing ever-shorter events. The main contribution of this work is the generation and the characterization of single-cycle optical pulses. When the shape of the electric field consists of a single oscillation under the temporal envelope, we approach a new regime in physics: the electronic motion is now controlled directly by the electric field. We describe a Fourier approach to ultrashort pulse generation which consists of combining discrete, appropriately phased spectral components of a very wide coherent spectrum. In our experiments, all of the sidebands are generated by exciting a Raman transition in a diatomic gas near maximum coherence using two intense pulsed lasers. The resulting molecular motion modulates the two driving lasers to produce over four octaves of bandwidth from vacuum ultraviolet to near infrared. The spectral components are mutually coherent and are spaced by the frequency of the Raman transition. We select a subset of the produced spectrum and electronically adjust the phases of the individual sidebands using a liquid crystal spatial light modulator. The synthesized waveforms are characterized by measuring the UV signal generated by four-wave nonresonant mixing inside a xenon cell.

  3. Encoded Dynamical Recoupling with Shaped Pulses

    Science.gov (United States)

    Li, Yunfan; Lidar, Daniel A.; Pryadko, Leonid P.

    2008-03-01

    Encoded Dynamical Recoupling is a passive error correction techique which can be used to enhance the performance of a quantum error correction code (QECC) against low-frequency component of the thermal bath. The elements of the stabilizer group are used in the decoupling cycle which makes the encoded logic operations fault-tolerant. We studied the effectiveness of this techique both analytically and numerically for several three- and five-qubit codes, with decoupling sequences utilizing either Gaussian or self-refocusing pulse shapes. When logic pulses are intercalated between the decoupling cycles, the technique may be very effective in cancelling constant perturbation terms, but its performance is much weaker against a time-dependent perturbation simulated as a classical correlated noise. The decoupling accuracy can be substantially improved if logic is applied slowly and concurrently with the decoupling, so that a certain adiabaticity condition is satisfied.

  4. Pulse Shape Discrimination in the IGEX Experiment

    CERN Document Server

    González, D; Cebrián, S; García, E; Irastorza, I G; Morales, A; De Solorzano, A O; Puimedón, J; Sarsa, M L; Villar, J A; Aalseth, C E; Brodzinski, R L; Hensley, W K; Miley, H S; Reeves, J H; Kirpichnikov, I V; Klimenko, A A; Osetrov, S B; Smolnikov, A A; Vasenko, A A; Vasilev, S I; Pogosov, V S; Tamanyan, A G

    2003-01-01

    The IGEX experiment has been operating enriched germanium detectors in the Canfranc Underground Laboratory (Spain) in a search for the neutrinoless double decay of 76Ge. The implementation of Pulse Shape Discrimination techniques to reduce the radioactive background is described in detail. This analysis has been applied to a fraction of the IGEX data, leading to a rejection of ~60 % of their background, in the region of interest (from 2 to 2.5 MeV), down to ~0.09 c/(keV kg y).

  5. Evolution of laser pulse shape in a parabolic plasma channel

    Science.gov (United States)

    Kaur, M.; Gupta, D. N.; Suk, H.

    2017-01-01

    During high-intensity laser propagation in a plasma, the group velocity of a laser pulse is subjected to change with the laser intensity due to alteration in refractive index associated with the variation of the nonlinear plasma density. The pulse front sharpened while the back of the pulse broadened due to difference in the group velocity at different parts of the laser pulse. Thus the distortion in the shape of the laser pulse is expected. We present 2D particle-in-cell simulations demonstrating the controlling the shape distortion of a Gaussian laser pulse using a parabolic plasma channel. We show the results of the intensity distribution of laser pulse in a plasma with and without a plasma channel. It has been observed that the plasma channel helps in controlling the laser pulse shape distortion. The understanding of evolution of laser pulse shape may be crucial while applying the parabolic plasma channel for guiding the laser pulse in plasma based accelerators.

  6. Photonuclear Contributions to SNS Pulse Shapes

    Energy Technology Data Exchange (ETDEWEB)

    McClanahan, Tucker C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Iverson, Erik B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallmeier, Franz X. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    cross sections available and the CEM03 physics model within MCNPX 2.6.0 in the simulation, we are able to estimate the impact of photoneutron production on both overall neutron production and delayed neutron production. We find that a significant number of photon-induced neutrons are produced a few milliseconds after the proton pulse, following prompt gamma emission through the capture of neutrons in the slowing-down and thermalization processes. We name these "slowing-down delayed neutrons" to distinguish them from either "activation-delayed neutrons" or "beta-delayed neutrons." The beta-delayed and activation-delayed neutrons were not part of this study, and will be addressed elsewhere. While these other delayed neutron channels result in the time-independent (constant) production of fast neutrons outside of the prompt pulse, the slowing-down delayed neutrons also a ect the shape of the pulses. Although numerically insignificant in most cases, we describe a set of scenarios related to T0-chopper operation in which the slowing-down delayed neutrons may be important.

  7. Ultrabroadband pulse shaping with a push-pull deformable mirror.

    Science.gov (United States)

    Bonora, Stefano; Brida, Daniele; Villoresi, Paolo; Cerullo, Giulio

    2010-10-25

    We report the programmable pulse shaping of ultrabroadband pulses by the use of a novel design of electrostatic deformable mirror based on push pull technology. We shape few-optical pulses from near-IR and visible optical parametric amplifiers, and demonstrate strong-field control of excited state population transfer in a dye molecule.

  8. Cosine-Based Clustering Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Mohammed A. H. Lubbad

    2012-02-01

    Full Text Available Due to many applications need the management of spatial data; clustering large spatial databases is an important problem which tries to find the densely populated regions in the feature space to be used in data mining, knowledge discovery, or efficient information retrieval. A good clustering approach should be efficient and detect clusters of arbitrary shapes. It must be insensitive to the outliers (noise and the order of input data. In this paper Cosine Cluster is proposed based on cosine transformation, which satisfies all the above requirements. Using multi-resolution property of cosine transforms, arbitrary shape clusters can be effectively identified at different degrees of accuracy. Cosine Cluster is also approved to be highly efficient in terms of time complexity. Experimental results on very large data sets are presented, which show the efficiency and effectiveness of the proposed approach compared to other recent clustering methods.

  9. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  10. Tunable pulse-shaping with gated graphene nanoribbons

    DEFF Research Database (Denmark)

    Prokopeva, Ludmila; Emani, Naresh K.; Boltasseva, Alexandra

    2014-01-01

    We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed.......We propose a pulse-shaper made of gated graphene nanoribbons. Simulations demonstrate tunable control over the shapes of transmitted and reflected pulses using the gating bias. Initial fabrication and characterization of graphene elements is also discussed....

  11. Laser pulse spectral shaping based on electro-optic modulation

    Institute of Scientific and Technical Information of China (English)

    Yanhai Wang; Jiangfeng Wang; You'en Jiang; Yan Bao; Xuechun Li; Zunqi Lin

    2008-01-01

    A new spectrum shaping method, based on electro-optic modulation, to alleviate gain narrowing in chirped pulse amplification (CPA) system, is described and numerically simulated. Near-Fourier transform-limited seed laser pulse is chirped linearly through optical stretcher. Then the chirped laser pulse is coupled into integrated waveguide electro-optic modulator driven by an aperture-coupled-stripline (ACSL) electricalwaveform generator, and the pulse shape and amplitude are shaped in time domain. Because of the directrelationship between frequency interval and time interval of the linearly chirped pulse, the laser pulse spectrum is shaped correspondingly. Spectrum-shaping examples are modeled numerically to determine the spectral resolution of this technique. The phase error introduced in this method is also discussed.

  12. Dynamic parabolic pulse generation using temporal shaping of wavelength to time mapped pulses.

    Science.gov (United States)

    Nguyen, Dat; Piracha, Mohammad Umar; Mandridis, Dimitrios; Delfyett, Peter J

    2011-06-20

    Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications. Pulses from a mode-locked laser are temporally stretched and launched into an amplitude modulator, where the drive voltage is designed using the spectral shape of the input pulse and the transfer function of the modulator, resulting in the generation of parabolic pulses. Experimental results of pulse shaping with a pulse train from a mode-locked laser are presented, with a residual error of less than 5%. Moreover, an extinction ratio of 27 dB is achieved, which is ideal for chirped pulse amplification applications.

  13. Temporal resolution beyond the average pulse duration in shaped noisy-pulse transient absorption spectroscopy.

    Science.gov (United States)

    Meyer, Kristina; Müller, Niklas; Liu, Zuoye; Pfeifer, Thomas

    2016-12-20

    In time-resolved spectroscopy, it is a widespread belief that the temporal resolution is determined by the laser pulse duration. Recently, it was observed and shown that partially coherent laser pulses as they are provided by free-electron-laser (FEL) sources offer an alternative route to reach a temporal resolution below the average pulse duration. Here, we demonstrate the generation of partially coherent light in the laboratory like we observe it at FELs. We present the successful implementation of such statistically fluctuating pulses by using the pulse-shaping technique. These pulses exhibit an average pulse duration about 10 times larger than their bandwidth limit. The shaped pulses are then applied to transient-absorption measurements in the dye IR144. Despite the noisy characteristics of the laser pulses, features in the measured absorption spectra occurring on time scales much faster than the average pulse duration are resolved, thus proving the universality of the described noisy-pulse concept.

  14. Concave pulse shaping of a circularly polarized laser pulse from non-uniform overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Min Sup [School of Natural Science, UNIST, BanYeon-Ri 100, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Kulagin, Victor V. [Sternberg Astronomical Institute, Moscow State University, Universitetsky prosp. 13, Moscow, 119992 (Russian Federation); Suk, Hyyong, E-mail: hysuk@gist.ac.kr [Department of Physics and Photon Science, GIST, 123 Cheomdan-gwangiro, Buk-gu, Gwangju, 500-712 (Korea, Republic of)

    2015-03-20

    Pulse shaping of circularly polarized laser pulses in nonuniform overdense plasmas are investigated numerically. Specifically we show by two-dimensional particle-in-cell simulations the generation of a concave pulse front of a circularly polarized, a few tens of petawatt laser pulse from a density-tapered, overdense plasma slab. The concept used for the transverse-directional shaping is the differential transmittance depending on the plasma density, and the laser intensity. For suitable selection of the slab parameters for the concave pulse shaping, we studied numerically the pulse transmittance, which can be used for further parameter design of the pulse shaping. The concavely shaped circularly polarized pulse is expected to add more freedom in controlling the ion-beam characteristics in the RPDA regime. - Highlights: • Laser pulse shaping for a concave front by non-uniform overdense plasma was studied. • Particle-in-cell (PIC) simulations were used for the investigation. • A laser pulse can be shaped by a density-tapered overdense plasma. • The concave and sharp pulse front are useful in many laser–plasma applications. • They are important for ion acceleration, especially in the radiation pressure dominant regime.

  15. Pulse shape adjustment for the SLC damping ring kickers

    Energy Technology Data Exchange (ETDEWEB)

    Mattison, T.; Cassel, R.; Donaldson, A.; Fischer, H.; Gough, D.

    1991-05-01

    The difficulties with damping ring kickers that prevented operation of the SLAC Linear Collider in full multiple bunch mode have been overcome by shaping the current pulse to compensate for imperfections in the magnets. The risetime was improved by a peaking capacitor, with a tunable inductor to provide a locally flat pulse. The pulse was flattened by an adjustable droop inductor. Fine adjustment was provided by pulse forming line tuners driven by stepping motors. Further risetime improvement will be obtained by a saturating ferrite pulse sharpener. 4 refs., 3 figs.

  16. A Compact Nanosecond-Pulse Shaping System Based on Pulse Stacking in Fibres

    Institute of Scientific and Technical Information of China (English)

    SUI Zhan; LIN Hong-Huan; WANG Jian-Jun; ZHAO Hong-Ming; LI Ming-Zhong; QIAN Lie-Jia; ZHU He-Yuan; FAN Dian-Yuan

    2006-01-01

    @@ We demonstrate a compact pulse shaping system based on temporal stacking of pulses in fibres, by which synchronized pulses of ultrashort and nanosecond lasers can be obtained. The system may generate shape-controllable pulses with a fast rise time and high-resolution within a time window of ~2.2 ns by adjusting variable optical attenuators in the 32 fibre channels independently. With the help of optical amplifiers, the system delivers mJ-level pulses with a signal-to-noise ratio of~35 dB.

  17. Pulse shape analysis in cryogenic detectors for rare event search

    Energy Technology Data Exchange (ETDEWEB)

    Hitzler, Ferdinand [Physik Department E15, Technische Universitaet Muenchen, 85748 Muenchen (Germany); Collaboration: CRESST-Collaboration

    2015-07-01

    Based on an established pulse shape analysis with an Artificial Neural Network (ANN) we investigate new network designs. To study this an extended pulse simulation is necessary and is therefore explained in this talk. Furthermore, we introduce ideas to increase the overall performance of the nets. First results concerning the cut efficiency and the purity of the signal with these new ANNs are shown.

  18. Subharmonic emissions from microbubbles: effect of the driving pulse shape.

    Science.gov (United States)

    Biagi, Elena; Breschi, Luca; Vannacci, Enrico; Masotti, Leonardo

    2006-11-01

    The aims of this work are to investigate the response of the ultrasonic contrast agents (UCA) insonified by different arbitrary-shaped pulses at different acoustic pressures and concentration of the contrast agent focusing on subharmonic emission. A transmission setup was developed in order to insonify the contrast agent contained in a measurement chamber. The transmitted ultrasonic signals were generated by an arbitrary wave generator connected to a linear power amplifier able to drive a single-element transducer. The transmitted ultrasonic pulses that passed through the contrast agent-filled chamber were received by a second transducer or a hydrophone aligned with the first one. The radio frequency (RF) signals were acquired by fast echographic multiparameters multi-image novel apparatus (FEMMINA), which is an echographic platform able to acquire ultrasonic signals in a real-time modality. Three sets of ultrasonic signals were devised in order to evaluate subharmonic response of the contrast agent respect with sinusoidal burst signals used as reference pulses. A decreasing up to 30 dB in subharmonic response was detected for a Gaussian-shaped pulse; differences in subharmonic emission up to 21 dB were detected for a composite pulse (two-tone burst) for different acoustic pressures and concentrations. Results from this experimentation demonstrated that the transmitted pulse shape strongly affects subharmonic emission in spite of a second harmonic one. In particular, the smoothness of the initial portion of the shaped pulses can inhibit subharmonic generation from the contrast agents respect with a reference sinusoidal burst signal. It also was shown that subharmonic generation is influenced by the amplitude and the concentration of the contrast agent for each set of the shaped pulses. Subharmonic emissions that derive from a nonlinear mechanism involving nonlinear coupling among different oscillation modes are strongly affected by the shape of the ultrasonic

  19. Drop Shaping by Laser-Pulse Impact

    NARCIS (Netherlands)

    Klein, A.L.; Bouwhuis, W.; Visser, C.W.; Lhuissier, H.E.; Sun, C.; Snoeijer, J.H.; Villermaux, E.; Lohse, D.; Gelderblom, H.

    2015-01-01

    We show how the deposition of laser energy induces propulsion and strong deformation of an absorbing liquid body. Combining high speed with stroboscopic imaging, we observe that a millimeter-sized dyed water drop hit by a millijoule nanosecond laser pulse propels forward at several meters per second

  20. Spatiotemporal vector pulse shaping of femtosecond laser pulses with a multi-pass two-dimensional spatial light modulator.

    Science.gov (United States)

    Esumi, Y; Kabir, M D; Kannari, F

    2009-10-12

    A novel non-interferometric vector pulse-shaping scheme is developed for femtosecond laser pulses using a two-dimensional spatial light modulator (2D-SLM). By utilizing spatiotemporal pulse shaping obtainable by the 2D-SLM, we demonstrate spatiotemporal vector pulse shaping for the first time.

  1. Pulse shape control in a dual cavity laser: numerical modeling

    Science.gov (United States)

    Yashkir, Yuri

    2006-04-01

    We present a numerical model of the laser system for generating a special shape of the pulse: a steep peak at the beginning followed by a long pulse tail. Laser pulses of this nature are required for various applications (laser material processing, optical breakdown spectroscopy, etc.). The laser system consists of two "overlapped" cavities with different round-trip times. The laser crystal, the Q-switching element, the back mirror, and the output coupler are shared. A shorter pulse is generated in a short cavity. A small fraction of this pulse is injected into the long cavity as a seed. It triggers generation of the longer pulse. The output emission from this hybrid laser produces a required pulse shape. Parameters of the laser pulse (ratios of durations and energies of short- and long- pulse components) can be controlled through cavity length and the output coupler reflection. Modelling of the laser system is based on a set of coupled rate equations for dynamic variables of the system: the inverse population in an active laser media and photon densities in coupled cavities. Numerical experiments were provided with typical parameters of a Nd:YAG laser to study the system behaviour for different combinations of parameters.

  2. Pulse-Shaping-Based Nonlinear Microscopy: Development and Applications

    Science.gov (United States)

    Flynn, Daniel Christopher

    The combination of optical microscopy and ultrafast spectroscopy make the spatial characterization of chemical kinetics on the femtosecond time scale possible. Commercially available octave-spanning Ti:Sapphire oscillators with sub-8 fs pulse durations can drive a multitude of nonlinear transitions across a significant portion of the visible spectrum with minimal average power. Unfortunately, dispersion from microscope objectives broadens pulse durations, decreases temporal resolution and lowers the peak intensities required for driving nonlinear transitions. In this dissertation, pulse shaping is used to compress laser pulses after the microscope objective. By using a binary genetic algorithm, pulse-shapes are designed to enable selective two-photon excitation. The pulse-shapes are demonstrated in two-photon fluorescence of live COS-7 cells expressing GFP-variants mAmetrine and tdTomato. The pulse-shaping approach is applied to a new multiphoton fluorescence resonance energy transfer (FRET) stoichiometry method that quantifies donor and acceptor molecules in complex, as well as the ratio of total donor to acceptor molecules. Compared to conventional multi-photon imaging techniques that require laser tuning or multiple laser systems to selectively excite individual fluorophores, the pulse-shaping approach offers rapid selective multifluorphore imaging at biologically relevant time scales. By splitting the laser beam into two beams and building a second pulse shaper, a pulse-shaping-based pump-probe microscope is developed. The technique offers multiple imaging modalities, such as excited state absorption (ESA), ground state bleach (GSB), and stimulated emission (SE), enhancing contrast of structures via their unique quantum pathways without the addition of contrast agents. Pulse-shaping based pump-probe microscopy is demonstrated for endogenous chemical-contrast imaging of red blood cells. In the second section of this dissertation, ultrafast spectroscopic

  3. Femtosecond parabolic pulse shaping in normally dispersive optical fibers.

    Science.gov (United States)

    Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; Díez, Antonio; Andrés, Miguel

    2013-07-29

    Formation of parabolic pulses at femtosecond time scale by means of passive nonlinear reshaping in normally dispersive optical fibers is analyzed. Two approaches are examined and compared: the parabolic waveform formation in transient propagation regime and parabolic waveform formation in the steady-state propagation regime. It is found that both approaches could produce parabolic pulses as short as few hundred femtoseconds applying commercially available fibers, specially designed all-normal dispersion photonic crystal fiber and modern femtosecond lasers for pumping. The ranges of parameters providing parabolic pulse formation at the femtosecond time scale are found depending on the initial pulse duration, chirp and energy. Applicability of different fibers for femtosecond pulse shaping is analyzed. Recommendation for shortest parabolic pulse formation is made based on the analysis presented.

  4. Optical sinc-shaped Nyquist pulses of exceptional quality.

    Science.gov (United States)

    Soto, Marcelo A; Alem, Mehdi; Amin Shoaie, Mohammad; Vedadi, Armand; Brès, Camille-Sophie; Thévenaz, Luc; Schneider, Thomas

    2013-01-01

    Sinc-shaped Nyquist pulses possess a rectangular spectrum, enabling data to be encoded in a minimum spectral bandwidth and satisfying by essence the Nyquist criterion of zero inter-symbol interference (ISI). This property makes them very attractive for communication systems since data transmission rates can be maximized while the bandwidth usage is minimized. However, most of the pulse-shaping methods reported so far have remained rather complex and none has led to ideal sinc pulses. Here a method to produce sinc-shaped Nyquist pulses of very high quality is proposed based on the direct synthesis of a rectangular-shaped and phase-locked frequency comb. The method is highly flexible and can be easily integrated in communication systems, potentially offering a substantial increase in data transmission rates. Further, the high quality and wide tunability of the reported sinc-shaped pulses can also bring benefits to many other fields, such as microwave photonics, light storage and all-optical sampling.

  5. Optical sinc-shaped Nyquist pulses of exceptional quality

    Science.gov (United States)

    Soto, Marcelo A.; Alem, Mehdi; Amin Shoaie, Mohammad; Vedadi, Armand; Brès, Camille-Sophie; Thévenaz, Luc; Schneider, Thomas

    2013-12-01

    Sinc-shaped Nyquist pulses possess a rectangular spectrum, enabling data to be encoded in a minimum spectral bandwidth and satisfying by essence the Nyquist criterion of zero inter-symbol interference (ISI). This property makes them very attractive for communication systems since data transmission rates can be maximized while the bandwidth usage is minimized. However, most of the pulse-shaping methods reported so far have remained rather complex and none has led to ideal sinc pulses. Here a method to produce sinc-shaped Nyquist pulses of very high quality is proposed based on the direct synthesis of a rectangular-shaped and phase-locked frequency comb. The method is highly flexible and can be easily integrated in communication systems, potentially offering a substantial increase in data transmission rates. Further, the high quality and wide tunability of the reported sinc-shaped pulses can also bring benefits to many other fields, such as microwave photonics, light storage and all-optical sampling.

  6. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2012-01-01

    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  7. Influence of amplification on pulse shaping for coherent control applications

    CSIR Research Space (South Africa)

    Du Plessis, A

    2011-07-01

    Full Text Available of using low seed laser powers for amplification of shaped pulses in a typical setup for coherent control experiments. An acousto-optic programmable dispersive filter (Dazzler from FastLite) is used to shape 130 fs pulses before amplification... measured as such) for low and high seed powers. Clearly, at lower seed powers as in (a), the measured trace corresponds to approximately the 4:1 ratio expected, but at high seed powers this ratio changes towards 2:1, indicating the smaller of the two...

  8. Theoretical study on pulse-shaping of Stokes pulse with steep leading edge by two Brillouin amplifiers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel configuration of two Brillouin amplifiers, which contains a main amplifier combined with a reshaping amplifier, is suggested to control pulse shape of Stokes pulses with steep leading edge. Dependences of pulse shapes on several parameters are numerically simulated. By changing the distance between the two amplifiers, the leading edge of amplified pulses can be finely adjusted. Smooth and symmetrical pulses or pulses with slow leading-edge are achieved. Theoretical researches prove that this system is fit for shaping pulses with steep leading edge, especially, for controlling leading edge of pulses. The results provide useful and necessary theoretical basis and guidance for the future experimental research.

  9. The shaping of a national ignition campaign pulsed waveform

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, Gordon, E-mail: brunton2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Erbert, Gaylen; Browning, Don; Tse, Eddy [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer NIF pulse is generated using an electro-optic modulator to vary the intensity of light. Black-Right-Pointing-Pointer Electrical impulse generators, each with a 300 ps pulse Gaussian signal are utilized. Black-Right-Pointing-Pointer Adjusting the impulse amplitude for 140 impulses, produces a pulsed waveform. Black-Right-Pointing-Pointer System auto shapes 48 waveforms with to 275:1 contrast ratio with 3% absolute error. - Abstract: The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is a stadium-sized facility containing a 192 beam, 1.8 MJ, 500 TW ultraviolet laser system used for inertial confinement fusion research. For each experimental shot, NIF must deliver a precise amount of laser power on the target for successful and efficient target ignition, and these characteristics vary depending on the physics of the particular campaign. The precise temporal shape, energy and timing characteristics of a pulsed waveform target interaction are key components in meeting the experimental goals. Each NIF pulse is generated in the Master Oscillator Room (MOR) using an electro-optic modulator to vary the intensity of light in response to an electrical input. The electrical drive signal to the modulator is produced using a unique, high-performance arbitrary waveform generator (AWG). This AWG sums the output of 140 electrical impulse generators, each producing a 300 ps pulse width Gaussian signal separated in time by 250 ps. By adjusting the amplitudes and summing the 140 impulses, a pulsed waveform can be sculpted from a seed 45 ns square pulse. Using software algorithms written for NIF's Integrated Computer Control System (ICCS), the system is capable of autonomously shaping 48 unique experimental pulsed waveforms for each shot that have demonstrated up to 275:1 contrast ratio with {+-}3% absolute error averaged over any 2 ns interval, meeting the stringent pulse requirements needed to achieve ignition

  10. Current pulse shaping of the load current on PTS

    Directory of Open Access Journals (Sweden)

    Minghe Xia

    2016-02-01

    Full Text Available The typical rise time of PTS machine is ∼110 ns with about 10 MA peak current under short pulse mode when all 24 modules discharge simultaneously. By distributing the trigger times of 12 laser beams logically and adjusting the statues of the pulse output switches, longer rise-time pulse can be obtained on the PTS facility. Based on the required pulse shape, whole circuit simulations will be used to calculate the trigger times of each laser triggering gas switch and the status of the pulse output switches. The rise time of the current is determined by the time difference between the first and last trigged laser triggering gas switches. In order to trigger the laser triggering gas switch, sufficient laser power is needed to be sent into the gap of the gas switches. The gas pressure and voltage difference on the two electrodes of the gas switches also affect the triggering of the gas switches, and the voltage added on the gas switch is determined by its transition time. Traditionally the trigger time difference should be less than the transition time of the two neighboring modules. A new simulation model of PTS shows one can break this transition time limits. Series of current pulse shaping experiments have been investigated on the PTS (Primary Test Stand. As results, more than 5 MA peak current were successfully achieved on the load with a rise time of 600 ns. This study and experiments of the pulse shaping on PTS demonstrate the adaptable ability of the PTS for offering different waveform of mega ampere current pulse for different research purpose.

  11. Pulse shape discrimination in non-aromatic plastics

    Energy Technology Data Exchange (ETDEWEB)

    Paul Martinez, H.; Pawelczak, Iwona; Glenn, Andrew M.; Leslie Carman, M.; Zaitseva, Natalia; Payne, Stephen

    2015-01-21

    Recently it has been demonstrated that plastic scintillators have the ability to distinguish neutrons from gamma rays by way of pulse shape discrimination (PSD). This discovery has lead to new materials and new capabilities. Here we report our work with the effects of aromatic, non-aromatic, and mixed aromatic/non-aromatic matrices have on the performance of PSD plastic scintillators.

  12. Partial discharge pulse shape recognition using an inductive loop sensor

    Science.gov (United States)

    Martínez-Tarifa, J. M.; Robles, G.; Rojas-Moreno, M. V.; Sanz-Feito, J.

    2010-10-01

    Partial discharges (PD) are a clear ageing agent on insulating materials used in high-voltage electrical machines and cables. For this reason, there is increasing interest in measuring this phenomenon in an effort to forecast unexpected failures in electrical equipment. In order to focus on harmful discharges, PD pulse shape analysis is being used as an insulation defect identification technique. In this paper, a simple, inexpensive and high-frequency inductive loop sensor will be used to detect and acquire PD pulses. Several measurements will be made on some controlled test cell geometries in order to characterize PD pulse shapes for different discharge sources. The sensor identification capability has been checked in an insulation system where two simultaneous PD sources were active.

  13. Digital pulse-shape processing for CdTe detectors

    CERN Document Server

    Bargholtz, C; Maartensson, L; Wachtmeister, S

    2001-01-01

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  14. Pulse-shaping based two-photon FRET stoichiometry.

    Science.gov (United States)

    Flynn, Daniel C; Bhagwat, Amar R; Brenner, Meredith H; Núñez, Marcos F; Mork, Briana E; Cai, Dawen; Swanson, Joel A; Ogilvie, Jennifer P

    2015-02-09

    Förster Resonance Energy Transfer (FRET) based measurements that calculate the stoichiometry of intermolecular interactions in living cells have recently been demonstrated, where the technique utilizes selective one-photon excitation of donor and acceptor fluorophores to isolate the pure FRET signal. Here, we present work towards extending this FRET stoichiometry method to employ two-photon excitation using a pulse-shaping methodology. In pulse-shaping, frequency-dependent phases are applied to a broadband femtosecond laser pulse to tailor the two-photon excitation conditions to preferentially excite donor and acceptor fluorophores. We have also generalized the existing stoichiometry theory to account for additional cross-talk terms that are non-vanishing under two-photon excitation conditions. Using the generalized theory we demonstrate two-photon FRET stoichiometry in live COS-7 cells expressing fluorescent proteins mAmetrine as the donor and tdTomato as the acceptor.

  15. Neutron and Gamma Ray Pulse Shape Discrimination with Polyvinyltoluene

    Energy Technology Data Exchange (ETDEWEB)

    Lintereur, Azaree T.; Ely, James H.; Stave, Jean A.; McDonald, Benjamin S.

    2012-03-01

    The goal of this was research effort was to test the ability of two poly vinyltoluene research samples to produce recordable, distinguishable signals in response to gamma rays and neutrons. Pulse shape discrimination was performed to identify if the signal was generated by a gamma ray or a neutron. A standard figure of merit for pulse shape discrimination was used to quantify the gamma-neutron pulse separation. Measurements were made with gamma and neutron sources with and without shielding. The best figure of merit obtained was 1.77; this figure of merit was achieved with the first sample in response to an un-moderated 252Cf source shielded with 5.08 cm of lead.

  16. Shaping and timing gradient pulses to reduce MRI acoustic noise.

    Science.gov (United States)

    Segbers, Marcel; Rizzo Sierra, Carlos V; Duifhuis, Hendrikus; Hoogduin, Johannes M

    2010-08-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.

  17. Laser pulse-shape dependence of Compton scattering

    CERN Document Server

    Titov, Alexander I; Shibata, Takuya; Hosaka, Atsushi; Takabe, Hideaki

    2014-01-01

    Compton scattering of short and ultra short (sub-cycle) laser pulses off mildly relativistic electrons is considered within a QED framework. The temporal shape of the pulse is essential for the differential cross section as a function of the energy of the scattered photon at fixed observation angle. The partly integrated cross section is sensitive to the non-linear dynamics resulting in a large enhancement of the cross section for short and, in particular, for ultra-short flat-top pulse envelopes which can reach several orders of magnitude, as compared with the case of a long pulse. Such effects can be studied experimentally and must be taken into account in Monte-Carlo/transport simulations of %$e^+e^-$ pair production in the interaction of electrons and photons in a strong laser field.

  18. Spectrotemporal shaping of seeded free-electron laser pulses.

    Science.gov (United States)

    Gauthier, David; Ribič, Primož Rebernik; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Bojanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît; Penco, Giuseppe

    2015-09-11

    We demonstrate the ability to control and shape the spectrotemporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectrotemporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows us to retrieve the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility of tailoring the spectrotemporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to x-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  19. Laboratory Transferability of Optimally Shaped Laser Pulses for Quantum Control

    CERN Document Server

    Tibbetts, Katharine Moore; Rabitz, Herschel

    2013-01-01

    Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents", that achieve a wide variety of objectives. For many practical applications, an important criterion is that a particular photonic reagent prescription still produce a good, if not optimal, target objective yield when transferred to a different system or laboratory, {even if the same shaped pulse profile cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments.} First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found...

  20. Scintillation time dependence and pulse shape discrimination in liquid argon

    CERN Document Server

    Lippincott, W H; Gastler, D; Hime, A; Kearns, E; McKinsey, D N; Nikkel, J A; Stonehill, L C

    2008-01-01

    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background and statistics-limited level of electronic recoil contamination to be $7.6\\times10^{-7}$ between 60 and 128 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 72 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination using the measured scintillation time dependence and predict the sensitivity to WIMP-nucleon scattering in three configurations of a liquid argon dark matter detector.

  1. Preliminary results of Digital Pulse Shape Acquisition from Chimera

    Energy Technology Data Exchange (ETDEWEB)

    Alderighi, D.M.; Sechi, G. [INFN Milano and IASF, CNR, Milano (France); Anzalone, A.; Cavallaro, S.; Giustolisi, F.; Laguidara, E.; Lanzalone, G.; Porto, F. [Catania Univ., LNS and Dipartimento di Fisica (France); Bassini, R.; Boiano, C.; Guazzoni, P.; Russo, S.; Sassi, M.; Zetta, L. [Milano Univ., INFN and Dipartimento di Fisica (Italy); Cardella, G.; Defilippo, S.E.; Lanzano, G.; Paganod, A.; Papa, M.; Pirrone, S.; Politi, G. [Catania Univ., INFN and Dipartimento di Fisica (Italy); Geraci, E. [Bologna Univ., INFN and Dipartimento di Fisica (Italy)

    2003-07-01

    A 100 MS/s 14-bit Sampling Analog-to-Digital converter has been used to perform digital pulse-shape acquisition of signals collected from CHIMERA telescopes. The signals from a typical CHIMERA detection cell have been collected using both a standard CHIMERA electronic chain up to the amplifier, and a very simple analog front end, basically reduced to the preamplifier. The preliminary on-beam results are presented. (authors)

  2. Pulse-Shape Discrimination for Low-Background Proportional Counting

    Science.gov (United States)

    Aalseth, Craig

    2011-10-01

    Digital pulse-shape discrimination (PSD) is used to improve measurement sensitivity for internal-source gas proportional counters. Because the design of these detectors can be physically simple, they are well-suited for low-background applications where the radiopurity of detector materials must be stringently controlled. After mitigating dominant backgrounds (cosmic rays, external gamma-rays, radioactivity in materials), remaining background events frequently do not arise from ionization of the proportional counter gas. Various PSD methods have exploited the resulting pulse-shape differences. More sophisticated methods can offer better discrimination but may lead to more difficult calibration between model and detector. Variations between modeled and experimental shapes can limit the discriminating power achieved. This work addresses this difficulty by generating a template shape from each individual sample measurement of interest, a ``self-calibrating'' template. Differences in event topology can also cause differences in pulse shape. In this work the temporal region analyzed is limited to maximize background discrimination while avoiding unwanted sensitivity to event topology. Low-background measurements of tritium, carbon-14, argon-37, and argon-39 are currently being developed at the Pacific Northwest National Laboratory with detectors employing radiopure materials developed for neutrinoless double-beta decay and dark matter searches. The application of self-calibrating template PSD to measurement of these radioisotopes, along with initial measurement results, is described. Applications such as nuclear treaty verification, elucidating the environmental carbon cycle, and the assay of low-background materials for next-generation nuclear physics experiments are presented.

  3. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Science.gov (United States)

    Pechousek, Jiri; Konecny, Daniel; Novak, Petr; Kouril, Lukas; Kohout, Pavel; Celiktas, Cuneyt; Vujtek, Milan

    2016-08-01

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  4. Software emulator of nuclear pulse generation with different pulse shapes and pile-up

    Energy Technology Data Exchange (ETDEWEB)

    Pechousek, Jiri, E-mail: jiri.pechousek@upol.cz [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Konecny, Daniel [Department of Optics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 77 146 Olomouc (Czech Republic); Novak, Petr; Kouril, Lukas; Kohout, Pavel [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Celiktas, Cuneyt [Department of Physics, Faculty of Science, Ege University, Bornova, Izmir (Turkey); Vujtek, Milan [Department of Experimental Physics, Faculty of Science, Palacky University, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic)

    2016-08-21

    The optimal detection of output signals from nuclear counting devices represents one of the key physical factors that govern accuracy and experimental reproducibility. In this context, the fine calibration of the detector under diverse experimental scenarios, although time costly, is necessary. However this process can be rendered easier with the use of systems that work in lieu of emulators. In this report we describe an innovative programmable pulse generator device capable to emulate the scintillation detector signals, in a way to mimic the detector performances under a variety of experimental conditions. The emulator generates a defined number of pulses, with a given shape and amplitude in the form of a sampled detector signal. The emulator output is then used off-line by a spectrometric system in order to set up its optimal performance. Three types of pulse shapes are produced by our device, with the possibility to add noise and pulse pile-up effects into the signal. The efficiency of the pulse detection, pile-up rejection and/or correction, together with the dead-time of the system, are therein analyzed through the use of some specific algorithms for pulse processing, and the results obtained validate the beneficial use of emulators for the accurate calibration process of spectrometric systems.

  5. Shaped pulse electric-field construction and interferometric characterization: The SPECIFIC method

    CERN Document Server

    Coughlan, Matthew A; Weber, Stefan M; Bowlan, Pamela; Trebino, Rick; Levis, Robert J

    2009-01-01

    A method is reported for creating, generating, and measuring parametrically shaped pulses for time-bandwidth product >>5, which consists of a parametric pulse-shaping algorithm, a spatial light modulation system and a single shot interferometric characterization scheme (SEA TADPOLE) . The utilization of these tools marks the inception of a new method called SPECIFIC, shaped-pulse electric-field construction and interferometric characterization, capable of producing complex shaped laser pulses for coherent control experiments.

  6. Pulse shapes and surface effects in segmented germanium detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Daniel

    2010-03-24

    It is well established that at least two neutrinos are massive. The absolute neutrino mass scale and the neutrino hierarchy are still unknown. In addition, it is not known whether the neutrino is a Dirac or a Majorana particle. The GERmanium Detector Array (GERDA) will be used to search for neutrinoless double beta decay of {sup 76}Ge. The discovery of this decay could help to answer the open questions. In the GERDA experiment, germanium detectors enriched in the isotope {sup 76}Ge are used as source and detector at the same time. The experiment is planned in two phases. In the first, phase existing detectors are deployed. In the second phase, additional detectors will be added. These detectors can be segmented. A low background index around the Q value of the decay is important to maximize the sensitivity of the experiment. This can be achieved through anti-coincidences between segments and through pulse shape analysis. The background index due to radioactive decays in the detector strings and the detectors themselves was estimated, using Monte Carlo simulations for a nominal GERDA Phase II array with 18-fold segmented germanium detectors. A pulse shape simulation package was developed for segmented high-purity germanium detectors. The pulse shape simulation was validated with data taken with an 19-fold segmented high-purity germanium detector. The main part of the detector is 18-fold segmented, 6-fold in the azimuthal angle and 3-fold in the height. A 19th segment of 5mm thickness was created on the top surface of the detector. The detector was characterized and events with energy deposited in the top segment were studied in detail. It was found that the metalization close to the end of the detector is very important with respect to the length of the of the pulses observed. In addition indications for n-type and p-type surface channels were found. (orig.)

  7. On Local Integrated Cosine Functions

    Institute of Scientific and Technical Information of China (English)

    SHI Jin-e; ZHENG Wei-xing

    2001-01-01

    Suppose X is a Banach space, and A is a closed operator. We give some equivalent conditions between A generating a local integrated cosine functions and the existence of solutions of abstract Cauchy problems.

  8. Electron - nuclear recoil discrimination by pulse shape analysis

    CERN Document Server

    Elbs, J; Collin, E; Godfrin, H; Suvorova, O

    2007-01-01

    In the framework of the ``ULTIMA'' project, we use ultra cold superfluid 3He bolometers for the direct detection of single particle events, aimed for a future use as a dark matter detector. One parameter of the pulse shape observed after such an event is the thermalization time constant. Until now it was believed that this parameter only depends on geometrical factors and superfluid 3He properties, and that it is independent of the nature of the incident particles. In this report we show new results which demonstrate that a difference for muon- and neutron events, as well as events simulated by heater pulses exist. The possibility to use this difference for event discrimination in a future dark matter detector will be discussed.

  9. High extinction amplitude modulation in ultrashort pulse shaping

    CERN Document Server

    Lin, Yen-Wei

    2016-01-01

    We explored the issues related to the resolution and the modulation extinction when filtering the spectrum of a UV femtosecond laser with a standard ultrashort pulse shaper. We have learned that a higher pulse shaping resolution often requires a larger working beam size or a higher density grating for greater dispersion. However, these approaches also introduce more optical errors and degrade the extinction. In this work, we examined specifics of each component to determine the best configuration of our spectral filtering setup. As a proof-of-concept demonstration, we utilized elements available as standard products and achieved 100 GHz filtering resolution with high extinction at the UV-A wavelength, which is superb in this wavelength range. The high extinction spectral filtering is especially important while modifying a broadband laser for the optical control of molecule's internal state.

  10. Pulse-shape discrimination in the IGEX experiment

    Science.gov (United States)

    González, D.; Morales, J.; Cebrián, S.; García, E.; Irastorza, I. G.; Morales, A.; Ortiz de Solórzano, A.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Aalseth, C. E.; Avignone, F. T.; Brodzinski, R. L.; Hensley, W. K.; Miley, H. S.; Reeves, J. H.; Kirpichnikov, I. V.; Vasenko, A. A.; Klimenko, A. A.; Osetrov, S. B.; Smolnikov, A. A.; Vasiliev, S. I.; Pogosov, V. S.; Tamanyan, A. G.

    2003-12-01

    The IGEX experiment has been operating enriched germanium detectors in the Canfranc Underground Laboratory (Spain) in a search for the neutrinoless double decay of 76Ge. The implementation of pulse-shape discrimination techniques to reduce the radioactive background is described in detail. This analysis has been applied to a fraction of the IGEX data, leading to a rejection of ˜60% of their background, in the region of interest (from 2 to 2.5 MeV), down to ˜0.09 c/ keV kg yr .

  11. Pulse-shape discrimination in the IGEX experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, D.; Morales, J. E-mail: jmorales@posta.unizar.es; Cebrian, S.; Garcia, E.; Irastorza, I.G.; Morales, A.; Ortiz de Solorzano, A.; Puimedon, J.; Sarsa, M.L.; Villar, J.A.; Aalseth, C.E.; Avignone, F.T.; Brodzinski, R.L.; Hensley, W.K.; Miley, H.S.; Reeves, J.H.; Kirpichnikov, I.V.; Vasenko, A.A.; Klimenko, A.A.; Osetrov, S.B.; Smolnikov, A.A.; Vasiliev, S.I.; Pogosov, V.S.; Tamanyan, A.G

    2003-12-11

    The IGEX experiment has been operating enriched germanium detectors in the Canfranc Underground Laboratory (Spain) in a search for the neutrinoless double decay of {sup 76}Ge. The implementation of pulse-shape discrimination techniques to reduce the radioactive background is described in detail. This analysis has been applied to a fraction of the IGEX data, leading to a rejection of {approx}60% of their background, in the region of interest (from 2 to 2.5 MeV), down to {approx}0.09 c/keV kg yr.

  12. Polystyrene-based scintillator with pulse-shape discrimination capability

    Energy Technology Data Exchange (ETDEWEB)

    Zhmurin, P.N.; Lebedev, V.N.; Titskaya, V.D.; Adadurov, A.F., E-mail: adadurov@isma.kharkov.ua; Elyseev, D.A.; Pereymak, V.N.

    2014-10-11

    Polystyrene-based scintillators with 2-phenyl-5-(4-tert-butylephenyl)-1,3,4-oxadiazole (tert-BuPPD) or 2,5-di-(3-methylphenyl)-1,3,4 oxadiazole (m-DMePPD) are proposed for pulse-shape n/γ-discrimination. These scintillators have improved mechanical properties, long operational time and high n/γ discrimination parameter – figure of merit (1.49 and 1.81 in a wide energy region), so they can be used as detectors of fast neutrons in the presence of gamma radiation background.

  13. Cosine-Gaussian Schell-model sources.

    Science.gov (United States)

    Mei, Zhangrong; Korotkova, Olga

    2013-07-15

    We introduce a new class of partially coherent sources of Schell type with cosine-Gaussian spectral degree of coherence and confirm that such sources are physically genuine. Further, we derive the expression for the cross-spectral density function of a beam generated by the novel source propagating in free space and analyze the evolution of the spectral density and the spectral degree of coherence. It is shown that at sufficiently large distances from the source the degree of coherence of the propagating beam assumes Gaussian shape while the spectral density takes on the dark-hollow profile.

  14. Triangle bipolar pulse shaping and pileup correction based on DSP

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Akbar-ashrafi, Nafiseh; Boghrati, Behzad [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2011-02-11

    Programmable Digital Signal Processing (DSP) microprocessors are capable of doing complex discrete signal processing algorithms with clock rates above 50 MHz. This combined with their low expense, ease of use and selected dedicated hardware make them an ideal option for spectrometer data acquisition systems. For this generation of spectrometers, functions that are typically performed in dedicated circuits, or offline, are being migrated to the field programmable gate array (FPGA). This will not only reduce the electronics, but the features of modern FPGAs can be utilized to add considerable signal processing power to produce higher resolution spectra. In this paper we report on an all-digital triangle bipolar pulse shaping and pileup correction algorithm that is being developed for the DSP. The pileup mitigation algorithm will allow the spectrometers to run at higher count rates or with multiple sources without imposing large data losses due to the overlapping of scintillation signals. This correction technique utilizes a very narrow bipolar triangle digital pulse shaping algorithm to extract energy information for most pileup events.

  15. Effect of Initial Chirping and Pulse Shape on 10 Gb/s Optical Pulse Transmission in Birefringent Nonlinear Fibers

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Numerical method to solve the problem related with theinteractive effect of dispersion (both chromatic dispersion and polarization mode dispersion) and nonlinearity on optical pulse transmission is present. Evolutions of pulses with various initial chirping and shape at bit-rate of 10 Gb/s are simulated and compared. Gaussian pulse with appropriate prechirping is propitious for high bit-rate transmission.

  16. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew J. (R.J. Lee Group, Inc., Monroeville, PA); Faraone, Kevin M. (BWX Technologies, Inc., Lynchburg, VA); Norris, Jerome T.

    2007-10-01

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  17. Pulse-Shape Control in an All Fiber Multi-Wavelength Doppler Lidar

    Directory of Open Access Journals (Sweden)

    Töws Albert

    2016-01-01

    Full Text Available Pulse distortion during amplification in fiber amplifiers due to gain saturation and cross talk in a multi-wavelength Doppler lidar are discussed. We present a feedback control technique which is capable of adjusting any predefined pulse shape and show some examples of feedback controlled pulse shapes.

  18. Sines and Cosines. Part 1 of 3

    Science.gov (United States)

    Apostol, Tom M. (Editor)

    1992-01-01

    Applying the concept of similarities, the mathematical principles of circular motion and sine and cosine waves are presented utilizing both film footage and computer animation in this 'Project Mathematics' series video. Concepts presented include: the symmetry of sine waves; the cosine (complementary sine) and cosine waves; the use of sines and cosines on coordinate systems; the relationship they have to each other; the definitions and uses of periodic waves, square waves, sawtooth waves; the Gibbs phenomena; the use of sines and cosines as ratios; and the terminology related to sines and cosines (frequency, overtone, octave, intensity, and amplitude).

  19. Synthesis of picosecond pulses by spectral compression and shaping of femtosecond pulses in engineered quadratic nonlinear media.

    Science.gov (United States)

    Marangoni, M; Brida, D; Conforti, M; Capobianco, A D; Manzoni, C; Baronio, F; Nalesso, G F; De Angelis, C; Ramponi, R; Cerullo, G

    2009-02-01

    Narrow-bandwidth picosecond pulses of predetermined spectral and temporal shapes are generated with high efficiency by frequency conversion of femtosecond pulses in lithium tantalate crystals with engineered quasi-phase-matching structures. We give examples of the synthesis of Gaussian and super-Gaussian picosecond pulses and also of a pair of synchronized phase-coherent picosecond pulses with a predetermined carrier-frequency difference.

  20. Pulse shape discrimination for Gerda Phase I data

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Bode, T.; Budjas, D.; Janicsko Csathy, J.; Lazzaro, A.; Schoenert, S. [Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Allardt, M.; Barros, N.; Domula, A.; Lehnert, B.; Wester, T.; Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Andreotti, E. [Institute for Reference Materials and Measurements, Geel (Belgium); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Bakalyarov, A.M.; Belyaev, S.T.; Lebedev, V.I.; Zhukov, S.V. [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Balata, M.; Ioannucci, L.; Junker, M.; Laubenstein, M.; Macolino, C.; Nisi, S.; Pandola, L.; Zavarise, P. [LNGS, INFN Laboratori Nazionali del Gran Sasso, Assergi (Italy); Barabanov, I.; Bezrukov, L.; Gurentsov, V.; Inzhechik, L.V.; Kuzminov, V.V.; Lubsandorzhiev, B.; Yanovich, E. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Barnabe Heider, M. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Baudis, L.; Benato, G.; Ferella, A.; Guthikonda, K.K.; Tarka, M.; Walter, M. [Physik Institut der Universitaet Zuerich, Zuerich (Switzerland); Bauer, C.; Hampel, W.; Heisel, M.; Heusser, G.; Hofmann, W.; Kihm, T.; Kirsch, A.; Knoepfle, K.T.; Lindner, M.; Lubashevskiy, A.; Machado, A.A.; Maneschg, W.; Salathe, M.; Schreiner, J.; Schwingenheuer, B.; Simgen, H.; Smolnikov, A.; Strecker, H.; Wagner, V.; Wegmann, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Becerici-Schmidt, N.; Caldwell, A.; Cossavella, F.; Liao, H.Y.; Liu, X.; Majorovits, B.; O' Shaughnessy, C.; Schulz, O.; Volynets, O. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Bellotti, E.; Pessina, G. [Universita Milano Bicocca, Dipartimento di Fisica, Milano (Italy); INFN Milano Bicocca, Milano (Italy); Belogurov, S.; Kornoukhov, V.N. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bettini, A.; Brugnera, R.; Garfagnini, A.; Hemmer, S.; Sada, C. [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (Italy); INFN Padova, Padova (Italy); Brudanin, V.; Egorov, V.; Kochetov, O.; Nemchenok, I.; Rumyantseva, N.; Shevchik, E.; Zhitnikov, I.; Zinatulina, D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Cattadori, C.; Gotti, C. [INFN Milano Bicocca, Milano (Italy); Chernogorov, A.; Demidova, E.V.; Kirpichnikov, I.V.; Vasenko, A.A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Falkenstein, R.; Freund, K.; Grabmayr, P.; Hegai, A.; Jochum, J.; Schmitt, C. [Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (Germany); Frodyma, N.; Misiaszek, M.; Pelczar, K.; Wojcik, M.; Zuzel, G. [Jagiellonian University, Institute of Physics, Cracow (Poland); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); Gusev, K. [Joint Institute for Nuclear Research, Dubna (Russian Federation); National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation); Technische Universitaet Muenchen, Physik Department and Excellence Cluster Universe, Muenchen (Germany); Hult, M.; Lutter, G. [Institute for Reference Materials and Measurements, Geel (Belgium); Klimenko, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lippi, I.; Stanco, L.; Ur, C.A. [INFN Padova, Padova (Italy); Pullia, A.; Riboldi, S. [Universita degli Studi di Milano (IT); INFN Milano, Dipartimento di Fisica, Milano (IT); Shirchenko, M. [Joint Institute for Nuclear Research, Dubna (RU); National Research Centre ' ' Kurchatov Institute' ' , Moscow (RU); Sturm, K. von [Universita di Padova, Dipartimento di Fisica e Astronomia, Padova (IT); INFN Padova, Padova (IT); Eberhard Karls Universitaet Tuebingen, Physikalisches Institut, Tuebingen (DE)

    2013-10-15

    The Gerda experiment located at the Laboratori Nazionali del Gran Sasso of INFN searches for neutrinoless double beta (0{nu}{beta}{beta}) decay of {sup 76}Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched {sup 76}Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV {gamma} rays from {sup 208}Tl decays as well as two-neutrino double beta (2{nu}{beta}{beta}) decays of {sup 76}Ge are used as proxies for 0{nu}{beta}{beta} decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92{+-}0.02 of signal-like events while about 80 % of the background events at Q{sub {beta}{beta}} =2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0 {nu}{beta}{beta} decay. It retains 90 % of DEP events and rejects about half of the events around Q{sub {beta}{beta}}. The 2 {nu}{beta}{beta} events have an efficiency of 0.85 {+-}0.02 and the one for 0 {nu}{beta}{beta} decays is estimated to be 0.90{sup +0.05}{sub -0.09}. A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90 % of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2{nu}{beta}{beta} decays. (orig.)

  1. Steerable Discrete Cosine Transform

    OpenAIRE

    Magli, Enrico; Fracastoro, Giulia

    2015-01-01

    Block-based separable transforms tend to be inefficient when blocks contain arbitrarily shaped discontinuities. For this reason, transforms incorporating directional information are an appealing alternative. In this paper, we propose a new approach to this problem, designing a new transform that can be steered in any chosen direction and that is defined in a rigorous mathematical way. This new steerable DCT allows to rotate in a flexible way pairs of basis vectors, enabling precise matching o...

  2. Pulse shape discrimination in helium-4 scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Ryan P., E-mail: rpkelley@ufl.edu; Enqvist, Andreas; Jordan, Kelly A.

    2016-09-11

    Three algorithms were investigated for discriminating between neutrons and gamma rays in a pressurized {sup 4}He gas fast neutron detector: charge comparison, weighted integration, and neutron-gamma model analysis (NGMA). For each algorithm, a comprehensive pulse shape discrimination study was conducted using time-of-flight measurements, receiver operator characteristic curves, figure of merit performance measures, and a comparison of performance between {sup 252}Cf and PuBe mixed neutron/gamma sources. The NGMA method was found to have the best overall performance by both the figure of merit and the receiver operator characteristic curve. The results also illustrated the high gamma rejection efficiency of these detectors, which is desirable in a variety of neutron monitoring applications.

  3. Pulse shape method for the Chimera silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pagano, A.; Arena, N.; Cardella, G.; D' Andrea, M.; Filippo, E. de; Fichera, F.; Giudice, N.; Guardone, N.; Grimaldi, A.; Nicotra, D.; Papa, M.; Pirrone, S.; Politi, G.; Rapicavoli, C.; Rizza, G.; Russotto, P.; Sacca, G.; Urso, S.; Lanzano, G. [Catania Univ., INFN Catania and Dipartimento di Fisica e Astronomia (Italy); Alderighi, M.; Sechi, G. [INFN Milano and Istituto di Fisica Cosmica CNR, Milano (Italy); Amorini, F.; Anzalone, A.; Cali, C.; Campagna, V.; Cavallaro, S.; Di Stefano, A.; Giustolisi, F.; La Guidara, E.; Lanzalone, G.; Maiolino, C.; Porto, F.; Rizzo, F.; Salamone, S. [Catania Univ., INFN-LNS and Dipartimento di Fisica e Astronomia (Italy); Auditore, L.; Trifiro, A.; Trimarchi, M. [Messina Univ., INFN and Dipartimento di Fisica (Italy); Bassini, R.; Boiano, C.; Guazzoni, P.; Russo, S.; Sassi, M.; Zetta, L. [Milano Univ., INFN Milano and Dipartimento di Fisica (Italy); Blicharska, J.; Grzeszczuk, A. [Silesia Univ., Institute of Physics, Katowice (Poland); Chatterjee, M.B. [Saha Institute Of Nuclear Physics, Kolkata (India); Geraci, E.; Zipper, W. [Bologna Univ., INFN Bologna and Dipartimento di Fisica (Italy); Rosato, E.; Vigilante, M. [Napoli Univ., INFN and Dipartimento di Fisica (Italy); Schroder, W.U.; T-ke, J. [Rochester Univ., Dept. of Chemistry, Rochester, N.Y. (United States)

    2003-07-01

    Since January 2003, the 4{pi} CHIMERA (Charged Heavy Ions Mass and Energy Resolving Array) detector in its full configuration has successfully been operated at the 'Catania Laboratori Nazionali del Sud' (LNS) accelerator facility. The detector has been used with a variety of beams from the Superconducting Cyclotron in heavy-ion reaction studies at Fermi bombarding energies. Future experiments with a focus on isospin physics at Fermi energies, planned for both primary and less intense secondary particle beams, suggest the development of new and more versatile experimental particle identification methods. Recent achievements in implementing specific pulse shape particle identification methods for CHIMERA silicon detectors are reported. They suggest an upgrade of the present charge and mass identification capability of CHIMERA by a simple extension of the method. (authors)

  4. Pulse-shape discrimination scintillators for homeland security applications

    Science.gov (United States)

    Ellis, Mark E.; Duroe, Kirk; Kendall, Paul A.

    2016-09-01

    An extensive programme of research has been conducted for scintillation liquids and plastics capable of neutron-gamma discrimination for deployment in future passive and active Homeland Security systems to provide protection against radiological and nuclear threats. The more established detection materials such as EJ-301 and EJ-309 are compared with novel materials such as EJ-299-33 and p-terphenyl. This research also explores the benefits that can be gained from improvements in the analogue-to-digital sampling rate and sample bit resolution. Results are presented on the Pulse Shape Discrimination performance of various detector and data acquisition combinations and how optimum configurations from these studies have been developed into field-ready detector arrays. Early results from application-specific experimental configurations of multi-element detector arrays are presented.

  5. Cosine tuning minimizes motor errors.

    Science.gov (United States)

    Todorov, Emanuel

    2002-06-01

    Cosine tuning is ubiquitous in the motor system, yet a satisfying explanation of its origin is lacking. Here we argue that cosine tuning minimizes expected errors in force production, which makes it a natural choice for activating muscles and neurons in the final stages of motor processing. Our results are based on the empirically observed scaling of neuromotor noise, whose standard deviation is a linear function of the mean. Such scaling predicts a reduction of net force errors when redundant actuators pull in the same direction. We confirm this prediction by comparing forces produced with one versus two hands and generalize it across directions. Under the resulting neuromotor noise model, we prove that the optimal activation profile is a (possibly truncated) cosine--for arbitrary dimensionality of the workspace, distribution of force directions, correlated or uncorrelated noise, with or without a separate cocontraction command. The model predicts a negative force bias, truncated cosine tuning at low muscle cocontraction levels, and misalignment of preferred directions and lines of action for nonuniform muscle distributions. All predictions are supported by experimental data.

  6. Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis

    CERN Document Server

    Yan, Daikang; Gades, Lisa; Jacobsen, Chris; Madden, Timothy; Miceli, Antonino

    2016-01-01

    We present a method using principal component analysis (PCA) to process x-ray pulses with severe shape variation where traditional optimal filter methods fail. We demonstrate that PCA is able to noise-filter and extract energy information from x-ray pulses despite their different shapes. We apply this method to a dataset from an x-ray thermal kinetic inductance detector which has severe pulse shape variation arising from position-dependent absorption.

  7. Advantages of solitonic shape pulses for full-optical wireless communication links

    Institute of Scientific and Technical Information of China (English)

    José María Garrido Balsells; Antonio Jurado-Navas; Miguel Castillo-Vázquez; Ana Belén Moreno-Garrido; Antonio Puerta-Notario

    2012-01-01

    We propose the use of a power pulse shape of the widely known optical soliton,corresponding to the hyperbolic secant square function,for both conventional atmospheric optical communication systems and,especially,for new full-optical wireless communications.We analyze the performance of the proposed pulse in terms of peak-to-average optical power ratio (PAOPR) and bit error rate (BER).During the analysis,we compare the proposed pulse shape against conventional rectangular and Gaussian pulse shapes with reduced duty cycle.Results show the noticeable superiority of the proposed pulse for atmospheric optical links.

  8. Pulsed Laser Interactions with Space Debris: Target Shape Effects

    CERN Document Server

    Liedahl, D A; Libby, S B; Nikolaev, S; Phipps, C R

    2013-01-01

    Among the approaches to the proposed mitigation and remediation of the space debris problem is the de-orbiting of objects in low Earth orbit through irradiation by ground-based high-intensity pulsed lasers. Laser ablation of a thin surface layer causes target recoil, resulting in the depletion of orbital angular momentum and accelerated atmospheric re-entry. However, both the magnitude and direction of the recoil are shape dependent, a feature of the laser-based remediation concept that has received little attention. Since the development of a predictive capability is desirable, we have investigated the dynamical response to ablation of objects comprising a variety of shapes. We derive and demonstrate a simple analytical technique for calculating the ablation-driven transfer of linear momentum, emphasizing cases for which the recoil is not exclusively parallel to the incident beam. For the purposes of comparison and contrast, we examine one case of momentum transfer in the low-intensity regime, where photon p...

  9. Pulse shaping method to compensate for antenna distortion in ultra-wideband communications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the ultra-wideband (UWB) communication systems, a critical spectral mask is released to restrict the allowable interference to other wireless devices by the Federal Communications Commission (FCC), and then some pulse shaping methods have been presented to fulfil the mask. However, most pulse shaping methods do not consider the antenna distortion which cannot be neglected in the UWB communication systems compared with the conventional systems. To this end, an orthogonal wavelet based pulse shaping method is proposed in this paper to integrate compensation of antenna distortion into pulse shaping. Simulation results show that the novel pulse shaping method can be used to achieve compensation for antenna distortion, optimization of transmission power spectrum, and simplification of the algorithm, as well as simple implementation of the pulse generator.

  10. Evolution of hole shape and size during short and ultrashort pulse laser deep drilling.

    Science.gov (United States)

    Döring, Sven; Szilagyi, John; Richter, Sören; Zimmermann, Felix; Richardson, Martin; Tünnermann, Andreas; Nolte, Stefan

    2012-11-19

    A detailed study of the influence of the pulse duration, from the femtosecond to the nanosecond regime, on the evolution of the hole shape and depth during percussion drilling in silicon is presented. Real-time backlight imaging of the hole development is obtained for holes up to 2 mm deep with aspect ratios extending to 25:1. For low pulse energies, the hole-shape and drilling characteristics are similar for femtosecond, picoseconds and nanosecond regimes. At higher pulse energies, ns-pulses exhibit slower average drilling rates but eventually reach greater final depths. The shape of these holes is however dominated by branching and large internal cavities. For ps-pulses, a cylindrical shape is maintained with frequent small bulges on the side-walls. In contrast, fs-pulses cause only a limited number of imperfections on a tapered hole shape.

  11. High-sensitive Optical Pulse-Shape Characterization using a Beating-Contrast-Measurement Technique

    CERN Document Server

    Roncin, Vincent; Millaud, Audrey; Cramer, Romain; Jaouën, Yves; Simon, Jean-Claude

    2014-01-01

    Ultrahigh-speed optical transmission technology, such as optical time domain multiplexing or optical signal processing is a key point for increasing the communication capacity. The system performances are strongly related to pulse properties. We present an original method dedicated to short pulse-shape characterization with high repetition rate using standard optical telecommunications equipments. Its principle is based on temporal measurement of the contrast produced by the beating of two delayed optical pulses in a high bandwidth photo detector. This technique returns firstly reliable information on the pulse-shape, such as pulse width, shape and pedestal. Simulation and experimental results evaluate the high-sensitivity and the high-resolution of the technique allowing the measurement of pulse extinction ratio up to 20 dB with typical timing resolution of about 100 fs. The compatibility of the technique with high repetition rate pulse measurement offers an efficient tool for short pulse analysis.

  12. Laser beam welding of titanium nitride coated titanium using pulse-shaping

    Directory of Open Access Journals (Sweden)

    Milton Sergio Fernandes de Lima

    2005-09-01

    Full Text Available A new welding method which allows the assembly of two titanium nitride coated titanium parts is proposed. The welding procedure utilizes the possibility for pulse-shaping in order to change the energy distribution profile during the laser pulse. The pulse-shaping is composed of three elements: a a short high power pulse for partial ablation at the surface; b a long pulse for thermal penetration; and c a quenching slope for enhanced weldability. The combination of these three elements produces crack-free welds. The weld microstructure is changed in comparison to normal welding, i.e. with a rectangular pulse, as the nitrogen and the microhardness are more homogenously distributed in the weld under pulse-shaping conditions. This laser pulse dissolves the TiN layer and allows nitrogen to diffuse into the melt pool, also contributing to an enhanced weldability by providing suitable thermal conditions.

  13. A template for describing intrinsic GRB pulse shapes

    CERN Document Server

    Hakkila, Jon; Wolpert, Robert L; Broadbent, Mary E; Preece, Robert D

    2013-01-01

    A preliminary study of a set of well-isolated pulses in GRB light curves indicates that simple pulse models, with smooth and monotonic pulse rise and decay regions, are inadequate. Examining the residuals of fits of pulses to such models suggests the following patterns of departure from the smooth pulse model of Norris et al. (2005): A Precursor Shelf occurs prior to or concurrent with the exponential Rapid Rise. The pulse reaches maximum intensity at the Peak Plateau, then undergoes a Rapid Decay. The decay changes into an Extended Tail. Pulses are almost universally characterized by hard-to-soft evolution, arguing that the new pulse features reflect a single physical phenomenon, rather than artifacts of pulse overlap.

  14. Laser-driven proton acceleration enhancement by the optimized intense short laser pulse shape

    Science.gov (United States)

    Souri, S.; Amrollahi, R.; Sadighi-Bonabi, R.

    2017-05-01

    Interactions of two distinct shapes of the pulses namely positive/negative chirped pulse and fast/slow rising-edge pulse with plasma are studied using particle-in-cell simulation. It is found that, for a pulse duration of 34 fs and intensity a0 = 12, proton acceleration could be enhanced by asymmetric pulses with either pulse envelope or pulse frequency modification. The number of accelerated protons, as well as the proton energy cut-off, is increased by asymmetric pulses. In this work, for positive chirped pulse, electrostatic field at the rear side of the target is improved by about 30%, which in turns leads to an increase in the proton energy cut-off more than 40%. Moreover, in contrary to the fast pulses, the slow one could enhance the proton energy cut-off up to 65% for 34 fs pulse with 20 fs rising-edge.

  15. Temporal shaping of third-harmonic pulses on the Nova laser system

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, J.K.; Speck, D.R.; Bibeau, C.; Burkhart, S.C.; Henesian, M.A.; Laumann, C.W.; Weiland, T.L.; Wilcox, R.B. (Lawrence Livermore National Laboratory, P.O. Box 5508 L-493, Livermore, California 94550 (United States))

    1992-08-20

    We demonstrate temporal shaping of 0.35-{mu}m- wavelength pulses produced by a third-harmonic conversion of the output from the Nova Nd:phosphate glass-laser amplifier system for use in inertial confinement fusion experiments. We describe the computer models used to calculate the pulse shape that is required as the input to the amplifier system, the experimental apparatus used to produce these pulses, and the high-power 0.35-{mu}m shaped pulses produced in recent experiments.

  16. General purpose pulse shape analysis for fast scintillators implemented in digital readout electronics

    Science.gov (United States)

    Asztalos, Stephen J.; Hennig, Wolfgang; Warburton, William K.

    2016-01-01

    Pulse shape discrimination applied to certain fast scintillators is usually performed offline. In sufficiently high-event rate environments data transfer and storage become problematic, which suggests a different analysis approach. In response, we have implemented a general purpose pulse shape analysis algorithm in the XIA Pixie-500 and Pixie-500 Express digital spectrometers. In this implementation waveforms are processed in real time, reducing the pulse characteristics to a few pulse shape analysis parameters and eliminating time-consuming waveform transfer and storage. We discuss implementation of these features, their advantages, necessary trade-offs and performance. Measurements from bench top and experimental setups using fast scintillators and XIA processors are presented.

  17. Effect of crash pulse shape on seat stroke requirements for limiting loads on occupants of aircraft

    Science.gov (United States)

    Carden, Huey D.

    1992-01-01

    An analytical study was made to provide comparative information on various crash pulse shapes that potentially could be used to test seats under conditions included in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats, show the effects that crash pulse shape can have on the seat stroke requirements necessary to maintain a specified limit loading on the seat/occupant during crash pulse loadings, compare results from certain analytical model pulses with approximations of actual crash pulses, and compare analytical seat results with experimental airplace crash data. Structural and seat/occupant displacement equations in terms of the maximum deceleration, velocity change, limit seat pan load, and pulse time for five potentially useful pulse shapes were derived; from these, analytical seat stroke data were obtained for conditions as specified in Federal Regulations Part 23 Paragraph 23.562(b)(1) for dynamic testing of general aviation seats.

  18. Annular Pulse Shaping Technique for Large-Diameter Kolsky Bar Experiments on Concrete

    Science.gov (United States)

    2014-10-01

    lt ag e (V ) Time (microsecond) Fig. 5 Linear incident wave generated using an annular copper pulse shaper (O.D. = 25.4 mm, I.D. = 14.4 mm). Note that...AFRL-RW-EG-TP-2014-005 Annular Pulse Shaping Technique for Large- Diameter Kolsky Bar Experiments on Concrete...NUMBER (Include area code) 13-6-2014 Technical Publication October 2012 - February 2014 ANNULAR PULSE SHAPING TECHNIQUE FOR LARGE-DIAMETER KOLSKY BAR

  19. Analysis of Beaulieu Pulse Shaping Family Based FIR Filter for WCDMA

    CERN Document Server

    Kang, A S

    2010-01-01

    The analysis and simulation of transmit and receive pulse shaping filter is an important aspect of digital wireless communication since it has a direct effect on error probabilities. Pulse shaping for wireless communication over time as well as frequency selective channels is the need of hour for 3G and 4G systems. The pulse shaping filter is a useful means to shape the signal spectrum and avoid interferences. Basically digital filters are used to modify the characteristics of signal in time and frequency domain and have been recognized as primary digital signal processing operations.

  20. Perceptual image coding with discrete cosine transform

    CERN Document Server

    Tan, Ee-Leng

    2015-01-01

    This book first introduces classic as well as recent computational models for just-noticeable-difference (JND) applications. Since the discrete cosine transform (DCT) is applied in many image and video standards (JPEG, MPEG-1/2/4, H.261/3), the book also includes a comprehensive survey of computational models for JND that are based on DCT. The visual factors used in these computational models are reviewed in detail. Further, an extensive comparative analysis of these models using quantitative and qualitative performance criteria is presented, which compares the noise shaping performance of these models with subjective evaluation and the accuracy between the estimated JND thresholds and subjective evaluation. There are many surveys available on computational models for JND; however, these surveys seldom compare the performance of computational models that are based on DCT. The authors’ survey of the computational models and their in-depth review of the visual factors used in them will help readers understand...

  1. Ultrafast temporal pulse shaping via phase-sensitive three-wave mixing.

    Science.gov (United States)

    Yin, Y C; French, D; Jovanovic, I

    2010-08-16

    It is well-known that the process of optical parametric amplification (OPA) can be sensitive to the phases of the incident waves. In OPA realized by three-wave mixing, injection of all three waves into the same mode with appropriate phase relationship results in amplification of the signal phase, with an associated deamplification of the signal energy. Prospects for the use of this technique in the temporal domain for shaping ultrashort laser pulses are analyzed using a numerical model. Several representative pulse shaping capabilities of this technique are identified, which can significantly augment the performance of common passive pulse shaping methods operating in the Fourier domain. It is found that the use of phase-sensitive OPA shows a potential for significant compression of approximately 100 fs pulses, steepening of the rise time of ultrashort pulses, and production of pulse doublets and pulse trains. It is also shown that the group velocity mismatch can assist the shaping process. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems.

  2. Measuring the shape of randomly arriving pulses shorter than the acquisition step

    Science.gov (United States)

    Stoyanov, Dimitar V.; Dreischuh, Tanja N.; Vankov, Orlin I.; Gurdev, Ljuan L.

    2004-12-01

    In this paper we have developed and tested a novel method for measuring precisely the shape of pulses shorter than the acquisition step, which is effective for random delays of the input pulses with respect to the start pulse of the analogue-to-digital converter (ADC). The method is based on conversion of the short pulses to be measured into longer damped oscillations and their correct acquisition (sampling) with saving the pulse information, rearranging of the sampled oscillations with respect to some reference time instant to form a finer-discretization high-precision oscillation, and retrieving the pulse shape by inverse algorithms. We demonstrated experimentally the good performance (5-7% rms error) of this method (by using 20 MHz/8 bits ADC) when measuring the shape of randomly arriving pulses, shorter than the ADC sampling step (50 ns), with an equivalent sampling frequency up to 2 GHz (0.5 ns equivalent sampling step). The resolving of shapes in a pulse pair with an inter-pulse delay shorter than the ADC sampling interval has also been demonstrated. The limiting equivalent sampling frequency is estimated to be up to 500 GHz. This method can be effectively applied for creation of some novel short-pulse measuring techniques, avoiding the problem of time synchronization to the start pulses in lidar and radar, nuclear experiments, tomography, communications, etc.

  3. Propagation of subcycle pulses in a two-level medium: Area-theorem breakdown and pulse shape

    CERN Document Server

    Novitsky, Denis

    2013-01-01

    We solve the problem of ultrashort pulse propagation in a two-level medium beyond the rotating-wave (RWA) and slowly-varying-envelope approximations. The method of solution is based on the Maxwell--Bloch equations represented in the form that allows one to switch between RWA and general (non-RWA) cases in the framework of a single numerical algorithm. Using this method, the effect of a subcycle pulse (containing less than a single period of field oscillations) on the two-level medium was analyzed. It is shown that for such short pulses, the clear breakdown of the area theorem occurs for the pulses of large enough area. Moreover, deviations from the area theorem appear to be strongly dependent on the pulse shape that cannot be observed for longer few-cycle pulses.

  4. A Novel Pulse Shaping for UWB Impulse Radio IEEE 802.15.4a Communications Systems

    Directory of Open Access Journals (Sweden)

    BARRAJ Imen

    2014-05-01

    Full Text Available This paper presents a novel pulse shape which we call modified triangular pulse (MTri for Impulse Radio-Ultra Wide Band (IR-UWB IEEE 802.15.4a systems. The MTri pulse and UWB shapes previously proposed for low power IR-UWB transceivers topologies are studied and compared. The performance measures considered are compliance with required spectral emission constrains, Mask Loss (ML power and pulse energy. Our theoretical and simulations results show the advantages of the MTri pulse over studies UWB pulses. It presents the lower ML power about 0.45dB and the higher pulse energy of 0.45nJ/p.

  5. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    Science.gov (United States)

    Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés

    2015-09-01

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  6. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Bogota (Colombia); Arango, Carlos A. [Department of Chemical Sciences, Universidad Icesi, Cali (Colombia); Reyes, Andrés [Department of Chemistry, Universidad Nacional de Colombia, Bogota (Colombia)

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  7. Quantum gate operations using midinfrared binary shaped pulses on the rovibrational states of carbon monoxide.

    Science.gov (United States)

    Zaari, Ryan R; Brown, Alex

    2010-01-07

    Frequency domain shaped binary laser pulses were optimized to perform 2 qubit quantum gate operations in (12)C(16)O. The qubit rovibrational state representation was chosen so that all gate operations consisted of one-photon transitions. The amplitude and phase varied binary pulses were determined using a genetic algorithm optimization routine. Binary pulses have two possible amplitudes, 0 or 1, and two phases, 0 or pi, for each frequency component of the pulse. Binary pulses are the simplest to shape experimentally and provide a minimum fidelity limit for amplitude and phase shaped pulses. With the current choice of qubit representation and using optimized binary pulses, fidelities of 0.80 and as high as 0.97 were achieved for the controlled-NOT and alternative controlled-NOT quantum gates. This indicates that with a judicious choice of qubits, most of the required control can be obtained with a binary pulse. Limited control was observed for 2 qubit NOT and Hadamard gates due to the need to control multiple excitations. The current choice of qubit representation produces pulses with decreased energies and superior fidelities when compared with rovibrational qubit representations consisting of two-photon transitions. The choice of input pulse energy is important and applying pulses of increased energy does not necessarily lead to a better fidelity.

  8. BEBEtr and BUBI: J-compensated concurrent shaped pulses for 1H-13C experiments

    Science.gov (United States)

    Ehni, Sebastian; Luy, Burkhard

    2013-07-01

    Shaped pulses designed for broadband excitation, inversion and refocusing are important tools in modern NMR spectroscopy to achieve robust pulse sequences especially in heteronuclear correlation experiments. A large variety of mostly computer-optimized pulse shapes exist for different desired bandwidths, available rf-field strengths, and tolerance to B1-inhomogeneity. They are usually derived for a single spin 1/2, neglecting evolution due to J-couplings. While pulses with constant resulting phase are selfcompensated for heteronuclear coupling evolution as long as they are applied exclusively on a single nucleus, the situation changes for concurrently applied pulse shapes. Using the example of a 1H,13C two spin system, two J-compensated pulse pairs for the application in INEPT-type transfer elements were optimized: a point-to-point pulse sandwich called BEBEtr, consisting of a broadband excitation and time-reversed excitation pulse, and a combined universal rotation and point-to-point pulse pair called BUBI, which acts as a refocusing pulse on 1H and a corresponding inversion pulse on 13C. After a derivation of quality factors and optimization protocols, a theoretical and experimental comparison with conventionally derived BEBOP, BIBOP, and BURBOP-180° pulses is given. While the overall transfer efficiency of a single pulse pair is only reduced by approximately 0.1%, resulting transfer to undesired coherences is reduced by several percent. In experiments this can lead to undesired phase distortions for pairs of uncompensated pulse shapes and even differences in signal intensities of 5-10% in HSQC and up to 68% in more complex COB-HSQC experiments.

  9. Enhancement of Time-Reversal Subwavelength Wireless Transmission Using Pulse Shaping

    CERN Document Server

    Ding, Shuai; Zou, Lianfeng; Wang, Bingzhong; Caloz, Christophe

    2014-01-01

    A novel time-reversal subwavelength transmission technique, based on pulse shaping circuits (PSCs), is proposed. Compared to previously reported approaches, this technique removes the need for complex or electrically large electromagnetic structures by generating channel diversity via pulse shaping instead of angular spectrum transformation. Moreover, the pulse shaping circuits (PSCs) are based on Radio Analog Signal Processing (R-ASP), and therefore do not suffer from the well-known issues of digital signal processing in ultrafast regimes. The proposed PSC time-reversal systems is mathematically shown to offer high channel discrimination under appropriate PSC design conditions, and is experimentally demonstrated for the case of two receivers.

  10. Elongation of plasma channel generated by temporally shaped femtosecond laser pulse

    Science.gov (United States)

    Chen, Anmin; Li, Suyu; Qi, Hongxia; Jiang, Yuanfei; Hu, Zhan; Huang, Xuri; Jin, Mingxing

    2017-01-01

    Temporally shaped femtosecond laser pulse is used to generate the air plasma channel. The length of plasma channel is optimized by a genetic algorithm. Compared with the transform-limited pulse, the temporally shaped femtosecond laser produced by the spatial light modulator with the genetic algorithm can lead to a significant increase in length and brightness of plasma channel in atmosphere. In particular, the length of the plasma channel produced by the optimized shaped pulse can be extended by 50%. This method can be especially advantageous in the context of femtosecond laser-induced plasma channel.

  11. Extremely Nonlinear Optics Using Shaped Pulses Spectrally Broadened in an Argon- or Sulfur Hexafluoride-Filled Hollow-Core Fiber

    OpenAIRE

    Andreas Hoffmann; Michael Zürch; Christian Spielmann

    2015-01-01

    In this contribution we present a comparison of the performance of spectrally broadened ultrashort pulses using a hollow-core fiber either filled with argon or sulfur hexafluoride (SF6) for demanding pulse-shaping experiments. The benefits of both gases for pulse-shaping are studied in the highly nonlinear process of high-harmonic generation. In this setup, temporally shaping the driving laser pulse leads to spectrally shaping of the output extreme ultraviolet (XUV) spectrum, where total yie...

  12. Temporal Shaping of High Peak Power Pulse Trains from a Burst-Mode Laser System

    Directory of Open Access Journals (Sweden)

    Jörg Körner

    2015-12-01

    Full Text Available It has been shown in the past that pulsed laser systems operating in the so-called “burst mode” are a beneficial approach to generate high peak power laser pulses at high repetition rates suitable for various applications. So far, most high-energy burst-mode laser systems put great effort into generating a homogeneous energy distribution across the burst duration, e.g., by shaping the pump pulse. In this work, we present a new shaping technique, which is able to produce arbitrary energy distributions within the burst by pre-shaping the seed pulse burst with a Pockels cell. Furthermore, this technique allows for the precompensation of any static modulations across the burst, which may be introduced during the subsequent amplification process. Therefore, a pulse burst with a uniform energy distribution can also be generated. The method is tested with an ultra-short pulse burst mode laser amplifier system producing bursts of a 1 ms duration with a pulse repetition rate of 1 MHz and a maximum output power of 800 W during the burst. Furthermore, a method to predict the influence of the amplifier on a non-uniformly shaped burst is presented and successfully tested to produce a pre-defined pulse shape after amplification.

  13. Laser ablation of borosilicate glass with high power shaped UV nanosecond laser pulses

    Science.gov (United States)

    von Witzendorff, Philipp; Bordin, Andrea; Suttmann, Oliver; Patel, Rajesh S.; Bovatsek, James; Overmeyer, Ludger

    2016-03-01

    The application of thin borosilicate glass as interposer material requires methods for separation and drilling of this material. Laser processing with short and ultra-short laser pulses have proven to enable high quality cuts by either direct ablation or internal glass modification and cleavage. A recently developed high power UV nanosecond laser source allows for pulse shaping of individual laser pulses. Thus, the pulse duration, pulse bursts and the repetition rate can be set individually at a maximum output power of up to 60 W. This opens a completely new process window, which could not be entered with conventional Q-switched pulsed laser sources. In this study, the novel pulsed UV laser system was used to study the laser ablation process on 400 μm thin borosilicate glass at different pulse durations ranging from 2 - 10 ns and a pulse burst with two 10 ns laser pulses with a separation of 10 ns. Single line scan experiments were performed to correlate the process parameters and the laser pulse shape with the ablation depth and cutting edge chipping. Increasing the pulse duration within the single pulse experiments from 2 ns to longer pulse durations led to a moderate increase in ablation depth and a significant increase in chipping. The highest material removal was achieved with the 2x10 ns pulse burst. Experimental data also suggest that chipping could be reduced, while maintaining a high ablation depth by selecting an adequate pulse overlap. We also demonstrate that real-time combination of different pulse patterns during drilling a thin borosilicate glass produced holes with low overall chipping at a high throughput rate.

  14. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    Science.gov (United States)

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  15. A compact and versatile pulse generation and shaping subsystem for high energy laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, B.M.; Speck, D.R.; Norman, M.; Wilcox, R.B.; Karpenko, V.P.; Richards, J.B.

    1993-01-01

    This paper describes the amplifier and beam shaping section of a new pulse generation system that will drive the Beamlet laser at LLNL. The master oscillator and pulse shaping system are described in an accompanying contribution. A modified regenerative amplifier produces a gain of 10[sup 9] to bring the oscillator pulses to the mJ-level. A serrated aperture and birefringent beam shaper produce a flat-topped square beam with high fill factor. A single four-passed Nd:glass rod amplifier provides sufficient gain to generate the desired 12 J output energy in a 3 nsec pulse with very small beam profile, wavefront and pulse shape distortion. We present a description of the system components, followed by a discussion of its performance, based upon over 150 full front end shots being completed since its assembly.

  16. A compact and versatile pulse generation and shaping subsystem for high energy laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Van Wonterghem, B.M.; Speck, D.R.; Norman, M.; Wilcox, R.B.; Karpenko, V.P.; Richards, J.B.

    1993-01-01

    This paper describes the amplifier and beam shaping section of a new pulse generation system that will drive the Beamlet laser at LLNL. The master oscillator and pulse shaping system are described in an accompanying contribution. A modified regenerative amplifier produces a gain of 10{sup 9} to bring the oscillator pulses to the mJ-level. A serrated aperture and birefringent beam shaper produce a flat-topped square beam with high fill factor. A single four-passed Nd:glass rod amplifier provides sufficient gain to generate the desired 12 J output energy in a 3 nsec pulse with very small beam profile, wavefront and pulse shape distortion. We present a description of the system components, followed by a discussion of its performance, based upon over 150 full front end shots being completed since its assembly.

  17. Contrast enhancement via shaped Raman pulses for thermal cold atom cloud interferometry

    Science.gov (United States)

    Luo, Yukun; Yan, Shuhua; Hu, Qingqing; Jia, Aiai; Wei, Chunhua; Yang, Jun

    2016-12-01

    Interferometry with thermal cold atom clouds provides high particle flux and low quantum projection noise but is limited by the rapid reduction of fringe contrast. We propose an improved method based on temporally shaped pulses to address the issue of the off-resonance dispersion and enhance the contrast. Theoretical analysis and construction principle for shaped pulses are demonstrated. The fidelity of single π and π/2 pulses as well as a complete interferometer sequence are investigated. Comparisons are ade between the traditional pulse and several alternative shaped pulses to verify the feasibility and find an efficient choice among them. Practical implementation scheme and possible error sources are also discussed. The results show a great improvement in contrast and robust phase response for high atomic temperature up to several tens of μK.

  18. Identification alpha and gamma quantum at the pulse shape of the scintillates splash

    Directory of Open Access Journals (Sweden)

    V. I. Kornaga

    2008-05-01

    Full Text Available The methods of different scintillates splash alpha and gamma quantum at the pulse shape have been considered in experiment researches of the core's structure and mechanisms of the nuclear reaction.

  19. Self-similar Shape Mode of Optical Pulse Propagation in Medium with non-stationary Absorption

    Science.gov (United States)

    Trofimov, Vycheslav A.; Lysak, Tatyana M.; Fedotov, Mihail V.; Prokopenko, Alexander S.

    2015-03-01

    We discuss laser pulse propagation with the self-similar shape in a medium with instantaneous nonlinear absorption. We consider two cases of the laser pulse propagation. First one corresponds to problem of laser-induced plasma generation in silica under action of TW laser pulse. The second one corresponds to femtosecond laser pulse propagation in medium with nanoparticles of noble metals. In both cases the mode of the self-similar shape of pulse is of interest. We discuss also a physical mechanism of non-linear acceleration or slowing-down for laser pulse propagation in a medium with nanoparticles. The last phenomena are important, in particular, for a problem of data processing of all optical method. We used analytical approach for considered problem as well as computer simulation.

  20. Time and Frequency Localized Pulse Shape for Resolution Enhancement in STFT-BOTDR

    Directory of Open Access Journals (Sweden)

    Linqing Luo

    2016-01-01

    Full Text Available Short-Time Fourier Transform-Brillouin Optical Time-Domain Reflectometry (STFT-BOTDR implements STFT over the full frequency spectrum to measure the distributed temperature and strain along the optic fiber, providing new research advances in dynamic distributed sensing. The spatial and frequency resolution of the dynamic sensing are limited by the Signal to Noise Ratio (SNR and the Time-Frequency (T-F localization of the input pulse shape. T-F localization is fundamentally important for the communication system, which suppresses interchannel interference (ICI and intersymbol interference (ISI to improve the transmission quality in multicarrier modulation (MCM. This paper demonstrates that the T-F localized input pulse shape can enhance the SNR and the spatial and frequency resolution in STFT-BOTDR. Simulation and experiments of T-F localized different pulses shapes are conducted to compare the limitation of the system resolution. The result indicates that rectangular pulse should be selected to optimize the spatial resolution and Lorentzian pulse could be chosen to optimize the frequency resolution, while Gaussian shape pulse can be used in general applications for its balanced performance in both spatial and frequency resolution. Meanwhile, T-F localization is proved to be useful in the pulse shape selection for system resolution optimization.

  1. A Novel Ring Shaped Photodiode for Reflectance Pulse Oximetry in Wireless Applications

    DEFF Research Database (Denmark)

    Duun, Sune; Haahr, Rasmus Grønbek; Birkelund, Karen;

    2007-01-01

    We present a pulse oximeter for use in home-care applications in a sticking patch with integrated electronics. The core in the pulse oximeter is a large ring shaped backside silicon pn photodiode placed around a Ledtronics dual LED with wavelengths of 660 nm and 940 nm. The concentric photodiode...

  2. Topology optimization of pulse shaping filters using the Hilbert transform envelope extraction

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Matzen, René; Elesin, Yuriy

    2011-01-01

    Time domain topology optimization is applied to design pulse shaping filters. The objective function depends on the pulse envelope, which is extracted by utilizing the Hilbert transform. The gradients with respect to the topology optimization variables are derived, and the optimization methodology...

  3. Plasma shape control by pulsed solenoid on laser ion source

    Science.gov (United States)

    Sekine, M.; Ikeda, S.; Romanelli, M.; Kumaki, M.; Fuwa, Y.; Kanesue, T.; Hayashizaki, N.; Lambiase, R.; Okamura, M.

    2015-09-01

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  4. Plasma shape control by pulsed solenoid on laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, M. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Ikeda, S. [Tokyo Institute of Technology, Yokohama, Kanagawa 226-8502 (Japan); RIKEN, Wako, Saitama 351-0198 (Japan); Romanelli, M. [Cornell University, Ithaca, NY 14850 (United States); Kumaki, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Waseda University, Shinjuku, Tokyo 169-0072 (Japan); Fuwa, Y. [RIKEN, Wako, Saitama 351-0198 (Japan); Kyoto University, Uji, Kyoto 611-0011 (Japan); Kanesue, T. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Hayashizaki, N. [Tokyo Institute of Technology, Meguro-ku, Tokyo 2-12-1 (Japan); Lambiase, R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Okamura, M. [RIKEN, Wako, Saitama 351-0198 (Japan); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-09-21

    A Laser ion source (LIS) provides high current heavy ion beams with a very simple mechanical structure. Plasma is produced by a pulsed laser ablation of a solid state target and ions are extracted by an electric field. However, it was difficult to manipulate the beam parameters of a LIS, since the plasma condition could only be adjusted by the laser irradiation condition. To enhance flexibility of LIS operation, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The experimentally obtained current profile was satisfactorily controlled by the pulsed magnetic field. This approach may also be useful to reduce beam emittance of a LIS.

  5. Analytical modeling of pulse-pileup distortion using the true pulse shape, with applications to Fermi-GBM

    CERN Document Server

    Chaplin, Vandiver; Briggs, Michael; Connaughton, Valerie

    2012-01-01

    Pulse-pileup affects most photon counting systems and occurs when photon detections occur faster than the detector's registration and recovery time. At high input rates, shaped pulses interfere and the source spectrum, as well as intensity information, get distorted. For instruments using bipolar pulse shaping there are two aspects to consider: `peak' and `tail' pileup effects, which raise and lower the measured energy, respectively. Peak effects have been extensively modeled in the past. Tail effects have garnered less attention due to the increased complexity: bipolar tails mean the tail pulse-height measurement depends on events in more than one time interval. We leverage previous work to derive an accurate, semi-analytical prediction for peak and tail pileup, up to high orders. We use the true pulse shape from the detectors of the Fermi Gamma-ray Burst Monitor. The measured spectrum is calculated by writing exposure time as a state-space expansion of overlapping pileup states and is valid up to very high ...

  6. Pulse shaping and characterization with a 4f system

    CSIR Research Space (South Africa)

    Botha, N

    2010-10-01

    Full Text Available . 3. References [1] A. M. Weiner, Review of Scientific Instruments, Volume 71, Number 5, p. 1929-1960 [2] M. Cavallari, G.M. Gale, F. Hache, L.I. Pavlov, E. Rousseau, Optics Communication, Volume 114, p. 329 - 332 Fig.1: 4f pulse shaper...

  7. Electron pulse shaping in the FELIX RF accelerator

    NARCIS (Netherlands)

    Weits, H. H.; van der Geer, C. A. J.; Oepts, D.; van der Meer, A. F. G.

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel thro

  8. Electron pulse shaping in the FELIX RF accelerator

    NARCIS (Netherlands)

    Weits, H. H.; van der Geer, C. A. J.; Oepts, D.; van der Meer, A. F. G.

    1999-01-01

    The FELIX free-electron laser uses short pulses of relativistic electrons produced by an RF accelerator. The design target for the duration of these electron bunches was around 3 ps. In experiments we observed that the bunches emit coherently enhanced spontaneous emission (CSE) when they travel

  9. Coherent control in room-temperature quantum dot semiconductor optical amplifiers using shaped pulses

    CERN Document Server

    Karni, Ouri; Eisenstein, Gadi; Ivanov, Vitalii; Reithmaier, Johann Peter

    2016-01-01

    We demonstrate the ability to control quantum coherent Rabi-oscillations in a room-temperature quantum dot semiconductor optical amplifier (SOA) by shaping the light pulses that trigger them. The experiments described here show that when the excitation is resonant with the short wavelength slope of the SOA gain spectrum, a linear frequency chirp affects its ability to trigger Rabi-oscillations within the SOA: A negative chirp inhibits Rabi-oscillations whereas a positive chirp can enhance them, relative to the interaction of a transform limited pulse. The experiments are confirmed by a numerical calculation that models the propagation of the experimentally shaped pulses through the SOA.

  10. Generation, shaping, compression, characterization and application of intense ultrashort laser pulses

    CERN Document Server

    Cheng, Z

    2001-01-01

    Recently, the development of intense ultrashort laser pulses has attracted much interest because of their significant applications in many fields of science and technology. This thesis contributes to the generation, shaping, compression, characterization and application of intense ultrashort laser pulses as follows: 1. Laser pulses of 17.5-fs with a peak power of 0.1-TW at 1-kHz repetition rate have been generated by a compact single-stage ten-pass Ti:sapphire amplifier system with a high-order-dispersion-mirror compensator and a spectral shaping for the first time. The experimental results are in reasonable agreement with numerical calculations. 2. The first experimental study on arbitrary shaping of intense ultrashort pulses has been conducted in a kHz amplifier system capable of generating 27 fs pulses by using an acousto-optic programmable dispersive filter (AOPDF). 17-fs transform-limited pulses have been achieved and arbitrary shaping of these 17-fs pulses has been demonstrated both in the temporal and ...

  11. Microstructuring of soft organic matter by temporally shaped femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rebollar, Esther, E-mail: e.rebollar@iqfr.csic.es [Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, 28006 Madrid (Spain); Mildner, Jutta; Götte, Nadine; Otto, Dirk; Sarpe, Cristian; Köhler, Jens; Wollenhaupt, Matthias; Baumert, Thomas [Institut für Physik, Universität Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Castillejo, Marta [Instituto de Química Física Rocasolano, IQFR-CSIC, Serrano 119, 28006 Madrid (Spain)

    2014-05-01

    Thin films of the biopolymers gelatine and chitosan were treated using femtosecond pulse shaping techniques combined with a microscope-based setup for material processing. The polymer films were irradiated with laser pulses of 35 fs and a central wavelength of 790 nm provided by an amplified Ti:Sapphire system. The effect of temporal pulse shaping, with quadratic and cubic spectral phases, on the induced morphology was analyzed by characterization of the created surface structures via scanning electron microscopy. We observed different material modification thresholds and different structure sizes for temporally asymmetric pulse shapes. The results indicate the possibility of control of the generated microstructures and are discussed in relation to the formation of free electrons and the different contributions of multi-photon and avalanche ionization processes.

  12. Fluorescence anisotropy excitation by polarization-shaped laser pulses after transmission through a kagome fiber

    Science.gov (United States)

    Otto, J.; Patas, A.; Althoff, J.; Lindinger, A.

    2016-08-01

    We report improved fluorescence contrast between dyes by two-photon excitation with polarization-shaped laser pulses after transmission through a kagome fiber utilizing the anisotropy of the dye molecules. Particularly phase- and polarization-tailored pulse shapes are employed for two-photon excited fluorescence of dyes in a liquid environment at the distal end of the kagome fiber. The distortions due to the optical fiber properties are precompensated in order to receive predefined polarization-shaped laser pulses after the kagome fiber. This enables to optimally excite one dye in one polarization direction and simultaneously the other dye in the other polarization direction. The presented method has a high potential for endoscopic applications due to the unique properties of kagome fibers for guiding ultrashort laser pulses.

  13. Pulse-shaping mechanism in colliding-pulse mode-locked laser diodes

    DEFF Research Database (Denmark)

    Bischoff, Svend; Sørensen, Mads Peter; Mørk, J.;

    1995-01-01

    The large signal dynamics of passively colliding pulse mode-locked laser diodes is studied. We derive a model which explains modelocking via the interplay of gain and loss dynamics; no bandwidth limiting element is necessary for pulse formation. It is found necessary to have both fast and slow...... absorber dynamics to achieve mode-locking. Significant chirp is predicted for pulses emitted from long lasers, in agreement with experiment. The pulse width shows a strong dependence on both cavity and saturable absorber length. (C) 1995 American Institute of Physics....

  14. Application of wave-shape functions and Synchrosqueezing transform to pulse signal analysis

    CERN Document Server

    Wu, Hau-tieng; Wu, Han-Kuei; Wang, Chun-Li; Yang, Yueh-Lung; Wu, Wen-Hsiang

    2015-01-01

    We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST) to model and study the pulse wave signal. Based on the wave shape function model and SST, we extract features, called the spectral pulse signature, based on the functional regression technique, to characterize the hemodynamics from the pulse wave signals. To demonstrate how the algorithm and the extracted features work, we study the radial pulse wave signal recorded by the sphygmomanometer from normal subjects and patients with congestive heart failure. The analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features. In addition, it shows that different positions of the radial artery contain significant different information, which is compatible with the empirical conclusion of the pulse diagnosis in the traditional Chinese medicine.

  15. Pulse shape distortion in a 2-stage all-fiber Er-doped amplifier

    Science.gov (United States)

    Michalska, M.; Mamajek, M.

    2013-07-01

    The issue of temporal pulse distortion occurring during amplification process in a 2-stage, fiber amplifier, operating in the eye-safe spectral region, is discussed. The amplifier was built in a Master Oscillator Power Amplifier (MOPA) configuration and seeded by a distributed feedback (DFB) laser providing nanosecond pulses at a repetition rate of 20 kHz. It operated at a wavelength of 1549.13 nm and generated over 200 mW of output power with a slope efficiency of up to 28%. The comparison between the calculated and measured results on saturation-induced pulse shape deformation, for ~300-ns pulses, is presented. The analyzed pulse shapes embraced rectangle, Gaussian, triangle and "M" letter.

  16. Effect of Pulse Shaping on Observing Coherent Energy Transfer in Single Light-Harvesting Complexes.

    Science.gov (United States)

    Song, Kai; Bai, Shuming; Shi, Qiang

    2016-11-17

    Recent experimental and theoretical studies have revealed that quantum coherence plays an important role in the excitation energy transfer in photosynthetic light-harvesting (LH) complexes. Inspired by the recent single-molecule two-color double-pump experiment, we theoretically investigate the effect of pulse shaping on observing coherent energy transfer in the single bacterial LH2 complex. It is found that quantum coherent energy transfer can be observed when the time delay and phase difference between the two laser pulses are controlled independently. However, when the two-color pulses are generated using the pulse-shaping method, how the laser pulses are prepared is crucial to the observation of quantum coherent energy transfer in single photosynthetic complexes.

  17. Coherent control with shaped femtosecond laser pulses applied to ultracold molecules

    CERN Document Server

    Salzmann, W; Wester, R; Weidemüller, M; Merli, A; Weber, S M; Sauer, F; Plewicki, M; Weise, F; Esparza, A M; Wöste, L; Lindinger, A; Salzmann, Wenzel; Poschinger, Ulrich; Wester, Roland; Weidemueller, Matthias; Merli, Andrea; Weber, Stefan M.; Sauer, Franziska; Plewicki, Mateusz; Weise, Fabian; Esparza, Aldo Mirabal; Woeste, Ludger; Lindinger, Albrecht

    2005-01-01

    We report on coherent control of excitation processes of translationally ultracold rubidium dimers in a magneto-optical trap by using shaped femtosecond laser pulses. Evolution strategies are applied in a feedback loop in order to optimize the photoexcitation of the Rb2 molecules, which subsequently undergo ionization or fragmentation. A superior performance of the resulting pulses compared to unshaped pulses of the same pulse energy is obtained by distributing the energy among specific spectral components. The demonstration of coherent control to ultracold ensembles opens a path to actively influence fundamental photo-induced processes in molecular quantum gases.

  18. Systematic uncertainties of artificial neural-network pulse-shape discrimination for $0\

    CERN Document Server

    Abt, I; Cossavella, F; Majorovits, B; Palioselitis, D; Volynets, O

    2014-01-01

    A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate the systematic uncertainties of the method. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like samples from calibration measurements is estimated to be 5\\%. This uncertainty is due to differences between signal and calibration samples.

  19. Nyquist pulse shaping using arrayed waveguide grating routers.

    Science.gov (United States)

    Xie, Yiwei; Zhuang, Leimeng; Zhu, Chen; Lowery, Arthur James

    2016-10-03

    We propose and demonstrate by simulations a novel Nyquist-WDM (N-WDM) superchannel transmitter based on an arrayed waveguide grating router (AWGR). This approach can generate Nyquist pulses at multiple wavelengths using a single AWGR. Results for a 3-channel 960-Gbit/s QPSK superchannel system show that a 10% guard band reduces the inter-channel interference (ICI) sufficiently. The design introduces less than 0.16-dB penalty when the waveguide loss is 2 dB/cm and 0.73-dB penalty when the standard deviation of phase error is 10°. Such Nyquist pulse shapers can be realised on a chip scale using photonic integrated circuits technology, and could be compactly integrated with other functional components to create single-chip N-WDM superchannel transmitters.

  20. Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.

    Science.gov (United States)

    Almeida, G F B; Martins, R J; Otuka, A J G; Siqueira, J P; Mendonca, C R

    2015-10-19

    We investigated the effect of temporal shaped femtosecond pulses on silicon laser micromachining. By using sinusoidal spectral phases, pulse trains composed of sub-pulses with distinct temporal separations were generated and applied to the silicon surface to produce Laser Induced Periodic Surface Structures (LIPSS). The LIPSS obtained with different sub-pulse separation were analyzed by comparing the intensity of the two-dimensional fast Fourier Transform (2D-FFT) of the AFM images of the ripples (LIPSS). It was observed that LIPSS amplitude is more emphasized for the pulse train with sub-pulses separation of 128 fs, even when compared with the Fourier transform limited pulse. By estimating the carrier density achieved at the end of each pulse train, we have been able to interpret our results with the Sipe-Drude model, that predicts that LIPSS efficacy is higher for a specific induced carrier density. Hence, our results indicate that temporal shaping of the excitation pulse, performed by spectral phase modulation, can be explored in fs-laser microstructuring.

  1. Extremely Nonlinear Optics Using Shaped Pulses Spectrally Broadened in an Argon- or Sulfur Hexafluoride-Filled Hollow-Core Fiber

    Directory of Open Access Journals (Sweden)

    Andreas Hoffmann

    2015-11-01

    Full Text Available In this contribution we present a comparison of the performance of spectrally broadened ultrashort pulses using a hollow-core fiber either filled with argon or sulfur hexafluoride (SF6 for demanding pulse-shaping experiments. The benefits of both gases for pulse-shaping are studied in the highly nonlinear process of high-harmonic generation. In this setup, temporally shaping the driving laser pulse leads to spectrally shaping of the output extreme ultraviolet (XUV spectrum, where total yield and spectral selectivity in the XUV are the targets of the optimization approach. The effect of using sulfur hexafluoride for pulse-shaping the XUV yield can be doubled compared to pulse compression and pulse-shaping using argon and the spectral range for selective optimization of a single harmonic can be extended. The obtained results are of interest for extending the range of ultrafast science applications drawing on tailored XUV fields.

  2. Shaping and timing gradient pulses to reduce MRI acoustic noise

    NARCIS (Netherlands)

    Segbers, Marcel; Sierra, Carlos V. Rizzo; Duifhuis, Hendrikus; Hoogduin, Johannes M.

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an

  3. Shaping and Timing Gradient Pulses to Reduce MRI Acoustic Noise

    NARCIS (Netherlands)

    Segbers, Marcel; Sierra, Carlos V. Rizzo; Duifhuis, Hendrikus; Hoogduin, Johannes M.

    2010-01-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an aco

  4. Adaptive control of lasers and their interactions with matter using femtosecond pulse shaping

    Science.gov (United States)

    Efimov, Anatoly

    Coherent control of chemical reactions, atomic and molecular systems, lattice dynamics, and electronic motion rely on femtosecond laser sources capable of producing programmable arbitrarily shaped waveforms. To enter the time scale of natural dynamic processes in many systems, femtosecond pulse shaping techniques must be extended to the ultrashort pulse domain (teach our laser to control its own phase by using spectral blueshifting in a rapidly created plasma as a feedback to the algorithm. Control of lattice vibrations has long been sought as a means of studying phonon-related processes in solids. In addition, generation and control of large-amplitude optical phonon modes may open a path to femtosecond time- resolved studies of structural phase transitions and production of ultrashort shaped X-ray pulses. We perform pump-probe phase-resolved measurements and control of optical A1g mode in sapphire through shaped-pulse impulsive stimulated Raman scattering (ISRS). We chose this material as a candidate for possible nonlinear oscillations regime for its wide band gap and superior optical properties allowing for high-energy excitation. To enter a nonlinear regime, however, complex asymmetric multiple-pulse excitation is required. Therefore, we make a detailed proposal of the experimental adaptive feedback implementation for optimization of phonon amplitude based on the coherent probe scattering and a novel phase mask calculation algorithm for the real-time asymmetric pulse train generation.

  5. Laser-Pulse-Shape Control of Seeded QED Cascades

    CERN Document Server

    Tamburini, Matteo; Keitel, Christoph H

    2015-01-01

    The emergence of electron-positron cascades via ultrastrong electromagnetic fields constitutes a prominent manifestation of the complex interplay between strong-field QED processes and multiparticle dynamics. Here the onset and development of electron-positron cascades are investigated in the head-on collision of two realistic tightly focused ultraintense optical laser pulses in a tenuous gas. As a consequence of the large ponderomotive forces expelling all electrons of the gas from the focal volume, we demonstrate that the onset of QED cascades may be prevented even at intensities around $10^{26}\\;\\text{W/cm$^2$}$ by focusing the laser energy almost down to the diffraction limit. Alternatively, a well controlled development of a QED cascade may be facilitated at laser intensities below $10^{24}\\;\\text{W/cm$^2$}$ per beam by enlarged focal areas and a rapid rise of the pulse or at total powers near $20\\;\\text{PW}$ by employing suitable high-$Z$ gases.

  6. Improved methods for modeling pulse shapes of accreting millisecond pulsars

    CERN Document Server

    Leahy, D; Cadeau, C

    2006-01-01

    Raytracing computations for light emitted from the surface of a rapidly rotating neutron star are carried out in order to construct light curves for accreting millisecond pulsars. These calculations are for realistic models of rapidly rotating neutron stars which take into account both the correct exterior metric and the oblate shape of the star. We find that the most important effect, comparing the full raytracing computations with simpler approximations currently in use, arises from the oblate shape of the rotating star. Approximating a rotating neutron star as a sphere introduces serious errors in fitted values of the star's radius and mass if the rotation rate is very large. However, for lower rotation rates acceptable mass and radius values can be obtained using the spherical approximation.

  7. Performance scaling via passive pulse shaping in cavity-enhanced optical parametric chirped-pulse amplification.

    Science.gov (United States)

    Siddiqui, Aleem M; Moses, Jeffrey; Hong, Kyung-Han; Lai, Chien-Jen; Kärtner, Franz X

    2010-06-15

    We show that an enhancement cavity seeded at the full repetition rate of the pump laser can automatically reshape small-signal gain across the interacting pulses in an optical parametric chirped-pulse amplifier for close-to-optimal operation, significantly increasing both the gain bandwidth and the conversion efficiency, in addition to boosting gain for high-repetition-rate amplification. Applied to a degenerate amplifier, the technique can provide an octave-spanning gain bandwidth.

  8. Double dumbbell shaped AgNi alloy by pulsed electrodeposition

    Science.gov (United States)

    Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy; Narayanan, V.; Stephen, A.

    2014-01-01

    Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

  9. Pulse shaping techniques for a high-g shock tester based on collision principle

    Science.gov (United States)

    Duan, Zhengyong; Tang, Chuansheng; Li, Yang; Han, Junliang; Wu, Guoxiong

    2016-09-01

    Pulse shaping techniques are discussed in this paper for the practicability of a developed high-g shock tester. The tester is based on collision principle where there is a one-level velocity amplifier. A theoretical and experimental study of pulse shaping techniques is presented. A model was built and theoretical formulae were deduced for the shock peak acceleration and its duration. Then theoretical analysis and some experiments were conducted. The test results verify the validity of theoretical model and show that the shock tester can generate the expected high-g shock pulses by integrated usage of different impact velocities and pulse shapers made from different materials. This is important in practical applications where the items under test can be shown to excite specific resonances at predetermined acceleration levels using the shock tester.

  10. Shaping the output pulse of a linear-transformer-driver module.

    Energy Technology Data Exchange (ETDEWEB)

    Long, Finis W.; McKee, G. Randall; Stoltzfus, Brian Scott; Woodworth, Joseph Ray; McKenney, John Lee; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John L.; Stygar, William A.; Savage, Mark Edward; LeChien, Keith, R.; Van De Valde, David M. (EG& G, Albuquerque, NM)

    2008-11-01

    We demonstrate that a wide variety of current-pulse shapes can be generated using a linear-transformer-driver (LTD) module that drives an internal water-insulated transmission line. The shapes are produced by varying the timing and initial charge voltage of each of the module's cavities. The LTD-driven accelerator architecture outlined in [Phys. Rev. ST Accel. Beams 10, 030401 (2007)] provides additional pulse-shaping flexibility by allowing the modules that drive the accelerator to be triggered at different times. The module output pulses would be combined and symmetrized by water-insulated radial-transmission-line impedance transformers [Phys. Rev. ST Accel. Beams 11, 030401 (2008)].

  11. Effects of irradiation of energetic heavy ions on digital pulse shape analysis with silicon detectors

    Science.gov (United States)

    Barlini, S.; Carboni, S.; Bardelli, L.; Le Neindre, N.; Bini, M.; Borderie, B.; Bougault, R.; Casini, G.; Edelbruck, P.; Olmi, A.; Pasquali, G.; Poggi, G.; Rivet, M. F.; Stefanini, A. A.; Baiocco, G.; Berjillos, R.; Bonnet, E.; Bruno, M.; Chbihi, A.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; Galichet, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lopez, O.; Marchi, T.; Martel, I.; Morelli, L.; Parlog, M.; Piantelli, S.; Petrascu, H.; Rosato, E.; Seredov, V.; Vient, E.; Vigilante, M.; Fazia Collaboration

    2013-04-01

    The next generation of 4π detector arrays for heavy ion studies will largely use Pulse Shape Analysis to push the performance of silicon detectors with respect to ion identification. Energy resolution and pulse shape identification capabilities of silicon detectors under prolonged irradiation by energetic heavy ions have thus become a major issue. In this framework, we have studied the effects of irradiation by energetic heavy ions on the response of neutron transmutation doped (nTD) silicon detectors. Sizeable effects on the amplitude and the risetime of the charge signal have been found for detectors irradiated with large fluences of stopped heavy ions, while much weaker effects were observed by punching-through ions. The robustness of ion identification based on digital pulse shape techniques has been evaluated.

  12. Enhancing strong-field induced molecular vibration with femtosecond pulse shaping

    CERN Document Server

    Bitter, Martin; Milner, Valery

    2012-01-01

    This work investigates the utility of femtosecond pulse shaping in increasing the efficiency of Raman excitation of molecules in the strong-field interaction regime. We study experimentally and theoretically the effect of pulse shaping on the strength of non-resonant coherent anti-Stokes Raman scattering in iodine vapor at laser intensities exceeding $10^{13}$ W/cm$^2$. We show that unlike the perturbative case, shaping strong non-resonant laser pulses can increase the signal strength beyond that observed with the transform-limited excitation. Both adiabatic and non-adiabatic schemes of excitation are explored, and the differences of their potential in increasing the excitation efficiency are discussed.

  13. Measurements of Scintillation Efficiency and Pulse-Shape for Low Energy Recoils in Liquid Xenon

    CERN Document Server

    Akimov, D Y; Davidge, D; Dawson, J; Howard, A S; Ivaniouchenkov, Yu; Jones, W G; Joshi, M; Kudryavtsev, V A; Lawson, T B; Lebedenko, V; Lehner, M J; Lightfoot, P K; Liubarsky, I; Lüscher, R; McMillan, J E; Peak, C D; Quenby, J J; Spooner, N J C; Sumner, T J; Tovey, Daniel R; Ward, C K

    2002-01-01

    Results of observations of low energy nuclear and electron recoil events in liquid xenon scintillator detectors are given. The relative scintillation efficiency for nuclear recoils is 0.22 +/- 0.01 in the recoil energy range 40 keV - 70 keV. Under the assumption of a single dominant decay component to the scintillation pulse-shape the log-normal mean parameter T0 of the maximum likelihood estimator of the decay time constant for 6 keV < Eee < 30 keV nuclear recoil events is equal to 21.0 ns +/- 0.5 ns. It is observed that for electron recoils T0 rises slowly with energy, having a value ~ 30 ns at Eee ~ 15 keV. Electron and nuclear recoil pulse-shapes are found to be well fitted by single exponential functions although some evidence is found for a double exponential form for the nuclear recoil pulse-shape.

  14. Understanding the ATLAS electromagnetic barrel pulse shapes and the absolute electronic calibration

    CERN Document Server

    Neukermans, L; Zitoun, R

    2001-01-01

    We present an original method to undestand the calibration and physics pulse shapes collected in the 2000 barrel test beam runs with the prototype module. It is based on an electrical description of the calorimeter and its electronics. It allows an understanding of the physics pulse shapes and its absolute calibration (in microA/ADC) to a very good level of accuracy with a small number of parameters (capacitances and inductances). The electrical parameters found by this method agree with the direct measurements independantly performed on the prototype module. Optimal filtering coefficients can then be derived from these physics pulse shape predictions, and more crucial, an absolute electronic calibration. These coefficients are released in the official test beam software EMTB.

  15. Study of the shower maximum depth by the method of detection of the EAS Cerenkov light pulse shape

    Science.gov (United States)

    Aliev, N.; Alimov, T.; Kakhkharov, M.; Khakimov, N.; Makhmudov, B. M.; Rakhimova, N.; Tashpulatov, R.; Khristiansen, G. B.; Prosin, V. V.; Zhukov, V. Y.

    1985-01-01

    The results of processing the data on the shape of the EAS Cerenkov light pulses recorded by the extensive air showers (EAS) array are presented. The pulse FWHM is used to find the mean depth of EAS maximum.

  16. Digital liquid-scintillation counting and effective pulse-shape discrimination with artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Langrock, Gert; Wiehl, Norbert; Kling, Hans-Otto; Mendel, Matthias; Naehler, Andrea; Tharun, Udo; Eberhardt, Klaus; Trautmann, Norbert; Kratz, Jens Volker [Mainz Univ. (Germany). Inst. fuer Kernchemie; Omtvedt, Jon-Petter [Oslo Univ. (Norway). Dept. of Chemistry; Skarnemark, Gunnar [Chalmers Univ. of Technology, Goeteborg (Sweden)

    2015-05-01

    A typical problem in low-level liquid scintillation (LS) counting is the identification of α particles in the presence of a high background of β and γ particles. Especially the occurrence of β-β and β-γ pile-ups may prevent the unambiguous identification of an α signal by commonly used analog electronics. In this case, pulse-shape discrimination (PSD) and pile-up rejection (PUR) units show an insufficient performance. This problem was also observed in own earlier experiments on the chemical behaviour of transactinide elements using the liquid-liquid extraction system SISAK in combination with LS counting. α-particle signals from the decay of the transactinides could not be unambiguously assigned. However, the availability of instruments for the digital recording of LS pulses changes the situation and provides possibilities for new approaches in the treatment of LS pulse shapes. In a SISAK experiment performed at PSI, Villigen, a fast transient recorder, a PC card with oscilloscope characteristics and a sampling rate of 1 giga samples s{sup -1} (1 ns per point), was used for the first time to record LS signals. It turned out, that the recorded signals were predominantly α β-β and β-γ pile up, and fission events. This paper describes the subsequent development and use of artificial neural networks (ANN) based on the method of 'back-propagation of errors' to automatically distinguish between different pulse shapes. Such networks can 'learn' pulse shapes and classify hitherto unknown pulses correctly after a learning period. The results show that ANN in combination with fast digital recording of pulse shapes can be a powerful tool in LS spectrometry even at high background count rates.

  17. Shaping the electron beams with submicrosecond pulse duration in sources and electron accelerators with plasma emitters

    CERN Document Server

    Gushenets, V I

    2001-01-01

    One studies the techniques in use to shape submicrosecond electron beams and the physical processes associated with extraction of electrons from plasma in plasma emitters. Plasma emitter base sources and accelerators enable to generate pulse beams with currents varying from tens of amperes up to 10 sup 3 A, with current densities up to several amperes per a square centimeter, with pulse duration constituting hundreds of nanoseconds and with high frequencies of repetition

  18. Artificial neural network based pulse shape analysis in cryogenic detectors for rare event searches

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Andreas [Physik Department E15, Technische Universitaet Muenchen, 85748 Garching (Germany); Collaboration: CRESST-Collaboration

    2015-07-01

    We present a method based on an Artificial Neural Network for a pulse shape analysis in cryogenic detectors. To train the neural network a huge amount of pulses with known properties are necessary. Therefore, a data-driven simulation used to generate these sets is explained. Furthermore, these simulations allow detailed studies, especially of the cut efficiency and the signal purity of the developed cut. First results are presented and compared with the performance of alternative algorithms.

  19. Temporal pulse shaping: a key parameter for the laser welding of dental alloys.

    Science.gov (United States)

    Bertrand, Caroline; Poulon-Quintin, Angeline

    2015-07-01

    This study aims to describe the effect of pulse shaping on the prevention of internal defects during laser welding for two dental alloys mainly used in prosthetic dentistry. Single spot, weld beads, and welds with 80 % overlapping were performed on Co-Cr-Mo and Pd-Ag-Sn cast plates with a pulsed neodymium-doped yttrium aluminum garnet (Nd:YAG) laser. A specific welding procedure using adapted parameters to each alloy was completed. All the possibilities for pulse shaping were tested: (1) the square pulse shape as a default setting, (2) a rising edge slope for gradual heating, (3) a falling edge slope to slow the cooling process, and (4) a combination of rising and falling edges. The optimization of the pulse shape is supposed to produce defect-free welds (crack, pores, voids). Cross-section SEM observations and Vickers microhardness measurements were made. Pd-Ag-Sn was highly sensitive to hot cracking, and Co-Cr-Mo was more sensitive to voids and small porosities (sometimes combined with cracks). Using a slow cooling ramp allowed a better control on the solidification process for those two alloys always preventing internal defects. A rapid slope should be preferred for Co-Cr-Mo alloys due to its low-laser beam reflectivity. On the opposite, for Pd-Ag-Sn alloy, a slow rising slope should be preferred because this alloy has a high-laser beam reflectivity.

  20. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    Science.gov (United States)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/Ilaser.

  1. Enhancement of Time Reversal Sub-wavelength Wireless Transmission Using Pulse Shaping Technique (submit/1139227)

    CERN Document Server

    Ding, Shuai; Zang, Rui; Zou, Lianfeng; Wang, Bing-Zhong; Caloz, Christophe

    2014-01-01

    A novel time-reversal subwavelength transmission technique, based on pulse shaping circuits (PSCs), is proposed. This technique removes the need for complex or electrically large electromagnetic structures by generating channel diversity via pulse shaping instead of angular spectrum transformation. It is shown that, compared to our previous time-reversal system based on chirped delay lines, the PSC approach offers greater flexibility and larger possible numbers of channels, i.e. ultimately higher transmission throughput. The PSC based time-reversal system is also demonstrated experimentally.

  2. Neutron-gamma discrimination based on bipolar trapezoidal pulse shaping using FPGAs in NE213

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Akbar-ashrafi, Nafiseh; Boghrati, Behzad; Afarideh, Hossein [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2012-12-01

    A technique employing neutron-gamma pulse shape discrimination (PSD) system that overcomes pile up limitations of previous methods to distinguish neutrons from gammas in scintillation detectors is described. The output signals of detectors were digitized and processed with a data acquisition system based on bipolar trapezoidal pulse shaping using Field programmable gate arrays (FPGA). FPGAs are capable of doing complex discrete signal processing algorithms with clock rates above 100 MHz. Their low cost, ease of use and selected dedicated hardware make them an ideal option for spectrometer systems.

  3. Application of the Recursive Subtraction Pulse Shape Analysis algorithm to in-beam HPGe signals

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, F.C.L. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Camera, F. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)], E-mail: camera@mi.infn.it; Bracco, A.; Million, B.; Wieland, O.; Vandone, V. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Recchia, F.; Gadea, A.; Kroell, Th. [Laboratori Nazionali di Legnaro, INFN, Viale dell' Universita 2, 35020 Legnaro, Padova (Italy); Mengoni, D.; Farnea, E.; Ur, C.A.; Bazzacco, D. [Dipartimento di Fisica, Universita di Padova and INFN Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2009-06-11

    The Pulse Shape Analysis algorithm 'Recursive Subtraction' has been applied to data acquired during the in-beam tests of two different highly segmented HPGe detectors. This algorithm processes the net charge signal, determining the number of interactions per segment and their radial coordinates. The RS algorithm performances are evaluated by comparing the results obtained following its application to experimental pulse shapes with those obtained with specific GEANT simulations. Excellent agreement is found between the experimental distribution of the number of interactions per segment and the simulated one. Deviations between experimental radial distribution and the calculated ones are discussed.

  4. Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization

    DEFF Research Database (Denmark)

    Yang, Lirong; Lavrinenko, Andrei; Hvam, Jørn Märcher

    2009-01-01

    Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems.......Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems....

  5. PERFORMANCE STUDIES OF CDZNTE DETECTOR BY USING A PULSE SHAPE ANALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BOLOTNIKOV, A.

    2005-07-31

    Pulse shape analysis is proved to be a powerful tool to characterize the performance of CdZnTe devices and understand their operating principles. It allows one to investigate the device configurations, electron transport properties, effects governing charge collection, electric-field distributions, signal charge formation, etc. This work describes an application of different techniques based on the pulse shape measurements to characterize pixel, coplanar-grid, and virtual Frisch-grid devices and understand the electronic properties of CZT material provided by different vendors. We report new results that may explain the performance limits of these devices.

  6. Synthesis of fractal light pulses by quasi-direct space-to-time pulse shaping.

    Science.gov (United States)

    Mendoza-Yero, Omel; Alonso, Benjamín; Mínguez-Vega, Gladys; Sola, Iñigo Juan; Lancis, Jesús; Monsoriu, Juan A

    2012-04-01

    We demonstrated a simple diffractive method to map the self-similar structure shown in squared radial coordinate of any set of circularly symmetric fractal plates into self-similar light pulses in the corresponding temporal domain. The space-to-time mapping of the plates was carried out by means of a kinoform diffractive lens under femtosecond illumination. The spatio-temporal characteristics of the fractal pulses obtained in this way were measured by means of a spectral interferometry technique assisted by a fiber optics coupler (STARFISH). Our proposal allows synthesizing suited sequences of focused fractal femtosecond pulses potentially useful for several current applications, such as femtosecond material processing, atomic, and molecular control of chemical processes or generation of nonlinear effects.

  7. High Resolution Mode-Selective Excitation by Adaptive Femtosecond Pulse Shaping

    Institute of Scientific and Technical Information of China (English)

    LI Xia; ZHANG Hui; ZHANG Xiang-Yun; ZHANG Shi-An; CHEN Guo-Liang; WANG Zu-Geng; SUN Zhen-Rong

    2008-01-01

    High resolution mode-selective excitation in the mixture of C6H6(992cm-1)and C6D6(945cm-1)is experimentally achieved by adaptive femtosecond pulse shaping based on the genetic algorithm(GA),and second harmonic generation frequency-resolved optical gating(SHG-FROG)is adopted to characterize the original and optimal laser pulses,and its mechanism is experimentally validated by tailoring the frequency components of the pump pulses at the Fourier plane.It is indicated that two-pulse coherent mode-selective excitation of the Raman scattering mainly depends on the effective frequency components of the pump pulse related to specific molecular vibrational mode.The experimental results have attractive potential appfications in the complicated molecular system.

  8. Numerical analysis of transient keyhole shape in pulsed current plasma arc welding

    Institute of Scientific and Technical Information of China (English)

    孙俊华; 武传松

    2014-01-01

    Based on the characteristics of“one keyhole in a pulse”in pulsed current plasma arc welding (PAW),the transient variation process ofweld pool in a pulse cycle is simulated through the establishment ofcorresponding heat source model.And considering the effects ofgravitational force,plasma arc pressure and surface tension on the weld pool surface,the dynamic change features of the keyhole shape in a pulse cycle are calculated by using surface deformation equation. Experiments are conducted and validate that the calculated weld fusion line is in good agreement with the experimental results.

  9. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform.

    Directory of Open Access Journals (Sweden)

    Hau-Tieng Wu

    Full Text Available We apply the recently developed adaptive non-harmonic model based on the wave-shape function, as well as the time-frequency analysis tool called synchrosqueezing transform (SST to model and analyze oscillatory physiological signals. To demonstrate how the model and algorithm work, we apply them to study the pulse wave signal. By extracting features called the spectral pulse signature, and based on functional regression, we characterize the hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer. Analysis results suggest the potential of the proposed signal processing approach to extract health-related hemodynamics features.

  10. Pulse shaping in mode-locked fiber lasers by in-cavity spectral filter.

    Science.gov (United States)

    Boscolo, Sonia; Finot, Christophe; Karakuzu, Huseyin; Petropoulos, Periklis

    2014-02-01

    We numerically show the possibility of pulse shaping in a passively mode-locked fiber laser by inclusion of a spectral filter into the laser cavity. Depending on the amplitude transfer function of the filter, we are able to achieve various regimes of advanced temporal waveform generation, including ones featuring bright and dark parabolic-, flat-top-, triangular- and saw-tooth-profiled pulses. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for controlling the dynamics of mode-locked fiber lasers.

  11. Pulse re-shaping by using a liquid crystal spatial light modulator and deflector for producing a specific waveform

    Institute of Scientific and Technical Information of China (English)

    Jun Kang; Wei Zhang; Hui Wei; Shaohe Chen; Jianqiang Zhu

    2006-01-01

    @@ A new shaping method for producing nanosecond pulses with specific shape is introduced. When a Gaussian laser pulse passes through an electro-optic deflector, it has been scanned as a line on the focal plane according to time precedence. Through controlling the intensity of transmitted light on each pixel of the liquid crystal spatial light modulator (LCSLM), various complicated pulses can be easily produced. Using this method, various specific shaped pulses with pulse duration varying from 750 ps to 5 ns are achieved.

  12. Assessment of pulse height selection methods for several spectrum shapes in radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Mainardi, Raul T. E-mail: mainardi@famaf.unc.edu.ar; Plivelic, Tomas S. E-mail: tomas@lnls.br; Derosa, Pedro A. E-mail: derosa@engr.sc.edu

    2003-03-01

    The minimum pulse height selection method developed more than forty years ago to process the information provided by detectors with an energy spectrum responding to a Landau distribution is extended in this work to consider other information processing criteria such as the maximum pulse height and the pulse height closest to the mode. The latter is a selection method whereby the mode is calculated for a distribution and then, a pulse closest to it is selected from a given set and stored. We analyze the combined resolution of a set of identical sampling detectors in terms of the number of detectors and the shape of the characteristic pulse height distribution from a single detector. To make this treatment as general as possible, five analytical forms are tested as symmetric and asymmetric pulse height distributions, applying to each of them the three selection methods mentioned above. We also compare these results with the average of the pulse heights in each case. For these evaluations, analytical calculations and Monte Carlo simulations were carried out. It was thus possible to select the most appropriate selection method based on the shape parameters of a distribution.

  13. The influence of size and shape of microorganism on pulsed electric field inactivation.

    Science.gov (United States)

    El-Hag, Ayman H; Jayaram, Shesha H; Gonzalez, Oscar Rodriguez; Griffiths, M W

    2011-09-01

    In this paper the effect of microorganism size and shape on the killing efficiency of pulsed electric field (PEF) is investigated both experimentally and using a transient finite element program. The effect of cell size, membrane thickness, cell shape (spherical, elliptical, and cylindrical) on the calculated transmembrane voltage is studied. It has been found that both the cell size and cell membrane thickness have significant effect on the induced field across the cell membrane. The findings of the simulation results have been evaluated by comparing the trends with some experimental results. Five different types of microorganisms that have different shapes and dimensions have been inoculated with water at a conductivity level of 100 μS/cm and have been treated with the application of a pulsed electric field of 70 kV/cm. Significant difference in bacteria reduction was noticed between the treated cells which could be attributed to the cell size and shape.

  14. Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror

    Institute of Scientific and Technical Information of China (English)

    Luo Bo-Wen; Dong Jian-Ji; Yu Yuan; Yang Ting; Zhang Xin-Liang

    2013-01-01

    We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband (UWB) signal generation using a semiconductor optical amplifier (SOA) based nonlinear optical loop mirror (NOLM).By employing the cross phase modulation (XPM) effect,cross gain modulation (XGM),or both,multi-shape UWB waveforms are generated including monocycle,doublet,triplet,and quadruplet pulses.Both the shapes and polarities of the generated pulses are flexible to adjust,which may be very useful in UWB pulse shape modulation and pulse polarity modulation.

  15. Comparison Between Digital and Analog Pulse Shape Discrimination Techniques For Neutron and Gamma Ray Separation

    Energy Technology Data Exchange (ETDEWEB)

    R. Aryaeinejad; John K. Hartwell

    2005-11-01

    Recent advancement in digital signal processing (DSP) using fast processors and computer makes it possible to be used in pulse shape discrimination applications. In this study, we have investigated the feasibility of using a DSP to distinguish between the neutrons and gamma rays by the shape of their pulses in a liquid scintillator detector (BC501), and have investigated pulse shape-based techniques to improve the resolution performance of room-temperature cadmium zinc telluride (CZT) detectors. For the neutron/gamma discrimination, the advantage of using a DSP over the analog method is that in analog system two separate charge-sensitive ADC's are required. One ADC is used to integrate the beginning of the pulse risetime while the second ADC is for integrating the tail part. Using a DSP eliminates the need for separate ADCs as one can easily get the integration of two parts of the pulse from the digital waveforms. This work describes the performance of these DSP techniques and compares the results with the analog method.

  16. Versatile Stimulation Back-End With Programmable Exponential Current Pulse Shapes for a Retinal Visual Prosthesis.

    Science.gov (United States)

    Maghami, Mohammad Hossein; Sodagar, Amir M; Sawan, Mohamad

    2016-11-01

    This paper reports on the design, implementation, and test of a stimulation back-end, for an implantable retinal prosthesis. In addition to traditional rectangular pulse shapes, the circuit features biphasic stimulation pulses with both rising and falling exponential shapes, whose time constants are digitally programmable. A class-B second generation current conveyor is used as a wide-swing, high-output-resistance stimulation current driver, delivering stimulation current pulses of up to ±96 μA to the target tissue. Duration of the generated current pulses is programmable within the range of 100 μs to 3 ms. Current-mode digital-to-analog converters (DACs) are used to program the amplitudes of the stimulation pulses. Fabricated using the IBM 130 nm process, the circuit consumes 1.5×1.5 mm(2) of silicon area. According to the measurements, the DACs exhibit DNL and INL of 0.23 LSB and 0.364 LSB, respectively. Experimental results indicate that the stimuli generator meets expected requirements when connected to electrode-tissue impedance of as high as 25 k Ω. Maximum power consumption of the proposed design is 3.4 mW when delivering biphasic rectangular pulses to the target load. A charge pump block is in charge of the upconversion of the standard 1.2-V supply voltage to ±3.3V.

  17. Simultaneous SU(2) rotations on multiple quantum dot exciton qubits using a single shaped pulse

    Science.gov (United States)

    Mathew, Reuble; Yang, Hong Yi Shi; Hall, Kimberley C.

    2015-10-01

    Recent experimental demonstration of a parallel (π ,2 π ) single qubit rotation on excitons in two distant quantum dots [Nano Lett. 13, 4666 (2013), 10.1021/nl4018176] is extended in numerical simulations to the design of pulses for more general quantum state control, demonstrating the feasibility of full SU(2) rotations of each exciton qubit. Our results show that simultaneous high-fidelity quantum control is achievable within the experimentally accessible parameter space for commercial Fourier-domain pulse shaping systems. The identification of a threshold of distinguishability for the two quantum dots (QDs) for achieving high-fidelity parallel rotations, corresponding to a difference in transition energies of ˜0.25 meV , points to the possibility of controlling more than 10 QDs with a single shaped optical pulse.

  18. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    Energy Technology Data Exchange (ETDEWEB)

    Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M. [Instrumentation Group, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  19. Full-density, net-shape powder consolidation using dynamic magnetic pulse pressures

    Science.gov (United States)

    Chelluri, Bhanu; Barber, John P.

    1999-07-01

    The full-density consolidation of powders into net-shape parts yields high green strength, low shrinkage, short sinter times, superior mechanical properties, and low manufacturing costs. The conventional lowcost, single-press, single-sinter process typically densifies powders at less than 65 percent green density. This article describes the Magnepress™ process, a powder-processing technique wherein pulsed magnetic pressures consolidate powders into full-density parts without admixed lubricants or binders. The Magnepress technique is especially suitable for producing net-shape products with radial symmetry (e.g., rods, cylindrical parts with internal features, tubular shapes, and high aspect-ratio specimens).

  20. Reducing error rates in straintronic multiferroic nanomagnetic logic by pulse shaping.

    Science.gov (United States)

    Munira, Kamaram; Xie, Yunkun; Nadri, Souheil; Forgues, Mark B; Fashami, Mohammad Salehi; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo; Ghosh, Avik W

    2015-06-19

    Dipole-coupled nanomagnetic logic (NML), where nanomagnets (NMs) with bistable magnetization states act as binary switches and information is transferred between them via dipole-coupling and Bennett clocking, is a potential replacement for conventional transistor logic since magnets dissipate less energy than transistors when they switch in a logic circuit. Magnets are also 'non-volatile' and hence can store the results of a computation after the computation is over, thereby doubling as both logic and memory-a feat that transistors cannot achieve. However, dipole-coupled NML is much more error-prone than transistor logic at room temperature [Formula: see text] because thermal noise can easily disrupt magnetization dynamics. Here, we study a particularly energy-efficient version of dipole-coupled NML known as straintronic multiferroic logic (SML) where magnets are clocked/switched with electrically generated mechanical strain. By appropriately 'shaping' the voltage pulse that generates strain, we show that the error rate in SML can be reduced to tolerable limits. We describe the error probabilities associated with various stress pulse shapes and discuss the trade-off between error rate and switching speed in SML.The lowest error probability is obtained when a 'shaped' high voltage pulse is applied to strain the output NM followed by a low voltage pulse. The high voltage pulse quickly rotates the output magnet's magnetization by 90° and aligns it roughly along the minor (or hard) axis of the NM. Next, the low voltage pulse produces the critical strain to overcome the shape anisotropy energy barrier in the NM and produce a monostable potential energy profile in the presence of dipole coupling from the neighboring NM. The magnetization of the output NM then migrates to the global energy minimum in this monostable profile and completes a 180° rotation (magnetization flip) with high likelihood.

  1. Optical parametric chirped pulse amplification and spectral shaping of a continuum generated in a photonic band gap fiber.

    Science.gov (United States)

    Hugonnot, E; Somekh, M; Villate, D; Salin, F; Freysz, E

    2004-05-31

    A chirped pulse, spectrally broadened in a photonic bandgap optical fiber by 120 fs Ti:Sapphire laser pulses, is parametrically amplified in a BBO crystal pumped by a frequency doubled nanosecond Nd:YAG laser pulse. Without changing the frequency of the Ti:Sapphire, a spectral tunability of the amplified pulses is demonstrated. The possibility to achieve broader spectral range amplification is confirmed for a non-collinear pump-signal interaction geometry. For optimal non-collinear interaction geometry, the pulse duration of the original and amplified pulse are similar. Finally, we demonstrate that the combination of two BBO crystals makes it possible to spectrally shape the amplified pulses.

  2. Comparison of model fitting and gated integration for pulse shape discrimination and spectral estimation of digitized lanthanum halide scintillator pulses

    Energy Technology Data Exchange (ETDEWEB)

    McFee, J.E., E-mail: jemcfee@telus.net; Mosquera, C.M.; Faust, A.A.

    2016-08-21

    An analysis of digitized pulse waveforms from experiments with LaBr{sub 3}(Ce) and LaCl{sub 3}(Ce) detectors is presented. Pulse waveforms from both scintillator types were captured in the presence of {sup 22}Na and {sup 60}Co sources and also background alone. Two methods to extract pulse shape discrimination (PSD) parameters and estimate energy spectra were compared. The first involved least squares fitting of the pulse waveforms to a physics-based model of one or two exponentially modified Gaussian functions. The second was the conventional gated integration method. The model fitting method produced better PSD than gated integration for LaCl{sub 3}(Ce) and higher resolution energy spectra for both scintillator types. A disadvantage to the model fitting approach is that it is more computationally complex and about 5 times slower. LaBr{sub 3}(Ce) waveforms had a single decay component and showed no ability for alpha/electron PSD. LaCl{sub 3}(Ce) was observed to have short and long decay components and alpha/electron discrimination was observed.

  3. On the applicability of arbitrarily shaped nanosecond laser pulses for high-quality, high-efficiency micromachining

    Science.gov (United States)

    Eiselen, Sasia; Riedel, Sebastian; Schmidt, Michael

    2014-05-01

    Progressive developments in temporal shaping of short laser pulses offer entirely new approaches at influence and investigate laser-matter-interactions. Commonly used parameters for describing the behavior of short or ultrashort pulses or pulse trains are fluence and intensity. However, fluence does not imply any information about the temporal behavior of energy input during specific pulse duration τ while using the pulse intensity as describing parameter is more meaningful. Nevertheless it still is an averaging over pulse duration and no change in intensity can be determined if the temporal pulse shape changes within a certain combination of pulse duration and pulse energy. Using a flexible programmable MOPA fiber laser experimental studies on the impact of temporal energy distribution within one single laser pulse in micro machining applications were therefore carried out. With this laser source a direct modulation of the temporal pulse shape in the nanosecond regime can easily be controlled. Experiments were carried out with moved as well as with un-moved beam resulting in areas and dimples respectively drilling holes. The presented results clearly show that any averaging over pulse duration results in missing information about time-dependent interactions but can at the same time lead to significant differences in ablation results. Thus, resulting surface roughness Sa can be decreased up to 25 % when changing the pulse shape at constant parameters of fluence and pulse peak power at a pulse duration of 30 ns. It can be observed that the combination of an intensity peak and a lower edge within one pulse can lead to increasing ablation efficiency as well as higher ablation quality compared to the commonly used Gaussian-like temporal pulse shape.

  4. Wave-shaping of pulse tube cryocooler components for improved performance

    Science.gov (United States)

    Antao, Dion Savio; Farouk, Bakhtier

    2014-11-01

    The method of wave-shaping acoustic resonators is applied to an inertance type cryogenic pulse tube refrigerator (IPTR) to improve its performance. A detailed time-dependent axisymmetric experimentally validated computational fluid dynamic (CFD) model of the PTR is used to predict its performance. The continuity, momentum and energy equations are solved for both the refrigerant gas (helium) and the porous media regions (the regenerator and the three heat-exchangers) in the PTR. An improved representation of heat transfer in the porous media is achieved by employing a thermal non-equilibrium model to couple the gas and solid (porous media) energy equations. The wave-shaped regenerator and pulse tube studied have cone geometries and the effects of different cone angles and the orientation (nozzle v/s diffuser mode) on the system performance are investigated. The resultant spatio-temporal pressure, temperature and velocity fields in the regenerator and pulse tube components are evaluated. The performance of these wave-shaped PTRs is compared to the performance of a non wave-shaped system with cylindrical components. Better cooling is predicted for the cryocooler using wave-shaped components oriented in the diffuser mode.

  5. Spectro-temporal shaping of seeded free-electron laser pulses

    CERN Document Server

    Gauthier, David; De Ninno, Giovanni; Allaria, Enrico; Cinquegrana, Paolo; Danailov, Miltcho Boyanov; Demidovich, Alexander; Ferrari, Eugenio; Giannessi, Luca; Mahieu, Benoît; Penco, Giuseppe

    2015-01-01

    We demonstrate the ability to control and shape the spectro-temporal content of extreme-ultraviolet (XUV) pulses produced by a seeded free-electron laser (FEL). The control over the spectro-temporal properties of XUV light was achieved by precisely manipulating the linear frequency chirp of the seed laser. Our results agree with existing theory, which allows retrieving the temporal properties (amplitude and phase) of the FEL pulse from measurements of the spectra as a function of the FEL operating parameters. Furthermore, we show the first direct evidence of the full temporal coherence of FEL light and generate Fourier limited pulses by fine-tuning the FEL temporal phase. The possibility to tailor the spectro-temporal content of intense short-wavelength pulses represents the first step towards efficient nonlinear optics in the XUV to X-ray spectral region and will enable precise manipulation of core-electron excitations using the methods of coherent quantum control.

  6. Device for measurement of power and shape of radio frequency pulses in nuclear magnetic resonance

    Science.gov (United States)

    Pfeffer, M.; Řezníček, R.; Křišťan, P.; Štěpánková, H.

    2012-05-01

    A design of an instrument to measure the power and shape of radio frequency (RF) pulses operating in a broad frequency range is described. The device is capable of measuring the pulse power up to 500 W of both CW and extremely short (˜1 μs) RF pulses of arbitrary period. The pulse envelope can be observed on a logarithmic scale on a corresponding instrument output using an inexpensive storage oscilloscope. The instrument consists of a coaxial measurement head, the RF processing circuits and an AD conversion and display unit. The whole device is based on widely available integrated circuits; thus, good reproducibility and adaptability of the design is ensured. Since the construction is intended to be used in particular (but not solely) in nuclear magnetic resonance spectroscopy, we found it useful to provide a demonstration of two typical usage scenarios. Other application fields may comprise magnetic resonance imaging, radar and laser technology, power amplifier testing, etc.

  7. A high fidelity Rydberg blockade entangling gate using shaped, analytic pulses

    CERN Document Server

    Theis, L S; Wilhelm, F K; Saffmann, M

    2016-01-01

    We show that the use of shaped pulses improves the fidelity of a Rydberg blockade two-qubit entangling gate by several orders of magnitude compared to previous protocols based on square pulses or optimal control pulses. Using analytical Derivative Removal by Adiabatic Gate (DRAG) pulses that reduce excitation of primary leakage states and an analytical method of finding the optimal Rydberg blockade we generate Bell states with a fidelity of $F>0.9999$ in a 300 K environment for a gate time of only $50\\;{\\rm ns}$, which is an order of magnitude faster than previous protocols. These results establish the potential of neutral atom qubits with Rydberg blockade gates for scalable quantum computation.

  8. Detection of coincident radiations in a single transducer by pulse shape analysis

    Science.gov (United States)

    Warburton, William K [Menlo Park, CA

    2008-03-11

    Pulse shape analysis determines if two radiations are in coincidence. A transducer is provided that, when it absorbs the first radiation produces an output pulse that is characterized by a shorter time constant and whose area is nominally proportional to the energy of the absorbed first radiation and, when it absorbs the second radiation produces an output pulse that is characterized by a longer time constant and whose area is nominally proportional to the energy of the absorbed second radiation. When radiation is absorbed, the output pulse is detected and two integrals are formed, the first over a time period representative of the first time constant and the second over a time period representative of the second time constant. The values of the two integrals are examined to determine whether the first radiation, the second radiation, or both were absorbed in the transducer, the latter condition defining a coincident event.

  9. Incoherent frequency-to-time mapping: application to incoherent pulse shaping.

    Science.gov (United States)

    Torres-Company, Victor; Lancis, Jesús; Andrés, Pedro

    2007-03-01

    After temporal amplitude modulation of a spectrally incoherent optical source the averaged intensity profile at the so-called temporal far-zone regime coalesces with a magnified replica of the spectral density function of the source. This has provided the basis for the generalization of the frequency-to-time mapping technique in the partially coherent case. Based on this fact, temporal intensity waveform generation is demonstrated by spectral filtering the incoherent source before the temporal modulation stage. We refer to this technique as full incoherent pulse shaping. Although only the average intensity of the output signal is properly shaped, intensity fluctuations between the different realizations of the output shaped waveform are shown to be small in the practical situation. Finally, we provide some computer simulations concerning arbitrary picosecond pulse generation from an amplified spontaneous emission source.

  10. Quantum phase amplification for temporal pulse shaping and super-resolution in remote sensing

    Science.gov (United States)

    Yin, Yanchun

    The use of nonlinear optical interactions to perform nonclassical transformations of electromagnetic field is an area of considerable interest. Quantum phase amplification (QPA) has been previously proposed as a method to perform nonclassical manipulation of coherent light, which can be experimentally realized by use of nonlinear optical mixing processes, of which phase-sensitive three-wave mixing (PSTWM) is one convenient choice. QPA occurs when PSTWM is operated in the photon number deamplification mode, i.e., when the energy is coherently transferred among the low-frequency signal and idler waves and the high-frequency pump wave. The final state is nonclassical, with the field amplitude squeezed and the phase anti-squeezed. In the temporal domain, the use of QPA has been studied to facilitate nonlinear pulse shaping. This novel method directly shapes the temporal electric field amplitude and phase using the PSTWM in a degenerate and collinear configuration, which has been analyzed using a numerical model. Several representative pulse shaping capabilities of this technique have been identified, which can augment the performance of common passive pulse shaping methods operating in the Fourier domain. The analysis indicates that a simple quadratic variation of temporal phase facilitates pulse compression and self-steepening, with features significantly shorter than the original transform-limited pulse. Thus, PSTWM can act as a direct pulse compressor based on the combined effects of phase amplification and group velocity mismatch, even without the subsequent linear phase compensation. Furthermore, it is shown numerically that pulse doublets and pulse trains can be produced at the pump frequency by utilizing the residual linear phase of the signal. Such pulse shaping capabilities are found to be within reach of this technique in common nonlinear optical crystals pumped by pulses available from compact femtosecond chirped-pulse amplification laser systems. The use of

  11. Development of high sensitivity 4H-SiC detectors for fission neutron pulse shape measurements.

    Science.gov (United States)

    Wu, Jian; Jiang, Yong; Li, Meng; Zeng, Lina; Li, Junjie; Gao, Hui; Zou, Dehui; Bai, Zhongxiong; Ye, Cenming; Liang, Wenfeng; Dai, Shaofeng; Lu, Yi; Rong, Ru; Du, Jinfeng; Fan, Xiaoqiang

    2017-08-01

    4H-silicon carbide (4H-SiC) detectors are well suited for measurements of fission neutron pulse shape for their compact size, excellent radiation resistance, and hydrogen free composition. The aim of this study is to improve the 4H-SiC detector's sensitivity to fission neutron pulses. 4H-SiC detectors with varied epilayer thicknesses are fabricated and then tested in the pulsed neutron field of the Chinese Fast Burst Reactor II (CFBR II). The sensitivity of the 4H-SiC detector to the CFBR II neutron pulse is increased by 139.8%, with the enlargement of epilayer thickness from 20 μm to 120 μm. By employing the proton-recoil method, the sensitivity of the 4H-SiC detector to the CFBR II neutron pulse is further increased by 11.6%. With enhanced sensitivity to fission neutron pulses, 4H-SiC detectors are promising devices for high intensity neutron pulse measurements.

  12. Simultaneous ultrafast optical pulse train bursts generation and shaping based on Fourier series developments using superimposed fiber Bragg gratings.

    Science.gov (United States)

    García-Muñoz, Víctor; Preciado, Miguel A; Muriel, Miguel A

    2007-08-20

    We propose an all-fiber method for the generation of ultrafast shaped pulse train bursts from a single pulse based on Fourier Series Developments (FDSs). The implementation of the FSD based filter only requires the use of a very simple non apodized Superimposed Fiber Bragg Grating (S-FBG) for the generation of the Shaped Output Pulse Train Burst (SOPTB). In this approach, the shape, the period and the temporal length of the generated SOPTB have no dependency on the input pulse rate.

  13. Numerical Analysis of the Output-Pulse Shaping Capability of Linear Transformer Drivers

    Science.gov (United States)

    Liu, Peng; Sun, Fengju; Yin, Jiahui; Qiu, Aici

    2011-04-01

    Output-pulse shaping capability of a linear transformer driver (LTD) module under different conditions is studied, by conducting the whole circuit model simulation by using the PSPICE code. Results indicate that a higher impedance profile of the internal transmission line would lead to a wider adjustment range for the output current rise time and a narrower adjustment range for the current peak. The number of cavities in series has a positive effect on the output-pulse shaping capability of LTD. Such an improvement in the output-pulse shaping capability can primarily be ascribed to the increment in the axial electric length of LTD. For a triggering time interval longer than the time taken by a pulse to propagate through the length of one cavity, the output parameters of LTD could be improved significantly. The present insulating capability of gas switches and other elements in the LTD cavities may only tolerate a slightly longer deviation in the triggering time interval. It is feasible for the LTD module to reduce the output current rise time, though it is not useful to improve the peak power effectively.

  14. Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses.

    Science.gov (United States)

    Klini, A; Loukakos, P A; Gray, D; Manousaki, A; Fotakis, C

    2008-07-21

    Temporally shaped, femtosecond laser pulses have been used for controlling the size and the morphology of micron-sized metallic structures obtained by using the Laser Induced Forward Transfer (LIFT) technique. We report the effect of pulse shaping on the size and morphology of the deposited structures of Au, Zn, Cr on a function of the pulse separation time ??t (from 0 to 10 ps) of double pulses of variable intensities generated by using a liquid crystal spatial light modulator (SLM). The observed differences in size and morphology are correlated with the outcome of pump-probe experiments for the study of electron-phonon scattering dynamics and subsequent energy transfer processes to the bulk in the different metals employed. We propose that in metals with weak electron-lattice coupling, the electron ballistic motion and the resulting fast electron scattering at the film surface, as well as the internal electron thermalization process are crucial to the morphology and size of the transferred material. Therefore, temporal shaping within the corresponding time scales of these processes may be used for tailoring the features of the metallic structures obtained by LIFT.

  15. Complexity and simplicity of optimal control theory pulses shaped for controlling vibrational qubits.

    Science.gov (United States)

    Shyshlov, Dmytro; Babikov, Dmitri

    2012-11-21

    In the context of molecular quantum computation the optimal control theory (OCT) is used to obtain shaped laser pulses for high-fidelity control of vibrational qubits. Optimization is done in time domain and the OCT algorithm varies values of electric field in each time step independently, tuning hundreds of thousands of parameters to find one optimal solution. Such flexibility is not available in experiments, where pulse shaping is done in frequency domain and the number of "tuning knobs" is much smaller. The question of possible experimental interpretations of theoretically found OCT solutions arises. In this work we analyze very accurate optimal pulse that we obtained for implementing quantum gate CNOT for the two-qubit system encoded into the exited vibrational states of thiophosgene molecule. Next, we try to alter this pulse by reducing the number of available frequency channels and intentionally introducing systematic and random errors (in frequency domain, by modifying the values of amplitudes and phases of different frequency components). We conclude that a very limited number of frequency components (only 32 in the model of thiophosgene) are really necessary for accurate control of the vibrational two-qubit system, and such pulses can be readily constructed using OCT. If the amplitude and phase errors of different frequency components do not exceed ±3% of the optimal values, one can still achieve accurate transformations of the vibrational two-qubit system, with gate fidelity of CNOT exceeding 0.99.

  16. Measurement of (222)Rn by absorption in plastic scintillators and alpha/beta pulse shape discrimination.

    Science.gov (United States)

    Mitev, Krasimir K

    2016-04-01

    This work demonstrates that common plastic scintillators like BC-400, EJ-200 and SCSF-81 absorb radon and their scintillation pulse decay times are different for alpha- and beta-particles. This allows the application of pulse shape analysis for separation of the pulses of alpha- and beta-particles emitted by the absorbed radon and its progeny. It is shown that after pulse shape discrimination of beta-particles' pulses, the energy resolution of BC-400 and EJ-200 alpha spectra is sufficient to separate the peaks of (222)Rn, (218)Po and (214)Po and allows (222)Rn measurements that are unaffected by the presence of thoron ((220)Rn) in the environment. The alpha energy resolution of SCSF-81 in the experiments degrades due to imperfect collection of the light emitted inside the scintillating fibers. The experiments with plastic scintillation microspheres (PSM) confirm previous findings of other researchers that PSM have alpha-/beta-discrimination properties and show suitability for radon measurements. The diffusion length of radon in BC-400 and EJ-200 is determined. The pilot experiments show that the plastic scintillators are suitable for radon-in-soil-gas measurements. Overall, the results of this work suggest that it is possible to develop a new type of radon measurement instruments which employ absorption in plastic scintillators, pulse-shape discrimination and analysis of the alpha spectra. Such instruments can be very compact and can perform continuous, real-time radon measurements and thoron detection. They can find applications in various fields from radiation protection to earth sciences. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A novel technique for the characterization of a HPGe detector response based on pulse shape comparison

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, F.C.L. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Camera, F. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)], E-mail: camera@mi.infn.it; Million, B.; Sassi, M.; Wieland, O.; Bracco, A. [Dipartimento di Fisica, Universita di Milano and INFN Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)

    2008-08-11

    A novel technique for measuring the HPGe detector pulse shape as a function of the {gamma}-ray interaction position inside the detector volume is presented. This technique is based on a specific pulse shape comparison procedure. Its main feature is that it allows to characterize the 3D position response of a HPGe segmented detector in a much shorter time as compared with the standard coincidence techniques. The method was first validated using a GEANT simulation of a 36-fold HPGe AGATA detector realized taking into account the effects of the electronic chain response and electrical noise on the calculated signal shape. This procedure was then applied to extract experimentally the position response of a non-segmented coaxial HPGe detector along the radial direction, using a 438 MBq {sup 137}Cs collimated {gamma}-source. The results of this measurement show a dependence of the pulse shape as a function of {gamma}-ray interaction radial coordinate consistent with that obtained with calculations. The signal acquisition rate reached using this characterization technique allows to realize a full scan of a large volume highly segmented HPGe detector in less than a week.

  18. Analysis of the hole shape evolution in fs-pulse percussion drilling with bursts

    Science.gov (United States)

    Kämmer, H.; Dreisow, F.; Tünnermann, A.; Nolte, Stefan

    2016-03-01

    We analyze the use of bursts of ultra-short pulses in order to improve drilling efficiency and quality. Silicon is used as a non-transparent model material, in which the behavior of laser percussion drilling with 1030 nm bursts consisting of 200 fs pulses separated by a time delay between 1 ps and 4 ns was investigated. The deep drilling process is directly imaged perpendicular to the drilling direction using a CCD camera and an illumination beam at 1064 nm, where the silicon sample is transparent. The results are compared to drilling without bursts for different pulse energies. The efficiency of the drilling process, hole quality, as well as reproducibility of the hole shape are analyzed. Pulse separation times within the burst from 1 ps to 8 ps result in deeper holes with a larger silhouette area, however equal or reduced hole quality and reproducibility compared to drilling with individual pulses. In contrast with pulse separation times from 510 ps to 4 ns a quality and reproducibility improvement is visible. For these delay times the achieved depth was equal or higher compared to micromachining without bursts.

  19. Pulse-shape analysis for gamma background rejection in thermal neutron radiation using CVD diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kavrigin, P., E-mail: pavel.kavrigin@cividec.at [Vienna University of Technology (Austria); Finocchiaro, P., E-mail: finocchiaro@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Griesmayer, E., E-mail: erich.griesmayer@cividec.at [Vienna University of Technology (Austria); Jericha, E., E-mail: jericha@ati.ac.at [Vienna University of Technology (Austria); Pappalardo, A., E-mail: apappalardo@lns.infn.it [INFN Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Weiss, C., E-mail: Christina.Weiss@cern.ch [Vienna University of Technology (Austria); European Organisation for Nuclear Research (CERN), Geneva (Switzerland)

    2015-09-21

    A novel technique for the rejection of gamma background from charged-particle spectra was demonstrated using a CVD diamond detector with a {sup 6}Li neutron converter installed at a thermal neutron beamline of the TRIGA research reactor at the Atominstitut (Vienna University of Technology). Spectra of the alpha particles and tritons of {sup 6}Li(n,T){sup 4}He thermal neutron capture reaction were separated from the gamma background by a new algorithm based on pulse-shape analysis. The thermal neutron capture in {sup 6}Li is already used for neutron flux monitoring, but the ability to remove gamma background allows using a CVD diamond detector for thermal neutron counting. The pulse-shape analysis can equally be applied to all cases where the charged products of an interaction are absorbed in the diamond and to other background particles that fully traverse the detector.

  20. Pulse-shape discrimination with PbWO$_4$ crystal scintillators

    CERN Document Server

    Bardelli, L; Bizzeti, P G; Danevich, F A; Fazzini, T F; Kobychev, V V; Krutyak, N; Maurenzig, P R; Mokina, V M; Nagorny, S S; Pashkovskii, M; Poda, D V; Tretyak, V I; Yurchenko, S S

    2007-01-01

    The light output, $\\alpha/\\beta$ ratio, and pulse shape have been investigated at $-25^\\circ$ C with PbWO$_4$ crystal scintillators undoped, and doped by F, Eu, Mo, Gd and S. The fast $0.01-0.06 \\mu$s and middle $0.1-0.5 \\mu$s components of scintillation decay were observed for all the samples. Slow components of scintillation signal with the decay times $1-3 \\mu$s and $13-28 \\mu$s with the total intensity up to $\\approx50%$ have been recognized for several samples doped by Molybdenum. We found some indications of a pulse-shape discrimination between $\\alpha$ particles and $\\gamma$ quanta with PbWO$_4$ (Mo doped) crystal scintillators.

  1. Pulse-shape discrimination with PbWO{sub 4} crystal scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bardelli, L.; Bini, M.; Bizzeti, P.G. [Dipartimento di Fisica, Universita di Firenze and INFN, 50019 Florence (Italy); Danevich, F.A. [Institute for Nuclear Research, Prospect Nauki 47, MSP 03680 Kyiv (Ukraine)], E-mail: danevich@kinr.kiev.ua; Fazzini, T.F. [Dipartimento di Fisica, Universita di Firenze and INFN, 50019 Florence (Italy); Krutyak, N. [Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Vorob' evy Gory, 119992 Moscow (Russian Federation); Kobychev, V.V. [Institute for Nuclear Research, Prospect Nauki 47, MSP 03680 Kyiv (Ukraine); Maurenzig, P.R. [Dipartimento di Fisica, Universita di Firenze and INFN, 50019 Florence (Italy); Mokina, V.M.; Nagorny, S.S. [Institute for Nuclear Research, Prospect Nauki 47, MSP 03680 Kyiv (Ukraine); Pashkovskii, M. [Department of Semiconductors Physics, Ivan Franko National University, UA-79005 Lviv (Ukraine); Poda, D.V.; Tretyak, V.I.; Yurchenko, S.S. [Institute for Nuclear Research, Prospect Nauki 47, MSP 03680 Kyiv (Ukraine)

    2008-01-01

    Light output, {alpha}/{beta} ratio, and pulse shape have been investigated at -25 deg. C with PbWO{sub 4} crystal scintillators undoped, and doped by F, Eu, Mo, Gd and S. The fast 0.01-0.06{mu}s and middle 0.1-0.5{mu}s components of scintillation decay were observed for all the samples. Slow components of scintillation signal with decay times 1-3 and 13-28{mu}s with total intensity up to {approx}50% have been recognized for several samples doped by Molybdenum. We found some indications of a pulse-shape discrimination between {alpha} particles and {gamma} quanta with PbWO{sub 4} (Mo doped) crystal scintillators.

  2. Annular shape silver lined proportional counter for on-line pulsed neutron yield measurement

    Science.gov (United States)

    Dighe, P. M.; Das, D.

    2015-04-01

    An annular shape silver lined proportional counter is developed to measure pulsed neutron radiation. The detector has 314 mm overall length and 235 mm overall diameter. The central cavity of 150 mm diameter and 200 mm length is used for placing the neutron source. Because of annular shape the detector covers >3π solid angle of the source. The detector has all welded construction. The detector is developed in two halves for easy mounting and demounting. Each half is an independent detector. Both the halves together give single neutron pulse calibration constant of 4.5×104 neutrons/shot count. The detector operates in proportional mode which gives enhanced working conditions in terms of dead time and operating range compared to Geiger Muller based neutron detectors.

  3. Wavelength effect on hole shapes and morphology evolution during ablation by picosecond laser pulses

    Science.gov (United States)

    Zhao, Wanqin; Wang, Wenjun; Li, Ben Q.; Jiang, Gedong; Mei, Xuesong

    2016-10-01

    An experimental study is presented of the effect of wavelength on the shape and morphology evolution of micro holes ablated on stainless steel surface by a 10 ps Q-switched Nd:VAN pulsed laser. Two routes of hole development are associated with the visible (532 nm) and near-infrared (1064 nm) laser beams, respectively. The evolution of various geometric shapes and morphological characteristics of the micro holes ablated with the two different wavelengths is comparatively studied for other given processing conditions such as a laser power levels and the number of pulses applied. Plausible explanations, based on the light-materials interaction associated with laser micromachining, are also provided for the discernable paths of geometric and morphological development of holes under laser ablation.

  4. Design of FIR digital filters for pulse shaping and channel equalization using time-domain optimization

    Science.gov (United States)

    Houts, R. C.; Vaughn, G. L.

    1974-01-01

    Three algorithms are developed for designing finite impulse response digital filters to be used for pulse shaping and channel equalization. The first is the Minimax algorithm which uses linear programming to design a frequency-sampling filter with a pulse shape that approximates the specification in a minimax sense. Design examples are included which accurately approximate a specified impulse response with a maximum error of 0.03 using only six resonators. The second algorithm is an extension of the Minimax algorithm to design preset equalizers for channels with known impulse responses. Both transversal and frequency-sampling equalizer structures are designed to produce a minimax approximation of a specified channel output waveform. Examples of these designs are compared as to the accuracy of the approximation, the resultant intersymbol interference (ISI), and the required transmitted energy. While the transversal designs are slightly more accurate, the frequency-sampling designs using six resonators have smaller ISI and energy values.

  5. Coherent Control of Multiphoton Transitions in the Gas and Condensed Phases with Shaped Ultrashort Pulses

    Energy Technology Data Exchange (ETDEWEB)

    Marcos Dantus

    2008-09-23

    Controlling laser-molecule interactions has become an integral part of developing devices and applications in spectroscopy, microscopy, optical switching, micromachining and photochemistry. Coherent control of multiphoton transitions could bring a significant improvement of these methods. In microscopy, multi-photon transitions are used to activate different contrast agents and suppress background fluorescence; coherent control could generate selective probe excitation. In photochemistry, different dissociative states are accessed through two, three, or more photon transitions; coherent control could be used to select the reaction pathway and therefore the yield-specific products. For micromachining and processing a wide variety of materials, femtosecond lasers are now used routinely. Understanding the interactions between the intense femtosecond pulse and the material could lead to technologically important advances. Pulse shaping could then be used to optimize the desired outcome. The scope of our research program is to develop robust and efficient strategies to control nonlinear laser-matter interactions using ultrashort shaped pulses in gas and condensed phases. Our systematic research has led to significant developments in a number of areas relevant to the AMO Physics group at DOE, among them: generation of ultrashort phase shaped pulses, coherent control and manipulation of quantum mechanical states in gas and condensed phases, behavior of isolated molecules under intense laser fields, behavior of condensed phase matter under intense laser field and implications on micromachining with ultrashort pulses, coherent control of nanoparticles their surface plasmon waves and their nonlinear optical behavior, and observation of coherent Coulomb explosion processes at 10^16 W/cm^2. In all, the research has resulted in 36 publications (five journal covers) and nine invention disclosures, five of which have continued on to patenting

  6. Flexible radio-frequency photonics: Optoelectronic frequency combs and integrated pulse shaping

    Science.gov (United States)

    Metcalf, Andrew J.

    Microwave photonics is a discipline which leverages optoelectronics to enhance the generation, transport, and processing of high-frequency electrical signals. At the heart of many emerging techniques is the optical frequency comb. A comb is a lightwave source whose spectrum is made up of discrete equally spaced spectral components that share a fixed phase relationship. These discrete coherent oscillators --known as comb lines-- collectively form a Fourier basis that describe a periodic optical waveform. Within the last two decades frequency-stabilized broadband combs produced from mode-locked lasers have led to revolutionary advancements in precision optical frequency synthesis and metrology. Meanwhile, Fourier-transform optical pulse shaping, which provides a means to control a comb's Fourier basis in both amplitude and phase, has emerged as an integral tool in optical communications, broadband waveform generation, and microwave photonic filtering. However, traditional comb and pulse shaping architectures are often plagued by complex and bulky setups, rendering robust and cost effective implementation outside of the laboratory a challenge. In addition, traditional comb sources based on short-pulse lasers do not possess qualities which are ideally suited for this new application regime. Motivated by the shortcomings in current architectures, and empowered by recent advancements in optoelectronic technology, this dissertation focuses on developing novel and robust schemes in optical frequency comb generation and line-by-line pulse shaping. Our results include: the invention and low-noise characterization of a broadband flat-top comb source; the realization of an optoelectronic-based time cloak; and finally, the development of an integrated pulse shaper, which we use in conjunction with our flat-top comb source to demonstrate a rapidly reconfigurable microwave photonic filter.

  7. Pulsed high field magnets. An efficient way of shaping laser accelerated proton beams for application

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Florian; Schramm, Ulrich [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany); Technische Universitaet Dresden, 01062 Dresden (Germany); Bagnoud, Vincent; Blazevic, Abel; Busold, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institut Jena, 07734 Jena (Germany); Brabetz, Christian; Schumacher, Dennis [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Deppert, Oliver; Jahn, Diana; Roth, Markus [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Karsch, Leonhard; Masood, Umar [OncoRay-National Center for Radiation Research in Oncology, TU Dresden, 01307 Dresden (Germany); Kraft, Stephan [Helmholtz-Zentrum Dresden - Rossendorf, 01328 Dresden (Germany)

    2015-07-01

    Compact laser-driven proton accelerators are a potential alternative to complex, expensive conventional accelerators, enabling unique beam properties, like ultra-high pulse dose. Nevertheless, they still require substantial development in reliable beam generation and transport. We present experimental studies on capture, shape and transport of laser and conventionally accelerated protons via pulsed high-field magnets. These magnets, common research tools in the fields of solid state physics, have been adapted to meet the demands of laser acceleration experiments.Our work distinctively shows that pulsed magnet technology makes laser acceleration more suitable for application and can facilitate compact and efficient accelerators, e.g. for material research as well as medical and biological purposes.

  8. Multibeam second-harmonic generation by spatiotemporal shaping of femtosecond pulses.

    Science.gov (United States)

    Martínez-Cuenca, Raúl; Mendoza-Yero, Omel; Alonso, Benjamín; Sola, Íñigo Juan; Mínguez-Vega, Gladys; Lancis, Jesús

    2012-03-01

    We present a technique for efficient generation of the second-harmonic signal at several points of a nonlinear crystal simultaneously. Multispot operation is performed by using a diffractive optical element that splits the near-infrared light of a mode-locked Ti:sapphire laser into an arbitrary array of beams that are transformed into an array of foci at the nonlinear crystal. We show that, for pulse temporal durations under 100 fs, spatiotemporal shaping of the pulse is mandatory to overcome chromatic dispersion effects that spread both in space and time the foci showing a reduced peak intensity that prevents nonlinear phenomena. We experimentally demonstrate arbitrary irradiance patterns for the second-harmonic signal consisting of more than 100 spots with a multipass amplifier delivering 28 fs, 0.8 mJ pulses at 1 kHz repetition rate.

  9. Femtosecond pulse shaping as analytic tool in mass spectrometry of complex polyatomic systems

    Science.gov (United States)

    Laarmann, Tim; Shchatsinin, Ihar; Singh, Pushkar; Zhavoronkov, Nickolai; Schulz, Claus Peter; Hertel, Ingolf Volker

    2008-04-01

    An additional dimension to mass spectrometric studies on building blocks of proteins is discussed in this paper. The present approach is based on tailored femtosecond laser pulses, using the concept of strong-field pulse shaping in an adaptive feedback loop. We show that control strategies making use of coherent properties of the electromagnetic wave allow one to break pre-selected backbone bonds in amino acid complexes that may be regarded as peptide model systems. Studies on different chromophores, such as phenylalanine and alanine, while keeping the backbone structure unchanged elucidates the effect of the excitation dynamics on the relaxation pathways. The observation of protonated species in the corresponding mass spectra indicates that optimal control of ultrafast laser pulses may even be useful to study intramolecular reactions such as hydrogen- or proton-transfer in particular cases. This opens new perspectives for biophysical and biochemical research, since these photochemical reactions are suggested to explain, e.g. photostability of DNA.

  10. Pulse Shape Discrimination in liquid argon and its implications for Dark Matter searches using depleted argon

    CERN Document Server

    Kryczynski, Pawel

    2012-01-01

    A brief outline of Dark Matter detection experiments using liquid argon technology is presented. The Pulse Shape background discrimination method (PSD) is described and the example of its use in 2.3 l R&D detector is given. Methods of calculating sensitivity of a Dark Matter detector are discussed and used to estimate the possible improvement of sensitivity after introduction of isotopically depleted liquid argon.

  11. Optimization of ultra-fast interactions using laser pulse temporal shaping controlled by a deterministic algorithm

    Science.gov (United States)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Ruiz de la Cruz, A.; Solis, J.

    2014-02-01

    Femtosecond laser pulse temporal shaping techniques have led to important advances in different research fields like photochemistry, laser physics, non-linear optics, biology, or materials processing. This success is partly related to the use of optimal control algorithms. Due to the high dimensionality of the solution and control spaces, evolutionary algorithms are extensively applied and, among them, genetic ones have reached the status of a standard adaptive strategy. Still, their use is normally accompanied by a reduction of the problem complexity by different modalities of parameterization of the spectral phase. Exploiting Rabitz and co-authors' ideas about the topology of quantum landscapes, in this work we analyze the optimization of two different problems under a deterministic approach, using a multiple one-dimensional search (MODS) algorithm. In the first case we explore the determination of the optimal phase mask required for generating arbitrary temporal pulse shapes and compare the performance of the MODS algorithm to the standard iterative Gerchberg-Saxton algorithm. Based on the good performance achieved, the same method has been applied for optimizing two-photon absorption starting from temporally broadened laser pulses, or from laser pulses temporally and spectrally distorted by non-linear absorption in air, obtaining similarly good results which confirm the validity of the deterministic search approach.

  12. Compartment shape anisotropy (CSA) revealed by double pulsed field gradient MR.

    Science.gov (United States)

    Ozarslan, Evren

    2009-07-01

    The multiple scattering extensions of the pulsed field gradient (PFG) experiments can be used to characterize restriction-induced anisotropy at different length scales. In double-PFG acquisitions that involve two pairs of diffusion gradient pulses, the dependence of the MR signal attenuation on the angle between the two gradients is a signature of restriction that can be observed even at low gradient strengths. In this article, a comprehensive theoretical treatment of the double-PFG observation of restricted diffusion is presented. In the first part of the article, the problem is treated for arbitrarily shaped pores under idealized experimental conditions, comprising infinitesimally narrow gradient pulses with long separation times and long or vanishing mixing times. New insights are obtained when the treatment is applied to simple pore shapes of spheres, ellipsoids, and capped cylinders. The capped cylinder geometry is considered in the second part of the article where the solution for a double-PFG experiment with arbitrary experimental parameters is introduced. Although compartment shape anisotropy (CSA) is emphasized here, the findings of this article can be used in gleaning the volume, eccentricity, and orientation distribution function associated with ensembles of anisotropic compartments using double-PFG acquisitions with arbitrary experimental parameters.

  13. Micro drilling using deformable mirror for beam shaping of ultra-short laser pulses

    Science.gov (United States)

    Smarra, Marco; Strube, Anja; Dickmann, Klaus

    2016-03-01

    Using ultra-short laser pulses for micro structuring or drilling applications reduces the thermal influence to the surrounding material. The best achievable beam profile equals a Gaussian beam. Drilling with this beam profile results in cylindrical holes. To vary the shape of the holes, the beam can either be scanned or - for single pulse and percussion drilling - manipulated by masks or lenses. A high flexible method for beam shaping can be realized by using a deformable mirror. This mirror contains a piezo-electric ceramic, which can be deformed by an electric potential. By separating the ceramic into independent controllable segments, the shape of the surface can be varied individually. Due to the closed surface of the mirror, there is no loss of intensity due to diffraction. The mirror deformation is controlled by Zernike polynomials and results e.g. in a lens behavior. In this study a deformable mirror was used to generate e.g. slits in thin steel foils by percussion drilling using ultra-short laser pulses. The influence of the cylindrical deformation to the laser beam and the resulting geometry of the generated holes was studied. It was demonstrated that due to the high update rate up to 150 Hz the mirror surface can be varied in each scan cycle, which results in a high flexible drilling process.

  14. Query By Image Content using Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    P.A.Hemalatha

    2013-04-01

    Full Text Available The need for Query By Image Content (QBIC peaked up due to the increase in the size of image database. The proposed method chooses appropriate feature extraction methods to extract the features, shape and color to enhance the retrieval efficiency and accuracy. It employs SRM (Statistical Region Merging algorithm for segmentation and uses DCT (Discrete Cosine Transform on the segmented image to obtain the shape feature vector. Color feature is obtained by considering the RGB components in the image. The processed feature vectors are collected in the feature database which is then compared with the query image’s feature vector. When the difference matches a specific threshold, the most similar images are retrieved automatically.

  15. Nanosecond Pulse Shaping with Fiber-Based Electro-Optical Modulators and a Double-Pass Tapered Amplifier

    CERN Document Server

    Rogers, Charles E

    2015-01-01

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  16. BEBE(tr) and BUBI: J-compensated concurrent shaped pulses for 1H-13C experiments.

    Science.gov (United States)

    Ehni, Sebastian; Luy, Burkhard

    2013-07-01

    Shaped pulses designed for broadband excitation, inversion and refocusing are important tools in modern NMR spectroscopy to achieve robust pulse sequences especially in heteronuclear correlation experiments. A large variety of mostly computer-optimized pulse shapes exist for different desired bandwidths, available rf-field strengths, and tolerance to B1-inhomogeneity. They are usually derived for a single spin 1/2, neglecting evolution due to J-couplings. While pulses with constant resulting phase are selfcompensated for heteronuclear coupling evolution as long as they are applied exclusively on a single nucleus, the situation changes for concurrently applied pulse shapes. Using the example of a (1)H,(13)C two spin system, two J-compensated pulse pairs for the application in INEPT-type transfer elements were optimized: a point-to-point pulse sandwich called BEBE(tr), consisting of a broadband excitation and time-reversed excitation pulse, and a combined universal rotation and point-to-point pulse pair called BUBI, which acts as a refocusing pulse on (1)H and a corresponding inversion pulse on (13)C. After a derivation of quality factors and optimization protocols, a theoretical and experimental comparison with conventionally derived BEBOP, BIBOP, and BURBOP-180° pulses is given. While the overall transfer efficiency of a single pulse pair is only reduced by approximately 0.1%, resulting transfer to undesired coherences is reduced by several percent. In experiments this can lead to undesired phase distortions for pairs of uncompensated pulse shapes and even differences in signal intensities of 5-10% in HSQC and up to 68% in more complex COB-HSQC experiments.

  17. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.

    Directory of Open Access Journals (Sweden)

    Linying Liu

    Full Text Available The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments.

  18. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field.

    Science.gov (United States)

    Liu, Linying; Mao, Zheng; Zhang, Jianhua; Liu, Na; Liu, Qing Huo

    2016-01-01

    The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments.

  19. The Influence of Vesicle Shape and Medium Conductivity on Possible Electrofusion under a Pulsed Electric Field

    Science.gov (United States)

    Liu, Linying; Mao, Zheng; Zhang, Jianhua; Liu, Na; Liu, Qing Huo

    2016-01-01

    The effects of electric field on lipid membrane and cells have been extensively studied in the last decades. The phenomena of electroporation and electrofusion are of particular interest due to their wide use in cell biology and biotechnology. However, numerical studies on the electrofusion of cells (or vesicles) with different deformed shapes are still rare. Vesicle, being of cell size, can be treated as a simple model of cell to investigate the behaviors of cell in electric field. Based on the finite element method, we investigate the effect of vesicle shape on electrofusion of contact vesicles in various medium conditions. The transmembrane voltage (TMV) and pore density induced by a pulsed field are examined to analyze the possibility of vesicle fusion. In two different medium conditions, the prolate shape is observed to have selective electroporation at the contact area of vesicles when the exterior conductivity is smaller than the interior one; selective electroporation is more inclined to be found at the poles of the oblate vesicles when the exterior conductivity is larger than the interior one. Furthermore, we find that when the exterior conductivity is lower than the internal conductivity, the pulse can induce a selective electroporation at the contact area between two vesicles regardless of the vesicle shape. Both of these two findings have important practical applications in guiding electrofusion experiments. PMID:27391692

  20. Improved SNR of MST RADAR Signals by Cosine Hyperbolic Window over Kaiser Window

    Directory of Open Access Journals (Sweden)

    Prof. B. Ramesh Reddy Dr. A. Subbarami Reddy Dr. P. Chandrashekar Reddy

    2012-02-01

    Full Text Available In this paper, the effect of window shape parameter “” in Cosine Hyperbolic Window Function on the SNR values of MST RADAR returns has been investigated. Six sets of multibeam observations of the lower atmosphere made by the Indian Mesosphere-Stratosphere-Troposphere (MST RADAR are used for the result analysis. Prior to the Fourier Transformation, the in-phase and quadrature components of the RADAR echo samples are weighted with the recently proposed new class of adjustable window based on the Cosine Hyperbolic Window Function. The effects of data weighting with the variation of the window shape parameter “” of the Cosine Hyperbolic Window Function is presented. It is observed that the increase of “” increases the SNR values and a good improvement is reported. Optimum value of the shape parameter “” for the Cosine Hyperbolic Window Function is suggested to analyze the MST RADAR signals. The results also shows that, the improvement of SNR of noisy data due to the effect of side lobe reduction and demands for the design of optimal windows.

  1. Alpha-gamma pulse-shape discrimination in Gd3Al2Ga3O12 (GAGG):Ce3+ crystal scintillator using shape indicator

    Science.gov (United States)

    Tamagawa, Yoichi; Inukai, Yuji; Ogawa, Izumi; Kobayashi, Masaaki

    2015-09-01

    The pulse-shape discrimination (PSD) in a GAGG single-crystal scintillator was studied by using a shape indicator (SI) parameter of the optimal digital filter method. SI is one of the most useful PSD methods that use typical pulse shapes. Excellent discrimination between 0.662 MeV γ-rays and 5.48 MeV α-rays was achieved. For a cut at SI=0.0056, 99.95% of the γ-rays and only 0.22% of the α-rays were retained. Selection of background events (γ and α) in the GAGG scintillator was achieved by using the PSD method.

  2. On distributional assumptions and whitened cosine similarities

    DEFF Research Database (Denmark)

    Loog, Marco

    2008-01-01

    Recently, an interpretation of the whitened cosine similarity measure as a Bayes decision rule was proposed (C. Liu, "The Bayes Decision Rule Induced Similarity Measures,'' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 1086-1090, June 2007. This communication makes th...... the observation that some of the distributional assumptions made to derive this measure are very restrictive and, considered simultaneously, even inconsistent....

  3. Polarization-independent etching of fused silica based on electrons dynamics control by shaped femtosecond pulse trains for microchannel fabrication.

    Science.gov (United States)

    Yan, X; Jiang, L; Li, X; Zhang, K; Xia, B; Liu, P; Qu, L; Lu, Y

    2014-09-01

    We propose an approach to realize polarization-independent etching of fused silica by using temporally shaped femtosecond pulse trains to control the localized transient electrons dynamics. Instead of nanograting formation using traditional unshaped pulses, for the pulse delay of pulse trains larger than 1 ps, coherent field-vector-related coupling is not possible and field orientation is lost. The exponential growth of the periodic structures is interrupted. In this case, disordered and interconnected nanostructures are formed, which is probably the main reason of etching independence on the laser polarization. As an application example, square-wave-shaped and arc-shaped microchannels are fabricated by using pulse trains to demonstrate the advantage of the proposed method in fabricating high-aspect-ratio and three-dimensional microchannels.

  4. Gamma–neutron imaging system utilizing pulse shape discrimination with CLYC

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Chad M., E-mail: cwhitney@rmdinc.com; Soundara-Pandian, Lakshmi; Johnson, Erik B.; Vogel, Sam; Vinci, Bob; Squillante, Michael; Glodo, Jarek; Christian, James F.

    2015-06-01

    Recently, RMD has investigated the use of CLYC (Cs{sub 2}LiYCl{sub 6}:Ce), a new and emerging scintillation material, in a gamma–neutron coded aperture imaging system based on RMD's commercial RadCam{sup TM} instrument. CLYC offers efficient thermal neutron detection, fast neutron detection capabilities, excellent pulse shape discrimination (PSD), and gamma-ray energy resolution as good as 4% at 662 keV. PSD improves the isolation of higher energy gammas from thermal neutron interactions (>3 MeV electron equivalent peak), compared to conventional pulse height techniques. The scintillation emission time in CLYC provides the basis for PSD; where neutron interactions result in a slower emission rise and decay components while gamma interactions result in a faster emission components. By creating a population plot based on the ratio of the decay tail compared to the total integral amplitude (PSD ratio), discrimination of gammas, thermal neutrons, and fast neutrons is possible. Previously, we characterized the CLYC-based RadCam system for imaging gammas and neutrons using a layered W-Cd coded aperture mask and employing only pulse height discrimination. In this paper, we present the latest results which investigate gamma-neutron imaging capabilities using PSD. An FPGA system is used to acquire the CLYC–PSPMT last dynode signals, determine a PSD ratio for each event, and compare it to a calibrated PSD cutoff. Each event is assigned either a gamma (low) or neutron (high) flag signal which is then correlated with the imaging information for each event. - Highlights: • The latest results are presented for our CLYC RadCam-2 system which investigate gamma–neutron imaging using pulse shape discrimination. • CLYC RadCam-2 system successfully discriminates gammas, thermal neutrons, and fast neutrons by employing a fully integrated, FPGA-based PSD system. • Imaging of our {sup 252}Cf source was possible using both pulse height and pulse shape discrimination with

  5. Spectrum library concept and pulse shape analysis in liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Kaihola, L. [Wallac Oy, Turku (Finland)

    1997-03-01

    Wallac introduced in 1990 a new absolute liquid scintillation counting (LSC) method, Digital Overlay Technique (DOT) to correct for quench. This method allows quantization of multilabel samples by referring to library spectra which are generated against chemical and color quench indices at the factory. The libraries can further be expanded to any beta emitter by user with a method called fine tuning, which can be carried out even with a single sample. Spectrum libraries are created over the whole spectrum range of the radionuclide and allow automatic identification of a single label beta emitting radionuclide, called Easy Count method. Another improvement in LSC is commercial introduction of Pulse Shape Analysis (PSA) in 1986 by Wallac. This method recognizes alpha particle decay by pulse shape and leads to excellent sensitivity in alpha counting because most of the background signal in LSC comprises of short or beta like pulses. PSA detects alpha events in the presence of high excess of beta activity over alphas, up to a ratio 100000 to 1. (orig.)

  6. Real-time digital signal processor implementation of self-calibrating pulse-shape discriminator for high purity germanium

    CERN Document Server

    Suarez, R; Aalseth, C E; Hossbach, T W; Miley, H S

    2007-01-01

    Pulse-shape analysis of the ionization signals from germanium gamma-ray spectrometers is a method for obtaining information that can characterize an event beyond just the total energy deposited in the crystal. However, as typically employed, this method is data-intensive requiring the digitization, transfer, and recording of electronic signals from the spectrometer. A hardware realization of a real-time digital signal processor for implementing a parametric pulse shape is presented. Specifically, a previously developed method for distinguishing between single-site and multi-site gamma-ray interactions is demonstrated in an on-line digital signal processor, compared with the original off-line pulse-shape analysis routine, and shown to have no significant difference. Reduction of the amount of the recorded information per event is shown to translate into higher duty-cycle data acquisition rates while retaining the benefits of additional event characterization from pulse-shape analysis.

  7. Analysis of the scintillation mechanism in a pressurized 4He fast neutron detector using pulse shape fitting

    OpenAIRE

    R.P. Kelley; Murer, D.; Ray, H.; K.A. Jordan

    2015-01-01

    An empirical investigation of the scintillation mechanism in a pressurized 4He gas fast neutron detector was conducted using pulse shape fitting. Scintillation signals from neutron interactions were measured and averaged to produce a single generic neutron pulse shape from both a 252Cf spontaneous fission source and a (d,d) neutron generator. An expression for light output over time was then developed by treating the decay of helium excited states in the same manner as the decay of radioactiv...

  8. Pulsed-mode operation and performance of a ferromagnetic shape memory alloy actuator

    Science.gov (United States)

    Asua, E.; García-Arribas, A.; Etxebarria, V.; Feuchtwanger, J.

    2014-02-01

    The actuation capabilities and positioning performance of a single crystal ferromagnetic shape memory alloy (FSMA) operated in pulsed mode are evaluated in a prototype device. It consists of two orthogonal coil pairs that produce the magnetic fields necessary for the non-contact deformation of the material. The position of the top of the crystal after actuation is measured by a capacitive sensor. A specifically designed power module drives the discharge of a set of capacitors through the coils, producing fast current pulses of large amplitudes (about 250 A), the coil pairs are driven independently to control the direction of actuation. Open-loop experiments demonstrate that successive pulses of increasing magnitude successfully produced the desired expansion and contraction of the crystal, depending on the pair of coils that is activated. The deformation achieved is maintained after the pulses, highlighting the advantageous set-and-forget operation of the device. Closed-loop experiments are performed using a double proportional-integral-derivative controller, designed to take advantage of the energy-saving quality of the set-and-forget operation. Despite the nonlinear response and hysteric response of FSMA materials, a reference position can be reached and maintained with a maximum error of 0.5 μm.

  9. Pulse Shaping for High Capacity Impulse Radio Ultra-Wideband Wireless Links Under the Russian Spectral Emission Mask

    DEFF Research Database (Denmark)

    Grakhova, Elizaveta P.; Rommel, Simon; Jurado-Navas, Antonio

    2016-01-01

    Two pulse shapes for IR-UWB transmission under the Russian spectral emission mask are proposed and their potential experimentally demonstrated. Pulses based on the hyperbolic secant square function and the frequency B-spline wavelet are shown to enable transmission of 1.25 Gbit/s signals, reachin...

  10. Shaping speckles: spatio-temporal focussing of an ultrafast pulse through a multiply scattering medium

    CERN Document Server

    McCabe, David J; Austin, Dane R; Bondareff, Pierre; Walmsley, Ian A; Gigan, Sylvain; Chatel, Béatrice

    2011-01-01

    The multiple scattering of coherent light is a problem of both fundamental and applied importance. In optics, phase conjugation allows spatial focussing and imaging through a multiply scattering medium; however, temporal control is nonetheless elusive, and multiple scattering remains a challenge for femtosecond science. Here, we report on the spatially and temporally resolved measurement of a speckle field produced by the propagation of an ultrafast optical pulse through a thick strongly scattering medium. Using spectral pulse shaping, we demonstrate the spatially localized temporal recompression of the output speckle to the Fourier-limit duration, offering an optical analogue to time-reversal experiments in the acoustic regime. This approach shows that a multiply scattering medium can be put to profit for light manipulation at the femtosecond scale, and has a diverse range of potential applications that includes quantum control, biological imaging and photonics.

  11. Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization

    Science.gov (United States)

    Taki, H.; Azou, S.; Hamie, A.; Al Housseini, A.; Alaeddine, A.; Sharaiha, A.

    2016-09-01

    A simple pulse shape randomization scheme is considered in this paper for improving the performance of ultra wide band (UWB) communication systems using On Off Keying (OOK) or pulse position modulation (PPM) formats. The advantage of the proposed scheme, which can be either employed for impulse radio (IR) or for carrier-based systems, is first theoretically studied based on closed-form derivations of power spectral densities. Then, we investigate an application to an IR-UWB over optical fiber system, by utilizing the 4th and 5th orders of Gaussian derivatives. Our approach proves to be effective for 1 Gbps-PPM and 2 Gbps-OOK transmissions, with an advantage in terms of power efficiency for short distances. We also examine the performance for a system employing an in-line Semiconductor Optical Amplifier (SOA) with the view to achieve a reach extension, while limiting the cost and system complexity.

  12. Influence of Pulse Shaping Filters on PAPR Performance of Underwater 5G Communication System Technique: GFDM

    Directory of Open Access Journals (Sweden)

    Jinqiu Wu

    2017-01-01

    Full Text Available Generalized frequency division multiplexing (GFDM is a new candidate technique for the fifth generation (5G standard based on multibranch multicarrier filter bank. Unlike OFDM, it enables the frequency and time domain multiuser scheduling and can be implemented digitally. It is the generalization of traditional OFDM with several added advantages like the low PAPR (peak to average power ratio. In this paper, the influence of the pulse shaping filter on PAPR performance of the GFDM system is investigated and the comparison of PAPR in OFDM and GFDM is also demonstrated. The PAPR is restrained by selecting proper parameters and filters to make the underwater acoustic communication more efficient.

  13. Application of pulse shape discrimination in Si detector for fission fragment angular distribution measurements

    Indian Academy of Sciences (India)

    B K Nayak; E T Mirgule; R K Choudhury

    2005-12-01

    Pulse shape discrimination (PSD) with totally depleted transmission type Si surface barrier detector in reverse mount has been investigated to identify fission fragments in the presence of elastic background in heavy ion-induced fission reactions by both numerical simulation and experimental studies. The PSD method is compared with the other conventional methods adopted to identify fission fragments with solid-state detectors such as - telescope and single thin detector and the data for the 10B + 232Th fission reaction are presented. Results demonstrate the usefulness of a single transmission-type surface barrier detector for the identification of fission fragments and projectiles like heavy ions.

  14. Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis

    Science.gov (United States)

    Yamamoto, Seiichi; Kobayashi, Takahiro; Yeol Yeom, Jung; Morishita, Yuki; Sato, Hiroki; Endo, Takanori; Usuki, Yoshiyuki; Kamada, Kei; Yoshikawa, Akira

    2014-12-01

    A depth-of-interaction (DOI) detector is required for developing a high resolution and high sensitivity PET system. Ce-doped Gd3Al2Ga3O12 (GAGG fast: GAGG-F) is a promising scintillator for PET applications with high light output, no natural radioisotope and suitable light emission wavelength for semiconductor based photodetectors. However, no DOI detector based on pulse shape analysis with GAGG-F has been developed to date, due to the lack of appropriate scintillators of pairing. Recently a new variation of this scintillator with different Al/Ga ratios-Ce-doped Gd3Al2.6Ga2.4O12 (GAGG slow: GAGG-S), which has slower decay time was developed. The combination of GAGG-F and GAGG-S may allow us to realize high resolution DOI detectors based on pulse shape analysis. We developed and tested two GAGG phoswich DOI block detectors comprised of pixelated GAGG-F and GAGG-S scintillation crystals. One phoswich block detector comprised of 2×2×5 mm pixel that were assembled into a 5×5 matrix. The DOI block was optically coupled to a silicon photomultiplier (Si-PM) array (Hamamatsu MPPC S11064-050P) with a 2-mm thick light guide. The other phoswich block detector comprised of 0.5×0.5×5 mm (GAGG-F) and 0.5×0.5×6 mm3 (GAGG-S) pixels that were assembled into a 20×20 matrix. The DOI block was also optically coupled to the same Si-PM array with a 2-mm thick light guide. In the block detector of 2-mm crystal pixels (5×5 matrix), the 2-dimensional histogram revealed excellent separation with an average energy resolution of 14.1% for 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 8.7. In the block detector that used 0.5-mm crystal pixels (20×20 matrix), the 2-dimensional histogram also showed good separation with energy resolution of 27.5% for the 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 6.5. These results indicate that phoswich DOI detectors with the two

  15. Digital pulse-shape analysis with a TRACE early silicon prototype

    Energy Technology Data Exchange (ETDEWEB)

    Mengoni, D., E-mail: daniele.mengoni@pd.infn.it [Dipartimento di Fisica e Astronomia, Università di Padova, via F. Marzolo, 8 - 35131 Padova (Italy); INFN Padova, via Marzolo 8 - 35131 Padova (Italy); Dueñas, J.A. [Departamento de Física Aplicada, FCCEE Universidad de Huelva, 21071 Huelva (Spain); Assié, M. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, 91406 Orsay (France); Boiano, C. [INFN Milano, Via Celoria, 16 - 20133 Milano (Italy); John, P.R. [Dipartimento di Fisica e Astronomia, Università di Padova, via F. Marzolo, 8 - 35131 Padova (Italy); INFN Padova, via Marzolo 8 - 35131 Padova (Italy); Aliaga, R.J. [Universidad Politécnica de Valencia, CSIC, CIEMAT, I3M, Valencia (Spain); Beaumel, D. [Institut de Physique Nucléaire, Université Paris-Sud-11-CNRS/IN2P3, 91406 Orsay (France); Capra, S. [INFN Milano, Via Celoria, 16 - 20133 Milano (Italy); Gadea, A. [Instituto de Fisica Corpuscular, CSIC – Universitat de Valencia, Paterna, Valencia (Spain); Gonzáles, V. [Departamento de Ingeniería Electrónica, Universitat de Valencia, Burjassot, Valencia (Spain); Gottardo, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro (Padova) (Italy); Grassi, L. [Dipartimento di Fisica e Astronomia, Università di Padova, via F. Marzolo, 8 - 35131 Padova (Italy); INFN Padova, via Marzolo 8 - 35131 Padova (Italy); Herrero-Bosch, V. [Universidad Politécnica de Valencia, CSIC, CIEMAT, I3M, Valencia (Spain); Houdy, T. [Faculté des Sciences, Université Paris-Sud, 91405 Orsay (France); and others

    2014-11-11

    A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 μm thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.

  16. Comparative analysis of pulse shape discrimination methods in a {sup 6}Li loaded plastic scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Balmer, Matthew J.I., E-mail: m.balmer@lancaster.ac.uk [Department of Engineering, Lancaster University, LA1 4YR (United Kingdom); Gamage, Kelum A.A. [Department of Engineering, Lancaster University, LA1 4YR (United Kingdom); Taylor, Graeme C. [Neutron Metrology Group, National Physical Laboratory, Teddington, TW11 0LW (United Kingdom)

    2015-07-11

    Three algorithms for discriminating between fast neutrons, thermal neutrons and gamma rays in a {sup 6}Li loaded plastic scintillator have been compared. Following a literature review of existing pulse shape discrimination techniques, the performance of the charge comparison method, triangular filtering and frequency gradient analysis were investigated in this work. The scintillator was exposed to three different mixed gamma/neutron radiation fields. The figure of merit of neutron/gamma separation was investigated over a broad energy range, as well as for the neutron capture energy region. After optimisation, all three methods were found to perform similarly in terms of neutron/gamma separation.

  17. Digital pulse-shape analysis with a TRACE early silicon prototype

    Science.gov (United States)

    Mengoni, D.; Dueñas, J. A.; Assié, M.; Boiano, C.; John, P. R.; Aliaga, R. J.; Beaumel, D.; Capra, S.; Gadea, A.; Gonzáles, V.; Gottardo, A.; Grassi, L.; Herrero-Bosch, V.; Houdy, T.; Martel, I.; Parkar, V. V.; Perez-Vidal, R.; Pullia, A.; Sanchis, E.; Triossi, A.; Valiente Dobón, J. J.

    2014-11-01

    A highly segmented silicon-pad detector prototype has been tested to explore the performance of the digital pulse shape analysis in the discrimination of the particles reaching the silicon detector. For the first time a 200 μm thin silicon detector, grown using an ordinary floating zone technique, has been shown to exhibit a level discrimination thanks to the fine segmentation. Light-charged particles down to few MeV have been separated, including their punch-through. A coaxial HPGe detector in time coincidence has further confirmed the quality of the particle discrimination.

  18. Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Nagoya University Graduate School of Medicine, Nagoya (Japan); Kobayashi, Takahiro [Nagoya University Graduate School of Medicine, Nagoya (Japan); Department of Radiology, Daiyukai General Hospital, Ichinomiya (Japan); Yeol Yeom, Jung [Kumoh National institute of Technology, Gumi (Korea, Republic of); Morishita, Yuki [Nagoya University Graduate School of Medicine, Nagoya (Japan); Sato, Hiroki; Endo, Takanori; Usuki, Yoshiyuki [Furukawa Corporation, Ichihara (Japan); Kamada, Kei [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai (Japan); Yoshikawa, Akira [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai (Japan); Institute for Materials Research (IMR), Tohoku University, Tohoku (Japan)

    2014-12-11

    A depth-of-interaction (DOI) detector is required for developing a high resolution and high sensitivity PET system. Ce-doped Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (GAGG fast: GAGG-F) is a promising scintillator for PET applications with high light output, no natural radioisotope and suitable light emission wavelength for semiconductor based photodetectors. However, no DOI detector based on pulse shape analysis with GAGG-F has been developed to date, due to the lack of appropriate scintillators of pairing. Recently a new variation of this scintillator with different Al/Ga ratios—Ce-doped Gd{sub 3}Al{sub 2.6}Ga{sub 2.4}O{sub 12} (GAGG slow: GAGG-S), which has slower decay time was developed. The combination of GAGG-F and GAGG-S may allow us to realize high resolution DOI detectors based on pulse shape analysis. We developed and tested two GAGG phoswich DOI block detectors comprised of pixelated GAGG-F and GAGG-S scintillation crystals. One phoswich block detector comprised of 2×2×5 mm pixel that were assembled into a 5×5 matrix. The DOI block was optically coupled to a silicon photomultiplier (Si-PM) array (Hamamatsu MPPC S11064-050P) with a 2-mm thick light guide. The other phoswich block detector comprised of 0.5×0.5×5 mm (GAGG-F) and 0.5×0.5×6 mm{sup 3} (GAGG-S) pixels that were assembled into a 20×20 matrix. The DOI block was also optically coupled to the same Si-PM array with a 2-mm thick light guide. In the block detector of 2-mm crystal pixels (5×5 matrix), the 2-dimensional histogram revealed excellent separation with an average energy resolution of 14.1% for 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 8.7. In the block detector that used 0.5-mm crystal pixels (20×20 matrix), the 2-dimensional histogram also showed good separation with energy resolution of 27.5% for the 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 6.5. These

  19. In situ imaging of hole shape evolution in ultrashort pulse laser drilling.

    Science.gov (United States)

    Döring, Sven; Richter, Sören; Nolte, Stefan; Tünnermann, Andreas

    2010-09-13

    For the first time, in situ the hole shape evolution during ultrashort pulse laser drilling in semiconductor material is imaged. The trans-illumination of the sample at a wavelength of 1.06 µm is projected onto a standard CCD camera during the ablation, providing an image of the contour of the ablated structure perpendicular to the irradiation for drilling. This demonstrated technique enables a direct, high resolution investigation of the temporal evolution of the drilling process in the depth of the material without complex sample preparation or post processing.

  20. Advanced pulse-shape analysis and implementation of gamma-ray tracking in a position-sensitive coaxial HPGe detector

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Austin Lee [Univ. of California, Berkeley, CA (United States)

    2002-11-12

    A new concept in g-radiation detection utilizing highly segmented positionsensitive germanium detectors is currently being developed. Through pulse-shape analysis these detectors will provide the three-dimensional position and energy of individual γ-ray interactions and allow the full-energy and direction vectors of the incident radiation to be reconstructed in a process termed tracking. Here, a prototype segmented detector has been utilized in the assessment of theoretically modeled pulse shapes to gain insight into the factors that effect their agreement with those experimentally measured. It was found that simple modeling of the charge-collection process would provide fair agreement between calculated and experimental pulse shapes. However, in some cases significant deviations between the two were present. This was a result of insufficient modeling of all the processes involved in pulse-shape formation. Factors contributing to this include the three-dimensional spatial distribution of the charge carriers, the path of the primary electron, and fluctuations in the electric fields near electrode surfaces and due to variations in impurity concentrations. Additionally, the sensitivity of pulse shapes to changes in the interaction location has been studied. The results indicate that single interactions with energy deposition of 662 keV can potentially be localized to better than the desired position resolution of 2 mm. However, when the study was extended to two interactions totaling 662 keV a different conclusion was reached. It was shown that the pulse shapes resulting from two interactions were ambiguous with that of pulse shapes from single interactions over dimensions greater than 2 mm in the larger detector segments. The size of these segments in future detectors must be reduced in order to increase their sensitivity. Ultimately, a signal decomposition algorithm was developed and implemented to extract the position and energy of γ-ray interactions, occurring

  1. Probing spatial properties of electronic excitation in water after interaction with temporally shaped femtosecond laser pulses: Experiments and simulations

    Science.gov (United States)

    Winkler, Thomas; Sarpe, Cristian; Jelzow, Nikolai; Lasse H., Lillevang; Götte, Nadine; Zielinski, Bastian; Balling, Peter; Senftleben, Arne; Baumert, Thomas

    2016-06-01

    In this work, laser excitation of water under ambient conditions is investigated by radially resolved common-path spectral interferometry. Water, as a sample system for dielectric materials, is excited by ultrashort bandwidth-limited and temporally asymmetric shaped femtosecond laser pulses, where the latter start with an intense main pulse followed by a decaying pulse sequence, i.e. a temporal Airy pulse. Spectral interference in an imaging geometry allows measurements of the transient optical properties integrated along the propagation through the sample but radially resolved with respect to the transverse beam profile. Since the optical properties reflect the dynamics of the free-electron plasma, such measurements reveal the spatial characteristics of the laser excitation. We conclude that temporally asymmetric shaped laser pulses are a promising tool for high-precision laser material processing, as they reduce the transverse area of excitation, but increase the excitation inside the material along the beam propagation.

  2. Sines and Cosines. Part 3 of 3

    Science.gov (United States)

    Apostol, Tom M. (Editor)

    1994-01-01

    In this 'Project Mathematics' series video, the addition formulas of sines and cosines are explained and their real life applications are demonstrated. Both film footage and computer animation is used. Several mathematical concepts are discussed and include: Ptolemy's theorem concerned with quadrilaterals; the difference between a central angle and an inscribed angle; sines and chord lengths; special angles; subtraction formulas; and a application to simple harmonic motion. A brief history of the city Alexandria, its mathematicians, and their contribution to the field of mathematics is shown.

  3. Sines and Cosines. Part 2 of 3

    Science.gov (United States)

    Apostol, Tom M. (Editor)

    1993-01-01

    The Law of Sines and the Law of Cosines are introduced and demonstrated in this 'Project Mathematics' series video using both film footage and computer animation. This video deals primarily with the mathematical field of Trigonometry and explains how these laws were developed and their applications. One significant use is geographical and geological surveying. This includes both the triangulation method and the spirit leveling method. With these methods, it is shown how the height of the tallest mountain in the world, Mt. Everest, was determined.

  4. Quantum Discrete Cosine Transform for Image Compression

    CERN Document Server

    Pang, C Y; Guo, G C; Pang, Chao Yang; Zhou, Zheng Wei; Guo, Guang Can

    2006-01-01

    Discrete Cosine Transform (DCT) is very important in image compression. Classical 1-D DCT and 2-D DCT has time complexity O(NlogN) and O(N²logN) respectively. This paper presents a quantum DCT iteration, and constructs a quantum 1-D and 2-D DCT algorithm for image compression by using the iteration. The presented 1-D and 2-D DCT has time complexity O(sqrt(N)) and O(N) respectively. In addition, the method presented in this paper generalizes the famous Grover's algorithm to solve complex unstructured search problem.

  5. Discrete cosine transform algorithms, advantages, applications

    CERN Document Server

    Rao, K R

    1990-01-01

    This is the first comprehensive treatment of the theoretical aspects of the discrete cosine transform (DCT), which is being recommended by various standards organizations, such as the CCITT, ISO etc., as the primary compression tool in digital image coding. The main purpose of the book is to provide a complete source for the user of this signal processing tool, where both the basics and the applications are detailed. An extensive bibliography covers both the theory and applications of the DCT. The novice will find the book useful in its self-contained treatment of the theory of the DCT, the de

  6. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Ivanova, A.A., E-mail: a.a.ivanova@inp.nsk.su [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Zubarev, P.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Ivanenko, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Khilchenko, A.D. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Kotelnikov, A.I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Polosatkin, S.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Puryga, E.A.; Shvyrev, V.G. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State Technical University, 630092 Novosibirsk (Russian Federation); Sulyaev, Yu.S. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-08-11

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL–3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL–3 and GDT devices. This analyzer was tested and calibrated with the help of {sup 137}Cs and {sup 252}Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented. - Highlights: • Electronic equipment for measurement of fast neutron flux with stilbene scintillator is presented. • FPGA-implemented digital pulse-shape discrimination algorithm by charge comparison method is shown. • Calibration of analyzer was carried out with {sup 137}Cs and {sup 252}Cf. • Figures of Merit (FOM) values for energy cuts from 1/8 Cs to 2 Cs are from 1.264 to 2.34 respectively.

  7. Shape tailoring of hexagonally ordered triangular gold nanoparticles with nanosecond-pulsed laser light

    Energy Technology Data Exchange (ETDEWEB)

    Morarescu, Rodica; Sanchez, David Blazquez; Borg, Nils [Institut fuer Physik and Center for Interdisciplinary Nanostructure Science and Technology - CINSaT, Universitaet Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Vartanyan, Tigran A. [Center for Informational Optical Technologies St. Petersburg State University of Informational Technologies, Mechanics and Optics, Kronverkskiy pr. 49, St. Petersburg 197101 (Russian Federation); Traeger, Frank [Institut fuer Physik and Center for Interdisciplinary Nanostructure Science and Technology - CINSaT, Universitaet Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany); Hubenthal, Frank, E-mail: hubentha@physik.uni-kassel.de [Institut fuer Physik and Center for Interdisciplinary Nanostructure Science and Technology - CINSaT, Universitaet Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel (Germany)

    2009-09-30

    In this contribution recent results on selective and precise tailoring of triangular gold nanoparticles (NPs) using ns-pulsed laser light are presented. The NPs were prepared by nanosphere lithography and subsequently tailored with ns-pulsed laser light using different fluences and wavelengths. The method is based on the size and shape dependent localized surface plasmon polariton resonance (SPR) of the NPs. We will demonstrate that the gap size between triangular NPs can be tuned from approximately 102{+-}14 nm to 122{+-}11 nm, due to a shape change of the NP from triangular to oblate. These morphological changes are accompanied by a significant shift of the surface plasmon resonance from {lambda}{sub SPR}=730 nm to {lambda}{sub SPR}=680 nm. Most importantly if the laser wavelength is chosen such that the dipolar SPR is excited, the hexagonal order of the NPs remains intact after irradiation, in contrast to excitation via the quadrupole SPR or within the interband transition. A tuneable gap size and the conservation of the hexagonal order of the NP array is the precondition for applications, where the NPs should serve as anchor points, e.g. for functional molecular nanowires, which can be used to utilize molecular devices.

  8. Novel applications of photonic signal processing: Temporal cloaking and biphoton pulse shaping

    Science.gov (United States)

    Lukens, Joseph M.

    We experimentally demonstrate two innovative applications of photonic technologies previously solidified in the field of classical optical communications. In the first application, we exploit electro-optic modulator technology to develop a novel "time cloak,'' a device which hides events in time by manipulating the flow of a probing light beam. Our temporal cloak is capable of masking high-speed optical data from a receiver, greatly improving the feasibility of time cloaking and bringing such exotic concepts to the verge of practical application. In the second specialization, high-resolution Fourier-transform pulse shaping---perfected for multi-wavelength telecom networks---is applied to shape the correlations of entangled photon pairs, states which have received considerable attention in nonlocal tests of quantum theory and in quantum key distribution. Using nonlinear waveguides fabricated out of periodically poled lithium niobate, we are able to demonstrate ultrafast coincidence detection with record-high efficiency, which coupled with our pulse shaper allows us to realize for the first time several capabilities in biphoton control, including high-order dispersion cancellation, orthogonal spectral coding, correlation train generation, and tunable delay control. Each of these experiments represents an important advance in quantum state manipulation, with the potential to impact developments in quantum information. And more generally, our work introducing telecommunication technology into both temporal cloaking and biphoton control highlights the potential of such tools in more nascent outgrowths of classical and quantum optics.

  9. A Novel Transcranial Magnetic Stimulator Inducing Near Rectangular Pulses with Controllable Pulse Width (cTMS)

    Science.gov (United States)

    Jalinous, Reza; Lisanby, Sarah H.

    2013-01-01

    A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369

  10. Energy-optimal electrical-stimulation pulses shaped by the Least-Action Principle.

    Directory of Open Access Journals (Sweden)

    Nedialko I Krouchev

    Full Text Available Electrical stimulation (ES devices interact with excitable neural tissue toward eliciting action potentials (AP's by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects and engineering (e.g. maximized battery-life efficiency. This has typically been addressed by simulation (of a given excitable-tissue model and iterative numerical optimization with hard discontinuous constraints--e.g. AP's are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain--e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP. First, we derive in closed form the general template of the membrane-potential's temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse's shape whereas a rectangular pulse is most

  11. Transformation of irregular shaped silver nanostructures into nanoparticles by under water pulsed laser melting.

    Science.gov (United States)

    Yadavali, S; Sandireddy, V P; Kalyanaraman, R

    2016-05-13

    The ability to easily manufacture nanostructures with a desirable attribute, such as well-defined size and shape, especially from any given initial shapes or sizes of the material, will be helpful towards accelerating the use of nanomaterials in various applications. In this work we report the transformation of discontinuous irregular nanostructures (DIN) of silver metal by rapid heating under a bulk fluid layer. Ag films were changed into DIN by dewetting in air and subsequently heated by nanosecond laser pulses under water. Our findings show that the DIN first ripens into elongated structures and then breaks up into nanoparticles. From the dependence of this behavior on laser fluence we found that under water irradiation reduced the rate of ripening and also decreased the characteristic break-up length scale of the elongated structures. This latter result was qualitatively interpreted as arising from a Rayleigh-Plateau instability modified to yield significantly smaller length scales than the classical process due to pressure gradients arising from the rapid evaporation of water during laser melting. These results demonstrate that it is possible to fabricate a dense collection of monomodally sized Ag nanoparticles with significantly enhanced plasmonic quality starting from the irregular shaped materials. This can be beneficial towards transforming discontinuous Ag films into nanostructures with useful plasmonic properties, that are relevant for biosensing applications.

  12. Simulation and real-time analysis of pulse shapes from segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schlarb, Michael Christian

    2009-11-17

    The capabilities of future HPGe arrays consisting of highly segmented detectors, like AGATA will depend heavily on the performance of {gamma}-ray tracking. The most crucial component in the whole concept is the pulse shape analysis (PSA). The working principle of PSA is to compare the experimental signal shape with signals available from a basis set with known interaction locations. The efficiency of the tracking algorithm hinges on the ability of the PSA to reconstruct the interaction locations accurately, especially for multiple {gamma}-interactions. Given the size of the arrays the PSA algorithm must be run in a real-time environment. A prerequisite to a successful PSA is an accurate knowledge of the detectors response. Making a full coincidence scan of a single AGATA detector, however takes between two and three months, which is too long to produce an experimental signal basis for all detector elements. A straight forward possibility is to use a precise simulation of the detector and to provide a basis of simulated signals. For this purpose the Java Agata Signal Simulation (JASS) was developed in the course of this thesis. The geometry of the detector is given with numerical precision and models describing the anisotropic mobilities of the charge carriers in germanium were taken from the literature. The pulse shapes of the transient and net-charge signals are calculated using weighting potentials on a finite grid. Special care was taken that the interpolation routine not only reproduces the weighting potentials precisely in the highly varying areas of the segment boundaries but also that its performance is independent of the location within the detector. Finally data from a coincidence scan and a pencil beam experiment were used to verify JASS. The experimental signals are reproduced accurately by the simulation. Pulse Shape Analysis (PSA) reconstructs the positions of the individual interactions and the corresponding energy deposits within the detector. This

  13. Fast-Neutron Spectrometry Using a 3He Ionization Chamber and Digital Pulse Shape Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; J. T. Johnson; E. H. Seabury

    2010-05-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type 3He proportional counter to measure the fast neutron spectra of bare 252Cf and 241AmBe neutron sources. Measurements have also been made to determine the attenuated fast neutron spectra of 252Cf shielded by several materials including water, graphite, liquid nitrogen, magnesium, and tungsten. Rise-time dPSA has been employed using the common rise-time approach for analyzing n +3He ? 1H + 3H ionization events and a new approach has been developed to improve the fidelity of these measurements. Simulations have been performed for the different experimental arrangements and are compared, demonstrating general agreement between the dPSA processed fast neutron spectra and predictions.

  14. A real-time n/γ digital pulse shape discriminator based on FPGA.

    Science.gov (United States)

    Li, Shiping; Xu, Xiufeng; Cao, Hongrui; Yuan, Guoliang; Yang, Qingwei; Yin, Zejie

    2013-02-01

    A FPGA-based real-time digital pulse shape discriminator has been employed to distinguish between neutrons (n) and gammas (γ) in the Neutron Flux Monitor (NFM) for International Thermonuclear Experimental Reactor (ITER). The discriminator takes advantages of the Field Programmable Gate Array (FPGA) parallel and pipeline process capabilities to carry out the real-time sifting of neutrons in n/γ mixed radiation fields, and uses the rise time and amplitude inspection techniques simultaneously as the discrimination algorithm to observe good n/γ separation. Some experimental results have been presented which show that this discriminator can realize the anticipated goals of NFM perfectly with its excellent discrimination quality and zero dead time.

  15. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)

    2016-09-11

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.

  16. A Model for the Secondary Scintillation Pulse Shape from a Gas Proportional Scintillation Counter

    CERN Document Server

    Kazkaz, Kareem

    2015-01-01

    Proportional scintillation counters (PSCs), both single- and dual-phase, can measure the scintillation (S1) and ionization (S2) channels from particle interactions within the detector volume. The signal obtained from these detectors depends first on the physics of the medium (the initial scintillation and ionization), and second how the physics of the detector manipulates the resulting photons and liberated electrons. In this paper we develop a model of the detector physics that incorporates event topology, detector geometry, electric field configuration, purity, optical properties of components, and wavelength shifters. We present an analytic form of the model, which allows for general study of detector design and operation, and a Monte Carlo model which enables a more detailed exploration of S2 events. This model may be used to study systematic effects in currents detectors such as energy and position reconstruction, pulse shape discrimination, event topology, dead time calculations, purity, and electric fi...

  17. Statistical and Machine-Learning Classifier Framework to Improve Pulse Shape Discrimination System Design

    Energy Technology Data Exchange (ETDEWEB)

    Wurtz, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kaplan, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-28

    Pulse shape discrimination (PSD) is a variety of statistical classifier. Fully-­realized statistical classifiers rely on a comprehensive set of tools for designing, building, and implementing. PSD advances rely on improvements to the implemented algorithm. PSD advances can be improved by using conventional statistical classifier or machine learning methods. This paper provides the reader with a glossary of classifier-­building elements and their functions in a fully-­designed and operational classifier framework that can be used to discover opportunities for improving PSD classifier projects. This paper recommends reporting the PSD classifier’s receiver operating characteristic (ROC) curve and its behavior at a gamma rejection rate (GRR) relevant for realistic applications.

  18. Progresses in the pulse shape identification with silicon detectors within the FAZIA Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Bardelli, L., E-mail: bardelli@fi.infn.it [Universita degli Studi di Firenze (Italy); I.N.F.N Sezione di Firenze (Italy); Bini, M. [Universita degli Studi di Firenze (Italy); I.N.F.N Sezione di Firenze (Italy); Casini, G. [I.N.F.N Sezione di Firenze (Italy); Edelbruck, P. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Pasquali, G.; Poggi, G. [Universita degli Studi di Firenze (Italy); I.N.F.N Sezione di Firenze (Italy); Barlini, S. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Berjillos, R. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Borderie, B. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Bougault, R. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Bruno, M. [Universita degli Studi di Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Carboni, S. [Universita degli Studi di Firenze (Italy); I.N.F.N Sezione di Firenze (Italy); Chbihi, A. [Grand Accelerateur National d' Ions Lourds, Bd Henri Becquerel, BP 55027-14076 CAEN Cedex 05 (France); D' Agostino, M. [Universita degli Studi di Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Duenas, J.A. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Gautier, J.M. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Gramegna, F. [I.N.F.N. Laboratori Nazionali di Legnaro (Italy); Huss, C. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Kordyasz, A.J. [Heavy Ion Laboratory, Warsaw University, Pasteura 5a, 02-093 Warsaw (Poland); Kozik, T. [Jagiellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland); and others

    2011-10-21

    In the last few years the FAZIA collaboration has been investigating the properties of silicon detectors - in particular the crystal orientation and resistivity non-uniformity - in order to better pin down the detector characteristics that influence their performances for particle identification using {Delta}E-E and Pulse Shape Analysis (PSA) techniques. In this paper we present the first particle identification results obtained with detectors selected for good resistivity uniformity and using a 'non-channeled' configuration. A new digital electronics was also designed for the R and D phase of FAZIA and was tested under beam for the first time. A quantitative procedure to measure the observed performances is applied in order to quantify the particle identification thresholds. Particle identification thresholds of {approx}2.5AMeV for Z{approx}3-10 have been reached with the studied reaction.

  19. Progresses in the pulse shape identification with silicon detectors within the FAZIA Collaboration

    Science.gov (United States)

    Bardelli, L.; Bini, M.; Casini, G.; Edelbruck, P.; Pasquali, G.; Poggi, G.; Barlini, S.; Berjillos, R.; Borderie, B.; Bougault, R.; Bruno, M.; Carboni, S.; Chbihi, A.; D'Agostino, M.; Dueñas, J. A.; Gautier, J. M.; Gramegna, F.; Huss, C.; Kordyasz, A. J.; Kozik, T.; Kravchuk, V. L.; Le Neindre, N.; Lopez, O.; Martel, I.; Morelli, L.; Ordine, A.; Rivet, M. F.; Rosato, E.; Scarlini, E.; Spadaccini, G.; Tobia, G.; Vigilante, M.; Wanlin, E.; Fazia Collaboration

    2011-10-01

    In the last few years the FAZIA [1] collaboration has been investigating the properties of silicon detectors - in particular the crystal orientation and resistivity non-uniformity - in order to better pin down the detector characteristics that influence their performances for particle identification using ΔE-E and Pulse Shape Analysis (PSA) techniques. In this paper we present the first particle identification results obtained with detectors selected for good resistivity uniformity and using a "non-channeled" configuration. A new digital electronics was also designed for the R&D phase of FAZIA and was tested under beam for the first time. A quantitative procedure to measure the observed performances is applied in order to quantify the particle identification thresholds. Particle identification thresholds of ˜2.5 AMeV for Z˜3-10 have been reached with the studied reaction.

  20. Limitations of the pulse-shape technique for particle discrimination in planar Si detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pausch, G.; Seidel, W. [Forschungszentrum Rossendorf e.V. (FZR), Dresden (Germany). Inst. fuer Kern- und Hadronenphysik; Moszynski, M.; Wolski, D. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland). Dept. of Nuclear Electronics; Bohne, W. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Festkoerperphysik; Cederkaell, J.; Klamra, W. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Physics; Grawe, H.; Schubart, R. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Lampert, M.O.; Rohr, P. [Eurisys Mesures, 67 - Tanneries (France)

    1996-11-01

    Limitations of the pulse-shape discrimination (PSD) technique - a promising method to identify the charged particles stopped in planar Si-detectors - have been investigated. The particle resolution turned out to be basically determined by resistivity fluctuations in the bulk silicon which cause the charge-collection time to depend on the point of impact. Detector maps showing these fluctuations have been measured and are discussed. Furthermore we present a simple method to test the performance of detectors with respect to PSD. Another limitation of the PSD technique is the finite energy threshold for particle identification. This threshold is caused by an unexpected decrease of the total charge-collection time for ions with a short range, in spite of the fact that the particle tracks are located in a region of very low electric field. (orig.)

  1. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Science.gov (United States)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  2. Fast neutron flux analyzer with real-time digital pulse shape discrimination

    Science.gov (United States)

    Ivanova, A. A.; Zubarev, P. V.; Ivanenko, S. V.; Khilchenko, A. D.; Kotelnikov, A. I.; Polosatkin, S. V.; Puryga, E. A.; Shvyrev, V. G.; Sulyaev, Yu. S.

    2016-08-01

    Investigation of subthermonuclear plasma confinement and heating in magnetic fusion devices such as GOL-3 and GDT at the Budker Institute (Novosibirsk, Russia) requires sophisticated equipment for neutron-, gamma- diagnostics and upgrading data acquisition systems with online data processing. Measurement of fast neutron flux with stilbene scintillation detectors raised the problem of discrimination of the neutrons (n) from background cosmic particles (muons) and neutron-induced gamma rays (γ). This paper describes a fast neutron flux analyzer with real-time digital pulse-shape discrimination (DPSD) algorithm FPGA-implemented for the GOL-3 and GDT devices. This analyzer was tested and calibrated with the help of 137Cs and 252Cf radiation sources. The Figures of Merit (FOM) calculated for different energy cuts are presented.

  3. Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays

    Science.gov (United States)

    Bartels; Backus; Zeek; Misoguti; Vdovin; Christov; Murnane; Kapteyn

    2000-07-13

    When an intense laser pulse is focused into a gas, the light-atom interaction that occurs as atoms are ionized results in an extremely nonlinear optical process--the generation of high harmonics of the driving laser frequency. Harmonics that extend up to orders of about 300 have been reported, some corresponding to photon energies in excess of 500 eV. Because this technique is simple to implement and generates coherent, laser-like, soft X-ray beams, it is currently being developed for applications in science and technology; these include probing the dynamics in chemical and materials systems and imaging. Here we report that by carefully tailoring the shapes of intense light pulses, we can control the interaction of light with an atom during ionization, improving the efficiency of X-ray generation by an order of magnitude. We demonstrate that it is possible to tune the spectral characteristics of the emitted radiation, and to steer the interaction between different orders of nonlinear processes.

  4. Limitations in timing precision due to single-pulse shape variability in millisecond pulsars

    CERN Document Server

    Shannon, R M; Dai, S; Bailes, M; Hobbs, G; Manchester, R N; van Straten, W; Raithel, C A; Ravi, V; Toomey, L; Bhat, N D R; Burke-Spolaor, S; Coles, W A; Keith, M J; Kerr, M; Levin, Y; Sarkissian, J M; Wang, J -B; Wen, L; Zhu, X -J

    2014-01-01

    High-sensitivity radio-frequency observations of millisecond pulsars usually show stochastic, broadband, pulse-shape variations intrinsic to the pulsar emission process. These variations induce jitter noise in pulsar timing observations; understanding the properties of this noise is of particular importance for the effort to detect gravitational waves with pulsar timing arrays. We assess the short-term profile and timing stability of 22 millisecond pulsars that are part of the Parkes Pulsar Timing Array sample by examining intra-observation arrival time variability and single-pulse phenomenology. In 7 of the 22 pulsars, in the band centred at approximately 1400MHz, we find that the brightest observations are limited by intrinsic jitter. We find consistent results, either detections or upper limits, for jitter noise in other frequency bands. PSR J1909-3744 shows the lowest levels of jitter noise, which we estimate to contribute $\\sim$10 ns root mean square error to the arrival times for hour-duration observati...

  5. Energy calibration of CsI(Tl) scintillator in pulse-shape identification technique

    CERN Document Server

    Avdeichikov, V; Golubev, P; Jakobsson, B; Colonna, N

    2003-01-01

    A batch of 16 CsI(Tl) scintillator crystals, supplied by the Bicron Company, has been studied with respect to precise energy calibration in pulse-shape identification technique. The light corresponding to pulse integration within the time interval 1.6-4.5 mu s (long gate) and 0.0-4.5 mu s (extra-long gate) exhibits a power law relation, L(E,Z,A)=a1(Z,A)E sup a sup 2 sup ( sup Z sup , sup A sup ) , for sup 1 sup , sup 2 sup , sup 3 H isotopes in the measured energy range 5-150 MeV. For the time interval 0.0-0.60 mu s (short gate), a significant deviation from the power law relation is observed, for energy greater than approx 30 MeV. The character of the a2(p)-a2(d) and a2(p)-a2(t) correlations for protons, deuterons and tritons, reveals 3 types of crystals in the batch. These subbatches differ in the value of the extracted parameter a2 for protons, and in the value of the spread of a2 for deuterons and tritons. This may be explained by the difference in the energy dependence of the fast decay time component an...

  6. New opportunities for secure communication networks using shaped femtosecond laser pulses inducing filamentation processes in the atmosphere

    Science.gov (United States)

    Alyami, H. M.; Becerra, V. M.; Hadjiloucas, S.

    2013-11-01

    The current study discusses new opportunities for secure ground to satellite communications using shaped femtosecond pulses that induce spatial hole burning in the atmosphere for efficient communications with data encoded within super-continua generated by femtosecond pulses. Refractive index variation across the different layers in the atmosphere may be modelled using assumptions that the upper strata of the atmosphere and troposphere behaving as layered composite amorphous dielectric networks composed of resistors and capacitors with different time constants across each layer. Input-output expressions of the dynamics of the networks in the frequency domain provide the transmission characteristics of the propagation medium. Femtosecond pulse shaping may be used to optimize the pulse phase-front and spectral composition across the different layers in the atmosphere. A generic procedure based on evolutionary algorithms to perform the pulse shaping is proposed. In contrast to alternative procedures that would require ab initio modelling and calculations of the propagation constant for the pulse through the atmosphere, the proposed approach is adaptive, compensating for refractive index variations along the column of air between the transmitter and receiver.

  7. A Comparison between Electrical and Optical Chromatic Dispersion Compensation in Wavelength Divison Multiplexing Network Regarding to Electrical Pulse Shapes

    Directory of Open Access Journals (Sweden)

    Mohammad S. Ab-Rahman

    2012-01-01

    Full Text Available Problem statement: Besides of some impairment that has been inherited form single channel, specialists confronted with new obstacles in WDM implementation which bared them for achieving desired performance. Although Chromatic Dispersion (CD exists in single channel too, it can worsens new nonlinearities which are occurs just in WDM systems. So CD compensation in WDM is even more vital than single channel one. Approach: A wide range of optical and electrical CD compensation techniques have been represented. In this study we evaluate the efficiency of feed Forward-Decision Feedback Equalizer (FFE-DFE as one type of electrical compensation methods and Dispersion Compensation Fiber as one type of optical compensator. Also we will look how electrical pulse shapes induced by pulse generator in transmitter, can impact on the performance of the either optical or electrical compensations. Results: After implementation, it was revealed that overall optical compensation with DCF gives us better performance than electrical equalizer and NRZ is more vulnerable than two other pulse shapes. Conclusion: Chromatic compensation was implemented with different pulse shapes and RZ pulse shape with optical compensation showed the best performance.

  8. Radial position of single-site gamma-ray interactions from a parametric pulse shape analysis of germanium detector signals

    CERN Document Server

    Orrell, J L; Cooper, M W; Kephart, J D; Seifert, C E; Orrell, John L.; Aalseth, Craig E.; Cooper, Matthew W.; Kephart, Jeremy D.; Seifert, Carolyn E.

    2007-01-01

    Pulse shape analysis of germanium gamma-ray spectrometer signals can yield information on the radial position of individual gamma-ray interactions within the germanium crystal. A parametric pulse shape analysis based on calculation of moments of the reconstructed current pulses from a closed-ended coaxial germanium detector is used to preferentially select single-site gamma-ray interactions. The double escape peak events from the 2614.5 keV gamma-ray of 208-Tl are used as a training set to optimize the single-site event selection region in the pulse shape parameter space. A collimated source of 320.1 keV gamma-rays from 51-Cr is used to scan different radial positions of the same semi-coaxial germanium detector. The previously trained single-site selection region is used to preferentially identify the single-site photoelectric absorption events from the 320.1 keV full-energy peak. From the identified events, a comparison of the pulse shape parameter space distributions between different scan positions allows ...

  9. A Matrix Hyperbolic Cosine Algorithm and Applications

    CERN Document Server

    Zouzias, Anastasios

    2011-01-01

    Wigderson and Xiao presented an efficient derandomization of the matrix Chernoff bound using the method of pessimistic estimators. Based on their construction, we present a derandomization of the matrix Bernstein inequality which can be viewed as generalization of Spencer's hyperbolic cosine algorithm. We apply our construction to several problems by analyzing its computational efficiency under two special cases of matrix samples; one in which the samples have a group structure and the other in which they have rank-one outer-product structure. As a consequence of the former case, we present a deterministic algorithm that, given the multiplication table of a finite group of size n, constructs an Alon-Roichman expanding Cayley graph of logarithmic degree in O(n^2 log^3 n) time. For the latter case, we present a fast deterministic algorithm for spectral sparsification of positive semi-definite matrices (as defined in [Sri10]) which implies directly an improved deterministic algorithm for spectral graph sparsific...

  10. Discrete cosine transform using modified DPCM

    Science.gov (United States)

    Pogribny, Wlodzimierz; Drechny, Marcin

    2004-07-01

    Differential modulations such as Delta Modulation (DM) are used for representing digital signals in small word length codes. They allow high fast acting and simplicity of specialized processors. The use of DM for the economical representation and efficient processing of the signals needs the development of the existing methods and the working out of simple and fast processing methods in real time. Therefore Discrete Cosine Transform (DCT) methods were proposed in mixed formats which have the advantages both DCT with PCM and DCT with DM. In this work there have been studied the ways of choosing DM parameters in order to use them in these methods. On the basis of the worked out computer simulation program, the accuracy of DCT with DM algorithms has been examined by means of processing signals like noise and voice. The use of DCT algorithms in DM formats is expedient to realization of neural systems.

  11. Application of Cosine Zone Plates to Image Encryption

    Institute of Scientific and Technical Information of China (English)

    GE Fan; CHEN Lin-Fei; ZHAO Dao-Mu

    2008-01-01

    @@ We analyse the diffraction result of optical field after Cosine zone plate, and theoretically deduce its transform matrix. Under some conditions, its diffraction distribution is a mixture of fractional Fourier spectra. Then we use Cosine zone plate and its diffraction result to image encryption. Possible optical image encryption and decryption implementations are proposed, and some numerical simulation results are also provided.

  12. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    Science.gov (United States)

    Guerrero, R. D.; Arango, C. A.; Reyes, A.

    2016-07-01

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.

  13. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator.

    Science.gov (United States)

    Ayvali, Elif; Desai, Jaydev P

    2014-04-01

    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories.

  14. Matrix shaped pulsed laser deposition: New approach to large area and homogeneous deposition

    Energy Technology Data Exchange (ETDEWEB)

    Akkan, C.K.; May, A. [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany); Hammadeh, M. [Department for Obstetrics, Gynecology and Reproductive Medicine, IVF Laboratory, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Abdul-Khaliq, H. [Clinic for Pediatric Cardiology, Saarland University Medical Center and Faculty of Medicine, Building 9, 66421 Homburg, Saar (Germany); Aktas, O.C., E-mail: cenk.aktas@inm-gmbh.de [INM – Leibniz Institute for New Materials, CVD/Biosurfaces Group, Campus D2 2, 66123 Saarbrücken (Germany)

    2014-05-01

    Pulsed laser deposition (PLD) is one of the well-established physical vapor deposition methods used for synthesis of ultra-thin layers. Especially PLD is suitable for the preparation of thin films of complex alloys and ceramics where the conservation of the stoichiometry is critical. Beside several advantages of PLD, inhomogeneity in thickness limits use of PLD in some applications. There are several approaches such as rotation of the substrate or scanning of the laser beam over the target to achieve homogenous layers. On the other hand movement and transition create further complexity in process parameters. Here we present a new approach which we call Matrix Shaped PLD to control the thickness and homogeneity of deposited layers precisely. This new approach is based on shaping of the incoming laser beam by a microlens array and a Fourier lens. The beam is split into much smaller multi-beam array over the target and this leads to a homogenous plasma formation. The uniform intensity distribution over the target yields a very uniform deposit on the substrate. This approach is used to deposit carbide and oxide thin films for biomedical applications. As a case study coating of a stent which has a complex geometry is presented briefly.

  15. Further study of CdWO4 crystal scintillators as detectors for high sensitivity double beta experiments: scintillation properties and pulse-shape discrimination

    CERN Document Server

    Bardelli, L; Bizzeti, P G; Carraresi, L; Danevich, F A; Fazzini, T F; Grinyov, B V; Ivannikova, N V; Kobychev, V V; Kropivyansky, B N; Maurenzig, P R; Nagornaya, L L; Nagorny, S S; Nikolaiko, A S; Pavlyuk, A A; Poda, D V; Solsky, I M; Sopinskyy, M V; Stenin, Y G; Taccetti, F; Tretyak, V I; Vasiliev, Y V; Yurchenko, S S; Stenin, Yu. G.; Vasiliev, Ya. V.

    2006-01-01

    Energy resolution, light yield, non-proportionality in the scintillation response, alpha/beta ratio, pulse shape for gamma rays and alpha particles were studied with CdWO4 crystal scintillators. Some indication for a difference in the emission spectra for gamma rays and alpha particles was observed. No dependence of CdWO4 pulse shape on emission spectrum wavelengths under laser, alpha particles and gamma ray excitation was observed. Dependence of scintillation pulse shape for gamma quanta and alpha particles and pulse-shape discrimination ability on temperature was measured in the range of 0-24 degrees.

  16. Further study of CdWO{sub 4} crystal scintillators as detectors for high sensitivity 2{beta} experiments: Scintillation properties and pulse-shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Bardelli, L. [Dipartimento di Fisica, Universita di Firenze and INFN, 50019 Florence (Italy); Bini, M. [Dipartimento di Fisica, Universita di Firenze and INFN, 50019 Florence (Italy); Bizzeti, P.G. [Dipartimento di Fisica, Universita di Firenze and INFN, 50019 Florence (Italy); Carraresi, L. [Dipartimento di Fisica, Universita di Firenze and INFN, 50019 Florence (Italy); Danevich, F.A. [Institute for Nuclear Research, MSP 03680 Kiev (Ukraine)]. E-mail: danevich@kinr.kiev.ua; Fazzini, T.F. [Dipartimento di Fisica, Universita di Firenze and INFN, 50019 Florence (Italy); Grinyov, B.V. [Institute for Scintillation Materials, 61001 Kharkov (Ukraine); Ivannikova, N.V. [Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk (Russian Federation); Kobychev, V.V. [Institute for Nuclear Research, MSP 03680 Kiev (Ukraine); Kropivyansky, B.N. [Institute for Nuclear Research, MSP 03680 Kiev (Ukraine); Maurenzig, P.R. [Dipartimento di Fisica, Universita di Firenze and INFN, 50019 Florence (Italy); Nagornaya, L.L. [Institute for Scintillation Materials, 61001 Kharkov (Ukraine); Nagorny, S.S. [Institute for Nuclear Research, MSP 03680 Kiev (Ukraine); Nikolaiko, A.S. [Institute for Nuclear Research, MSP 03680 Kiev (Ukraine); Pavlyuk, A.A. [Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk (Russian Federation); Poda, D.V. [Institute for Nuclear Research, MSP 03680 Kiev (Ukraine); Solsky, I.M. [Institute for Materials, 79031 Lviv (Ukraine); Sopinskyy, M.V. [Lashkaryov Institute of Semiconductor Physics, 03028 Kiev (Ukraine); Stenin, Yu.G. [Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk (Russian Federation); Taccetti, F. [Dipartimento di Fisica, Universita di Firenze and INFN, 50019 Florence (Italy); Tretyak, V.I.; Yurchenko, S.S. [Institute for Nuclear Research, MSP 03680 Kiev (Ukraine); Vasiliev, Ya.V. [Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk (Russian Federation)

    2006-12-21

    Energy resolution, non-proportionality in the scintillation response, {alpha}/{beta} ratio, pulse shape for {gamma} rays and {alpha} particles were studied with CdWO{sub 4} crystal scintillators. Some indication for a difference in the emission spectra for {gamma} rays and {alpha} particles was observed. No dependence of CdWO{sub 4} pulse shape on emission spectrum wavelengths under laser, {alpha} particles and {gamma} ray excitation was observed. Dependence of scintillation pulse shape for {gamma} quanta and {alpha} particles and pulse-shape discrimination ability on temperature was measured in the range of 0-24{sup o}C.

  17. Towards Terawatt Sub-Cycle Long-Wave Infrared Pulses via Chirped Optical Parametric Amplification and Indirect Pulse Shaping

    Science.gov (United States)

    Yin, Yanchun; Chew, Andrew; Ren, Xiaoming; Li, Jie; Wang, Yang; Wu, Yi; Chang, Zenghu

    2017-04-01

    We present an approach for both efficient generation and amplification of 4-12 μm pulses by tailoring the phase matching of the nonlinear crystal Zinc Germanium Phosphide (ZGP) in a narrowband-pumped optical parametric chirped pulse amplifier (OPCPA) and a broadband-pumped dual-chirped optical parametric amplifier (DC-OPA), respectively. Preliminary experimental results are obtained for generating 1.8-4.2 μm super broadband spectra, which can be used to seed both the signal of the OPCPA and the pump of the DC-OPA. The theoretical pump-to-idler conversion efficiency reaches 27% in the DC-OPA pumped by a chirped broadband Cr2+:ZnSe/ZnS laser, enabling the generation of  Terawatt-level 4-12 μm pulses with an available large-aperture ZGP. Furthermore, the 4-12 μm idler pulses can be compressed to sub-cycle pulses by compensating the tailored positive chirp of the idler pulses using the bulk compressor NaCl, and by indirectly controlling the higher-order idler phase through tuning the signal (2.4-4.0 μm) phase with a commercially available acousto-optic programmable dispersive filter (AOPDF). A similar approach is also described for generating high-energy 4-12 μm sub-cycle pulses via OPCPA pumped by a 2 μm Ho:YLF laser.

  18. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    CSIR Research Space (South Africa)

    Botha, N

    2010-08-31

    Full Text Available , Ch, Sharpe-Tudoran, C, Winter, M. & Baumert, T. 2003. Compact, robust, and flexible setup for femtosecond pulse shaping. Review of scientific instruments, 75:4950-4953. 3. Cavallari, M, Gale, G.M, Hache, F, Pavlov, L.I & Rousseau, E 1995. Mid infra...

  19. Pulse shaping for high data rate ultra-wideband wireless transmission under the Russian spectral emission mask

    DEFF Research Database (Denmark)

    Rommel, Simon; Grakhova, Elizaveta P.; Jurado-Navas, Antonio

    2017-01-01

    This paper addresses impulse-radio ultra-wideband (IR-UWB) transmission under the Russian spectral emission mask for unlicensed UWB radio communications. Four pulse shapes are proposed and their bit error rate (BER) performance is both estimated analytically and evaluated experimentally. Well-kno...

  20. Plutonium metal vs. oxide determination with the pulse-shape-discrimination-capable plastic scintillator EJ-299-33

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, S.A., E-mail: pozzisa@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Bourne, M.M.; Dolan, J.L.; Polack, K.; Lawrence, C.; Flaska, M.; Clarke, S.D. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Tomanin, A.; Peerani, P. [European Commission Joint Research Centre, Institute for the Protection and Security of the Citizen Via Enrico Fermi, 2749 21027 Ispra VA (Italy)

    2014-12-11

    Neutron measurements can be used to distinguish plutonium in metal or oxide form, a capability that is of great interest in nuclear nonproliferation, treaty verification, and other applications. This paper describes measurements performed on well-characterized samples of plutonium oxide and plutonium metal using the pulse-shape-discrimination-capable plastic scintillator EJ-299-33. Results are compared to those obtained with a same-sized detector cell using the liquid scintillator EJ-309. The same optimized, digital pulse shape discrimination technique is applied to both detectors and the neutron pulse height distributions are compared. Results show that the EJ-299-33 plastics can be successfully used for plutonium measurements, where the gamma ray to neutron detection ratio is much higher than for typical radioactive sources. Results also show that EJ-299-33 detectors can be used to characterize plutonium samples, specifically to discriminate between plutonium metal and oxide.

  1. Implementation of a SVWP-based laser beam shaping technique for generation of 100-mJ-level picosecond pulses.

    Science.gov (United States)

    Adamonis, J; Aleknavičius, A; Michailovas, K; Balickas, S; Petrauskienė, V; Gertus, T; Michailovas, A

    2016-10-01

    We present implementation of the energy-efficient and flexible laser beam shaping technique in a high-power and high-energy laser amplifier system. The beam shaping is based on a spatially variable wave plate (SVWP) fabricated by femtosecond laser nanostructuring of glass. We reshaped the initially Gaussian beam into a super-Gaussian (SG) of the 12th order with efficiency of about 50%. The 12th order of the SG beam provided the best compromise between large fill factor, low diffraction on the edges of the active media, and moderate intensity distribution modification during free-space propagation. We obtained 150 mJ pulses of 532 nm radiation. High-energy, pulse duration of 85 ps and the nearly flat-top spatial profile of the beam make it ideal for pumping optical parametric chirped pulse amplification systems.

  2. 一种新的指腕骨ROI的定位算法研究——基于k余弦和形状信息%Novel location algorithm research for phalange and carpal ROI based on k-cosine and shape information

    Institute of Scientific and Technical Information of China (English)

    冉隆科; 周丽华; 陈忠

    2011-01-01

    In the research of automatic bone age assessment,how to locate and extract phalangeal Regions Of Interest(ROI) and carpal ROI efficiently has become one of the most difficult and urgent key problems.The two-dimensional third order polynomial linear regression based on shape information for phalanges and carpals is proposed,though which the background images can be fitted and removed.And it locates the key points of phalangeal ROI and carpal ROI accurately by using k-cosine algorithm, so phalangeal ROI and carpal ROI can be extracted. Experiments on more than 60 left hand radiograph data show that the correct extracted rates of the proposed method are higher than 93%.Moreover,the method is robust for gray value variation of background, the position and orientation of the hand, so it can be used directly for automatic skeletal bone age assessment in the follow-up study.%在骨龄自动化评价的研究中,如何对指骨 ROI 和腕骨 ROI 的有效定位和成功提取是其研究的难点和急需解决的关键问题之一.在利用手指骨和腕骨形状信息的基础上,提出了用二元三次线性回归方法来拟合图像背景,从而移除图像背景;用基于k 余弦的方法来定位腕骨 ROI 和指骨 ROI 的关键点,最后成功提取出腕骨 ROI 和指骨 ROI.通过超过 60 例的临床骨龄 X 光片图像数据验证最后提取的正确率在 93% 以上.使用该方法不用考虑骨龄图像背景灰度值的改变.图像位置和方向的变化,因而具有极大的鲁棒性,可以直接应用到骨龄自动化评价的后续研究中.

  3. Dynamic feedback circuits function as a switch for shaping a maturation-inducing steroid pulse in Drosophila

    Science.gov (United States)

    Moeller, Morten E.; Danielsen, E. Thomas; Herder, Rachel; O’Connor, Michael B.; Rewitz, Kim F.

    2013-01-01

    Steroid hormones trigger the onset of sexual maturation in animals by initiating genetic response programs that are determined by steroid pulse frequency, amplitude and duration. Although steroid pulses coordinate growth and timing of maturation during development, the mechanisms generating these pulses are not known. Here we show that the ecdysone steroid pulse that drives the juvenile-adult transition in Drosophila is determined by feedback circuits in the prothoracic gland (PG), the major steroid-producing tissue of insect larvae. These circuits coordinate the activation and repression of hormone synthesis, the two key parameters determining pulse shape (amplitude and duration). We show that ecdysone has a positive-feedback effect on the PG, rapidly amplifying its own synthesis to trigger pupariation as the onset of maturation. During the prepupal stage, a negative-feedback signal ensures the decline in ecdysone levels required to produce a temporal steroid pulse that drives developmental progression to adulthood. The feedback circuits rely on a developmental switch in the expression of Broad isoforms that transcriptionally activate or silence components in the ecdysone biosynthetic pathway. Remarkably, our study shows that the same well-defined genetic program that stimulates a systemic downstream response to ecdysone is also utilized upstream to set the duration and amplitude of the ecdysone pulse. Activation of this switch-like mechanism ensures a rapid, self-limiting PG response that functions in producing steroid oscillations that can guide the decision to terminate growth and promote maturation. PMID:24173800

  4. Scintillation-only Based Pulse Shape Discrimination for Nuclear and Electron Recoils in Liquid Xenon

    CERN Document Server

    Ueshima, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Koshio, Y; Liu, J; Martens, K; Moriyama, S; Nakahata, M; Nishiie, H; Ogawa, H; Sekiya, H; Shinozaki, A; Suzuki, Y; Takeda, A; Yamashita, M; Fujii, K; Murayama, I; Nakamura, S; Otsuka, K; Takeuchi, Y; Fukuda, Y; Nishijima, K; Motoki, D; Itow, Y; Masuda, K; Nishitani, Y; Uchida, H; Tasaka, S; Ohsumi, H; Kim, Y D; Kim, Y H; Lee, K B; Lee, M K

    2011-01-01

    In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background to 7.7\\pm1.1(stat)\\pm1.2 0.6(sys)\\times10-2 at energies between 4.8 and 7.2 keVee and to 7.7\\pm2.8(stat)\\pm2.5 2.8(sys)\\times10-3 at energies between 9.6 and 12 keVee for a scintillation light yield of 20.9 p.e./keV. Further study was done by masking some of that light to reduce this yield to 4.6 p.e./keV, the same method results in an electron event reduction of 2.4\\pm0.2(stat)\\pm0.3 0.2(sys)\\times10-1 for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the ...

  5. The pulse shape of cosmic-ray ground-level enhancements

    CERN Document Server

    Moraal, H; Caballero-Lopez, R A

    2016-01-01

    Enhancements of the comic-ray intensity as observed by detectors on the ground have been observed 71 times since 1942. They are due to solar energetic particles accelerated in the regions of solar flares deep in the corona, or in the shock front of coronal mass ejections (CMEs) in the solar wind. The latter is the favoured model for the classical gradual ground-level enhancement (GLE). In several papers since the one of McCracken et al. (2008), we pointed out, however, that some GLEs are too impulsive to be accelerated in the CME shocks. With this hypothesis in mind we study the time profiles of all the available GLEs. The main results are that there is a continuous range from gradual to impulsive, that the fastest risers are concentrated at heliolongitudes that are magnetically well-connected to Earth, and that the shape of the pulse is a powerful indicator of propagation conditions between Sun and Earth. This ranges from relatively quiet to highly disturbed.

  6. Correction for hole trapping in AGATA detectors using pulse shape analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bruyneel, B. [CEA Saclay, DSM/IRFU/SPhN, Gif-sur-Yvette Cedex (France); Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Birkenbach, B.; Eberth, J.; Hess, H.; Pascovici, Gh.; Reiter, P.; Wiens, A. [Universitaet zu Koeln, Institut fuer Kernphysik, Koeln (Germany); Bazzacco, D.; Farnea, E.; Michelagnoli, C.; Recchia, F. [INFN, Sezione di Padova, Padova (Italy); Collaboration: for the AGATA Collaboration

    2013-05-15

    Data from the highly segmented High-Purity Germanium (HPGe) detectors of the AGATA spectrometer show that segments are more sensitive to neutron damage than the central core contact. Calculations on the collection efficiency of charge carriers inside the HPGe detector were performed in order to understand this phenomenon. The trapping sensitivity, an expression based on the collection efficiencies for electrons and holes, is put forward to quantify the effect of charge carrier trapping. The sensitivity is evaluated for each position in the detector volume with respect to the different electrodes and the collected charge carrier type. Using the position information obtained by pulse shape analysis from the position-sensitive AGATA detectors, it is possible to correct for the energy deficit employing detector specific sensitivity values. We report on the successful correction of the energy peaks from heavily neutron-damaged AGATA detectors for core and segment electrode signals. The original energy resolution can optimally be recovered up to a certain quantifiable limit of degradation due to statistical fluctuations caused by trapping effects. (orig.)

  7. A fast and powerful release mechanism based on pulse heating of shape memory wires

    Science.gov (United States)

    Malka, Yoav; Shilo, Doron

    2017-09-01

    This article presents a novel actuator and a new concept for a release mechanism that are especially useful in applications that require fast motion of large masses over long distances. The actuator is based on ultra-fast pulse heating of NiTi wires, which provide a unique combination of large work per volume, short response time and enhanced energy efficiency. The release mechanism utilizes the fast and powerful actuator to form conditions in which the latch (safety pin) moves faster than the deployed device. As a result, the contact between these two masses is disconnected and the resulting friction forces are decreased to approximately zero. The actuator and release mechanism address the two major drawbacks of conventional shape memory alloy (SMA) actuators: slow actuation time and low energy efficiency. Using a dedicated setup, the experimental results validate the disconnection between the masses and map the effects of several variables on the performance of the actuator and release mechanism. In particular, we map the energetic efficiency and find the optimal operating conditions for a successful release using a minimal amount of input energy. At the optimal conditions, the actuator response time and the consumed input energy are smaller by an order of magnitude with respect to performances of previous SMA-based release mechanisms with comparable requirements.

  8. Fast-neutron spectrometry using a ³He ionization chamber and digital pulse shape analysis.

    Science.gov (United States)

    Chichester, D L; Johnson, J T; Seabury, E H

    2012-08-01

    Digital pulse shape analysis (dPSA) has been used with a Cuttler-Shalev type (3)He ionization chamber to measure the fast-neutron spectra of a deuterium-deuterium electronic neutron generator, a bare (252)Cf spontaneous fission neutron source, and of the transmitted fast neutron spectra of a (252)Cf source attenuated by water, graphite, liquid nitrogen, and magnesium. Rise-time dPSA has been employed using the common approach for analyzing n +(3)He→(1)H+(3)H ionization events and improved to account for wall-effect and pile-up events, increasing the fidelity of these measurements. Simulations have been performed of the different experimental arrangements and compared with the measurements, demonstrating general agreement between the dPSA-processed fast-neutron spectra and predictions. The fast-neutron resonance features of the attenuation cross sections of the attenuating materials are clearly visible within the resolution limits of the electronics used for the measurements, and the potential applications of high-resolution fast-neutron spectrometry for nuclear nonproliferation and safeguards measurements are discussed.

  9. Fast neutron tomography with real-time pulse-shape discrimination in organic scintillation detectors

    Science.gov (United States)

    Joyce, Malcolm J.; Agar, Stewart; Aspinall, Michael D.; Beaumont, Jonathan S.; Colley, Edmund; Colling, Miriam; Dykes, Joseph; Kardasopoulos, Phoevos; Mitton, Katie

    2016-10-01

    A fast neutron tomography system based on the use of real-time pulse-shape discrimination in 7 organic liquid scintillation detectors is described. The system has been tested with a californium-252 source of dose rate 163 μSv/h at 1 m and neutron emission rate of 1.5×107 per second into 4π and a maximum acquisition time of 2 h, to characterize two 100×100×100 mm3 concrete samples. The first of these was a solid sample and the second has a vertical, cylindrical void. The experimental data, supported by simulations with both Monte Carlo methods and MATLAB®, indicate that the presence of the internal cylindrical void, corners and inhomogeneities in the samples can be discerned. The potential for fast neutron assay of this type with the capability to probe hydrogenous features in large low-Z samples is discussed. Neutron tomography of bulk porous samples is achieved that combines effective penetration not possible with thermal neutrons in the absence of beam hardening.

  10. Pulse shape discrimination using EJ-299-33 plastic scintillator coupled with a Silicon Photomultiplier array

    Science.gov (United States)

    Liao, Can; Yang, Haori

    2015-07-01

    Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) have gained much interest. Novel photon detectors, such as Silicon Photomultipliers (SiPMs), offer numerous advantages and can be used as an alternative to conventional photo multiplier tubes (PMTs) in many applications. In this work, we evaluate the PSD performance of the EJ-299-33 plastic scintillator coupled with a SiPM array. 2D PSD plots as well as the Figure of Merit (FOM) parameters are presented to demonstrate the PSD capability of EJ-299-33 using a SiPM as the light sensor. The best FOM of 0.76 was observed with a 1.0 MeVee (MeV-electron-equivalent) energy threshold, despite the high noise level of the SiPM array. A high-speed digital oscilloscope was used to acquire data, which was then processed offline in MATLAB. A performance comparison between two different PSD algorithms was carried out. The dependence of PSD quality on the sampling rate was also evaluated, stimulated by the interest to implement this setup for handheld applications where power consumption is crucial.

  11. Neutron/gamma pulse shape discrimination in plastic scintillators: Preparation and characterization of various compositions

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Pauline [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan cedex (France); Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Dehé-Pittance, Chrystèle; Rocha, Licinio [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France); Pansu, Robert B. [Laboratoire de Photophysique et Photochimie Supramoléculaires et Macromoléculaires (CNRS UMR 8531), École Normale Supérieure de Cachan, 61 Avenue du Président Wilson, F-94235 Cachan cedex (France); Normand, Stéphane [CEA, LIST, Laboratoire Capteurs et Architectures Électroniques, F-91191 Gif-sur-Yvette (France)

    2014-06-01

    This work deals with the preparation and evaluation of plastic scintillators for neutron/gamma pulse shape discrimination (PSD). We succeeded in developing a plastic scintillator with good neutron/gamma discrimination properties in the range of what is already being commercialized. Several combinations of primary and secondary fluorophores were implemented in chemically modified polymers. These scintillators were fully characterized by fluorescence spectroscopy and under neutron irradiation. The materials proved to be stable for up to 5 years without any degradation of PSD properties. They were then classified in terms of their PSD capabilities and light yield. Our best candidate, 28.6 wt% of primary fluorophore with a small amount of secondary fluorophore, shows promising PSD results and is particularly suited to industrial development, because its preparation does not involve the use of expensive or exotic compounds. Furthermore, even at the highest prepared concentration, high stability over time was observed. As a proof of concept, one sample with dimensions 109 mm ∅×114 mm height (≈1 L) was prepared.

  12. Pulse-shape discrimination between electron and nuclear recoils in a NaI(Tl) crystal

    CERN Document Server

    Lee, H S; Adhikari, P; Choi, S; Hahn, I S; Jeon, E J; Joo, H W; Kang, W G; Kim, G B; Kim, H J; Kim, H O; Kim, K W; Kim, N Y; Kim, S K; Kim, Y D; Kim, Y H; Lee, J H; Lee, M H; Leonard, D S; Li, J; Oh, S Y; Olsen, S L; Park, H K; Park, H S; Park, K S; Shim, J H; So, J H

    2015-01-01

    We report on the response of a high light-output NaI(Tl) crystal to nuclear recoils induced by neutrons from an Am-Be source and compare the results with the response to electron recoils produced by Compton scattered 662 keV $\\gamma$-rays from a $^{137}$Cs source. The measured pulse-shape discrimination (PSD) power of the NaI(Tl) crystal is found to be significantly improved because of the high light output of the NaI(Tl) detector. We quantify the PSD power with a quality factor and estimate the sensitivity to the interaction rate for weakly interacting massive particles (WIMPs) with nucleons, and the result is compared with the annual modulation amplitude observed by the DAMA/LIBRA experiment. The sensitivity to spin-independent WIMP-nucleon interactions based on 100 kg$\\cdot$year of data from NaI detectors is estimated with simulated experiments, using the standard halo model.

  13. Pulse-shape discrimination with Cs2HfCl6 crystal scintillator

    Science.gov (United States)

    Cardenas, C.; Burger, A.; Goodwin, B.; Groza, M.; Laubenstein, M.; Nagorny, S.; Rowe, E.

    2017-10-01

    The results of investigation into cesium hafnium chloride (Cs2HfCl6) scintillating crystals as a promising detector to search for rare nuclear processes occurring in Hf isotopes is reported. The light output, quenching factor, and pulse-shape characteristics have been investigated at room temperature. The scintillation response of the crystal induced by α-particles and γ-quanta were studied to determine possibility of particle discrimination. Using the optimal filter method we obtained clear separation between signals with a factor of merit (FOM) = 9.3. This indicates that we are able to fully separate signals originating from α-particles and γ-quanta. Similar fruitful discrimination power was obtained by applying the mean time method (FOM = 7) and charge integration method (FOM = 7.5). The quenching factor for collimated 4 MeV α-particles is found to be 0.36, showing that α-particles generate more than a third of the light compared to γ-quanta at the same energy.

  14. Pulse-shape discrimination and energy resolution of a liquid-argon scintillator with xenon doping

    CERN Document Server

    Wahl, Christopher G; Lippincott, W Hugh; Nikkel, James A; Shin, Yunchang; McKinsey, Daniel N

    2014-01-01

    Liquid-argon scintillation detectors are used in fundamental physics experiments and are being considered for security applications. Previous studies have suggested that the addition of small amounts of xenon dopant improves performance in light or signal yield, energy resolution, and particle discrimination. In this study, we investigate the detector response for xenon dopant concentrations from 9 +/- 5 ppm to 1100 +/- 500 ppm xenon (by weight) in 6 steps. The 3.14-liter detector uses tetraphenyl butadiene (TPB) wavelength shifter with dual photomultiplier tubes and is operated in single-phase mode. Gamma-ray-interaction signal yield of 4.0 +/- 0.1 photoelectrons/keV improved to 5.0 +/- 0.1 photoelectrons/keV with dopant. Energy resolution at 662 keV improved from (4.4 +/- 0.2)% ({\\sigma}) to (3.5 +/- 0.2)% ({\\sigma}) with dopant. Pulse-shape discrimination performance degraded greatly at the first addition of dopant, slightly improved with additional additions, then rapidly improved near the end of our dopa...

  15. Pulse-shape discrimination techniques for the COBRA double beta-decay experiment at LNGS

    Science.gov (United States)

    Zatschler, S.; COBRA collaboration

    2017-09-01

    In modern elementary particle physics several questions arise from the fact that neutrino oscillation experiments have found neutrinos to be massive. Among them is the so far unknown nature of neutrinos: either they act as so-called Majorana particles, where one cannot distinguish between particle and antiparticle, or they are Dirac particles like all the other fermions in the Standard Model. The study of neutrinoless double beta-decay (0νββ-decay), where the lepton number conservation is violated by two units, could answer the question regarding the underlying nature of neutrinos and might also shed light on the mechanism responsible for the mass generation. So far there is no experimental evidence for the existence of 0νββ-decay, hence, existing experiments have to be improved and novel techniques should be explored. One of the next-generation experiments dedicated to the search for this ultra-rare decay is the COBRA experiment. This article gives an overview of techniques to identify and reject background based on pulse-shape discrimination.

  16. Broadband multilayer mirror and diffractive optics for attosecond pulse shaping in the 280-500 eV photon energy range

    Directory of Open Access Journals (Sweden)

    Schmidt J.

    2013-03-01

    Full Text Available Chirped broadband multilayer mirrors are key components to shape attosecond pulses in the XUV range. Compressing high harmonic pulses to their Fourier limit is the major goal for attosecond physics utilizing short pulse pump-probe experiments. Here, we report about the first implementation of multilayers and diffractive optics fulfilling these requirements in the “water-window” spectral range.

  17. Pulse

    Science.gov (United States)

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the person's heart is pumping. Pulse ... rate gives information about your fitness level and health.

  18. Design and Applications of In-Cavity Pulse Shaping by Spectral Sculpturing in Mode-Locked Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2015-11-01

    Full Text Available We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.

  19. ANALYSIS OF TRANSMISSION CHARACTERISTICS OF COSINE GEAR DRIVE

    Institute of Scientific and Technical Information of China (English)

    WANG Jian; LUO Shanming; CHEN Lifeng; CHEN Lei; HU Huarong

    2008-01-01

    Based on the mathematical model of a novel cosine gear drive, a few characteristics, such as the contact ratio, the sliding coefficient, and the contact and bending stresses, of this drive are analyzed. A comparison study of these characteristics with the involute gear drive is also carried out. The influences of design parameters including the number of teeth and the pressure angle on the contact and bending stresses are studied. The following conclusions are achieved: the contact ratio of the cosine gear drive is about 1.2 to 1.3, which is reduced by about 20% in comparison with that of the involute gear drive. The sliding coefficient of the cosine gear drive is smaller than that of the involute gear drive. The contact and bending stresses of the cosine gear drive are lower than those of the involute gear drive. The contact and bending stresses decrease with the growth of the number of teeth and the pressure angle.

  20. Concatenated wavelet/modified Hadamard-structured discrete cosine transform (MHDCT) coding of images

    Science.gov (United States)

    Barazande-Pour, Majid; Mark, Jon W.

    1995-04-01

    Wavelet transform (WT) is concatenated with the modified Hadamard-structured discrete cosine transform (MHDCT) to encode image signals. As the outer code, the WT decomposes the image signals into uncorrelated low resolution and detailed signal components. As inner codes, the MHDCT adaptively encodes the low resolution signal, while the detailed signals are encoded using pulse code modulation (PCM). The concatenated coding approach offers the possibility of regulated coding for progressive transmission of the image signals over communication networks. Results of image coding using the concatenated WT/MHDCT coder are presented.

  1. A method for optimizing the cosine response of solar UV diffusers

    Science.gov (United States)

    Pulli, Tomi; Kärhä, Petri; Ikonen, Erkki

    2013-07-01

    Instruments measuring global solar ultraviolet (UV) irradiance at the surface of the Earth need to collect radiation from the entire hemisphere. Entrance optics with angular response as close as possible to the ideal cosine response are necessary to perform these measurements accurately. Typically, the cosine response is obtained using a transmitting diffuser. We have developed an efficient method based on a Monte Carlo algorithm to simulate radiation transport in the solar UV diffuser assembly. The algorithm takes into account propagation, absorption, and scattering of the radiation inside the diffuser material. The effects of the inner sidewalls of the diffuser housing, the shadow ring, and the protective weather dome are also accounted for. The software implementation of the algorithm is highly optimized: a simulation of 109 photons takes approximately 10 to 15 min to complete on a typical high-end PC. The results of the simulations agree well with the measured angular responses, indicating that the algorithm can be used to guide the diffuser design process. Cost savings can be obtained when simulations are carried out before diffuser fabrication as compared to a purely trial-and-error-based diffuser optimization. The algorithm was used to optimize two types of detectors, one with a planar diffuser and the other with a spherically shaped diffuser. The integrated cosine errors—which indicate the relative measurement error caused by the nonideal angular response under isotropic sky radiance—of these two detectors were calculated to be f2=1.4% and 0.66%, respectively.

  2. Pulse-Shape Analysis of Neutron-Induced Scintillation Light in Ni-doped 6LiF/ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Christian C.; Behling, Richard S.; Imel, G. R.; Kouzes, Richard T.; Lintereur, Azaree; Robinson, Sean M.; Stave, Sean C.; Siciliano, Edward R.; Wang, Zheming

    2016-10-06

    Abstract–Alternatives to 3He are being investigated for gamma-ray insensitive neutron detection applications, including plutonium assay. One promising material is lithium-6 fluoride with silver activated zinc sulfide 6LiF/ZnS(Ag) in conjunction with a wavelength shifting plastic. Doping the 6LiF/ZnS(Ag) with nickel (Ni) has been proposed as a means of reducing the decay time of neutron signal pulses. This research performed a pulse shape comparison between Ni-doped and non-doped 6LiF/ZnS(Ag) neutron pulses. The Ni-doped 6LiF/ZnS(Ag) had a 32.7% ± 0.3 increase in neutron pulse height and a 32.4% ± 0.3 decrease in neutron pulse time compared to the non-doped 6LiF/ZnS(Ag). Doping 6LiF/ZnS(Ag) with nickel may allow neutron detector operation with improved signal to noise ratios, and reduced pulse pileup affects, increasing the accuracy and range of source activities with which such a detector could operate.

  3. In-Fiber Subpicosecond Pulse Shaping for Nonlinear Optical Telecommunication Data Processing at 640 Gbit/s

    Directory of Open Access Journals (Sweden)

    J. Azaña

    2012-01-01

    Full Text Available We review recent work on all-fiber (long-period fiber grating devices for optical pulse shaping, particularly flat-top pulse generation, down to the subpicosecond range and their application for nonlinear switching (demultiplexing of optical time-division multiplexed (OTDM data signals in fiber-optic telecommunication links operating up to 640 Gbit/s. Experiments are presented demonstrating error-free 640-to-10 Gbit/s demultiplexing of the 64 tributary channels using the generated flat-top pulses for temporal gating in a Kerr-effect-based nonlinear optical loop mirror. The use of flat-top pulses has critical benefits in the demultiplexing process, including a significantly increased timing-jitter tolerance (up to ~500 fs, i.e., 30% of the bit period and the associated improvement in the bit-error-rate performance (e.g., with a sensitivity increase of up to ~13 dB as compared with the use of Gaussian-like gating pulses. Long-period fiber grating pulse shapers with reduced polarization dependence are fabricated and successfully used for polarization-independent 640-to-10 Gbit/s demultiplexing experiments.

  4. Time correlated measurements using plastic scintillators with neutron-photon pulse shape discrimination

    Science.gov (United States)

    Richardson, Norman E., IV

    nuclear and radiological material. Moreover, the production of 3He isotope as a byproduct of security programs was drastically decreased. This isotope shortage coupled with the disadvantages of relying on a detector that requires neutron moderation before the detection of fission neutrons, poses a significant challenge in supporting the existing detection systems and the development of future technologies. To address this problem, a reliable and accurate alternative technology to detect neutrons emitted in fissions must be developed. One such alternative technology that shows promise in this application is the use of scintillators based on solid state materials (plastics) which are sensitive to fast neutrons. However, plastic scintillators are also sensitive to photons. Hence, it is necessary to separate the neutron signals from the photon signals, using the pulse shape discrimination (PSD) analysis. The PSD is based on the comparison of the pulse shapes of digitized signal waveforms. This approach allows for the measurement of fast neutrons without the necessity of their moderation. Because the fission spectrum neutrons are mainly fast, methods employing fast neutron detection are applicable for the assay of fissile materials. In addition, the average time of scintillation of the plastic medium is much shorter than those of the gaseous counters, thus allowing scintillation detectors to be used in high count rate environments. Furthermore, the temporal information of the fast neutron detection using multiple sensors enables the time correlation analysis of the fission neutron multiplicity. The study of time correlation measurements of fast neutrons using the array of plastic scintillators is the basis of this work. The array of four plastic scintillator detectors equipped with the digital data acquisition and analysis system was developed. The digital PSD analysis of detector signals "on-the-fly" was implemented for the array. The time coincidence measurement technique

  5. Organic scintillators with pulse shape discrimination for detection of radiation (Conference Presentation)

    Science.gov (United States)

    Mabe, Andrew; Carman, M. Leslie; Glenn, Andrew M.; Zaitseva, Natalia P.; Payne, Stephen A.

    2016-09-01

    The detection of neutrons in the presence of gamma-ray fields has important applications in the fields of nuclear physics, homeland security, and medical imaging. Organic scintillators provide several attractive qualities as neutron detection materials including low cost, fast response times, ease of scaling, and the ability to implement pulse shape discrimination (PSD) to discriminate between neutrons and gamma-rays. This talk will focus on amorphous organic scintillators both in plastic form and small-molecule organic glass form. The first section of this talk will describe recent advances and improvements in the performance of PSD-capable plastic scintillators. The primary advances described in regard to modification of the polymer matrix, evaluation of new scintillating dyes, improved fabrication conditions, and implementation of additives which impart superior performance and mechanical properties to PSD-capable plastics as compared to commercially-available plastics and performance comparable to PSD-capable liquids. The second section of this talk will focus on a class of small-molecule organic scintillators based on modified indoles and oligophenylenes which form amorphous glasses as PSD-capable neutron scintillation materials. Though indoles and oligophenylenes have been known for many decades, their PSD properties have not been investigated and their scintillation properties only scantily investigated. Well-developed synthetic methodologies have permitted the synthesis of a library of structural analogs of these compounds as well as the investigation of their scintillation properties. The emission wavelengths of many indoles are in the sensitive region of common photomultiplier tubes, making them appropriate to be used as scintillators in either pure or doped form. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work has been supported by the U

  6. Liquid mixing enhanced by pulse width modulation in a Y-shaped jet configuration

    Science.gov (United States)

    Xia, Qingfeng; Zhong, Shan

    2013-04-01

    In this paper, mixing between two fluid streams, which are injected into a planar mixing channel via a Y-shaped confluence section at the same volume flow rate, is studied experimentally. The injection of the two fluid streams is controlled by two separate solenoid valves, which are operated with a phase difference of 180°, using pulse width modulation. The experiments are conducted using water at a mean Reynolds number between 83 and 250, a range of pulsation frequencies and two duty cycles (25 and 50%). Both particle-image velocimetry and planar laser-induced fluorescence technique are used to visualize the flow patterns and to quantify the mixing degree in the mixing channel. This experiment shows that the pulsation of each jet produces vortical structures, which promotes mixing via vortex entrainment and vortex breakup, and at the same time the mixing is also greatly enhanced by sequential segmentation produced by a 180° out-of-phase pulsation of the two jets. This mixing enhancement method is effective at a Reynolds number greater than 125 with a mixing degree of 0.9 being achieved. For the Reynolds numbers studied in the present experiments, an optimal frequency exists, which corresponds to a Strouhal number in the range of 0.5-2. Furthermore, at a given mean Reynolds number a lower duty cycle is found to produce a better mixing due to the resultant higher instantaneous Reynolds number in the jet flow. It is also found that pulsation of only one jet can produce a similar mixing effect.

  7. Scintillation-only based pulse shape discrimination for nuclear and electron recoils in liquid xenon

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, K., E-mail: ueshima@suketto.icrr.u-tokyo.ac.jp [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Abe, K.; Hiraide, K.; Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Kobayashi, K.; Koshio, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Liu, J.; Martens, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Moriyama, S.; Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H.; Ogawa, H.; Sekiya, H.; Shinozaki, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Suzuki, Y. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Takeda, A. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Yamashita, M. [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Kamioka, Hida, Gifu 506-1205 (Japan); Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2011-12-11

    In a dedicated test setup at the Kamioka Observatory we studied pulse shape discrimination (PSD) in liquid xenon (LXe) for dark matter searches in the absence of an externally applied electric field. PSD in LXe was based on the observation that scintillation light from electron events was emitted over a longer period of time than that of nuclear recoil events, and our method used a simple ratio of early to total scintillation light emission in a single scintillation event. Requiring an efficiency of 50% for nuclear recoil retention we reduced the electron background by a factor of 7.7{+-}1.1(stat){+-}{sub 0.6}{sup 1.2}(sys) Multiplication-Sign 10{sup -2} at energies between 4.8 and 7.2 keV{sub ee} and 7.7{+-}2.8(stat){+-}{sub 2.8}{sup 2.5}(sys) Multiplication-Sign 10{sup -3} at energies between 9.6 and 12 keV{sub ee} for a scintillation light yield of 20.9 photoelectrons/keV{sub ee}. Further study was done by masking some of that light to reduce this yield to 4.6 photoelectrons/keV{sub ee}. Under these conditions the same method results in an electron event reduction by a factor of 2.4{+-}0.2(stat){+-}{sub 0.2}{sup 0.3}(sys) Multiplication-Sign 10{sup -1} for the lower of the energy regions above. We also observe that in contrast to nuclear recoils the fluctuations in our early to total ratio for electron events are larger than expected from statistical fluctuations.

  8. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli

    DEFF Research Database (Denmark)

    Delvendahl, Igor; Gattinger, Norbert; Berger, Thomas;

    2014-01-01

    excitation. Preferential excitation of neuronal target cells in the posterior-anterior segment or targeting of different neuronal structures by the two half-segments can explain this result. Thus, our findings help understanding the mechanisms of neural stimulation by full-sine TMS.......A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using......) compared monophasic, half-sine, and full-sine pulses, (ii) applied two-segment pulses consisting of two identical half-sines, and (iii) manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic...

  9. Novel D-shaped fiber fabrication method for saturable absorber application in the generation of ultra-short pulses

    Science.gov (United States)

    Ahmad, H.; Safaei, R.; Rezayi, M.; Amiri, I. S.

    2017-08-01

    A cost-efficient, time-saving and effective technique for the fabrication of D-shaped fibers is presented, to provide a platform with a strong evanescent field to be used as a saturable absorber (SA). This technique provides flexibility by removing the required portion of the fiber, and a small polished length which offers a unique opportunity to deposit SA on its surface by simply submerging it in the SA solution without high losses. A compact fiber laser utilizing a graphene oxide coating on a fabricated D-shaped fiber as an SA capable of generating ultrashort pulses is designed and verified. We report the generation of ultrafast pulses as short as 227 fs with a 34.7 MHz repetition rate, having a 3 dB bandwidth of 14 nm at the 1570 nm center wavelength.

  10. Simulation of picosecond pulse propagation in fibre-based radiation shaping units

    Science.gov (United States)

    Kuptsov, G. V.; Petrov, V. V.; Laptev, A. V.; Petrov, V. A.; Pestryakov, E. V.

    2016-09-01

    We have performed a numerical simulation of picosecond pulse propagation in a combined stretcher consisting of a segment of a telecommunication fibre and diffraction holographic gratings. The process of supercontinuum generation in a nonlinear photoniccrystal fibre pumped by picosecond pulses is simulated by solving numerically the generalised nonlinear Schrödinger equation; spectral and temporal pulse parameters are determined. Experimental data are in good agreement with simulation results. The obtained results are used to design a high-power femtosecond laser system with a pulse repetition rate of 1 kHz.

  11. Pulse shape discrimination between (fast or thermal) neutrons and gamma rays with plastic scintillators: State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guillaume H.V. [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France); Hamel, Matthieu, E-mail: matthieu.hamel@cea.fr [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France); Normand, Stéphane [CEA, DAM, Le Ponant, 25 rue Leblanc, F-75015 Paris (France); Sguerra, Fabien [CEA, LIST, Laboratoire Capteurs & Architectures Électroniques, CEA Saclay, F-91191 Gif-sur-Yvette cedex (France)

    2015-03-11

    We would like to present here with the eyes of the chemist the most recent developments of plastic scintillators (PS) for neutron detection. This review covers the period from 2000 to August 2014, and is fragmented in two main chapters. The first chapter deals with the chemical modifications for thermal neutron capture, whereas the second chapter presents the various strategies used to enhance the response to fast neutrons via pulse shape discrimination. For each chapter the theory is also explained.

  12. Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar

    Science.gov (United States)

    Fazio, Giovanni G.

    2000-01-01

    This is the final performance report for our grant 'Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar.' In the first year of this grant, we received the 50,000-second ROSAT (German acronym for X-ray satellite) High Resolution Images (HRI) observation of the Crab Nebula pulsar. We used the data to create a 65-ms-resolution pulse profile and compared it to a similar pulse profile obtained in 1991. No statistically significant differences were found. These results were presented at the January 1998 meeting of the American Astronomical Society. Since then, we have performed more sensitive analyses to search for potential changes in the pulse profile shape between the two data sets. Again, no significant variability was found. In order to augment this long (six-year) baseline data set, we have analyzed archival observations of the Crab Nebula pulsar with the Rossi X-Ray Timing Explorer (RXTE). While these observations have shorter time baselines than the ROSAT data set, their higher signal-to-noise offers similar sensitivity to long-term variability. Again, no significant variations have been found, confirming our ROSAT results. This work was done in collaboration with Prof. Stephen Eikenberry, Cornell University. These analyses will be included in Cornell University graduate student Dae-Sik Moon's doctoral thesis.

  13. Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses.

    Science.gov (United States)

    Ye, Jun

    2015-03-01

    In pattern recognition and medical diagnosis, similarity measure is an important mathematical tool. To overcome some disadvantages of existing cosine similarity measures of simplified neutrosophic sets (SNSs) in vector space, this paper proposed improved cosine similarity measures of SNSs based on cosine function, including single valued neutrosophic cosine similarity measures and interval neutrosophic cosine similarity measures. Then, weighted cosine similarity measures of SNSs were introduced by taking into account the importance of each element. Further, a medical diagnosis method using the improved cosine similarity measures was proposed to solve medical diagnosis problems with simplified neutrosophic information. The improved cosine similarity measures between SNSs were introduced based on cosine function. Then, we compared the improved cosine similarity measures of SNSs with existing cosine similarity measures of SNSs by numerical examples to demonstrate their effectiveness and rationality for overcoming some shortcomings of existing cosine similarity measures of SNSs in some cases. In the medical diagnosis method, we can find a proper diagnosis by the cosine similarity measures between the symptoms and considered diseases which are represented by SNSs. Then, the medical diagnosis method based on the improved cosine similarity measures was applied to two medical diagnosis problems to show the applications and effectiveness of the proposed method. Two numerical examples all demonstrated that the improved cosine similarity measures of SNSs based on the cosine function can overcome the shortcomings of the existing cosine similarity measures between two vectors in some cases. By two medical diagnoses problems, the medical diagnoses using various similarity measures of SNSs indicated the identical diagnosis results and demonstrated the effectiveness and rationality of the diagnosis method proposed in this paper. The improved cosine measures of SNSs based on cosine

  14. An algorithm for charge-integration, pulse-shape discrimination and estimation of neutron/photon misclassification in organic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Polack, J.K., E-mail: kpolack@umich.edu [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Flaska, M. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Enqvist, A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Sosa, C.S.; Lawrence, C.C.; Pozzi, S.A. [Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2015-09-21

    Organic scintillators are frequently used for measurements that require sensitivity to both photons and fast neutrons because of their pulse shape discrimination capabilities. In these measurement scenarios, particle identification is commonly handled using the charge-integration pulse shape discrimination method. This method works particularly well for high-energy depositions, but is prone to misclassification for relatively low-energy depositions. A novel algorithm has been developed for automatically performing charge-integration pulse shape discrimination in a consistent and repeatable manner. The algorithm is able to estimate the photon and neutron misclassification corresponding to the calculated discrimination parameters, and is capable of doing so using only the information measured by a single organic scintillator. This paper describes the algorithm and assesses its performance by comparing algorithm-estimated misclassification to values computed via a more traditional time-of-flight estimation. A single data set was processed using four different low-energy thresholds: 40, 60, 90, and 120 keVee. Overall, the results compared well between the two methods; in most cases, the algorithm-estimated values fell within the uncertainties of the TOF-estimated values.

  15. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli.

    Directory of Open Access Journals (Sweden)

    Igor Delvendahl

    Full Text Available A full-sine (biphasic pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS, but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1. In young healthy volunteers, we (i compared monophasic, half-sine, and full-sine pulses, (ii applied two-segment pulses consisting of two identical half-sines, and (iii manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic pulses compared with full-sine. Pulses combining two half-sines of identical polarity and duration were also characterized by higher RMT than full-sine stimuli resulting. For full-sine stimuli, decreasing the amplitude of the half-segment inducing posterior-anterior oriented current in M1 resulted in considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway excitation. Preferential excitation of neuronal target cells in the posterior-anterior segment or targeting of different neuronal structures by the two half-segments can explain this result. Thus, our findings help understanding the mechanisms of neural stimulation by full-sine TMS.

  16. Spatiotemporal evolution of a cosine-modulated stationary field and Kerr frequency comb generation in a microresonator.

    Science.gov (United States)

    Hu, Xiaohong; Liu, Yuanshan; Xu, Xin; Feng, Ye; Zhang, Wenfu; Wang, Weiqiang; Song, Jiazheng; Wang, Yishan; Zhao, Wei

    2015-10-10

    Based on the normalized spatiotemporal Lugiato-Lefever equation, the evolutions of cosine-modulated stationary fields relating to the generation of single-free spectral range (FSR) or multi-FSR Kerr frequency combs in a microresonator with anomalous dispersion are studied numerically. The research results show that a single-FSR comb arises when a dissipative soliton pulse or multiple nonequidistant soliton pulses form in the cavity. Compared with the smooth and regular spectral structure of a single soliton pulse, the comb corresponding to the uneven distribution of multiple soliton pulses exhibits a complex and irregular profile. When the stable intracavity field consists of a "roll" Turing pattern or N(N>1) evenly distributed soliton pulses separated by 2π/N, multi-FSR combs can be generated. In the case of the "roll" Turing pattern solution, it is found that third-order dispersion could modify the comb mode spacing and decrease the intensity of high-order comb modes. For the situation of multiple soliton pulse generation, the simulation results indicate that both the number and locations of the soliton pulses can be actively controlled through the careful selection of modulation frequency. In addition, for the selected cosine-modulated initial field profile, only those modes with the mode numbers being equal to an integer multiple of N can be greatly amplified by the parametric gain during propagation in the microresonator. This process eventually leads to the formation of a N-FSR frequency comb.

  17. Femtosecond pulse shaping by modulating the refractive index modulation of volume holographic grating.

    Science.gov (United States)

    Yan, Xiaona; Dai, Ye; Gao, Zixuan; Chen, Yuanyuan; Yang, Xihua; Ma, Guohong

    2013-03-25

    Based on the modified Kogelnik's coupled-wave theory, time- and frequency-domain diffractions of a femtosecond pulse from transmitted volume holographic gratings (VHGs) are theoretically studied. Results show that when the refractive index modulation of the VHG changes in a certain range, the number of temporal diffracted pulse will evolve from one to two, then to three, and this pulse number evolution is periodic. This particular phenomenon can be explained by diffraction intensity spectrum and the overmodulation effect of refractive index modulation of transmitted VHG. Moreover, we find centers of all temporal diffracted pulses translate along the negative time axis, and the translation is irrelevant to the refractive index modulations. We will use time delay of volume grating to give a reasonable explanation.

  18. Minimum Phase Property of Chebyshev-Sharpened Cosine Filters

    Directory of Open Access Journals (Sweden)

    Miriam Guadalupe Cruz Jiménez

    2015-01-01

    Full Text Available We prove that the Chebyshev sharpening technique, recently introduced in literature, provides filters with a Minimum Phase (MP characteristic when it is applied to cosine filters. Additionally, we demonstrate that cascaded expanded Chebyshev-Sharpened Cosine Filters (CSCFs are also MP filters, and we show that they achieve a lower group delay for similar magnitude characteristics in comparison with traditional cascaded expanded cosine filters. The importance of the characteristics of cascaded expanded CSCFs is also elaborated. The developed examples show improvements in the group delay ranged from 23% to 47% at the cost of a slight increase of usage of hardware resources. For an application of a low-delay decimation filter, the proposed scheme exhibits a 24% lower group delay, with 35% less computational complexity (estimated in Additions per Output Sample and slightly less usage of hardware elements.

  19. Shaping frequency correlations of ultrafast pulse-pumped modulational instability in gas-filled hollow-core PCF

    CERN Document Server

    Finger, Martin A; Russell, Philip St J; Chekhova, Maria V

    2016-01-01

    We vary the time-frequency mode structure of ultrafast pulse-pumped modulational instability (MI) in an argon-filled hollow-core kagom\\'e-style PCF by adjusting the pressure, pump pulse chirp, fiber length and parametric gain. Compared to solid-core systems, the pressure dependent dispersion landscape brings increased flexibility to the tailoring of frequency correlations. The resulting mode content is characterized by measuring the multimode second-order correlation function g(2) and by directly observing frequency correlations in single-shot MI spectra. We show that, from such measurements, the shapes and weights of time-frequency Schmidt (TFS) modes can be extracted and that the number of modes directly influences the shot-to-shot pulse-energy and spectral-shape fluctuations in MI. Using this approach we are able to change the number of TFS modes from 1.3 (g(2) = 1.75) to 4 (g(2) = 1.25) using only a single fiber.

  20. Phase-only shaped laser pulses in optimal control theory: Application to indirect photofragmentation dynamics in the weak-field limit

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels E.

    2012-01-01

    We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency...

  1. Pulse-shape discrimination of the new plastic scintillators in neutron-gamma mixed field using fast digitizer card

    Science.gov (United States)

    Jančář, A.; Kopecký, Z.; Dressler, J.; Veškrna, M.; Matěj, Z.; Granja, C.; Solar, M.

    2015-11-01

    Recently invented plastic scintillator EJ-299-33 enables pulse-shape discrimination (PSD) and thus measurement of neutron and photon spectra in mixed fields. In this work we compare the PSD properties of EJ-299-33 plastic and the well-known NE-213 liquid scintillator in monoenergetic neutron fields generated by the Van de Graaff accelerator using the 3H(d, n)4He reaction. Pulses from the scintillators are processed by a newly developed digital measuring system employing the fast digitizer card. This card contains two AD converters connected to the measuring computer via 10 Gbps optical ethernet. The converters operate with a resolution of 12 bits and have two differential inputs with a sampling frequency 1 GHz. The resulting digital channels with different gains are merged into one composite channel with a higher digital resolution in a wide dynamic range of energies. Neutron signals are fully discriminated from gamma signals. Results are presented.

  2. The influence of the excitation pulse shape on the stress wave propagation in a bcc iron crystal

    Directory of Open Access Journals (Sweden)

    Červená O.

    2008-12-01

    Full Text Available This article presents a large-scale molecular dynamic simulations of wave propagation in a cracked bcc (body centered cubic iron crystal based on an N-body potential model which gives a good description of an anisotropic elasticity. The crystal is loaded by a stress pulse on its front face and the response is detected on its opposite face. The various shapes, amplitudes, and widths of stress pulse are considered. The simulations are performed also for a central pre-existing Griffith crack. The crack is embedded in a bcc iron crystal having a basic cubic orientation. The acquired results bring important information for further analysis oriented to new NDT nanoscale methods.

  3. Study of an indirect-drive ignition capsule with the main pulse shape of decompression and recompression

    Science.gov (United States)

    Ye, Wenhua; Wang, Lifeng; Wu, Junfeng; Huo, Wenyi; Lan, Ke; Liu, Jie; He, Xian Tu

    2015-11-01

    Hydrodynamics in the low-foot (LF) implosion during the National Ignition Campaign is highly nonlinearity, which results in significant amount of CH(Si) ablator material mixing into the hot spot and low-mode non-uniformity of the shell areal density. The high-foot (HF) implosion after the NIC largely suppresses mediate- and high- mode hydrodynamic instabilities, in which neutron yields go up an order of magnitude compared to the LF implosion, but the hot spot pressure is still low and the hot spot shape goes bad when the peak power is increased for larger implosion velocity. In our new ignition capsule design, first, the HF prepulse similar to the HF implosion on NIF is adopted for resisting the CH(Si) ablator mix problem; second, the new main pulse shape of decompression and recompression (DR) is proposed to improve performance of the HF implosion on NIF. In this scheme of the DR, the secondary auxiliary shock (SAS) is produced during the late of the main pulse by the recompression pulse to raise the shell density for improving the hot spot pressure. The decompression pulse is used for reducing ablative pressure in order to relax the limit of the peak drive power for SAS production. The SAS colliding with the rebound shock from the center also improves the hot spot pressure and temperature, which is very useful to stabilize the hydrodynamic instabilities during the deceleration stage of implosion for the hot spot ignition. Decompressing the outer part of the ablator thickens the shell to lessen feed-through of perturbations from the ablative to inner interfaces. In this presentation, good 1D and 2D performance of implosion of the DR scheme is reported, especially reduced growth of perturbations at the interface between the hot spot and the main DT fuel.

  4. Modeling the pulse shape of Q-switched lasers to account for terminal-level relaxation

    Institute of Scientific and Technical Information of China (English)

    Zeng Qin-Yong; Wan Yong; Xiong Ji-Chuan; Zhu Da-Yong

    2011-01-01

    To account for the effect of lower-level relaxation, we have derived a characteristic equation for describing the laser pulse from the modified rate equations for Q-switched lasers. The pulse temporal profile is related to the ratio of the lower-level lifetime to the cavity lifetime and the number of times the population inversion density is above the threshold. By solving the coupled rate equations numerically, the effect of terminal-level lifetime on pulse temporal behaviour is analysed. The mode is applied to the case of a diode-pumped Nd:YAG laser that is passively Q-switched by a Cr4+:YAG absorber. Theoretical results show good agreement with the experiments.

  5. Discrete Fourier Transform Method for Discrimination of Digital Scintillation Pulses in Mixed Neutron-Gamma Fields

    CERN Document Server

    Safari, M J; Afarideh, H; Jamili, S; Bayat, E

    2016-01-01

    A Discrete Fourier Transform Method (DFTM) for discrimination between the signal of neutrons and gamma rays in organic scintillation detectors is presented. The method is based on the transformation of signals into the frequency domain using the sine and cosine Fourier transforms in combination with the discrete Fourier transform. The method is largely benefited from considerable differences that usually is available between the zero-frequency components of sine and cosine and the norm of the amplitude of the DFT for neutrons and gamma-ray signals. Moreover, working in frequency domain naturally results in considerable suppression of the unwanted effects of various noise sources that is expected to be effective in time domain methods. The proposed method could also be assumed as a generalized nonlinear weighting method that could result in a new class of pulse shape discrimination methods, beyond definition of the DFT. A comparison to the traditional Charge Integration Method (CIM), as well as the Frequency G...

  6. New digital techniques applied to A and Z identification using pulse shape discrimination of silicon detector current signals

    Energy Technology Data Exchange (ETDEWEB)

    Barlini, S. [LPC Caen, ENSICAEN, University of Caen, CNRS/IN2P3, Caen (France)], E-mail: barlini@fi.infn.it; Bougault, R.; Laborie, Ph.; Lopez, O.; Mercier, D. [LPC Caen, ENSICAEN, University of Caen, CNRS/IN2P3, Caen (France); Parlog, M. [LPC Caen, ENSICAEN, University of Caen, CNRS/IN2P3, Caen (France); NIPNE, RO-76900 Bucharest (Romania); Tamain, B.; Vient, E. [LPC Caen, ENSICAEN, University of Caen, CNRS/IN2P3, Caen (France); Chevallier, E.; Chbihi, A.; Jacquot, B. [GANIL, CEA/DSM-CNRS/IN2P3, Caen (France); Kravchuk, V.L. [INFN-LNL, I-35020 Legnaro, Padova (Italy)

    2009-03-11

    Extending pulse shape discrimination (PSD) to digitized signals is one of the most promising methods to identify particles stopped in a detector. Using the CIME accelerator in the GANIL laboratory, a measurement campaign was done to collect data corresponding to different charges, masses and energies of implanted ions. These data are used to develop an algorithm capable to discriminate the different particles both in mass and charge. In this experiment, a 300{mu}m n-TD reverse mounted Si detector was used. These studies on PSD are part of the FAZIA R and D, a research and development project aiming at building a new 4{pi} array for isospin nuclear physics.

  7. Time-over-threshold for pulse shape discrimination in a time-of-flight phoswich PET detector

    Science.gov (United States)

    Chang, Chen-Ming; Cates, Joshua W.; Levin, Craig S.

    2017-01-01

    It is well known that a PET detector capable of measuring both photon time-of-flight (TOF) and depth-of-interaction (DOI) improves the image quality and accuracy. Phoswich designs have been realized in PET detectors to measure DOI for more than a decade. However, PET detectors based on phoswich designs put great demand on the readout circuits, which have to differentiate the pulse shape produced by different crystal layers. A simple pulse shape discrimination approach is required to realize the phoswich designs in a clinical PET scanner, which consists of thousands of scintillation crystal elements. In this work, we studied time-over-threshold (ToT) as a pulse shape parameter for DOI. The energy, timing and DOI performance were evaluated for a phoswich detector design comprising 3~\\text{mm}× 3~\\text{mm}× 10 mm LYSO:Ce crystal optically coupled to 3~\\text{mm}× 3~\\text{mm}× 10 mm calcium co-doped LSO:Ce,Ca(0.4%) crystal read out by a silicon photomultiplier (SiPM). A DOI accuracy of 97.2% has been achieved for photopeak events using the proposed time-over-threshold (ToT) processing. The energy resolution without correction for SiPM non-linearity was 9.7+/- 0.2 % and 11.3+/- 0.2 % FWHM at 511 keV for LYSO and LSO crystal layers, respectively. The coincidence time resolution for photopeak events ranges from 164.6 ps to 183.1 ps FWHM, depending on the layer combinations. The coincidence time resolution for inter-crystal scatter events ranges from 214.6 ps to 418.3 ps FWHM, depending on the energy windows applied. These results show great promises of using ToT for pulse shape discrimination in a TOF phoswich detector since a ToT measurement can be easily implemented in readout electronics.

  8. Light Collection and Pulse-Shape Discrimination in Elongated Scintillator Cells for the PROSPECT Reactor Antineutrino Experiment

    CERN Document Server

    Ashenfelter, J; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bowes, A; Brodsky, J P; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Commeford, K; Davee, D; Dean, D; Deichert, G; Diwan, M V; Dolinski, M J; Dolph, J; Dwyer, D A; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Goddard, B W; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Langford, T J; Littlejohn, B R; Caicedo, D A Martinez; McKeown, R D; Mendenhall, M P; Mueller, P; Mumm, H P; Napolitano, J; Neilson, R; Norcini, D; Pushin, D; Qian, X; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Sheets, S; Stemen, N T; Surukuchi, P T; Varner, R L; Viren, B; Wang, W; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zangakis, G; Zhang, C; Zhang, X

    2015-01-01

    A meter-long, 23-liter EJ-309 liquid scintillator detector has been constructed to study the light collection and pulse-shape discrimination performance of elongated scintillator cells for the PROSPECT reactor antineutrino experiment. The magnitude and uniformity of light collection and neutron/gamma discrimination power in the energy range of antineutrino inverse beta decay products have been studied using gamma and spontaneous fission calibration sources deployed along the cell long axis. We also study neutron-gamma discrimination and light collection abilities for differing PMT and reflector configurations. Key design features for optimizing MeV-scale response and background rejection capabilities are identified.

  9. Cooling molecular vibrations with shaped laser pulses: Optimal control theory exploiting the timescale separation between coherent excitation and spontaneous emission

    CERN Document Server

    Reich, Daniel M

    2013-01-01

    Laser cooling of molecules employing broadband optical pumping involves a timescale separation between laser excitation and spontaneous emission. Here, we optimize the optical pumping step using shaped laser pulses. We derive two optimization functionals to drive population into those excited state levels that have the largest spontaneous emission rates to the target state. We show that, when using optimal control, laser cooling of molecules works even if the Franck-Condon map governing the transitions is preferential to heating rather than cooling. Our optimization functional is also applicable to the laser cooling of other degrees of freedom provided the cooling cycle consists of coherent excitation and dissipative deexcitation steps whose timescales are separated.

  10. Influence of crystal-orientation effects on pulse-shape-based identification of heavy-ions stopped in silicon detectors

    Science.gov (United States)

    Bardelli, L.; Bini, M.; Casini, G.; Pasquali, G.; Poggi, G.; Barlini, S.; Becla, A.; Berjillos, R.; Borderie, B.; Bougault, R.; Bruno, M.; Cinausero, M.; D'Agostino, M.; de Sanctis, J.; Dueñas, J. A.; Edelbruck, P.; Geraci, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lavergne, L.; Marini, P.; Nannini, A.; Negoita, F.; Olmi, A.; Ordine, A.; Piantelli, S.; Rauly, E.; Rivet, M. F.; Rosato, E.; Scian, C.; Stefanini, A. A.; Vannini, G.; Velica, S.; Vigilante, M.; Fazia Collaboration

    2009-07-01

    Current and charge signals have been collected for Se ions at 408 MeV, S at 160 MeV and Ni at 703 MeV, all stopped in silicon detectors. Some detectors were cut 0∘ off the axis and some off the axis. Important effects on the shape of the silicon current and charge signals have been observed, depending on the orientation of the impinging ion relative to the crystal axes and planes. A degradation of the energy and risetime resolution of about a factor ˜3 with respect to the measured optimal values (for example 7∘ off-axis orientation) is observed for ion impinging directions close to crystal axes and/or planes, i.e. the common scenario for normal incidence on 0∘ cut detectors. For Pulse Shape Analysis applications, the necessity of using such "random" oriented silicon detectors is demonstrated.

  11. Influence of crystal-orientation effects on pulse-shape-based identification of heavy-ions stopped in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bardelli, L. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy)], E-mail: bardelli@fi.infn.it; Bini, M. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy); Casini, G. [I.N.F.N. Sezione di Firenze (Italy); Pasquali, G.; Poggi, G. [University of Florence (Italy); I.N.F.N. Sezione di Firenze (Italy); Barlini, S. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Becla, A. [Jagiellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland); Berjillos, R. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Borderie, B. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Bougault, R. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Bruno, M. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Cinausero, M. [I.N.F.N. Laboratori Nazionali di Legnaro (Italy); D' Agostino, M.; De Sanctis, J. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Duenas, J.A. [Departamento de Fisica Aplicada, Universidad de Huelva, E-21071 Huelva (Spain); Edelbruck, P. [Institut de Physique Nucleaire, CNRS/IN2P3, Universite Paris-Sud 11, F-91406 Orsay cedex (France); Geraci, E. [University of Bologna (Italy); I.N.F.N. Sezione di Bologna (Italy); Gramegna, F. [I.N.F.N. Laboratori Nazionali di Legnaro (Italy); Kordyasz, A. [Heavy Ion Laboratory, Warsaw University, Pasteura 5a, 02-093 Warsaw (Poland); Kozik, T. [Jagiellonian University, Institute of Physics, Reymonta 4, 30-059 Krakow (Poland)] (and others)

    2009-07-01

    Current and charge signals have been collected for Se ions at 408 MeV, S at 160 MeV and Ni at 703 MeV, all stopped in silicon detectors. Some detectors were cut 0 deg. off the <111> axis and some off the <100> axis. Important effects on the shape of the silicon current and charge signals have been observed, depending on the orientation of the impinging ion relative to the crystal axes and planes. A degradation of the energy and risetime resolution of about a factor {approx}3 with respect to the measured optimal values (for example 7 deg. off-axis orientation) is observed for ion impinging directions close to crystal axes and/or planes, i.e. the common scenario for normal incidence on 0 deg. cut detectors. For Pulse Shape Analysis applications, the necessity of using such 'random' oriented silicon detectors is demonstrated.

  12. How do copper contamination pulses shape the regime shifts of phytoplankton-zooplankton dynamics?

    Science.gov (United States)

    Camara, B. I.; Yamapi, R.; Mokrani, H.

    2017-07-01

    The presence of pollutants in waters, particularly from heavy metals, is of grave concern worldwide due to its cytotoxicity to organisms. Fish and aquatic organisms are very sensitive to the increasing Cu concentrations in water. Therefore, Cu toxicity partly depends on water quality. To address the effects of impulsive copper contamination of the phytoplankton-zooplankton population dynamics, we've built a model that focuses on the interaction between algae and Daphnia with deterministic and stochastic impulse copper. In fact the Results have shown three types of outcomes depending on copper concentration. In low (4.4 μgL-1) copper concentration, deterministic and stochastic pulses may promote the persistence of Daphnia and algae populations unlike the absence of pulses. Whereas, in high (28 μgL-1) concentration, it accelerates deficiency and toxicity processes, leads to the extinction of all populations and in intermediate concentrations. Deterministic and stochastic pulses may transform population dynamics in complex oscillations. Numerical results show that the system that has been considered has more complex dynamics including bifurcation, period-doubling oscillations and chaos. Depending on minimum copper concentration in the environment, the bifurcation diagram has highlighted the resilience or the regime shifts of the system in occurrence of pulse contamination.

  13. Is there an Optimal Shape of the Defibrillation Shock: Constant Current vs. Pulsed Biphasic Waveforms

    Directory of Open Access Journals (Sweden)

    Ivan Dotsinsky

    2013-04-01

    Full Text Available Three waveforms for transthoracic defibrillation are assessed and compared: the Pulsed Biphasic Waveform (PBW, the Rectilinear Biphasic Waveform (RBW, and the "lossless" constant current (LLCC pulses. Two indices are introduced: 1 kf = W/W0 - the ratio between the delivered energy W and the energy W0 of a rectangular pulse with the same duration and electric charge; 2 ηC = W/WC0 - the level of utilizing the initially loaded capacitor energy WC0. The envisioned comparative study shows that ηC index is favorable for both PBW and LLCC, while kf of both RBW and LLCC demonstrates advantage over the PBW in the range of small inter-electrode thoracic impedances below 80 Ω. Some design considerations are also discussed. The attractive LLCC concept needs large and heavy inductive coil to support the constant current amplitude, besides it is capable to induce strong electromagnetic influences due to the complex current control. The RBW technology controls the delivery of current through a series of internal resistors which are, however, a source of high heat losses. The PBW implements controlled duty cycle of high-frequency chopped pulses to adapt the energy delivery in respect of the patient impedance measured at the beginning of the shock. PBW technology makes use of small capacitors which allows the construction of light weight and small-size portable devices for transthoracic defibrillation.

  14. Instantaneous nonvertical electronic transitions with shaped femtosecond laser pulses: Is it possible?

    DEFF Research Database (Denmark)

    Henriksen, Niels Engholm; Møller, Klaus Braagaard

    2003-01-01

    In molecular electronic transitions, a vertical transition can be induced by an ultrashort laser pulse. That is, a replica of the initial nuclear state-times the transition dipole moment of the electronic transition-can be created instantaneously (on the time scale of nuclear motion) in the excited...

  15. Toward a fractal spectrum approach for neutron and gamma pulse shape discrimination

    Science.gov (United States)

    Liu, Ming-Zhe; Liu, Bing-Qi; Zuo, Zhuo; Wang, Lei; Zan, Gui-Bin; Tuo, Xian-Guo

    2016-06-01

    Accurately selecting neutron signals and discriminating γ signals from a mixed radiation field is a key research issue in neutron detection. This paper proposes a fractal spectrum discrimination approach by means of different spectral characteristics of neutrons and γ rays. Figure of merit and average discriminant error ratio are used together to evaluate the discrimination effects. Different neutron and γ signals with various noise and pulse pile-up are simulated according to real data in the literature. The proposed approach is compared with the digital charge integration and pulse gradient methods. It is found that the fractal approach exhibits the best discrimination performance, followed by the digital charge integration method and the pulse gradient method, respectively. The fractal spectrum approach is not sensitive to high frequency noise and pulse pile-up. This means that the proposed approach has superior performance for effective and efficient anti-noise and high discrimination in neutron detection. Supported by the National Natural Science Foundation of China (41274109), Sichuan Youth Science and Technology Innovation Research Team (2015TD0020), Scientific and Technological Support Program of Sichuan Province (2013FZ0022), and the Creative Team Program of Chengdu University of Technology.

  16. STRONGLY CONTINUOUS INTEGRATED COSINE OPERATOR FUNCTIONS WITH GROWTH ω

    Institute of Scientific and Technical Information of China (English)

    Meiying Wang; Guoxiang Chen

    2007-01-01

    For a continuous increasing function ω: [0, ∞) → (0, ∞) of finite exponetial type, we establish a Hille-Yosida type theorem for strongly continuous integrated cosine operator functions with O(ω). It includes the well-known polynomially bounded and exponentially bounded cases.

  17. Alpha–gamma pulse-shape discrimination in Gd{sub 3}Al{sub 2}Ga{sub 3}O{sub 12} (GAGG):Ce{sup 3+} crystal scintillator using shape indicator

    Energy Technology Data Exchange (ETDEWEB)

    Tamagawa, Yoichi, E-mail: tamagawa@u-fukui.ac.jp [Graduate school of Engineering, University of Fukui, Fukui 910-8507 (Japan); Inukai, Yuji; Ogawa, Izumi [Graduate school of Engineering, University of Fukui, Fukui 910-8507 (Japan); Kobayashi, Masaaki [IPNS, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2015-09-21

    The pulse-shape discrimination (PSD) in a GAGG single-crystal scintillator was studied by using a shape indicator (SI) parameter of the optimal digital filter method. SI is one of the most useful PSD methods that use typical pulse shapes. Excellent discrimination between 0.662 MeV γ-rays and 5.48 MeV α-rays was achieved. For a cut at SI=0.0056, 99.95% of the γ-rays and only 0.22% of the α-rays were retained. Selection of background events (γ and α) in the GAGG scintillator was achieved by using the PSD method.

  18. Signal recognition efficiencies of artificial neural-network pulse-shape discrimination in HPGe 0νββ-decay searches

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, A.; Cossavella, F.; Majorovits, B.; Palioselitis, D.; Volynets, O. [Max-Planck-Institut fuer Physik, Munich (Germany)

    2015-07-15

    A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate variations of efficiencies as a function of used training set. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like evaluation samples from calibration measurements is estimated to be 5 %. This uncertainty is due to differences between signal and calibration samples. (orig.)

  19. The Impact of Photon Flight Path on S1 Pulse Shape Analysis in Liquid Xenon Two-phase Detectors

    CERN Document Server

    Moongweluwan, M

    2015-01-01

    The LUX dark matter search experiment is a 350 kg dual-phase xenon time projection chamber located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. The success of two-phase xenon detectors for dark matter searches relies on their ability to distinguish electron recoil (ER) background events from nuclear recoil (NR) signal events. Typically, the NR-ER discrimination is obtained from the ratio of the electroluminescence light (S2) to the prompt scintillation light (S1). Analysis of the S1 pulse shape is an additional discrimination technique that can be used to distinguish NR from ER. Pulse-shape NR-ER discrimination can be achieved based on the ratio of the de-excitation processes from singlet and triplet states that generate the S1. The NR S1 is dominated by the de-excitation process from singlet states with a time constant of about 3 ns while the ER S1 is dominated by the de-excitation process from triplet states with a time constant of about 24 ns. As the size of the detectors ...

  20. A Ring-shaped photodiode designed for use in a reflectance pulse oximetry sensor in wireless health monitoring applications

    DEFF Research Database (Denmark)

    Duun, Sune; Haahr, Rasmus Grønbek; Birkelund, Karen

    2010-01-01

    We report a photodiode for use in a reflectance pulse oximeter for use in autonomous and low-power homecare applications. The novelty of the reflectance pulse oximeter is a large ring shaped backside silicon pn photodiode. The ring-shaped photodiode gives optimal gathering of light and thereby en...... is demonstrated to work in a laboratory setup with a Ledtronics dual LED with wavelengths of 660 and 940 nm. Using this setup photoplethysmograms which clearly show the cardiovascular cycle have been recorded. The sensor is shown to work very well with low currents of less than 10 mA....... a radius of 3.68 mm and a width of 0.78 mm giving an area of 18 mm2. The capacitance of the photodiode is measured to 34.5 nF. The quantum efficiency of the photodiode is measured to 55% and 62% at 660 nm and 940 nm, respectively. It is acceptable for this prototype but can be improved. The sensor also has...

  1. Pulse-shape discrimination and energy quenching of alpha particles in Cs$_2$LiLaBr$_6$:Ce$^{3+}$

    CERN Document Server

    Mesick, Katherine E; Stonehill, Laura C

    2016-01-01

    Cs$_2$LiLaBr$_6$:Ce$^{3+}$ (CLLB) is an elpasolite scintillator that offers excellent linearity and gamma-ray energy resolution and sensitivity to thermal neutrons with the ability to perform pulse-shape discrimination (PSD) to distinguish gammas and neutrons. Our investigation of CLLB has indicated the presence of intrinsic radioactive alpha background that we have determined to be from actinium contamination of the lanthanum component. We measured the pulse shapes for gamma, thermal neutron, and alpha events and determined that PSD can be performed to separate the alpha background with a moderate figure of merit of 0.98. We also measured the electron-equivalent-energy of the alpha particles in CLLB and simulated the intrinsic alpha background from $^{227}$Ac to determine the quenching factor of the alphas. A linear quenching relationship $L_{\\alpha} = E_{\\alpha} \\times q + L_0$ was found at alpha particle energies above 5 MeV, with a quenching factor $q = 0.71$ MeVee/MeV and an offset $L_0 = - 1.19$ MeVee.

  2. Unidirectional Amplification and Shaping of Optical Pulses by Three-Wave Mixing with Negative Phonons

    CERN Document Server

    Popov, Alexander K; Myslivets, Sergey A; Slabko, Vitaly V

    2013-01-01

    A possibility to greatly enhance frequency-conversion efficiency of stimulated Raman scattering is shown by making use of extraordinary properties of three-wave mixing of ordinary and backward waves. Such processes are commonly attributed to negative-index plasmonic metamaterials. This work demonstrates the possibility to replace such metamaterials that are very challenging to engineer by readily available crystals which support elastic waves with contra-directed phase and group velocities. The main goal of this work is to investigate specific properties of indicated nonlinear optical process in short pulse regime and to show that it enables elimination of fundamental detrimental effect of fast damping of optical phonons on the process concerned. Among the applications is the possibility of creation of a family of unique photonic devices such as unidirectional Raman amplifiers and femtosecond pulse shapers with greatly improved operational properties.

  3. Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains.

    Science.gov (United States)

    Jiang, Lan; Shi, Xuesong; Li, Xin; Yuan, Yanping; Wang, Cong; Lu, Yongfeng

    2012-09-10

    This study reveals that the periods, ablation areas and orientations of periodic surface structures (ripples) in fused silica can be adjusted by using designed femtosecond (fs) laser pulse trains to control transient localized electron dynamics and corresponding material properties. By increasing the pulse delays from 0 to 100 fs, the ripple periods are changed from ~550 nm to ~255 nm and the orientation is rotated by 90°. The nearwavelength/subwavelength ripple periods are close to the fundamental/second-harmonic wavelengths in fused silica respectively. The subsequent subpulse of the train significantly impacts free electron distributions generated by the previous subpulse(s), which might influence the formation mechanism of ripples and the surface morphology.

  4. Advanced Techniques and Antenna Design for Pulse Shaping in UWB Cognitive Radio

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2012-01-01

    Full Text Available Spectrum scarcity has emerged as a primary problem in the communications technology. The combination of cognitive radio (CR and ultra-wideband impulse radio (UWB-IR has been proposed to solve the shortage problem by allowing smart and adaptive spectrum management, leading to UWB-CR. In a UWB-CR scheme, secondary users are supposed to ensure interference avoidance by adaptively selecting the portions of the spectrum not being used by primary users. In this paper, three different techniques for the generation of adaptive UWB pulses are studied. The Parks-McClellan algorithm is employed, a neural network is trained, and a reconfigurable band stop filter is designed to generate an adaptive waveform with nulls at specific frequencies. Simulations, measurements, and analysis show that each generated UWB pulse has remarkable advantages in the frequency utilization, spectrum avoidance, and hardware implementation.

  5. High-brightness X-ray free-electron laser with an optical undulator by pulse shaping.

    Science.gov (United States)

    Chang, Chao; Liang, Jinyang; Hei, Dongwei; Becker, Michael F; Tang, Kelei; Feng, Yiping; Yakimenko, Vitaly; Pellegrini, Claudio; Wu, Juhao

    2013-12-30

    A normal-incident flattop laser with a tapered end is proposed as an optical undulator to achieve a high-gain and high-brightness X-ray free electron laser (FEL). The synchronic interaction of an electron bunch with the normal incident laser is realized by tilting the laser pulse front. The intensity of the flattop laser is kept constant during the interaction time of the electron bunch and the laser along the focal plane of a cylindrical lens. Optical shaping to generate the desired flattop pulse with a tapered end from an original Gaussian pulse distribution is designed and simulated. The flattop laser with a tapered end can enhance the X-ray FEL beyond the exponential growth saturation power by one order to reach 1 Gigawatt as compared to that without a tapered end. The peak brightness can reach 1030 photons/mm2/mrad2/s/0.1% bandwidth, more than 10 orders brighter than the conventional incoherent Thompson Scattering X-ray source.

  6. Bi-Annual Report 2010-2011: Shaping pulse flows to meet environmental and energy objectives

    Energy Technology Data Exchange (ETDEWEB)

    Jager, Yetta [ORNL

    2010-10-01

    This report describes a bioenergetic model developed to allocate seasonal pulse flows to benefit salmon growth. The model links flow with floodplain inundation and production of invertebrate prey eaten by juvenile Chinook salmon. A unique quantile modeling approach is used to describe temporal variation among juvenile salmon spawned at different times. Preliminary model outputs are presented and future plans to optimize flows both to maximize salmon growth and hydropower production are outlined.

  7. Design of a Cosine-theta Dipole Magnet Wound with Coated Conductors Considering their Deformation at Coil ends During Winding Process

    Science.gov (United States)

    Amemiya, Naoyuki; Miyahara, Hidetoshi; Ogitsu, Toru; Kurusu, Tsutomu

    By using differential geometry, we modeled the three-dimensional shapes of the coil ends of cosine-theta magnets while considering local edge-wise bend, local flat-wise bend, and torsion of coated conductors. We focus on the feasibility of winding coil ends against the stress caused by bending. We discussed the feasibility of winding based on two assumptions to form coil ends: all turns of coated conductors are free from edge-wise bend; faces of all turns of coated conductors are completely parallel. Using the first assumption, we designed a cosine-theta dipole magnet wound with coated conductors.

  8. A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests

    Science.gov (United States)

    Forquin, Pascal; Zinszner, Jean-Luc

    2017-01-01

    Owing to their significant hardness and compressive strengths, ceramic materials are widely employed for use with protective systems subjected to high-velocity impact loadings. Therefore, their mechanical behaviour along with damage mechanisms need to be significantly investigated as a function of loading rates. However, the classical plate-impact testing procedures produce shock loadings in the brittle sample material which cause unrealistic levels of loading rates. Additionally, high-pulsed power techniques and/or functionally graded materials used as flyer plates to smooth the loading pulse remain costly, and are generally difficult to implement. In this study, a shockless plate-impact technique based on the use of either a wavy-machined flyer plate or buffer plate that can be produced by chip-forming is proposed. A series of numerical simulations using an explicit transient dynamic finite-element code have been performed to design and validate the experimental testing configuration. The calculations, conducted in two-dimensional (2D) plane-strain or in 2D axisymmetric modes, prove that the `wavy' contact surface will produce a pulse-shaping effect, whereas the buffer plate will produce a homogenizing effect of the stress field along the transverse direction of the sample. In addition, `wavy-shape' geometries of different sizes provide an easy way to change the level of loading rate and rise time in an experimentally tested ceramic specimen. Finally, when a shockless compression loading method is applied to the sample, a Lagrangian analysis of data is made possible by considering an assemblage of ceramic plates of different thicknesses in the target, so the axial stress-strain response of the brittle sample material can be provided. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  9. A Classroom Note on Generating Examples for the Laws of Sines and Cosines from Pythagorean Triangles

    Science.gov (United States)

    Sher, Lawrence; Sher, David

    2007-01-01

    By selecting certain special triangles, students can learn about the laws of sines and cosines without wrestling with long decimal representations or irrational numbers. Since the law of cosines requires only one of the three angles of a triangle, there are many examples of triangles with integral sides and a cosine that can be represented exactly…

  10. Full flex-grid asynchronous multiplexing demonstrated with Nyquist pulse-shaping.

    Science.gov (United States)

    Schindler, P C; Schmogrow, R; Wolf, S; Baeuerle, B; Nebendahl, B; Koos, C; Freude, W; Leuthold, J

    2014-05-01

    We demonstrate full flex-grid operation with Nyquist frequency division multiplexing. The technique supports high spectral efficiency, asynchronous operation of channels, variable channel loading with different modulation formats and dynamic bandwidth allocation. Data from different sources with different bit and symbol rates are encoded onto electrical Nyquist pulses with different electrical subcarrier frequencies, and then transmitted optically. We give details on the transceiver design with digital signal processing and investigate the implementation penalty as a function of several design parameters such as limited filter length and effective number of bits. Finally, experiments are performed for receivers with direct detection, intradyne and remote heterodyne reception.

  11. Analysis on the joint tensile strength and fractography of TiNi shape memory alloy precise pulse resistance butt welding

    Institute of Scientific and Technical Information of China (English)

    赵熹华; 韩立军; 赵蕾

    2002-01-01

    This paper studies mechanical property and fractography of the welded joints obtained in different welding parameters such as welding heat and welding press with/without gas shield in TiNi shape memory alloy precise pulse resistance butt welding using tensile strength test, XRD, SEM and TEM measures. The optimum welding parameters obtaining high tensile strength welded joint are got. On the condition of welding press magneting current 2 A and welding heat 75%, the joint strength is the highest. This is important for to study other properties of TiNi shape memory alloy further. The experimental results state that argon gas shield have different effects on different welding parameters, less on welding press, but great on welding heat. But excessive welding press and welding heat have great effects on joint tensile strength. Too high welding heat can produce the new intermetallic compound, this intermetallic compound lead to dislocation density to increase and form the potential crack initiation, which can easily make the joint fracture under stress effect and decrease the shape memory ratio of joint for high density dislocation groups existing in the twinned martensite.

  12. Enhancing ablation efficiency in micro structuring using a deformable mirror for beam shaping of ultra-short laser pulses

    Science.gov (United States)

    Smarra, M.; Dickmann, K.

    2016-03-01

    Using ultra-short laser pulses for the generation of microstructures results in a high flexible tool for free form geometries in the micro range. Increasing laser power and repetition rates increase as well the demand of high flexible and efficient process strategies. To increase the ablation efficiency the optimal fluency can be determined, which is a material specific value. By varying the beam shape, the ablation efficiency can be enhanced. In this study a deformable mirror was used to vary the beam shape. This mirror is built by combining a piezo-electric ceramic and a mirror substrate. The ceramic is divided into several segments, which can be controlled independently. This results in a high flexible deformable mirror which influences the beam shape and can be used to vary the spot size or generate line geometries. The ablation efficiency and roughness of small generated cavities were analyzed in this study as well as the dimensions of the cavity. This can be used to optimize process strategies to combine high volume ablation and fine detail generation.

  13. Eliminating illumination effects by discrete cosine transform (DCT) coefficients' attenuation and accentuation

    Science.gov (United States)

    Du, Shan; Shehata, Mohamed; Badawy, Wael; Rahman, Choudhury A.

    2013-03-01

    In this paper, we proposed a discrete cosine transform (DCT)-based attnuation and accentuation method to remove lighting effects on face images for faciliating face recognition task under varying lighting conditions. In the proposed method, logorithm transform is first used to convert a face image into logarithm domain. Then discrete cosine transform is applied to obtain DCT coefficients. The low-frequency DCT coefficients are attenuated since illumination variations mainly concentrate on the low-frequency band. The high-frequency coefficients are accentuated since when under poor illuminations, the high-frequency features become more important in recognition. The reconstructed log image by inverse DCT of the modified coefficients is used for the final recognition. Experiments are conducted on the Yale B database, the combination of Yale B and Extended Yale B databases and the CMU-PIE database. The proposed method does not require modeling and model fitting steps. It can be directly applied to single face image, without any prior information of 3D shape or light sources.

  14. Shifting the boundaries: pulse-shape effects in the atom-optics kicked rotor

    CERN Document Server

    Jones, P H; Meacher, D R

    2003-01-01

    We present the results of experiments performed on cold caesium in a pulsed sinusoidal optical potential created by counter-propagating laser beams having a small frequency difference in the laboratory frame. Since the atoms, which have average velocity close to zero in the laboratory frame, have non-zero average velocity in the co-moving frame of the optical potential, we are able to centre the initial velocity distribution of the cloud at an arbitrary point in phase-space. In particular, we demonstrate the use of this technique to place the initial velocity distribution in a region of phase-space not accessible to previous experiments, namely beyond the momentum boundaries arising from the finite pulse duration of the potential. We further use the technique to explore the kicked rotor dynamics starting from a region of phase-space where there is a strong velocity dependence of the diffusion constant and quantum break time and demonstrate that this results in a marked asymmetry in the chaotic evolution of th...

  15. A Parallel Approach to Cosine Calculation Using OpenCL

    Directory of Open Access Journals (Sweden)

    Faris Cakaric

    2015-03-01

    Full Text Available Fast calculation of high-precision cosine function becomes increasingly important in many areas of computer science. This paper proposes an algorithm for high-performance calculation of cosine function using Maclaurin series and by exploiting benefits of parallelisation. It presents several parallel implementations of this algorithm in OpenCL framework, improving them from naïve to the optimised implementation. The paper shows comparison of time of execution when the algorithm is executed sequentially on CPU and in parallel on GPU, confirming enormous decrease in time of execution when algorithm executes in parallel. Finally, the paper draws conclusions about the scalability of algorithm and percentage of total time of execution wasted on communication overheads.

  16. Satellite and Opacity Effects on Resonance Line Shapes Produced from Short-Pulse Laser Heated Foils

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, R; Audebert, P; Chen, H-K; Fournier, K B; Peyreusse, O; Moon, S; Lee, R W; Price, D; Klein, L; Gauthier, J C; Springer, P

    2002-12-03

    We measure the He-like, time-resolved emission from thin foils consisting of 250 {angstrom} of carbon-250 {angstrom} of aluminum and 500 {angstrom} aluminum illuminated with a 150 fs laser pulse at an intensity of 1 x 10{sup 19} W/cm{sup 2}. Dielectronic satellite contributions to the 1s{sup 2}-1s2p({sup 1}P), 1s{sup 2}-1s3p({sup 1}P), and 1s{sup 2}1s4p({sup 1}P) line intensities are modeled using the configuration averaged code AVERROES and is found to be significant for all three resonance lines. The contribution of opacity broadening is inferred from the data and found to be significant only in the 1s{sup 2}-1s2p({sup 1}P).

  17. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  18. Design and development of an ultra-compact drum-shaped chamber for combinatorial pulsed laser deposition

    Science.gov (United States)

    Katayama, M.; Itaka, K.; Matsumoto, Y.; Koinuma, H.

    2006-01-01

    We have designed a compact combinatorial pulsed laser deposition (PLD) chamber as a building block of a desktop laboratory for advanced materials research. Development of small-size systems for the growth and characterization of films would greatly help in interconnecting a variety of analytical tools for rapid screening of advanced materials. This PLD chamber has four special features: (1) a drum-shaped growth chamber, (2) a waterwheel-like combinatorial masking system, (3) a multi-target system having one feedthrough, and (4) a small reflection high-energy electron diffraction (RHEED) system. The performance of this system is demonstrated by the RHEED intensity oscillation during homoepitaxial growth of SrTiO 3 as well as by simultaneous fabrication of a ternary phase diagram of rare earth-doped Y 2O 3 phosphors.

  19. A Simple Exact Error Rate Analysis for DS-CDMA with Arbitrary Pulse Shape in Flat Nakagami Fading

    Science.gov (United States)

    Rahman, Mohammad Azizur; Sasaki, Shigenobu; Kikuchi, Hisakazu; Harada, Hiroshi; Kato, Shuzo

    A simple exact error rate analysis is presented for random binary direct sequence code division multiple access (DS-CDMA) considering a general pulse shape and flat Nakagami fading channel. First of all, a simple model is developed for the multiple access interference (MAI). Based on this, a simple exact expression of the characteristic function (CF) of MAI is developed in a straight forward manner. Finally, an exact expression of error rate is obtained following the CF method of error rate analysis. The exact error rate so obtained can be much easily evaluated as compared to the only reliable approximate error rate expression currently available, which is based on the Improved Gaussian Approximation (IGA).

  20. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    CERN Document Server

    Lee, H S; Choi, J H; Choi, S; Hahn, I S; Jeon, E J; Joo, H W; Kang, W G; Kim, G B; Kim, H J; Kim, K W; Kim, S C; Kim, S K; Kim, Y D; Kim, Y H; Lee, J H; Lee, J K; Leonard, D S; Li, J; Myung, S S; Olsen, S L; So, J H

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV $\\gamma$-rays from a $^{137}$Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with similar result from a neutron reactor demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source.

  1. Coherent diffraction imaging analysis of shape-controlled nanoparticles with focused hard X-ray free-electron laser pulses.

    Science.gov (United States)

    Takahashi, Yukio; Suzuki, Akihiro; Zettsu, Nobuyuki; Oroguchi, Tomotaka; Takayama, Yuki; Sekiguchi, Yuki; Kobayashi, Amane; Yamamoto, Masaki; Nakasako, Masayoshi

    2013-01-01

    We report the first demonstration of the coherent diffraction imaging analysis of nanoparticles using focused hard X-ray free-electron laser pulses, allowing us to analyze the size distribution of particles as well as the electron density projection of individual particles. We measured 1000 single-shot coherent X-ray diffraction patterns of shape-controlled Ag nanocubes and Au/Ag nanoboxes and estimated the edge length from the speckle size of the coherent diffraction patterns. We then reconstructed the two-dimensional electron density projection with sub-10 nm resolution from selected coherent diffraction patterns. This method enables the simultaneous analysis of the size distribution of synthesized nanoparticles and the structures of particles at nanoscale resolution to address correlations between individual structures of components and the statistical properties in heterogeneous systems such as nanoparticles and cells.

  2. Pulsed Airborne Lidar Measurements of Atmospheric CO2 Column Absorption and Line Shapes from 3-13 km Altitudes

    Science.gov (United States)

    Abshire, James; Riris, Haris; Allan, Graham; Weaver, Clark; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William

    2010-01-01

    We have developed a pulsed lidar technique for measuring the tropospheric CO2 concentrations as a candidate for NASA's planned ASCENDS space mission. Our technique uses two pulsed laser transmitters allowing simultaneous measurement of a CO2 absorption line in the 1570 nm band, O2 extinction in the Oxygen A-band and surface height and backscatter. The lidar measures the energy and time of flight of the laser echoes reflected from the atmosphere and surface. The lasers are rapidly and precisely stepped in wavelength across the CO2 line and an O2 line region during the measurement. The direct detection receiver uses a telescope and photon counting detectors, and measures the background light and energies of the laser echoes from the surface along with scattering from any aerosols in the path. The gas extinction and column densities for the CO2 and O2 gases are estimated from the ratio of the on- and off- line signals via the DIAL technique. Time gating is used to isolate the laser echo signals from the surface, and to reject laser photons scattered in the atmosphere. The time of flight of the laser pulses are also used to estimate the height of the scattering surface and to identify cases of mixed cloud and ground scattering. We have developed an airborne lidar to demonstrate the CO2 measurement from the NASA Glenn Lear-25 aircraft. The airborne lidar steps the pulsed laser's wavelength across the selected CO2 line with 20 steps per scan. The line scan rate is 450 Hz, the laser pulse widths are 1 usec, and laser pulse energy is 24 uJ. The time resolved laser backscatter is collected by a 20 cm telescope, detected by a photomultiplier and is recorded by a photon counting system. We made initial airborne measurements on flights during fall 2008. Laser backscatter and absorption measurements were made over a variety of land and water surfaces and through thin clouds. The atmospheric CO2 column measurements using the 1572.33 nm CO2 lines. Two flights were made above the

  3. Phase-only shaped laser pulses in optimal control theory: application to indirect photofragmentation dynamics in the weak-field limit.

    Science.gov (United States)

    Shu, Chuan-Cun; Henriksen, Niels E

    2012-01-28

    We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribution can substantially modify transient dissociation probabilities as well as the momentum distribution associated with the relative motion of Na and I.

  4. Mid-Infrared Pulse Shaping and Two-Dimensional Spectroscopy of Open Quantum Systems in Liquid Solution

    Science.gov (United States)

    Ross, Matthew R.

    The primary focus of this work is the development of a mid-infrared pulse shaping system. The primary motivation for this system is for two-dimensional infrared (2DIR) spectroscopy, however, the mid-infrared pulse shaper also allows for more sophisticated spectroscopic experiments not previously attempted in the mid-infrared. Moreover, many can be implemented without changes or realignment of the optical setup. Example spectra are presented along with a discussion of capabilities and diagnostics. A second major project presented is 2DIR spectroscopy of iron pentacarbonyl, Fe(CO)5, a small metal carbonyl. This molecule undergoes Berry pseudorotation, a form of fluxtionality. This fast exchange of ligands mixes axial and equatorial modes and occurs on a timescale of picoseconds, too fast for NMR and other methods of measuring chemical structure and isomerization. Ultrafast chemical exchange spectroscopy, a measurement within 2DIR spectroscopy, is capable of resolving the time scales of this motion. We found that this process is affected by the solvent environment, specifically the solvent viscosity in alkanes and hydrogen bonding environments in alcohols. Lastly, a study is presented in which a series of synthetic metalloenzymes with a metal active site are studied by 2DIR spectroscopy. In this case a carbonyl is ligated to a copper-I atom in the active site, which then serves as our spectroscopic probe. We find, unexpectedly, that the shape of the carbonyl vibrational potential, as measured by the anharmonicity, is time-dependent. We attribute this to a geometrical rearrangement and are able to suggest that this effect is dependent on local site structure and dynamics and not significantly affected by electric potential near the peptide.

  5. EJ-309 pulse shape discrimination performance with a high gamma-ray-to-neutron ratio and low threshold

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, A.C., E-mail: Alexis.C.Kaplan@gmail.com [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States); Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Flaska, M.; Enqvist, A.; Dolan, J.L.; Pozzi, S.A. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48104 (United States)

    2013-11-21

    Measuring neutrons in the presence of high gamma-ray fluence is a challenge with multi-particle detectors. Organic liquid scintillators such as the EJ-309 are capable of accurate pulse-shape discrimination (PSD) but the chance for particle misclassification is not negligible for some applications. By varying the distance from an EJ-309 scintillator to a strong-gamma-ray source and keeping a weak-neutron source at a fixed position, various gamma-to-neutron ratios can be measured and PSD performance can be quantified. Comparing neutron pulse-height distributions allows for pulse-height specific PSD evaluation, and quantification and visualization of deviation from {sup 252}Cf alone. Even with the addition of the misclassified gamma-rays, the PSD is effective in separating particles so that neutron count rate can be predicted with less than 10% error up to a gamma-to-neutron ratio of almost 650. For applications which can afford a reduction in neutron detection efficiency, PSD can be sufficiently effective in discriminating particles to measure a weak neutron source in a high gamma-ray background. -- Highlights: •We measure neutrons in a high photon background with EJ-309 liquid scintillators. •A low threshold is used to test the limits of particle discrimination. •A weak neutron signal is detectable with a gamma/neutron ratio as high as 770. •Photon pileup most commonly adds to error in classification of neutrons. •Neutron count rates are within 10% of expected rate under high gamma background.

  6. Pulse shape analysis of a two fold clover detector with an EMD based new algorithm: A comparison

    Energy Technology Data Exchange (ETDEWEB)

    Siwal, Davinder, E-mail: dev84sonu@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Mandal, S. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Palit, R.; Sethi, J. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Garg, R. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Saha, S. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Prasad, Awadhesh [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Chavan, P.B.; Naidu, B.S.; Jadhav, S.; Donthi, R. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Schaffner, H.; Adamczewski-Musch, J.; Kurz, N.; Wollersheim, H.J. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Singh, R. [Amity Institute of Nuclear Science and Technology, Amity University, Noida 201303 (India)

    2014-03-21

    An investigation of Empirical Mode Decomposition (EMD) based noise filtering algorithm has been carried out on a mirror signal from a two fold germanium clover detector. EMD technique can decompose linear as well as nonlinear and chaotic signals with a precise frequency resolution. It allows to decompose the preamplifier signal (charge pulse) on an event-by-event basis. The filtering algorithm provides the information about the Intrinsic Mode Functions (IMFs) mainly dominated by the noise. It preserves the signal information and separates the overriding noise oscillations from the signals. The identification of noise structure is based on the frequency distributions of different IMFs. The preamplifier noise components which distort the azimuthal co-ordinates information have been extracted on the basis of the correlation between the different IMFs and the mirror signal. The correlation studies have been carried out both in frequency and time domain. The extracted correlation coefficient provides an important information regarding the pulse shape of the γ-ray interaction in the detector. A comparison between the EMD based and state-of-the-art wavelet based denoising techniques has also been made and discussed. It has been observed that the fractional noise strength distribution varies with the position of the collimated gamma-ray source. Above trend has been reproduced by both the denoising techniques.

  7. Experimental demonstration of electron longitudinal-phase-space linearization by shaping the photoinjector laser pulse.

    Science.gov (United States)

    Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M

    2014-01-31

    Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.

  8. Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment.

    Science.gov (United States)

    Soto-Reyes, Nohemí; Temis-Pérez, Ana L; López-Malo, Aurelio; Rojas-Laguna, Roberto; Sosa-Morales, María Elena

    2015-05-01

    Model gel systems with different shape (sphere, cylinder, and slab) and size (180 and 290 g) were prepared with agar (5%) and sucrose (5%). Dielectric constant (ε'), loss factor (ε"), thermophysical properties, and temperature distribution of the model system were measured. Each agar model system was immersed and suspended in water, and then, heated in a microwave oven with intermittent heating until the core temperature reached 50 °C. The ε' and ε" of agar gels decreased when frequency increased. The density and thermal conductivity values of the agar gels were 1033 kg/m(3) and 0.55 W/m °C, respectively. The temperature distribution of sphere, cylinder, and slab was different when similar power doses were applied. The slab reached 50 °C in less time (10 min) and showed a more uniform heating than spheres and cylinders in both sizes. Agar model systems of 180 g heated faster than those of 290 g. The coldest point was the center of the model systems in all studied cases. Shape and size are critical food factors that affect the heating uniformity during microwave heating processes.

  9. Neutron-Gamma Pulse Shape Discrimination with a NE-213 Liquid Scintillator by Using Digital Signal Processing Combined with Similarity Method

    Directory of Open Access Journals (Sweden)

    Mardiyanto

    2008-07-01

    Full Text Available Neutron-Gamma Pulse Shape Discrimination with a NE-213 Liquid Scintillator by Using Digital Signal Processing Combined with Similarity Method. Measurement of mixed neutron-gamma radiation is difficult because a neuclear detector is usually sensitive to both radiations. A new attempt of neutron-gamma pulse shape discrimination for a NE-213 liquid scintillator is presented by using digital signal processing combined with an off-line similarity method. The output pulse shapes are digitized with a high speed digital oscilloscope. The n-γ discrimination is done by calculating the index of each pulse shape, which is determined by the similarity method, and then fusing it with its corresponding pulse height. Preliminary results demonstrate good separation of neutron and gamma-ray signals from a NE-213 scintillator with a simple digital system. The results were better than those with a conventional rise time method. Figure of Merit is used to determine the quality of discrimination. The figure of merit of the discrimination using digital signal processing combined with of line similarity method are 1.9; 1.7; 1.1; 1.1; and 0.8 ; on the other hand by using conventional method the rise time are 0.9; 0.9; 0.9; 0.7; and 0.4 for the equivalent electron energy of 800 ; 278 ; 139 ; 69 ; and 30 keV

  10. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    Science.gov (United States)

    Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boudjemline, K.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Cranshaw, D.; Dering, K.; Duncan, F.; Fatemighomi, N.; Ford, R.; Gagnon, R.; Giampa, P.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Grace, E.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Hearns, C.; Hofgartner, J.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; La Zia, F.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D. N.; Mehdiyev, R.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, A. J.; O'Dwyer, E.; Olsen, K.; Ouellet, C.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Ronquest, M.; Seeburn, N.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.

    2016-12-01

    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. In the surface dataset using a triple-coincidence tag we found the fraction of β events that are misidentified as nuclear recoils to be cross-section sensitivity of 10-46 cm2, assuming negligible contribution from nuclear recoil backgrounds.

  11. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    CERN Document Server

    Cao, H; Avetisyan, R; Back, H O; Cocco, A G; DeJongh, F; Fiorillo, G; Galbiati, C; Grandi, L; Guardincerri, Y; Kendziora, C; Lippincott, W H; Love, C; Lyons, S; Manenti, L; Martoff, C J; Meng, Y; Montanari, D; Mosteiro, P; Olvitt, D; Pordes, S; Qian, H; Rossi, B; Saldanha, R; Sangiorgio, S; Siegl, K; Strauss, S Y; Tan, W; Tatarowicz, J; Walker, S; Wang, H; Watson, A W; Westerdale, S; Yoo, J

    2014-01-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase Liquid Argon Time Projection Chamber (LAr-TPC) to a low energy pulsed narrowband neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation and ionization yields for nuclear recoils with energies from 10.3 to 57.2 keV and for applied electric fields from 0 to 1000 V/cm. We also report the observation of an anti-correlation between scintillation and ionization from nuclear recoils, which is similar to the anti-correlation between scintillation and ionization from electron recoils. A comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field yielded a first evidence of sensitivity to direct...

  12. Electronic regulation of the SPS extraction quadrupole current pulse shape for improved stability of the extracted beam

    CERN Document Server

    Carlier, E; Vossenberg, Eugène B; CERN. Geneva. SPS and LEP Division

    1996-01-01

    In order to minimise the event pile-up and therefore optimise the detection efficiency, Chorus and Nomad experiments ask for a long and rectangular spill profile. At present the fast-slow extractio n is generated by driving the beam into a quadrupolar-octopolar resonance by exciting a quadrupole magnet with a semi-trapezoidal current [1]. The trapezoidal pulse shape is obtained by dischargin g a capacitor into the magnet coils. After a few milliseconds of undamped discharge a fixed resistor is switched into the circuit. The attenuation is then higher and the sine wave continues with a lower gradient. The two gradients can be adjusted by varying the initial capacitor voltage and the time at which the resistor is switched into the circuit. A further degree of freedom in determini ng the spill shape has been added by allowing the possibility of changing the second slope value independently of the initial conditions. This task is achieved by means of a variable current sour ce added in parallel to the fixed resis...

  13. Measurement of scintillation and ionization yield and scintillation pulse shape from nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Cao, H.; Alexander, T.; Aprahamian, A.; Avetisyan, R.; Back, H. O.; Cocco, A. G.; DeJongh, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Guardincerri, Y.; Kendziora, C.; Lippincott, W. H.; Love, C.; Lyons, S.; Manenti, L.; Martoff, C. J.; Meng, Y.; Montanari, D.; Mosteiro, P.; Olvitt, D.; Pordes, S.; Qian, H.; Rossi, B.; Saldanha, R.; Sangiorgio, S.; Siegl, K.; Strauss, S. Y.; Tan, W.; Tatarowicz, J.; Walker, S.; Wang, H.; Watson, A. W.; Westerdale, S.; Yoo, J.

    2015-05-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V / cm . For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V / cm . We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83 m Kr internal conversion electrons is comparable to that from 207 Bi conversion electrons, we obtained the numbers of excitons ( N ex ) and ion pairs ( N i ) and their ratio ( N ex / N i ) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.

  14. Hydrogenated amorphous silicon p-i-n solar cells deposited under well controlled ion bombardment using pulse-shaped substrate biasing

    NARCIS (Netherlands)

    Wank, M. A.; van Swaaij, R.; R. van de Sanden,; Zeman, M.

    2012-01-01

    We applied pulse-shaped biasing (PSB) to the expanding thermal plasma deposition of intrinsic hydrogenated amorphous silicon layers at substrate temperatures of 200 degrees C and growth rates of about 1?nm/s. Fourier transform infrared spectroscopy of intrinsic films showed a densification with incr

  15. Coincidence measurements in {alpha}/{beta}/{gamma} spectrometry with phoswich detectors using digital pulse shape discrimination analysis

    Energy Technology Data Exchange (ETDEWEB)

    Celis, B. de [University of Leon, Escuela de Ingenieria Industrial, Leon 24071 (Spain)], E-mail: bcelc@unileon.es; Fuente, R. de la [University of Leon, Escuela de Ingenieria Industrial, Leon 24071 (Spain); Williart, A. [UNED, F. Ciencias Fisicas, Madrid 28040 (Spain); Celis Alonso, B. de [King' s College London, IoP, De Crespigny Park, London SE5 8AF (United Kingdom)

    2007-09-21

    A novel system has been developed for the detection of low radioactivity levels using coincidence techniques. The device combines a phoswich detector for {alpha}/{beta}/{gamma} ray recognition with a fast digital card for electronic pulse analysis. The detector is able to discriminate different types of radiation in a mixed {alpha}/{beta}/{gamma} field and can be used in a coincidence mode by identifying the composite signal produced by the simultaneous detection of {beta} particles in a plastic scintillator and {gamma} rays in an NaI(Tl) scintillator. Use of a coincidence technique with phoswich detectors was proposed recently to verify the Nuclear Test Ban Treaty, which made it necessary to monitor the low levels of xenon radioisotopes produced by underground nuclear explosions. Previous studies have shown that combining CaF{sub 2}(Eu) for {beta} ray detection and NaI(Tl) for {gamma} ray detection makes it difficult to identify the coincidence signals because of the similar fluorescence decay times of the two scintillators. With the device proposed here, it is possible to identify the coincidence events owing to the short fluorescence decay time of the plastic scintillator. The sensitivity of the detector may be improved by employing liquid scintillators, which allow low radioactivity levels from actinides to be measured when present in environmental samples. The device developed is simpler to use than conventional coincidence equipment because it uses a single detector and electronic circuit, and it offers fast and precise analysis of the coincidence signals by employing digital pulse shape analysis.

  16. Compressed wideband spectrum sensing based on discrete cosine transform.

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin

    2014-01-01

    Discrete cosine transform (DCT) is a special type of transform which is widely used for compression of speech and image. However, its use for spectrum sensing has not yet received widespread attention. This paper aims to alleviate the sampling requirements of wideband spectrum sensing by utilizing the compressive sampling (CS) principle and exploiting the unique sparsity structure in the DCT domain. Compared with discrete Fourier transform (DFT), wideband communication signal has much sparser representation and easier implementation in DCT domain. Simulation result shows that the proposed DCT-CSS scheme outperforms the conventional DFT-CSS scheme in terms of MSE of reconstruction signal, detection probability, and computational complexity.

  17. Compressed Wideband Spectrum Sensing Based on Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    Yulin Wang

    2014-01-01

    Full Text Available Discrete cosine transform (DCT is a special type of transform which is widely used for compression of speech and image. However, its use for spectrum sensing has not yet received widespread attention. This paper aims to alleviate the sampling requirements of wideband spectrum sensing by utilizing the compressive sampling (CS principle and exploiting the unique sparsity structure in the DCT domain. Compared with discrete Fourier transform (DFT, wideband communication signal has much sparser representation and easier implementation in DCT domain. Simulation result shows that the proposed DCT-CSS scheme outperforms the conventional DFT-CSS scheme in terms of MSE of reconstruction signal, detection probability, and computational complexity.

  18. Cosine problem in EPRL/FK spinfoam model

    CERN Document Server

    Vojinovic, Marko

    2014-01-01

    We calculate the classical limit effective action of the EPRL/FK spinfoam model of quantum gravity coupled to matter fields. By employing the standard QFT background field method adapted to the spinfoam setting, we find that the model has many different classical effective actions. Most notably, these include the ordinary Einstein-Hilbert action coupled to matter, but also an action which describes antigravity. All those multiple classical limits appear as a consequence of of the fact that the EPRL/FK vertex amplitude has cosine-like large spin asymptotics. We discuss some possible ways to eliminate the unwanted classical limits.

  19. Cosine problem in EPRL/FK spinfoam model

    Science.gov (United States)

    Vojinović, Marko

    2014-01-01

    We calculate the classical limit effective action of the EPRL/FK spinfoam model of quantum gravity coupled to matter fields. By employing the standard QFT background field method adapted to the spinfoam setting, we find that the model has many different classical effective actions. Most notably, these include the ordinary Einstein-Hilbert action coupled to matter, but also an action which describes antigravity. All those multiple classical limits appear as a consequence of the fact that the EPRL/FK vertex amplitude has cosine-like large spin asymptotics. We discuss some possible ways to eliminate the unwanted classical limits.

  20. Cosine Similarity Measure of Interval Valued Neutrosophic Sets

    Directory of Open Access Journals (Sweden)

    Said Broumi

    2014-09-01

    Full Text Available In this paper, we define a new cosine similarity between two interval valued neutrosophic sets based on Bhattacharya’s distance [19]. The notions of interval valued neutrosophic sets (IVNS, for short will be used as vector representations in 3D-vector space. Based on the comparative analysis of the existing similarity measures for IVNS, we find that our proposed similarity measure is better and more robust. An illustrative example of the pattern recognition shows that the proposed method is simple and effective.

  1. Scaling single-wavelength optical interconnects to 180 Gb/s with PAM-M and pulse shaping

    Science.gov (United States)

    Dris, Stefanos; Bakopoulos, Paraskevas; Argyris, Nikolaos; Spatharakis, Christos; Avramopoulos, Hercules

    2016-03-01

    Faced with surging datacenter traffic demand, system designers are turning to multi-level optical modulation with direct detection as the means of reaching 100 Gb/s in a single optical lane; a further upgrade to 400 Gb/s is envisaged through wavelength-multiplexing of multiple 100 Gb/s strands. In terms of modulation formats, PAM-4 and PAM-8 are considered the front-runners, striking a good balance between bandwidth-efficiency and implementation complexity. In addition, the emergence of energy-efficient, high-speed CMOS digital-to-analog converters (DACs) opens up new possibilities: Spectral shaping through digital filtering will allow squeezing even more data through low-cost, low-bandwidth electro-optic components. In this work we demonstrate an optical interconnect based on an EAM that is driven directly with sub-volt electrical swing by a 65 GSa/s arbitrary waveform generator (AWG). Low-voltage drive is particularly attractive since it allows direct interfacing with the switch/server ASIC, eliminating the need for dedicated, power-hungry and expensive electrical drivers. Single-wavelength throughputs of 180 and 120 Gb/s are experimentally demonstrated with 60 Gbaud optical PAM-8 and PAM-4 respectively. Successful transmission over 1250 m SMF is achieved with direct-detection, using linear equalization via offline digital signal processing in order to overcome the strong bandwidth limitation of the overall link (~20 GHz). The suitability of Nyquist pulse shaping for optical interconnects is also investigated experimentally with PAM-4 and PAM-8, at a lower symbol rate of 40 Gbaud (limited by the sampling rate of the AWG). To the best of our knowledge, the rates achieved are the highest ever using optical PAM-M formats.

  2. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    Science.gov (United States)

    Jiménez, R.; Sánchez-Raya, M.; Gómez-Galán, J. A.; Flores, J. L.; Dueñas, J. A.; Martel, I.

    2012-05-01

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using 12,13C ions produced in heavy ion reactions. The actual latency of the system is about 20 μs when using a clock frequency of 50 MHz.

  3. Implementation of a neural network for digital pulse shape analysis on a FPGA for on-line identification of heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, R., E-mail: naharro@uhu.es [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Sanchez-Raya, M.; Gomez-Galan, J.A. [Departamento de Ingenieria Eletronica, Sistemas Informaticos y Automatica, Universidad de Huelva, 21071 Huelva (Spain); Flores, J.L. [Departamento Ingenieria Electrica y Termica, Universidad de Huelva, 21071 Huelva (Spain); Duenas, J.A.; Martel, I. [Departamento de Fisica Aplicada, Universidad de Huelva, 21071 Huelva (Spain)

    2012-05-11

    Pulse shape analysis techniques for the identification of heavy ions produced in nuclear reactions have been recently proposed as an alternative to energy loss and time of flight methods. However this technique requires a large amount of memory for storing the shapes of charge and current signals. We have implemented a hardware solution for fast on-line processing of the signals producing the relevant information needed for particle identification. Since the pulse shape analysis can be formulated in terms of a pattern recognition problem, a neural network has been implemented in a FPGA device. The design concept has been tested using {sup 12,13}C ions produced in heavy ion reactions. The actual latency of the system is about 20 {mu}s when using a clock frequency of 50 MHz.

  4. Alpha-gamma discrimination by pulse shape in LaBr{sub 3}:Ce and LaCl{sub 3}:Ce

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, F.C.L. [Universita di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); INFN sez. of Milano Via Celoria 16, 20133 Milano (Italy); Camera, F. [Universita di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); INFN sez. of Milano Via Celoria 16, 20133 Milano (Italy)], E-mail: camera@mi.infn.it; Blasi, N. [INFN sez. of Milano Via Celoria 16, 20133 Milano (Italy); Bracco, A. [Universita di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); INFN sez. of Milano Via Celoria 16, 20133 Milano (Italy); Brambilla, S.; Million, B. [INFN sez. of Milano Via Celoria 16, 20133 Milano (Italy); Nicolini, R. [Universita di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); INFN sez. of Milano Via Celoria 16, 20133 Milano (Italy); Pellegri, L. [Universita di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); Riboldi, S.; Sassi, M. [Universita di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano (Italy); INFN sez. of Milano Via Celoria 16, 20133 Milano (Italy); Wieland, O. [INFN sez. of Milano Via Celoria 16, 20133 Milano (Italy); Quarati, F.; Owens, A. [Advanced Studies and Technology Preparation Division (SCI-PA), ESA/ESTEC Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2009-04-21

    The line-shape of the signals from LaBr{sub 3}:Ce and LaCl{sub 3}:Ce detectors coupled to PM tubes were studied. The possibility of discriminating the type of interacting radiation was investigated making use of Pulse Shape Analysis (PSA) techniques. The study was performed measuring the self-activity present in lanthanum halide crystals in coincidence with {gamma}-rays in a HPGe crystal. A small but significant difference between {alpha}- and {gamma}-induced signals was directly observed for both the crystals. Using a simple PSA algorithm, it was possible to emphasize the differences in the pulse shape of {gamma}-rays and {alpha}-particles. This resulted in a rather clear identification of these two types of radiations.

  5. Metal release in a stainless steel Pulsed Electric Field (PEF) system Part I. Effect of different pulse shapes; theory and experimental method

    NARCIS (Netherlands)

    Roodenburg, B.; Morren, J.; Berg, H.E.; Haan, S.W.H.de

    2005-01-01

    Liquid pumpable food is mostly pasteurised by heat treatment. In the last decennia there is an increasing interest in so-called Pulsed Electric Field (PEF) treatment. During this treatment food is pumped between two metal electrodes and exposed to short high electric field pulses, typical 2-4 kV mm-

  6. The experimental cascade curves of EAS at E sub 0 10(17) eV obtained by the method of detection of Cherenkov pulse shape

    Science.gov (United States)

    Fomin, Y. A.; Kalmykov, G. B.; Khristiansen, M. V.; Motova, M. V.; Nechin, Y. A.; Prosin, V. V.; Zhukov, V. Y.; Efimov, N. N.; Grigoriev, V. M.; Nikiforova, E. S.

    1985-01-01

    The individual cascade curves of EAS with E sub 0 10 to the 17th power eV/I to 3/ were studied by detection of EAS Cherenkov light pulses. The scintillators located at the center of the Yakutsk EAS array within a 500-m radius circle were used to select the showers and to determine the main EAS parameters. The individual cascade curves N(t) were obtained using the EAS Cherenkov light pulses satisfying the following requirements: (1) the signal-to-noise ratio fm/delta sub n 15, (2) the EAS axis-detector distance tau sub 350 m, (3) the zenith angle theta 30 deg, (4) the probability for EAS to be detected by scintillators W 0.8. Condition (1) arises from the desire to reduce the amplitude distortion of Cherenkov pulses due to noise and determines the range of EAS sizes, N(t). The resolution times of the Cherenkov pulse shape detectors are tau sub 0 approx. 23 ns which results in distortion of a pulse during the process of the detection. The distortion of pulses due to the finiteness of tau sub 0 value was estimated. It is shown that the rise time of pulse becomes greater as tau sub 0.5/tau sub 0 ratio decreases.

  7. Coherent control of atoms and diatomic molecules with shaped ultrashort pulses; Manipulation coherente d'atomes et de molecules diatomiques avec des impulsions mises en forme

    Energy Technology Data Exchange (ETDEWEB)

    Degert, J

    2002-12-15

    This thesis deals with the theoretical and experimental study of coherent control of atomic and molecular systems with shaped pulses. At first, we present several experiments of control of coherent transients in rubidium. These transients appear when a two-level system is excited by a perturbative chirped pulse, and are characterized by oscillations in the excited state population. For a strong chirp, we show that a phase step in the spectrum modifies the phase of the oscillations. Then, by direct analogy with Fresnel zone lens, we conceive a chirped pulse with a highly modulated amplitude, allowing to suppress destructive contributions to the population transfer. In a second set of experiments, we focus on quantum path interferences in two-photon transitions excited by linearly chirped pulses. Owing to the broad bandwidth of ultrashort pulses, sequential and direct excitation paths contribute to the excited state population. Oscillations resulting from interferences between these two paths are observed in atomic sodium. Moreover, we show that they are observable whatever the sign of chirp. Theoretically, we study the control of the predissociation of a benchmark diatomic molecule: NaI. Predissociation leads to matter wave interferences in the fragments distribution. First, we show that a suitably chosen probe pulse allows the observation of theses interferences. Next, using a sequence of control pulse inducing electronic transition, we demonstrate the possibility to manipulate fragment energy distribution. (author)

  8. Cosine edge modes in a periodically driven quantum system

    Science.gov (United States)

    Satija, Indubala I.; Zhao, Erhai

    2016-12-01

    Time-periodic (Floquet) topological phases of matter exhibit bulk-edge relationships that are more complex than static topological insulators and superconductors. Finding the edge modes unique to driven systems usually requires numerics. Here we present a minimal two-band model of Floquet topological insulators and semimetals in two dimensions where all the bulk and edge properties can be obtained analytically. It is based on the extended Harper model of quantum Hall effect at flux one-half. We show that periodical driving gives rise to a series of phases characterized by a pair of integers. The model has a most striking feature: the spectrum of the edge modes is always given by a single cosine function, ω (ky) ∝cosky where ky is the wave number along the edge, as if it is freely dispersing and completely decoupled from the bulk. The cosine mode is robust against the change in driving parameters. It also persists in the semimetallic phases with Dirac points.

  9. Study of digital pulse shape discrimination method for n-{\\gamma} separation of EJ-301 liquid scintillation detector

    CERN Document Server

    Wan, Bo; Chen, Liang; Ge, Honglin; Ma, Fei; Zhang, Hongbin; Ju, Yongqin; Zhang, Yanbin; Li, Yanyan; Xu, Xiaowei

    2015-01-01

    A digital pulse shape discrimination system based on a programmable module NI-5772 has been established and tested with EJ-301 liquid scintillation detector. The module was operated by means of running programs developed in LabVIEW with the sampling frequency up to 1.6GS/s. Standard gamma sources 22Na, 137Cs and 60Co were used to calibrate the EJ-301 liquid scintillation detector, and the gamma response function has been obtained. Digital algorithms for charge comparison method and zero-crossing method have been developed. The experimental results showed that both digital signal processing (DSP) algorithms could discriminate neutrons from gamma-rays. Moreover, the zero-crossing method shows better n-{\\gamma} discrimination at 80 keVee and lower, whereas the charge comparison method gives better results at higher thresholds. In addition, the figure-of-merit (FOM) of two different dimension detectors were extracted at 9 energy thresholds, and it was found that the smaller one presented a better n-{\\gamma} separ...

  10. Study on welding power source used in intelligent control system for weld pool shape in pulsed GTAW

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper analyses the performance request of arc welding power source used in intelligent control of weld pool shape in pulsed GTAW, and develops a sample power source. The main circuit of the power source takes the structure of single ended inverter with two switches, and takes IGBTs as power switches. The working frequency of the inverter is set at 20(¨)kHz. The control circuit takes PWM circuit as center, and uses single chip computer to complete the manage functions such as the control of working sequence, setting and changing of the welding parameters, sensing of the welding states and communication with outside computer etc. The dynamic reacting time of the whole power is 1(¨)ms, the range of the output current is 5~250(¨)A, the precision of the output current reaches to 1 A. The power strikes arc by contacting workpiece under 5A, and have convenient interface with system computer. All above shows this power source is one with high performance.

  11. Large field-induced irreversibility in Ni-Mn based Heusler shape-memory alloys: A pulsed magnetic field study

    Science.gov (United States)

    Nayak, A. K.; Mejia, C. Salazar; D'Souza, S. W.; Chadov, S.; Skourski, Y.; Felser, C.; Nicklas, M.

    2014-12-01

    We present a pulsed magnetic field study on the magnetic and magnetostriction properties of Ni-Mn-Z (Z =In , Sn, and Sb) based Heusler shape-memory alloys. These materials generally display a field-induced magnetostructural transition that could lead to an irreversible phase transition, when measured near the martensitic transition temperature. Here, we show that independently of the transition temperature, the critical field for the phase transition sensitively depends on the main-group element in the sample. Irrespective of their compositions, all samples display a magnetization of around 2 μB/f .u . in the martensite phase and about 6 μB/f .u . in the cubic austenite phase. Our magnetic and magnetostriction measurements at low temperatures exhibit a partial or complete arrest of the high-field austenite phase below the reverse martensitic transition. This results in a large irreversibility with a hysteresis width as high as 24 T. We introduce a theoretical model to discuss the experimental results.

  12. Analysis of PMD and PDL effect on Chirped Gaussian and SuperGaussain pulse shapes by controlling SOP in SMF

    Directory of Open Access Journals (Sweden)

    VINAYAGAPRIYA.S

    2014-05-01

    Full Text Available In this paper, a numerical analysis of impairments due to PMD and PDL on system performance is investigated in High Speed Optical Communication System. Optical Polarization has pronounced effect on signal quality. Thus there is a need to control the State of Polarization (SOP. Pulse Broadening can be controlled by launching the light signal in particular State of Polarization such as Linear and Circular. Two types of Pulses such as Chirped Gaussian and Supergaussian pulses are launched at different SOP into the optical fiber and it is found that maximum pulse width reduction is achieved when the pulse is at Circular SOP than that of Linear SOP. Also results clearly show that with PMD and PDL, pulse width ratio of Chirped Gaussian pulse is much reduced than that of Chirped Supergaussian Pulse.

  13. Pulse shape discrimination of Cs2LiYCl6:Ce3+ detectors at high count rate based on triangular and trapezoidal filters

    Science.gov (United States)

    Wen, Xianfei; Enqvist, Andreas

    2017-09-01

    Cs2LiYCl6:Ce3+ (CLYC) detectors have demonstrated the capability to simultaneously detect γ-rays and thermal and fast neutrons with medium energy resolution, reasonable detection efficiency, and substantially high pulse shape discrimination performance. A disadvantage of CLYC detectors is the long scintillation decay times, which causes pulse pile-up at moderate input count rate. Pulse processing algorithms were developed based on triangular and trapezoidal filters to discriminate between neutrons and γ-rays at high count rate. The algorithms were first tested using low-rate data. They exhibit a pulse-shape discrimination performance comparable to that of the charge comparison method, at low rate. Then, they were evaluated at high count rate. Neutrons and γ-rays were adequately identified with high throughput at rates of up to 375 kcps. The algorithm developed using the triangular filter exhibits discrimination capability marginally higher than that of the trapezoidal filter based algorithm irrespective of low or high rate. The algorithms exhibit low computational complexity and are executable on an FPGA in real-time. They are also suitable for application to other radiation detectors whose pulses are piled-up at high rate owing to long scintillation decay times.

  14. Influence of the crash pulse shape on the peak loading and the injury tolerance levels of the neck in in vitro low-speed side-collisions.

    Science.gov (United States)

    Kettler, Annette; Fruth, Kai; Claes, Lutz; Wilke, Hans-Joachim

    2006-01-01

    The aim of the present in vitro study was to investigate the effect of the crash pulse shape on the peak loading and the injury tolerance levels of the human neck. In a custom-made acceleration apparatus 12 human cadaveric cervical spine specimens, equipped with a dummy head, were subjected to a series of incremental side accelerations. While the duration of the acceleration pulse of the sled was kept constant at 120 ms, its shape was varied: Six specimens were loaded with a slowly increasing pulse, i.e. a low loading rate, the other six specimens with a fast increasing pulse, i.e. a high loading rate. The loading of the neck was quantified in terms of the peak linear and angular acceleration of the head, the peak shear force and bending moment of the lower neck and the peak translation between head and sled. The shape of the acceleration curve of the sled only seemed to influence the peak translation between head and sled but none of the other four parameters. The neck injury tolerance level for the angular acceleration of the head and for the bending moment of the lower neck was almost identical for both, the high and the low loading rate. In contrast, the injury tolerance level for the linear acceleration of the head and for the shear force of the lower neck was slightly higher for the low loading rate as compared to the high loading rate. For the translation between head and sled this difference was even statistically significant. Thus, if the shape of the crash pulse is not known, solely the peak bending moment of the lower neck and the peak angular acceleration of the head seem to be suitable predictors for the neck injury risk but not the peak shear force of the lower neck, the peak linear acceleration of the head and the translation between head and thorax.

  15. Analytic discrete cosine harmonic wavelet transform based OFDM system

    Indian Academy of Sciences (India)

    M N Suma; S V Narasimhan; B Kanmani

    2015-02-01

    An OFDM based on Analytic Discrete Cosine HarmonicWavelet Transform (ADCHWT_OFDM) has been proposed in this paper. Analytic DCHWT has been realized by applying DCHWT to the original signal and to its Hilbert transform. ADCHWT has been found to be computationally efficient and very effective in improving Bit Error Rate (BER) and Peak to Average Power Ratio (PAPR) performance. Improvement compared to that of Haar-WT OFDM and DFT OFDM is achieved without employing Cyclic Prefix BER is 0.002 for ADCHWT OFDM compared to Haar WT, DFT OFDM which have BER of 0.06 and 0.4, respectively, at 15 dB SNR. PAPR is also reduced by 3 dB compared to DFT OFDM and 0.3 dB reduction compared to Haar WT OFDM.

  16. Performance Evaluation of Image Fusion Based on Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    Ramkrishna Patil

    2013-05-01

    Full Text Available Discrete cosine transform (DCT is used for fusion of two different images and for image compression. Image fusion deals with creating an image by combining portions from other images to obtain an image in which all of the objects are in focus. Two multi focus images are used for image fusion. Different fusion algorithms are used and their performance is evaluated using evaluation metrics such as PSNR, SSIM, Spatial Frequency, Quality Index, Structural Content, Mean Absolute Error. Fusion performance is not good while using the algorithms with block size less than 64x64 and also the block size of 512x512. Contrast, amplitude and energy based image fusion algorithms performed well. The fused images are comparable with the reference image. Only the image size is considered but blurring percentage is not considered. These algorithms are very simple and might be suitable for real time applications

  17. Cosine Based Latent Factor Model for Precision Oriented Recommendation

    Directory of Open Access Journals (Sweden)

    Bipul Kumar

    2016-01-01

    Full Text Available Recommender systems suggest a list of interesting items to users based on their prior purchase or browsing behaviour on e-commerce platforms. The continuing research in recommender systems have primarily focused on developing algorithms for rating prediction task. However, most e-commerce platforms provide ‘top-k’ list of interesting items for every user. In line with this idea, the paper proposes a novel machine learning algorithm to predict a list of ‘top-k’ items by optimizing the latent factors of users and items with the mapped scores from ratings. The basic idea is to learn latent factors based on the cosine similarity between the users and items latent features which is then used to predict the scores for unseen items for every user. Comprehensive empirical evaluations on publicly available benchmark datasets reveal that the proposed model outperforms the state-of-the-art algorithms in recommending good items to a user.

  18. Full-frame compression of discrete wavelet and cosine transforms

    Science.gov (United States)

    Lo, Shih-Chung B.; Li, Huai; Krasner, Brian; Freedman, Matthew T.; Mun, Seong K.

    1995-04-01

    At the foreground of computerized radiology and the filmless hospital are the possibilities for easy image retrieval, efficient storage, and rapid image communication. This paper represents the authors' continuous efforts in compression research on full-frame discrete wavelet (FFDWT) and full-frame discrete cosine transforms (FFDCT) for medical image compression. Prior to the coding, it is important to evaluate the global entropy in the decomposed space. It is because of the minimum entropy, that a maximum compression efficiency can be achieved. In this study, each image was split into the top three most significant bit (MSB) and the remaining remapped least significant bit (RLSB) images. The 3MSB image was compressed by an error-free contour coding and received an average of 0.1 bit/pixel. The RLSB image was either transformed to a multi-channel wavelet or the cosine transform domain for entropy evaluation. Ten x-ray chest radiographs and ten mammograms were randomly selected from our clinical database and were used for the study. Our results indicated that the coding scheme in the FFDCT domain performed better than in FFDWT domain for high-resolution digital chest radiographs and mammograms. From this study, we found that decomposition efficiency in the DCT domain for relatively smooth images is higher than that in the DWT. However, both schemes worked just as well for low resolution digital images. We also found that the image characteristics of the `Lena' image commonly used in the compression literature are very different from those of radiological images. The compression outcome of the radiological images can not be extrapolated from the compression result based on the `Lena.'

  19. Multifocus watermarking approach based on discrete cosine transform.

    Science.gov (United States)

    Waheed, Safa Riyadh; Alkawaz, Mohammed Hazim; Rehman, Amjad; Almazyad, Abdulaziz S; Saba, Tanzila

    2016-05-01

    Image fusion process consolidates data and information from various images of same sight into a solitary image. Each of the source images might speak to a fractional perspective of the scene, and contains both "pertinent" and "immaterial" information. In this study, a new image fusion method is proposed utilizing the Discrete Cosine Transform (DCT) to join the source image into a solitary minimized image containing more exact depiction of the sight than any of the individual source images. In addition, the fused image comes out with most ideal quality image without bending appearance or loss of data. DCT algorithm is considered efficient in image fusion. The proposed scheme is performed in five steps: (1) RGB colour image (input image) is split into three channels R, G, and B for source images. (2) DCT algorithm is applied to each channel (R, G, and B). (3) The variance values are computed for the corresponding 8 × 8 blocks of each channel. (4) Each block of R of source images is compared with each other based on the variance value and then the block with maximum variance value is selected to be the block in the new image. This process is repeated for all channels of source images. (5) Inverse discrete cosine transform is applied on each fused channel to convert coefficient values to pixel values, and then combined all the channels to generate the fused image. The proposed technique can potentially solve the problem of unwanted side effects such as blurring or blocking artifacts by reducing the quality of the subsequent image in image fusion process. The proposed approach is evaluated using three measurement units: the average of Q(abf), standard deviation, and peak Signal Noise Rate. The experimental results of this proposed technique have shown good results as compared with older techniques.

  20. Multiple One-Dimensional Search (MODS) algorithm for fast optimization of laser-matter interaction by phase-only fs-laser pulse shaping

    Science.gov (United States)

    Galvan-Sosa, M.; Portilla, J.; Hernandez-Rueda, J.; Siegel, J.; Moreno, L.; Solis, J.

    2014-09-01

    In this work, we have developed and implemented a powerful search strategy for optimization of nonlinear optical effects by means of femtosecond pulse shaping, based on topological concepts derived from quantum control theory. Our algorithm [Multiple One-Dimensional Search (MODS)] is based on deterministic optimization of a single solution rather than pseudo-random optimization of entire populations as done by commonly used evolutionary algorithms. We have tested MODS against a genetic algorithm in a nontrivial problem consisting in optimizing the Kerr gating signal (self-interaction) of a shaped laser pulse in a detuned Michelson interferometer configuration. The obtained results show that our search method (MODS) strongly outperforms the genetic algorithm in terms of both convergence speed and quality of the solution. These findings demonstrate the applicability of concepts of quantum control theory to nonlinear laser-matter interaction problems, even in the presence of significant experimental noise.

  1. Particle identification using the ΔE-E technique and pulse shape discrimination with the silicon detectors of the FAZIA project

    Science.gov (United States)

    Carboni, S.; Barlini, S.; Bardelli, L.; Le Neindre, N.; Bini, M.; Borderie, B.; Bougault, R.; Casini, G.; Edelbruck, P.; Olmi, A.; Pasquali, G.; Poggi, G.; Rivet, M. F.; Stefanini, A. A.; Baiocco, G.; Berjillos, R.; Bonnet, E.; Bruno, M.; Chbihi, A.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; Galichet, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lopez, O.; Marchi, T.; Martel, I.; Morelli, L.; Parlog, M.; Petrascu, H.; Rosato, E.; Seredov, V.; Vient, E.; Vigilante, M.; Alba, R.; Santonocito, D.; Maiolino, C.; Fazia Collaboration

    2012-02-01

    The response of silicon-silicon-CsI(Tl) and silicon-CsI(Tl) telescopes to fragments produced in nuclear interactions has been studied. The telescopes were developed within the FAZIA collaboration. The capabilities of two methods are compared: (a) the standard ΔE-E technique and (b) the digital Pulse Shape Analysis technique (for identification of nuclear fragments stopped in a single Si-layer). In a test setup, nuclear fragments covering a large range in nuclear charge, mass and energy were detected. They were produced in nuclear reactions induced by a 35A MeV beam of 129Xe impinging on various targets. It was found that the ΔE-E correlations allow the identification of all isotopes up to Z˜25. With the digital Pulse Shape Analysis it is possible to fully distinguish the charge of stopped nuclei up to the maximum available Z (slightly over that of the beam, Z=54).

  2. Particle identification using the {Delta}E-E technique and pulse shape discrimination with the silicon detectors of the FAZIA project

    Energy Technology Data Exchange (ETDEWEB)

    Carboni, S., E-mail: carboni@fi.infn.it [University of Florence (Italy); INFN Florence (Italy); Barlini, S.; Bardelli, L. [University of Florence (Italy); INFN Florence (Italy); Le Neindre, N. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS/ENSICAEN/Universite, F-14050 Caen cedex (France); Bini, M. [University of Florence (Italy); INFN Florence (Italy); Borderie, B. [Institut de Physique Nucleaire, CNRS/IN2P3 and University of Paris-Sud XI, Orsay (France); Bougault, R. [Laboratoire de Physique Corpusculaire, IN2P3-CNRS/ENSICAEN/Universite, F-14050 Caen cedex (France); Casini, G. [INFN Florence (Italy); Edelbruck, P. [Institut de Physique Nucleaire, CNRS/IN2P3 and University of Paris-Sud XI, Orsay (France); Olmi, A. [INFN Florence (Italy); Pasquali, G.; Poggi, G. [University of Florence (Italy); INFN Florence (Italy); Rivet, M.F. [Institut de Physique Nucleaire, CNRS/IN2P3 and University of Paris-Sud XI, Orsay (France); Stefanini, A.A. [University of Florence (Italy); INFN Florence (Italy); Baiocco, G. [INFN (Italy); University of Bologna (Italy); Berjillos, R. [Huelva University (Spain); Bonnet, E. [GANIL Caen (France); Bruno, M. [INFN (Italy); University of Bologna (Italy); Chbihi, A. [GANIL Caen (France); Cruceru, I. [Horia Hulubei National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest (Romania); and others

    2012-02-01

    The response of silicon-silicon-CsI(Tl) and silicon-CsI(Tl) telescopes to fragments produced in nuclear interactions has been studied. The telescopes were developed within the FAZIA collaboration. The capabilities of two methods are compared: (a) the standard {Delta}E-E technique and (b) the digital Pulse Shape Analysis technique (for identification of nuclear fragments stopped in a single Si-layer). In a test setup, nuclear fragments covering a large range in nuclear charge, mass and energy were detected. They were produced in nuclear reactions induced by a 35A MeV beam of {sup 129}Xe impinging on various targets. It was found that the {Delta}E-E correlations allow the identification of all isotopes up to Z{approx}25. With the digital Pulse Shape Analysis it is possible to fully distinguish the charge of stopped nuclei up to the maximum available Z (slightly over that of the beam, Z=54).

  3. 一种新结构U型脉冲管制冷机%A New Structural U-Shape Pulse Tube Cryocooler

    Institute of Scientific and Technical Information of China (English)

    尹传林; 陈厚磊; 蔡京辉

    2012-01-01

    在U型脉冲管制冷机结构基础上,研制了一台带有一个蓄冷器和两个相同脉管的新结构U型脉冲管制冷机,并进行了实验研究和分析。制冷机采用惯性管调相,在压缩机输入电功率80w,运行频率52Hz下,获得了120K@6W的制冷量。重点对两种惯性管调相方法进行研究和分析,得出了对新结构U型脉冲管制冷机调相有益的结论,并对惯性管调相过程中产生的直流现象进行了验证分析。%A new structural U-shape pulse tube cryocooler based on the U-shape pulse tube cryocooler, with one regenerator and the same two pulse tubes, has been designed and manufactured. The pulse cryocooler is able to gain 120 K@6 W cooling power with 80 W electric power at the operating frequency of 52 Hz. The method of the inertance tube phase-shifting is investigated and the useful conclusion is obtained for the pahse-shifting of new structural U-shape pulse tube cryocooler. The DC flow that occures in the inertance tube phase-shifting is also tested and analysed.

  4. Dynamic feedback circuits function as a switch for shaping a maturation-inducing steroid pulse in Drosophila

    DEFF Research Database (Denmark)

    Møller, Morten Erik; Danielsen, Erik Thomas; Herder, Rachel;

    2013-01-01

    Steroid hormones trigger the onset of sexual maturation in animals by initiating genetic response programs that are determined by steroid pulse frequency, amplitude and duration. Although steroid pulses coordinate growth and timing of maturation during development, the mechanisms generating...... that functions in producing steroid oscillations that can guide the decision to terminate growth and promote maturation....... these pulses are not known. Here we show that the ecdysone steroid pulse that drives the juvenile-adult transition in Drosophila is determined by feedback circuits in the prothoracic gland (PG), the major steroid-producing tissue of insect larvae. These circuits coordinate the activation and repression...

  5. Ultrahigh-resolution spectroscopy with atomic or molecular dark resonances: Exact steady-state line shapes and asymptotic profiles in the adiabatic pulsed regime

    Energy Technology Data Exchange (ETDEWEB)

    Zanon-Willette, Thomas; Clercq, Emeric de; Arimondo, Ennio [UPMC Univ. Paris 06, UMR 7092, LPMAA, 4 place Jussieu, case 76, F-75005 Paris, France, and CNRS, UMR 7092, LPMAA, 4 place Jussieu, case 76, F-75005 Paris (France); LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l' Observatoire, F-75014 Paris (France); Dipartimento di Fisica ' ' E. Fermi,' ' Universita di Pisa, Lgo. B. Pontecorvo 3, I-56122 Pisa (Italy)

    2011-12-15

    Exact and asymptotic line shape expressions are derived from the semiclassical density matrix representation describing a set of closed three-level {Lambda} atomic or molecular states including decoherences, relaxation rates, and light shifts. An accurate analysis of the exact steady-state dark-resonance profile describing the Autler-Townes doublet, the electromagnetically induced transparency or coherent population trapping resonance, and the Fano-Feshbach line shape leads to the linewidth expression of the two-photon Raman transition and frequency shifts associated to the clock transition. From an adiabatic analysis of the dynamical optical Bloch equations in the weak field limit, a pumping time required to efficiently trap a large number of atoms into a coherent superposition of long-lived states is established. For a highly asymmetrical configuration with different decay channels, a strong two-photon resonance based on a lower states population inversion is established when the driving continuous-wave laser fields are greatly unbalanced. When time separated resonant two-photon pulses are applied in the adiabatic pulsed regime for atomic or molecular clock engineering, where the first pulse is long enough to reach a coherent steady-state preparation and the second pulse is very short to avoid repumping into a new dark state, dark-resonance fringes mixing continuous-wave line shape properties and coherent Ramsey oscillations are created. Those fringes allow interrogation schemes bypassing the power broadening effect. Frequency shifts affecting the central clock fringe computed from asymptotic profiles and related to the Raman decoherence process exhibit nonlinear shapes with the three-level observable used for quantum measurement. We point out that different observables experience different shifts on the lower-state clock transition.

  6. The long-term evolution of the spin, pulse shape, and orbit of the accretion-powered millisecond pulsar SAX J1808.4-3658

    CERN Document Server

    Hartman, Jacob M; Chakrabarty, Deepto; Kaplan, David L; Markwardt, Craig B; Morgan, Edward H; Ray, Paul S; van der Klis, Michiel; Wijnands, Rudy

    2007-01-01

    We present a 7 yr timing study of the 2.5 ms X-ray pulsar SAX J1808.4-3658, an X-ray transient with a recurrence time of ~2 yr, using data from the Rossi X-ray Timing Explorer covering 4 transient outbursts (1998-2005). We verify that the 401 Hz pulsation traces the spin frequency fundamental and not a harmonic. Substantial pulse shape variability, both stochastic and systematic, was observed during each outburst. Analysis of the systematic pulse shape changes suggests that, as an outburst dims, the X-ray "hot spot" on the pulsar surface drifts longitudinally and a second hot spot may appear. The overall pulse shape variability limits the ability to measure spin frequency evolution within a given X-ray outburst (and calls previous nudot measurements of this source into question), with typical upper limits of |nudot| < 2.5x10^{-14} Hz/s (2 sigma). However, combining data from all the outbursts shows with high (6 sigma) significance that the pulsar is undergoing long-term spin down at a rate nudot = (-5.6+/-...

  7. In-Fiber Subpicosecond Pulse Shaping for Nonlinear Optical Telecommunication Data Processing at 640 Gbit/s

    DEFF Research Database (Denmark)

    Azaña, J.; Oxenløwe, Leif Katsuo; Palushani, Evarist

    2012-01-01

    -optic telecommunication links operating up to 640 Gbit/s. Experiments are presented demonstrating error-free 640-to-10 Gbit/s demultiplexing of the 64 tributary channels using the generated flat-top pulses for temporal gating in a Kerr-effect-based nonlinear optical loop mirror. The use of flat-top pulses has critical...

  8. Production rate enhancement of size-tunable silicon nanoparticles by temporally shaping femtosecond laser pulses in ethanol.

    Science.gov (United States)

    Li, Xin; Zhang, Guangming; Jiang, Lan; Shi, Xuesong; Zhang, Kaihu; Rong, Wenlong; Duan, Ji'an; Lu, Yongfeng

    2015-02-23

    This paper proposes an efficient approach for production-rate enhancement and size reduction of silicon nanoparticles produced by femtosecond (fs) double-pulse ablation of silicon in ethanol. Compared with a single pulse, the production rate is ~2.6 times higher and the mean size of the NPs is reduced by ~1/5 with a delay of 2 ps. The abnormal enhancement in the production rate is obtained at pulse delays Δt > 200 fs. The production-rate enhancement is mainly attributed to high photon absorption efficiency. It is caused by an increase in localized transient electron density, which results from the first sub-pulse ionization of ethanol molecules before the second sub-pulse arrives. The phase-change mechanism at a critical point might reduce nanoparticle size.

  9. Simple and fast cosine approximation method for computer-generated hologram calculation.

    Science.gov (United States)

    Nishitsuji, Takashi; Shimobaba, Tomoyoshi; Kakue, Takashi; Arai, Daisuke; Ito, Tomoyoshi

    2015-12-14

    The cosine function is a heavy computational operation in computer-generated hologram (CGH) calculation; therefore, it is implemented by substitution methods such as a look-up table. However, the computational load and required memory space of such methods are still large. In this study, we propose a simple and fast cosine function approximation method for CGH calculation. As a result, we succeeded in creating CGH with sufficient quality and made the calculation time 1.6 times as fast at maximum compared to using the look-up table of the cosine function on CPU implementation.

  10. Metal micromachining with shaped femtosecond laser pulses%整形飞秒激光金属材料精细加工

    Institute of Scientific and Technical Information of China (English)

    胡湛; 齐莹; 杨鼎; 周胜鹏; 石英; 田蕾; 王钦鑫; 丁大军

    2012-01-01

    实验通过二极管记录透射光信号随脉冲个数变化关系以及观测样品烧蚀形貌来研究不同实验条件对激光烧蚀的影响.使用的样品是厚度为50μm铝箔.实验中通过研究不同变量:激光焦点与样品的相对位置、激光的能量、背景气体压强以及脉冲形状对烧蚀加工过程和结果的影响,从而获得较好烧蚀效果的条件,达到控制烧蚀加工过程的目的.特别是通过使用不同形状的脉冲和具有一定规律的脉冲序列对样品进行烧蚀,发现某些形状的整形脉冲烧蚀结果明显优于变换极限脉冲.说明脉冲整形作为一种新的技术可以在激光精细钻孔领域得到更深入的研究和应用.%This paper studies the ablation of aluminum foil (50 μm thickness) under various conditions by observing the morphology of ablation caves and by analyzing the relationship of the photodiode signal of transmitted light and the number of pulses to penetration. In order to obtain better condition of ablation, several variable quantities in the experiment are tested) which are the pulse energy, position of laser focus relative to sample surface, ambient pressure and pulse shape. Preferable results are obtained by using some specific shaped pulses to ablate samples, compared to those obtained with transform-limited pulses, which means laser pulse shaping technology can be of important usage and application in micromachining metal material.

  11. Excitation of H$_{2}^{+}$ with one-cycle laser pulses: Shaped post-laser-field electronic oscillations, generation of higher- and lower-order harmonics

    CERN Document Server

    Paramonov, Guennaddi K; Bandrauk, Andre D

    2016-01-01

    Non Born-Oppenheimer quantum dynamics of H$_{2}^{+}$ excited by shaped one-cycle laser pulses linearly polarized along the molecular axis have been studied by the numerical solution of the time-dependent Schr\\"odinger equation within a %three-body three-dimensional model, including the internuclear separation, $R$, and the electron coordinates $z$ and $\\rho$. Laser carrier frequencies corresponding to the wavelengths $\\lambda_{l}=25$~nm through $\\lambda_{l}=400$~nm were used and the amplitudes of the pulses were chosen such that the energy of H$_{2}^{+}$ was close to its dissociation threshold at the end of any laser pulse applied. It is shown that there exists a characteristic oscillation frequency $\\omega_{\\rm osc} \\simeq 0.2265$~au (corresponding to the period of $\\tau_{\\rm osc} \\simeq 0.671$~fs and the wavelength of $\\lambda_{\\rm osc} \\simeq 200$~nm) that manifests itself as a "carrier" frequency of temporally shaped oscillations of the time-dependent expectation values $\\langle z \\rangle$ and $\\langle \\p...

  12. Pulse shape discrimination characteristics of stilbene crystal, pure and 6Li loaded plastic scintillators for a high resolution coded-aperture neutron imager

    Science.gov (United States)

    Cieślak, M. J.; Gamage, K. A. A.; Glover, R.

    2017-07-01

    Pulse shape discrimination performances of single stilbene crystal, pure plastic and 6Li loaded plastic scintillators have been compared. Three pulse shape discrimination algorithms have been tested for each scintillator sample, assessing their quality of neutron/gamma separation. Additionally, the digital implementation feasibility of each algorithm in a real-time embedded system was evaluated. Considering the pixelated architecture of the coded-aperture imaging system, a reliable method of simultaneous multi-channel neutron/gamma discrimination was sought, accounting for the short data analysis window available for each individual channel. In this study, each scintillator sample was irradiated with a 252Cf neutron source and a bespoke digitiser system was used to collect the data allowing detailed offline examination of the sampled pulses. The figure-of-merit was utilised to compare the discrimination quality of the collected events with respect to various discrimination algorithms. Single stilbene crystal presents superior neutron/gamma separation performance when compared to the plastic scintillator samples.

  13. Multi-View Distributed Video Coding Based on Discrete Cosine

    Directory of Open Access Journals (Sweden)

    Guanqun Liu

    2014-07-01

    Full Text Available To investigate the allocation scheme of the multi-view distributed video coding (DVC, the corresponding improvements are proposed correspondingly for traditional multi-view DVC. Traditional multi-view DVC (Wyner-Ziv DVC encodes for all areas of Wyner-Ziv frame indiscriminately based on Turbo or LDPC. In this kind of encoding process, with regard to violent motor area, decoder can’t decode violent motor area accurately and also send more solicited message to feedback channel, which lowers the code efficiency and decodes inaccurately for violent motor area, it causes a part of area distortion in the image. In this paper, a distributed video encryption algorithm is proposed which based on discrete cosine transform (DCT. The algorithm combines decision criteria of ROI to get violent motor area and non-violent motor area. For violent motor area, to extract low frequency coefficient of DCT as DCT-R algorithm to assist decoder end to decode, decoder utilizes low frequency coefficient of DCT which has already been decoded to carry on bi-directional movement evaluation. Simulation experiment tests and verifies the improved algorithm effectiveness of proposed multi-view DVC in this paper

  14. Discrete-cosine-transform-based image compression applied to dermatology

    Science.gov (United States)

    Cookson, John P.; Sneiderman, Charles; Rivera, Christopher

    1991-05-01

    The research reported in this paper concerns an evaluation of the impact of compression on the quality of digitized color dermatologic images. 35 mm slides of four morphologic types of skin lesions were captured at 1000 pixels per inch (ppi) in 24 bit RGB color, to give an approximate 1K X 1K image. The discrete cosine transform (DCT) algorithm, was applied to the resulting image files to achieve compression ratios of about 7:1, 28:1, and 70:1. The original scans and the decompressed files were written to a 35 mm film recorder. Together with the original photo slides, the slides resulting from digital images were evaluated in a study of morphology recognition and image quality assessment. A panel of dermatologists was asked to identify the morphology depicted and to rate the image quality of each slide. The images were shown in a progression from highest level of compression to original photo slides. We conclude that the use of DCT file compression yields acceptable performance for skin lesion images since differences in morphology recognition performance do not correlate significantly with the use of original photos versus compressed versions. Additionally, image quality evaluation does not correlate significantly with level of compression.

  15. Detailed Characterization of Nuclear Recoil Pulse Shape Discrimination in the DarkSide-50 Direct Dark Matter Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Edkins, Erin Elisabeth [Univ. of Hawaii, Honolulu, HI (United States)

    2017-05-01

    While evidence of non-baryonic dark matter has been accumulating for decades, its exact nature continues to remain a mystery. Weakly Interacting Massive Particles (WIMPs) are a well motivated candidate which appear in certain extensions of the Standard Model, independently of dark matter theory. If such particles exist, they should occasionally interact with particles of normal matter, producing a signal which may be detected. The DarkSide-50 direct dark matter experiment aims to detect the energy of recoiling argon atoms due to the elastic scattering of postulated WIMPs. In order to make such a discovery, a clear understanding of both the background and signal region is essential. This understanding requires a careful study of the detector's response to radioactive sources, which in turn requires such sources may be safely introduced into or near the detector volume and reliably removed. The CALibration Insertaion System (CALIS) was designed and built for this purpose in a j oint effort between Fermi National Laboratory and the University of Hawaii. This work describes the design and testing of CALIS, its installation and commissioning at the Laboratori Nazionali del Gran Sasso (LNGS) and the multiple calibration campaigns which have successfully employed it. As nuclear recoils produced by WIMPs are indistinguishable from those produced by neutrons, radiogenic neutrons are both the most dangerous class of background and a vital calibration source for the study of the potential WIMP signal. Prior to the calibration of DarkSide-50 with radioactive neutron sources, the acceptance region was determined by the extrapolation of nuclear recoil data from a separate, dedicated experiment, ScENE, which measured the distribution of the pulse shape discrimination parameter, $f_{90}$, for nuclear recoils of known energies. This work demonstrates the validity of the extrapolation of ScENE values to DarkSide-50, by direct comparison of the $f_{90}$ distributio n of nuclear

  16. Traveling Wave Solutions of ZK-BBM Equation Sine-Cosine Method

    Directory of Open Access Journals (Sweden)

    Sadaf Bibi

    2014-03-01

    Full Text Available Travelling wave solutions are obtained by using a relatively new technique which is called sine-cosine method for ZK-BBM equations. Solution procedure and obtained results re-confirm the efficiency of the proposed scheme.

  17. Power nanosecond pulse shaping by means of RCD-generators with peaking circuits based on diode current breakers

    CERN Document Server

    Grekhov, I V; Korotkov, S V; Stepanyants, A L; Khristyuk, D V

    2002-01-01

    One considered the basic principles to design nanosecond region generators based on reverse-connected dynistos (RCD) with diode current breaker base output peaking circuits. Paper presents the results of experimental investigation in intense generator based on RCD, peaking pulsed transformer and high-voltage diode breaker from a set of series-connected drift diodes with abrupt reset. Generator at 1 kHz frequency commutates voltage pulses with approx 45 kV amplitude, approx 50 ns duration and approx 10 ns rise front to 25 ohm load

  18. Note: Compact high voltage pulse transformer made using a capacitor bank assembled in the shape of primary.

    Science.gov (United States)

    Shukla, Rohit; Banerjee, Partha; Sharma, Surender K; Das, Rashmita; Deb, Pankaj; Prabaharan, T; Das, Basanta; Adhikary, Biswajit; Verma, Rishi; Shyam, Anurag

    2011-10-01

    The experimental results of an air-core pulse transformer are presented, which is very compact (transformer. A high voltage capacitor assembly (pulse-forming-line capacitor, PFL) of 5.1 nF is connected with the secondary of transformer. The transformer output voltage is 160 kV in its second peak appearing in less than 2 μS from the beginning of the capacitor discharge. The primary capacitor bank can be charged up to a maximum of 18 kV, with the voltage delivery of 360 kV in similar capacitive loads.

  19. Complex source point theory of paraxial and nonparaxial cosine-Gauss and Bessel-Gauss beams.

    Science.gov (United States)

    Sheppard, Colin J R

    2013-02-15

    It shown how cosine-Gauss and Bessel-Gauss beams can be generated using the complex source point theory. Paraxial beams are treated first. An analytic expression is derived for the nonparaxial cosine-Gaussian beam, based on the complex source point approach, and numerical results are presented to illustrate its behavior. A way to generate nonparaxial Bessel-Gauss beams is also indicated.

  20. Pulse-shape discrimination of scintillation from alpha and beta particles with liquid scintillator and Geiger-mode multipixel avalanche diodes

    CERN Document Server

    Kreslo, I; Delaquis, S; Ereditato, A; Janos, S; Messina, M; Moser, U; Rossi, B; Zeller, M

    2011-01-01

    A successfull application of Geiger-mode multipixel avalanche diodes (GMAPDs) for pulse-shape discrimination in alpha-beta spectrometry using organic liquid scintillator is described in this paper. Efficient discrimination of alpha and beta components in the emission of radioactive isotopes is achieved for alpha energies above 0.3 MeV. The ultra-compact design of the scintillating detector helps to efficiently suppress cosmic-ray and ambient radiation background. This approach allows construction of hand-held robust devices for monitoring of radioactive contamination in various environmental conditions.

  1. Improvement in limit of detection in particle induced X-ray emission by means of rise time and pulse shape discrimination

    Science.gov (United States)

    Papp, Tibor; Lakatos, Tamás; Nejedly, Zdenek; Campbell, John L.

    2002-04-01

    A digital signal processor, based upon high-rate sampling of the preamplifier output, and equipped with rise time and pulse shape discrimination, has been tested in three situations. This processor provided significant improvement of particle induced X-ray emission and X-ray fluorescence detection limits over the state of the art analog processors, depending on the energy and intensity distribution of the X-ray spectra. Additionally it had a superior performance when measurements were performed in an environment of large electronic noise and in large nuclear background environment. It has also improved the reduction of several artifacts in X-ray spectra.

  2. Experimental demonstration of a FBG-based temporal optical pulse shaping scheme dual to spatial arrangements for its use in OCDMA systems

    Science.gov (United States)

    Tainta, Santiago; Amaya, Waldimar; García, Raimundo; Erro, María J.; Garde, María J.; Sales, Salvador; Muriel, Miguel A.

    2009-11-01

    We have demonstrated a reconfigurable time domain spectral phase encoding scheme for coherent optical code-divisionmultiple- access application. The proposed scheme is based on the concept of temporal pulse shaping dual to spatial arrangements. It uses Fiber Bragg Gratings as dispersive elements and electro-optic modulators. The data speed is 1.25 Gbps and the code is introduced at 10 Gcps, using a subset of the Hadamard codes with a length of 8 chips within a 0.7 nm optical window. The system is electrically reconfigurable and compatible with fiber systems and permits scalability in the size of the codes by modifying only the phase modulator velocity.

  3. Alpha-gamma pulse shape discrimination in CsI:Tl, CsI:Na and BaF sub 2 scintillators

    CERN Document Server

    Dinca, L E; Haas, J; Bom, V R; Eijk, C W E

    2002-01-01

    Some scintillating materials offer the possibility of measuring well separated alpha and gamma scintillation response using a single crystal. Eventually aiming at thermal neutron detection using sup 6 Li or sup 1 sup 0 B admixture, pulse shape discrimination measurements were made on three scintillators: CsI:Tl, CsI:Na and pure BaF sub 2 crystals. A very good alpha/gamma discrimination was obtained using sup 2 sup 2 Na, sup 2 sup 4 sup 1 Am (gamma) and sup 2 sup 4 sup 4 Cm (alpha) radioactive sources.

  4. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing.

    Science.gov (United States)

    Cordette, S; Vedadi, A; Shoaie, M A; Brès, C-S

    2014-12-01

    We propose and experimentally demonstrate an all-optical Nyquist sinc-shaped pulse train source based on intensity modulation and four-wave mixing. The proposed scheme allows for the tunability of the bandwidth and the full flexibility of the repetition rate in the limit of the electronic bandwidth of the modulators used through the flexible synthesis of rectangular frequency combs. Bandwidth up to 360 GHz at 40 GHz rate and up to 45 frequency lines at 5 GHz rate are demonstrated with 40 GHz modulators.

  5. Improvement in limit of detection in particle induced X-ray emission by means of rise time and pulse shape discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Papp, Tibor E-mail: tibpapp@netscape.nettibpapp@yahoo.ca; Lakatos, Tamas; Nejedly, Zdenek; Campbell, John L

    2002-04-01

    A digital signal processor, based upon high-rate sampling of the preamplifier output, and equipped with rise time and pulse shape discrimination, has been tested in three situations. This processor provided significant improvement of particle induced X-ray emission and X-ray fluorescence detection limits over the state of the art analog processors, depending on the energy and intensity distribution of the X-ray spectra. Additionally it had a superior performance when measurements were performed in an environment of large electronic noise and in large nuclear background environment. It has also improved the reduction of several artifacts in X-ray spectra.

  6. Performance verification and system integration tests of the pulse shape processor for the soft x-ray spectrometer onboard ASTRO-H

    Science.gov (United States)

    Takeda, Sawako; Tashiro, Makoto S.; Ishisaki, Yoshitaka; Tsujimoto, Masahiro; Seta, Hiromi; Shimoda, Yuya; Yamaguchi, Sunao; Uehara, Sho; Terada, Yukikatsu; Fujimoto, Ryuichi; Mitsuda, Kazuhisa

    2014-07-01

    The soft X-ray spectrometer (SXS) aboard ASTRO-H is equipped with dedicated digital signal processing units called pulse shape processors (PSPs). The X-ray microcalorimeter system SXS has 36 sensor pixels, which are operated at 50 mK to measure heat input of X-ray photons and realize an energy resolution of 7 eV FWHM in the range 0.3-12.0 keV. Front-end signal processing electronics are used to filter and amplify the electrical pulse output from the sensor and for analog-to-digital conversion. The digitized pulses from the 36 pixels are multiplexed and are sent to the PSP over low-voltage differential signaling lines. Each of two identical PSP units consists of an FPGA board, which assists the hardware logic, and two CPU boards, which assist the onboard software. The FPGA board triggers at every pixel event and stores the triggering information as a pulse waveform in the installed memory. The CPU boards read the event data to evaluate pulse heights by an optimal filtering algorithm. The evaluated X-ray photon data (including the pixel ID, energy, and arrival time information) are transferred to the satellite data recorder along with event quality information. The PSP units have been developed and tested with the engineering model (EM) and the flight model. Utilizing the EM PSP, we successfully verified the entire hardware system and the basic software design of the PSPs, including their communication capability and signal processing performance. In this paper, we show the key metrics of the EM test, such as accuracy and synchronicity of sampling clocks, event grading capability, and resultant energy resolution.

  7. Laser pulse shaping for optimal control of multiphoton dissociation in a diatomic molecule using genetic algorithm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sitansh, E-mail: sitansh@research.iiit.ac.in [Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032 (India); Singh, Harjinder, E-mail: harjinder.singh@iiit.ac.in [Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032 (India)

    2011-11-18

    Graphical abstract: Application of genetic algorithm optimization to control dissociation process in the ground electronic state of HF molecule is demonstrated. Highlights: Black-Right-Pointing-Pointer Genetic algorithm optimization for the design of laser pulses. Black-Right-Pointing-Pointer Control of dissociation process in the ground electronic state of HF molecule. Black-Right-Pointing-Pointer Two types of pulses, one with fixed frequency components and the other having non-deterministic components. Black-Right-Pointing-Pointer Optimized laser fields possess simple time and frequency structures. - Abstract: We have applied genetic algorithm optimization for the design of laser pulses to control dissociation process in the ground electronic state of HF molecule, within the mathematical framework of optimal control theory. In order to design the experimentally feasible laser fields, we coded the small set of selected field parameters in the GA parameter space. Two types of pulses, one with fixed frequency components and the other having non-deterministic components have been designed. Optimized laser field obtained using this approach, possesses simple time and frequency structures. We show that the fields having non-deterministic frequency components lead to greater dissociation probability compared to the ones having deterministic frequency components.

  8. Pulse width shaping of passively mode-locked soliton fiber laser via polarization control in carbon nanotube saturable absorber.

    Science.gov (United States)

    Jeong, Hwanseong; Choi, Sun Young; Rotermund, Fabian; Yeom, Dong-Il

    2013-11-04

    We report the continuous control of the pulse width of a passively mode-locked fiber laser via polarization state adjustment in a single-walled carbon nanotube saturable absorber (SWCNT-SA). The SWCNT, coated on the side-polished fiber, was fabricated with optimized conditions and used for stable mode-locking of the fiber laser without Q-switching instabilities for any polarization state of the laser intra-cavity. The 3-dB spectral bandwidth of the mode-locked pulses can be continuously tuned from 1.8 nm to 8.5 nm with the polarization control for a given laser cavity length and applied pump power. A pulse duration varying from 470 fs to 1.6 ps was also observed with a change in the spectral bandwidth. The linear and the nonlinear transmission properties of the SA were analyzed, and found to exhibit different modulation depths depending on the input polarization state in the SA. The largest modulation depth of the SA was observed at the polarization state of the transverse electric mode that delivers shortest pulses at the laser output.

  9. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    CERN Document Server

    Boulay, M G; Chen, M; Golovko, V V; Harvey, P; Mathew, R; Lidgard, J J; McDonald, A B; Pasuthip, P; Pollman, T; Skensved, P; Graham, K; Hallin, A L; McKinsey, D N; Lippincott, W H; Nikkel, J; Jillings, C J; Duncan, F; Cleveland, B; Lawson, I

    2009-01-01

    The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are mis-identified as nuclear recoils to be less than 6x10^{-8} between 43-86 keVee and that the discrimination parameter agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta mis-identification fraction of 10^{-10} for an electron-equivalent energy threshold of 20 keVee. This reduction allows for a sensitive search ...

  10. Energy-Dependent Scintillation Pulse Shape and Proportionality of Decay Components for CsI:Tl: Modeling with Transport and Rate Equations

    Science.gov (United States)

    Lu, X.; Gridin, S.; Williams, R. T.; Mayhugh, M. R.; Gektin, A.; Syntfeld-Kazuch, A.; Swiderski, L.; Moszynski, M.

    2017-01-01

    Relatively recent experiments on the scintillation response of CsI:Tl have found that there are three main decay times of about 730 ns, 3 μ s , and 16 μ s , i.e., one more principal decay component than had been previously reported; that the pulse shape depends on gamma-ray energy; and that the proportionality curves of each decay component are different, with the energy-dependent light yield of the 16 -μ s component appearing to be anticorrelated with that of the 0.73 -μ s component at room temperature. These observations can be explained by the described model of carrier transport and recombination in a particle track. This model takes into account processes of hot and thermalized carrier diffusion, electric-field transport, trapping, nonlinear quenching, and radiative recombination. With one parameter set, the model reproduces multiple observables of CsI:Tl scintillation response, including the pulse shape with rise and three decay components, its energy dependence, the approximate proportionality, and the main trends in proportionality of different decay components. The model offers insights on the spatial and temporal distributions of carriers and their reactions in the track.

  11. Comparison of charged particle identification using pulse shape discrimination and ΔE−E methods between front and rear side injection in silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Le Neindre, N., E-mail: leneindre@lpccaen.in2p3.fr [LPC, IN2P3-CNRS, ENSICAEN et Université de Caen, F-14050 Caen Cedex (France); Bougault, R. [LPC, IN2P3-CNRS, ENSICAEN et Université de Caen, F-14050 Caen Cedex (France); Barlini, S. [INFN e Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Firenze) (Italy); Bonnet, E. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen Cedex (France); Borderie, B. [Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex (France); Casini, G. [INFN sezione di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Firenze) (Italy); Chbihi, A. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen Cedex (France); Edelbruck, P. [Institut de Physique Nucléaire, CNRS/IN2P3, Université Paris-Sud 11, F-91406 Orsay Cedex (France); Frankland, J.D.; Gruyer, D. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen Cedex (France); Legouée, E.; Lopez, O. [LPC, IN2P3-CNRS, ENSICAEN et Université de Caen, F-14050 Caen Cedex (France); Marini, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 5027, F-14076 Caen Cedex (France); Pârlog, M. [LPC, IN2P3-CNRS, ENSICAEN et Université de Caen, F-14050 Caen Cedex (France); Horia Hulubei, National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest-Măgurele (Romania); Pasquali, G. [INFN e Università di Firenze, via G.Sansone 1, 50019 Sesto Fiorentino (Firenze) (Italy); Petcu, M. [Horia Hulubei, National Institute of Physics and Nuclear Engineering, RO-077125 Bucharest-Măgurele (Romania); and others

    2013-02-11

    The response of silicon–silicon–CsI(Tl) telescopes, developed within the FAZIA collaboration, to fragments produced in nuclear reactions {sup 84}Kr+{sup 120-124}Sn at 35 A MeV, has been used to study ion identification methods. Two techniques are considered for the identification of the nuclear products in the silicon stages. The standard ΔE−E one requires signals induced in two detection layers by ions punching through the first one. Conversely, the digital Pulse Shape Analysis (PSA) allows the identification of ions stopped in the first silicon layer. The capabilities of these two identification methods have been compared for different mountings of the silicons, i.e. rear (particles entering through the low electric field side) or front (particles entering through the high electric field side) side injection. The ΔE−E identification method gives exactly the same results in both configurations. At variance, the pulse shape discrimination is very sensitive to the detector mounting. In case of rear side injection, the identification with the “energy vs. charge rise time” PSA method presents energy thresholds which are significantly lower than in the case of front side injection.

  12. Comparison of charged particle identification using pulse shape discrimination and ΔE-E methods between front and rear side injection in silicon detectors

    Science.gov (United States)

    Le Neindre, N.; Bougault, R.; Barlini, S.; Bonnet, E.; Borderie, B.; Casini, G.; Chbihi, A.; Edelbruck, P.; Frankland, J. D.; Gruyer, D.; Legouée, E.; Lopez, O.; Marini, P.; Pârlog, M.; Pasquali, G.; Petcu, M.; Rivet, M. F.; Salomon, F.; Vient, E.; Alba, R.; Baiocco, G.; Bardelli, L.; Bini, M.; Borcea, R.; Bruno, M.; Carboni, S.; Cinausero, M.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; GaŞior, K.; Gramegna, F.; Grzeszczuk, A.; Kamuda, M.; Kozik, T.; Kravchuk, V.; Lombardo, I.; Maiolino, C.; Marchi, T.; Morelli, L.; Negoita, F.; Olmi, A.; Petrascu, H.; Piantelli, S.; Poggi, G.; Rosato, E.; Santonocito, D.; Spadaccini, G.; Stefanini, A. A.; Twaróg, T.; Vigilante, M.; Fazia Collaboration

    2013-02-01

    The response of silicon-silicon-CsI(Tl) telescopes, developed within the FAZIA collaboration, to fragments produced in nuclear reactions 84Kr+120-124Sn at 35 A MeV, has been used to study ion identification methods. Two techniques are considered for the identification of the nuclear products in the silicon stages. The standard ΔE-E one requires signals induced in two detection layers by ions punching through the first one. Conversely, the digital Pulse Shape Analysis (PSA) allows the identification of ions stopped in the first silicon layer. The capabilities of these two identification methods have been compared for different mountings of the silicons, i.e. rear (particles entering through the low electric field side) or front (particles entering through the high electric field side) side injection. The ΔE-E identification method gives exactly the same results in both configurations. At variance, the pulse shape discrimination is very sensitive to the detector mounting. In case of rear side injection, the identification with the “energy vs. charge rise time” PSA method presents energy thresholds which are significantly lower than in the case of front side injection.

  13. LaBr{sub 3}(Ce):LaCl{sub 3}(Ce) Phoswich with pulse shape analysis for high energy gamma-ray and proton identification

    Energy Technology Data Exchange (ETDEWEB)

    Tengblad, O., E-mail: olof.tengblad@csic.es [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Nilsson, T. [Department of Fundamental Physics, Chalmers University of Technology, S-41296 Göteborg (Sweden); Nácher, E. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Johansson, H.T. [Department of Fundamental Physics, Chalmers University of Technology, S-41296 Göteborg (Sweden); Briz, J.A.; Carmona-Gallardo, M.; Cruz, C.; Gugliermina, V.; Perea, A.; Sanchez del Rio, J.; Turrión Nieves, M. [Instituto de Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Bergström, J.; Blomberg, E.; Bülling, A.; Gallneby, E.; Hagdahl, J.; Jansson, L.; Jareteg, K.; Masgren, R.; Nordström, M. [Department of Fundamental Physics, Chalmers University of Technology, S-41296 Göteborg (Sweden); and others

    2013-03-11

    A novel Phoswich design based on new generation scintillator crystals is presented. The detector composed from a combination of a LaBr{sub 3}(Ce) with a LaCl{sub 3}(Ce) crystal in one cylinder coupled to a photo multiplier tube has been tested both for incident gamma rays in the range of 0.3–6 MeV, as well as for high energy protons in the range 120–180 MeV. The Phoswich assembly has not significantly deteriorated the energy resolution, which for 662 KeV gamma rays gives a resolution of 4.5%, while for high energy protons (E{sub p}=180 MeV) an energy resolution of 1% was obtained. It is shown that the signals from the two crystals can be separated in an event by event based mode. Using direct digitizing of the detector pulse an off-line pulse-shape analysis was performed built either on a total to tail or total to pulse height method in order to fully identify the incoming radiation. Our aim with this R and D is to in the future build a detector which is able to detect with good efficiency and resolution over a wide energy range; 0.1–30 MeV gamma rays and 20–400 MeV protons. Monte Carlo simulations made in order to design the next prototype are presented.

  14. Regular Discrete Cosine Transform and its Application to Digital Images Representation

    Directory of Open Access Journals (Sweden)

    Yuri A. Gadzhiev

    2011-06-01

    Full Text Available Discrete cosine transform DCT-I, unlike DCT-II, does not concentrate the energy of a transformed vector sufficiently well, so it is not used practically for the purposes of digital image compression. By performing regular normalization of the basic cosine transform matrix, we obtain a discrete cosine transform which has the same cosine basis as DCT-I, coincides as DCT-I with its own inverse transform, but unlike DCT-I, it does not reduce the proper ability of cosine transform to the energy concentration. In this paper we consider briefly the properties of this transform, its possible integer implementation for the case of 8x8-matrix, its applications to the image itself and to the preliminary rgb colour space transformations, furthermore we investigate some models of quantization, perform an experiment for the estimation of the level of digital images compression and the quality achieved by use of this transform. This experiment shows that the transform can be sufficiently effective for practical use, but the question of its comparative effectiveness with respect to DCT-II remains open.

  15. Pulsed laser ablation of wire-shaped target in a thin water jet: effects of plasma features and bubble dynamics on the PLAL process

    Science.gov (United States)

    Dell'Aglio, Marcella; De Giacomo, Alessandro; Kohsakowski, Sebastian; Barcikowski, Stephan; Wagener, Philipp; Santagata, Antonio

    2017-05-01

    In this paper, emission spectroscopy and fast imaging surveys during pulsed laser ablation in liquid (PLAL) for nanoparticles (NPs) production have been used, in order to provide further details about the process involved and the potentialities offered by a wire-shaped sample ablated in a flowing water jet. This kind of set-up has been explored because the laser ablation efficiency in water increases when a thin water layer and a wire-shaped target are used. In order to understand the physical processes causing the increasing ablation efficiency, both the laser-induced plasma and bubble dynamics generated in a flowing liquid jet have been analysed. The plasma parameters and the bubble behaviour in such a system have been compared with those observed in conventional PLAL experiments, where either a bulk or a wire-shaped target is immersed in bulk water. From the data presented here it is evidenced that the plasma and shockwave induced during the breakdown process can play a direct role in the ablation efficiency variation observed. With regard to the cavitation bubbles evolving near a free surface (the interface between water and air) it should be noted that these have to be treated with caution as a consequence of the strong influence played in these circumstances by the boundary of the water jet during its expansion dynamics. The effects due to the size of the liquid layer, the presence of the water/air interface, the liquid characteristics, the target shape, the plasma evolution and the bubble dynamics together with their outcomes on the NPs’ production, are presented and discussed.

  16. Phase retrieval based on cosine grating modulation and transport of intensity equation

    Science.gov (United States)

    Chen, Ya-ping; Zhang, Quan-bing; Cheng, Hong; Qian, Yi; Lv, Qian-qian

    2016-10-01

    In order to calculate the lost phase from the intensity information effectively, a new method of phase retrieval which based on cosine grating modulation and transport of intensity equation is proposed. Firstly, the cosine grating is loaded on the spatial light modulator in the horizontal and vertical direction respectively, and the corresponding amplitude of the light field is modulated. Then the phase is calculated by its gradient which is extracted from different direction modulation light illumination. The capability of phase recovery of the proposed method in the presence of noise is tested by simulation experiments. And the results show that the proposed algorithm has a better resilience than the traditional Fourier transform algorithm at low frequency noise. Furthermore, the phase object of different scales can be retrieved using the proposed algorithm effectively by changing the frequency of cosine grating, which can control the imaging motion expediently.

  17. Novel Iris Biometric Watermarking Based on Singular Value Decomposition and Discrete Cosine Transform

    Directory of Open Access Journals (Sweden)

    Jinyu Lu

    2014-01-01

    Full Text Available A novel iris biometric watermarking scheme is proposed focusing on iris recognition instead of the traditional watermark for increasing the security of the digital products. The preprocess of iris image is to be done firstly, which generates the iris biometric template from person's eye images. And then the templates are to be on discrete cosine transform; the value of the discrete cosine is encoded to BCH error control coding. The host image is divided into four areas equally correspondingly. The BCH codes are embedded in the singular values of each host image's coefficients which are obtained through discrete cosine transform (DCT. Numerical results reveal that proposed method can extract the watermark effectively and illustrate its security and robustness.

  18. α-times Integrated Regularized Cosine Functions and Second Order Abstract Cauchy Problens

    Institute of Scientific and Technical Information of China (English)

    张寄洲; 陶有山

    2001-01-01

    In this paper, α -times integrated C-regularized cosine functions and mild α-times integrated C-existence families of second order are introduced. Equivalences are proved among α -times integrated C-regularized cosine function for a linear operator A, C-wellposed of (α + 1)-times abstract Cauchy problem and mild α -times integrated C-existence family of second order for A when the commutable condition is satisfied. In addition, if A = C-1AC, they are also equivalent to A generating the α -times integrated C-regularized cosine finction.The characterization of an exponentially botnded mild α -times integrated C-existence family of second order is given out in terms of a Laplace transform.

  19. Cross-correlation function based multipath mitigation technique for cosine-BOC signals

    Institute of Scientific and Technical Information of China (English)

    Huihua Chen; Weimin Jia; Minli Yao

    2013-01-01

    We propose a new multipath mitigation technique based on cross-correlation function for the new cosine phased binary off-set carrier (cosine-BOC) modulated signals, which wil most likely be employed in both European Galileo system and Chinese Com-pass system. This technique is implemented to create an optimum cross-correlation function via designing the modulated symbols of the local signal. And the structure of the code tracking loop for cosine-BOC signals is quite simple including only two real correla-tors. Results demonstrate that the technique efficiently eliminates the ranging errors in the medium and long multipath regions with respect to the conventional receiver correlation techniques.

  20. Use Of Pulsed IR Thermography For Determination Of Size And Depth Of Subsurface Defect Taking Into Account The Shape Of Its Cross-Section Area

    Directory of Open Access Journals (Sweden)

    Wysocka-Fotek O.

    2015-06-01

    Full Text Available The paper is devoted to reconstruction of size and depth (distance from the tested surface of artificial defects with square and rectangular cross-section areas using the pulsed IR thermography. Defects in form of flat-bottom holes were made in austenitic steel plate. The defect size was estimated on the basis of surface distribution of the time derivative of the temperature. In order to asses the depth of defects with considered geometries on the basis of calibration relations (i.e. dependence of time of contrast maximum vs. defect depth for given defect diameter obtained for circular defects, the ‘equivalent diameter’ describing not only the defect cross-section area but also its shape was assigned. It has been shown that presented approach gives satisfactory results.

  1. Coupling electromagnetic pulse-shaped waves into wire-like interconnection structures with a non-linear protection – Time domain calculations by the PEEC method

    Directory of Open Access Journals (Sweden)

    G. Wollenberg

    2004-01-01

    Full Text Available An interconnection system whose loads protected by a voltage suppressor and a low-pass filter against overvoltages caused by coupling pulse-shaped electromagnetic waves is analyzed. The external wave influencing the system is assumed as a plane wave with HPM form. The computation is provided by a full-wave PEEC model for the interconnection structure incorporated in the SPICE code. Thus, nonlinear elements of the protection circuit can be included in the calculation. The analysis shows intermodulation distortions and penetrations of low frequency interferences caused by intermodulations through the protection circuits. The example examined shows the necessity of using full-wave models for interconnections together with non-linear circuit solvers for simulation of noise immunity in systems protected by nonlinear devices.

  2. Transmission and full-band coherent detection of polarization-multiplexed all-optical Nyquist signals generated by Sinc-shaped Nyquist pulses.

    Science.gov (United States)

    Zhang, Junwen; Yu, Jianjun; Chi, Nan

    2015-09-01

    All optical method is considered as a promising technique for high symbol rate Nyquist signal generation, which has attracted a lot of research interests for high spectral-efficiency and high-capacity optical communication system. In this paper, we extend our previous work and report the fully experimental demonstration of polarization-division multiplexed (PDM) all-optical Nyquist signal generation based on Sinc-shaped Nyquist pulse with advanced modulation formats, fiber-transmission and single-receiver full-band coherent detection. Using this scheme, we have successfully demonstrated the generation, fiber transmission and single-receiver full-band coherent detection of all-optical Nyquist PDM-QPSK and PDM-16QAM signals up to 125-GBaud. 1-Tb/s single-carrier PDM-16QAM signal generation and full-band coherent detection is realized, which shows the advantage and feasibility of the single-carrier all-optical Nyquist signals.

  3. Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation.

    Science.gov (United States)

    Li, Zhe; Erkılınç, M Sezer; Pachnicke, Stephan; Griesser, Helmut; Bouziane, Rachid; Thomsen, Benn C; Bayvel, Polina; Killey, Robert I

    2015-09-01

    An experimental demonstration of direct-detection single-sideband Nyquist-pulse-shaped 16-QAM subcarrier modulated (Nyquist-SCM) transmission implementing a receiver-based signal-signal beat interference (SSBI) cancellation technique is described. The performance improvement with SSBI mitigation, which compensates for the nonlinear distortion caused by square-law detection, was quantified by simulations and experiments for a 7 × 25 Gb/s WDM Nyquist-SCM signal with a net optical information spectral density (ISD) of 2.0 (b/s)/Hz. A reduction of 3.6 dB in the back-to-back required OSNR at the HD-FEC threshold was achieved. The resulting reductions in BER in single channel and WDM transmission over distances of up to 800 km of uncompensated standard single-mode fiber (SSMF) achieved are presented.

  4. Fermi Study of gamma-ray Millisecond Pulsars: the Spectral Shape and Pulsed 25--200 GeV Emission from J0614-3329

    CERN Document Server

    Xing, Yi

    2016-01-01

    We report our analysis of the Fermi Large Area Telescope data for 39 millisecond pulsars (MSPs) listed in the second $\\gamma$-ray pulsar catalog. Spectra of the pulsars are obtained. We fit the spectra with a function of a power law with exponential cutoff, and find the best-fit parameters of photon index $\\Gamma = 1.54^{+0.10}_{-0.11}$ and cutoff energy $E_{c} = 3.70^{+0.95}_{-0.70}$ GeV. This spectral shape, which includes the intrinsic differences in the spectra of the MSPs, can be used for finding candidate MSPs and unidentified types of sources detected by Fermi at high Galactic latitudes. In one of the MSPs PSR J0614-3329, we find significant pulsed emission upto 200 GeV. The result has thus added this MSP to the group of the Crab and Vela pulsars that have been detected with >50 GeV pulsed emission. Comparing the $\\gamma$-ray spectrum of PSR J0614-3329 with those of the Crab and Vela pulsars, we discuss possible emission mechanisms for the very high-energy component.

  5. Flow past superhydrophobic surfaces with cosine variation in local slip length

    CERN Document Server

    Asmolov, Evgeny S; Harting, Jens; Vinogradova, Olga I

    2012-01-01

    Anisotropic super-hydrophobic surfaces have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused mostly on cases of super-hydrophobic stripes. Here, we analyze a relevant situation of cosine variation of the local slip length. We derive approximate formulae for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in good agreement with the exact numerical solution and lattice-Bolzmann simulations for any surface slip fraction. The cosine texture can provide a very large effective (forward) slip, but it was found to be less efficient in generating a transverse flow as compared to super-hydrophobic stripes.

  6. Discovering Trigonometric Relationships Implied by the Law of Sines and the Law of Cosines

    Science.gov (United States)

    Skurnick, Ronald; Javadi, Mohammad

    2006-01-01

    The Law of Sines and The Law of Cosines are of paramount importance in the field of trigonometry because these two theorems establish relationships satisfied by the three sides and the three angles of any triangle. In this article, the authors use these two laws to discover a host of other trigonometric relationships that exist within any…

  7. The relation between Pearson’s correlation coefficient r and Salton’s cosine measure

    NARCIS (Netherlands)

    Egghe, L.; Leydesdorff, L.

    2009-01-01

    The relation between Pearson's correlation coefficient and Salton's cosine measure is revealed based on the different possible values of the division of the L1-norm and the L2-norm of a vector. These different values yield a sheaf of increasingly straight lines which together form a cloud of points,

  8. The relation between Pearson’s correlation coefficient r and Salton’s cosine measure

    NARCIS (Netherlands)

    Egghe, L.; Leydesdorff, L.

    2009-01-01

    The relation between Pearson's correlation coefficient and Salton's cosine measure is revealed based on the different possible values of the division of the L1-norm and the L2-norm of a vector. These different values yield a sheaf of increasingly straight lines which together form a cloud of points,

  9. Local discrete cosine transformation domain Volterra prediction of chaotic time series

    Institute of Scientific and Technical Information of China (English)

    张家树; 李恒超; 肖先赐

    2005-01-01

    In this paper a local discrete cosine transformation (DCT) domain Volterra prediction method is proposed to predict chaotic time series, where the DCT is used to lessen the complexity of solving the coefficient matrix. Numerical simulation results show that the proposed prediction method can effectively predict chaotic time series and improve the prediction accuracy compared with the traditional local linear prediction methods.

  10. Search for the neutrinoless double β-decay in GERDA phase I using a pulse shape discrimination technique

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Andrea

    2014-07-09

    The Germanium Detector Array (Gerda) experiment, located underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, deploys high-purity germanium detectors to search for the neutrinoless double β-decay (0νββ) of {sup 76}Ge. An observation of this lepton number violating process, which is expected by many extensions of the Standard Model, would not only generate a fundamental shift in our understanding of particle physics, but also unambiguously prove the neutrino to have a non-vanishing Majorana mass component. A first phase of data recording lasted from November 2011 to May 2013 - resulting in a total exposure (defined as the product of detector mass and measurement time) of 21.6 kg.yr. Within this thesis a thorough study of this data with special emphasis on the development and scrutiny of an active background suppression technique by means of a signal shape analysis has been performed. Among several investigated multivariate approaches, particularly a selection algorithm based on an artificial neural network is found to yield the best performance; i.a. the background index close to the Q-value of the 0νββ-decay could be suppressed by 45% to 1.10{sup -2} cts/(keV.kg.yr), while still retaining a considerably high signal survival fraction of (83±3)% leading to a significant improvement of the experimental sensitivity. The efficiency is derived by a simulation and further validated by substantiated consistency checks availing themselves of measurements taken with different calibration sources and physics data. No signal is observed and a new lower limit of T{sup 0ν}{sub 1/2} (90%C.L.)> 2.2. 10{sup 25} yr for the half-life of neutrinoless double β-decay of {sup 76}Ge is established.

  11. Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping

    Science.gov (United States)

    d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A. S.

    2013-09-01

    SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic

  12. Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping

    Energy Technology Data Exchange (ETDEWEB)

    D' Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A. [CEA, DAM, GRAMAT, F-46500 Gramat (France); Maysonnave, T. [International Technologies for High Pulsed Power, F-46500 Thégra (France); Chuvatin, A. S. [Laboratoire de Physique des Plasmas, Ecole Polytechnique, F-91128 Palaiseau (France)

    2013-09-15

    SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or

  13. Propagation properties of cosine-Gaussian beam through a left-handed material slab%余弦高斯光束通过左手平板材料的传输特性

    Institute of Scientific and Technical Information of China (English)

    包建勤; 张廷蓉; 霍雅洁

    2013-01-01

    Under paraxial approximation,using generalized Huygens-Fresnel diffraction integral,the propagation expressions of cosine-Gaussian beam through the left-handed material slab are got,and the influence of propagation properties of cosine-Gaussian beam due to the negative refractive index of left-handed material slab and the modulation parameter of cosine-Gaussian beam is studied.The results of the study show that:whether in the left-handed materials slab or image space,the location of the axial maximum light intensity is the position where cosine-Gaussian beam is focused,and the negative refractive index of the left-handed material slab will change the position of the cosine-Gaussian beam focusing.The negative refractive index will change the shape of the axial light intensity distribution in the internal of the lefthanded material slab,but it won't change the shape of the axial light intensity distribution in image space.Whether in the internal of slab or image space,the modulation parameters of cosine-Gaussian beam can influence the axial and transverse light intensities.%在傍轴近似下,利用广义惠更斯-菲涅尔衍射积分公式得到了余弦高斯光束通过左手平板材料的传输公式,研究了左手平板材料的负折射率与余弦高斯光束的调制参数对光束传输特性的影响.结果表明:余弦高斯光束无论在左手平板材料内部传输还是在像空间传输,轴上的最大光强位置是光束聚焦的位置,左手平板材料的负折射率会改变光束聚焦的位置;在介质内部,平板材料的负折射率会改变轴上光强分布的形状,但不会改变像空间轴上的光强分布形状;无论是在平板材料内部还是像空间,余弦高斯光束的调制参数对轴上与横向光强都会产生影响.

  14. Pulse shape discrimination properties of Gd3Ga3Al2O12:Ce,B single crystal in comparison with CsI:Tl

    Science.gov (United States)

    Rawat, S.; Tyagi, Mohit; Netrakanti, P. K.; Kashyap, V. K. S.; Mitra, A.; Singh, A. K.; Desai, D. G.; Kumar, G. Anil; Gadkari, S. C.

    2016-12-01

    Single crystals of Gd3Ga3Al2O12:Ce,B and CsI:Tl were grown by Czochralski and Bridgman techniques, respectively. While both the crystals exhibited similar emission at about 550 nm, their scintillation decay times showed significantly different characteristics. The average scintillation decay time of Gd3Ga3Al2O12:Ce,B crystal was found to be about 284 ns for alpha excitation compared to 108 ns measured for a gamma source. On the other hand in CsI:Tl crystals, the alpha excitation resulted in a lower average decay time of 600 ns compared to 1200 ns with gamma excitation. Their pulse shape discrimination (PSD) for gamma and alpha radiations were studied by coupling the scintillators with photomultiplier tube or SiPM and employing an advanced digitizer as well as a conventional zero-crossing setup. In spite of having a poor α/γ light yield ratio, the PSD figure of merit and the difference of zero-crossing time in Gd3Ga3Al2O12:Ce,B crystals were found to be superior in comparison to CsI:Tl crystals.

  15. Four-quadrant spatial phase-shifting Fourier transform digital holography for recording of cosine transform coefficients

    Institute of Scientific and Technical Information of China (English)

    Chujun Zheng; Peng Han; Hongsen Chang

    2006-01-01

    @@ A new one-step four-quadrant spatial phase-shifting Fourier transform digital holography is presented for recording of cosine transform coefficients, because cosine transform is a real-even symmetric Fourier transform. This approach implements four quadrant spatial phase shifting at a time using a special phase mask, which is located in the reference arm, and the phase distributions of its four-quadrants are 0, π/2, π,and 3π/2 respectively. The theoretical analysis and computer simulation results show that cosine transform coefficients of real-valued image can be calculated by capturing single four-quadrant spatial phase-shifting Fourier transform digital hologram.

  16. Medical Image Watermarking in Sub-block Three-dimensional Discrete Cosine Transform Domain

    Directory of Open Access Journals (Sweden)

    Baoru Han

    2016-03-01

    Full Text Available Digital watermarking can be applied to protection of medical images privacy, hiding of patient's diagnosis information and so on. In order to improve the ability of resisting geometric attacks, a new watermarking algorithm for medical volume data in sub-block three-dimensional discrete cosine transform domain is presented. The original watermarking image is scrambled by a Chebyshev chaotic neural network so as to improve watermarking security. Sub-block three-dimensional discrete cosine transform and perceptual hashing are used to construct zero-watermarking. In this way it does not produce medical image distortion and gives the algorithm the ability to resist geometric attacks. Experimental results show that the algorithm has good security, and it has good robustness to various geometric attacks.

  17. Efficient Implementation of Complex Modulated Filter Banks Using Cosine and Sine Modulated Filter Banks

    Directory of Open Access Journals (Sweden)

    Viholainen Ari

    2006-01-01

    Full Text Available The recently introduced exponentially modulated filter bank (EMFB is a -channel uniform, orthogonal, critically sampled, and frequency-selective complex modulated filter bank that satisfies the perfect reconstruction (PR property if the prototype filter of an -channel PR cosine modulated filter bank (CMFB is used. The purpose of this paper is to present various implementation structures for the EMFBs in a unified framework. The key idea is to use cosine and sine modulated filter banks as building blocks and, therefore, polyphase, lattice, and extended lapped transform (ELT type of implementation solutions are studied. The ELT-based EMFBs are observed to be very competitive with the existing modified discrete Fourier transform filter banks (MDFT-FBs when comparing the number of multiplications/additions and the structural simplicity. In addition, EMFB provides an alternative channel stacking arrangement that could be more natural in certain subband processing applications and data transmission systems.

  18. Correspondence between geometrical and differential definitions of the sine and cosine functions and connection with kinematics

    CERN Document Server

    Petrache, Horia I

    2011-01-01

    In classical physics, the familiar sine and cosine functions appear in two forms: (1) geometrical, in the treatment of vectors such as forces and velocities, and (2) differential, as solutions of oscillation and wave equations. These two forms correspond to two different definitions of trigonometric functions, one geometrical using right triangles and unit circles, and the other employing differential equations. Although the two definitions must be equivalent, this equivalence is not demonstrated in textbooks. In this manuscript, the equivalence between the geometrical and the differential definition is presented assuming no a priori knowledge of the properties of sine and cosine functions. We start with the usual length projections on the unit circle and use elementary geometry and elementary calculus to arrive to harmonic differential equations. This more general and abstract treatment not only reveals the equivalence of the two definitions but also provides an instructive perspective on circular and harmon...

  19. AREA EFFICIENT DISTRIBUTED ARITHMETIC DISCRETE COSINE TRANSFORM USING MODIFIED WALLACE TREE MULTIPLIER

    Directory of Open Access Journals (Sweden)

    R. P. Meenaakshi Sundari

    2014-01-01

    Full Text Available In this study by using the modified Wallace tree multiplier, an error compensated adder tree is constructed in order to round off truncation errors and to obtain high through put discrete cosine transform design. Peak Signal to Noise Ratio (PSNR is met efficiently since modified Wallace Tree method is an efficient, hardware implementable digital circuit that multiplies two integers resulting an output with reduced delays and errors. Nearly 6% of delays and around 1% of gate counts are reduced. The number of look up tables consumed is 2% lesser than that of the previous multipliers. Thus an area efficient discrete cosine transform is built to achieve high throughput with minimum gate counts and delays for the required Peak Signal to Noise Ratio when compared to the existing DCT’s.

  20. A novel adaptive discrete cosine transform-domain filter for gap-inpainting of high resolution PET scanners.

    Science.gov (United States)

    Shih, Cheng-Ting; Wu, Jay; Lin, Hsin-Hon; Chang, Shu-Jun; Chuang, Keh-Shih

    2014-08-01

    Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images.

  1. Modeling contact angle hysteresis of a liquid droplet sitting on a cosine wave-like pattern surface.

    Science.gov (United States)

    Promraksa, Arwut; Chen, Li-Jen

    2012-10-15

    A liquid droplet sitting on a hydrophobic surface with a cosine wave-like square-array pattern in the Wenzel state is simulated by using the Surface Evolver to determine the contact angle. For a fixed drop volume, multiple metastable states are obtained at two different surface roughnesses. Unusual and non-circular shape of the three-phase contact line of a liquid droplet sitting on the model surface is observed due to corrugation and distortion of the contact line by structure of the roughness. The contact angle varies along the contact line for each metastable state. The maximum and minimum contact angles among the multiple metastable states at a fixed viewing angle correspond to the advancing and the receding contact angles, respectively. It is interesting to observe that the advancing/receding contact angles (and contact angle hysteresis) are a function of viewing angle. In addition, the receding (or advancing) contact angles at different viewing angles are determined at different metastable states. The contact angle of minimum energy among the multiple metastable states is defined as the most stable (equilibrium) contact angle. The Wenzel model is not able to describe the contact angle along the three-phase contact line. The contact angle hysteresis at different drop volumes is determined. The number of the metastable states increases with increasing drop volume. Drop volume effect on the contact angles is also discussed.

  2. A novel adaptive discrete cosine transform-domain filter for gap-inpainting of high resolution PET scanners

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Cheng-Ting; Lin, Hsin-Hon; Chuang, Keh-Shih [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, Jay, E-mail: jwu@mail.cmu.edu.tw [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan (China); Chang, Shu-Jun [Health Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China)

    2014-08-15

    Purpose: Several positron emission tomography (PET) scanners with special detector block arrangements have been developed in recent years to improve the resolution of PET images. However, the discontinuous detector blocks cause gaps in the sinogram. This study proposes an adaptive discrete cosine transform-based (aDCT) filter for gap-inpainting. Methods: The gap-corrupted sinogram was morphologically closed and subsequently converted to the DCT domain. A certain number of the largest coefficients in the DCT spectrum were identified to determine the low-frequency preservation region. The weighting factors for the remaining coefficients were determined by an exponential weighting function. The aDCT filter was constructed and applied to two digital phantoms and a simulated phantom introduced with various levels of noise. Results: For the Shepp-Logan head phantom, the aDCT filter filled the gaps effectively. For the Jaszczak phantom, no secondary artifacts were induced after aDCT filtering. The percent mean square error and mean structure similarity of the aDCT filter were superior to those of the DCT2 filter at all noise levels. For the simulated striatal dopamine innervation study, the aDCT filter recovered the shape of the striatum and restored the striatum to reference activity ratios to the ideal value. Conclusions: The proposed aDCT filter can recover the missing gap data in the sinogram and improve the image quality and quantitative accuracy of PET images.

  3. UNIFORM ANALYTIC CONSTRUCTION OF WAVELET ANALYSIS FILTERS BASED ON SINE AND COSINE TRIGONOMETRIC FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    李建平; 唐远炎; 严中洪; 张万萍

    2001-01-01

    Based on sine and cosine functions, the compactly supported orthogonal wavelet filter coefficients with arbitrary length are constructed for the first time. When/N = 2k- 1 and N = 2k , the unified analytic constructions of orthogonal wavelet filters are put forward,respectively. The famous Daubechies filter and some other well-known wavelet filters are tested by the proposed novel method which is very useful for wavelet theory research and many application areas such as pattern recognition.

  4. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    Science.gov (United States)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  5. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    Science.gov (United States)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  6. Dynamical manipulation of Cosine-Gauss beams in a graphene plasmonic waveguide.

    Science.gov (United States)

    He, Xueqing; Ning, Tigang; Li, Rujiang; Pei, Li; Zheng, Jingjing; Li, Jing

    2017-06-12

    In this paper, we theoretically propose for the first time that graphene monolayer can be used to manipulate the Cosine-Gauss beams (CGBs). We show that both the transverse oscillation period and propagation length of a CGB can be dynamically manipulated by utilizing the tunability of the graphene's chemical potential. The graphene-based planar plasmonic waveguide provides a good platform to investigate the propagation properties of CGBs, which is potentially compatible to the microelectronic technology.

  7. Recursive Architecture for the Forward and Inverse Modified Discrete Cosine Transfer

    Institute of Scientific and Technical Information of China (English)

    LUJunming; JIANGGuoxiong; LINZhenghui

    2003-01-01

    Recursive algorithms have been found very effective for realization using software and very large scale integrated circuit (VLSI) techniques. In this paper, an efficient recursive algorithm for the forward and inverse modified discrete cosine transfer (IMDCT) with arbitrary length is presented. This new recursive structure for the transform kernels of the MDCT and IMDCT can reduce the computational complexity. The proposed regular ar-chitecture is particularly suitable for parallel VLSI realiza-tion.

  8. A Ramp Cosine Cepstrum Model for the Parameter Estimation of Autoregressive Systems at Low SNR

    Directory of Open Access Journals (Sweden)

    Zhu Wei-Ping

    2010-01-01

    Full Text Available A new cosine cepstrum model-based scheme is presented for the parameter estimation of a minimum-phase autoregressive (AR system under low levels of signal-to-noise ratio (SNR. A ramp cosine cepstrum (RCC model for the one-sided autocorrelation function (OSACF of an AR signal is first proposed by considering both white noise and periodic impulse-train excitations. Using the RCC model, a residue-based least-squares optimization technique that guarantees the stability of the system is then presented in order to estimate the AR parameters from noisy output observations. For the purpose of implementation, the discrete cosine transform, which can efficiently handle the phase unwrapping problem and offer computational advantages as compared to the discrete Fourier transform, is employed. From extensive experimentations on AR systems of different orders, it is shown that the proposed method is capable of estimating parameters accurately and consistently in comparison to some of the existing methods for the SNR levels as low as −5 dB. As a practical application of the proposed technique, simulation results are also provided for the identification of a human vocal tract system using noise-corrupted natural speech signals demonstrating a superior estimation performance in terms of the power spectral density of the synthesized speech signals.

  9. Pulse measurement apparatus and method

    Science.gov (United States)

    Marciante, John R.; Donaldson, William R.; Roides, Richard G.

    2011-10-25

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  10. 钟罩式脉冲澄清池的技术改造%Technical transformation of bell-shape pulse clarifier

    Institute of Scientific and Technical Information of China (English)

    王雪峰

    2013-01-01

    For the purpose of meeting the requirements of industrial water for 2 500 m3 blast furnace,the second reconstruction of 1# bell-shape pulse clarifier was carried out from aspects of process,civil construction,electric system,and so on.The reconstruction engineering adopted a combination process of pipe static mixer-folded-plate flocculating tank-inclined-tube sedimentation tank.Through the reconstruction,the design water yield recovered to 2500 m3/h,the mass concentration of the SS and turbidity in the effluent water from coagulation sedimentation tank were lower than 20 mg/L and 10 NTU respectively,which indicated that,the quality and quantity of the effluent water could meet the requirement of the production water supply system of the plant with newly added equipments.%为满足新建2500 m3高炉工业用水要求,将1#钟罩式脉冲澄清池从工艺、土建、电气等各方面着手进行二次改造.改造流程采用管道静态混合器-折板絮凝池-斜管沉淀池工艺组合方式.改造后设计产水量恢复到2500 m3/h,混凝沉淀池出水SS的质量浓度低于20 mg/L,浊度低于10 NTU,出水水质、水量能够满足厂内新增设备后生产用水要求.

  11. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing

    Institute of Scientific and Technical Information of China (English)

    Liu Weidong; Zhu Hua; Zhou Shengqiang; Bai Yalei; Wang Yuan; Zhao Chunsheng

    2013-01-01

    A novel 0-Poisson's ratio cosine honeycomb support structure of flexible skin is proposed.Mechanical model of the structure is analyzed with the energy method,finite element method (FEM) and experiments have been performed to validate the theoretical model.The in-plane characteristics of the cosine honeycomb are compared with accordion honeycomb through analytical models and experiments.Finally,the application of the cosine honeycomb on a variable camber wing is studied.Studies show that mechanical model agrees well with results of FEM and experiments.The transverse non-dimensional elastic modulus of the cosine honeycomb increases (decreases) when the wavelength or the wall width increases (decreases),or when the amplitude decreases (increases).Compared with accordion honeycomb,the transverse non-dimensional elastic modulus of the cosine honeycomb is smaller,which means the driving force is smaller and the power consumption is less during deformation.In addition,the cosine honeycomb can satisfy the deforming requirements of the variable camber wing.

  12. Evaluation of granulated BGO, GSO:Ce, YAG:Ce, CaF sub 2 :Eu and ZnS:Ag for alpha/beta pulse shape discrimination in a flow-cell radiation detector

    CERN Document Server

    Devol, T A; Fjeld, R A

    1999-01-01

    Granulated BGO, GSO:Ce, YAG:Ce, and CaF sub 2 :Eu; CaF sub 2 :Eu coated with a fluorescent polymer, and combinations of coated and uncoated CaF sub 2 :Eu with ZnS:Ag were evaluated for their ability to discriminate between alpha and beta particles in a flow-cell radiation detector. The evaluations were based on the analysis of pulse shape spectra. Various granulated scintillators were packed into flow cell detectors that were coils of 3.0 mm ODx1.5 mm ID fluorinated ethylene propylene Teflon[reg] tubing positioned between dual photomultiplier tubes for analysis. The best pulse shape discrimination was obtained for a combination of equal masses of uncoated CaF sub 2 :Eu (63-90 mu m) and ZnS:Ag (10 mu m), which had a 9% spillover. Additional research is needed to reduce the spillover.

  13. Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser

    NARCIS (Netherlands)

    Knippels, G.M.H.; van der Meer, A. F. G.; Mols, Rfxam; Oepts, D.; van Amersfoort, P. W.; Jaroszynski, D. A.

    1996-01-01

    The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses, Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses,

  14. Influence of a step-tapered undulator field on the optical pulse shape of a far-infrared free-electron laser

    NARCIS (Netherlands)

    Knippels, G.M.H.; van der Meer, A. F. G.; Mols, Rfxam; Oepts, D.; van Amersfoort, P. W.; Jaroszynski, D. A.

    1996-01-01

    The optical output of the free-electron laser for infrared experiments (FELIX), which operates in the regime of strong slippage, consists of picosecond pulses, Depending on the amount of cavity desynchronization, the optical pulse can develop substantial structure in the form of multiple subpulses,

  15. FROM BOUNDED FAMILIES OF LOCALIZED COSINES TO BI-ORTHOGONAL RIESZ BASES VIA SHIFT-INVARIANCE

    Institute of Scientific and Technical Information of China (English)

    Charles K. Chui; Shi Xianliang

    2001-01-01

    The notion of bi-inner product functionals P(f ,g) = ∑ < f ,f. >< g ,g. > generated by two Bessel seqnsences {fn} and {gn} of functions from L2 was introduced in our earlier work[5] as a vehicle to identify dual frames and bi-orthogonal Riesz bases of L2. The objective was to find conditions under which P is a constant multiple of the inner product <f ,g > of L2. A necessary and sufficient condition derived in [5]is that P is both spatial shift-invariant and phase shift-invariant. Although these two shift-invariance proper ties are, in general, unrelated, it could happen that one is a consequence of the other for certain clases of Bessel sequences {fn} and {gn}. In this paper, we show that, indeed, for localized cosines with two-over lapping windows (i. e. , only adjacent window functions are allowed to overlap ) , spatial shift-inrvariance of P is already sufficient to guarantee that P is a constant multiple of the inner product, while phase shift-in variance is not. Hence, phase shift-invariance of P for two-overlapping localized cosine Bessel sequences is a consequence of spatial shift-invariance, but the eonverse is not valid. As an application, we also show thattwo families of localized cosines with uniformly bounded and two-overlapping windows are bi-orthogonal Riesz bases of L2, if and only if Pis spatial shi ft-invariant. In addition, we apply this result to generalize a result on characterization of dual localized codne bases in our earlier work in [3] to the multivariate set- ting. A method for computing the dual windows is also given in this paper.

  16. Cosine directions using Rao-Blackwell Theorem and Hausdorff metric in Quasars

    CERN Document Server

    Bell, Byron E

    2015-01-01

    This analysis will determine the equations of the cosine directions for all flux of the optical spectrum in quasars. Studies on Hausdorff metric will greatly enhance our understanding of quasars distances. This study will complete steps in the classification of quasars by finding the minimum variance of flux by using the RaoBlackwell Theorem. The papers of C. R. Rao and D. Blackwell will be examined to clarify more of the above theorem. Keywords: Theory of Flux, SDSS, Quasars, Redshift (z), Population Perimeters, Regression Analysis

  17. High-quality image magnification applying Gerchberg-Papoulis iterative algorithm with discrete cosine transform

    Science.gov (United States)

    Shinbori, Eiji; Takagi, Mikio

    1992-11-01

    A new image magnification method, called 'IM-GPDCT' (image magnification applying the Gerchberg-Papoulis (GP) iterative algorithm with discrete cosine transform (DCT)), is described and its performance evaluated. This method markedly improves image quality of a magnified image using a concept which restores the spatial high frequencies which are conventionally lost due to use of a low pass filter. These frequencies are restored using two known constraints applied during iterative DCT: (1) correct information in a passband is known and (2) the spatial extent of an image is finite. Simulation results show that the IM- GPDCT outperforms three conventional interpolation methods from both a restoration error and image quality standpoint.

  18. Rapid Prototyping of Field Programmable Gate Array-Based Discrete Cosine Transform Approximations

    Directory of Open Access Journals (Sweden)

    Trevor W. Fox

    2003-05-01

    Full Text Available A method for the rapid design of field programmable gate array (FPGA-based discrete cosine transform (DCT approximations is presented that can be used to control the coding gain, mean square error (MSE, quantization noise, hardware cost, and power consumption by optimizing the coefficient values and datapath wordlengths. Previous DCT design methods can only control the quality of the DCT approximation and estimates of the hardware cost by optimizing the coefficient values. It is shown that it is possible to rapidly prototype FPGA-based DCT approximations with near optimal coding gains that satisfy the MSE, hardware cost, quantization noise, and power consumption specifications.

  19. Discrete cosine and sine transforms general properties, fast algorithms and integer approximations

    CERN Document Server

    Britanak, Vladimir; Rao, K R; Rao, K R

    2006-01-01

    The Discrete Cosine Transform (DCT) is used in many applications by the scientific, engineering and research communities and in data compression in particular. Fast algorithms and applications of the DCT Type II (DCT-II) have become the heart of many established international image/video coding standards. Since then other forms of the DCT and Discrete Sine Transform (DST) have been investigated in detail. This new edition presents the complete set of DCT and DST discrete trigonometric transforms, including their definitions, general mathematical properties, and relations to the optimal Karhune

  20. A new Watermarking System based on Discrete Cosine Transform (DCT) in color biometric images.

    Science.gov (United States)

    Dogan, Sengul; Tuncer, Turker; Avci, Engin; Gulten, Arif

    2012-08-01

    This paper recommend a biometric color images hiding approach An Watermarking System based on Discrete Cosine Transform (DCT), which is used to protect the security and integrity of transmitted biometric color images. Watermarking is a very important hiding information (audio, video, color image, gray image) technique. It is commonly used on digital objects together with the developing technology in the last few years. One of the common methods used for hiding information on image files is DCT method which used in the frequency domain. In this study, DCT methods in order to embed watermark data into face images, without corrupting their features.

  1. Fast 2-D 8×8 discrete cosine transform algorithm for image coding

    Institute of Scientific and Technical Information of China (English)

    JI XiuHua; ZHANG CaiMing; WANG JiaYe; BOEY S. H.

    2009-01-01

    A new fast two-dimension 8×8 discrete cosine transform (2D 8×8 DCT) algorithm based on the charac-teristics of the basic images of 2D DCT is presented. The new algorithm computes each DCT coefficient in turn more independently. Hence, the new algorithm is suitable for 2D DCT pruning algorithm of prun-ing away any number of high-frequency components of 2D DCT. The proposed pruning algorithm ls more efficient than the existing pruning 2D DCT algorithms in terms of the number of arithmetic opera-tions, especially the number of multiplications required in the computation.

  2. Soliton solution for nonlinear partial differential equations by cosine-function method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.H.A. [Mathematics Department, Faculty of Science, Menoufia University, Shebein El-Koom (Egypt); Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt)], E-mail: asoliman_99@yahoo.com; Raslan, K.R. [Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo (Egypt)

    2007-08-20

    In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations.

  3. Rapid Prototyping of Field Programmable Gate Array-Based Discrete Cosine Transform Approximations

    Science.gov (United States)

    Fox, Trevor W.; Turner, Laurence E.

    2003-12-01

    A method for the rapid design of field programmable gate array (FPGA)-based discrete cosine transform (DCT) approximations is presented that can be used to control the coding gain, mean square error (MSE), quantization noise, hardware cost, and power consumption by optimizing the coefficient values and datapath wordlengths. Previous DCT design methods can only control the quality of the DCT approximation and estimates of the hardware cost by optimizing the coefficient values. It is shown that it is possible to rapidly prototype FPGA-based DCT approximations with near optimal coding gains that satisfy the MSE, hardware cost, quantization noise, and power consumption specifications.

  4. Characterization of Nonparaxial Truncated Cosine-Gaussian Beams and the Beam Quality in the Far Field

    Institute of Scientific and Technical Information of China (English)

    KANG Xiao-Ping; L(U) Bai-Da

    2006-01-01

    @@ The analytical expression characterizing the propagation of nonparaxial truncated cosine-Gaussian (CoG) beams in free space is derived, and some special cases are discussed. The extended power in the bucket (PIB) is proposed to characterize the beam quality of nonparaxial truncated beams in the far field. It is shown that the extended PIB is applicable to nonparaxial truncated beams, and the PIB of nonparaxial truncated CoG beams depends on the decentred parameter, waist-width-to-wavelength ratio, truncation parameter, and bucket size chosen.

  5. Transfer Scheme Evaluation Model for a Transportation Hub based on Vectorial Angle Cosine

    Directory of Open Access Journals (Sweden)

    Li-Ya Yao

    2014-07-01

    Full Text Available As the most important node in public transport network, efficiency of a transport hub determines the entire efficiency of the whole transport network. In order to put forward effective transfer schemes, a comprehensive evaluation index system of urban transport hubs’ transfer efficiency was built, evaluation indexes were quantified, and an evaluation model of a multi-objective decision hub transfer scheme was established based on vectorial angle cosine. Qualitative and quantitative analysis on factors affecting transfer efficiency is conducted, which discusses the passenger satisfaction, transfer coordination, transfer efficiency, smoothness, economy, etc. Thus, a new solution to transfer scheme utilization was proposed.

  6. Combining discrete cosine transform with clipping for PAPR reduction in intensity-modulated OFDM systems

    Science.gov (United States)

    Wang, Zhong-peng; Chen, Shou-fa; Zhou, Yang; Chen, Ming; Tang, Jin; Chen, Lin

    2014-09-01

    In this paper, the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal is reduced by combining the discrete cosine transform (DCT) with clipping in optical intensity-modulated direct-detection (IM/DD) OFDM systems. First, the data are transformed into new modified data by DCT. Second, the proposed scheme utilizes the clipping technique to further reduce the PAPR of OFDM signal. We experimentally demonstrate that the optical OFDM transmission system with this proposed scheme can achieve significant performance improvement in terms of PAPR and bit error rate (BER) compared with the original optical OFDM systems.

  7. Efficient image coding method based on adaptive Gabor discrete cosine transforms

    Science.gov (United States)

    Wang, Hang; Yan, Hong

    1993-01-01

    The Gabor transform is very useful for image compression, but its implementation is very complicated and time consuming because the Gabor elementary functions are not mutually orthogonal. An efficient algorithm that combines the successive overrelaxation iteration and the look-up table techniques can be used to carry out the Gabor transform. The performance of the Gabor transform can be improved by using a modified transform, a Gabor discrete cosine transform (DCT). We present an adaptive Gabor DCT image coding algorithm. Experimental results show that a better performance can be achieved with the adaptive Gabor DCT than with the Gabor DCT.

  8. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  9. Template Reproduction of GRB Pulse Light Curves

    Science.gov (United States)

    Hakkila, Jon E.; Preece, R. D.; Loredo, T. J.; Wolpert, R. L.; Broadbent, M. E.

    2014-01-01

    A study of well-isolated pulses in gamma ray burst light curves indicates that simple models having smooth and monotonic pulse rises and decays are inadequate. Departures from the Norris et al. (2005) pulse shape are in the form of a wave-like pre-peak residual that is mirrored and stretched following the peak. Pulse shape departures are present in GRB pulses of all durations, but placement of the departures relative to pulse peaks correlates with asymmetry. This establishes an additional link between temporal structure and spectral evolution, as pulse asymmetry is related to initial hardness while pulse duration indicates the rate of hard-to-soft pulse evolution.

  10. Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices

    Science.gov (United States)

    Nakath, David; Clemens, Joachim; Rachuy, Carsten

    2017-01-01

    Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO(3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix R ∈ SO(3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ3. This is achieved by an operator, which integrates the matrix logarithm mapping from SO(3) to so(3) and the map from so(3) to ℝ3. Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers.

  11. Cosine-Modulated Multitone for Very-High-Speed Digital Subscriber Lines

    Directory of Open Access Journals (Sweden)

    Lin Lekun

    2006-01-01

    Full Text Available In this paper, the use of cosine-modulated filter banks (CMFBs for multicarrier modulation in the application of very-high-speed digital subscriber lines (VDSLs is studied. We refer to this modulation technique as cosine-modulated multitone (CMT. CMT has the same transmitter structure as discrete wavelet multitone (DWMT. However, the receiver structure in CMT is different from its DWMT counterpart. DWMT uses linear combiner equalizers, which typically have more than 20 taps per subcarrier. CMT, on the other hand, adopts a receiver structure that uses only two taps per subcarrier for equalization. This paper has the following contributions. (i A modification that reduces the computational complexity of the receiver structure of CMT is proposed. (ii Although traditionally CMFBs are designed to satisfy perfect-reconstruction (PR property, in transmultiplexing applications, the presence of channel destroys the PR property of the filter bank, and thus other criteria of filter design should be adopted. We propose one such method. (iii Through extensive computer simulations, we compare CMT with zipper discrete multitone (z-DMT and filtered multitone (FMT, the two modulation techniques that have been included in the VDSL draft standard. Comparisons are made in terms of computational complexity, transmission latency, achievable bit rate, and resistance to radio ingress noise.

  12. Anomalous diffusion and dielectric relaxation in an N-fold cosine potential.

    Science.gov (United States)

    Coffey, W T; Kalmykov, Yu P; Titov, S V

    2003-06-01

    The fractional Klein-Kramers (Fokker-Planck) equation describing the fractal time dynamics of an assembly of fixed axis dipoles rotating in an N-fold cosine potential representing the internal field due to neighboring molecules is solved using matrix continued fractions. The result can be considered as a generalization of the solution for the normal Brownian motion in a cosine periodic potential to fractional dynamics (giving rise to anomalous diffusion) and also represents a generalization of Fröhlich's model of relaxation over a potential barrier. The solution includes both inertial and strong internal field effects, which in combination produce a strong resonance peak (Poley absorption) at high frequencies due to librations of the dipoles in the potential, an anomalous relaxation band at low frequencies mainly arising from overbarrier relaxation, and a weaker relaxation band at midfrequencies due to the fast intrawell modes. The high-frequency behavior is controlled by the inertia of the dipole, so that the Gordon sum rule for dipolar absorption is satisfied, ensuring a return to optical transparency at very high frequencies. Application of the model to the broadband (0-THz) dielectric loss spectrum of a dilute solution of the probe dipolar molecule CH2Cl2 in glassy decalin is demonstrated.

  13. DESIGN OF SINGLE PHASE FULLY CONTROLLED CONVERTER USING COSINE WAVE CROSSING CONTROL WITH VARIOUS PROTECTIONS

    Directory of Open Access Journals (Sweden)

    GENO PETER .P

    2010-09-01

    Full Text Available The single phase fully controlled converter is used to convert single phase A.C supply to D.C supply. Such converter finds application in dc motor loads for motoring and electrical braking of the motor. There are two types of control schemes to control the firing of thyristors, they are Cosine wave crossing control and Ramp comparator control. In this paper, cosine wave crossing control is used for the control circuit. The advantage of this scheme is that the output voltage is proportional to the control voltage ie., the output voltage is independent of the variation of input voltage. The various protections such as over current, short circuit, under voltage protections etc are included. The main objective of this project is to design an efficient, simple, robust and economical control circuit thereby making the fully controlled converter. The fully controlled converter uses four thyristors . It is a two quadrant converter was voltage polarity can reverse, but current direction cannot reverse because of unidirectional nature of thyristors. In this paper, I have presented the control circuit for the thyristors along with the protection circuits to control Dc Motors of rating 220V,5.8 A and 1500rpm .

  14. Efficient Implementation of Complex Modulated Filter Banks Using Cosine and Sine Modulated Filter Banks

    Science.gov (United States)

    Viholainen, Ari; Alhava, Juuso; Renfors, Markku

    2006-12-01

    The recently introduced exponentially modulated filter bank (EMFB) is a[InlineEquation not available: see fulltext.]-channel uniform, orthogonal, critically sampled, and frequency-selective complex modulated filter bank that satisfies the perfect reconstruction (PR) property if the prototype filter of an[InlineEquation not available: see fulltext.]-channel PR cosine modulated filter bank (CMFB) is used. The purpose of this paper is to present various implementation structures for the EMFBs in a unified framework. The key idea is to use cosine and sine modulated filter banks as building blocks and, therefore, polyphase, lattice, and extended lapped transform (ELT) type of implementation solutions are studied. The ELT-based EMFBs are observed to be very competitive with the existing modified discrete Fourier transform filter banks (MDFT-FBs) when comparing the number of multiplications/additions and the structural simplicity. In addition, EMFB provides an alternative channel stacking arrangement that could be more natural in certain subband processing applications and data transmission systems.

  15. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.

    Science.gov (United States)

    Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T

    2017-04-03

    We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities 200 nm bandwidth.

  16. α、β粒子在钝化注入平面硅探测器中的脉冲形状分析%Pulse Shape of Alpha and Beta Particles in Passivated Implanted Planer Silicon Detector

    Institute of Scientific and Technical Information of China (English)

    田新; 肖无云; 王善强; 梁卫平

    2011-01-01

    There is a problem of cross counting of alpha and beta when samples are measured sometime. In order to resolve the problem, the article researches into the range of alpha and beta particles in PIPS derectors. The difference in range results in difference in charge collecting time, so the pulse shape is also different. The characters of pulse shape of alpha and beta particles in PIPS derectors are studied. The rise time of voltage signal is surveied and the change of rise time in different bias is analysed. Results of the research provied some useful reference to pulse shape discrimination of alpha and beta particles in PIPS derectors.%利用钝化注入平面硅探测器(PIPS)测量α、β时,某些情况下只通过能量甄别无法区分这两种粒子,而通过脉冲形状甄别的方法可以很好地解决这一问题.通过研究α、β粒子在PIPS中脉冲形状不同的机制,分析了脉冲形状的特征;测量分析了一款PIPS探测器的电压脉冲上升时间及其随偏压的变化;分析得出了对PIPS探测器进行脉冲形状甄别的基本条件,为利用脉冲形状对α、β进行甄别提供了参考.

  17. The tanh and sine-cosine methods for higher order equations of Korteweg-de Vries type

    Energy Technology Data Exchange (ETDEWEB)

    Alquran, Marwan; Al-Khaled, Kamel, E-mail: marwan04@just.edu.jo, E-mail: kamel@just.edu.jo [Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110 (Jordan)

    2011-08-01

    The aim of this paper is twofold. Firstly, the tanh method with the aid of Mathematica is used to obtain exact soliton solutions for a new fifth-order nonlinear integrable evolution equation. Secondly, the sine-cosine and the rational sine-cosine methods are proposed for constructing more general exact solutions of the soliton type for two nonlinear evolution equations arising in nonlinear science and theoretical physics, namely the symmetric regularized long wave equation and a new model of the Korteweg-de Vries type, which gives a more realistic version of shallow water waves.

  18. Full-Color Computational Imaging with Single-Pixel Detectors Based on a 2D Discrete Cosine Transform

    CERN Document Server

    Liu, Bao-Lei; Wu, Ling-An

    2016-01-01

    We propose and demonstrate a computational imaging technique that uses structured illumination based on a two-dimensional discrete cosine transform to perform imaging with a single-pixel detector. A scene is illuminated by a projector with two sets of orthogonal patterns, then by applying an inverse cosine transform to the spectra obtained from the single-pixel detector a full-color image is retrieved. This technique can retrieve an image from sub-Nyquist measurements, and the background noise is easily canceled to give excellent image quality. Moreover, the experimental setup is very simple.

  19. Analytic expressions for the black-sky and white-sky albedos of the cosine lobe model.

    Science.gov (United States)

    Goodin, Christopher

    2013-05-01

    The cosine lobe model is a bidirectional reflectance distribution function (BRDF) that is commonly used in computer graphics to model specular reflections. The model is both simple and physically plausible, but physical quantities such as albedo have not been related to the parameterization of the model. In this paper, analytic expressions for calculating the black-sky and white-sky albedos from the cosine lobe BRDF model with integer exponents will be derived, to the author's knowledge for the first time. These expressions for albedo can be used to place constraints on physics-based simulations of radiative transfer such as high-fidelity ray-tracing simulations.

  20. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality......“Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... of the visitor’s beating heart to the blink of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the blinking light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant...